3,648 research outputs found

    Mobihealth: mobile health services based on body area networks

    Get PDF
    In this chapter we describe the concept of MobiHealth and the approach developed during the MobiHealth project (MobiHealth, 2002). The concept was to bring together the technologies of Body Area Networks (BANs), wireless broadband communications and wearable medical devices to provide mobile healthcare services for patients and health professionals. These technologies enable remote patient care services such as management of chronic conditions and detection of health emergencies. Because the patient is free to move anywhere whilst wearing the MobiHealth BAN, patient mobility is maximised. The vision is that patients can enjoy enhanced freedom and quality of life through avoidance or reduction of hospital stays. For the health services it means that pressure on overstretched hospital services can be alleviated

    Cyclist performance assessment based on WSN and cloud technologies

    Get PDF
    Mobility in big cities is a growing problem and the use of bicycles has been a solution which, together with new sharing services, helps to motivate users. There are also more and more users practicing sports involving the use of bicycles. It was in this context that the present dissertation was developed, a distributed sensor system for monitoring cyclists. With the support of a wireless sensor network connected to the internet and, using a set of smart sensors as end-nodes, it is possible to obtain data that will help the cyclist to improve his performance. The coach can monitor and evaluate the performance to improve their training sessions. The health status condition during training it is also monitored using cardiac and respiratory assessment sensors. The information from the nodes of the wireless sensor network is uploaded, via the internet connection, to the Firebase platform. An Android mobile application has been developed, this allows trainers to register cyclists, plan routes and observe the results collected by the network. With the inclusion of these technologies, the coach and the athlete may analyze the performance of a session and compare it with the previous training results. New training sessions may be established according to the athlete's needs. The effectiveness of the proposed system was experimentally tested and several results are included in this dissertation.A mobilidade nas grandes cidades é um problema crescente e a utilização das bicicletas tem vindo a ser uma solução que, em conjunto com novos serviços de partilha, ajudam a motivar os utilizadores. Há também cada vez mais utilizadores a praticar desportos que envolvem a utilização da bicicleta. Foi neste contexto que a presente dissertação foi desenvolvida, um sistema de sensores distribuídos para monitorização de ciclistas. Com o suporte de uma rede de sensores sem fios ligada á internet e, utilizando um conjunto de sensores inteligentes como nós, é possível obter dados que vão ajudar o ciclista a melhorar o seu desempenho. O treinador consegue monitorizar e avaliar o desempenho para aperfeiçoar as sessões de treino. A condição do estado de saúde é também monitorizada utilizando sensores de avaliação cardíaca e de respiratória. A informação proveniente dos nós da rede de sensores sem fios é carregada, através da ligação á internet, para a plataforma Firebase. Foi desenvolvida uma aplicação móvel Android, que permite que os treinadores registem ciclistas, planeiem rotas e observem os resultados recolhidos pela rede. Com a inclusão destas tecnologias, o treinador e o ciclista podem analisar o desempenho de uma sessão e compara-lo com os resultados do treino anterior. Podem ser estabelecidas novas sessões de treino de acordo com as necessidades do atleta. A eficácia do sistema proposto foi testada experimentalmente e os vários resultados foram incluídos nesta dissertação

    Wearable devices for remote vital signs monitoring in the outpatient setting: an overview of the field

    Get PDF
    Early detection of physiological deterioration has been shown to improve patient outcomes. Due to recent improvements in technology, comprehensive outpatient vital signs monitoring is now possible. This is the first review to collate information on all wearable devices on the market for outpatient physiological monitoring. A scoping review was undertaken. The monitors reviewed were limited to those that can function in the outpatient setting with minimal restrictions on the patient’s normal lifestyle, while measuring any or all of the vital signs: heart rate, ECG, oxygen saturation, respiration rate, blood pressure and temperature. A total of 270 papers were included in the review. Thirty wearable monitors were examined: 6 patches, 3 clothing-based monitors, 4 chest straps, 2 upper arm bands and 15 wristbands. The monitoring of vital signs in the outpatient setting is a developing field with differing levels of evidence for each monitor. The most common clinical application was heart rate monitoring. Blood pressure and oxygen saturation measurements were the least common applications. There is a need for clinical validation studies in the outpatient setting to prove the potential of many of the monitors identified. Research in this area is in its infancy. Future research should look at aggregating the results of validity and reliability and patient outcome studies for each monitor and between different devices. This would provide a more holistic overview of the potential for the clinical use of each device

