

Automotive embedded systems software

reprogramming

A thesis submitted for the degree

of Doctor of

Philosophy

by

Ralf Schmidgall

School of Engineering and Design

Brunel University

May 2012

Abstract

The exponential growth of computer power is no longer limited to stand alone computing

systems but applies to all areas of commercial embedded computing systems. The

ongoing rapid growth in intelligent embedded systems is visible in the commercial auto-

motive area, where a modern car today implements up to 80 different electronic control

units (ECUs) and their total memory size has been increased to several hundreds of

megabyte.

This growth in the commercial mass production world has led to new challenges, even

within the automotive industry but also in other business areas where cost pressure is

high. The need to drive cost down means that every cent spent on recurring engineering

costs needs to be justified. A conflict between functional requirements (functionality,

system reliability, production and manufacturing aspects etc.), testing and maintainability

aspects is given.

Software reprogramming, as a key issue within the automotive industry, solve that given

conflict partly in the past. Software Reprogramming for in-field service and maintenance in

the after sales markets provides a strong method to fix previously not identified software

errors. But the increasing software sizes and therefore the increasing software

reprogramming times will reduce the benefits. Especially if ECU’s software size growth

faster than vehicle’s onboard infrastructure can be adjusted.

The thesis result enables cost prediction of embedded systems’ software reprogramming

by generating an effective and reliable model for reprogramming time for different existing

and new technologies. This model and additional research results contribute to a timeline

for short term, mid term and long term solutions which will solve the currently given

problems as well as future challenges, especially for the automotive industry but also for

all other business areas where cost pressure is high and software reprogramming is a key

issue during products life cycle.

Content

1 Introduction 1

1.1 Vehicle’s life cycle 2

1.2 Reprogramming within an ECU’s life cycle 4

1.3 Aspects of software reprogramming 7

1.3.1 Automotive innovation vs. software size ... 8

1.3.2 Automotive development focus and priority 9

1.3.3 Automotive system complexity and compatibility 10

1.3.4 Automotive network aspects .. 12

1.3.5 Summary ... 14

1.4 Scope of the thesis 15

1.5 Organisation of the thesis 16

2 Background 18

2.1 Embedded Systems 19

2.2 Electronic Control Unit 21

2.2.1 Microcontroller ... 21

2.2.2 Memory .. 22

2.2.3 ECU Software Components Overview ... 24

2.3 Programming Control Unit (Test system)............. 28

2.4 Programming Sequence 29

2.5 Communication Stack 33

2.5.1 Field bus systems .. 35

2.5.2 Media Access Control Overview .. 36

2.5.3 Transport Layer Protocol.. 36

2.5.4 Application Protocols ... 38

2.6 Network 39

2.7 Summary 40

3 Double buffered data transfer 41

3.1 Reprogramming Protocol 42

3.2 Double buffered data transfer 42

3.3 Method’s utilisation 49

3.3.1 Mapping to Diagnostic Protocol ISO-14229 – UDS 49

Content IV

3.3.2 Mapping to other application protocols ... 51

3.3.3 Mapping to multi controller systems ... 51

3.4 Conclusion 52

4 Field bus system protocol stacks 53

4.1 Controller Area Network 54

4.1.1 CAN bus protocol according to ISO 11989 54

4.1.2 CAN-TP according to ISO 15765-2 .. 58

4.1.3 Complete reprogramming process based on UDS 70

4.1.4 Conclusion ... 71

4.2 FlexRay 73

4.2.1 FlexRay (FlexRay Specification 2.1) .. 73

4.2.2 FlexRay Transport Protocol (ISO 10681-2) 84

4.2.3 Complete reprogramming process based on UDS 91

4.2.4 Conclusion ... 93

4.3 Summary 94

5 Data size reduction 96

5.1 Partitioning....................................... .. 97

5.1.1 Analysis ... 97

5.1.2 Discussion ... 98

5.2 Fill byte skipping 99

5.2.1 Analysis ... 99

5.2.2 Discussion ... 100

5.3 Data compression 103

5.3.1 Analysis ... 103

5.3.2 LZ77 and LZSS Algorithm .. 104

5.3.3 Discussion ... 106

5.4 Differential file 107

5.4.1 Analysis ... 108

5.4.2 Discussion ... 111

5.5 Conclusion 112

6 Microcontroller Hardware Optimisation 116

6.1 Memory status information.......................... 116

6.1.1 Analysis ... 117

Content V

6.1.2 Discussion ... 119

6.2 Doubling interrupt vector tables 121

6.2.1 Analysis ... 121

6.2.2 Discussion ... 122

6.3 Conclusion 123

7 Network architecture 125

7.1 Introduction 127

7.1.1 Networking issues .. 127

7.1.2 Network types .. 128

7.2 Routing nodes (Gateways) 129

7.3 Routing strategy 130

7.3.1 Analysis ... 130

7.3.2 Discussion ... 131

7.4 Conclusion 135

7.4.1 Routing strategy ... 135

7.4.2 Network design .. 136

7.4.3 Summary ... 139

8 Reprogramming in parallel 141

8.1 Introduction 142

8.2 ECU schedule calculation 143

8.3 Discussion 147

8.4 Conclusion 149

9 Magnetoresistive RAM 151

9.1 Introduction 152

9.2 Discussion 153

9.3 Case study to the differential file approach 154

9.4 Conclusion 156

10 Case study – Software reprogramming 157

10.1 Software reprogramming via CAN 157

10.1.1 ISO15765-2 (CAN-TP) model evaluation 158

10.1.2 ISO14229 (UDS) on CAN model evaluation 162

10.1.3 CAN bus baud rate optimisation ... 166

10.1.4 ISO 15765-2 (CAN TP) Flow Control parameter Block size 168

Content VI

10.1.5 ISO 15765-2 (CAN TP) FlowControl parameter STmin 170

10.2 Application Protocol ISO 14229 (UDS) Optimisation 172

10.3 Gateway optimisation 178

10.3.1 Buffer for the partly store and forward routing strategy 179

10.3.2 Increasing gateways clock frequency ... 181

10.3.3 Summary ... 182

10.4 Software reprogramming via FlexRay 182

10.4.1 Vehicle access by CAN bus system ... 182

11 Conclusion and Outlook 188

11.1 Summary 189

11.1.1 Method’s performance potential ... 190

11.1.2 Method’s potential vs. effort and costs ... 194

11.1.3 Utilisation in practice .. 196

11.1.4 Further work... 197

11.2 Outlook 199

11.2.1 Automotive Ethernet .. 199

11.2.2 MRAM technology.. 199

11.2.3 Wireless access ... 200

11.3 Conclusion 200

12 Figures 202

13 Tables 205

14 Bibliography 207

A Journal Paper – IEEE TVT A-1

Acknowledgement

I thank my supervisor Dr. Ian Dear from the Brunel University for enabling and supporting

the research presented in this thesis. The long time we discussed about the reprogram-

ming topics have been always inspired. He found always the right words for motivation

also if research progress was not given. Thank you, Ian!

Thanks are owned to Professor Dr.-Ing. Werner Zimmermann from the HS Esslingen -

University of applicant science. He supported me since my first university studies and

found always time to discuss new trends, protocols or technologies within the automotive

diagnostic area. The author work to our book was the base to my interests in automotive

communication systems.

I thank the students I supervised during their master thesis for their contributions to sever-

al data transfer acceleration topics (in alphabetical order): Samir Karic (ODX-V Develop-

ment), Susann Kunde (FlexRay introduction), Rolf Molzahn (CAN network analysis),

Sascha Neumann (network analysis with Symta/S) and Alexander Stock (FlexRay test

system).

Many thanks to my colleges of the department for diagnostic development (GSP/OVE) at

the Daimler AG (in alphabetical order): Dennis Artz, Viktor Brester, Gunnar Gaisser,

Stefan Glattes, Michael Hiljegerdes, Andreas Kopf, Stephan Römer and Tobias Tetzlaff.

Thank you for your support and the good technical discussions during the last years.

Thanks to Andreas Theissler for the good and inspired discussions about software repro-

gramming as well as for the support during writing the papers or the thesis. Also many

thanks to Professor Dr. Joachim Goll for his support.

Lastly, I would like to thank my family for all their love and encouragement. Thanks to my

parents who always supported me in all my pursuits. Thanks to my children Salome and

Miriam for the understanding that her father was always working at the weekends.

And most of all for my loving, supportive, encouraging, and patient wife Kerstin for the

support during all the years and especially during the final stages of this Ph.D. Thank you!

Acronyms, terms and definitions VIII

Acronyms, terms and definitions

ALU Arithmetic Logic Unit

Application The term “application software” represents the compiled binary code of
an ECU.

ASAM Association for Standardisation of Automation and Measuring Systems

AUTOSAR Automotive Open Software Architecture

BDC Binary Delta Compression

BC Bandwidth Control (refer to ISO10681-2)

BS Block Size (refer to ISO15765-2)

BSW Basic Software

CAN Controller Area Network

CCP CAN Calibration Protocol

cf. Latin “confer” – compare

CiA CAN in Automation

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CSMA/CA Carrier Sense Multiple Access / Collision Avoided

CSMA/CR Carrier Sense Multiple Access / Collision Resolution

e.g. Latin “exempli gratia” – for example

et al. Latin “et alii” – and others

ECM Engine Control Module

ECU Electronic Control Unit

E/E Electric and electronic

EEPROM Electrical Erasable and Programmable Read Only Memory

EMC Electromagnetic compatibility

EOP End of production

EPROM Electrical Programmable Read Only Memory

etc Latin “et cetera” – and so on

FIFO First in first out

HIS German “Hersteller Initiative Software”

HMI Human - Machine Interface

ISA International Society of Automation

i.e. Latin “it est” – that means

ISO International Standardisation Organisation

ISR Interrupt Service Routine

JTAG Joint Test Action Group

LIN Local Interconnect Network

Acronyms, terms and definitions IX

LTE Long Term Evolution

MCD Measurement, calibration and diagnostics

MOS-FET Metal oxide semiconductor field-effect transistor

MOST Media Oriented Systems Transport

kb Kilobit

kBit Kilobit

kB Kilobyte (1024 byte)

kByte Kilobyte (1024 byte)

Mb Megabit (1024 kb)

MB Megabyte (1024 kB)

msec Millisecond

MRAM Magnetoresistive Random Access Memory

MTJ Magnetic Tunnel Junction

NVM Non Volatile Memory

ODX Open Diagnostic Data Exchange

OEM Original Equipment Manufacturer

OICA Organisation internationale des Constructeurs d’Automobiles

OPEN One Pair Ethernet

PC Personal Computer

PCI Protocol Control Information

PCU Programming Control Unit
Initiates and controls a reprogramming process.

PDU Protocol Data Unit

PLL Phase-locked Loop

PROM Programmable Read Only Memory

RAM Random Access Memory

ROM Read Only Memory

RTE Runtime Environment

SAE Society of Automotive Engineers

SDU Service Data Unit

SID Service Identifier

SOP Start of Production

STmin Minimum Separation Time (refer to ISO15765-2)

TTCAN Time Triggered Controller Area Network

VCO Voltage-controlled Oscillator

XCP Universal Measurement and Calibration Protocol

$01 “$” indicates a hexadecimal (hex) nomenclature.

1 Introduction

Content

1.1 Vehicle’s life cycle 2

1.2 Reprogramming within an ECU’s life cycle 4

1.3 Aspects of software reprogramming 7

1.3.1 Automotive innovation vs. software size 8

1.3.2 Automotive development focus and priority 9

1.3.3 Automotive system complexity and compatibility10

1.3.4 Automotive network aspects ...12

1.3.5 Summary ..14

1.4 Scope of the thesis 15

1.5 Organisation of the thesis 16

Ever since the invention of the car by Carl Benz (1844-1929) 125 years ago engineers

have been striving to improve performance, increase reliability and reduce costs. Early

innovations were based around purely mechanical leap forwards in technology. However,

over the last 30 years electronic systems have been rapidly taking over the technology

advances to improve functionality, performance, reliability and reduce costs. Currently,

more and more functionality, which was implemented in hardware in the past, is imple-

mented in software today. In-addition, what was futuristic driver assist or even replace-

ment technology is now a reality due to this computing power. If we consider the mid to

high range end of the market it is now warrantable to talk about highly complex computer

systems on wheels. This revolution is primarily due to the rapid trends in more powerful

microcontrollers and communications technology. Complex mathematical algorithms,

which required complete computer centres in the past, can be calculated on a single

powerful microcontroller today. This added to the revolution in real-time sensor technolo-

gy, and has created a new era for personal transport technology. A consequence of this

Chapter 1 - Introduction 2

trend in rapid expansion of software quantity in embedded systems is the need to consid-

er the hidden cost of increasing software quality and maintainability in embedded sys-

tems. With focus on the automotive industry, one of the most fitting statements about the

automotive future is:

The majority of all automotive innovations will be within the electrics and electronics

(E/E) area. The vast part will be software.

This prediction is supported by nearly all vehicle manufacturers [Dra11], suppliers [Hau11]

and scientists [Bro11]. Of course, the percentage values vary but the basic statement is

equal: The quota of electronics (hard- and software) and as a result complexity will con-

tinuously increase. This thesis is also supported by the Oliver Wyman Automotive’s study

“Car Innovation 2015” given by J. Dannenberg and J. Burgard et al. They predict that

“electrics and electronics will remain the most important enabler of automotive innovations

through 2015 and beyond, and will grow by six percent annually” [Dan07].

These prospects have a simple consequence: increasing amounts of software results in

longer software reprogramming time for those embedded systems. That was not a prob-

lem so far but today software size has been increased in such a way that fundamental

activities within the product life cycle, e.g. initial programming of the Electronic Control

Units (ECUs) during production process or software updates within service / after sales

can no longer be handled within adequate time windows. Expanding reprogramming time

finally results in economical and therefore financial disadvantages for the automotive

industry. This aspect raises some crucial questions:

1) Why is software reprogramming such an important issue?

2) Why is software reprogramming process acceleration necessary?

3) Is there a basic approach to solve the reprogramming challenge?

4) Are there any other industries that have the same essential problems?

Within this chapter an overview is given to software reprogramming aspects with the aim

to provide answers to the crucial questions according to ECUs’ or embedded systems’

software reprogramming process.

1.1 Vehicle’s life cycle

Compared to other electronic systems, vehicles and therefore automotive ECUs have a

quite different life cycle. As depict in figure 1.1-1 a car is typically developed between 6

and 8 years. The model line is manufactured and sold also between 6 and 8 years. After

the vehicle is manufactured the maintenance time period starts where the first 2 -3 years a

Chapter 1 - Introduction 3

warranty time is given. The challenge within the automotive industry is the combination of

a mass product with a long time life cycle combined with the high dynamic in electronic

development and technology’s evolution.

Figure 1.1-1: Vehicle model line life cycle

It is a common intention of all vehicle manufacturers to reduce the development period as

well as the manufacturing time (hours per vehicle) for new model lines. Hence, several

model lines will derive from a basic platform. This allows the reuse of electrical and elec-

tronic components (e.g. sensors, actuators and ECUs) to reduce costs. Exact values for

the different periods in figure 1.1-1 as well as numbers of derived model lines can not be

given because these are commercial sensitive data, and these vary for different vehicle

manufacturers.

Figure 1.1-1 also depicts, that an electrical design decision (e.g. ECU functionality, com-

munication network architecture etc.) have been made a long time period before the mod-

el line is initially produced (Start of Production – SOP). These decisions will also influence

the maintenance processes for that model line several years after model line’s end of

production (EOP) time. Typically significant changes of such design decisions can not be

modified so easily. It might be possible to make some new design aspects in the middle of

a model line production period, but typically significant changes are not intended e.g. bus

architectures, network design.

The thesis is looking at vehicles that are now in the development or production stage and

identifies the current problems associated with the embedded system’s software repro-

gramming process. The aspects above also make a contribution to the discussions within

this thesis.

Chapter 1 - Introduction 4

1.2 Reprogramming within an ECU’s life cycle

Today electronic control unit’s application software reprogramming is an important issue.

At the very least, if the ECU is manufactured the application software still has to be initially

programmed. Depending on the final usage and the final product’s life time, an ECU could

be reprogrammed several times during its life cycle. Figure 1.2-1 depicts an abstract

overview. Below the typical reprogramming stages within a vehicle ECU’s life cycle are

described with focus on automotive ECUs.

Figure 1.2-1: Reprogramming stages within an ECU’s life cycle

Software reprogramming during the development proce ss

During the ECU’s development process the software may be reprogrammed several times

because new functionality is developed or bugs are fixed. Especially in an early develop-

ment state only a few ECUs are available for testing. Within typical ECU development

processes the different features and the complete functionality are not available on the

first (early) sample. The functionality increases step by step and therefore reprogramming

of an ECU’s application software is an essential issue. Figure 1.2-2 depicts the current

typical software volumes for automotive ECUs depending on their assignments.

If the ECU is part of a more complex system (e.g. vehicle, plane, train, machine etc.)

functionality could be distributed over several ECUs. In that case it might be necessary to

reprogram application software of more than one ECU, e.g. for bug fixing purposes or to

have the latest software version for testing. Especially the last aspect has a strong corre-

lation to software reprogramming time: with focus on the automotive industry, a modern

high-end class car includes up to 80 different ECUs where each ECU provides several

functionalities. If such a vehicle-in-development is prepared for test drives (e.g. winter

tests in Scandinavia or heat tests in the USA etc.) the most recent software for each ECU

Chapter 1 - Introduction 5

should be programmed. Hence, the total amount of time per vehicle should be as small as

possible, especially if a fleet of several vehicles is prepared.

Figure 1.2-2: Automotive ECU software volume

Another reprogramming scenario during the development process is the adaptation of

software to a vehicle, e.g. parameterisation of an engine control unit to the engine. In that

case the parameter set has to be reprogrammed several times until the final parameter

set is found. Until the engine control unit is reprogrammed the ignition is off. Hence, the

engine is not running and the electrical power for all ECUs is supplied completely by the

vehicle battery. To guarantee a correct process without low system voltage interruption

the programming time should be as fast as possible.

Software reprogramming during manufacturing process

ECU’s application software programming process is an essential part of the value chain.

During the ECU’s production process the final ECU software is programmed into the

target system. Two different scenarios could occur: 1) ECU’s application software is com-

pletely programmed during the ECU manufacturing process within the ECU assembling

line or 2) one or more software fragments are programmed later within the vehicle assem-

bling line. Of course, in both cases the final application software is programmed, but due

to the different reprogramming places the total reprogramming time has different conse-

quences.

If the ECU is programmed completely within the ECU’s manufacturing process

(scenario 1), the ECU could be programmed before packaging. Thus the microcontroller’s

internal interfaces1 are available and usable. The software is programmed very fast but

1 refer to chapter 2

Chapter 1 - Introduction 6

typically without standardised protocols. This strategy is preferred if only one software

variant of the ECU exists and no specific software adaptation for the final control assign-

ment is necessary.

If the ECU has a specific software part depending on the final control assignment it might

provide some benefits if the final software is programmed at the vehicle assembly line. For

example, an engine control module (ECM) could have different parameter sets depending

on the number of the engine’s cylinders. If vehicles with different engines are produced on

the same assembly line and the ECMs have been delivered finally programmed, each

ECM variant allocates storage place. Late programming at the vehicle assembly line

(scenario 2) provides a) economic benefits because of the smaller and less complex part

storage requirements and b) assembly complexity is decreased because the manufacturer

has only one device for selection. These economical benefits will not be achieved if the

total software programming process time significantly increases the assembling line clock.

Here a strong necessity is given to quantify and reduce the reprogramming time.

Software reprogramming within service or after sale s market

Software reprogramming is an important repair method for the vehicle manufacturers in

the aftersales or service market. If customer’s complaints could be solved by a new soft-

ware release reprogramming is the preferred repair method. As discussed above, ECU

software sizes vary in a range of several kByte up to several MByte depending on ECU’s

control assignment (refer to figure 1.2-2). As a consequence today’s reprogramming

process time is in regions of several minutes up to hours based on the currently given

automotive bus systems (discussed later in section 1.3.2).

The total time for the software reprogramming process has an immediate economic im-

pact. The more time required the higher the costs are. For the garage the equipment (e.g.

Programming Control Unit (PCU), power supply etc.) and the working area are occupied

during that time. For the customer the vehicle is not usable. If the total time for software

updates enlarges up to hours economical and therefore financial disadvantages occur,

e.g. if a truck requires a longer garage time. In case of a software bug the vehicle manu-

facturer has to pay the down time costs.

Another aspect is to decrease the risk of process errors. Depending on the existing envi-

ronmental conditions, a software reprogramming process is more or less stable. The more

time a reprogramming process requires the higher the risk of interruption.

The acceleration of a software reprogramming phase reduces this risk and provides a

more stable and reliable process.

Chapter 1 - Introduction 7

Table 1.2-1: World automotive production [Vda11]

 2010 2011 change in %

Passenger vehicles 63.377.724 66.237.761 + 4.5
Commercial vehicles 14.180.650 14.033.714 -1.0

Total 77.558.374 80.271.475 + 3.5

The increasing software sizes in future vehicles will increase the software reprogramming

times, too. If it is assumed that only one ECU of each new produced vehicle will be repro-

grammed within the warrantee period, the increased costs will be enormous. As depicted

in table 1.2-1 the world automotive production was up to 66 million passenger cars in

2011 [Vda11]. A reprogramming process cost reduction, e.g. by reprogramming time

reduction etc., of 1 € provides world wide potential up to 80 million € per year.

Summary

The necessity to reprogram ECU application software is given during the complete prod-

uct life cycle. The increasing software size provides new problems which have never

existed before. The result is an economical disadvantage that could be solved by decreas-

ing software reprogramming time. Generally this topic is not only relevant for the automo-

tive industry. The increasing software reprogramming time of a plane requires a longer

down time in the hangar or machines are longer non-productive. However, the cost mar-

ket of the business areas is completely different. Compared to the automotive industry,

where vehicle piece costs are responsible for the cost pressure, in other industries the

maintenance costs are important.

Hence, approaches to accelerate the software reprogramming process in the automotive

industry are necessary, especially if the predictions and forecasts as mentioned above

become true.

1.3 Aspects of software reprogramming

Today ECU application software reprogramming is an important issue within an ECU’s life

cycle. Especially in the after market business software reprogramming is a powerful repair

method to solve software errors and in some cases it is the only repair method. Of course,

the reprogramming process was established years ago, but with focus on the current

automotive industry software reprogramming and the required time for this process

becomes continuously more important. Also environmental aspects of software repro-

gramming are explained as well as an overview of history and reasons are given why the

current situation is as it is.

Chapter 1 - Introduction 8

1.3.1 Automotive innovation vs. software size

The automotive market is highly competitive. Innovations and new technologies are influ-

encing customer’s decisions when they select a new car. As already mentioned, the ma-

jority of all automotive innovations will be within the electrics and electronics (E/E) area.

Today a significant part of vehicle’s characteristics is made by software. This trend was

already recognized in 2006 by W. Huhn and M. Schaper as they wrote in the McKinsey on

IT report: “the focus and value in engineering products is shifting from chips to code”

[Huh06]. Today the amount of software is up to 100 million lines of code and thousands of

functions are controlled by software [Bro11]. M. Broy has analysed the vehicle software

ratio during the last 40 years and identified an exponential increase [Bro11]. This state-

ment is supported by the analysis of the software ratio within Mercedes-Benz vehicles

since 2004 (refer to figure 1.3-1). Starting in 2004 the amount of embedded systems’

software has doubled every 2.5 years. The tendency will be supported by the next

S-Class generation in 2013 where again doubling of the software size is predicted.

Figure 1.3-1: Amount of vehicle software of Mercedes-Benz

The exponential growth has now reached the boundary where the amount of software is

so high that the old concepts for software reprogramming are no longer able to fulfil the

required process time limits (e.g. given by the assembly line clock).

Chapter 1 - Introduction 9

1.3.2 Automotive development focus and priority

Compared to other industries the automotive industry has a very special role. In 2010 up

to 77.6 million vehicles were manufactured worldwide2. In contrast to the manufacturing of

planes or industrial machines with less than 1000 parts/year3, manufacturing cost aspects

are in focus. M. Broy et al. [Bro11a] describe several reasons, where typical issues to

reduce system complexity by decoupling system layers are not or only partly implemented

because of cost aspects. With focus on software reprogramming only the following three

examples of his list are mentioned and evaluated:

• The number of running processes on a single microcontroller is increasing such that

runtime behaviour and the schedule of those implemented processes have to be ex-

tensively organised.

The consequence is that new software (e.g. tasks or processes) is allocated on that mi-

croprocessor as long as resources are free. Clearly structured and layered software archi-

tecture is not implemented because memory intensive interfaces have been optimised for

code size and runtime aspects. Also functionalities of different layers are combined to

save memory resources. This results in an increasing software complexity and the neces-

sity to reprogram the complete application software instead of single software parts.

• Microcontroller’s memory is so scarcely dimensioned that additional functionality is

only possible by an expensive step to the next microcontroller’s memory size.

Another aspect from cost discussion’s point of view is the fact that microcontroller manu-

facturers supply microcontrollers with tiered memory sizes. The step to the next memory

size results in higher costs for the microcontroller (significantly higher costs during model

line life cycle because of the high number of parts/year). Hence, the above described

optimisation of code size is the consequence in order to use the given memory size.

• Compared to Ethernet commonly used within the PC industry, the simple and less

resource consuming bus systems have less bandwidth and a strong dependency be-

tween physical layer, transport layer and application layer. Hence, they can not be pa-

rameterised independently.

Figure 1.3-2 provides an overview about the currently most important and most imple-

mented bus systems.

2 OICA - Provisional Production Statistics 2010 [OICA2010]

3 Refer to M.Broy et.al. in [Bro11a]

Chapter 1 - Introduction 10

Figure 1.3-2: Most implemented automotive field bus systems

Until today these bus systems are sufficient for normal ECU communication based on

signal exchange as well as for data transmission in case of software reprogramming. Cost

aspects as well as construction4 and weight5 aspects are also reasons why an exclusively

high performance network for software reprogramming purposes is not possible. Hence,

other less cost intensive approaches are necessary to solve the current situation of in-

creasing software despite the nearly constant vehicle bus system’s bandwidth.

1.3.3 Automotive system complexity and compatibilit y

Innovation

During recent years a noticeable move from single innovations to system innovations is

visible. In the past a typical ECU provided a single functionality and was used for a single

assignment. Today more and more different functionalities are combined to a more com-

plex function.

Figure 1.3-3 depicts this shift on a time line. According to that picture, single innovations

will move into saturation but systems innovation will expand. M. Broy et al. mentioned that

prospective innovation for infotainment systems, advanced driver assistance systems or

safety systems will only be possible by distributed and connected functions [Bro11a].

4 The position of cable bundles as well as their cross section has to be considered for car body and

chassis construction. The cable bundle cross selection could not be increased endlessly because

of car body’s sturdiness.

5 Additional cable results in a higher weight and this has an impact on the fuel consumption and

vehicle emissions. This is opposed to the current vehicle manufacturer strategy with green technol-

ogy, less fuel consumption and less/zero emissions.

Chapter 1 - Introduction 11

Figure 1.3-3: Shift from single to system innovation [Dan07]

J. Dannenberg et al. [Dan07] support the observation of this evolution by an example of

the Mercedes-Benz PRE-SAFE6 system: “it links existing systems like crash sensors and

ESP with seat controls, seatbelts and the sunroof, adding safety functions to existing

components”.

The move to system innovations is also visible in new automotive terminologies like func-

tion-orientated development. This means that a system’s function is not tightly bound to a

single ECU but multiple ECUs will be used to support a function based on factors such as

memory availability and microcontroller load. This will have a significant impact on repro-

gramming times and strategies.

Compatibility

Due to the move to system innovations, a new challenge occurs: software compatibility. If

an error occurs within such a distributed system it has to be guaranteed that a change of a

single ECU’s software which is part of that system results in a compatible common sys-

tem. Especially within the automotive industry, where vehicles have no fixed and stringent

service intervals and a customer is free to visit a garage or not, new software could be

programmed into an old vehicle. The functional distribution of systems and the complexity

results in an increasing test demand to guarantee compatibility. Depending on the

6 Mercedes-Benz PRE-SAFE system was introduced in 2002 as the first anticipatory protection

system. In case the system recognises that in a situation a crash in unavoidable, the system initi-

ates some activities to optimise passenger’s situation if the crash occurs (e.g. close windows,

tighten seat belts, move seats in an optimised position etc.).

Chapter 1 - Introduction 12

involved ECUs the test permutation is so high, that it is not possible to test each possible

combination. In that case testing of a well known release is a very efficient method but

results in a release update where several ECUs have to be reprogrammed.

Table 1.3-1: Software release types

Table 1.3-1 provides an overview about possible release types. As a consequence of less

test demand within development the reprogramming amount to service a vehicle in a

garage is increasing.

1.3.4 Automotive network aspects

Complexity

Since the first automotive systems were interconnected in the early 1980s vehicle com-

munication networks have become more and more complex. Figure 1.3-4 depicts the

network evolution. At the beginning only vehicle functionality was interconnected by bus

systems. The main focus was to reduce the number of sensors and the reduction of dis-

crete wires and cables between the different ECUs. The continuous introduction of elec-

tronic systems results in more complex networks. HMI, telematics and infotainment

systems become more important and their communication demands have increased. The

current development trend is on driver assistance systems. Surround camera systems,

radar, infrared or ultrasonic systems continuously scanning the vehicle’s environment. The

Chapter 1 - Introduction 13

corresponding advanced driver assistance systems (e.g. park assistance7, lane departure

warning8 [merced] etc.) process the generated data and support the driver. As a result

more and more domains are interconnected.

Figure 1.3-4: Increasing network complexity

While as of today only vehicle-internal domains are interconnected, the next technology

steps will interconnect vehicles (i.e. car-to-car communication) as well as connect a vehi-

cle into normal e-business networks (e.g. car hiring systems or smart charging communi-

cation for e-vehicles9). With focus on software reprogramming this development has some

impacts:

• New bus systems are introduced to support functional communication requirements

e.g. for new regulation systems. Those bus systems shall be used for software re-

programming communication too because cost aspects do not allow a second

communication link exclusively for reprogramming.

• Depending on the domain architecture several gateways have to be passed for a

software reprogramming communication link to establish communication to the most

outlying ECU. The data routing time of these gateways results in time delays and in-

creases the total programming time.

• Depending of the network connection type (heterogeneous network or homogene-

ous network) data routing is required on different layers according to the ISO/OSI

7 Park Assistance – autonomous car maneuvering from a traffic lane into a parking space.

8 Lane Departure Warning System – warns a driver when the vehicle begins to leave out of its lane.

9 E-vehicles: vehicles with electrical engine

Chapter 1 - Introduction 14

reference model layered architecture [ISO7498-1]. Due to that fact the data routing

results in different routing strategies which has impacts to required resources (e.g.

Buffer) as well as the possible routing performance and routing execution times.

Costs

Cost aspects, as described above, are the reason why normal vehicle functional commu-

nication and reprogramming communication share the same vehicle network. As there

was no functional requirement for a high speed and being more expensive network up to

now high speed networks have not be placed inside automobiles. Since the amount of

software has been increasing the resulting programming time is meeting the timing limits

of network, thus testing and reprogramming requirements are starting to drive the network

speed requirements and functional becoming less important. To evaluate a business case

to incorporate design considerations to reduce reprogramming time requires accurate

predictions of reprogramming times. The physical network infrastructure (e.g. the cable

trees) within the vehicle is a foundation that forms the heart of the system. New bus sys-

tems and network architectures can not be introduced easily or at low cost within an older

vehicle. In contrast more powerful ECUs’ (microcontrollers with better performance, more

interfaces, increased memory size etc.) will be developed during a vehicle’s life cycle and

could be also introduced into an older car. Hence, network architecture as well as the bus

systems’ performance and the gateways’ routing performance paired with a long-term

persistence have a deep impact for software reprogramming strategies.

1.3.5 Summary

Software reprogramming of automotive ECUs is a very important issue within a vehicle’s

life cycle. For bug fixing, software reprogramming is a method (sometimes the only low

cost method) for the ECU supplier as well as for vehicle manufacturers within develop-

ment, manufacturing and service/after-sales. The required time for software reprogram-

ming is an important economical factor and depends on the software size to be

reprogrammed as well as the communication link performance.

Figure 1.3-5: Vehicle development trends

Chapter 1 - Introduction 15

Figure 1.3-5 depicts the current development tendencies. The software volume, system

complexity (e.g. ECU’s functionality dependencies) and network complexity (total number

of bus systems, gateways and different bus system types) are significantly increased but

the vehicle’s network performance (bus bandwidth) is nearly constant. If the future trends

discussed above become true, some challenges with focus on automotive software repro-

gramming occur:

• The demand for software reprogramming will still increase due to the increasing total

amount of software within vehicles.

• Comprehensive reprogramming procedures for several ECUs will be necessary if

complex distributed systems have to be reprogrammed to retain a compatible system.

• Software reprogramming time will still be increasing continuously due to increasing

software size and the need to reprogram several ECUs.

Independent of future approaches to reduce the total complexity (e.g. software size, sys-

tem dependencies and complexity) it might be necessary to accelerate the total automo-

tive software reprogramming process.

