101 research outputs found

    Simulation of Mixed Critical In-vehicular Networks

    Full text link
    Future automotive applications ranging from advanced driver assistance to autonomous driving will largely increase demands on in-vehicular networks. Data flows of high bandwidth or low latency requirements, but in particular many additional communication relations will introduce a new level of complexity to the in-car communication system. It is expected that future communication backbones which interconnect sensors and actuators with ECU in cars will be built on Ethernet technologies. However, signalling from different application domains demands for network services of tailored attributes, including real-time transmission protocols as defined in the TSN Ethernet extensions. These QoS constraints will increase network complexity even further. Event-based simulation is a key technology to master the challenges of an in-car network design. This chapter introduces the domain-specific aspects and simulation models for in-vehicular networks and presents an overview of the car-centric network design process. Starting from a domain specific description language, we cover the corresponding simulation models with their workflows and apply our approach to a related case study for an in-car network of a premium car

    VEGa : a high performance vehicular Ethernet gateway on hybrid FPGA

    Get PDF
    Modern vehicles employ a large amount of distributed computation and require the underlying communication scheme to provide high bandwidth and low latency. Existing communication protocols like Controller Area Network (CAN) and FlexRay do not provide the required bandwidth, paving the way for adoption of Ethernet as the next generation network backbone for in-vehicle systems. Ethernet would co-exist with safety-critical communication on legacy networks, providing a scalable platform for evolving vehicular systems. This requires a high-performance network gateway that can simultaneously handle high bandwidth, low latency, and isolation; features that are not achievable with traditional processor based gateway implementations. We present VEGa, a configurable vehicular Ethernet gateway architecture utilising a hybrid FPGA to closely couple software control on a processor with dedicated switching circuit on the reconfigurable fabric. The fabric implements isolated interface ports and an accelerated routing mechanism, which can be controlled and monitored from software. Further, reconfigurability enables the switching behaviour to be altered at run-time under software control, while the configurable architecture allows easy adaptation to different vehicular architectures using high-level parameter settings. We demonstrate the architecture on the Xilinx Zynq platform and evaluate the bandwidth, latency, and isolation using extensive tests in hardware

    Design of in-vehicle networked control system architectures through the use of new design to cost and weight processes : innovation report

    Get PDF
    Over the last forty years, the use of electronic controls within the automotive industry has grown considerably. In-vehicle network technologies such as the Controller Area Network (CAN) and Local Interconnect Network (LIN) are used to connect Electronic Control Units (ECU) together, mainly to reduce the amount of wiring that would be required if hardwired integration were used. Modern passenger cars contain many networks, which means that for the architecture designer, there is an almost overwhelming number of choices on how to design/partition the system depending on factors such as cost, weight, availability of ECUs, safety, Electro-Magnetic Compatibility (EMC) etc. Despite the increasing role played by in-vehicle networks in automotive electrical architectures, its design could currently be described as a “black art”. Not only is there an almost overwhelming number of choices facing the designer, but there is currently a lack of a quantifiable process to aid decision making and there is a dearth of published literature available. NetGen is a software tool used to design CAN/J1939, LIN and FlexRay networks. For the product to remain competitive, it is desirable to have novel features over the competition. This report describes a body of work, the aim of which was to research in-vehicle network design processes, and to provide an improvement to such processes. The opportunities of customer projects and availability of customer information resulted in the scope of the research focusing on the adoption of LIN technology and whether the adoption of it could reduce the cost and weight of the target architecture. The research can therefore be seen to address two issues: firstly the general problem of network designers needing to design in-vehicle network based architectures balancing the needs of many design targets such as cost, weight etc, and secondly the commercial motivation to find novel features for the design tool, NetGen. The outcome of the research described in this report was the development of design processes that can be used for the selection of low cost and weight automotive electrical architectures using coarse information, such as that which would be easily available at the very beginning of a vehicle design programme. The key benefit of this is that a number of candidate networked architectures can be easily assessed for their ability to reduce cost and weight of the electrical architecture

    In-vehicle communication networks : a literature survey

    Get PDF
    The increasing use of electronic systems in automobiles instead of mechanical and hydraulic parts brings about advantages by decreasing their weight and cost and providing more safety and comfort. There are many electronic systems in modern automobiles like antilock braking system (ABS) and electronic brakeforce distribution (EBD), electronic stability program (ESP) and adaptive cruise control (ACC). Such systems assist the driver by providing better control, more comfort and safety. In addition, future x-by-wire applications aim to replace existing braking, steering and driving systems. The developments in automotive electronics reveal the need for dependable, efficient, high-speed and low cost in-vehicle communication. This report presents the summary of a literature survey on in-vehicle communication networks. Different in-vehicle system domains and their requirements are described and main invehicle communication networks that have been used in automobiles or are likely to be used in the near future are discussed and compared with key references

