1,742 research outputs found

    Machine learning approach for detection of nonTor traffic

    Get PDF
    Intrusion detection has attracted a considerable interest from researchers and industry. After many years of research the community still faces the problem of building reliable and efficient intrusion detection systems (IDS) capable of handling large quantities of data with changing patterns in real time situations. The Tor network is popular in providing privacy and security to end user by anonymizing the identity of internet users connecting through a series of tunnels and nodes. This work identifies two problems; classification of Tor traffic and nonTor traffic to expose the activities within Tor traffic that minimizes the protection of users in using the UNB-CIC Tor Network Traffic dataset and classification of the Tor traffic flow in the network. This paper proposes a hybrid classifier; Artificial Neural Network in conjunction with Correlation feature selection algorithm for dimensionality reduction and improved classification performance. The reliability and efficiency of the propose hybrid classifier is compared with Support Vector Machine and naïve Bayes classifiers in detecting nonTor traffic in UNB-CIC Tor Network Traffic dataset. Experimental results show the hybrid classifier, ANN-CFS proved a better classifier in detecting nonTor traffic and classifying the Tor traffic flow in UNB-CIC Tor Network Traffic dataset

    Network Intrusion Detection System:A systematic study of Machine Learning and Deep Learning approaches

    Get PDF
    The rapid advances in the internet and communication fields have resulted in ahuge increase in the network size and the corresponding data. As a result, manynovel attacks are being generated and have posed challenges for network secu-rity to accurately detect intrusions. Furthermore, the presence of the intruderswiththeaimtolaunchvariousattackswithinthenetworkcannotbeignored.Anintrusion detection system (IDS) is one such tool that prevents the network frompossible intrusions by inspecting the network traffic, to ensure its confidential-ity, integrity, and availability. Despite enormous efforts by the researchers, IDSstillfaceschallengesinimprovingdetectionaccuracywhilereducingfalsealarmrates and in detecting novel intrusions. Recently, machine learning (ML) anddeep learning (DL)-based IDS systems are being deployed as potential solutionsto detect intrusions across the network in an efficient manner. This article firstclarifiestheconceptofIDSandthenprovidesthetaxonomybasedonthenotableML and DL techniques adopted in designing network-based IDS (NIDS) sys-tems. A comprehensive review of the recent NIDS-based articles is provided bydiscussing the strengths and limitations of the proposed solutions. Then, recenttrends and advancements of ML and DL-based NIDS are provided in terms ofthe proposed methodology, evaluation metrics, and dataset selection. Using theshortcomings of the proposed methods, we highlighted various research chal-lenges and provided the future scope for the research in improving ML andDL-based NIDS

    Practical autoencoder based anomaly detection by using vector reconstruction error

    Get PDF
    AbstractNowadays, cloud computing provides easy access to a set of variable and configurable computing resources based on user demand through the network. Cloud computing services are available through common internet protocols and network standards. In addition to the unique benefits of cloud computing, insecure communication and attacks on cloud networks cannot be ignored. There are several techniques for dealing with network attacks. To this end, network anomaly detection systems are widely used as an effective countermeasure against network anomalies. The anomaly-based approach generally learns normal traffic patterns in various ways and identifies patterns of anomalies. Network anomaly detection systems have gained much attention in intelligently monitoring network traffic using machine learning methods. This paper presents an efficient model based on autoencoders for anomaly detection in cloud computing networks. The autoencoder learns a basic representation of the normal data and its reconstruction with minimum error. Therefore, the reconstruction error is used as an anomaly or classification metric. In addition, to detecting anomaly data from normal data, the classification of anomaly types has also been investigated. We have proposed a new approach by examining an autoencoder's anomaly detection method based on data reconstruction error. Unlike the existing autoencoder-based anomaly detection techniques that consider the reconstruction error of all input features as a single value, we assume that the reconstruction error is a vector. This enables our model to use the reconstruction error of every input feature as an anomaly or classification metric. We further propose a multi-class classification structure to classify the anomalies. We use the CIDDS-001 dataset as a commonly accepted dataset in the literature. Our evaluations show that the performance of the proposed method has improved considerably compared to the existing ones in terms of accuracy, recall, false-positive rate, and F1-score metrics

    From Intrusion Detection to Attacker Attribution: A Comprehensive Survey of Unsupervised Methods

    Get PDF
    Over the last five years there has been an increase in the frequency and diversity of network attacks. This holds true, as more and more organisations admit compromises on a daily basis. Many misuse and anomaly based Intrusion Detection Systems (IDSs) that rely on either signatures, supervised or statistical methods have been proposed in the literature, but their trustworthiness is debatable. Moreover, as this work uncovers, the current IDSs are based on obsolete attack classes that do not reflect the current attack trends. For these reasons, this paper provides a comprehensive overview of unsupervised and hybrid methods for intrusion detection, discussing their potential in the domain. We also present and highlight the importance of feature engineering techniques that have been proposed for intrusion detection. Furthermore, we discuss that current IDSs should evolve from simple detection to correlation and attribution. We descant how IDS data could be used to reconstruct and correlate attacks to identify attackers, with the use of advanced data analytics techniques. Finally, we argue how the present IDS attack classes can be extended to match the modern attacks and propose three new classes regarding the outgoing network communicatio

    Proposed algorithm for smart grid DDoS detection based on deep learning

    Get PDF
    The Smart Grid’s objective is to increase the electric grid’s dependability, security, and efficiency through extensive digital information and control technology deployment. As a result, it is necessary to apply real-time analysis and state estimation-based techniques to ensure efficient controls are implemented correctly. These systems are vulnerable to cyber-attacks, posing significant risks to the Smart Grid’s overall availability due to their reliance on communication technology. Therefore, effective intrusion detection algorithms are required to mitigate such attacks. In dealing with these uncertainties, we propose a hybrid deep learning algorithm that focuses on Distributed Denial of Service attacks on the communication infrastructure of the Smart Grid. The proposed algorithm is hybridized by the Convolutional Neural Network and the Gated Recurrent Unit algorithms. Simulations are done using a benchmark cyber security dataset of the Canadian Institute of Cybersecurity Intrusion Detection System. According to the simulation results, the proposed algorithm outperforms the current intrusion detection algorithms, with an overall accuracy rate of 99.7%.© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed
    • …
    corecore