1.4 Scope of the thesis

Within the automotive industry the ECU application software reprogramming process is

quite complex. Figure 1.4-1 depicts the reprogramming process cycle divided into an off-

board (non-vehicle) part and an onboard (vehicle) part.

Figure 1.4-1: Software reprogramming process circle

The scope of the work reported in this thesis is on the on-board part of the global repro-

gramming process. ECU aspects (flashloader, application software, network access,

Chapter 1 - Introduction 16

communication protocols etc.) and network aspects (architecture, topology etc.) are the

focus of investigation.

Figure 1.4-2: Software reprogramming time limitation

As depicted in figure 1.4-2 for future ECUs the given time limitation requirement to the

maximum reprogramming time will not be fulfilled any longer without any optimisation. The

research aims are:

• Quantify the reprogramming problem in today’s vehicle architectures and communica-

tion standards and provide possible short term solution to the existing reprogramming

issues.

• Quantify the impact that future emerging standards and technologies will have on

reprogramming embedded ECUs and identify solutions to minimise their impact on re-

programming cost.

1.5 Organisation of the thesis

The thesis covers the onboard aspects for software reprogramming within automotive

networks as defined in figure 1.4-1.

This chapter has identified the potential problem that the uptake of technology revolution,

driven by the need for increased functionality has on reprogramming of complex embed-

ded systems in the automobile industries. Not only does the industry have high production

volumes, for an electronic product, it has long design times, production cycles and life

time warrantee and thus long legacy costs. Problems caused today can have a very long

term cost implication. Care must be taken to ensure future developments in car design

consider all key life-time cost drivers.

Chapter 1 - Introduction 17

Chapter 2 provides the key architectural and implementation background information to

the software reprogramming process and the involved components for the current state of

the art ECUs. It also identifies the key areas where acceleration is possible in reprogram-

ming time for existing technologies i.e. improved data transfer rates and data compression

strategies. Additionally all necessary terms and definitions are introduced.

In Chapter 3 a new concept of using double buffering in the reprogramming procedure of

ECU is introduced. A model is generated to evaluated and quantify the improvement of

this approach.

In chapter 4 the research results are discussed to accelerate data transfer by communica-

tion protocol optimisations which are currently in use for automotive systems’ software

reprogramming process (i.e. vehicles currently in production and legacy systems) and

new technologies currently being designed into the new generation of car systems. For

each of these communication protocols this chapter generates quantitative models that

can be used to evaluate reprogramming data transfer performance.

Chapter 5 discusses and introduces new approaches to reduce the amount of data need-

ed to be transmitted during software reprogramming. Quantitative models are again pro-

duced to complete the set of techniques needed calculate optimum reprogramming time

for current technology solution available.

Chapter 6 introduces theoretical hardware modification that could be made to ECU de-

signs to optimise and to speed up the reprogramming process.

In chapter 7 the impact of the network architecture on the reprogramming process is

discussed and evaluated. Coupling of different networks and routing aspects within gate-

ways are discussed.

Reprogramming several ECUs in parallel is a powerful approach to optimise reprogram-

ming time. The required pre-conditions and a method to schedule the ECUs to be repro-

grammed are discussed in chapter 8.

Chapter 9 provides an introduction to the newly awaited MRAM technology and identifies

how it could be utilised to implement some of the reprogramming approaches presented in

chapter 5.

Chapter 10 provides case studies where some of the discussed approaches are imple-

mented within an ECU and quantitative models verified.

Chapter 11 summarises the work and provide an outlook for future methods and

technologies.

2 Background

Content

2.1 Embedded Systems .. 19

2.2 Electronic Control Unit ... 21

2.2.1 Microcontroller ..21

2.2.2 Memory ...22

2.2.3 ECU Software Components Overview ..24

2.2.3.1 Application Software ...25

2.2.3.2 Flashloader ...25

2.2.3.3 Boot Manager ...27

2.3 Programming Control Unit (Test system) 28

2.4 Programming Sequence ... 29

2.5 Communication Stack .. 33

2.5.1 Field bus systems ...35

2.5.2 Media Access Control Overview ...36

2.5.3 Transport Layer Protocol ...36

2.5.4 Application Protocols...38

2.6 Network .. 39

2.7 Summary .. 40

This chapter provides a short introduction into the software reprogramming process of

embedded systems. The sub-components of an electronic control unit (ECU) which are

relevant for the reprogramming process are explained and an introduction to the specific

terms is given. The reprogramming sequence sub-clause shows the different steps of a

Chapter 2 - Background 19

reprogramming process. The communication stack sub-clause introduces into automotive

embedded system’s communication and the relevant protocols.

2.1 Embedded Systems

Today monitoring, control and regulation problems in technical systems (e.g. medical

instruments, machines, vehicles, aeroplanes) are mainly realised by microcontroller-

supported embedded systems (refer to [Ren11]). “Embedded system” is more a general

term than a well defined system definition. M. Barr characterised embedded systems as “a

combination of computer hardware and software, and perhaps additional mechanical or

other parts, designed to perform a dedicated function” [Bar07]. Today the term “electronic

control unit” (ECU) is established as a synonym for an embedded system. It could be-

come more complex if at least two or more ECUs are part of a distributed embedded

system. In that case normally they are interconnected via field bus systems to exchange

data.

Figure 2.1-1 depicts a simple embedded system with the relevant components.

Figure 2.1-1: Embedded system components

A good example for a complex embedded system is a car where several systems allocat-

ed on several ECUs interact by exchanging data via a network. Such systems are also

available on aircraft, trains, weapons and machines, and everywhere sensors and actors

have to be controlled or regulation assignments are given.

Figure 2.1-2 and figure 2.1-3 depict the more complex embedded system of a

Mercedes Benz model line 221 (S-Class) vehicle. Each coloured square represents an

ECU. The coloured lines representing communication bus systems (field bus systems -

refer to section 2.5.1). The number of ECUs within a vehicle is growing continuously from

only 2 ECUs (Engine control system (“Motronic”) and breaking system - ABS) in the 1980s

up to nearly 80 ECUs within modern premium class vehicle.

Chapter 2 - Background 20

The positions of all ECUs are depicted in figure 2.1-2.

Figure 2.1-2: ECU network of a Mercedes-Benz Model line 221 (S-Class) [Mer09]

Figure 2.1-3: Mercedes-Benz Model Line 221 (S-Class) network architecture [Mer09-1]

For modern trains the architecture is similarly complex. In [Sie] the complex architecture of

the SIEMENS Intercity Express 3 train (ICE-3) is given for different wagons. The list of

Chapter 2 - Background 21

complex embedded systems could be continued at will. The nomenclature and special

terms of embedded systems are described below.

2.2 Electronic Control Unit

As described above, the term “Electronic Control Unit” is established as a synonym for an

embedded system too. An ECU is based on at least one microcontroller and is encapsu-

lated in a closed package. The functionality is given by software. Hence, the same micro-

controller with identical periphery could be used for different control assignments.

2.2.1 Microcontroller

In the 1960’s Intel and later on Motorola developed the first microprocessor. Based on that

technology the first single chip micro computer was developed in the 1970s. The structure

of these initial microcontrollers10 is the base for many other microcontrollers today11. In the

past microcontrollers were derivatives of microprocessors developed for PCs. Today a lot

of microcontroller families exist (e.g. Infineon TriCore, C166-family etc.) which were de-

veloped especially for embedded systems. The reasons for that development are very

extensive because for embedded systems not only the pure computing performance has

to be considered. Microcontrollers have to fulfil competing and some times opposing

requirements: In addition to the computing performance, limiting current or energy con-

sumption is very important as well as a lot of integrated interfaces exchange data.

Today, microcontrollers are no longer used for simple control and regulation purposes.

Owing to the enormous technological progress high performance microcontrollers are

available today to solve highly complex control and regulation assignments. Within the

automotive area, for example, ECUs are used to control typical vehicle regulation systems

e.g. engine, gearbox etc. During recent years, also additional driver assistance systems

have been developed. High performance microcontrollers with complex periphery systems

and sensors are the base for those systems. The computational power and memory sizes

of embedded systems have been following continually expanding complexity of computer

systems.

A detailed description of microprocessor architecture, internal processing, instruction sets

etc. is given by J. L. Hennessy and D. A. Patterson [Hen03]. This basic knowledge is also

10 e.g. Intel 8048 or Motorola 6800

11 The structure of the compiled and linked software for microcontrollers has been divided into two

different types: Intel-Hex format [Int88] and Motorola S-Record format [Mot92].

Chapter 2 - Background 22

true for microcontrollers. J. Schäuffele and T Zurawka published a technical introduction

to microcontrollers [Scha10] as an introduction to the approaches of embedded software

engineering.

With focus on the reprogramming of a microcontroller only the different communication

interfaces, the central processing unit (CPU) and the memory have to be taken into ac-

count. All other internal or peripheral components like Input/Output ports, analogue/digital

converters, watchdogs or other interfaces are not necessary in a reprogramming context.

2.2.2 Memory

Different memory types for different required functionality (store source code, data, volatile

information etc.) have been established. Figure 2.2-1 depicts an overview of the different

memory technologies used for embedded systems.

Figure 2.2-1: Memory Technologies Overview [Rei11]

Basically it is distinguished between volatile and non-volatile memory. RAM (Random

Access Memory) is used for temporary stored information (e.g. source code variables

etc.). Only in some special cases executable machine code is stored in RAM. Executable

software is typically stored in non-volatile memories. ROM (Read Only Memory), PROM

(Programmable Read Only Memory) and EPROM (Erasable Programmable Read Only

Memory) have all together the disadvantage that these memory types are not electrically

erasable. If application software must be changed the memory device has to be changed.

Chapter 2 - Background 23

Flash Memory

“Flash Memory” is the current established memory technology for microcontrollers to store

executable operation code. It is based on the metal oxide semiconductor field-effect tran-

sistor technology (MOS-FET) with floating gates and supports non-volatile storage of data.

Flash memory could be electrically erased and reprogrammed. Within [Zim10-2]

W. Zimmermann and R. Schmidgall described the abstract functionality of a

Flash-Memory cell. The different conditions and the usage scenarios for the different

memory types have been listed there, too (refer to table 2.2-1).

Table 2.2-1: ECU’s semiconductor memory overview [Zim10-2]

Memory type Programming Erasing Usage

ROM

Read Only Memory

IC production
time

no Fix code

EPROM

Erasable ROM

Only in dismounted state by the
ECU supplier

Fix code

Data (e.g. characteristic line)

Flash-ROM In the ECU at any time

> 100,000 times

Fix code and data

EEPROM

Electrical Erasable
ROM

In the ECU at any time

> 100,000 times

Variable data with less update
ratio (e.g. operation hour
counter, status information
etc.)

RAM

Random Access
Memory

Not necessary Variable data

Volatile after power-off

Compared to EEPROM (Electrical Erasable Programmable Read Only Memory), Flash

memory is faster for both access types: read and write. Flash memory is organised in

pages or blocks of several kilobyte. Unfortunately Flash memory is only erasable page by

page (block by block) and until a memory page is erased or reprogrammed no instruction

code read access is possible. Hence, the normal operation of the ECU has to be inter-

rupted for the erase and program procedure.

Table 2.2-2: Physical programming performance

Microcontroller Programming performance Source

INFINEON TC1796 51.2 kByte/s (256 Byte / 5 ms) [TC1796]

NEC V850 Ex3 91 kByte/s (4,096 Byte / 45 ms) [V850-Ex3]

TMS470 128 kByte/s (256 kByte / 2 s) [TMS470]

Chapter 2 - Background 24

Table 2.2-2 depicts an overview about typical physical reprogramming performance of

current automotive microcontrollers.

For the integration of the erasing and programming process into the remaining ECU soft-

ware, an independent software component is normally used inside the ECU. Compared to

the remaining functions, this component encapsulates the programming process and

provides defined interfaces. This component is referred to as the flashloader and will be

described in section 2.2.3.2 in detail.

2.2.3 ECU Software Components Overview

With focus on embedded software reprogramming processes the software on an ECU has

to be divided into three basic software components:

a) boot manager

b) flashloader

c) application

All three parts are independent software components allocated in the Flash memory with

different assignments. Figure 2.2-2 depicts an overview of those different software com-

ponents.

Figure 2.2-2: ECU Software Components Overview

The software component’s individual functionalities with respect to a reprogramming

process are described below.

Chapter 2 - Background 25

2.2.3.1 Application Software

The application software (later referred as the application) implements the real control and

measurement software to fulfil the basic assignment of that specific ECU, e.g. vehicle

engine control or wash machines heating system etc. Hence, it implements the necessary

drivers for all communication interfaces as well as the required communication protocol

stacks, self diagnostic analysing systems, error storage system etc. This application soft-

ware is responsible for the complete normal operation processing of an ECU. In many

cases application software is divided into several partitions. A typical segmentation is the

splitting into functional code and parameter sets. Additional segmentation could be possi-

ble too. It depends on the final assignment of the corresponding ECU and on the possibil-

ity to split the software into such logical groups. For example, if the ECU has any

interaction with the user (HMI12) the fonts could be allocated in a separate partition.

If an application software update is necessary, e.g. in case of bug fixing or functionality

upgrade the application software is partly (according to the configured partitions) or fully

erased and reprogrammed.

2.2.3.2 Flashloader

The flashloader software (later referred as flashloader) is an independent software com-

ponent that controls the reprogramming process. Typically it shares software modules

with the other software components application or Boot Manager. Figure 2.2-3 depicts an

abstract overview to the flashloader component. The flashloader has access to the com-

plete memory area where the application (all partitions) is allocated and is able to erase

and reprogram that memory area. A flashloader implements a complete communication

protocol stack. In case a reprogramming process is initiated, the flashloader communi-

cates with an external programming control unit (PCU). Especially for the automotive

usage the German OEMs13 have standardized a flashloader within the HIS14 standardisa-

tion group. The document [HIS06-1] specifies the basic requirements for a flashloader

based on the diagnostic protocol UDS15 (refer to section 2.5.4) and communication via

CAN. W. Zimmermann and R. Schmidgall also described the requirements and

12 HMI .. Human – Machine – Interface

13 OEM .. Original Equipment Manufacturer

14 HIS .. German: Hersteller Initiative Software (English: manufacturer’s initiative for software)

15 UDS – Unified Diagnostic Services (refer to section 2.5.4). UDS is the current standard diagnos-

tic protocol for the automotive industry.

Chapter 2 - Background 26

implementation approaches of flashloader in context of the ECU’s reprogramming process

[Zim10-3] in a more abstract view independent of the used field bus system.

Figure 2.2-3: Overview flashloader component

The main assignments of a flashloader are:

a) Establishing and managing a communication connection to an external Program-

ming Control Unit.

b) Control communication access to the ECU.

c) Erase the addressed memory segments

d) Program the new software parts physically.

e) Verification of the programmed software parts (programming, integrity).

f) Check compatibility from hardware and software or, if more independent software

partitions exist, check the compatibility of the different software modules.

g) Documentation of a reprogramming process

h) Error handling if reprogramming failed

The different requirements in context of the consecutive steps during a reprogramming

process are described in section 2.4 where the typical reprogramming sequence is dis-

cussed.

The flash driver is a part of the flashloader’s software. It is required because it is not pos-

sible to execute code from part of the flash memory section and erase another section

Chapter 2 - Background 27

concurrently. Hence, the driver has to be copied into RAM and executed there. Because

of the flash memory development and the fact that on-chip flash memory enlarges very

fast, many microcontroller manufacturers are able to provide on-chip flash memory with at

least two memory banks (physically divided memory blocks). Here it is possible to execute

code from one bank and erase the memory partitions of another bank. In consequence

the copy process of executable memory driver code to RAM is no longer necessary. To-

day the flashloader’s performance has a significant impact on the total reprogramming

time. Flashloader implementation aspects are part of the research and the results will be

discussed within this document.

2.2.3.3 Boot Manager

The term boot manager was introduced by the HIS sub-working group for software repro-

gramming process [HIS06-2].

After Power-On the microcontroller processes the start up sequence (initializing of system

registers, PLL16 and VCO17 settings etc.). After that initialisation the system has to distin-

guish whether a valid application software is available to execute or the flashloader soft-

ware has to be executed. This distinction is processed by the boot manager software. The

boot manager is the first active software component after a system reset.

The boot manager has to distinguish whether application software or flash loader software

shall be started and executed next. Typically the boot manager starts the application

software. If no application software is available, the boot manager starts the flash loader

software and the system waits in flashloader’s idle mode until an external Programming

Control Unit (refer to section 2.3) initiates a reprogramming process. The decision whether

application is executable depends on the result of some start-up checks:

a) Is application software available?

b) Is the application software correct (not corrupted)?

c) Is the application software compatible to the hardware?

d) If the software contains more than one separate reprogrammable module (e.g.

regulation algorithm and parameter set etc.) are these different modules compati-

ble to each other?

16 PLL .. Phase-locked Loop

17 VCO .. Voltage-controlled Oscillator

Chapter 2 - Background 28

Depending on the basic reprogramming strategy and the implemented protocol the boot

manager has also to distinguish if a reprogramming request is available. In that case the

flashloader has to be executed although valid application software is available.

Of course, the boot manager is an important module for an ECU but with focus on repro-

gramming application software this component is not of essential interest.

2.3 Programming Control Unit (Test system)

The programming control unit (PCU) manages the reprogramming process. The PCU has

access to the data that shall be programmed and knows the reprogramming sequence for

the ECU.

PCU is the generic, abstract term for all the different applications, tools and systems that

are available in context of microcontroller’s software reprogramming. The spread is from

simple “download applications” integrated in embedded software development suites up to

more extensive test systems18 for industrial ECU manufacturing and after sales support.

Common to all PCUs is the necessity to implement communication interfaces on either the

microcontroller or the ECU. The available interfaces depend on the current position within

microcontroller’s or ECU’s life cycle. In the early development phase for example commu-

nication via JTAG19 interface might be possible whereas in a post-development phase

(e.g. production or service) no access to that interface is possible. Here in many cases

access to the ECU is only possible via the (normal) application communication interfaces.

Within the automotive area, PCUs are typically integrated components of more complex

test systems. The Association for Standardisation of Automation and Measurement Sys-

tems (ASAM) has standardised those test systems and provides many documents for the

different layers [ASAM]. In [Zim10-8] W. Zimmermann and R. Schmidgall give a short

overview about the standardised test system, the different interfaces and the standardised

exchange data formats. In the reprogramming context of this document, the PCU is de-

fined as an abstract data source that communicates via field bus systems and implements

the corresponding communication protocols (refer to chapter 3). The PCU

18 Other terms for test system in publications or standards are: tester, diagnostic tester, external

test tool, diagnostic test tool, test equipment, diagnostic test system

19 JTAG .. Joint Test Action Group describes the IEEE-1149.1 standard that collects several meth-

ods for testing and debugging of electrical hardware directly within the circuit. A sub-method is to

program embedded memory by direct access to the memory cells.

Chapter 2 - Background 29

implementation, as well as the data exchange formats and container, are not in the scope

of this work.

2.4 Programming Sequence

The reprogramming sequence specifies the consecutive steps that are necessary to pro-

gram the ECU’s memory. From an abstract point of view, the reprogramming process for

ECUs is always the same. A typical reprogramming sequence for embedded systems

based on microcontrollers could be divided into three abstract sub-sequences:

1. Pre-programming sequence

2. Major programming sequence

3. Post-programming sequence

These sequences will differ depending on several environment conditions like the repro-

gramming scenarios (e.g. initial programming, reprogramming), reprogramming places

(e.g. direct access to the microcontroller, direct link between PCU and ECU, reprogram-

ming via network etc.). Pre- and post-programming sequences are necessary to prepare a

communication network for the reprogramming process. The major programming se-

quence implements the physical programming process as well as verification and admin-

istration data processing.

Major programming sequence

Figure 2.4-1 depicts the major programming sequence in an abstract view.

Figure 2.4-1: Abstract major programming sequence

Chapter 2 - Background 30

Initially the PCU has to identify the ECU (step 1) and gets access for reprogramming

process execution (step 2). ECUs Flash memory must be erased previously before it can

be reprogramming (step 3). The PCU transfers data to the ECU where they are physically

programmed into the Flash memory (step4). Finally the physical programming process is

verified (step 5) before the reprogramming sequence has finished.

Due to the reprogramming sequence according to figure 2.4-1 two approaches are possi-

ble to reduce the total software reprogramming process time significantly:

1) Accelerate data transfer from PCU to ECU

2) Reduce data size to be transferred from PCU to ECU.

The other stages within that sequence are hardware dependant (erase process, verifica-

tion e.g. CRC calculation) and based on technology used or require only a small part of

the overall reprogramming process time (Identification, authentification).

Major programming sequence mapped to UDS protocol

There have been efforts for many years by the ISO and the HIS to standardise the repro-

gramming sequence for the automotive industry. The sequence is based on the diagnostic

protocol20 and specifies the ordering of the required diagnostic services. In fact, the vehi-

cle manufacturers and suppliers vary significantly in terms of the used diagnostic services.

An attempt is made in [HIS06-2] to standardise the procedures although a couple of steps

are optional so that different options are still possible. Within [ISO14229] (Unified diagnos-

tic services – UDS – refer to section 2.5.4) the reprogramming sequence shall now be

standardised in a common international standard.

[Zim10-3] explains the reprogramming sequence based on [HIS06-2]. Table 2.4-1 depicts

the reprogramming sequence in a more generic manner. The text column explains the

abstract steps and maps the abstract requirement to the corresponding diagnostic ser-

vices as defined in UDS [ISO14229] and [HIS06-2].

20 Several diagnostic protocols have been standardised in the past. The currently most significant

protocol is standardised in the document of ISO 14229 – Unified Diagnostic Services (UDS)

[ISO14229].

Chapter 2 - Background 31

Table 2.4-1: Software Re-Programming Process according to [HIS06-2] and [Zim10-3]

Step Sequence Description

 (*).. conditional steps
P

re
-P

ro
gr

am
m

in
g

S
eq

ue
nc

e

(1) Start

Pre-Progr. Sequence

 Starting the Pre-Programming sequence for

the preparation of the programming process.

UDS: Diagnostic Session Control

(2) *
ECU Identification

 Readout of ECU identification to identify the

hardware and the current software version.

UDS: Read Data by Identifier

(3) *
Check Pre-Conditions

 Checking if all device-specific preconditions

necessary for the programming are fulfilled

(e.g. automotive area: engine off). UDS:

Routine Control - Check Programming Pre

Condition

(4) *
Network Preparation

 Prepare all ECUs within the network for a

reprogramming process (e.g. disable the

normal communication to gain full bandwidth

for reprogramming communication, deacti-

vation of communication timeout monitoring

etc.).

UDS: Communication Control, Link Control

M
aj

or
 P

ro
gr

am
m

in
g

S
eq

ue
nc

e

(5) Start Main

Programming Sequence

 Switch to ECU’s flashloader.

UDS: Diagnostic Session Control

(6)
Authentication

 Authentication of the tester to the ECU. The

access is denied if the authentication fails.

UDS: Security Access – Get Seed, Send

Key

(7) Loading Flash-Driver

Part 1 into RAM

 If the flash-driver is a fixed component of the

flash-loader, the latter copies the flash-driver

into the RAM in due time. Otherwise, the

diagnostic tester carries out this task.

UDS: Request Download, Transfer Data,

Request Transfer Exit

Chapter 2 - Background 32

Continue table 2.4-1

M
ai

n
P

ro
gr

am
m

in
g

S
eq

ue
nc

e

(8)
Erase Memory

 The diagnostic tester activates the physical

erasing of the (Flash) memory.

UDS: Routine Control - Start Routine by

Identifier

(9) * Loading Flash-Driver Part 2

into RAM

 Inside electronic control units with a small

RAM, it can be impossible to load the

complete flash-driver. The driver is divided

into a first part responsible for the erasing

process and a second part responsible for

the programming. The latter can only be

performed if the erasing process was

completed successfully.

(10) Transfer and program new

software

 The PCU transfers the data to the ECU. The

flashloader physically programs this data

into the flash-memory.

UDS: Request Download, Transfer Data,

Request Transfer Exit

(11)
Verification of Programming

 After completion of data transfer and pro-

gramming, the newly programmed applica-

tion software is authenticated at least by

CRC calculation. The reliability of the data

may be checked by signatures based on

encrypted/decrypted hash values. UDS:

Routine Control – Start Check Routine

(12)
Check Dependencies

 It has to be verified that the software is

compatible to the ECU’s hardware. Also If

the application software is subdivided into

several blocks, the compatibility of every

single part must be checked too.

UDS: Routine Control – Check Program-

ming Dependencies

(13)
ECU Reset

 A reset stops the programming process.

After the reset, the boot-manager activates

the new application software.

UDS: ECU Reset

Chapter 2 - Background 33

Continue table 2.4-1

P
os

t-
P

ro
gr

. S
eq

ue
nc

e
(14)

Prepare network
 All electronic control units connected to the

bus are allowed to resume their normal

communication. All the network preparations

in the ECUs shall be repealed.

UDS: Communication Control, Link Control

(15)
Stop Diagnostic Session

 Closure of the reprogramming process.

UDS: Stop diagnostic session. UDS: Ses-

sion Control - Start default session

Of course, the sequence as mentioned above is a very generic approach. But the condi-

tional steps (marked by a ‘*’) provide the possibility to process these sequences for each

microcontroller on many different scenarios during the life cycle. Independent of the final

sequence and common to all reprogramming scenarios is the requirement to reprogram

an ECU as fast as possible.

2.5 Communication Stack

In distributed embedded systems the different ECU applications have the need to ex-

change data. According to the Open System Interconnection model (OSI model) standard-

ised in [ISO7498-1] embedded system’s communication is mapped to that model, too. As

depicted in table 2.5-1, a communication system is sub-divided into different layers.

Table 2.5-1: OSI reference model

Layer Description

7 Application Network process to application

6 Presentation Data representation, encryption and decryption, convert machine
dependent data to machine independent data

5 Session Inter-host communication

4 Transport End-to-end connections, segmentation

3 Network logical addressing, routing, flow control

2 Data Link Bus access, physical addressing, bit error detection etc.

1 Physical Signal and binary transmission, bit coding

Equal layers within different ECUs are communicating via protocols. Besides the payload

additional layer specific header and trailer information are also transmitted. In many cases

Chapter 2 - Background 34

the header is also called “Protocol Control Information” (PCI). The trailer implements

control information, e.g. check sums etc. In some cases, no protocol trailer is defined.

Each layer instance (N) provides services to the layer instance above (N+1) and below (N-

1) or uses services from the layer instance above or below. Figure 2.5-1 depicts an ab-

stract view of the internal communication structure of a protocol stack.

Figure 2.5-1: Communication structure within a protocol stack

Usually embedded software has strict resource restrictions because memory resources

and microcontroller performance are limited in contradiction to the PC world, whereas

from an embedded system’s point of view memory resources and processor speed are

unlimited. Some reasons for those restrictions especially within the automotive area were

presented in chapter 1. As a result of these resource restrictions within the embedded

world and their field bus systems (refer to section 2.5.1) it might be possible that some

layers are either combined (layer 3 – network layer and layer 4 – transport layer) or not

available (layer 6 – presentation layer).

Many protocols on the different layers within the automotive area are standardised within

ISO21 or SAE22.

21 ISO – International Standardisation Organisation

22 SAE - Society of Automotive Engineers

Chapter 2 - Background 35

2.5.1 Field bus systems

Field bus is the name of a family of industrial computer network protocols. According to

the ISO/OSI reference model of table 2.5-1, the protocols typically specify layer 1 and 2.

Field buses connect field components like sensors and actors and ECUs with the purpose

of exchanging data. The first generation of field bus systems was developed in the

1980s23. Since 1999 field bus systems are standardised within the specification

IEC 61158 - Digital data communication for measurement and control – Field bus for use

in industrial control systems [IEC61158]. The different usage scenarios of field busses

within the different business areas provide the opportunity for competing field bus tech-

nologies. G. Schnell and B. Wiedemann [Schn08] provide an overview about field bus

systems within automation systems, while W. Zimmermann and R. Schmidgall do it for

automotive systems [Zim10-1].

Table 2.5-2: Field bus systems in automotive area

Name Bus access method Bandwidth Payload

K-Line - 10,4 kBit/s 1..255 Byte

LIN Master-Slave 1 .. 20 kBit/s 1..8 Byte

CAN CSMA/CR24 1 MBit/s 0..8 Byte

TTCAN TDMA25 1 MBit/s 0..8 Byte

FlexRay TDMA 10 MBit/s 0..254 Byte

Byteflight26 TDMA 10 MBit/s 0..12 Byte

Today different field bus systems are established within the different business areas.

Table 2.5-2 provides an overview of the currently most used field bus systems within the

automotive area. With focus on software reprogramming acceleration, different approach-

es for CAN and FlexRay will be discussed in detail in chapter 4. It is possible to adapt the

methods to other bus systems based on equal bus access strategies.

23 ISA S50.02 standard

24 Carrier Sense Multiple Access with Collision Resolution (refer to chapter 4)

25 Time Division Multiple Access (refer to chapter 4)

26 Developed by the BMW AG

Chapter 2 - Background 36

2.5.2 Media Access Control Overview

Master-Slave bus access is a general term for systems where a node has unidirectional

control over one or more other devices. Only the master initiates a communication link.

The slave nodes are not allowed to communicate without a master request. Local Inter-

connection Network (LIN) is a typical Master/Slave system for embedded system’s com-

munication.

Carrier Sense Multiple Access (CSMA) is a general term for asynchronous (event based)

bus access. A node verifies the idle state (absence of other traffic) of a shared transmis-

sion medium before transmission is initiated. Data transmissions of a node are generally

received by all other nodes connected to the medium. A. Tanenbaum and

D. Wetherall provide a detailed introduction into the different media access control (MAC)

methods [Tan10].

Carrier Sense Multiple Access with Collision Detection (CSMA/CD) is a modification of the

above described CSMA method. If a currently transmitting node detects another transmis-

sion, it stops transmitting the frame and then waits for a random time interval before trying

to send again.

Carrier Sense Multiple Access with Collision Resolution (CSMA/CR) is a second modifica-

tion of the above described CSMA method. The method is used to provide a deterministic

communication system based on CSMA. If a collision is detected, a priority definition

forces the transmission of the higher priority note or PDU (frame). Controller Area Network

(CAN) is one of the most popular bus systems based on that media access control.

The Time Division Multiple Access (TDMA) method allows several nodes to share a bus

system by dividing the channel bandwidth into different time slots. Each has an exclusive

transmission access to a time slot defined within a global schedule. Time Triggered Con-

troller Area Network (TTCAN) and FlexRay are two bus systems based on that media

access control.

2.5.3 Transport Layer Protocol

As described in table 2.5-2 the payload of field bus systems is limited. But for the purpose

of reprogramming, it is necessary to transfer data in larger segments than the maximum

payload of the physical protocol data unit (PDU). Hence, a protocol mechanism is neces-

sary to adapt large data strings to physical layer protocol’s PDU. According to the ISO

standardised OSI reference model this mechanism is implemented on layer 4

[ISO7498-1a]. Figure 2.5-2 depicts an overview.

Chapter 2 - Background 37

Figure 2.5-2: Protocol Stack Overview – Transport Layer

As mentioned above, not all layers of the basic OSI reference model are defined and/or

implemented within embedded system’s communication protocol stacks. For many field

bus systems, layer 3 (Network) and 4 (Transport) are combined. The title of [ISO15765-2]

“Road vehicles – Diagnostics on Controller Area Networks (CAN) – Part 2: Network layer

services” misleadingly suggests the specification of network layer functionality. Neverthe-

less, a method for segmented data transmission via CAN (according to ISO/OSI reference

model done on layer 4) is specified too. [ISO10681-2] specifies “Communication Layer

services” for FlexRay. Address handling (ISO/OSI reference model - layer 3) and transport

protocol handling (ISO/OSI reference model - layer 4) is defined within the same specifi-

cation. Due to the fact that the terms used within standards are ambiguous where layer 4

and layer 3 are combined for embedded systems, the term “Transport Protocol” will be

used within the further document.

Table 2.5-3: Automotive related transport protocol specifications

Name Transport Protocol Specification

LIN Parts of ISO 15765-2

CAN ISO 15765-2

SAE J1939/21

FlexRay ISO 10681-2

AUTOSAR 2.1 – FrTp

Ethernet ISO 13400

It has to be distinguish between ISO standardised protocols and proprietary protocols.

Proprietary protocols are defined if no ISO standard is available, or also if the physical

medium is not standardised in ISO or SAE. Especially the automotive industry has a big

interest to standardise such protocols. Hence, most transport layer protocols for

automotive usage are standardised or standardizing activities have started. Table 2.5-3

depicts an overview of the different automotive related standardised protocols.

Chapter 2 - Background 38

W Zimmermann and R. Schmidgall explain the different protocol mechanisms of the

transport protocols actually used within the automotive area in detail in [Zim10-5].The

transport protocol topic will also be discussed in chapter 4.

The basic functionalities of such a transport protocol are:

a) Segmentation of large service data units (SDU) into several protocol data

units (PDU)

b) Reassembling of received PDUs to an SDU

c) Data flow control management

d) Timing control of the established data transfer link (timeout management)

Within software reprogramming processing large data blocks are transferred from the

PCU to the different ECUs. Therefore, transport protocols are necessary to segment these

large data blocks to fragments with size of field bus system’s payload. For some of the

automotive relevant field bus systems the transport protocols are typically specified within

the ISO (refer to table 2.5-3). Transport layer configuration has a deep impact on the

overall communication speed and the data transfer bandwidth. The impact of those differ-

ent configuration possibilities will be discussed in chapter 4.