    Impact of internet of everything technologies in sports - football

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceInternet of Things has been one of the hottest technology concepts of recent years. It started with the wearable devices and any digital device connected online and evolved to a web connected network linking everything from devices, sensors, machines, people, processes, companies, and so on, creating the Internet of Everything concept. There are many application areas, but one stands out due to its popularization and importance to industry, Sports and specifically Football. Football has been reinventing itself with the implementation of technology, recreating the formula used in the United States Major Sports, where technology helps to enhance the spectacle experience, expand game analysis by coaches, players, and media, provide live refereeing, and improve health recoveries and detection of injuries. This research is a state-of-situation regarding technology in football, recognizing the presently used technologies and what could be implemented, and ultimately measuring the impact of these devices in Football

    A Priority-based Fair Queuing (PFQ) Model for Wireless Healthcare System

    Get PDF
    Healthcare is a very active research area, primarily due to the increase in the elderly population that leads to increasing number of emergency situations that require urgent actions. In recent years some of wireless networked medical devices were equipped with different sensors to measure and report on vital signs of patient remotely. The most important sensors are Heart Beat Rate (ECG), Pressure and Glucose sensors. However, the strict requirements and real-time nature of medical applications dictate the extreme importance and need for appropriate Quality of Service (QoS), fast and accurate delivery of a patient’s measurements in reliable e-Health ecosystem. As the elderly age and older adult population is increasing (65 years and above) due to the advancement in medicine and medical care in the last two decades; high QoS and reliable e-health ecosystem has become a major challenge in Healthcare especially for patients who require continuous monitoring and attention. Nevertheless, predictions have indicated that elderly population will be approximately 2 billion in developing countries by 2050 where availability of medical staff shall be unable to cope with this growth and emergency cases that need immediate intervention. On the other side, limitations in communication networks capacity, congestions and the humongous increase of devices, applications and IOT using the available communication networks add extra layer of challenges on E-health ecosystem such as time constraints, quality of measurements and signals reaching healthcare centres. Hence this research has tackled the delay and jitter parameters in E-health M2M wireless communication and succeeded in reducing them in comparison to current available models. The novelty of this research has succeeded in developing a new Priority Queuing model ‘’Priority Based-Fair Queuing’’ (PFQ) where a new priority level and concept of ‘’Patient’s Health Record’’ (PHR) has been developed and integrated with the Priority Parameters (PP) values of each sensor to add a second level of priority. The results and data analysis performed on the PFQ model under different scenarios simulating real M2M E-health environment have revealed that the PFQ has outperformed the results obtained from simulating the widely used current models such as First in First Out (FIFO) and Weight Fair Queuing (WFQ). PFQ model has improved transmission of ECG sensor data by decreasing delay and jitter in emergency cases by 83.32% and 75.88% respectively in comparison to FIFO and 46.65% and 60.13% with respect to WFQ model. Similarly, in pressure sensor the improvements were 82.41% and 71.5% and 68.43% and 73.36% in comparison to FIFO and WFQ respectively. Data transmission were also improved in the Glucose sensor by 80.85% and 64.7% and 92.1% and 83.17% in comparison to FIFO and WFQ respectively. However, non-emergency cases data transmission using PFQ model was negatively impacted and scored higher rates than FIFO and WFQ since PFQ tends to give higher priority to emergency cases. Thus, a derivative from the PFQ model has been developed to create a new version namely “Priority Based-Fair Queuing-Tolerated Delay” (PFQ-TD) to balance the data transmission between emergency and non-emergency cases where tolerated delay in emergency cases has been considered. PFQ-TD has succeeded in balancing fairly this issue and reducing the total average delay and jitter of emergency and non-emergency cases in all sensors and keep them within the acceptable allowable standards. PFQ-TD has improved the overall average delay and jitter in emergency and non-emergency cases among all sensors by 41% and 84% respectively in comparison to PFQ model