    Time-sensitive autonomous architectures

    Get PDF
    Autonomous and software-defined vehicles (ASDVs) feature highly complex systems, coupling safety-critical and non-critical components such as infotainment. These systems require the highest connectivity, both inside the vehicle and with the outside world. An effective solution for network communication lies in Time-Sensitive Networking (TSN) which enables high-bandwidth and low-latency communications in a mixed-criticality environment. In this work, we present Time-Sensitive Autonomous Architectures (TSAA) to enable TSN in ASDVs. The software architecture is based on a hypervisor providing strong isolation and virtual access to TSN for virtual machines (VMs). TSAA latest iteration includes an autonomous car controlled by two Xilinx accelerators and a multiport TSN switch. We discuss the engineering challenges and the performance evaluation of the project demonstrator. In addition, we propose a Proof-of-Concept design of virtualized TSN to enable multiple VMs executing on a single board taking advantage of the inherent guarantees offered by TSN

    Skalierbare adaptive System-on-Chip-Architekturen fĂĽr Inter-Car und Intra-Car Kommunikationsgateways

    Get PDF
    Die Kommunikation zwischen Verkehrsteilnehmern ist ein elementarer Bestandteil zukünftiger Mobilitätskonzepte. Die Arbeit untersucht, welchen Anforderungen die Kommunikationsknotenpunkte gerecht werden müssen. Das Ergebnis ist eine System-on-Chip Architektur für die fahrzeuginterne und fahrzeugübergreifende Kommunikation. Wesentliche Eigenschaftensind Flexibilität und Skalierbarkeit, die es erlauben, mittels neuartiger Methoden und Tools optimierte Architekturen zu realisieren

    Trends in Automotive Communication Systems

    Get PDF
    Extended and updated version of the 2005 IEEE Proceedings paper with the same title.The use of networks for communications between the Electronic Control Units (ECU) of a vehicle in production cars dates from the beginning of the 90s. The specific requirements of the different car domains have led to the development of a large number of automotive networks such as LIN, J1850, CAN, FlexRay, MOST, etc.. This chapter first introduces the context of in-vehicle embedded systems and, in particular, the requirements imposed on the communication systems. Then, a review of the most widely used, as well as the emerging automotive networks is given. Next, the current efforts of the automotive industry on middleware technologies which may be of great help in mastering the heterogeneity, are reviewed, with a special focus on the proposals of the AUTOSAR consortium. Finally, we highlight future trends in the development of automotive communication systems

    An Overview of Automotive Service-Oriented Architectures and Implications for Security Countermeasures

    Get PDF
    New requirements from the customers\u27 and manufacturers\u27 point of view such as adding new software functions during the product life cycle require a transformed architecture design for future vehicles. The paradigm of signal-oriented communication established for many years will increasingly be replaced by service-oriented approaches in order to increase the update and upgrade capability. In this article, we provide an overview of current protocols and communication patterns for automotive architectures based on the service-oriented architecture (SOA) paradigm and compare them with signal-oriented approaches. Resulting challenges and opportunities of SOAs with respect to information security are outlined and discussed. For this purpose, we explain different security countermeasures and present a state of the section of automotive approaches in the fields of firewalls, Intrusion Detection Systems (IDSs) and Identity and Access Management (IAM). Our final discussion is based on an exemplary hybrid architecture (signal- and service-oriented) and examines the adaptation of existing security measures as well as their specific security features

    A framework and methods for on-board network level fault diagnostics in automobiles

    Get PDF
    A significant number of electronic control units (ECUs) are nowadays networked in automotive vehicles to help achieve advanced vehicle control and eliminate bulky electrical wiring. This, however, inevitably leads to increased complexity in vehicle fault diagnostics. Traditional off-board fault diagnostics and repair at service centres, by using only diagnostic trouble codes logged by conventional onboard diagnostics, can become unwieldy especially when dealing with intermittent faults in complex networked electronic systems. This can result in inaccurate and time consuming diagnostics due to lack of real-time fault information of the interaction among ECUs in the network-wide perspective. This thesis proposes a new framework for on-board knowledge-based diagnostics focusing on network level faults, and presents an implementation of a real-time in-vehicle network diagnostic system, using case-based reasoning. A newly developed fault detection technique and the results from several practical experiments with the diagnostic system using a network simulation tool, a hardware- in-the- loop simulator, a disturbance simulator, simulated ECUs and real ECUs networked on a test rig are also presented. The results show that the new vehicle diagnostics scheme, based on the proposed new framework, can provide more real-time network level diagnostic data, and more detailed and self-explanatory diagnostic outcomes. This new system can provide increased diagnostic capability when compared with conventional diagnostic methods in terms of detecting message communication faults. In particular, the underlying incipient network problems that are ignored by the conventional on-board diagnostics are picked up for thorough fault diagnostics and prognostics which can be carried out by a whole-vehicle fault management system, contributing to the further development of intelligent and fault-tolerant vehicles
    • …
    corecore