2.5.4 Application Protocols

Today several protocols exist to reprogram ECU’s software. Within the automotive indus-

try software reprogramming in production and service is a part of diagnostics. In recent

years diagnostic communication was strictly standardised within the ISO. Based on OEM

specific, manufacturer specific and proprietary protocol implementations Key Word Proto-

col 2000 (KWP2000) was standardised in [ISO14230-3] in 1999. The next generation of

automotive diagnostic protocol is Unified Diagnostic Services (UDS) and standardised in

[ISO14229].

Some ECUs have to be adapted to the environment, e.g. engine control units to the en-

gine or transmission control module to the engine or the gearbox. Within the automotive

industry the protocols for measurement and calibration are standardised by the ASAM27

standardisation group. In [Zim10-8] a detailed introduction to the Universal Measurement

and Calibration Protocol (XCP) and the older CAN Calibration Protocol (CCP) is given by

W. Zimmermann and R. Schmidgall. During the adaptation and calibration process, it

could be necessary to reprogram parts of the memory, e.g. with new values for character-

istic curves etc. If the system is produced or serviced within the after sales

27 ASAM .. Association for Standardisation of Automation and Measuring Systems [ASAM].

Chapter 2 - Background 39

market, the calibration or measurement protocol is no longer needed. In contrast, diagnos-

tic is required during the ECU’s complete life cycle. Hence, the focus for reprogramming

process acceleration is on diagnostic protocols. It is also possible to reprogram software

with calibration protocols, but this is not their initial intention.

2.6 Network

“The networks used in distributed systems are built from a variety of transmission media,

including wire, cable, fibre and wireless channels; hardware devices, including routers,

switches, bridges, hubs, repeaters and network interfaces; and software components,

including protocol stacks, communication handlers and drivers” [Cou01-1].

The definition of James Coulouris et al. is also correct for automotive embedded systems.

However, wireless transmission media is currently only used to interconnect customer’s

consumer devices (e.g. mobile connection via blue tooth) and the number of different

network nodes is reduced to gateways. But, in the case of software reprogramming it is

also true that “the resulting (…) performance available to distributed system (…) is affect-

ed by all of these” [Cou01-1].

In section 2.5 the different field bus systems were described which are currently relevant

for the automotive industry. A network is the combination of at least two field bus systems.

The network and its data transfer rate have a significant impact on the overall reprogram-

ming performance. Nevertheless, optimisation of networks for the reprogramming process

has not been the focus point during recent years. As described in chapter 1, cost aspects

have the main priority. On the other hand, there was no pressure to optimise the automo-

tive networks because software reprogramming was not a problem. Hence, the focus, in

terms network architecture aspects, was on the ECU’s application software’s communica-

tion.

For the network design today, the reprogramming issue has to be taken into account. The

challenges of diagnostic communication within modern vehicle networks have increased

and network configuration has become more complex (refer to appendix C) [Sch11-1].

Tool supported network analysis is necessary, but tools for diagnostic specific protocol

analysis are currently not available (refer to appendix D) [Sch11]. Therefore, network

architecture and design aspects also need to be analysed within this document.

Chapter 2 - Background 40

2.7 Summary

This chapter has provided background information to embedded systems and the involved

components for the software reprogramming process where a PCU communicates with an

ECU’s flashloader via a communication network. All above discussed aspects contribute

to a system model for embedded systems’ reprogramming process as depicted in

figure 2.7-1.

Figure 2.7-1: System model for embedded system’s software reprogramming

Current ECUs based on Flash memory technology require a special reprogramming se-

quence because the Flash memory allows not reprogramming a memory cell without

previously erasing. This is a strong restriction to possible reprogramming strategies.

Due to the reprogramming sequence of section 2.4, process acceleration is possible if

a) data transfer is accelerated or

b) data size to be transferred is reduced.

The data transfer rate as an indication of communication performance depends on:

a) The used bus systems,

b) The upper layers communication protocols,

c) The hardware performance and

d) The performance of network coupling elements like gateways.

Data size reduction will accelerate the data transfer process because less data has to be

transferred. Different approaches are possible to reduce the total amount of transferred

data.

3 Double buffered data transfer

Content

3.1 Reprogramming Protocol 42

3.2 Double buffered data transfer 42

3.3 Method’s utilisation 49

3.3.1 Mapping to Diagnostic Protocol ISO-14229 – UDS49

3.3.2 Mapping to other application protocols ..51

3.3.3 Mapping to multi controller systems ..51

3.4 Conclusion 52

This chapter is intended to discuss an approach to accelerate the data transfer between

an external programming control unit (PCU) and an electronic control unit (ECU).

According to ISO/OSI reference model (refer to section 2.5), communication protocols on

layer 5 to layer 7 are independent of the underlying bus system (represented by layer 1 to

layer 4 protocols). Hence, optimisations on layer 5 to 7 are generic approaches, usable for

data transfer via all field bus systems (refer to section 2.5). Nevertheless, the indisputable

thesis for a communication system is given as:

The upper limit for the communication performance on a physical layer is 100% bus load.

Hence, upper layer protocols shall reduce protocol delays that finally results in delays on

the physical bus system and therefore reduce data transfer rate.

Based on the initial thesis and with focus on automotive communication protocols the

following issues are discussed:

a) The theoretically maximum of the protocol’s data transfer rate

b) The influencing parameters and restrictions to reach the maximum value.

Chapter 3 – Double buffered data transfer 42

3.1 Reprogramming Protocol

Reprogramming protocols control the reprogramming process. Typically they are mapped

to layer 7 within the ISO/OSI reference model nomenclature. Within the automotive area

typical protocols to control the reprogramming process are diagnostic protocols like “Key

Word Protocol 2000” (KWP2000) as defined in [ISO14230-3] or “Unified Diagnostic Ser-

vices” (UDS) as defined in [ISO14229-1]. Figure 3.1-1 depicts a system overview.

Figure 3.1-1: Reprogramming protocol overview

With the aim to use the full bandwidth and get 100% bus load the reprogramming protocol

should be analysed to identify protocol dependent delay times which reduce bus load. Of

course, the final overall performance depends also on the underlying communication

system performance. Nevertheless, a delay on higher protocol layers is propagated

through the communication stack and results usually in a delay on the physical layer.

Therefore, it might be sufficient to find a generic approach to accelerate data transfer on

the reprogramming protocol layer. In a second step the power of the generic approach will

be discussed if it is mapped to the real existing automotive diagnostic communication

protocol UDS.

3.2 Double buffered data transfer

Within this chapter a generic approach to accelerate data transfer on the programming

protocol layer is discussed. Finally a solution to map this approach to a standardised

protocol will be provided.

An electronic control unit (ECU) typically provides buffer to receive data within an estab-

lished communication link (refer to figure 3.1-1). The maximum buffer size can vary

Chapter 3 – Double buffered data transfer 43

depending on the underlying bus system and the corresponding communication protocol

stack (refer to chapter 4). Today’s state of the art reprogramming process e.g. within the

automotive industry28 is an alternating sequence of data transfer and physical reprogram-

ming. The programming control unit (PCU) segments the complete data to be pro-

grammed into smaller packages according to the maximum data size that can be

transferred via the bus system. The ECU receives that data in the buffer and programs

them into the physical non-volatile-memory (NVM), e.g. flash memory or EEPROM. This

sequence will repeat until all data are transmitted from the PCU to the ECU and success-

fully programmed. Figure 3.2-1 depicts that basic scenario with a view to the bus system

traffic and the corresponding single buffer.

Figure 3.2-1: Single buffer data transfer

This buffer is the target for the data communication link and also the data source for phys-

ical reprogramming process. During the data transfer the received data are stored in the

buffer (write access). During the physical reprogramming process (read access) the buffer

is locked for data reception. Hence, no data are transmitted and a gap is visible on the

bus. After successful reprogramming process execution the buffer is unlocked and the

PCU can start to transmit the next data segment.

According to the initial aim to use the full bandwidth and to get 100% bus load the gap

shall be filled by a concurrent data transfer to a second buffer while the first buffer content

is physically programmed.

This approach will be discussed below by the calculation of data transfer ratio. Starting

from a single buffer system the time that is required to transmit and program the total

amount of data is calculated by formula 3.2-1. The total programming time tProg is the sum

of the total data transfer time tDataTransfer and the total physical programming time tPhysProg:

∑ ∑+= ogPrPhyserDataTransfogPr ttt

ogPrPhyserDataTransfogPr tntnt ⋅+⋅=

28 Refer to the standardised reprogramming sequence based on diagnostic protocol UDS in

chapter 2.3 and chapter 4.1.3.

Chapter 3 – Double buffered data transfer 44

()ogPrPhyserDataTransfogPr ttnt +⋅=
 (3.2-1)

The term n represents the number of repetitions to transfer the total amount of data

(“DataSize”) by bus system specific segments (“SegmentSize”) which can be transmitted

by a single data transfer.

eSegmentSiz
DataSize

n =
 (3.2-2)

Typically a data transfer results in a last segment with less data bytes than the segment

size. In that case the individual time required for that data transfer and physical repro-

gramming has to be calculated. On the other hand the influence of the transmitted last

data segment and the resulting calculation error is smaller as more data segments are

transmitted29. Hence, formula 3.2-2 is simplified and the term n will be rounded up to the

next integer value.









=

eSegmentSiz
DataSize

n
 (3.2-3)

If a second application buffer is available, a second data transfer could be initiated in

parallel to the second buffer until the first buffer’s data are programmed. By this buffer

architecture two different scenarios are possible for the total programming time calcula-

tion:

Scenario 1: tData Transfer ≥ tPhysicalProgramming

Scenario 2: tData Transfer < tPhysicalProgramming

The maximum value for the total programming performance increase depends on two

different parameters:

a) The number of transmitted segments n (refer to formula 3.2-2) where the gap on

the bus could be visible.

b) The ratio between data transfer time tDataTransfer and the physical programming time

tPhysProg.

PhysProg

erDataTransf

t

t
x =

 (3.2-4)

29 For n ≥ 20 the last segment influences the total programming time by < 5%. For n ≥ 50 the last

segment influences the total programming time by < 2%.

Chapter 3 – Double buffered data transfer 45

Scenario 1 (t Data Transfer ≥ tPhysicalProgramming)

Figure 3.2-2 depicts the scenario 1 with tDataTransfer ≥ tPhysicalProgramming. In that case there is

no gap visible on the bus. The physical programming time is only visible on the very last

segment.

Figure 3.2-2: Double buffered data transfer – scenario 1

The relation between data transfer time tDataTransfer and the physical programming time

tPhysProg is:

1x
x

t
t

t

t
x Transfer

PhysProg
PhysProg

Transfer ≥=⇒=
 (3.2-5)

The optimised total programming time tProg_opt1 is calculated by:

ogPrPhysTransfer1opt_ogPr ttnt +⋅= (3.2-6)

Compared with the initial transfer concept to a single bus with visible gaps the relative

programming time reduction relation is:

PhysProgTransfer

PhysProgTransfer

rogP

Prog_opt1
n tntn

ttn
1

t

t
1R

⋅+⋅
+⋅

−=−= (3.2-7)

Chapter 3 – Double buffered data transfer 46

With (3.2-5) the generic formula for the overall time reduction ratio is:








 +








 +
−=

⋅+⋅

+⋅
−=

x
n

nt

x
1

nt
1

x

t
ntn

x

t
tn

1R

Transfer

Transfer

Transfer
Transfer

Transfer
Transfer

n








 +








 +
−=

x
n

n

x
1

n
1Rn (3.2-8)

If tDataTransfer = tPhysicalProgramming the value for x is equal to 1. Depending on the number of

transmitted segments n the maximum time reduction varies.

n2
1n

1
tntn

ttn
1R

TransferTransfer

TransferTransfer
n

+−=
⋅+⋅

+⋅
−= (3.2-9)

0
2
2

1
n2
1n

1Rlim n
1n

=−=+−=
→

5.0
2
1

1
n2
1n

1Rlim n
n

=−=+−=
→∝

If tData Transfer = tPhysicalProgramming the maximum reduction is in range of

0n5.0R0 n >≤≤

and is in maximum 50%. Figure 3.2-3 depicts the graphical results of formula 3.2-8 and

3.2-9 and visualise the effect of double buffered data communication. The approach with

two buffers provides already a benefit if only 2 different data segment transfers are neces-

sary (n=2). A saturation is visible if many data segments transfers (n>20) are necessary.

Maximum time reduction
(t DataTransfer ≥ t PhysProg)

0.00

0.10

0.20

0.30

0.40

0.50

0 5 10 15 20 25 30 35 40 45 50

transmitted segments n

P
ro

gr
am

m
in

g
tim

e
re

du
ct

io
n

R
(n

)
[%

] x=1

x=2

x=3

x=4

x=5

x=10

x=50

Figure 3.2-3: Maximum time reduction for tData Transfer ≥ tPhysicalProgramming

Chapter 3 – Double buffered data transfer 47

Figure 3.2-3 depicts also the impact of the relation between the data transfer time

tDataTransfer and the physically programming time tPhysicalProgramming.

The maximum value is only possible if data transfer time is equal to physical programming

time (x=1). In that case the maximum time reduction R(n) for a double buffered data trans-

fer is up to 40% if already 5 segments are transmitted.

If the microcontroller is able to program data several times faster than it requires to trans-

ferring that amount of data the time reduction benefit will decrease. The longer tData Transfer

is (x>1), the less programming time reduction R(n) is possible. If tData Transfer >> tPhysicalPro-

gramming (x�∞) no or only a small reduction of the total reprogramming time is possible

independent of the number of transmitted segments.

0n0
n
n

1

x
1

1n

x
1

n
1Rlim n

x
>=−=








 +








 +
−=

→∝
 (3.2-10)

Figure 3.2-4 depicts the maximum values of total reprogramming time reduction R(x)

depending on the relation x between the data transfer time tDataTransfer and the physically

programming time tPhysicalProgramming for different number of transmitted data segments n.

Maximum time reduction

0.00

0.10

0.20

0.30

0.40

0.50

0 2 4 6 8 10 12 14 16 18 20

x
(Relation of t Transfer to t PhysProg)

P
ro

gr
am

m
in

g
tim

e
re

du
ct

io
n

R
(x

)
[%

]

n=2

n=5

n=10

n=25

n=50

n=100

Figure 3.2-4: Total reprogramming time reduction - details

Figure 3.2-4 depicts that the effect of double buffered data transfer is decreasing if data

transfer time is longer than the physical programming time. The total programming time

reduction R(x) is less that 10% if the data transfer time tData Transfer is 9 times longer than

the physical programming time tPhysicalProgramming (x ≥ 9).

Chapter 3 – Double buffered data transfer 48

Scenario 2 (t Data Transfer < tPhysicalProgramming)

For tData Transfer < tPhysicalProgramming a gap on the bus will occur where no data transfer will be

processed. Figure 3.2-5 depicts that scenario for a double buffered data transfer.

Figure 3.2-5: Double buffer data transfer – scenario 2

The relation between data transfer time tDataTransfer and the physical programming time

tPhysProg is according to formula 3.2-5:

1x
x

t
t

t

t
x Transfer

PhysProg
PhysProg

Transfer <=⇒=

The optimised total programming time tProg_opt2 is calculated by:

ogPrPhysTransfer2opt_ogPr tntt ⋅+= (3.2-11)

Compared with the initial transfer concept to a single bus with visible gaps the program-

ming time reduction relation is:

PhysProgTransfer

PhysProgTransfer

rogP

Prog_opt2
n tntn

tnt
1

t

t
1R

⋅+⋅
⋅+

−=−=








 +⋅








 +
−=

⋅+⋅

⋅+
−=

x
1

1tn

x
n

1t
1

x

t
ntn

x

t
nt

1R

Transfer

Transfer

Transfer
Transfer

Transfer
Transfer

n








 +⋅

+
−=

x
1

1n

x
n

1
1Rn (3.2-12)

If the physical programming time is near to the data transfer time (x�1), the maximum

programming time reduction for a large number of transmitted segments (n� ∞) will be:

Chapter 3 – Double buffered data transfer 49

5.0
2
1

1

x
1

1n

x
n

1
1R lim n

1x
n

=−=







 +⋅

+
−=

→
∞→

On the other hand if the physical programming time is several times longer than the data

transfer time (x� 0), no reduction is possible:

011

x
1

1n

x
n

1
1R lim n

0x
n

=−=







 +⋅

+
−=

→
∞→

3.3 Method’s utilisation

3.3.1 Mapping to Diagnostic Protocol ISO-14229 – UD S

Within the automotive area software reprogramming is typically part of the ECU diagnos-

tic. Hence, the approach of doubled receive buffer should be discussed for a reprogram-

ming process based on the diagnostic protocol “Unified Diagnostic Services” (UDS) as

defined in [ISO14229].

UDS according to ISO 14229 provides the request-response behaviour for the communi-

cation between the PCU and the ECU. The PCU transmits a diagnostic request. The ECU

receives that diagnostic request, processes the required functionality and sends a re-

sponse (positive if successful, negative if not successful) back to the PCU.

W. Zimmermann and R. Schmidgall described an overview about the protocol behaviour

[Zim10-4]. A more detailed description to all defined diagnostic services is given by

C. Marscholik and P. Subke [Mar07].

The programming control unit (PCU) segments the complete data to be programmed into

smaller packages according to the maximum data size that could be transferred via the

bus system. Figure 3.3-1 depicts that programming sequence.

Chapter 3 – Double buffered data transfer 50

Figure 3.3-1: UDS communication via single buffered system

To transmit each data segment the PCU sends a diagnostic service request Transfer Data

(Service Identifier $36). The ECU receives the data in the buffer and programs them into

the physical non-volatile-memory (NVM), e.g. flash memory or EEPROM. After successful

reprogramming, the ECU sends a positive response and the sequence will repeat until all

data are transmitted from the PCU to the ECU and successfully programmed.

ISO-14229 does not specify that the positive response of the diagnostic service request

“$36 - transfer data” shall be transmitted after physically reprogramming. It is allowed to

separate data transfer and physical data programming and send the positive response

immediately after the successfully data reception. Hence, the double buffer approach for

an ECU is possible. Figure 3.3-2 depicts that approach.

Figure 3.3-2: UDS communication via double buffer system

Chapter 3 – Double buffered data transfer 51

Sending a positive response requires two fulfilled conditions:

1) All data have been transferred to bufferx

2) All data of the previous bufferx-1 have been programmed successfully

A double buffer system is a possible approach for all reprogramming protocols to

accelerate the total reprogramming process.

3.3.2 Mapping to other application protocols

It is possible to map the double buffer communication approach to other application proto-

cols. The only requirement is to prevent the ECU from concurrent access to the same

buffer. It must be avoided that receive data processing and physical data reprogramming

processing use the same buffer at the same time. If this is assured the approach could be

ported to any other embedded application communication protocol (e.g. CCP, XCP etc.).

3.3.3 Mapping to multi controller systems

Double buffering is also a powerful approach to accelerate data transfer on multi proces-

sor systems. Figure 3.3-3 depicts an example for an ECU with two microcontrollers.

Figure 3.3-3: Multi controller system

The double buffered system provides the possibility to communicate externally and inter-

nally in parallel. Depending on the internal communication bandwidth (bus system, inter-

face, protocol etc.) that approach reduces the total communication time.

Chapter 3 – Double buffered data transfer 52

3.4 Conclusion

With the approaches as discussed above it is possible to accelerate software reprogram-

ming communication independent of the underlying field bus system.

Method utilisation

The benefit of double buffered systems for data transfer to a microcontroller depends on

the relation between data transfer time and microcontroller’s physical reprogramming

time. Significant benefit is given if two environmental requirements are fulfilled:

1) The number of data segments n that shall be transferred to the microcontroller is at

least more than 1 (n > 1) and

2) The data transfer time (tDataTransfer) is in maximum 9 times longer than the microcon-

troller’s physical programming time (tPhysicalProgramming) (x ≤ 9).

Best results are given if the data transfer time (tDataTransfer) is equal to the microcontroller’s

physical programming time (tPhysicalProgramming) (x = 1) and more than 100 segments shall be

transmitted.

Impact to system design

The implementation of double buffered data transfer requires additional buffer resources

(RAM). If the above described basic requirements are fulfilled and RAM is available it is

recommended to implement that method.

An implementation of more than two buffers provides no benefit because either the addi-

tional buffers are not filled (scenario 1: tData Transfer ≥ tPhysicalProgramming) or the additional

buffers are filled and can not be programmed (scenario 2: tData Transfer < tPhysicalProgramming).

Base method for parallel processing utilisations

The approach of double buffered data reception can be utilised always when processes

shall be executed in parallel to an ongoing data reception. Double buffered data transfer is

a precondition to several other optimisation methods discussed later in this thesis (e.g.

data compression in chapter 5, gateway routing optimisation in chapter 7 etc.). Hence,

also if the relation between data transfer time and microcontroller’s programming time is

not given as discussed above, the implementation of double buffered data reception is re-

commended anyway.

4 Field bus system protocol stacks

Content

4.1 Controller Area Network ... 54

4.1.1 CAN bus protocol according to ISO 1198954

4.1.2 CAN-TP according to ISO 15765-2 ...58

4.1.3 Complete reprogramming process based on UDS70

4.1.4 Conclusion ..71

4.2 FlexRay .. 73

4.2.1 FlexRay (FlexRay Specification 2.1) ...73

4.2.2 FlexRay Transport Protocol (ISO 10681-2)84

4.2.3 Complete reprogramming process based on UDS91

4.2.4 Conclusion ..93

4.3 Summary .. 94

This chapter is intended to discuss approaches to accelerate the data transfer via field

bus system protocol stacks between an external programming control unit (PCU) and an

electronic control unit (ECU).

According to ISO/OSI reference model (refer to section 2.5) all bus system’s dependen-

cies are encapsulated within layers 1 to 4. Hence, optimisations on layer 1 to 4 are bus

system specific and therefore not necessarily common to other protocols on that layer.

Nevertheless, the indisputable thesis for a communication system is given as:

The upper limit for the communication performance on a physical layer is 100% bus load.

Based on the initial thesis and with focus on automotive communication systems the

following issues are discussed:

Chapter 4 – Field bus system protocol stacks 54

a) The theoretically maximum of the data transfer rate on the corresponding bus sys-

tem.

b) The influencing parameters and restrictions to reach the maximum value.

As introduced in section 2.5, today many different field bus systems exist for the usage

within (automotive) embedded systems. The bus access method (media access control –

MAC) is a major criterion to differentiate between the systems. In [Zim10-11]

W. Zimmermann and R. Schmidgall provide an overview to the different bus access

methods in section 2.5.2.

With focus on automotive system’s software reprogramming CAN as a representative

system based on CSMA/CR media access and FlexRay as a representative of systems

based on TDMA media access will be discussed.

In many cases the discussed protocol optimisation has an impact on sender and receiver

side. Special optimisation steps on the PCU are not discussed explicitly.

4.1 Controller Area Network

Currently CAN is the mostly used bus system within the automotive area. CAN was de-

veloped in the late 1980s and is standardised in ISO11898 or SAE J2284 [Ets06]. The

CAN protocol is required by law as the standardised communication protocol for the

onboard diagnostic (OBD) communication to emission related systems (refer to ISO

15765-4 etc). Because of the high cost pressure as discussed in chapter 1 this standard-

ised communication interface is used for the enhanced (not-emission related) diagnostics,

too. The requirement by law guarantees that this interface is available for each vehicle

and therefore it is typically used for software reprogramming based on a diagnostic proto-

col like UDS or KWP2000. Acceleration of the data transfer via CAN provides benefits for

all vehicles independent of the OEM, the class or model line.

4.1.1 CAN bus protocol according to ISO 11989

4.1.1.1 Introduction

CAN is specified as a bit-oriented field bus system with a maximum bit rate of 1 Mbit/s.

Mostly used bit rates are 500kbit/s, 250kbit/s and 125kbit/s. CAN provides a CSMA/CR30

bus access. W. Zimmermann and R. Schmidgall give an overview to the physical layer in

30 CSMA/CR: Carrier Sense Multiple Access / Collision Resolution.

Chapter 4 – Field bus system protocol stacks 55

detail [Zim10-7]. The data link layer [ISO11898-1] specifies the basic CAN PDU31

(“CAN frame”). Table 4.1-1 depicts an overview of the PDU layout in ascending bit order

and the resulting PDU length.

Table 4.1-1: CAN PDU length without stuff bits

Definition Length [bit] Length [bit] Unit

Start bit 1 1 bit

Arbitration field

(Identifier + RTR + SRR + IDE)

11 +1 29 + 3 bit

Control field 6 6 bit

Data field (Payload) 0 - 64 0 - 64 bit

CRC field 15 15 bit

Acknowledge field 3 3 bit

End of Frame 7 7 bit

Bus idle time ≥ 3 ≥ 3 bit

Sum 47 - 111 67 - 131 bit

A CAN specific issue is the receiver’s clock generation method for bit sampling purpose.

The CAN specification ISO11898 defines that only 5 bits are allowed to be equal. After

5 equal bits a signal level change must be integrated into the bit stream. These additional

bits are called stuffing bits.

The number of stuffing bits depends on the payload values and could be calculated by the

formula of T. Nolte et al [Nol01] and A. Burns et al [Bur07]:








 −+++
=

4

bit14nnnn
..0n DataIdleTrailerHeader

Stuff (4.1-1)

The net data rate can be calculated as follows:

gross_Data
StuffDataIdleTrailerHeader

Data
net_Data f

)nnnnn(

n
f

++++
= (4.1-2)

A CAN PDU with 11 bit CAN identifier and 64 bit payload can have 24 stuffing bits in

maximum.

31 PDU .. Protocol Data Unit

Chapter 4 – Field bus system protocol stacks 56

A CAN PDU with 29 bit CAN identifier and 64 bit payload can have 29 stuff bits.

Table 4.1-2 depicts the PDU length and the corresponding net data rate for different num-

bers of stuffing bits and gross data rates.

Table 4.1-2: Net data rate for CAN PDUs with 64 bit payload

11 bit CAN-ID
PDU Length 1000 kbit/s 500 kbit/s 250 kbit/s 125 kbit/s

111 bit kbit/s
(0 stuff bits) kByte/s
123 bit kbit/s
(12 stuff bits) kByte/s
135 bit kbit/s
(24 stuff bits) kByte/s

29 bit CAN-ID
PDU Length 1000 kbit/s 500 kbit/s 250 kbit/s 125 kbit/s

131 bit kbit/s
(0 stuff bits) kByte/s
145 bit kbit/s
(14 stuff bits) kByte/s
160 bit kbit/s
(29 stuff bits) kByte/s

Net Data Rate (fData_net)

unit

unit

16.3
118.5

14.8

72.1
9.0

65.0

50.0
6.3

122.1
15.3

61.1
7.6

55.2
6.9

110.3
13.8

400.0
50.0

200.0
25.0

100.0
12.5

244.3
30.5

220.7
27.6

488.5
61.1

441.4
55.2

65.0
474.1

59.3
237.0

29.6

32.5 8.1
59.3

7.4

Net Data Rate (fData_net)

576.6
72.1

520.3

144.1
18.0

130.1

288.3
36.0

260.2

4.1.1.2 Discussion

The data transfer rate depends a) on the basic bandwidth and b) on the ratio of PDU

payload and protocol overhead. The PDU payload varies in the specified boundaries

(0 bit ≤ payload ≤ 64 bit).

The protocol overhead varies on the CAN Identifier length (11 bit or 29 bit) and the result-

ing stuffing bits (0 bit ≤ stuffing bits ≤ 24 bit11bit ID or 29 bit29 bit ID) .

Bandwidth

Increasing bandwidth is an effective approach to accelerate the data transfer if the system

is not running on the upper limit of 1 MBit/s given by the ISO 11898 protocol. Doubling the

bandwidth will result in approximately a double of net data transfer rate. On the other hand

increasing bandwidth reduces the possible cable length [Zim2010-12]. This has to be

taken into account if a lower bit rate is in use for normal system’s communication especial-

ly for wide area distributed systems (e.g. trucks, planes, trains etc.). Several recommen-

dations are given by different standards (e.g. appendix of [ISO 11898-2],

Chapter 4 – Field bus system protocol stacks 57

[ISO 11898-3], [ISO 11898-5], [SAE J1939-11], [CiA32 102] etc.). If cable length provides

no restriction, then increasing the bandwidth provides a strong method to accelerate data

transfer.

PDU payload

According to formula 4.1-1 the maximum ratio between payload and protocol overhead is

given if the payload is configured to the maximum possible (specified) value. Hence, only

CAN PDUs with 64 bit payload (maximum value) shall be configured. For further analysis

and discussion only CAN PDUs with 64 bit payload are assumed.

CAN Identifier

The system performance is represented by the net data rate. For a CAN system running

on 100% bus load the net data rate is limited by ISO 11898 protocol and can be in maxi-

mum only 58.2% for PDUs with 11 bit identifier (no stuffing bits) or 50% for PDUs with 29

bit identifier (no stuffing bits). But these values are not realistic in practice because a

communication without any stuffing bits will usually not occur (e.g. a CAN identifier with 5

consecutive bits of an equal value (one or zero) will force a stuffing bit). No statistical

evaluation of a best practice value will be discussed because this value is significantly

influenced by the SDU value (payload of the CAN PDU) and this value is random from a

statistical point of view.

The CAN identifier length has a significant influence on the net data rate. Compared to a

PDU with 11 bit CAN identifier a PDU with 29 bit CAN identifier requires approximately

16,4%33 more bits to transmit the same data payload of 64 bit. The net data rate is re-

duced equally. Hence, best performance is possible only on 11 bit CAN identifier. CAN

uses the arbitration method to prevent PDU collisions. According to ISO 11898, if two or

more sender nodes initiate a data transmission concurrently, the CAN identifiers are

bit-wise analysed and compared by each sending node to identify the higher priority.

According to ISO 11898 protocol specification the priority is the higher, the lower the CAN

identifier is. This fact results in two basic requirements: 1) if reprogramming communica-

tion is in parallel to normal system‘s communication, the CAN identifier of the reprogram-

ming communication shall be low (to get high priority) or 2) normal system’s

communication shall be disabled. Within the reprogramming sequence according to

[HIS06-1], a diagnostic service is specified to disable normal communication of all

32 CiA .. CAN-in-Automation
33 16.36% (no stuffing bits); 16.41% (max number of stuffing bits)

Chapter 4 – Field bus system protocol stacks 58

currently not reprogrammed network nodes to guarantee full bandwidth for reprogramming

also for less priority CAN identifiers.

4.1.2 CAN-TP according to ISO 15765-2

For communication via CAN the ISO has specified a transport protocol in ISO 15765-2.

“This part of ISO 15765 specifies an unconfirmed network layer communication protocol

for the exchange of data between network nodes, e.g. from ECU to ECU, or between

external test equipment and an ECU. If the data to be transferred do not fit into a single

CAN frame, a segmentation method is provided” [ISO15765-2_1].

A CAN PDU provides in maximum 8 byte (64 bit) payload data (refer to table 3.2-1).

Hence, an ISO-15765-2-PDU is up to 8 bytes (64 bit) long. The protocol itself defines a

Protocol Control Information (PCI). The protocol distinguishes between four different PDU

types. A Single Frame (SF) is used if the service data unit (SDU) has equal or less than 7

data bytes. If the SDU is larger than 7 bytes the SDU has to be segmented into several

PDUs. A segmented data transfer starts with a First Frame (FF) and implements 2 byte

PCI and 6 byte payload data. All other SDU data are transmitted by Consecutive Frames

(CF). A CF provides 7 byte payload data.

The data flow is controlled by Flow Control frames (FC). A FC frame is always sent by the

initial receiver of the data transfer. The idea is to have a handshake mechanism imple-

mented to control the data flow on the established communication link by only two param-

eters (Minimum Separation Time (STmin) and Block Size (BS)). The receiver is able to

control data transfer by these parameters.

Figure 4.1-1 depicts an overview of the different PDU types and the PDU format.

Figure 4.1-1: ISO 15765-2 Protocol Data Units format

Chapter 4 – Field bus system protocol stacks 59

Figure 4.1-2 depicts both possible data transfer scenarios: unsegmented data transfer and

segmented data transfer:

Figure 4.1-2: ISO 15765-2 communication scenarios

Within a Single Frame (SF) up to 7 data bytes can be transferred via CAN. The maximum

size of an SDU is limited by ISO 15765-2 to 4095 byte because the data length (DL) field

of a First Frame (FF) is 12 bit (212 -1 = 4095).

Unsegmented vs. segmented data transfer

It seems that an unsegmented transmission provides higher performance because no

additional Flow Control (FC) PDUs have to be transmitted. This is correct if only one

direction is analysed. For software reprogramming it has to be taken into account that the

upper layer reprogramming protocol (e.g. UDS, KWP2000) requires a request – response

behaviour. As depicted in figure 4.1-3 after each request a corresponding response PDU

has to be sent.

The number of required PDUs is calculated by

2
d

d
n

Payload_PDU

SDU
dTransferunsegmente_PDU ⋅












= (4.1-3)

To transfer 4095 bytes in unsegmented mode 1170 PDUs (Single Frames) are necessary.