    PhysioDroid: Combining Wearable Health Sensors and Mobile Devices for a Ubiquitous, Continuous, and Personal Monitoring

    Get PDF
    Technological advances on the development of mobile devices, medical sensors, and wireless communication systems support a new generation of unobtrusive, portable, and ubiquitous health monitoring systems for continuous patient assessment and more personalized health care. There exist a growing number of mobile apps in the health domain; however, little contribution has been specifically provided, so far, to operate this kind of apps with wearable physiological sensors. The PhysioDroid, presented in this paper, provides a personalized means to remotely monitor and evaluate users’ conditions. The PhysioDroid system provides ubiquitous and continuous vital signs analysis, such as electrocardiogram, heart rate, respiration rate, skin temperature, and body motion, intended to help empower patients and improve clinical understanding. The PhysioDroid is composed of a wearable monitoring device and an Android app providing gathering, storage, and processing features for the physiological sensor data. The versatility of the developed app allows its use for both average users and specialists, and the reduced cost of the PhysioDroid puts it at the reach of most people. Two exemplary use cases for health assessment and sports training are presented to illustrate the capabilities of the PhysioDroid. Next technical steps include generalization to other mobile platforms and health monitoring devices.This work was partially supported by the Spanish CICYT Project SAF2010-20558, Junta de Andalucia Project P09-TIC-175476, and the FPU Spanish Grant AP2009-2244. This work was also supported in part by the INTERREG IV European Project WHM-Wireless Health Monitoring (I-1-02=091) and the European Commission Seventh Framework Programme FP7 Project OPENi-Open-Source, Web-Based, Framework for Integrating Applications with Social Media Services, and Personal Cloudlets under Grant no. 317883

    Towards the internet of smart clothing: a review on IoT wearables and garments for creating intelligent connected e-textiles

    Get PDF
    [Abstract] Technology has become ubiquitous, it is all around us and is becoming part of us. Togetherwith the rise of the Internet of Things (IoT) paradigm and enabling technologies (e.g., Augmented Reality (AR), Cyber-Physical Systems, Artificial Intelligence (AI), blockchain or edge computing), smart wearables and IoT-based garments can potentially have a lot of influence by harmonizing functionality and the delight created by fashion. Thus, smart clothes look for a balance among fashion, engineering, interaction, user experience, cybersecurity, design and science to reinvent technologies that can anticipate needs and desires. Nowadays, the rapid convergence of textile and electronics is enabling the seamless and massive integration of sensors into textiles and the development of conductive yarn. The potential of smart fabrics, which can communicate with smartphones to process biometric information such as heart rate, temperature, breathing, stress, movement, acceleration, or even hormone levels, promises a new era for retail. This article reviews the main requirements for developing smart IoT-enabled garments and shows smart clothing potential impact on business models in the medium-term. Specifically, a global IoT architecture is proposed, the main types and components of smart IoT wearables and garments are presented, their main requirements are analyzed and some of the most recent smart clothing applications are studied. In this way, this article reviews the past and present of smart garments in order to provide guidelines for the future developers of a network where garments will be connected like other IoT objects: the Internet of Smart Clothing.Xunta de Galicia; ED431C 2016-045Xunta de Galicia; ED341D R2016/012Xunta de Galicia; ED431G/01Agencia Estatal de Investigación de España; TEC2013-47141-C4-1-RAgencia Estatal de Investigación de España; TEC2016-75067-C4-1-RAgencia Estatal de Investigación de España; TEC2015-69648-RED
    corecore