PDUs11702
7

4095
n ferunsegTrans_PDUs =⋅







=

Chapter 4 – Field bus system protocol stacks 60

Figure 4.1-3: Request / response communication scenarios based on ISO 15765-2

To transmit the same number of data in segmented mode, a smaller number of PDUs is

necessary. The number of PDUs can be calculated according to the protocol behaviour of

ISO 15765-2:

sponseReFC
CF_PL

FF_PLSDU
FFrsegTransfe_PDUs nn

d

dd
nn ++











 −
+= (4.1-4)

It is assumed that only one Flow Control PDU (FC) is configured (Block size=034). In that

case a data transfer of 4095 byte requires 1 First Frame (FF), 1 Flow Control (FC),

585 Consecutive Frames (CF) and 1 response Single Frame (SF) PDU. This results in

588 PDUs according to formula 4.1-4.

PDUs58811
7

64095
1n rsegTransfe_PDUs =++







 −+=

Hence, focus for further analysis to accelerate data transfer via CAN will be on segmented

data transfer only.

Impact of processing delays

The communication link performance is also influenced by processing delays because of

software and hardware runtime. Both, sender and receiver nodes require processing time

for the protocol handling. For the data transmission performance of the transport layer

34 Block Size (BS) equal to zero requires no additional FlowControl PDU (refer to ISO 15765-2).

Chapter 4 – Field bus system protocol stacks 61

protocol according to ISO 15765-2 the two main influencing delay times are N_Cs and

N_Br (refer to ISO15765-2). Both parameters depend on the implementation and there-

fore are defined to zero for the theoretical analysis in principle. The impact of those delay

times is discussed in section 4.1.2.4.

4.1.2.1 Impact of Block Size parameter

The flow control parameter Block Size (BS) defines the number of Consecutive Frame

(CF) PDUs that can be received by a receiver node in one block within a segmented data

transmission. After reception of that block a Flow Control (FC) PDU has to be sent by the

initial receiver node to signal the current flow state and to continue data transfer.

With focus on data transfer acceleration the Block Size (BS) represents an additional

number of Flow Control (FC) PDUs (refer to figure 4.1-3). Hence, the BS parameter has a

direct impact on the total number of TP-PDUs required to transfer the requested SDU and

influences the data transfer rate. Below several formulas have been developed to calcu-

late the total amount of PDUs and the corresponding transfer time. The total number of

PDUs is calculated as depicted by the developed formula 4.1-5:

∑ ∑+= lPDUFlowControDataPDUPDUs nnn (4.1-5)

According to the definitions in ISO 15765-2 it has to be distinguished between two differ-

ent cases to calculate the total amount of PDUs:

a) Block Size equal to zero (BS=0) and

b) Block Size between 1 and 25535 (1 ≤ BS ≤ 255).

Case 1: BS = 0

ISO 15765-2 defines that “the BS parameter value zero (0) shall be used to indicate to the

sender that no more FC PDUs shall be sent during the transmission of the segmented

message. The sending network layer entity shall send all remaining consecutive frames

without any stop for further FC PDUs from the receiving network layer entity”

[ISO15765-2_2]. Hence, after the initial FF PDU only 1 FC PDU is required before the

others are transmitted as Consecutive Frame (CF) PDUs. The total number of PDUs is

calculated as depicted by formula 4.1-6.











 −
+=

CF_PL

FF_PLSDU
PDUs d

dd
2n (4.1-6)

35 The parameter Block Size (BS) is defined as an 8 bit value in ISO 15765-2.

Chapter 4 – Field bus system protocol stacks 62

Case 2: 1 ≤ BS ≤ 255

A value of 1 ≤ BS ≤ 255 indicates that the initial sender shall send the corresponding

number of Consecutive Frames and shall then wait for a next Flow Control PDU

[ISO15765-2_2]. Formula 4.1-7 depicts a fourth summand that represents the number of

additional Flow Control PDUs depending on 1) the total number of Consecutive Frame

(CF) PDUs which are required to transmit the SDU data and 2) the Block Size (BS).

() () 1
BS

d

dd

1
d

dd
1n

CF_PL

FF_PLSDU

FC
CF_PL

FF_PLSDU
FFPDUs −































 −

++










 −
+=































 −

+










 −
+=

BS

d

dd

d

dd
1n

CF_PL

FF_PLSDU

CF_PL

FF_PLSDU
PDUs (4.1-7)

For the first theoretical research an ideal system with no additional delays (system

runtime, software runtime etc.) during the protocol communication handling is assumed.

The net data transfer rate fData_net is calculated as depicted below:

gross_Data
11898ISO_PDUPDUs

215765ISO_SDU
net_Data f

dn

d
f

⋅
= −

 (4.1-8)

ISO 15765-2 also distinguishes between four different address modes for communication

via CAN [ISO15765-2_3]. The address mode has an impact on the PDU structure and on

the communication performance, too. The different parameters for the analysis of the four

cases are specified in table 4.1-3.

Table 4.1-3: Parameter definition for block size analysis

normal mixed normal mixed
4095 4095 4095 4095 byte

32760 32760 32760 32760 bit
PDU length ISO 11898
dPDU_ISO11989

123 123 145 145 bit

6 5 6 5 byte
48 40 48 40 bit

7 6 7 6 byte
56 48 56 48 bit

unit

SDU length
(data to transmit)

Payload FirstFrame (FF)
d PL_FF

Payload ConsecutiveFrame (CF)
d PL_CF

11 bit 29 bit
Parameter Adress mode [ISO 15765-2_3]

Chapter 4 – Field bus system protocol stacks 63

The data transfer rate is analysed for a bandwidth of 1.000 kbit/s, 500 kbit/s, 250 kbit/s

and 125 kbit/s. These values are the most important gross data rates within the automo-

tive area. 1.000 kbit/s is the maximum value defined for CAN’s physical layer according to

[ISO11898-1]. Table 4.1-4 depicts the calculated net data transfer values according to the

different address modes (CAN identifier lengths and normal/mixed mode).

Table 4.1-4: fData_Net max for different bandwidths

BlockSize 0 1 2 8 18 32 40

Net Data Rate [kBit/s] 439.5 220.3 293.5 390.9 416.8 426.4 429.3
Net Data Rate [kByte/s] 54.9 27.5 36.7 48.9 52.1 53.3 53.7
Net Data Rate [kBit/s] 377.2 189.0 252.0 335.5 357.8 366.0 368.0
Net Data Rate [kByte/s] 47.1 23.6 31.5 41.9 44.7 45.7 46.0
Net Data Rate [kBit/s] 375.9 188.4 251.0 334.3 356.4 364.7 367.1
Net Data Rate [kByte/s] 47.0 23.6 31.4 41.8 44.6 45.6 45.9
Net Data Rate [kBit/s] 322.6 161.6 215.5 286.9 306.0 313.0 314.7
Net Data Rate [kByte/s] 40.3 20.2 26.9 35.9 38.3 39.1 39.3

Net Data Rate [kBit/s] 219.8 110.2 146.8 195.5 208.4 213.2 214.6
Net Data Rate [kByte/s] 27.5 13.8 18.3 24.4 26.1 26.7 26.8
Net Data Rate [kBit/s] 188.6 94.5 126.0 167.8 178.9 183.0 184.0
Net Data Rate [kByte/s] 23.6 11.8 15.7 21.0 22.4 22.9 23.0
Net Data Rate [kBit/s] 187.9 94.2 125.5 167.1 178.2 182.3 183.6
Net Data Rate [kByte/s] 23.5 11.8 15.7 20.9 22.3 22.8 22.9
Net Data Rate [kBit/s] 161.3 80.8 107.7 143.5 153.0 156.5 157.4
Net Data Rate [kByte/s] 20.2 10.1 13.5 17.9 19.1 19.6 19.7

Net Data Rate [kBit/s] 109.9 55.1 73.4 97.7 104.2 106.6 107.3
Net Data Rate [kByte/s] 13.7 6.9 9.2 12.2 13.0 13.3 13.4
Net Data Rate [kBit/s] 94.3 47.3 63.0 83.9 89.5 91.5 92.0
Net Data Rate [kByte/s] 11.8 5.9 7.9 10.5 11.2 11.4 11.5
Net Data Rate [kBit/s] 94.0 47.1 62.8 83.6 89.1 91.2 91.8
Net Data Rate [kByte/s] 11.7 5.9 7.8 10.4 11.1 11.4 11.5
Net Data Rate [kBit/s] 80.6 40.4 53.9 71.7 76.5 78.2 78.7
Net Data Rate [kByte/s] 10.1 5.1 6.7 9.0 9.6 9.8 9.8

Net Data Rate [kBit/s] 54.9 27.5 36.7 48.9 52.1 53.3 53.7
Net Data Rate [kByte/s] 6.9 3.4 4.6 6.1 6.5 6.7 6.7
Net Data Rate [kBit/s] 47.1 23.6 31.5 41.9 44.7 45.7 46.0
Net Data Rate [kByte/s] 5.9 3.0 3.9 5.2 5.6 5.7 5.8
Net Data Rate [kBit/s] 47.0 23.6 31.4 41.8 44.6 45.6 45.9
Net Data Rate [kByte/s] 5.9 2.9 3.9 5.2 5.6 5.7 5.7
Net Data Rate [kBit/s] 40.3 20.2 26.9 35.9 38.3 39.1 39.3
Net Data Rate [kByte/s] 5.0 2.5 3.4 4.5 4.8 4.9 4.9

11 bit ID

29 bit ID Normal Address

Mixed Address

29 bit ID Normal Address

Mixed Address

11 bit ID

29 bit ID

11 bit ID

11 bit ID

29 bit ID

Mixed Address

Normal Address

Mixed Address

Normal Address

Mixed Address

500 kBit/s

250 kBit/s

125 kBit/s

Normal Address

Normal Address

Mixed Address

Normal Address

Mixed Address

1000 kBit/s
Address Mode

Normal Address

Mixed Address

Figure 4.1-4 and figure 4.1-5 depict the net data transfer rate fData_net for different block

sizes. Of course, the parameter Block Size (BS) is a discrete value. Hence, only the calcu-

lated (discrete) values shall be plotted within the diagrams. On the other hand the

tendency of the BS curve is importand and therefore a line between the discrete meas-

urement points was plotted, too.

Chapter 4 – Field bus system protocol stacks 64

Impact of ISO 15765-2 Flow Control parameter Blocksize [BS] to th enet data rate
(11 bit CAN Identifier)

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Block size [BS]

n
et

 d
at

a
ra

te
 [

kb
it

/s
]

1000 kbit/s - Normal Address
1000 kbit/s - Mixed Address
 500 kbit/s - Normal Address
 500 kbit/s - Mixed Address
 250 kbit/s - Normal Address
 250 kbit/s - Mixed Address
 125 kbit/s - Normal Address
 125 kbit/s - Mixed Address

Figure 4.1-4: Block size analysis for 11 bit CAN identifier

Impact of ISO 15765-2 Flow Control parameter Blocksize [BS] to th enet data rate
(29 bit CAN Identifier)

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Block size [BS]

n
et

 d
at

a
ra

te
 [

kb
it

/s
]

1000 kbit/s - Normal Address

1000 kbit/s - Mixed Address
 500 kbit/s - Normal Address

 500 kbit/s - Mixed Address
 250 kbit/s - Normal Address

 250 kbit/s - Mixed Address
 125 kbit/s - Normal Address
 125 kbit/s - Mixed Address

Figure 4.1-5: Block size analysis for 29 bit CAN identifier

Discussion

The ISO 15765-2 transport protocol’s flow control parameter Block Size (BS) has a signifi-

cant impact to the net data rate. The tendencies of all diagrams are similar. The block size

configuration generates at least 1 additional Flow Control (FC) PDU without any payload.

Chapter 4 – Field bus system protocol stacks 65

In worst case (BS=1) a Flow Control PDU without any payload data is required after each

Consecutive Frame (CF). This results in a decreasing net data transfer performance of

50.1% because the total number of PDUs to transmit the payload is doubled. If PCU’s or

ECU’s processing time delay (e.g. system or software runtime etc.) is also taken into

account, the net data rate reduction is additionally increasing (refer to case study).

The system performance depends significantly on Block Size parameter values in the

range of 1 ≤ BS ≤ 12 PDUs. A Block Size value more than 12 results in a saturation line.

For a Block Size value more than 15 the differences between the calculation values are

less than 0.4%. The maximum Block Size value of 255 results in only 2 additional Flow

Control PDUs.

The Block Size configuration depends directly on the system’s buffer resources. If enough

buffer (buffer size = SDUmax) is available, a block size equal to 0 is possible. But here it

has also to be distinguished for which scenario data transfer acceleration shall be config-

ured. If a programming control unit (PCU) has a direct link to the ECU, a block size BS = 0

may be possible. If the PDU communicates via network, then the gateway’s buffer re-

sources could be a reason for controlling data flow via Block Size parameter, especially if

several communication links are active in parallel. In that case a gateway could work

nearly its RAM resource boundaries, and flow control based on Block Size is necessary to

limit the maximum data transfer per block to protect against buffer overrun. As a result a

good ratio between buffer resources and performance limitation is necessary and has to

be taken into account during system or network design.

4.1.2.2 Impact of Minimum Separation Time parameter

ISO 15765-2 specifies a second Flow Control parameter that has an impact on the data

transfer rate: The minimum Separation Time (STmin) defines the minimum delay between

two Consecutive Frames (CF) in a segmented data transfer (refer to figure 4.1-2). The

value can vary in the range of 0 ≤ STmin ≤ 127 ms [ISO15765-2_4].

Of course, with focus on data transfer acceleration and the basic aim to generate 100%

bus load any delays without any data transfer should be eliminated or at least the delay

shall be minimised. Hence, this parameter shall be set to zero for the best data transfer

performance. If STmin is set to zero some other system requirements have to be fulfilled:

1) a receiver must be able to receive data with no inter frame delay and 2) a sender must

be able to perform such a data transmission. STmin = 0 means that the sender shall send

as fast as possible. Therefore it is required that STminreceiver ≤ STminsender to guarantee a

stable connection link.

Chapter 4 – Field bus system protocol stacks 66

The time tSTmin is an additional time delay that enlarges the required time for the transmis-

sion of an SDU via protocol. To calculate the possible data transfer rate according to

parameter STmin, formula 4.1-9 was developed from formula 4.1-8.

Formula 4.1-8:

gross_Data
11898ISO_PDUPDUs

215765ISO_SDU
net_Data f

dn

d
f

⋅
= −

with

gross_Data
bit f

1
t =

() mintotalSTbit11898ISO_PDUPDUs

215765ISO_SDU
net_Data ttdn

d
f

+⋅⋅
= −

 (4.1-9)

As depicted in figure 4.1-2 after the last Consecutive Frame (CF) of a block no further

separation time (STmin) occurs because now the sender waits either for a Flow Control

(FC) PDU or for transmission has been finalised. If the Block Size (BS) is equal to zero

(BS=0), no additional Flow Control (FC) PDU is required. In that case (BS = 0) the overall

additional time tSTmin is calculated as

() minSTPDU_CFmintotalST t1nt ⋅−= (4.1-10)

If 1 ≤ BS ≤ 255, on each end of a block no separation time (STmin) occurs because a

Flow Control (FC) PDU is required with the exception of the last block. This results in

minST
PDU_CF

PDU_CFmintotalST t11
BS

n
nt ⋅













−








−−= (4.1-11)

The total data transfer rate is now calculated as depicted in formula 4.1-12 and 4.1-13:

For BS = 0:

() () minSTPDU_CFbit11898ISO_PDUPDUs

215765ISO_SDU
net_Data t1ntdn

d
f

⋅−+⋅⋅
= − (4.1-12)

For 1 ≤ BS ≤ 255:

() minST
PDU_CF

PDU_CFbit11898ISO_PDUPDUs

215765ISO_SDU
net_Data

t11
BS

n
ntdn

d
f

⋅













−








−−+⋅⋅

= − (4.1-13)

Chapter 4 – Field bus system protocol stacks 67

The parameter STmin is only represented in milliseconds (ms) in the range of 1 to 127

($01 - $7F). For $F1 to $F9 the value has to be interpreted as microseconds (µs) in a

division of 100µs [ISO15765-2_4]. The value of tSTmin is calculated by:

() 9F$minST1F$µs1000F$minSTt minST ≤≤⋅−= (4.1-14)

Figure 4.1-6 depicts the graphical analysis for the minimum separation time parameter

STmin. It shows that the net data transfer rate is decreasing significantly, if STmin is not

equal to zero.

STmin analysis

0
50

100
150
200
250
300
350
400
450
500

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

STmin [ms]

n
et

 d
at

a
tr

an
sf

er
 r

at
e

[k
b

it
/s

]

1000 kBit/s

500 kBit/s

250 kBit/s

125 kBit/s

Figure 4.1-6: Data transfer rate depending on STmin

Figure 4.1-6 shows also that the main effects occur in a range of STmin ≤ 2ms. For

STmin > 2 ms the system approximates asymptotically to 0. Figure 4.1-7 depicts the

range from 0 ≤ STmin ≤ 1 ms in more detail.

STmin Analysis

0

100

200

300

400

500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.7 0.9 1

Stmin [ms]

n
et

 d
at

a
tr

an
sf

er
 r

at
e

[k
b

it
/s

] 1000 kBit/s

500 kBit/s

250 kBit/s

125 kBit/s

Figure 4.1-7: Data transfer rate depending on STmin – detailed diagram

Chapter 4 – Field bus system protocol stacks 68

Discussion

Basically any separation time will decrease the data transfer performance. Within that

delay no data transfer will be performed. Hence, the first finding to accelerate data

transfer is to eliminate any delays by ISO 15765-2 protocol and configure the STmin

parameter equal or at least as close as possible to zero.

Figure 4.1-6 and figure 4.1-7 show that the net data rate impact of increasing STmin

values is higher the faster the basic bus system data rate is. The explanation is that the

faster the basic bus system is the more PDUs can actually be transmitted during an

STmin time window. Any STmin delay reduces the number of transmitted PDUs within

that time and as a result the net data transfer rate will decrease significantly, too.

4.1.2.3 Comparative impact of STmin and BS

Figure 4.1-8 compares the impact of the Flow Control parameters STmin and Block Size

(BS)36. The Flow Control parameter minimum Separation Time (STmin) has a significantly

higher impact on the net data transfer rate than the Flow Control parameter Block Size

(BS). The BS parameter represents the receiver’s buffer (RAM) resources whereas STmin

represents receiver’s system performance. Buffer (RAM) resources for buffering of at least

8 CAN PDUs are typically available. A flashloader has normally access to the complete

ECU RAM because application software is not active and requires no RAM resources.

Hence, a Block Size equal to zero (BS = 0) is possible if all other network nodes (gate-

ways) on that communication link provide equal buffer resources.

Impact comparison of minimum Separation Time
(STmin) and Block Size (BS)

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

STmin [ms] and BS [PDU]

n
et

 d
at

a
ra

te

[k
B

it
/s

]

STmin for BS=0 on CAN(500kBit/s)

BS for STmin=0 on CAN(500kBit/s)

Figure 4.1-8: Comparison of impact of STmin and BS

36 Of course, the parameter Block Size (BS) is a discrete value. Hence, only the calculated (dis-
crete) values shall be plotted within the diagrams. On the other hand the tendency of the BS curve
is importand and therefore it has been dicided to plott a line between the discrete measurement
points, too.

Chapter 4 – Field bus system protocol stacks 69

A minimum Separation Time (STmin) greater than 0.1 ms reduces the data transfer per-

formance that significantly, that all other parameters are negligible. Hence, it must be

possible to design an embedded network which is able to communicate with STmin = 0

via CAN and provides buffer resources for at least 12 or more CAN PDUs.

4.1.2.4 Processing delays

As discussed above additional delays based on the hardware or software runtime for

protocol processing have to be taken into account. Based on formula 4.1-9 the additional

processing delay has to be included in the transport layer performance calculation model.

() gsinocesProtocolPrmintotalSTbit11898ISO_PDUPDUs

215765ISO_SDU
net_Data tttdn

d
f

++⋅⋅
= −

Figure 4.1-3 depicts that N_Br and N_Cs are the software processing timings of flow

control handling. Hence, both delays occur if a Flow Control (FC) PDU is processed. The

number of necessary Flow Control (FC) PDUs is calculated by a part of formula 4.1-7:































 −

=
BS

d

dd

n
CF_PL

FF_PLSDU

PDUs_FC

The processing delay is calculated as

() ()Cs_NBr_N
CF_PL

FF_PLSDU

Cs_NBr_NPDUs_FCgDelaysinproces tt
BS

d

dd

ttnt +































 −

=+= (4.1-15)

The final formula to calculate data transfer performance is:

For BS = 0:

() () Cs_NBr_NminSTPDU_CFbit11898ISO_PDUPDUs

215765ISO_SDU
net_Data ttt1ntdn

d
f

++⋅−+⋅⋅
= − (4.1-16)

For 1 ≤ BS ≤ 255:

() ()Cs_NBr_N
PDU_CF

minST
PDU_CF

PDU_CFbit11898ISO_PDUPDUs

215765ISO_SDU
net_Data

tt
BS

n
t11

BS

n
ntdn

d
f

+







+⋅














−








−−+⋅⋅

= −

 (4.1-17)

Chapter 4 – Field bus system protocol stacks 70

4.1.3 Complete reprogramming process based on UDS

As described in chapter 2, the ISO 14229 - USD protocol is the currently most common

diagnostic protocol. Reprogramming of the ECU’s application software is controlled by this

standard. The communication is based on a diagnostic request – diagnostic response

behaviour. Due to the UDS protocol all application data which shall be transferred are

segmented to smaller partitions according to the underlying bus system transport layer

protocol’s maximum value. In case of the CAN bus system and the transport layer proto-

col according to ISO 15765-2 this value is limited to 4095 byte maximum.

To calculate the total download time all the PCU to ECU request times, the microcontrol-

ler’s physical reprogramming times, the ECU to PCU response times and the PCU pro-

cessing time for UDS have to be added.

∑∑∑∑ +++= gsinPCUprocessponseRegminogramPrPhysicalquestReDownload ttttt

Download time (tDL)for a segmented request and a unsegmented response

Based on formula 4.1-17 the delays for tPhysicalProgramming, tResponse and tPCUProcessing have to be

added.

()

()
() ocessPr_PCUbit11898ISO_PDUogPrPhys

Cs_NBr_N
PDU_CF

minST
PDU_CF

PDU_CFbit11898ISO_PDUPDUs

DL

ttd1t

tt
BS

n

t11
BS

n
ntdn

t

+⋅⋅+

+























+








+⋅













−








−−+⋅⋅

=
(4.1-18)

If more data shall be transferred and reprogrammed than can be transmitted by a single

segmented data transfer (CAN: max 4095 byte) the download sequence is repeated until

all data are transmitted to the ECU. The request time is calculated as.

)n(DL

1nx

1x
)x(DLDL ttt += ∑

−=

=
 (4.1-19)

It has to be distinguished between all previously transmitted downloads and the last down-

load, because the last download might have less than the maximum possible data to

transmit. The number of repetitions (nDL) is calculated by:












=

−215765Iso_SDU

14229ISO_PDU
DL d

d
n

Chapter 4 – Field bus system protocol stacks 71

The final request’s SDU size is calculated by:

215765Iso_SDU14229ISO_PDUl)n(SDU dmoddd −= (4.1-20)

Hence the total download time via CAN and ISO 15765-2 is calculated by:

()

()

()

()

()

()




































⋅⋅

+

++








+⋅













−








−−

+⋅⋅

+





































+⋅⋅

+

++








+⋅













−








−−

+⋅⋅

⋅











=

−

bit11898ISO_PDU

)n(ogPrPhys

Cs_NBr_N
)n(PDU_CF

minST
)n(PDU_CF

)n(PDU_CF

bit11898ISO_PDU)n(PDUs

ocessPr_PCU

bit11898ISO_PDU

)x(ogPrPhys

Cs_NBr_N
)x(PDU_CF

minST
)x(PDU_CF

)x(PDU_CF

bit11898ISO_PDU)x(PDUs

215765Iso_SDU

14229ISO_PDU
DL

td1

t

tt
BS

n

t11
BS

n
n

tdn

t

td1

t

tt
BS

n

t11
BS

n
n

tdn

d

d
t

 (4.1-21)

Note that after the final response no additional PCU processing time is required. The

formula 4.1-21 depicts also, that the data transfer rate will decrease once more because

of the additional delays tPhysicalProgramming, tResponse and tPCUProcessing. The programming time

can be compensated by the double buffered date transfer approach of chapter 3.

4.1.4 Conclusion

The analysis ahead provides several impact parameters for a fast data transfer via a CAN

protocol stack based on ISO11898 and ISO15765-2. The analysis furthermore depicts

that a singular optimisation of one parameter provides under some circumstances no

benefit at all. To reach the optimum data transfer rate an optimised parameter set for all

corresponding layers and protocols is necessary.

Increasing baud rate

Increasing the baud rate is a good approach to accelerate data transfer but if ISO 15765-2

Flow Control parameter STmin is greater than 0.4 ms, the increased bandwidth has no

impact on the overall performance. If ISO 15765-2 Flow Control parameter Block Size

Chapter 4 – Field bus system protocol stacks 72

(BS) is less than 12 a higher CAN baud rate will provide only small effects. Finally, the

maximum possible bandwidth depends also on the system’s cable length, and the sys-

tem’s dimensions have to be taken into account.

The different system delays have an impact on the total data transfer rate. The longer

those delays are the smaller the effect of increasing bandwidth is. This has to be taken

into account.

CAN identifier and stuffing bits

The data transfer performance depends on the CAN identifier size. A 29 bit CAN identifier

PDU requires 18+2 bit more protocol overhead compared to 11 bit identifier PDU (≈ 15%).

CAN identifier shall be configured to 11 bit if the number of possible addresses for the

network is sufficient.

The stuffing bit mechanism has a big impact on the total PDU length but cannot be calcu-

lated because it depends also on the payload. Hence, for further discussion unique CAN

PDUs are assumed with a total PDU length of 123 bit37. In that case the net data rate is

only 52.03%.

CAN identifier priority, arbitration and busload

The CAN identifier priority has an impact on the data transfer rate if software reprogram-

ming communication is processed in parallel to normal system’s communication. It de-

pends at least on the total bus load and the identifier priority. To solve that problem it shall

be possible to switch all other communication nodes into a silent mode38. In that case the

CAN identifier priority is not important for communication performance.

The critical evaluation of the feasibility to generate 100% busload shows that several

commercial CAN communication interfaces (cards) are not able to generate that maxi-

mum busload for the upper bandwidths (500 kBit/s or 1.000 kBit/s). The real net data

transfer rate will be less than the theoretical value because the PCU’s CAN controller

hardware is not able to transmit CAN PDUs with only 3 bit length inter-frame time (bus idle

time). An idle time of less than 15 bit times is a realistic value. For that case the net band-

width will decrease between 8.8% and 10.8% depending on the number of stuffing bits. Of

course, if the ECU is part of a network this is also required for gateways.

37 123 bit is the average of a PDU (11 bit CAN identifier) without stuffing bits (111 bit) and a PDU
with maximum stuff bits (135 bit).
38 Wihin ISO 14229 – UDS protocol this is possible by the diagnostic service $28 – Communication
Control (refer to [ISO 14229])

Chapter 4 – Field bus system protocol stacks 73

Transport protocol

The impact of the transport protocol is significant. Optimisation effects on lower layers will

be inoperative if the transport layer provides communication delays (e.g. separation times

etc.). Low resources (e.g. buffer) also reduce the communication performance, because

additional Flow Control PDUs are necessary to control the data flow. The impacts of the

parameters minimum Separation Time (STmin) and Block Size (BS) configuration are

more important than the initial baud rate on the physical layer.

Best results for communication via CAN are only possible if all above discussed parame-

ters and their influences are taken into account during communication system’s design.

4.2 FlexRay

FlexRay is currently the mostly used time triggered protocol within the automotive area.

Within this chapter FlexRay is introduced and the FlexRay protocol stack

(layer 1 - layer 4) is analysed with focus on software reprogramming purpose. The possi-

bilities to accelerate the data transfer via FlexRay are discussed as well as the main influ-

encing parameters for the net data transfer rate.

4.2.1 FlexRay (FlexRay Specification 2.1)

“The FlexRay Communications System is a robust, scalable, deterministic, and fault-

tolerant digital serial bus system designed for use in automotive applications” [Fle11].

FlexRay is a time triggered protocol specified by the FlexRay Consortium39. The protocol

is specified for a bandwidth up to 10 Mbit/s. The FlexRay Communications System Speci-

fication 2.1 was released in 2005. The revision 3.0 is currently standardised within the

ISO. W. Zimmermann and R. Schmidgall provide a technical introduction in [Zim10-9]. M.

Rausch also gives an introduction to FlexRay with detailed information also on hardware

implementations and synchronisation mechanisms [Rau07].

Time triggered mechanism

Within a time triggered communication protocol data transmission is only possible within a

well defined time slot. Only one exclusive sender is allowed to transmit data within a time

slot. If two senders try to get concurrent access to the network within the same slot, a

communication error occurs (data collision). To prevent the network from data collisions a

39 “FlexRay Consortium: A cooperation of leading companies in the automotive industry, from the
year 2000 to the year 2009. The FlexRay Consortium has concluded its work with the finalization of
the FlexRay Communications System Specifications Version 3.0” [Fle11].

Chapter 4 – Field bus system protocol stacks 74

network wide common communication plan (communication schedule) defines the

sender-to-slot arrangement.

A precondition for time triggered communication systems is a network wide common

clock. FlexRay provides mechanisms to synchronise this clock on each node via the

network.

A FlexRay communication slot is uniquely defined by its slot identification number (slot

ID). Only if the defined slot ID occurs, a node is allowed to transmit a PDU whereas a

transmitted PDU can be received by all connected network nodes.

FlexRay Schedule

Figure 4.2-1 depicts an abstract FlexRay schedule. The FlexRay schedule is divided into

four sub-segments: 1) a static segment, 2) a dynamic segment, 3) a symbol window seg-

ment (SW) and 4) a network idle time (NIT).

Figure 4.2-1: FlexRay Schedule

The static and the dynamic segments are defined for data communication. The symbol

window segment (SW) is optional configurable and is for network function monitoring. The

network idle time segment (NIT) is reserved for the nodes to calculate and applied clock

correction.

All segments are transmitted within one communication cycle. The complete schedule

defines 64 consecutive communication cycles.

Data transfer is only possible within the static and the dynamic segments. Hence, in the

following sections and figures only these segments are illustrated. The SW segment and

Chapter 4 – Field bus system protocol stacks 75

the NIT segment are not used for data transfer and have therefore not been taken into

account for data transfer acceleration.

Within the static segment a PDU shall be sent within each slot. The idea behind the static

segment is to provide a deterministic communication system with equidistant data trans-

mission.

Within the dynamic segment a PDU is only sent if data for transmission are available. If no

transmission shall be processed the sender node transmits no PDU and after a defined

timeout all connected network nodes will switch to the next slot ID. This segment is basi-

cally defined for event triggered communication as given within the CAN protocol (refer to

section 4.1).

Static and dynamic segments are subdivided into small communication sections (slots).

Within each slot a FlexRay PDU can be transmitted whereas each slot within the global

communication schedule is exclusively allocated to exactly one sender node.

FlexRay PDU

All FlexRay PDUs have the same structure and are able to transmit up to 254 byte pay-

load. The PDU structure in detail is given in [Zim10-10] and in [Fle05]. Table 4.2-1 depicts

the different parts of a FlexRay PDU for static and dynamic segment’s communication and

their corresponding length.

Table 4.2-1: FlexRay PDU length

Definition length unit

Header 40 bit

Trailer 24 bit

Transmission Start Sequence TSS 3..15 bit

Frame Start Sequence FSS 1 bit

Frame End Sequence FES 2 bit

Payload 0..2032 bit

Sum 70 .. 2104 bit

The total length on a FlexRay PDU is calculated as [Zim10-9]:

FESFSSTSSPayloadTrailerHeaderPDUFR nnn)nnn(
8

10
n +++++=−

Chapter 4 – Field bus system protocol stacks 76

The factor 10/8 is necessary because the physical layer insert a 2 bit long Byte Start

Sequence (BSS) between each byte of the FlexRay PDU. For the following discussions in

summary 10 bit are assumed for nTSS, nFSS and nFES. Hence, the calculation for the

FlexRay PDU length is:

10)n64(
8

10
n PayloadPDUFR ++=− (4.2-1)

Table 4.2-2 depicts the length of a FlexRay PDU depending on the payload size (nPayload)

and the corresponding PDU runtime TFR-PDU within a 10 MBit/s FlexRay network.

Table 4.2-2: FlexRay PDU length and PDU runtime for fbit=10 MBit/s

Payload per PDU

(nPayload)

FlexRay PDU Length

(nFR-PDU)

FlexRay PDU runtime

(TFR-PDU)

8 Byte 64 bit 170 bit 17 µs
16 Byte 128 bit 250 bit 25 µs
32 Byte 256 bit 410 bit 41 µs
42 Byte 336 bit 510 bit 51 µs
64 Byte 512 bit 730 bit 73 µs

128 Byte 1024 bit 1370 bit 137 µs
254 Byte 2048 bit 2630 bit 263 µs

FlexRay network communication and addressing mode

The FlexRay addressing mechanism is the slot/cycle assignment within the common

FlexRay schedule. As described above a sender is only allowed to transmit data if the

corresponding slot ID occurs within the correct cycle number. Each ECU knows the

slot/cycle combination of the relevant senders and receives the data within these slots. No

additional addressing mechanism is defined within the FlexRay specification 2.1. As a

result of that mechanism, the bandwidth for a single communication link is limited. For

each communication link slots have to be allocated for the sender node, which are not

available for another communication link, e.g. for reprogramming communication between

a PCU and the corresponding ECU. If several ECUs are connected to the FlexRay net-

work, several slots have to be allocated for PCU’s reprogramming communication link.

Hence, the maximum possible net data rate for the communication between the PCU and

the ECU depends significantly on the number of allocated slots for that link within the

global schedule.

Chapter 4 – Field bus system protocol stacks 77

FlexRay net data transfer rate

As depicted in Figure 4.2-1 the available or usable bandwidth depends on the overall

system schedule and the number of slots allocated for the data transfer link of a network

node. A formula was developed to calculate the net data transfer rate:

CycleTime

63x

0x
Cycle_Payload

net_Data t64

n
f

x

⋅
=
∑
=

= (4.2-2)

If the FR-PDUs have the same length the formula can be simplified:

petitionRePduCycleCycleTime

ePduPerCyclFRPayload
net_Data rt

xn
f

⋅
⋅

= −
 (4.2-3)

FlexRay distinguishes between the static and the dynamic segment. Hence the formula

above can be used only within strict timing boundaries:

(1) For communication within the static segment:

entstaticSegmePduPerCyclFR
Bit

PDUFR tx
f

n
<⋅ −

− (4.2-4)

(2) For communication within the dynamic segment:

mentdynamicSegePduPerCyclFR
Bit

PDUFR tx
f

n <⋅ −
− (4.2-5)

Summary

The FlexRay schedule definition has a significant impact on the performance of the differ-

ent communication links. With focus on software reprogramming best performance occurs

if 100% busload on a single communication link between the PCU and an ECU is given.

Unfortunately, a slot can be allocated only once for exactly one sender, and the number of

slots is limited. That means an allocated slot for another link is not usable for the software

reprogramming communication. In contrast to the CAN bus system where additional CAN

nodes can be added to an existing network without high effort, an additional FlexRay node

can only be included if the communication behaviour is considered within the global

schedule. If the slots for data transmission are not allocated at schedule design time, the

introduction of a new FlexRay node is only possible if also a new schedule is introduced

(at least for the corresponding communication partners). That means that each communi-

cation link performance is defined at schedule definition time and can not be changed

within the finalised schedule.

Chapter 4 – Field bus system protocol stacks 78

Therefore two different questions are discussed:

1.) What is the maximum performance of a FlexRay communication link and what are

the main influencing parameters?

2.) Are there possibilities to optimise a communication link performance within an

existing system?

4.2.1.1 Communication performance

With focus on software reprogramming the crucial question is how to generate the maxi-

mum net data rate on a communication link. Formula 4.2-3 provides four possible ap-

proaches to accelerate data transfer and increase the net data rate:

1) Configure a cycle repetition equal to one for all PDUs

2) Increase FlexRay-PDU’s payload

3) Increase the number of PDUs per cycle

4) Decrease the cycle time

Cycle Repetition

As depicted in figure 4.2-1 the global FlexRay schedule provides 64 cycles. If the sched-

ule is designed to transmit a PDU not within each cycle (cycle repetition = 1), a data

transmission gap will occur with a delay of tTransmissionDelay = (rPduCycleRepetition -1) * tCycle. Due to

the crucial requirement to generate 100% busload for software reprogramming communi-

cation, the cycle repetition for a data transfer PDU shall be configured equal to one

(rPduCycleRepetition=1). Hence it is guaranteed that data transfer within each communication

cycle is possible.

FlexRay PDU payload

A FlexRay PDU is able to transmit at least 2 Byte and in maximum 254 Byte payload. A

cycle repetition of 1 is assumed for all PDUs (data transfer within each cycle is possible).

Furthermore it is assumed that all slots of the communication cycle are allocated for this

data transfer (e.g. from a PCU to an ECU) whereby for a simplification only a static seg-

ment is configured40.

Figure 4.2-2 and figure 4.2-3 depict the maximum net data rate for the different possible

payload lengths (2 Byte – 254 Byte). This approach has to be analysed within the limits of

formula 4.2-4 and 4.2-5. The cycle time is varying from 1ms to 5 ms.

40 This is only a simplification to illustrate the impact of the different payload lengths for the overall
net data transfer rate.

Chapter 4 – Field bus system protocol stacks 79

FlexRay maximum data transfer rate
(fBit = 10 Mbit/s ; tcycle = 1 ms ; static segment only)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250
Payload per PDU [Byte]

D
at

a
ra

ti
o

 [
kb

it
/s

]

max data ratio

Figure 4.2-2: Maximum FlexRay net data rate (tcycle = 1 ms)

FlexRay maximum data transfer rate
(fBit = 10 Mbit/s ; tcycle = 5ms ; static segment only)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250
Payload per PDU [Byte]

D
at

a
ra

ti
o

 [
kb

it
/s

]

max data ratio

Figure 4.2-3: Maximum FlexRay net data rate (tcycle = 5 ms)

In both figures the same effect is visible. The ratio between payload and protocol over-

head results in a lesser data transfer rate even though all available slots are in use. The

peaks occur because of the time limitation of the cycle time. If the last PDU requires more

transmission time than the residual cycle time, the PDU transmission is skipped. Hence,

the resulting data transfer rate is less than the rate with the previous payload length.

There is a direct dependency between the maximum payload length and the communica-

tion cycle time. Especially figure 4.2-2 depicts that the best result is not obligatory given

by the maximum payload length.

This effect is less important if the cycle time is higher (refer to figure 4.2-3). Best perfor-

mance will be given if 1) the PDU’s payload is configured to 254 Byte (this reduces the

Chapter 4 – Field bus system protocol stacks 80

impact of protocol overhead) and 2) the communication cycle time is configured to exactly

n-times of PDU runtimes41.

Both configurations depict a net data transfer rate upper limit at nearly 7500 kbit/s.

FlexRay PDUs per cycle

As discussed above, best performance is given if each slot per cycle can be used for data

transmission. The impact of the ratio between communication cycle time, the payload

length and the number of usable PDUs (slots) per cycle is depicted in figure 4.2-4 and

figure 4.2-5.

FlexRay net data rate
 (tCycle= 1 ms ; static segment only)

0
1000
2000
3000
4000
5000
6000
7000
8000

1 26 51
PDU per cycle

n
et

 d
at

a
ra

te
 [

kb
it

/s
]

8 Byte

16 Byte

32 Byte

64 Byte

128 Byte

254 Byte

Figure 4.2-4: FlexRay net data rate (tcycle = 1 ms)

FlexRay net data rate
(tCycle = 5 ms ; static segment only)

0
1000
2000
3000
4000

5000
6000
7000
8000

1 26 51 76 101 126 151 176 201 226
PDU per cycle

n
et

 d
at

a
ra

te
 [

kb
it

/s
]

8 Byte

16 Byte

32 Byte

64 Byte

128 Byte

254 Byte

Figure 4.2-5: FlexRay net data rate (tcycle = 5 ms)

Depending on formula 4.2-4 and 4.2-5 limitations occur because the communication cycle

time allows only the usage of a limited number of PDUs.

41 For the communication cycle time calculation the symbol window segment time and network idle
time have also to be taken into account.

Chapter 4 – Field bus system protocol stacks 81

Figure 4.2-4 depicts a configured communication cycle time of 1ms. Within that time slot

only 3 PDUs with 254 byte payload can be transmitted. If the payload is 128 byte, seven

PDUs can be transmitted and the 8th PDU is skipped by time restriction. Hence, the con-

figuration of less payload PDUs provides better performance on that communication cycle

time configuration (1ms.). If the communication cycle time is increased (e.g. 5ms) the

large payload PDUs provide better performance.

Conclusion

Even though the FlexRay data link layer provides a 10 MBit/s bandwidth the net data rate

on that layer has a wide spreading and could be in worst case significantly lower.

The PDU payload size, the number of PDUs per cycle, the cycle repetition time for a PDU

and the communication cycle length are the essential parameters. As depicted in formula

4.2-3 and discussed above, several different parameter sets will provide equal perfor-

mance values.

The most important parameter for schedule design is the number of connected nodes and

their required transmission slots. By this value and the required cycle time the payload

length limitation for each slot is given. For the schedule design several degrees of free-

dom exist. Different value combinations of PDUs per cycle and slot’s cycle repetition will

provide equal performance results.

To generate maximum performance it is important to have no transmission gap at a seg-

ment’s end because PDU’s runtime is out of segments time. Hence, PDU’s total runtime,

i.e. combination of PDU’s payload length and the number of allocated slots, shall be in

relation to the cycle or segment time.

In best case configuration a net data transfer rate of 7.500 kBit/s is possible (75% of gross

data rate). For a CAN bus system in comparison this net data rate is only on 52% (refer to

section 4.1.4).

Theoretically, the overall performance of FlexRay could be doubled if the second channel

was available as defined within FlexRay specification. In that case data transmission

could be processed via channel A as well as via channel B. Unfortunately, currently there

is no microcontroller available that supports a second channel. The theoretical maximum

net data transfer ratio of ≈15.000 kBit/s (7.500 kBit/s on channel A and B) cannot be eval-

uated in practice.

4.2.1.2 Schedule optimisation

As mentioned above, FlexRay’s schedule design has to be done within the network de-

velopment phase. If the schedule is fixed, changes on the schedule result in high effort.

Chapter 4 – Field bus system protocol stacks 82

Also the available slot resources have to be shared between normal ECU’s functional

communication and the reprogramming communication from a PCU to the corresponding

ECU.

An approach to accelerate the reprogramming data transfer is to switch into a second,

optimised schedule. That means that each ECU supports two different schedules, one for

the normal ECU functional communication and one for the special scenario of software

reprogramming. A well defined trigger event (e.g. reception of a diagnostic message etc.)

initiates the schedule switching process. A second trigger event (e.g. a second diagnostic

service, power-on reset) initiates switching back to the default schedule.

Figure 4.2-6 depicts possible approaches to optimise a FlexRay schedule with the aim to

accelerate data transfer for software reprogramming purpose.

Figure 4.2-6: FlexRay schedule optimisation

There are three possible approaches to modify a FlexRay’s schedule:

1) Slot arrangement modification

2) Cycle time modification

3) Relation of static to dynamic segment

Approach 1: slot arrangement modification

Slot arrangement modification will change the assignment of slots to the corresponding

ECUs and the length of the slots. For the reprogramming scenario the normal application

communication slots are not necessary and therefore they could be skipped from the

schedule. The resulting bandwidth is used to expand the remaining slots. By this ap-

proach a) more slots could be used for reprogramming communication and b) within these

slots it is possible to transmit more data. The risk to shut down the communication system

is less because only the interpretation mask for the received PDUs has to change and no

global timing values are influenced or modified. Especially for FlexRay each PDU signal

the start and the end of a frame by a special bit pattern (Start-Of-Frame, End-Of-Frame).

Chapter 4 – Field bus system protocol stacks 83

Hence, the FlexRay communication controller hardware can identify the real PDU length.

In case the software analysis detects an invalid length for the expected PDU this mis-

match could be handled without any impact on FlexRay’s physical communication.

Approach 2: cycle time modification

The modification of the communication cycle time, i.e. the basic schedule timings, pro-

vides the possibility to design a schedule that maps perfectly to the given reprogramming

scenario. As described in section 4.2.1.1 it might be possible that the full bandwidth is not

used because last PDU’s length requires more time to transmit than the remaining cycle

time. If the schedule is optimised to the corresponding PDU lengths the maximum perfor-

mance (net data rate) is possible.

The risk of this approach is higher compared to the slot arrangement approach because

the communication system has to be shut down, reinitialised for the new cycle time and

restarted. If one or more ECUs do not restart with the new cycle time, a synchronisation is

not possible and the network will not get a stable state.

Approach 3: relation of static and dynamic segment

Whereas the upper approaches have been common to all time triggered communication

systems, the third approach is FlexRay specific and modifies the relation of static and

dynamic segment.

This approach solves the main disadvantage of the FlexRay specification: the addressing

mode which is given only by the slot-ID and communication cycle number. As discussed

above, best performance is given if all available slots are mapped to one communication

link. Even if the schedule is modified, either the different links to each connected ECU are

defined in that new schedule, or for each communication link to an ECU an individual

schedule is defined. As a result the PCU or the gateway, in case the PCU is not connect-

ed directly to FlexRay bus, has to deal with several schedules. This challenge is partly

solved if a small static segment (to guarantee system’s synchronisation) and a large dy-

namic segment are defined. The dynamic segment based on the event driven approach

requires no permanent PDU transmission. If the sender (PCU or Gateway) does not

transmit data within a dynamic slot, the FlexRay system, i.e. all ECUs on the bus, switch

to the next slot-ID after a small delay. In opposite to the static segment, where a PDU with

full PDU-length has to be sent, the communication in the dynamic segment reduces the

unusable bandwidth to the minimum defined by physical protocol.

Conclusion

Data acceleration approaches by switching to an optimised schedule for software repro-

gramming scenarios provides high potentials and the net data rate can be significantly

Chapter 4 – Field bus system protocol stacks 84

increased. On the other hand the modification of basic schedule timings provides a high

risk if communication system’s synchronisation gets lost if a communication node does

not switch to the new schedule. The approach to modify only slot arrangement provides

an increasing performance without the risk of loosing synchronisation because basic

system timings are not modified.

4.2.2 FlexRay Transport Protocol (ISO 10681-2)

This section introduces the FlexRay transport layer protocol according to ISO 10681-2,

analyses different approaches to accelerate data transfer via this protocol and discusses

the impact of the different protocol parameters.

Introduction

As described in section 4.2.1 the basic communication schedule has a big impact on the

overall data transfer performance. Software reprogramming communication shall work on

the same network as normal ECU communication but should not require resources (slots)

when not in use. Unfortunately, for time triggered systems it is necessary to reserve

bandwidth within the basic communication schedule that is not usable for normal ECU

communication. With focus on software reprogramming purpose based on the diagnostic

protocol UDS as defined in ISO 14229, at least one slot has to be reserved for a diagnos-

tic service request to the ECU (exclusive access for PCU to ECU communication) and at

least one slot for the diagnostic service response (exclusive access for ECU to PCU

communication). Hence each slot is exclusively dedicated to a PCU-ECU connection. For

a network with e.g. 20 notes at least 40 slots have to be reserved within the global sched-

ule. This example shows the main disadvantage of the FlexRay system: the address

mechanism based on the slot-ID and cycle number combination. Even if diagnostic com-

munication is processed only within the dynamic segment a slot could not be shared

between different communication links. It was one of the main challenges for FlexRay

communication to find a mechanism that provides the necessary performance for software

reprogramming as well as reduces the required slot resources. In 2007/2008 an ISO

standardisation group was established with the aim to standardise a FlexRay transport

layer protocol that fulfils the above described communication requirements

(TC22/SC3/WG1/TF13 ISO TP on FlexRay)42. The transport layer protocol for FlexRay

42 R. Schmidgall is a member of this ISO standardisation group TC22/SC3/WG1/TF13 “ISO TP on
FlexRay”. The ISO 10681-2 specification was introduced in AUTOSAR 4.0 (refer to [AUTOSAR]).
R. Schmidgall took the document ownership for the FlexRay Transport Protocol (FrTp) according to
ISO 10681-2 (AUTOSAR document ID 029). In 2010 the AUTOSAR steering committee has decid-
ed that ISO 10681-2 shall be available also for AUTOSAR 3.2 (previous AUTOSAR version to
AUTOSAR 4.0).

Chapter 4 – Field bus system protocol stacks 85

was standardised in 2009 as international standard [ISO10681-2]. The protocol is called

“communication layer” protocol, because it provides services and mechanisms of layer 4

as well as of layer 3. It is also independent from the underlying physical layer FlexRay

protocol 2.1 or 3.0 (refer to section 4.2.1). The communication protocol works for commu-

nication in the static segment as well as for communication in the dynamic segment.

PDU according to ISO 10681-2

For software reprogramming large data have to be transmitted. The maximum payload

length of a FlexRay PDU can be configured up to 254 byte. Hence, a transport protocol is

necessary to transmit data packages with more than the configured PDU payload length.

Also a flow control is required to control the data stream on the bus. The maximum pay-

load length that can be transmitted by a segmented data transfer is up to 65.535. The limit

is given by the 16 bit MessageLength parameter within the StartFrames’s PCI.

According to the initial requirements of a more flexible addressing mechanism the

FlexRay communication protocol defines a target and a source address field. The PCI

field and the payload are also part of the PDU. Figure 4.2-7 depicts the PDU according to

ISO 10681-2 specification.

Figure 4.2-7: FlexRay communication protocol PDU format

The communication layer PDU is mapped to the FlexRay’s payload field. Table 4.2-3

depicts the different PDU-types and the corresponding address information fields, the PCI

length and payload lengths.

Table 4.2-3: ISO 10681-2 PDU overview

PDU Type Address PCI Max. possible payload nPL

StartFrame (STF) 4 Byte 4 byte FR-PDU-8 ≤ nPL_SF ≤ 246 Byte

ConsecutiveFrame
(CFx)

4 Byte 2 byte FR-PDU-6 ≤ nPL_CF ≤ 248 Byte

LastFrame (LF) 4 Byte 4 byte FR-PDU-8 ≤ nPL_LF ≤ 246 Byte

FlowControl (FC) 4 Byte 1 byte ---

Chapter 4 – Field bus system protocol stacks 86

The protocol overhead is at maximum 8 bytes. Therefore the maximum payload that can

be transmitted by one FlexRay PDU is up to 246 byte (123 words16bit). ISO 10681-2 uses

nearly the same protocol mechanisms as the ISO 15765-2 CAN Transport Protocol.

Address mechanism

By the new defined source and target address fields it is possible to define several differ-

ent connection links mapped on the same slot-IDs. For example, a PCU allocates four

slots for data transmission. All connected ECUs are configured to receive data on these

slots (broadcast connection). If the target address matches with their own address, they

have to process the received PDU. If the address doesn’t match, the PDU shall be

skipped. However, a response slot must be configured for each ECU. By this method the

required number of slots could be reduced significantly because all slots of the 1:n con-

nection (e.g. PCU to ECUs) could be shared. Figure 4.2-8 depicts the possible communi-

cation scenarios.

Figure 4.2-8: FlexRay communication layer scenarios

The specified address mechanism supports a burst mode (all bandwidth is used for com-

munication with one ECU) as well as a parallel mode (shared bandwidth for multiple

ECUs). A burst mode could be necessary if only one ECU within the network should be

reprogrammed. The parallel mode is used if several ECUs shall be reprogrammed. With-

out the flexible bandwidth assignment the bandwidth for a burst mode to each ECU has to

be statically allocated within the basic FlexRay schedule. The bandwidth could be as-

signed dynamically and flexible in a range as depicted in figure 4.2-9.

Figure 4.2-9: FlexRay Bandwidth assignment

Chapter 4 – Field bus system protocol stacks 87

4.2.2.1 Communication performance

The communication protocol according to ISO 10681-2 supports unsegmented and seg-

mented data transfer. Figure 4.2-10 depicts those scenarios.

Figure 4.2-10: Data transfer according to ISO 10681-2

For unsegmented data transmission only a Start Frame (SF) is transmitted. A segmented

data transfer requires more PDUs within a defined sequence. After a connection link has

been established by a PCU’s Start Frame (SF) the ECU has to send a Flow Control (FC)

PDU before the PCU continues the data transfer by sending Consecutive Frame (CF)

PDUs. In contrast to the CAN TP a final Last Frame (LF) PDU terminates the connection.

In spite of the smart address method the basic FlexRay communication schedule has an

impact on the protocol’s communication performance especially for segmented data

transmission. The flow control PDU is sent by the initial receiver node and until no flow

control PDU is received by the initial sender no additional consecutive PDU is transmitted.

Therefore ECU’s response slot position and the cycle repetition within the global FlexRay

schedule is very important. The communication layer protocol supports several protocol

configuration possibilities for data transmission. To accelerate the data transfer some

conditional protocol parameters have to be fixed:

a) No additional Flow Control PDU but the first one shall be sent. Hence, the possible

delay time without data transmission is reduced.

Therefore, the configuration option to transmit a PDU type Consecu-

tiveFrame_EOB (End of Block) must be disabled.

b) The Cycle Repetition (CR) for all PDUs is equal to 1. This guarantees a data

transmission within each cycle.

Chapter 4 – Field bus system protocol stacks 88

Total data transfer time for a single, segmented data transfer

For total data transfer time calculation some formulas have been developed which takes

the ISO 10681-2 protocol behaviour into account.

The net data rate is calculated by the SDU size divided by the transfer time.

Transfer

SDU
enetDataRat t

n
f =

The transfer time tTransfer is the sum of all FlexRay cycle times required to transmit all the

data according to the ISO 10681-2 protocol.

CycleTransfer txt ⋅=

The number of cycles (x) is calculated by the initial Start Frame (SF) cycle plus the re-

quired cycles to transmit the Flow Control (FC) PDU plus the required cycles to transmit

all the payload data by Consecutive Frame (CF) PDUs and the Last Frame (LF) PDU. The

Cycle Repetition (CR) is assumed equal to 1. The Maximum Number Of PDUs Per Cycle

(MNPC) parameter depends on the basic schedule time and shall be within the limitations

as defined in section 4.2.1.

cycle)CF(
CFPL

SFPLSDU

)FC()SF(Transfer tCR
MNPC

n

nn

CR1t ⋅





















⋅



























 −

++= −

−

 (4.2-6)

Hence, the net data rate can be calculated as:

cycle)CF(
CFPL

SFPLSDU

)FC()SF(

SDU
ionetDataRat

tCR
MNPC

n

nn

CR1

n
f

⋅





















⋅



























 −

++

=

−

−

 (4.2-7)

To illustrate the result a system is assumed with tCycle = 5ms; CR = 1; FR-Payload length =

254 Byte; MNPC = 18(43); nSDU = 65.535 Byte. It requires 17 FlexRay communication

cycles to transmit all the data. The data rate is 771 kByte/s (6.168 MBit/s).

43 Refer to table 4.2-2: FR-PDU with 254 byte payload has a runtime of 263µs. In 5ms cycle time
19 PDUs could be scheduled. One response slot for a FC-PDU is required. Hence, a MPPC of 18
is possible and assumed.

Chapter 4 – Field bus system protocol stacks 89

Impact of Flow Control Parameter

The flow control configuration of ISO 10681-2 has a deep impact on the overall data trans-

fer performance. Five different Flow States (FS) are defined by protocol but only the flow

state Clear To Send (CTS) with the parameter Bandwidth Control (BC) influences the data

transfer performance directly. The flow state Wait (WT) is not relevant to these considera-

tions because that state only occurs when the system resources (buffer etc.) are in a

critical state and communication can not be continued without a delay for data processing.

Table 4.2-4 depicts the different Flow Control PCI bytes.

Table 4.2-4: ISO 10681-2 Flow Control (FC) PCI Overview [ISO 10681-2]

Table 4.2-5: ISO 10681-2 Definition of Bandwidth Control (BC) values [ISO 10681-2_2]

The Bandwidth Control (BC) parameter is divided into two values. The Maximum Number

Of PDUs Per Cycle (MNPC) “limits the number of C_PDUs44 the sender is allowed to

transmit within a FlexRay cycle ..” [ISO 10681-2, table 3.2-10]. The Separation Cycle

Exponent (SCexp) “represents the exponent to calculate the minimum number of

'Separation Cycles' (SC) the sender has to wait for the next transmission of a C_PDU”

44 C_PDU is the nomenclature for “communication layer protocol data unit” within ISO 10681-2

Chapter 4 – Field bus system protocol stacks 90

[ISO 10681-2, table 3.2-10]. As depicted in formula 4.2-7 the net data rate is influenced by

MNPC and by the cycle repetition value CR. CR is calculated by (refer to table 4.2-5):

CR = SC +1 = 2SCexp.

A quantitative evaluation of formula 4.2-6 shows that a large MNPC results in a smaller

number of FlexRay communication cycles to transmit the SDU. On the other hand a large

SCexp results in a large value for the Cycle Repetition (CR) and finally in a large number

of required FlexRay cycles. The best performance will occur if MNPC has the maximum

value that is possible by the given schedule and a cycle repetition of 1 which results in a

SCexp value of 1. A large cycle time tCycle must not generally result in less performance

because a large cycle time provides the possibility to have many PDUs per cycle if the

schedule is correspondingly configured.

Summary

The FlexRay communication layer protocol ISO10681-2 solves a basic problem of time

triggered communication systems: dealing with the limited resource of time slots (FlexRay

slots) for communication. By introducing a source and target address field into the PDU

the possibility of dynamic bandwidth assignment was given in spite of the fix bandwidth

allocation in the global communication schedule. In between both boundary scenarios,

burst mode (all bandwidth for communication to one ECU) and parallel mode (shared

bandwidth for communication with several ECUs) an optimised bandwidth assignment for

a required scenario could be configured. A disadvantage of this method is the high CPU45

load because in [FlexRay2.1] specification no address filtering mechanism in hardware is

defined. As a result the address evaluation must be implemented in software. Typically

the received PDU must be processed through all underlying software layers before the

address evaluation can be executed in the communication layer. The next FlexRay speci-

fication will solve that problem by the definition of a hardware filtering mechanism. This

method will decrease the CPU load if the ECU is not addressed.

The impact of the underlying basic FlexRay communication schedule to the data trans-

mission performance is apparent (refer also to section 4.2.1). Nevertheless, the influence

of communication protocol configuration is important, as well, especially the number of

required Flow Control PDUs and the flow control parameters influencing the communica-

tion net data rate.

Best results are possible if only one flow control PDU is required and the separation cycle

is configured equal to one.

45 CPU.. Central Processing Unit

Chapter 4 – Field bus system protocol stacks 91

4.2.3 Complete reprogramming process based on UDS

As described in chapter 2, the ISO 14229 - USD protocol is the currently most common

diagnostic protocol. Reprogramming of the ECU’s application software is controlled by this

standard. The communication is based on a diagnostic request – diagnostic response

behaviour. Due to the UDS protocol all application data which shall be transferred are

segmented to smaller partitions according to the underlying bus system transport layer

protocol’s maximum value. In case of the FlexRay bus system and the transport layer

protocol according to ISO 10681-2 this value is limited to 65535 byte maximum.

To calculate the total download time all the PCU to ECU request times, the microcontrol-

ler’s physical reprogramming times, the ECU to PCU response times and the PCU pro-

cessing time for UDS have to be added.

∑∑∑∑ +++= gsinPCUprocessponseRegminogramPrPhysicalquestReDownload ttttt

Download time (tDL) for a segmented request and a unsegmented response

As discussed in section 4.2.2.1 the communication layer’s option to optimise the download

performance by communication layer’ configuration (disable sending of

ConsecutiveFrame_EOB PDUs) is here assumed, too. Based on formula 4.2-6 the delays

for tPhysicalProgramming, tResponse and tPCUProcessing have to be added.

()() ocessPr_PCUCyclesRe_STFogPrPhys

Cycle)qRe_CF(
CFPL

SFPLSDU

)qRe_FC(DL

ttCRt

tCR
MNPC

n
nn

CR1t

+⋅+

+⋅





















⋅



























 −

++= −

−

 (4.2-8)

If more data shall be transferred and reprogrammed than can be transmitted by a single

segmented data transfer (FlexRay: max 65535 byte) the download sequence is repeated

until all data are transmitted to the ECU. The request time is calculated as

)n(DL

1nx

1x
)x(DLDL ttt += ∑

−=

=
 (4.2-9)

It has to be distinguished between all previously transmitted downloads and the last down-

load, because the last download might have less than the maximum possible data to

transmit.

Chapter 4 – Field bus system protocol stacks 92

The number of repetitions (nDL) is calculated by:












=

−210681Iso_SDU

14229ISO_PDU
DL d

d
n

The final request’s SDU size is calculated by:

210681Iso_SDU14229ISO_PDUl)n(SDU dmoddd −= (4.2-10)

Hence the total download time via FlexRay and ISO 10681-2 is calculated by:

()()

()() 

















+⋅+

+⋅













⋅







++

+


















+⋅+

+⋅













⋅







++

⋅











=

−

ocessPr_PCUCyclesRe_STFogPrPhys

Cycle)qRe_CF(
)n(PDU_CF

)qRe_FC(

ocessPr_PCUCyclesRe_STFogPrPhys

Cycle)qRe_CF(
)x(PDU_CF

)qRe_FC(

215765Iso_SDU

14229ISO_PDU
DL

ttCRt

tCR
MNPC

n
CR1

ttCRt

tCR
MNPC

n
CR1

d

d
t

()

()


















+⋅














+














⋅












++

+


















+

+⋅













+














⋅












++

⋅











=

−

ogPrPhys

CyclesRe_STF)qRe_CF(
)n(PDU_CF

)qRe_FC(

ocessPr_PCUogPrPhys

CyclesRe_STF)qRe_CF(
)x(PDU_CF

)qRe_FC(

215765Iso_SDU

14229ISO_PDU
DL

t

tCRCR
MNPC

n
CR1

tt

tCRCR
MNPC

n
CR1

d

d
t

 (4.2-11)

Note that after the final response no additional PCU processing time is required. To safe

FlexRay slot resources it is possible to use the node’s transmission slots twice: a) to send

communication layer’s FlowControl PDUs in a segmented data transfer and b) to send

UDS protocol’s response PDUs. In that case the cycle repetition for the request

FlowControl PDUs (CR(FC_Req)) and the cycle repetition for the UDS response PDU

(CR(STF_Res)) are equal.

To accelerate the data transfer the programming time tPhysicalProgramming can be compensated

by the double buffered date transfer approach of chapter 3. Delays that occur because of

cycle repetition values unequal to one can not be compensated because they are either

part of the request or the response is delayed and the PCU is not allowed by UDS proto-

col to start the next request without previously response reception.

Chapter 4 – Field bus system protocol stacks 93

4.2.4 Conclusion

The time triggered FlexRay bus system provides benefits for deterministic data communi-

cation e.g. for control and regulation systems which require signals within equidistant time

slots. FlexRay has disadvantages for event driven communication. The main problem is

the static, non-sharable allocation of bandwidth (slots) for each signal because of

FlexRay’s static address mechanism based on the relation of slot-ID and cycle number.

With focus on software reprogramming bandwidth for each diagnostic request has to be

allocated as well as bandwidth for the diagnostic response. This bandwidth is not usable

for normal ECU communication. On the other hand the ECU normal communication is not

usable for software reprogramming.

The communication layer protocol according to ISO 10681-2 solves the address problems

partially but reducing the maximum PDU’s payload length by additional four bytes (source

address and target address). The address mechanism provides benefit for 1:n

connections of an exclusive sender like a PCU or a gateway. The diagnostic requests can

be sent in a broadcast slot. All connected ECUs will receive that PDU and evaluate the

addresses. For diagnostic responses this mechanism provides no benefit because each

ECU requires an exclusive slot for diagnostic response transmission.

The discussion above depicts that best performance is only possible if the basic com-

munication schedule and the communication layer protocol are well concerted. Optimisa-

tions only on one layer (protocol) might not be sufficient. Nevertheless, the main

influencing factor is the basic communication schedule design. Hence, to accelerate data

transfer for software reprogramming purpose some aspects have to be taken into account

during communication schedule design:

1.) Communication for software reprogramming purpose shall be allocated within the

dynamic segment. If a communication link is currently not active only the minimum time

delay as required by the protocol will occur before the FlexRay system switches to the

next slot.

2.) The cycle repetition for all allocated slots shall be set to 1. This configuration guaran-

tees that within each cycle communication is possible.

3.) For PCU’s communication more than one slot shall be allocated. Because of the addi-

tional address information of ISO 10681-2 the PCU could manage the bandwidth depend-

ing on the required scenario, i.e. burst mode or parallel mode.

4.) If schedule switching is possible the re-organisation of the slot arrangement provides a

lower risk than the timing modifications (static and dynamic segment length and cycle

Chapter 4 – Field bus system protocol stacks 94

time). The PDU’s payload length shall be modified depending on the communication cycle

length to prevent a gap at the end of the cycle because of a too long final PDU.

A generic evaluation about best configuration and a corresponding absolute maximum of

data transfer ratio for an individual network is not possible. At least, the number of con-

nected ECUs is influencing the number of available slots and varies from network to net-

work.

A final approach to accelerate data transfer is the usage of the second FlexRay channel if

hardware is available that supports the second channel. Some open topics can currently

not be discussed finally, because the FlexRay communication controller interface is un-

known. For communication on two channels the handling of the data to transmit is

interesting. Shall a data transfer block be transmitted on only one channel or shall both

channels be used to accelerate the data transfer? In the last case how the flow control

shall be handled? On the other hand, if each channel transfers a complete block individu-

ally, is it possible to transfer 64 kByte46 on each channel? Does the microcontroller pro-

vide sufficient RAM resources?

With the approaches as discussed above, it is possible to accelerate software repro-

gramming communication on a FlexRay bus system. Even if the second channel is cur-

rently not available the system provides good performance if all protocols are optimally

configured.

4.3 Summary

In this chapter approaches to accelerate the data transfer via CAN and FlexRay bus sys-

tem protocol stacks are discussed. These bus systems are currently the most popular bus

systems for automotive networks.

CAN bus system

For the CAN bus system, as a representative for CSMA media access a data transfer

rate, it is theoretically possible to generate 100% bus load for a single communication link

between a PCU and an ECU, also within a network of several communication nodes. The

maximum performance for data transfer via transport layer protocol is less than 50% of

the gross bit rate (maximum at 1000 kBit/s). Delays on the transport protocol layer have a

significant impact to the overall system performance.

46 64 kByte is the maximum payload that can be transmitted via ISO 10681-2 protocol.

Chapter 4 – Field bus system protocol stacks 95

With focus on software reprogramming time this bus system shall only be used for ECUs

with a memory size less than 50 MByte and used for simple or complex control assign-

ment (refer to chapter 1 – figure 1.2-2).

FlexRay

For FlexRay, as a representative for time triggered systems (TDMA), it is almost impossi-

ble to generate 100% bus load, particularly within a network with several other communi-

cation nodes. Due to the basic idea of time triggered protocols fixed time slots have to be

allocated for each network node. Those allocated slots are only usable for the well defined

communication link to exactly that node. Hence, the bandwidth is not usable for other

communication links. For FlexRay in particular, the communication cycle division in a

static and dynamic segment reduce the bandwidth, too.

Therefore, the communication schedule design has a significant impact to the overall

communication performance. The schedule design is always a consideration between

data transfer rate and bus resources (slots). Due to the high gross bit rate of 10 MBit/s in

maximum an acceptable data transfer rate can be configured for ECUs with a memory

size less than 50 MByte and used for simple or complex control assignment (refer to

chapter 1 – figure 1.2-2). If the schedule can be reorganised during runtime also ECUs

with more memory can be connected.

The effort to use time triggered protocols for spontaneous communication (as given for

software reprogramming) is quite high, because the bandwidth for spontaneous communi-

cation has to be allocated statically within the schedule.

5 Data size reduction

Content

5.1 Partitioning 97

5.1.1 Analysis ..97

5.1.2 Discussion ..98

5.2 Fill byte skipping 99

5.2.1 Analysis ..99

5.2.2 Discussion .. 100

5.3 Data compression 103

5.3.1 Analysis .. 103

5.3.2 LZ77 and LZSS Algorithm ... 104

5.3.3 Discussion .. 106

5.4 Differential file 107

5.4.1 Analysis .. 108

5.4.2 Discussion .. 111

5.5 Conclusion 112

One approach to accelerate the software reprogramming process is to reduce the data

size which has to be transmitted from a programming control unit (PCU) to an electronic

control unit (ECU). The total reprogramming process time will be reduced because of a

shorter data transmission time. There are two basic approaches to reduce the data size:

1) Reduce file size

a) Partitioning - build partitions to divide the application software into several parts

 to reprogram only those parts that have to be adjusted

b) Skip fill bytes - skip unused bytes within an embedded software file

Chapter 5 - Data size reduction 97

2) Skip redundancies

a) Compression – transmit data without redundancies

b) Differential file – transmit only the differences between the new and the previous

 file

The power of these approaches is very different as well as the effort to implement a stable

process. Within this chapter different methods for data size reduction are evaluated and

the possibility is discussed to use these methods for automotive systems.

5.1 Partitioning

5.1.1 Analysis

A simple, but powerful approach to reduce the file size is to divide the initial file into sev-

eral partitions, e.g. operating system, sensors, actuators, drivers, characteristic curves,

communication protocol stacks etc. In case the software has to be changed for any rea-

son (bug fixing, parameter set optimisation, software enhancement etc.) not the complete

application software, but only the corresponding partition has to be reprogrammed.

For example, if an ECU supports 2 partitions with an equal size the reduction might be

50%. An absolute value for size reduction can not be given because it depends on ECU’s

usage and the possibility to divide the source code into several partitions. Nevertheless, if

not all partitions have to be reprogrammed, and a data reduction and therefore, a transfer

time reduction will occur.

Figure 5.1-1: Application layer partitions [AUT11]

Chapter 5 - Data size reduction 98

Figure 5.1-1 depicts an example with two application partitions and the basic software

partition within an AUTOSAR47 software architecture model.

5.1.2 Discussion

The division of software into several different partitions has to be done initially during

software development process and is part of the software architecture decisions. The

AUTOSAR software architecture model regards to the partitioning requirement and pro-

vides methods to divide software into several logical components. On the other hand this

method increases system complexity and therefore, some additional aspects have to be

taken into account.

Microcontroller aspects vs. number of partitions

The linking process has to take care that the software partition is linked to an own physical

memory block within microcontrollers memory. This block shall be allocated exclusively for

that partition to be able to erase and reprogram this block individually from all other parti-

tions. As a consequence unused memory of this partition shall not be used for another

software part. Hence, the number of possible and reasonable different partitions depends

on a) the number of microcontroller’s physical memory blocks48 and b) the given size of

the corresponding blocks. Of course, the definition of many partitions will reduce repro-

gramming time but requires a microcontroller derivate with a corresponding memory lay-

out that physically supports those many partitions. As a result the cost reduction by

reprogramming time requires a more expensive microcontroller to support the partitioning.

Software partition management and compatibility

It is a basic aim to be able to reprogram each partition independently of other partitions.

For the pure physical reprogramming process this is normally given because each parti-

tion allocates a unique defined memory space with a unique address range. Nevertheless,

dependencies between the different software partitions of an ECU are available

(e.g. interfaces etc.) and therefore, their compatibility has to be managed. It has to be

guaranteed that different partitions’ software, which can be reprogrammed individually are

compatible after reprogramming. A flashloader based on the HIS specification provides a

special diagnostic service to check the compatibility (refer to section 2.2.3.2). Typically

hardware-to-software compatibilities and software-to-software compatibilities have to be

47 “[AUTOSAR] (AUTomotive Open System ARchitecture) is an open and standardized automotive
software architecture, jointly developed by automobile manufacturers, suppliers and tool develop-
ers“.
48 Within different microcontroller specifications several terms to describe contiguous memory
fragments are used: e.g. memory section, memory bank, memory page, memory block etc.

Chapter 5 - Data size reduction 99

checked. The complexity of the different compatibility dependencies is increasing the

more partitions are defined.

The approach is useless if the address ranges of partitions are moved because of soft-

ware expansion of another partition. In that case all reallocated partitions have to be

reprogrammed to get compatibility. Hence, memory reserves have to be taken into ac-

count during system design to prevent the ECU for additional reprogramming activities

because of address shifts.

5.2 Fill byte skipping

5.2.1 Analysis

Typically gaps within the binary code’s allocated address range are filled with so-called fill

bytes during the linking process. An approach to reduce data size and therefore, transfer

time is to skip such fill bytes and transfer only pure compiled binary code from PCU to

ECU. As a result gaps occur within the pure binary code. The corresponding address

information of each allocated memory space, i.e. start address and length information

have to be transmitted for each pure binary code part. With another view the pure binary

code gap ranges have to be transmitted because the ECU needs the memory position

information where the data transfer has to be continued.

Of course, it requires some time even to transmit this gap information as well as transmit

the fill bytes. Hence, the break even point of both methods has to be calculated.

rGapTransfeansferFillByteTr tt = (5.2-1)

Based on the approach of formula 5.2-1 it is possible to calculate the number of fill bytes

that can be transferred within the time slot where the gap address information is trans-

ferred (refer to the discussion below). Based on the calculation the distinction is possible

whether fill byte transmission or gap information transmission provides the faster and

more efficient solution.

The break even point depends on the individual communication link performance between

the PCU and the ECU. The bus system’s bandwidth and communication protocol stack’s

performance have to be taken into account. The value has to be calculated individually for

each communication link especially within heterogeneous networks where different proto-

col conversions are necessary.

Chapter 5 - Data size reduction 100

5.2.2 Discussion

To show the influencing aspects a data transfer via UDS49 on ISO 15765-2 (Transport

Protocol) and CAN is assumed. By the developed generic formula the system perfor-

mance can be calculated to decide whether gap transfer provides benefits compared to fill

byte transfer.

Data Transfer based on UDS, ISO15765-2 and CAN

Figure 5.2-1 depicts the two scenarios of fill byte transfer and gap transfer.

Figure 5.2-1: Data transfer with and without fill bytes

Fill byte transfer is processed by the UDS defined diagnostic service $36 – Transfer Data.

In contrast the transfer of gap address information requires the two additional UDS de-

fined diagnostic services $37 - Request Transfer Exit and $34 - Request Download as

well as their positive responses with the Service Identifiers (SID) $77 and $74. The diag-

nostic requests with the SID $37, $77 and $74 are transferred as unsegmented Single

Frame – PDUs (refer to ISO-15765-2 in chapter 3), each transmitted by a single CAN-

PDU. The diagnostic service request $34 – Request Download requires segmentation

because the complete diagnostic service request with the additional request parameters

start address information and data length information is in sum longer than 7 bytes.

49 UDS – Unified Diagnostic Services [ISO 14229]. Refer to chapter 2.5.4.

Chapter 5 - Data size reduction 101

Hence, based on ISO 15765-2 transport layer protocol three CAN-PDUs are necessary

(First Frame, Flow Control, Consecutive Frame). In sum 6 CAN-PDUs are required to

transfer the gap address information via the UDS protocol, the transport layer protocol

ISO 15765-2 and the CAN protocol.

According to figure 5.2-1 and formula 5.2-1 the break even point can be calculated as:

36/7474Transfer74/34

34Transfer34/7777Transfer77/3737Transfer37/7636Transfer

rGapTransfeansferFillByteTr

ttt

ttttttt

tt

++
++++++=

=

 (5.2-2)

With PCU’s processing time tPCUProcessing = t76/37 = t77/34 = t74/34 and

with ECU’s processing time tECUProcessing = t37/77 = t34/74

Transfer74

Transfer34Transfer77Transfer37ingECUProcessingPCUProcessTransfer36

t

tttt2t3t

+

+++++=

imeCANPDURuntingECUProcessingPCUProcessTransfer36 t6t2t3t ++=

BitRate

PDU
6t2t3t

Length
ingECUProcessingPCUProcessTransfer36 ++= (5.2-3)

Within the time tTransfer36 a well known number (xPDU) of ISO15765-2 defined Consecutive

Frames PDUs can be transferred. Each Consecutive Frame PDU transmits nBytePerPDU

payload (e.g. 7 byte payload for ISO10761-2). The number of fill bytes that are possible to

transfer can be calculated as depicted below:

BytePerPDU
Length

Length
ingECUProcessingPCUProcess

BytePerPDU
PDU

36Transfer

BytePerPDUPDU

n

BitRate

PDU
BitRate

PDU
6t2t3

n
t

t

nxFillBytes

⋅
++

=

⋅=

⋅=

 (5.2-4)

Table 5.2-1 depicts the number of fill bytes according to formula 5.2-4 that can be trans-

ferred depending on different CAN bus system bandwidths, the ideal PDU’s runtime and

different PCU and ECU processing times50.

50 The processing time of PCU and ECU depends on several influencing parameters. For an ECU it
is important, whether the data reception is done in ECU’s interrupt mode or if the ECU is polling to
the receiver in a task mode. Therefore, only some examplary values are given in table 5.2-1 to
illustrate the wide range of that approach. Real processing time values are measured in the case
study of chapter 10.

Chapter 5 - Data size reduction 102

Generally, the number of possible transferred fill bytes (represents the gap size) is higher,

the faster the bus system is. As a logical consequence the number of fill bytes is increas-

ing too, the slower PCU’s and ECU’s processing time is.

Table 5.2-1: Break even calculation

single
PDU

all
PDUs

on
PCU

on
ECU

total

1.000.000 0.123 0.738 1 1 5 5.738 322
1.000.000 0.123 0.738 3 3 15 15.738 889
1.000.000 0.123 0.738 5 5 25 25.738 1463
1.000.000 0.123 0.738 10 10 50 50.738 2884

500.000 0.246 1.476 1 1 5 6.476 182
500.000 0.246 1.476 3 3 15 16.476 462
500.000 0.246 1.476 5 5 25 26.476 749
500.000 0.246 1.476 10 10 50 51.476 1463
250.000 0.492 2.952 1 1 5 7.952 112
250.000 0.492 2.952 3 3 15 17.952 252
250.000 0.492 2.952 5 5 25 27.952 392
250.000 0.492 2.952 10 10 50 52.952 749
125.000 0.984 5.904 1 1 5 10.904 77
125.000 0.984 5.904 3 3 15 20.904 147
125.000 0.984 5.904 5 5 25 30.904 217
125.000 0.984 5.904 10 10 50 55.904 392

Number of
possible

transmitted
fill bytes

Processing Time
[ms]

Runtime
[ms]

CAN Bandwidth
[Bit/s]

Total Time
(for gap address

information
transfer)

[ms]

The main influencing timing factors are changing depending on PCU’s and ECU’s pro-

cessing time. In consequence for high bandwidth bus systems the processing time is a

very important factor for the distinction whether a fill bytes transfer approach or a gap

information transfer approach shall be implemented.

Within the automotive area processing times of 1 ms ≤ tProcessing ≤ 10 ms are possible. As a

result a gap shall be more than 1463 byte on a CAN bus with 500 kBit/s gross data trans-

fer rate. If the gap is smaller than that value, it requires more time to transmit the gap

information than the fill bytes.

As an additional non-communication but safety aspect the usage of “illegal operation

code” for fill byte values within binary code is best practice. If the microcontroller read from

that addresses, e.g. if a memory calculation operation failed, the illegal operation code

forces the microcontroller to a safe state (e.g. reset). In contrast, gaps in data areas (e.g.

characteristic curves or diagrams etc.) will often be filled with zero.

System design aspects

Knowledge about the complete communication system’s processing delays are a precon-

dition to decide, whether fill bytes shall be skipped or not. For fast systems with small

delays this utilisation of that approach is not recommended.

Chapter 5 - Data size reduction 103

5.3 Data compression

Data compression is a possible approach for data transfer acceleration. The aim is to

reduce the total number of data that shall be transmitted. Data compression is a branch of

information theory and was published the first time by C. E. Shannon in 1948 [Sha48].

K. Savood provides an overview about data compression and explains most currently

known compression methods and algorithms [Say05].

5.3.1 Analysis

Lossy and lossless compression

Data compression methods can be divided into two basic types: 1) lossy compression and

2) lossless compression. With focus on software reprogramming only lossless compres-

sion has to be taken into account because the transferred data file shall be restored com-

pletely without loss of information after the compression, transmission and decompression

process. Changing even a single bit within the initial binary code cannot be tolerated. A

brief introduction to “mathematical preliminaries for lossless compression” is given by

K. Savood in [Say05-1]. Lossless compression is divided then again into two different

fundamental approaches: 1) statistical data compression or 2) substitutional data com-

pression.

Statistical data compression methods use the symbol probability of the different charac-

ters within a file to reduce the data length. Popular compression methods based on the

statistical approach are Arithmetic coding (introduction is given by A. Said in [Sai04]),

Huffman coding [huffma] and Shannon-Fano [shanno] coding.

Substitutional data compression methods replacing parts of the uncompressed symbol

string by references to a dictionary. Popular compression methods based on substitutional

compression are LZ7751 algorithm [Ziv77] and LZSS52 algorithm [Sto82].

For selection of a compression method, running on an embedded system’s microcontroller

some additional basic requirements have to be taken into account:

Resource restrictions

Embedded systems have resource restrictions. The size of available RAM to allocate

large dictionaries is limited. As a result it might be possible that algorithms based on large

dictionaries could not provide their full performance because of dictionary size limitations.

51 Jacob Ziv, Abraham Lempel, known as Lempel-Ziv algorithm, published 1977. Refer to [Ziv77]
52 James Storer, Thomas Szymanski, published 1982. Refer to [Sto82]

Chapter 5 - Data size reduction 104

Clock frequency

Microcontroller’s clock frequency is significantly lower than the typical known clock fre-

quencies within the PC environment. Hence, it is desirable to have fast de-compression

whereas compression on PCU’s or offboard site could be relatively slower.

Statistically based approaches for embedded source code

Compared to typical human languages for microcontroller’s source code it is not easy to

identify the most used character. Source code in a binary file represents assembler

commands and depends on microcontroller’s ALU (Arithmetic Logical Unit) implementa-

tion and design.

Patents

A non-technical but commercial aspect is the question whether the algorithm is patent-

protected. If a licence fee for the usage is demanded, it has to be distinguished whether

the strength of that algorithm justifies the financial disadvantage compared to patent free

approaches. Compression algorithms that consider the previously discussed aspects are

the LZ77 and LZSS algorithm.

5.3.2 LZ77 and LZSS Algorithm

Jacob Ziv and Abraham Lempel published the LZ77 compression method in [Ziv77]. This

approach is a simple but efficient method where not longer the probability entropy of

characters was coded. This method uses the repetition of characters within a data string.

It is based on a sliding window method where a buffer is split into two parts: a) a history

buffer and b) a look-ahead buffer. The look-ahead buffer contains the next character that

shall be coded. The history buffer contains characters that have been coded previously.

The algorithm compares the look-ahead buffer’s characters with characters of the history

buffer and searches for the position of the longest matching string pattern. The position

within the history buffer, the length of the matching string and the next character after

matching string within the look-ahead-buffer is coded. After that step the window of both

buffers is shifted by the matching length + 1 towards the look-ahead buffer. A detailed

description of that algorithm is given in [dataco].

The LZSS algorithm is based on the LZ77 algorithm. J. Storer and T. Szymanski pub-

lished the method in [Sto82] in 1982. This approach replaces the window buffer mecha-

nism by a ring buffer. Also the coding for matching pattern was changed. Figure 5.3-1

depicts an overview.

A single bit indicates whether the original character from the look-ahead buffer is coded or

if a matching string was found in the history buffer. In the last case the position of the

matching string within the history buffer is coded. Because of the ring buffer mechanism

Chapter 5 - Data size reduction 105

the position of the data stream within the history buffer doesn’t change. Access by an

index is possible and a small dictionary tree could be build up very fast. As a result the

coding speed increases. A detailed description of that algorithm is given in [dataco].

Figure 5.3-1: LZSS algorithm

F. Hees has done research on the implementation of compression algorithms for Vec-

tor’s53 Flashloader in 2004 [Hee04]. He analysed the parameter for offset and length

coding within an output stream. Figure 5.3-2 depicts the compression ratio depending on

the length encoding and the offset encoding.

Figure 5.3-2: LZSS Compression Results [Hee04]

53 VECTOR Informatik GmbH, Germany [Vector]

Chapter 5 - Data size reduction 106

A good compression ratio is possible if:

a) Length encoding is between 3 and 5 bits (best: 4bit).

b) Offset encoding is between 10 and 12 bits (best: 11 bit).

For other parameter combinations compression ratio will decrease. F. Hees discussed this

effect: Because “a larger history buffer size increases the possibility to find a matching

phrase. But the number of bits used for the offset encoding increases as well. At a certain

point, this offset encoding requires more bits than the larger history buffer saves” [Hee04].

An equal effect will occur for the length encoding. “If the number of bits for length encod-

ing is increased, it will be possible to encode longer phrases. At a certain point, this length

encoding requires more bits than the larger look-ahead buffer saves” [Hee04].

The parameter pair of 4 bit length encoding and 12 bit offset encoding provides a com-

pression ratio of approx. 64%. As a consequence the number of bits to be transferred

from PCU to ECU is reduced too and 35% of transfer time is saved.

5.3.3 Discussion

Data compression seems to be a good approach to accelerate data transfer and in the

end software reprogramming, too. The data ratio diagram of figure 5.3-2 depicts that the

LZSS compression algorithm, which is possible to be implemented on an embedded

system, provides nearly 35% data reduction. An important estimation parameter is the

runtime of that algorithm. If the time reduction based on data compression is compen-

sated by the de-compression runtime only additional resources have been wasted. Hence,

it is necessary that

TransferUncompDataionDecompressansferCompDataTr ttt <+ (5.3-1)

De-compression time depends on microcontroller’s clock frequency, resource availability,

de-compression algorithm etc. If formula 5.3-1 is not fulfilled compression provides no

benefit.

An important part for LZSS optimisation is the problem of aligned buffer access for micro-

controllers. The LZSS algorithm example above provides good results if the offset encod-

ing parameter has 12 bits and the length encoding parameter has 4 bits. Together with the

single bit of the Identifier (refer to figure 5.3-1) a matching pattern requires 13 bits for

encoding. A single character requires 9 bit. For both scenarios a microcontroller has to

shift the compressed data string to get data into a byte aligned format. F. Hees provides

an optimisation for that problem in [Hee04]: As depict in figure 5.3-3 an optimisation is

possible if the identifier bits are grouped into 16 bit tuples ahead of a group of 16 com-

pression patterns within the data stream. The advantage is a byte aligned access to the

Chapter 5 - Data size reduction 107

data stream. The bit by bit shifting of the compressed data stream is not longer necessary

and acceleration of de-compression is possible.

Figure 5.3-3: LZSS Optimisation

Of course, optimisation of the discussed compression algorithm to get better compression

ratio might be possible. But this requires some additional research with focus on algorithm

optimisation. The scope of these research activities was on data transfer acceleration

based on data size reduction for embedded systems. Nevertheless, as a conclusion each

compression algorithm and its optimisations have to be proofed, if it fulfills formula 5.3-1

and if the resource requirements are within tolerable boundaries.

5.4 Differential file

Another method to compress data for their transmission is to transmit only the differences

of two files. This approach is used within PC operating systems. Microsoft, for example,

uses the Binary Delta Compression (BDC) technology to “reduce the download size of

software update packages for Windows operating systems” [Pot05]. The aim is to create

“smaller software update packages that require less time and network bandwidth to install”

[Pot05]. The BDC compression ratio could be significantly higher than all other file com-

pression approaches54.

54 BDC compression ratio: 10:1 up to 1.000:1. It depends on the real differences of two files and
their size [Pot05].

Chapter 5 - Data size reduction 108

Embedded system’s software bug fixing is an issue f or differential file update

One reason for re-programming embedded software is bug fixing. In most cases embed-

ded software does not change completely when fixing a bug (e.g. changing a value of a

constant or some parameters within a characteristic curve etc.). As a percentage of the

total volume of an application the source code modifications required and the resulting

OP-code changes, required for bug fixing is often very small. Typical errors in the source

code like wrong exit conditions in loops or wrong statements for a comparison are only a

few characters. Changes in characteristic curves implemented as arrays covers only a few

bytes, too.

Thus an assumption that 80% of bug fixings result in less than 1 kByte OP-code changes

and 20% in more than 1 kByte is a realistic figure. As a result of this assumption only a

few bytes within a memory sector or partition needs to be changed.

Figure 5.4-1 depicts the small OP-code difference within a software partition.

Figure 5.4-1: Modified Op-Code in case of bug fixing

5.4.1 Analysis

Method

The method of differential file calculation seams to be very simple. The difference be-

tween the old file and the new file is calculated. This differential file is transmitted to the

ECU. In the ECU’s memory the old file is stored. With the received differential file and the

available old file the new file could be re-calculated. Figure 5.4-2 depicts the differential

file process. Of course, mapping that approach to the embedded world suggest a strong

reduction of data to be transmitted. But here some additional environmental requirements

have to be taken into account to benchmark that method.

Chapter 5 - Data size reduction 109

Figure 5.4-2: Differential file update

Embedded system’s flash memory impact

The Flash memory technology characteristics are described in section 2.2.2. Due to those

facts, some impacts occur and some restrictions are given to the differential file update

method:

1) Flash memory cells can not just be overwritten. The memory cell has to be erased

previously before the new information can be programmed.

2) Flash memory can not be erased byte-wise. Typical Flash memory devices provide

micro pages, blocks or sectors. These are consecutive ranges of several memory

cells. The size of such a memory block depends on the flash memory technology

and the overall flash memory size. Depending on the fact of 1) usually such a

complete block must be erased and reprogrammed even if just one bit within that

memory area hast to be changed.

3) In contrast to the PC world where software is stored file oriented and virtual

addressed, the embedded system’s microcontroller work physical address

oriented. Typically memory access to operation code elements (e.g. variables or

arrays in RAM, OP-code or constants in Flash, jump’s target addresses) is in

relative address mode (basic start address and offsets). Within the PC world a

single file can be changed and the memory managing system is able to allocate it

on a free memory space if the new file is expanded. A microcontroller provides

neither a memory managing system nor that much memory to squander memory

space. This is why during the embedded software generation process all source

code elements (e.g. in C-language: functions, arrays etc.) are linked consecutively

without any larger gaps within the address space. Consequently, if a routine

expands all other compiled elements will change the allocation address. In that

Chapter 5 - Data size reduction 110

case the differences between a previous file and a new compiled and linked file will

be quite high while the source code changes are only a few lines of code.

Issue 1) and 2) are microcontroller’s internal reprogramming process optimisations.

Issue 3) requires a change within the typical software generation process to generate the

final output binary file (INTEL-Hex-Record55 or MOTOROLA S-Record56).

Figure 5.4-3: Differential file update

To be able to reduce the differences of the embedded software files it is necessary to

allocate all the software parts always on the same position (address). In that case also the

correct functionality because of microcontroller’s memory access by relative addresses is

guaranteed. This requires a fixed linking concept as depicted in figure 5.4-3. If this is not

guaranteed the smallest possible difference of both files can not be calculated. However,

a link process with fix addresses can be implemented by different approaches.

1) A fix position for at least each source code module (e.g. c-file, object-file etc.) must

be configured within the linker command file.

2) Best results provide the fix allocation on source code function level. Here each

function or array etc. is allocated on a fix position.

55 INTEL Hex Record: Hexadecimal object file format initially for the Intel-architecture based micro-
controllers [Int88].
56 MOTOROLA S-Record: Hexadecimal object file format initially for the MOTOROLA 6800 archi-
tecture based microcontrollers [Mot92].

Chapter 5 - Data size reduction 111

If these environmental requirements have been taken into account, the abstract sequence

to reprogram flash memory by differential file updates can be processes as listed below:

a) The flashloader identifies the memory section that includes the requested byte(s)

that shall be changed.

b) The flashloader copies the complete memory section temporary into RAM. This

requires that the microcontroller provides enough additional RAM for this step.

c) The flashloader overwrites the old byte value by the new byte value transmitted via

the differential file.

d) The flashloader erases the original memory section within the Flash memory.

e) The flashloader programs the new values from RAM into the Flash memory sector.

Step b) and c) could be done within the copy process to optimise runtime. If not enough

RAM is available, the microcontroller shall provide an additional, usually unused Flash

memory sector for the copy process. This solution is less powerful than the RAM access

method, but in some cases this might be the only possibility.

The differential file structure can have equal structure as the currently given INTEL-Hex-

Record or MOTOROLA S-Record file. Within both file types address information and the

corresponding data of the identified differences can be stored.

5.4.2 Discussion

Differential file update is a very strong approach to accelerate data transfer as well as the

total reprogramming process. The performance depends on the differences of the initial

file and the new file and on microcontroller’s memory technology.

Microcontroller aspects

The internal mechanisms are complex to reprogram a differential file to the Flash memory

by a flashloader. It requires large RAM resources to copy the initial, currently active code

from Flash memory’s internal section. Because of the Flash memory’s restrictions (previ-

ously erase process before programming) this step is necessary to overwrite the corre-

sponding positions with the new data values in RAM. But if sufficient RAM is available and

the memory micro pages are small enough the total reprogramming time could be re-

duced significantly.

Memory space vs. cost aspects

A disadvantage of this new method that has to be discussed is the necessity of gaps (free

memory spaces) in between the different source code elements for further use. These

gaps have to be included if code elements will enlarge in the future. The granulation opti-

mum has to be set individually and could be on programming language object

Chapter 5 - Data size reduction 112

level (c-functions, arrays etc.), on source code module level (c-file or object file) or func-

tionality level (communication stack, driver software, sensor software etc.). On the other

hand this expands the total file size and initially requires more memory space on micro-

controller’s memory device. As discussed in chapter 1 automotive microcontroller provide

strong memory resource restrictions. Hence, the commercial relation of higher costs for a

larger memory vs. reprogramming time and cost reduction has to be taken into account.

Because of that cost pressure the break even point of this solution has to be calculated

individually. Also the final risk is always given, that the gap is too small for the necessary

changes and therefore, the complete memory section changes.

Stringent version and compatibility control managem ent

Especially within the automotive industry a stringent version and compatibility control

management are required because software on a car is only reprogrammed if it is in a

repair shop. Because of the large service intervals of modern vehicles it might be possible

that several software versions are in between the current vehicle software and the current

OEM software.

MRAM technology

As written above, today’s established Flash memory technology provides the elementary

disadvantage that a byte-wise erase and write access is not possible.

With focus on differential file updates the erasing of complete physical memory sectors is

required and a complete writing of those sectors is the consequence. However a real

improvement will be possible if the established flash memory technology in currently

available microcontrollers is replaced by the new MRAM technology (Magnetoresistive

Random Access Memory). In contrast to other memory technologies MRAM semiconduc-

tors store the information not by electrical, but by magnetic load elements..

In chapter 9 a short introduction as well as a discussion to benefits of this new memory

technology is given. Until today there are no experiences with MRAM based microcontrol-

lers because those systems are not available. However, the theoretical discussion of

MRAM depicts the high potential of that memory technology (refer to appendix A).

5.5 Conclusion

There are several approaches for data size reduction with the aim to reduce data transfer

time and as a result reduce total reprogramming time. However, the methods provide

significant differences with focus on automotive usage.

Chapter 5 - Data size reduction 113

Theoretical case study to compare the approaches

The power of the different approaches is compared by a theoretical case study based on

the following assumptions and on typical data for an ECU that processes complex control

assignments, e.g. diver assistance systems:

Assumption:

Total file size: 32 MByte

Modified OP code size: 1 kByte

Memory partitions: 2 (results in 2 x 16 MByte)

Compression ratio: 75%

CAN Payload: 8 Byte / PDU (no transport protocol etc.)

Approximate frame length: 123 bit (11 bit CAN Identifier)

CAN bit rate: 125 kbit/s, 500 kbit/s, 1 Mbit/s

The data transfer time tTransfer is calculated by formula 4.5-1. Additional protocols have not

been taken into account at this quantitative method comparison. The aim is to illustrate

the power of the different approaches.

bitrate
1

hFrameLengt
Payload

DataVolume
t transfer ⋅⋅= (5.5-1)

Table 5.5-1 depicts an overview of the data transfer time on different CAN bus systems.

Table 5.5-1: Data transfer time via CAN

Data Transfer Time on CAN unit
125 500 1000 kbit/s

Original file (complete) 32 MByte 4127.2 1031.8 515.9 s
Compression (-25%) 24 MByte 3095.4 773.8 386.9 s
2 Partitions 16 MByte 2063.6 515.9 257.9 s
Partitioning and
Compression

12 MByte 1547.7 386.9 193.5 s

Differential File 1 kByte 0.1 0.031 0.016 s

Description File Size
(Data to transmit)

Table 5.5-1 depicts that if only the differences of two files will be transferred the data

transfer time is significantly reduced compared to conventional data size reduction meth-

ods e.g. partitioning and compression. The data transfer time is a function of the data size

to be transmitted. The experiment depicts the power of the differential file transfer ap-

proach. Of course, the model is simplified and additional overhead of upper layer proto-

cols, additional processing delays, the erase time and the programming time will decrease

the performance. Nevertheless, these performance reduction parameters are similar to all

approaches.

Chapter 5 - Data size reduction 114

Effort vs. data size reduction

Especially the relation between effort and the typically possible data size reduction value

depicts those differences. Figure 5.5-1 depicts this relation in a diagram.

Figure 5.5-1: method’s complexity vs. typical data size reduction

Partitioning is from technical point of view a simple method and provides good data size

reduction results in a very special case. Transfer time reduction is given if at least one of

these partitions is not reprogrammed. If all partitions shall be reprogrammed no benefit is

given by this method. The ECU’s internal implementation of partitioning is simple. On the

other hand the effort for compatibility management of the different partitions is increasing

because the software compatibility of the different partitions has to be verified.

Skipping fill bytes is the easiest way to reduce data because this can be configured for

embedded software’s linking process. But that method is less powerful. In the worst case

the fill byte separation will result in a longer reprogramming time because the transfer of

the gap addresses during the reprogramming process requires more time than the contin-

uous data transfer inclusive the fill bytes.

The power of data compression algorithms is limited by the given microcontroller re-

sources as well as the fact of only lossless methods can be used. Especially the RAM

limitation avoids the usage of dictionary based algorithms. Compared to the other meth-

ods the effort for implementation and the off-board processes is high.

Differential file update could provide best results for data size reduction. However, this is

only possible if the software development process is modified for that approach. The

necessity of fixed module start addresses to avoid a general address offset for the whole

code requires more memory, which results in higher costs. On the other hand if several

megabytes of binary code could be reduced to a few bytes the time benefit is very high.

The break even point of cost benefit relation for that method has to be evaluated individu-

ally for an ECU. Nevertheless, with focus on the continuously increasing automotive soft-

ware sizes this method might be the best solution to solve the timing problems in future.

Chapter 5 - Data size reduction 115

Only by a size reduction of 90% and more, acceptable reprogramming times will be possi-

ble. Additionally, this method can be combined with all other discussed methods.

Outlook

The next evolutionary step in embedded memory technologies will be Magnetoresistive

Random Access Memory (MRAM). The advantages of MRAM based systems are quite

evident. The main advantages of MRAM vs. Flash memory technology with a focus on

reprogramming activities are the byte-wise access and the possibility to overwrite data

without an initial memory erase phase. Then reprogramming by the differential file ap-

proach will become the best solution, because the implementation of ECU’s internal data

handling looses complexity. Due to the reduced amount of data to transfer, the data trans-

fer time and the physical programming time could be reduced significantly (refer to

appendix A).

6 Microcontroller Hardware

Optimisation

Content

6.1 Memory status information 116

6.1.1 Analysis .. 117

6.1.2 Discussion .. 119

6.2 Doubling interrupt vector tables 121

6.2.1 Analysis .. 121

6.2.2 Discussion .. 122

6.3 Conclusion 123

Within this chapter approaches are discussed to accelerate the physical memory

programming process on an electronic control unit (ECU) by implementing functionality in

microcontroller’s hardware rather than in software as it is currently done.

The main advantage of a hardware implementation in contrast to a software implementa-

tion is the concurrent execution. Software implementations are typically organised in tasks

and interrupts. The operating system schedules the tasks within a task cycle time. Task

activities, e.g. calculations, communication processing etc., can only be executed if the

task is active. If the task is inactive, e.g. in case an interrupt task is executed, a delay for

the activity occurs. By an implementation in hardware neither task time nor interrupt

runtime are required. The action can be executed concurrently to other hardware or soft-

ware operations.

6.1 Memory status information

An implementation of a memory status information register within microcontroller’s

hardware provides trustable information about the current memory state (erased or

programmed). Based on this information it is possible to accelerate the reprogramming

Chapter 6 - Microcontroller hardware optimisation 117

process. In case, an ECU is reprogrammed within the assembly line, the erase memory

step can be skipped, if the memory status signals an erased memory.

6.1.1 Analysis

ECU’s functionality is the summary of hardware functionality (e.g. periphery elements like

drivers, actuators, sensors etc.) and the corresponding software functionality to handle the

hardware. Differentiations in functionality will be solved by different ECU software

because different hardware variants (e.g. non-placement of components etc.) are too

expensive. Hardware variations split the number of equal parts and therefore increase the

hardware costs per part. A good illustration is an engine control module (ECM). Typically

an engine will be integrated into several vehicle model lines. The ECM software

implements the individual adaptation between engine, gear box and the corresponding

vehicle but the hardware is always equal.

Finally, an ECU is always a combination of hardware and software parts and these

combinations result in individual ECUs (variants). Nevertheless, the point in time when the

combination is executed (ECU variant setting) has a deep impact on handling as well as

on the final costs and process complexity.

Reduction of hardware / software variants

The cost pressure within the automotive industry requires optimisations within the ECU

variation building process. Figure 6.1-1 depicts the different possibilities.

Figure 6.1-1: Early variant building vs. late variant building

If the ECU variant is built within ECU manufacturer’s assembly line (early variant setting),

the different ECU types have to be handled during the complete logistic process

(e.g. ordering, delivery etc.) for manufacturing as well as for the after sales market spare

parts. Therefore, a trend is visible in an increasing manner: ECUs won’t be delivered fully

programmed to the OEM’s production line. Especially for those ECUs with many software

variants, the tendency is to deliver them without application software (only with

flashloader) to the OEM and program them within the assembly line during vehicle’s

Chapter 6 - Microcontroller hardware optimisation 118

manufacturing process (late variant setting). The advantage of that approach is to reduce

hardware / software combination variants. In consequence this results in a lean logistical

process starting from the ordering process up to the allocated area for material boxes on

the assembling line because only one (hardware) part has to be handled instead different

ECUs for all combinations. The probability to produce an error vehicle because of a wrong

ECU selection during manufacturing process is reduced, too.

An equal effect is visible for the after sales market spare parts. For late building variants

only the hardware parts must be stored in the central logistic centres. In contrast to the

early set variants of hardware and software combination this method requires less

different stock grounds.

Skipping the “ erase memory” process

Unfortunately, the currently used microcontroller’s flash memory technology requires the

erasing of a flash memory cell before the cell can be programmed (refer to section 2.4).

Especially for microcontrollers with large memory this behaviour results in a long erase

time. Table 6.1-1 depicts the erase time for Infineon’s TC1197 microcontroller [TC1197].

Table 6.1-1: Infineon TC1197 Flash Parameter [TC1197]

Chapter 6 - Microcontroller hardware optimisation 119

The Infineon TC1197 microcontroller provides currently 2 MB on chip flash memory bank

[TC1197-1]. It results in a total erase time of 40s57. If the late variant building process is

used, the ECU is delivered without the specific application software only with the

flashloader software to process reprogramming. If trustable information about the current

memory state is available the erase process can be skipped, if the ECU’s memory is

currently erased. The initial erase process can be done either by the ECU supplier or by

the microcontroller manufacturer.

Optimisation in case of programming process restart

The implementation of a memory state monitoring system enables additional possibilities

to accelerate the reprogramming process: In case a currently executed reprogramming

process is interrupted, e.g. by a communication interruption, it is not necessary to erase

the complete memory again. If the flashloader is able to inform the PCU about the last

successfully programmed sector, the PCU could restart programming process at exactly

that position. Depending on the instant of interruption time, this approach will reduce the

process time of the second programming sequence.

6.1.2 Discussion

To store the memory status of a physical memory sector58 a single bit is sufficient (sector

erased / not erased). It should be stored within non volatile memory.

Software approach

A first approach is to monitor the memory status by software and store that information

within a non-volatile memory (NVM), e.g. an EEPROM. If the memory sector is completely

erased, the corresponding flag shall be modified within the NVM. If the first memory cell is

programmed within that memory sector, the flag shall be modified again. However, this

simple implementation provides some disadvantages:

(1) If the microcontroller has been changed the memory status information might be

wrong. At least it is fortuity, if the values will match.

(2) If the EEPROM’s bit will toggle because of ageing or environmental influences the

status will not be correct.

In both cases a reprogramming of a not erased memory is possible. In good case some

memory cells will not have the required state (logical ‘1’ or ‘0’). This will be detected by the

memory check, e.g. by calculating a CRC sum. In worst case all cells provide the required

57 2048 kByte total size / 256 kByte sector size = 8 sectors � 8 x 5 sec = 40 sec.
58 Current available Flash memory supports only erasing of complete sectors.

Chapter 6 - Microcontroller hardware optimisation 120

value but the programming quality is not good enough to fulfil the data retention time59

(“i.e. the time after which stored data can still be retrieved” [TC1197]) as specified in the

data sheet. In that case the memory cell will loose the programmed value over the years.

(3) If one of the components was changed a software implementation could check the

memory cells to synchronise the corresponding status. Unfortunately it is not

possible to detect whether $FF60 was programmed or the cell has $FF as its initial

erase state. A sector with $FF cell values could not unambiguously be detected as

erased.

Hardware approach

Another approach is to handle the memory status information in hardware61. The

microcontroller’s memory control unit implements a register with read-only access. For

each memory sector a corresponding flag exists that is updated each time the sector is

either completely erased or the first memory cell is programmed. Figure 6.1-2 depicts an

abstract overview of a memory status information register implementation in hardware.

The main advantage is that the information is more trustable than a simple software

solution.

Figure 6.1-2: Memory Status Information Register

59 Data retention for currently used flash memory cells is up to several years. For Infineon’s micro-
controller TC1197: min. 20 years (refer to table 6.1-1).
60 Hexadecimal nomenclature: $FF represents ‘1111 1111’ in binary nomenclature
61 Submitted for patent: IP-Number P813194/DE/1 (06.10.2008) – Document Number 1455555 by
Ralf Schmidgall / Daimler AG

Chapter 6 - Microcontroller hardware optimisation 121

6.2 Doubling interrupt vector tables

“In computing, an interrupt is an asynchronous signal indicating the need for attention

(…)” [wikipe]. Hardware interrupts are typically triggered by events within the hardware

like the reception of a PDU at the communication interface or an expired hardware timer.

If an interrupt occurs the microcontroller suspends the current software execution and

starts the interrupt service routine (ISR) execution. If the ISR has been finalised, the

microcontroller continues the normal software execution. Interrupts are a powerful

approach to react very fast to hardware or software events. With focus on software

reprogramming typical events are the reception of data on the communication interface or

internal timers that have expired. Especially for concurrently executed work (e.g. data

decompression etc.) interrupt managed software execution provides execution speed

benefits. Nevertheless, today’s typical microcontroller hardware is not able to select

different interrupt services depending on a currently active software mode like application

mode or flashloader mode. This selection has to be done by software and therefore

requires code size and runtime. A selection of different interrupt service routines based on

the currently active software mode directly by the microcontroller’s hardware will provide

some advantages.

6.2.1 Analysis

Today a microcontroller supports only a single interrupt service routine vector table. This

table stores the start address of the corresponding interrupt service routine that shall be

executed if the interrupt of the corresponding interrupt source occurs. If the ECU software

is divided into different functional parts which are not concurrently active (e.g. application

mode or flashloader mode), multiple ISR are necessary.

Figure 6.2-1: Single ISR vector table vs. multiple ISR vector tables

Chapter 6 - Microcontroller hardware optimisation 122

Software approach based on single ISR vector table

An approach to solve the problem is the implementation of an additional ISR jump table.

Figure 6.2-1 depicts the general software based method for a single ISR vector table

system.

For each ECU mode different ISR are implemented. The base address of each ISR

allocated in the different, mode specific areas (application or flashloader) is stored within

an additional ISR jump table. The base address for the ISR selection within the jump table

is stored in the ISR vector table. The execution of an interrupt is processed in the

following manner (refer to figure 6.2-1):

1) An interrupt source (e.g. a communication interface etc.) initiates an interrupt.

2) The microcontroller hardware selects the corresponding base address of the ISR

jump table entry.

3) Within the ISR jump table the corresponding start address of the ISR is selected

depending on the currently active ECU mode.

4) The ISR is executed within the currently active software.

Hardware approach based on multiple ISR vector tabl es62

The support of multiple ISR vector table requires a table selection mechanism

implemented in microcontroller’s hardware. In that case today’s typically implemented ISR

selection mechanism is still usable. The ISR selection mechanism is working in the

following manner (refer to figure 6.2-1):

1) After microcontroller’s basic initialisation the currently active ECU mode is set in a

table selection register. The ISR vector table is allocated in the memory section of

the corresponding ECU mode’s software.

2) An interrupt source (e.g. a communication interface etc.) initiates an interrupt.

3) The microcontroller hardware selects the corresponding base address of the ISR

vector table based on the ISR table selection information.

4) Within the ISR vector table the corresponding start address of the ISR is selected

and the corresponding ISR is executed within the currently active software.

6.2.2 Discussion

Today ISR selection by hardware is state of the art for all microcontrollers. The innovation

is the selection of different ISR vector tables based on an additional selection

62 Submitted for patent: IP-Number P813195/DE/1 (11.10.2008) – Document Number
102008051390.3 by Ralf Schmidgall / Daimler AG

Chapter 6 - Microcontroller hardware optimisation 123

information which is processed in hardware. Of course, the software solution will also

work but the hardware approach provides some benefits.

ISR vector table allocation

If only one ISR vector table is available and shall be used by both software parts

(application and flashloader), this basic ISR vector table has to be allocated within the

flashloader memory area. This is necessary to guarantee functionality also if no

application software is programmed (refer to figure 6.2-1).

Programming flexibility

The software solution provides less flexibility for the software development process. If an

ISR start address for the application software moves by any reason, new Flashloader

software is necessary to modify the ISR address within the jump table. The hardware

approach solves that problem. A re-allocation of the ISR results in a new address value of

the ISR vector table which is also part of the application software. Hence, all relevant

address information are allocated within the same memory space.

Execution speed

The software solution requires a two jump strategy to execute an ISR. This might be a

runtime disadvantage (or problem) for critical software where a very fast reaction to an

event is required (e.g. airbag activation etc.). If the ISR selection is executed by the

currently available hardware mechanisms, the address evaluation (ISR address vector) for

the interrupt processing is very fast by direct register access. The selection of the second

ISR vector table is done by adding an offset to the basic ISR vector table address.

6.3 Conclusion

With focus on ECU’s embedded software reprogramming process the above discussed

hardware solutions provide two advantages compared to the corresponding software

implementations: 1) higher signal or information integrity and 2) higher execution speed.

Signal integrity

If erasing the memory is not necessary during a reprogramming sequence (refer to sec-

tion 2.4), skipping this erase process results in a total reprogramming time reduction of

several seconds. The decision to skip or to execute the erasing process is based on the

memory status information. A misinformation will have important effects because micro-

controller’s memory retention time can not be guaranteed. Hence, if this information is

provided by microcontroller’s memory hardware, it might be a more trustable information

than a software implementation, because the possibility to falsify the signal is reduced.

Chapter 6 - Microcontroller hardware optimisation 124

This is also correct for the interrupt source detection in hardware and a direct jump to the

ISR vector table.

Execution speed

With focus on software reprogramming the direct effect of the increasing execution speed

is small because there are only a few time critical activities. Nevertheless, the benefit of

hardware interrupt usage is visible because this provides the possibility to do concurrent

activities, e.g. data reception via communication interface and decompression of the

previously received data block.

Potential for increasing performance

The potential to speed up the reprogramming process of both discussed approaches is

quite different. Also the effort to implement the discussed approaches is significantly

different, too. As discussed in chapter 1, cost pressure within the automotive area is high

and therefore the relation between potential vs. effort has to be discussed, too.

Figure 6.3-1 depicts the relationship.

Figure 6.3-1: Potential vs. effort of hardware implementation

The memory status information provides high potential but requires high effort. If not only

the memory status, but also the conditions to guarantee data retention shall be analysed,

the effort is quite evident. On the other hand, a trustable signal will accelerate the erase

process.

The effort to implement multiple ISR vector tables seems to be low because a simple

offset to the address calculation might be sufficient. The offset addition is based on the

information about the currently active software. On the other hand, the potential for

process acceleration is smaller. Nevertheless, the implementation in hardware provides at

least a simplification of the flashloader software and reduces software’s complexity and

therefore the possibility to make mistakes.

7 Network architecture

Content

7.1 Introduction 127

7.1.1 Networking issues ... 127

7.1.2 Network types ... 128

7.2 Routing nodes (Gateways) 129

7.3 Routing strategy 130

7.3.1 Analysis .. 130

7.3.2 Discussion .. 131

7.4 Conclusion 135

7.4.1 Routing strategy .. 135

7.4.2 Network design ... 136

7.4.3 Summary .. 139

This chapter is intended to discuss the influence of the network elements on the total

reprogramming process performance.

Typical vehicle networks are organised depending on the different functionalities that are

necessary within a modern car. The global network is divided into several domains (refer

to figure 2.1-2). Each domain encapsulates special vehicle functionalities like power train

systems, infotainment systems, driver assistance systems etc. The ECUs within a domain

communicate via a bus system that fulfils communication requirements to solve the do-

main specific functional assignments sufficiently, e.g. via low speed CAN within the com-

fort or body domain, via FlexRay for driver assistance and regulation systems etc. The

domains are coupled by gateways. If ECU’s signal is necessary within another domain,

the gateway is routing that signal into the corresponding domain.

Chapter 7 – Network architecture 126

In the past, CAN was the established automotive bus system. The different domains

differed only by the used CAN bandwidth. Due to the smaller number of ECUs within a car

in the past, networks were flat and the different domains were decoupled by only one

gateway. Of course, software reprogramming was also an issue in the past, but because

of the smaller software size the resulting reprogramming time was not critical. Today

vehicle networks are quite complex for several reasons:

The vehicle functionality has been increased during the last years. Due to that the number

of ECUs has been increased and the communication demand increased, too. Sub-

networks have become necessary to handle the communication’s bus load and to guaran-

tee stable communication. The sub-networks are coupled by gateways.

Due to new innovative functionality the requirements on data communication have been

increased, too. For complex driver assistance systems, busses with guaranteed latency

times are necessary. FlexRay was established for regulation systems.

Due to the cost aspects as discussed in chapter 1 the same network is used for software

reprogramming purpose as for normal vehicle system’s functional communication. Unfor-

tunately the dedicated bus systems, that solve ECU application software’s functional

communication requirements, are not optimised for software reprogramming aspects. This

topic was discussed in chapters 3, 4 and 5, where possibilities were discussed to acceler-

ate data transfer on field bus systems.

During the software reprogramming process, the PCU and the ECU are exchanging data.

If both components are directly interconnected, the reprogramming process performance

depends on a) PCU’s bus access performance, b) ECU’s bus access performance and

c) the bandwidth of the communication link (performance of the protocol stack). In case

the ECU is part of a network and more than two (field) bus systems are part of the com-

munication link between PCU and ECU, the performance of that network also has to be

taken into account. In that case an overall communication link has to be divided into

several sub-links on the corresponding (field) bus systems which are connected by

coupling (routing) nodes like bridges or gateways. Thus, the overall communication

performance and therefore the reprogramming process performance depends on a) the

bus access performance of the PCU and the ECU, b) the different bus systems’ band-

width (performance of the protocol stack) as well as c) the data routing performance of the

routing nodes.

With focus on ECU’s application software reprogramming the network performance has to

be analysed, because data routing delays are delays in data transmission and enlarge the

overall reprogramming process (refer also to appendix B) [Sch10].

Chapter 7 – Network architecture 127

7.1 Introduction

The term “network” defines the physical interconnection of two or more nodes (e.g.

ECUs). A.S. Tanenbaum et al. define that “two computers are said to be interconnected if

they are able to exchange information” [Tan10-1].

As discussed in chapter 1 the design of today’s automotive networks is driven by require-

ments for application’s functional communication and costs. Software reprogramming

aspects have not been an issue in the past. Due to increasing ECU’s software and the

resulting extension of reprogramming times with increasing costs reprogramming aspects

become more interesting. Now the communication network components as a part of the

communication link between PCU and ECU have to be analysed and discussed with the

aim to accelerate data transfer. Derived from the analysis, design rules for future automo-

tive network design are possible to fulfil ECU’s application function communication as well

as ECU’s software reprogramming.

7.1.1 Networking issues

In [Cou01-1] James Coulouris et al. define the following network issues: performance,

scalability, reliability, security, mobility, quality of service and multicasting. With the inten-

tion of reprogramming automotive ECUs and data transfer acceleration within an automo-

tive network only performance and reliability are important. Scalability is an independent

design issue, mobility is not in focus for automotive networks and security is currently not

relevant for data transfer acceleration. Security aspects will become an issue for software

reprogramming if secured data transfer, i.e. encrypted data, is required and the data

encryption results in additional protocol overhead that reduce the net data transfer ratio.

The quality of service is given because if the ECU is reprogrammed, the Flashloader has

only the assignment to reprogram the ECU and therefore multicasting is not necessary.

Performance

The performance parameters of primary interest were those affecting the data transfer

speed: data transfer rate and latency [Cou01-1].

Data transfer rate and the influencing factors (Protocols etc.) are discussed in chapters 3

and 4. The latency is discussed here and is visible as the time delay for transmitting re-

ceived messages from a source bus system to a target bus system.

Reliability

Reliability of networks based on automotive field bus systems is typically given and not a

problem. Communication failures usually occur due to receiver’s or sender’s application

software (e.g. protocol implementation, buffer handling etc.) rather than network errors.

Chapter 7 – Network architecture 128

For example, CAN or FlexRay implements complex CRC to identify bit errors within the

data stream.

7.1.2 Network types

For embedded systems an “embedded network” couples at least two field bus systems.

Two different network types are classified: homogeneous networks and heterogeneous

networks. Figure 7.1-1 depicts an overview.

Figure 7.1-1: Network Classification

Both network types have some characteristics which have a significant impact to the

network performance.

Homogeneous Networks

Homogeneous networks couple equal bus types. With focus on embedded systems, that

means equal field bus systems (refer to section 2.5.1). Within homogeneous networks it is

possible to route a PDU directly on ISO/OSI reference model layer 3 (refer to figure 7.1-1).

This is possible because the network layer PDUs have an identical format and therefore

only address information have to be analysed. A PDU received from a source bus system

could be send without further activities or PDU modifications on layer 3 or upper layers on

the target bus system.

Heterogeneous Networks

Heterogeneous networks couple different bus types. In the context of embedded systems

that means different field bus systems (refer to section 2.5.1). Because of unequal net-

work layer PDUs (e.g. different number of payload, different address methods etc.) the

data (SDU) have to be received completely (i.e. reassembled on layer 4 – transport layer)

before a new transmission on the other bus system can be initiated. Hence, routing is

placed on ISO/OSI reference model layer 4 (refer to figure 7.1-1).

Chapter 7 – Network architecture 129

7.2 Routing nodes (Gateways)

There is no uniform naming convention for routing elements. Within embedded systems

(especially within the automotive area) network coupling elements are always named as

gateways because they are able to decide whether a message or signal from a sender

must be routed to another bus system or not. The term router, as known from PC net-

works, is typically not used in the automotive area. In [Zim10-13] W. Zimmermann and

R. Schmidgall classified three different bus coupling elements: (1) transceiver for the ECU

bus access, (2) repeater to enlarge the physically length limits of a bus system (e.g.

FlexRay star or coupling of truck and trailer bus systems) and (3) gateways. Nevertheless,

automotive repeaters are typically implemented as gateways because in many cases not

all signals and messages63 are transferred to the other bus systems or domains. Hence, a

selection method is implemented to process a kind of selective routing. For the following

discussion a more detailed definition for gateways is necessary. A possible differentiation

criterion is the highest layer (refer to figure 7.1-1), on which routing will be performed.

Hence, we distinguish between layer-3-gateways64 and layer-4-gateways to classify the

routing strategy. Within the AUTOSAR layered software architecture routing is always

executed by the PDU-Router (PduR) module, but on top of different layers (refer to

figure 7.2-1).

Figure 7.2-1: Routing within the AUTOSAR layered software architecture

63 Within a modern vehicle several thousand signals and messages are emitted by the ECUs’
application software. But not all signals are relevant for all other ECUs in all domains. For gateway
configuration only the signals for a receiver from other domains are relevant. For example, the
ignition status (on/off, clamp 15 or clamp 30 etc.) as well as the speed signal are important infor-
mation for all ECUs and are therefore routed into all domains. On the other hand internal signals of
the power train domain are not relevant for the body domain and are therefore blocked and not
routed.
64 Within the automotive industry the differentiation between layer 3 and layer 4 are not always
clearly structured. Because of resource limitations, implementations for embedded systems have
combined both layers (refer to chapter 3). The CAN transport layer protocol as defined in
[ISO 16765-2_3] specifies the mapping of network layer PDUs. Nevertheless, the basic idea is to
route ahead of layer 3. That means that only address aspects have to be taken into account but not
protocol control information (PCI).

Chapter 7 – Network architecture 130

7.3 Routing strategy

Depending on the coupled network types different routing strategies are required.

Figure 7.3-1 depicts an overview.

Figure 7.3-1: Routing strategy

7.3.1 Analysis

Typically routing within networks is basically the problem of finding the shortest path be-

tween two nodes. Many of today’s common algorithms are based on the shortest path

algorithm published by R.E. Bellman [Bel57] and the algorithm for large networks pub-

lished by Ford and Fulkerson [For62]. Compared to typical problems of routing information

through LAN networks or the internet, the problem within automotive networks is very

simple. Especially for software reprogramming purpose the network aspects could be

significantly simplified: (1) the connection links are stable, i.e. not floating, and (2) there is

exactly one way for the diagnostic connection link, i.e. there are no alternative possibilities

to establish a communication link from the PCU to the ECU and vice versa. Hence, no

complex algorithms are necessary to calculate the best path because there is only one.

Therefore, for automotive networks the routing problem is reduced to the question of how

fast received data can be processed and transmitted onto the target bus. But here the

routing strategy has a significant influence on the routing performance.

Direct routing (routing “ On-the-fly”)

Chapter 7 – Network architecture 131

Within the direct routing strategy a received PDU is immediately processed and routed

from the receiver side to the sender side. The PDU is neither analysed nor modified. The

PDU is only copied to the transmission buffer.

This method is possible if the physical bus systems on receiver and sender side are equal

(same type), e.g. CAN to CAN routing. In that case the network layer PDUs are equal on

both bus systems and the network-layer-gateway or layer-3-gateway can copy the PDUs

without further activities. Protocol conformity is given by FIFO65-buffers for the PDUs on

transmission or sender side.

Within the automotive industry the term “routing-on-the-fly” was introduced for layer-3

routing. In the normal communication or network terminology of network nodes this is

typically done by a simple repeater but if there are other PDUs in the network which are

not routed to the other connected bus systems, a selective routing is given and therefore it

is a layer-3-gateway. Figure 7.3-1 depicts an abstract view to that routing mechanism.

Store and forward

Compared to a layer-3 gateway a layer-4 gateway is necessary if the physical bus sys-

tems differ (e.g. CAN to FlexRay routing). In that case the network layer PDU can not be

simply copied to the transmission buffer because typically the network layer PDUs are

different. Hence, a routing is possible only on the top of layer 4 (transport layer). As a

consequence the complete transport layer protocol has to be processed on the receiver

side. If the layer 4 SDU is completely received the routing process can be executed and

the SDU is transmitted via target bus system’s transport layer protocol. In that case the

differences on the network layer are not relevant.

7.3.2 Discussion

Due to the coupling of different networks different routing mechanisms are necessary and

different strategies are possible. As discussed in section 7.1.1 routing performance is an

important criterion for gateways and has a significant impact for data transfer acceleration

and reprogramming performance.

Performance

A gateway’s routing performance within a network can be calculated as the time which is

necessary to forward data received on a source bus system to a target bus system.

Figure 7.3-2 depicts an abstract overview.

65 FIFO… First In First Out – A mechanism for data buffering within a queue.

Chapter 7 – Network architecture 132

Figure 7.3-2: Routing performance

The routing performance is calculated as

StartEnd tt
LengthData

ePerformancRouting
−

= (7.3-1)

For the routing performance discussion and the comparison of routing strategies it is

assumed that source and target bus systems have equal bandwidths. In that case

figure 7.3-2 depicts that a direct routing strategy on layer 3 has a higher performance

because the delay based on routing processing is very short. Store and forward strategies

require more time because data reception on layer 4 and therefore the complete transport

layer protocol handling has to be finalised until routing could be performed. After the sin-

gle routing step transport layer protocol handling for the target bus system is required. In

sum the time for reception on the source bus and transmission of data on the target bus

on a “store and forward routing” system is longer than on a “direct routing” system.

Resources

The different routing strategies also have an impact on the required gateway resources.

As depicted in figure 7.3-2 the CPU load for a “store and forward” mechanism is higher

than for a direct routing. This is because of the additional layer interaction between layer 3

and layer 4 and the processing of the transport layer protocol.

For data routing a buffer is an important resource. Routing on layer 3 requires buffer

especially if the bandwidth of the target bus system is less than the source bus system

(e.g. routing from CAN500kBit/s to CAN125kBit/s). In that case an adequate queue for the data

to transmit is necessary. Depending on the differences between the bandwidths the queue

Chapter 7 – Network architecture 133

depth could vary. For layer 4 routing a complete transport layer SDU must be stored

during data reception before routing can be processed. For CAN transport protocol

according to ISO 15765-2 this are 4095 bytes in maximum. For FlexRay communication

layer protocol according to ISO 10681-2 this are 65.535 bytes in maximum. For

communication in parallel those buffer sizes have to be allocated for each concurrently

active channel.

As illustrated in chapter 1 the cost pressure for automotive systems is high and therefore

resource management is an important issue. Due to that fact several hundred kByte of

RAM for routing buffers are not a realistic scenario. On the other hand the coupling of

different physical bus systems via layer 4 routing is state of the art. Hence, a combination

of routing strategies is necessary to reduce required RAM size for economic aspects and

fulfil the technical requirements for coupling bus systems via transport layers.

Partly store and forward

A partly store and forward approach reduces the demand for buffer resources, as well as

increases system’s performance in case a layer-4 routing is required. If a defined data

volume (threshold) is received, routing is processed. Figure 7.3-3 depicts the details.

Figure 7.3-3: Partly store and forward routing strategy

If the defined threshold value is less than the maximum possible SDU length of the

transport layer protocol, the required buffer resources could be reduced significantly. The

data flow on the source bus system has to be controlled by the transport layer protocol’s

flow control mechanism and depends primarily on the availability of a free buffer. On the

Chapter 7 – Network architecture 134

other hand, a smaller buffer (small threshold) results in more flow control PDUs (PDUs

without payload) and reduces performance.

The overall system’s performance is increasing if more than one buffer is available and

these buffers can be used alternatively. The number of different buffers depends on the

bandwidth relation between source and target bus system. This is necessary if the band-

widths of the source and target bus systems are different. The system has to be config-

ured in such a way that no additional delay or communication gap is visible on the slower

bus system. The relation is given as:

SourceBus

etBusargT
Bandwidth f

f
r = (7.3-2)

If the bandwidth of a source bus system does not equal the one of the target bus system,

the relation rBandwidth is not equal to 1 (rBandwidth ≠ 1). In that case two buffers are sufficient

because until the slower bus system has processed the first buffer (reception or transmis-

sion) the second buffer is processed by the faster bus system (transmission or reception).

In case both bus systems have an equal bandwidth, rBandwidth is equal to 1 (rBandwidth = 1). In

that case only two buffers are not sufficient. It is possible that a buffer is completely

processed before the other system has freed the other buffer (mutual exclusion principle).

Therefore a third buffer is necessary to provide a free buffer if the currently faster bus

system is requesting a new buffer. If no free buffer is available, the system has to interrupt

data transmission by flow control processing and continue later on. Figure 7.3-4 depicts

the ideal number of buffers.

Figure 7.3-4: Ideal number of buffers

The jitter and the resulting boundary for the step from two buffers to three buffers have to

be analysed for each gateway individually. It depends on internal criteria like

microcontroller performance, interrupt service processing runtime, task management etc.

and could not be calculated in a generic way.

Chapter 7 – Network architecture 135

“Store and forward” method vs. tunnelling method

Another approach known from the telecommunication industry is the tunnelling method. A

PDU from one system is integrated completely as payload (SDU) into the PDU of a

second system. For example, a CAN protocol stack’s network layer PDU is directly for-

warded to the FlexRay protocol stack’s transport layer. However this approach provides

only benefits if the target bus system that is tunnelled is (a) significantly faster than the

source bus system and (b) the source bus system is only a transfer bus where as the

destination node is a gateway. Typically automotive networks provide no mere transfer

bus systems and therefore tunnelling is not possible.

Cascaded sub-networks

Within an automotive network it is possible that more than two different networks are

coupled via gateways for a link between PCU and ECU. In that case data are packed and

repacked several times by the corresponding transport layer protocols. Maximum perfor-

mance is given if 100% bus load is processed on the slowest sub-bus system. The num-

ber of necessary buffers (as discussed above) has to be calculated for each gateway.

7.4 Conclusion

An additional influencing parameter of automotive embedded system’s reprogramming

performance is the network performance. The network performance depends on two

parameters:

a) The data transfer performance (protocol stack performance) of the coupled sub-

links (refer to chapters 3, 4 and 5).

b) The gateway’s routing performance depending on the routing strategy based on

the network type (heterogeneous and homogeneous)

7.4.1 Routing strategy

The network type (heterogeneous or homogeneous) is based on the type of coupled bus

systems. The routing performance of a gateway is influenced by the network type, i.e. the

coupling of equal or different bus systems. For equal bus systems a coupling on layer 3 -

network layer is possible (homogeneous network). Different bus systems are typically

coupled on layer 4 - transport layer (heterogeneous networks). Due to the routing layer

different routing strategies are possible. Figure 7.4-1 depicts different routing strategies in

relation to possible routing performance and the required resources.

Chapter 7 – Network architecture 136

Figure 7.4-1: Routing performance vs. resources

Direct routing provides best performance vs. resources relation because each received

PDU on a source bus system could be routed directly to the target bus system. A buffer

queue for the layer 3 PDUs is necessary to prevent overwriting in case of jitter on equal

bus systems with equal bandwidth or in case of transmission accumulation on equal bus

systems with different bandwidth.

Store and forward routing provides less performance vs. resources relation because

routing is only possible when all payload data have been received via the source bus

system. While reception on the source bus system is ongoing, no data transmission on

the target bus is processed. The result is a delay in transmission and therefore less per-

formance for reprogramming. Additional buffer for the complete payload is required to

store the SDU until all data have been received (CAN via ISO 15765-2: 4095 byte;

FlexRay via ISO10681-2: 65535 byte). Finally, routing on layer 4 increases demand on

inter-layer communication and enlarges the CPU runtime for routing processing.

Partly store and forward routing strategy is a good compromise between the other

strategies. Routing runtime is equal but, depending on the current situation routing could

be configured either on performance requirements or on RAM resources requirements.

If prices for microcontroller RAM decreases in future and the CPU power increases, the

partly store and forward strategy might be nearly as powerful as direct routing because

resource disadvantages (memory size, runtime, etc.) are no longer critical.

7.4.2 Network design

The discussion about network impacts for the reprogramming process results in a discus-

sion about network design aspects. Future automotive networks have to be designed to

support the software reprogramming issue, too. As described in chapter 1, network design

was influenced by application software’s functional communication requirements and cost

Chapter 7 – Network architecture 137

aspects in the past. Up to now software reprogramming is an important, but mostly uncriti-

cal issue. Currently it is processed via the same network than functional communication to

safe costs. The costs are still an important aspect but the different contributions to calcu-

late a total cost of ownership are changing: The relation between invest in network infra-

structure (gateways, bus systems etc.) and reprogramming costs is moving towards

increasing programming costs. Due to that potential commercial disadvantage, an addi-

tional parameter has to be taken into account for network design aspects: reprogramming

time limit.

Design aspects based on reprogramming time limits

Within several scenarios an upper limitation for the reprogramming time is given. Within a

vehicle plant, for example, the assembly line timing defines the upper limit. Software

programming has to be finalised within one or, in good cases, in a well defined number of

timing cycles. If the reprogramming time is fix, either ECU’s upper memory limitation

depends on bus system bandwidth or a bus system has to be selected, whose bandwidth

is sufficient to program the given memory. Figure 7.4-2 depicts the relation between ECU

memory and reprogramming time limitation.

Figure 7.4-2: Design based on timing limitations

According to the following equation for given bus systems the maximum reprogramming

time is limited by the ECU’s memory.

programRe

EcuMemory

t

n
erRateDataTransf = (7.4-1)

The data transfer rate calculation is important especially for new developed ECUs. With

focus on reprogramming it has to be distinguished, whether the ECU could be repro-

Chapter 7 – Network architecture 138

grammed within time limitations via the regular connected bus system for normal applica-

tion communication. Alternatively the ECU has to be connected to another bus system

with more bandwidth. Of course, in that case all other network design issues (e.g. maxi-

mum bus load, cable length, costs, weight etc.) have to be taken into account to find the

best economic solution. Based on that decision the gateways on the communication link

can be designed, too. Because of the complex optimisation process and the large number

of influencing parameters this analysis has to be supported by network analysis tools66.

Design aspects for reprogramming in parallel

Within distributed systems it is also possible that more than one ECU have to be re-

programmed67. In that case the execution in parallel is a powerful approach to accelerate

the overall process and to save time. The network design has to take care that repro-

gramming parallel is possible and concurrent communication links can be supported.

Hence, the data transfer ratio C (refer to formula 7.4-2 below) of the different sub-bus

systems within the network is important.

Figure 7.4-3 depicts a network that supports reprogramming in parallel. It is divided into

several sub-bus systems coupled by gateways. The developed formula 7.4-2 defines the

basic requirement to guarantee sufficient data transfer rates on all sub-bus systems for a

concurrent communication traffic.

∑
=

=
≥

ni

1i
i_etBusargTSourceBus CC (7.4-2)

66 The Symta Vision GmbH develope and sell the tool „SymTA/S“ to analyse diagnostic communi-
cation via network. It is a „model-based solution for timing design, performance optimisation and
timing verification for real-time systems“ [Sym] During the „5th Symtavision NewsConference on
Timing Analysis“ R.Schmidgall spoke about „Diagnostic Communication – A Challenge For Network
Analysis“ [Sch11]. The presentation depicts the different aspects of diagnostic communication
(inclusive software reprogramming aspects) and the challenges and complexity if the different
communication stack protocols shall be analysed for realtime network analysis (refer to appendix
D).
67 The introduction of AUTOSAR’s layered software architecture allows to divide system func-
tionallity from the physical ECU. That means that a system is developed or modeled first in an
abstract way. Later on the different function modules are mapped to one or more physical nodes
(ECUs) (refer to [AUTOSAR] key features). In case an error occurs within a system that is mapped
to several physical ECUs, the functional dependencies might require reprogramming of all ECUs.
This scenario is also possible for non-AUTOSAR based systems if functional dependencies exist.

Chapter 7 – Network architecture 139

Figure 7.4-3: Source bus and target bus definition for reprogramming in parallel

As discussed in chapter 3 maximum performance for data transfer is reached for ECU

reprogramming if the bus load for data transfer is up to 100%. Hence, for reprogramming

in parallel this must be possible on each sub-bus system, too. According to formula 7.4-2

the network design shall provide source bus systems that are able to generate 100%

busload on all target bus systems. In case of cascaded networks with several gateways,

this has to be guaranteed for each source bus - target bus relation.

For the network in figure 7.4-3 the bandwidth for bus 0 shall be according to formula 7.4-2:

CBus0_max ≥ CBus1_max + CBus2_max

CBus0_max ≥ CBus1_max + CBus3_max + CBus4_max

Nevertheless, even if the network (bus 0 or bus 2) does not support the maximum data

transfer rate according to formula 7.4-2, reprogramming in parallel is possible, however

without 100% busload on each bus system. The strategy for reprogramming in parallel is

discussed in chapter 8.

7.4.3 Summary

Network design and the routing strategy have a deep impact to the data transfer perfor-

mance via network and also an impact to the overall ECU software reprogramming per-

formance.

The necessity of different physical bus systems for application software communication

results in heterogeneous networks. Due to that the gateways become more complex

(routing on layer 3 vs. routing on layer 4) and require more resources (RAM, execution

runtime, etc.) to provide the same data transfer rate as for homogeneous networks.

Chapter 7 – Network architecture 140

With focus on reprogramming several ECUs in parallel (refer to chapter 8), the available

data transfer rate is an important parameter. The possibility to reprogram in parallel is built

in during network design phase when the bandwidths of the sub bus systems are defined.

The smallest bandwidth on the communication link between the PCU and the ECU will

affect the link performance.

For future network design it is necessary to have different, scenario oriented views to the

same network: a) the established view on application function’s communication and b) a

view for reprogramming aspects. Figure 7.4-4 depicts the approach.

Figure 7.4-4: Different, scenario oriented views to the same network

For software reprogramming purpose some design requirements are necessary to guar-

antee high performance:

a) If a cascaded network with sub-domains is necessary (Domain B/C) the network

shall be homogeneous.

b) If the bandwidth can not be equal on all bus systems, the bandwidth shall be at

least decreasing from the vehicle communication interface to the sub-domains ac-

cording to formula 7.4-2.

Finally, there is the question whether a network which is designed for software repro-

gramming will solve the normal ECU application communication, too?

Of course, this is a new approach for automotive network design, but the given cost pres-

sure requires to think about communication via the same network. Why not move the

design priority?

8 Reprogramming in parallel

Content

8.1 Introduction ... 142

8.2 ECU schedule calculation .. 143

8.3 Discussion ... 147

8.4 Conclusion ... 149

As mentioned in chapter 1, several trends are visible within the automotive industry that

influence the ECU reprogramming process. Of course, automotive ECUs’ application

software sizes are increasing continuously, but during the last years this trend has

affected only single ECUs with their own application software. As a result the total repro-

gramming time for those ECUs has been increased. Nevertheless, an additional trend is

visible: increasing system complexity based on the distribution of functionality to several

ECUs. Jan Danenberg et al. described in [Dan07] that 90% of all innovation will be build in

software. The trend is to combine available information of ECUs to new functionalities.

Especially for driver assistance systems new innovative systems based on available

signals. The AUTOSAR software architecture model supports this trend. In AUTOSAR

hardware independent modelling of functions (inclusive all communication signals) is

possible. After modelling has been finalised the function could be distributed to several

host ECUs. The communication is done by the basic software68.

A disadvantage of the new trend of model based software development and distributed

system functionality is the risk that in case of an error all ECUs which are hosting a part of

the system are affected by reprogramming. In that case software reprogramming of all

affected ECUs in parallel is a powerful approach to reduce the overall reprogramming

time. Within this chapter the approach of reprogramming ECUs’ application software in

parallel is discussed.

68 “Basic software“ (BSW) is a term of the AUTOSAR nomenclature and comprehend all software
modules responsible for the basic functionality of an ECU. In the AUTOSAR architecture the basic
software is below the Runtime Environment (RTE). Refer to [Aut11].

Chapter 8 – Reprogramming in parallel 142

8.1 Introduction

To reprogram several ECUs’ application software, concurrent communication links have to

be processed. There are different scenarios to reprogram ECUs in parallel.

Figure 8.1-1: Network classification

Figure 8.1-1 depicts a network to illustrate the different scenarios as described in

table 8.1-1.

Table 8.1-1: Reprogramming scenarios

Scenario Description Example

1 Single ECU on a single bus system. Only ECU 1.1

2 Single ECU on different bus systems. ECU 1.1 and ECU 2.1 in parallel

3 Multiple ECUs on a single bus system. ECU 1.1 and ECU 1.2 in parallel

4 Multiple ECUs on different bus systems. ECU 1.1, 1.2, 2.1, 2.2 in parallel

The scenario 1 (reprogramming of a single ECU) is only for list’s completeness. The

scenarios 2, 3 and 4 have to be discussed for reprogramming in parallel. Especially

scenario 3 and scenario 4 seem to be quite complex, because the bandwidth has to be

shared between several ECUs on the same bus system.

Simplification of the scenarios

For the theoretical approach it is assumed that bandwidth of the source bus system is

sufficient to process all concurrently active communication links. Nevertheless, the

scheduling of the active communication links is quite complex. A simplification is possible

if the research results of chapter 3, 4 and 7 are taken into account:

Chapter 8 – Reprogramming in parallel 143

a) Best data transfer performance is reached if 100% busload is reached. In that case

only one communication link allocates the complete bus system’s bandwidth to

communicate with only one ECU. This is possible by implementing double buffered

data reception and optimisation of the communication protocol stack.

b) The network is designed to support 100% bus load on the slowest communication

link sub-bus system for the corresponding communication link. In best case this is

the target bus system itself.

In that case scenario 3 (reprogramming of multiple ECUs on a single bus system) could

be mapped to scenario 1, a sequential reprogramming process of two ECUs on the same

bus system. Scenario 4 (reprogramming of multiple ECUs on different bus systems) can

be mapped to scenario 2, where single ECUs on different bus systems are repro-

grammed.

8.2 ECU schedule calculation

The overall time to reprogram all ECUs depends on the schedule that defines in which

order the different ECUs are processed. To calculate the best schedule some previous

steps are necessary.

1.) Evaluation of the slowest sub-bus segment (bandwidth limiter) on the communica-

tion link for each ECU.

2.) Calculation of the expected reprogramming time for each ECU based on the

corresponding communication link’s slowest sub-bus system’s bandwidth.

3.) Definition of a priority list depending on the expected reprogramming time. The

ECU with the longest reprogramming time has the highest priority.

4) Definition of a processing schedule. The ECUs are arranged based on the priority

list and the available bandwidth on the network.

Bandwidth capacity utilisation

To calculate an optimised schedule the available bus system’s bandwidth must be

evaluated. This is possible, if the time-discrete view to the network is moved to a con-

tinuous bandwidth view.

At one discrete point in time only one communication link can be supported by a

transmitter. A real concurrent communication is not possible, because at one discrete

point in time only one bit of a well defined connection is transmitted. If transmission of one

connection link’s PDU has been finalised a new PDU, maybe of another communication

link, could be processed.

Chapter 8 – Reprogramming in parallel 144

If two bus systems are connected via a gateway (best practice) and both bus systems

have an equal bandwidth and 100% bus load is produced, no concurrent communication

on another link will be possible.

If two bus systems with different bandwidths are connected via gateway (best practice)

and 100% bus load is produced on the slower bus system, some bandwidth is free on the

faster bus system. This view is helpful to arrange different ECUs on a bus system. Figure

8.2-1 depicts that example. The time discrete view is moved to a continuous

bandwidth view.

Figure 8.2-1: Bandwidth capacity utilisation

The time t1 is the required time to transmit all data via that communication link. The time t1

is calculated as

f
S

t x = (8.2-1)

S .. Software Size [bit]; f .. bandwidth [bit/s]; t .. data transfer time [s]

Up to t1 the bandwidth n is allocated for the communication link with ECU1. The remaining

bandwidth is 3n (4n - n = 3n) and can be used for other communication links. Additional

communication links can be established as long as the remaining bandwidth n of bus A

is more than zero (n>0).

Chapter 8 – Reprogramming in parallel 145

Example with 4 ECUs on three sub bus systems

The following example illustrates the method to arrange ECUs for reprogramming in paral-

lel. Figure 8.2-2 depicts a network with 4 bus systems and 4 ECUs. The source bus

system A does not support the necessary bandwidth to process 100% busload on all sub-

bus systems (refer to chapter 7). Nevertheless, reprogramming in parallel is possible.

Figure 8.2-2: Priority calculation on a network with 4 ECU

The expected time for the complete data transfer via the communication link can be

calculated according to formula 8.2-1 and under consideration of the slowest sub-bus

system on the corresponding communication link. The priority is given based on the

expected data transfer time.

The schedule can be defined under consideration of the rules below:

1) Start with the highest priority (longest expected data transfer time)

2) Calculate always if the remaining bandwidth is sufficient for the next ECU.

ystemSourceBusSk ff ≤ (8.2-2)

∑
=

=
kiorityPr

1iorityPrx
ECUxk ff (8.2-3)

If a recalculation of the finalisation time tx is not necessary based on the remaining band-

width, then:

3) Arrange only one ECU from a sub-bus system at a single point in time. Note that

100% bus load is processed on the limiting sub bus system.

Chapter 8 – Reprogramming in parallel 146

Figure 8.2-3 depicts a possible schedule to reprogram the given network in parallel.

Figure 8.2-3: Schedule calculation on a network with 4 ECU

ECU1 has the highest priority because the expected data transfer time is t = 10 1/n.

ECU2 and ECU3 have equal priorities. Additionally they are both connected to the same

bus system. Hence, only ECU2 is scheduled in the first phase. Until t = (4 1/n) the remain-

ing bandwidth is only n bit/s (4n-n-2n = n) and therefore ECU4 could not be arranged with

full bandwidth. As a result the data transfer time has to be recalculated. The bandwidth

limiting bus system is now bus A.

At tECU2 the data transfer to ECU2 has been finalised. Data transfer to ECU3 could be

scheduled (priority is higher than to ECU4, no concurrent communication on the limiting

bus C). Communication of ECU4 is ongoing with bandwidth n bit/sec.

At tECU3 the data transfer to ECU3 has been finalised. For communication to ECU4 now a

bandwidth of 3n is available for the remaining software size of 4 bit (8 bit have been

transmitted with a bandwidth of n bit/s). Recalculation of the finalisation time results in

s102t

s
bit

3

bit4
tt 3ECU3ECU4ECU =+=



















+=

At tECU1 data transfer to all ECUs had been finalised. Reprogramming all ECUs sequential-

ly requires 21 a/n seconds. Reprogramming in parallel requires only 10 a/n seconds and

reduces reprogramming time to 47%.

Chapter 8 – Reprogramming in parallel 147

Bandwidth capacity utilisation for cascaded bus systems

The schedule development method will work also for cascaded bus systems. Figure 8.2-4

depicts the principle.

Figure 8.2-4: Schedule calculation for networks with cascaded bus systems

8.3 Discussion

The method to calculate a schedule for ECU reprogramming is based on a simple princi-

ple. The slowest sub bus system’s bandwidth on the communication link between PCU

and ECU is allocated also on all other sub-bus systems. The remaining bandwidth can be

used to establish another communication link to another ECU. The aim is to utilise the

given bandwidth well.

The method is simple because the assumption that 100% bus load on a bus is possible.

This can be reached by implementing double buffered data reception on the receiver

ECU.

100% busload not possible

The basic method will work also, if 100% bus load will not be possible by a single ECU.

However, the calculation of the real bandwidth for each ECU is quite complex, but if the

bandwidth is determined, the normal schedule calculation can be processed. Without

double buffered data reception the reprogramming time cannot be compensated (refer to

chapter 3). Hence, a forecast for the reprogramming time is necessary. However, the

physical reprogramming time can drift by aging of the microcontroller. Unfortunately, such

a drift is only detected, if a data transfer to the ECU and therefore a physical reprogram-

ming process is executed. The measurement of the time between the transmission of the

Chapter 8 – Reprogramming in parallel 148

request’s69 last data transfer frame and the reception of the response70 reduced by the

network’s Transmission runtime represents the physical reprogramming time and the

internal processing time. In worst case the given forecast based on the physical pro-

gramming time is not longer valid and a recalculation is necessary. In that case a recalcu-

lation of the schedule might be necessary, too.

How to get the information about sub-bus bandwidths?

The schedule calculation method is based on the knowledge of the network’s sub-bus

systems bandwidth. Hence, a method is necessary to provide the network topology for the

schedule calculation.

The ASAM MCD-2D71 standard (market name ODX – Open Diagnostic Data Excange)

provides abstract information about the topology of the network. In [Zim10-14]

W. Zimmermann and R. Schmidgall give an introduction to the ODX sub document

„VEHICLE-INFO-SPEC“ (ODX-V). This document is defined to provide the logical links

from an external diagnostic test tool to the corresponding ECU. Unfortunately, the ODX-V

is currently not prepared to describe a complete network in detail with all information

required to calculate a schedule (e.g. bus’ bandwidth, ECU arrangement etc.). S. Karic

analysed in his bachelor thesis the ODX-V data model and developed a method to

describe all relevant information for reprogramming in parallel [Kar11]. The conclusion of

this work is that the ODX-V data model is currently not applicable to support reprogram-

ming in parallel, because some important information (e.g. gateway information etc.) are

not part of the data model.

Without ODX-V the topology information has to be stored in another format or document

for the schedule calculation.

Reprogramming of gateways

It is possible that the gateway application software shall be reprogrammed. This can occur

if routing relations will change, e.g. in case a new ECU (new innovation) is introduced into

a network. As described in chapter 1, typically ECUs flashloader software is optimised

only for software reprogramming purpose because of less ROM or Flash memory

resources. Typically gateways in flashloader mode will route only broadcast

69 Diagnostic Request (refer to UDS)
70 Diagnostic Response (refer to UDS)
71 ODX defines a unique, open XML exchange format for diagnostics data.

Chapter 8 – Reprogramming in parallel 149

diagnostic72 messages but no normal application communication PDUs of other ECUs.

Hence, it is necessary to have information during schedule calculation whether an ECU is

a gateway or not. This information could be also a part of ODX-V.

Due to the above described gateway behaviour in flashloader mode, gateways has to be

reprogrammed within an own schedule. However, it has to be taken into account that

gateways of cascaded networks have to be reprogrammed sequentially.

8.4 Conclusion

Reprogramming of ECUs application software in parallel is a powerful approach to reduce

the total reprogramming time. However, some prerequisites are necessary to be able to

reprogram in parallel: a) the network shall be designed for that approach and b) topology

information shall be available for schedule calculation.

The calculation of the reprogramming schedule has the aim a) to utilise the available

bandwidth well and b) to create an arrangement to reprogram all ECUs in the shortest

possible time. Gateways shall be reprogrammed separately in sequential order because

gateways typically stop routing in flashloader mode.

Best practice for schedule calculation based on ASAM MCD-2 (ODX)

The VEHICLE-INFO-SPEC document of the ODX standard is partly not applicable to

support the reprogramming process. Hence, some optimisation proposals for ODX-V are

provided to the ASAM MCD 2 standardisation working group.

In case the ASAM MCD-2 (ODX) standard model provides the network topology infor-

mation in future, the offboard activities can be managed completely by the ODX data

model. Figure 8.4-1 depicts an overview in principle.

The ODX-F document provides all information about ECU’s application software (e.g.

software size, possible compression algorithm etc.) The ODX-D document provides all

diagnostic information of the ECU (e.g. supported diagnostic services according to the

72 Diagnostic broadcast messages are typically send by the PCU and received by all ECUs to keep
the ECUs into diagnostic session. Typically an ECU supports a “normal default session” at least
two diagnostic sessions (extended diagnostic session and reprogramming session). Diagnosis is
only possible in a non-default session and is initiated by the diagnostic service request “$10 –
Session Control” (refer to UDS). An important broadcast message is the cyclic transmitted diagnos-
tic service request “$3E – Tester Present”. It signals that a diagnostic test tool is connected and
prevents ECUs fall back from non-default (diagnostic) session to normal default session. Hence,
broadcast messages have to be routed also if the gateway is in boot mode to keep the domain into
diagnostic mode.

Chapter 8 – Reprogramming in parallel 150

UDS standard). The ODX-V document provides the network information (e.g. network

topology, sub-buses’ bandwidth, gateway declarations etc.).

Figure 8.4-1: ODX integration to support reprogramming in parallel

By evaluating the ODX-F document and the ODX-V document the reprogramming time for

each ECU can be calculated. These values are used to calculate the reprogramming

schedule and process reprogramming. The sequence for schedule calculation is as listed

below:

1) Calculate reprogramming time of each ECU.

2) Select all ECUs which are marked as a gateway and skip them from the list.

Gateways are reprogrammed separately before the other ECUs are processed.

3) Calculate the priority depending on the reprogramming time. Highest priority for

longest reprogramming time

4) Calculate the schedule depending on the priority. The following rules have to be

taken into account:

 a) Bus system’s bandwidth limitations have to be considered.

 b) If 100% bus load is possible (e.g. by double buffered data transfer) only one

 ECU on the final target bus system shall be scheduled at one point in time.

 c) Arrange the ECUs that on the first source bus (from PCU to first gateway) in that

 way that as less as possible bandwidth is free.

Based on this algorithm, ECUs’ application software reprogramming in parallel will be a

powerful approach to reduce the total reprogramming time significantly.

9 Magnetoresistive RAM

Content

9.1 Introduction ... 152

9.2 Discussion ... 153

9.3 Case study to the differential file approach 154

9.4 Conclusion ... 156

As discussed in the chapters before the current software reprogramming process is signif-

icantly influenced and limited by the currently given memory technology. Of course, the

Flash memory technology provides benefits which were never given before for embedded

systems by the old ROM mask technology and, of course, without the established repro-

gramming process for Flash memory the product costs especially within the automotive

industry, will be still higher. Nevertheless, the Flash memory technology has some re-

strictions which constrain and limit an optimized reprogramming process. A real quantum

transition will be possible if the established Flash memory technology is replaced by the

new proposed MRAM technology (Magnetoresistive Random Access Memory) in micro-

controllers. Some disadvantages of flash memory caused by the inherent technology can

be eliminated by the employment of possible MRAM technology. With focus on repro-

gramming time the MRAM technology provides essential advantages. In contrast to the

currently established flash memory technologies MRAM semiconductors store the

information not by electrical, but by magnetic load elements.

Of course, currently there is no microcontroller available that supports MRAM on chip.

However, Freescale Semiconductor provides MRAM as an external memory device

[Fre07-1]. Nevertheless, it seems that this memory technology will be the next evolution

step for embedded systems’ memory and therefore this memory technology is discussed

within this thesis.

This chapter is intended to discuss the impact of MRAM technology to the reprogramming

process of embedded systems as well as to depict the necessary changes for software

development process.

Chapter 9 – Magnetoresistive RAM (MRAM) 152

9.1 Introduction

In contrast to currently established memory technologies, MRAM semiconductors store

the information not using electrical, but by magnetic load elements. The effect is based on

the fact that certain materials change their electrical resistance if they are influenced by

magnetic fields. Alfred Hammerl and Halit Bag give an overview of the different

magnetoresistive effects [Ham03]. R.C. Sousa et al. reviewed the progress of the MRAM

research process and provide a briefly overview to “conventional MRAM operations” like

reading or writing a bit [Sou05].

Magnetic Tunnel Junction (MTJ) effect

In an MRAM cell the information zero (0) and one (1) are represented by the orientation of

magnetic fields and is based on the Magnetic Tunnel Junction (MTJ) effect. A MTJ semi-

conductor has a three-layer structure. It consists of two magnetic layers and an insulation

layer. One of the magnetic layers is a fixed ferromagnetic layer and has a fixed orientation

(fixed magnetic layer). The other magnetic layer can change its magnetic polarization

(floating magnetic layer). It is aligned either in the same orientation as the fixed layer

(parallel magnetic orientation) or in the opposite (opposite magnetic orientation). Although

not shown in figure 9.1-1, a bit line and digit line are located above and below the MTJ.

The electrical resistance of the memory cell changes depending to the magnetic

orientation of the floating magnetic layer. According to the electrical resistance a high or

low current could occur. A current switch converts the binary information low current and

high current to voltage levels (low current = 0bin; high current = 1bin).

Figure 9.1-1: Bit information storage based on the MTJ effect

The MRAM technology does not need any electrical current in order to hold the stored

information. Once the magnetic adjustment is made the variable magnetic layer remains

static, i.e. no further current is required.

Chapter 9 – Magnetoresistive RAM (MRAM) 153

Comparison of MRAM to other memory technologies

MRAM adopts the advantages of several memory technologies available today. Similar to

flash memory or EEPROM (Electrical Erasable and Programmable Read Only Memory), a

non-volatile data retention takes place, i.e. program code and data are sustained without

power supply. MRAM reduces the power consumption because the refresh pulses as

required for DRAM are no longer necessary. The data access is very fast (cf. SRAM) and

the cells are small which results in a high device integration level. Table 9.1-1 depicts an

overview to the typical memory parameters and compares MRAM and other memory

technologies [Fre07].

Table 9.1-1: Comparison of expected MRAM features with other memory technologies

[Fre07]

 MRAM SRAM DRAM Flash FeRAM

Read Speed fast fastest medium fast fast

Write Speed fast fastest medium low medium

Non-Volatile yes no no yes yes

Low Voltage yes yes limited limited limited

Complexity medium low medium medium medium

The advantages of MRAM based systems are quite evident. The main advantages of

MRAM compared to Flash memory technology, with respect to reprogramming activities,

is the byte-wise access and the possibility to overwrite data without an initial memory

erase phase.

9.2 Discussion

Some disadvantages of Flash memory’s reprogramming process caused by the inherent

technology can be eliminated by the employment of possible MRAM technologies.

Erase process skipping

In section 2.4 the typical reprogramming process of a flash memory based embedded

system was described. Normally Flash memory technology does not allow the overwriting

of programmed memory cells without prior erasing memory partitions/blocks. It is currently

not possible to erase a single memory cell.

Chapter 9 – Magnetoresistive RAM (MRAM) 154

MRAM technology allows overwriting of individual programmed memory cells without prior

erasing of the cell. Therefore the erase step within the reprogramming process is no long-

er required. Table 9.2-1 shows the potential to safe processing time based on the erase

time of two different, currently state of the art microcontrollers’ Flash memory.

Table 9.2-1: Example of microcontroller’s erase time for Flash memory

Infineon TriCore TC 1797 [TC1197] min. typ. max unit

Program Flash Erase Time per 256 kByte Sector - - 5 s

Freescale MC9S12XEP [MC9S12X] min. typ. max

Program Flash Erase Time per 1024 Byte 20 21 ms

Normalized to 256 kByte 5.1 5.4 s

Based on this data given by the manufacturer’s data sheets [TC1197, MC9S12X] the

predicted total erase time for a 2 MByte on-chip flash memory is up to 40 seconds. This

time can be saved potentially in case of skipping the erase process because of using

MRAM. With focus on the total amount of automotive embedded systems as discussed in

chapter 1 these potential might be considerably higher.

Byte-wise read/write access

In a Flash memory complete physical memory sectors must be erased and repro-

grammed. Erasing the complete physical sector is necessary no matter if a complete

memory section or only a few bytes have changed. Thus, the data for reprogramming the

complete physical sector always has to be transferred and programmed. MRAM technolo-

gy allows read/write access basically for each single byte (alignment has to be taken into

account). This byte-wise read/write access allows the usage of the method of differential

file update as discussed previously in section 5.4 but without the Flash memory’s

disadvantage of storing the non-changed bytes into RAM mirror. Only the real differences

of the old and new compiler/linker output file have to be transferred and reprogrammed.

Of course, the overall effort of this method is high but the benefit is enormous. The data

transfer time could be reduced significantly and this will finally solve the initial problem.

9.3 Case study to the differential file approach

In section 5.4 the approach of software reprogramming based on differential file data

transfer was discussed in principle. The assumption in section 5.4 was that software bug

Chapter 9 – Magnetoresistive RAM (MRAM) 155

fixing is the most important reason for software reprogramming and 80% of bug fixings

result in less than 1 kByte OP-code changes and only 20% in more than 1 kByte. As a

result of this assumption only a few bytes within a memory sector/partition need to be

changed compared to the total software size.

The case study below continues the case study of section 5.4 and compares the differen-

tial file approach for Flash memory technology systems as well as for MRAM technology

based systems.

According to chapter 2 and as mentioned above Flash memory requires that the corre-

sponding memory part is previously erased before it can be programmed. If the RAM

resources are not given to mirror the corresponding memory part, this memory part will be

erased and the data for that part have to be transferred completely. For MRAM technology

only the differences have to be transferred.

The microcontroller parameters (Flash memory section size etc.) are based on Infineon’s

TriCore TC1197 microcontroller. According to table 9.1-1 it is assumed that the write

speed to MRAM is equal to existing Flash memories and therefore we use the write speed

value of the TC1767, too. We assume that the size of the modified OP code is 1 kByte

and all modifications are constrained within 4 memory pages73.

The case study based on the assumptions and parameters as listed below:

Modified OP code size: 1 kByte

Flash memory size: 16 kByte, 128 kByte, 256 kByte

Erase performance: 51.2 kByte/s (refer to table 9.1-1)

Program performance: 50 kByte/s74 [TC1197, TC1197-2]

Payload: 8 Byte (pure CAN protocol without any transport protocol)

FrameLength: 123 bit (refer to table 4.1-1)

CAN bit rate: 500 kbit/s

The memory erase time tErase is calculated as

Erase
Erase f

MemorySize
t = (9.3-1)

The data transfer time tTransfer is calculated by formula 9.3-2:

73 Page = 256 Byte Refer to [TC1797-2]
74 256 byte per page programmed in 5 ms � (256 byte : 0.005s) : 1024 = 50 kByte/s

Chapter 9 – Magnetoresistive RAM (MRAM) 156

bitrate
1

hFrameLengt
Payload

DataVolume
t transfer ⋅⋅= (9.3-2)

Table 9.3-1 depicts the results of that theoretical case study:

Table 9.3-1: Differential file approach comparison to Flash and MRAM technology

Flash 256 kByte 256 kByte 5.000 s 8.061 s 5.120 s 18.181 s
Flash 128 kByte 128 kByte 2.500 s 4.030 s 2.560 s 9.090 s
Flash 16 kByte 16 kByte 0.313 s 0.504 s 0.320 s 1.136 s
MRAM 256 kByte 1 kByte 0.000 s 0.031 s 0.020 s 0.051 s
MRAM 128 kByte 1 kByte 0.000 s 0.031 s 0.020 s 0.051 s
MRAM 16 kByte 1 kByte 0.000 s 0.031 s 0.020 s 0.051 s

Memory
Type

Total
time

Data volume
to transfer

Erase
time

Transfer
time

Program.
time

Sector Size
[TC1197]

The total time depicts a significant benefit for MRAM technology based software repro-

gramming process. The data transfer time as well as the reprogramming time is reduced.

An erase process is not required and therefore an erase time will not occur.

Nevertheless, to get the results as depicted ahead, a corresponding software develop-

ment process is a previously required. If the software is not designed and prepared to

support differential file updates (refer to chapter 4) the benefits will not be realized.

9.4 Conclusion

The MRAM technology’s byte-wise access allows software updates by transferring and

overwriting only differences between the old and new software. Due to the reduced

amount of data to transfer, the data transfer time and the physical programming time

significant time savings can be made. Thus the potential cost savings of the new

technologies could solve the rapidly approaching technological limitation of flash

memories in modern complex embedded vehicle systems.

As introduced ahead, MRAM seems to be the next technology step for embedded

non-volatile memory. With respect to software reprogramming the typical software

architecture and software structure has to be modified to fulfil the initial requirements to

use the differential file update approach. Only if software is designed to produce smallest

possible OP-code differences between an actual and a preview file the full power of the

differential file update method can be realized.

Appendix A provides a concentrated view to MRAM technology with focus to software

reprogramming aspects which are discussed in several chapters of this work.

10 Case study – Software reprogramming

Content

10.1 Software reprogramming via CAN 157

10.1.1 ISO15765-2 (CAN-TP) model evaluation 158

10.1.2 ISO14229 (UDS) on CAN model evaluation 162

10.1.3 CAN bus baud rate optimisation .. 166

10.1.4 ISO 15765-2 (CAN TP) Flow Control parameter Block size....... 168

10.1.5 ISO 15765-2 (CAN TP) FlowControl parameter STmin 170

10.2 Application Protocol ISO 14229 (UDS) Optimisation 172

10.3 Gateway optimisation 178

10.3.1 Buffer for the partly store and forward routing strategy 179

10.3.2 Increasing gateways clock frequency .. 181

10.3.3 Summary .. 182

10.4 Software reprogramming via FlexRay 182

10.4.1 Vehicle access by CAN bus system .. 182

This chapter presents a case study to verify the quantitative models presented to evaluat-

ed software reprogramming purpose in the earlier chapters. The study provides answers

to the question of performance increase based on protocol optimisations as well as the

effects of data size reduction (compression).

10.1 Software reprogramming via CAN

This section is intended to verify the theoretical discussions of chapter 3 and chapter 4 by

a real implementation. The flashloader implements a CAN communication stack according

to the protocols ISO 11898, ISO 15765-2 and ISO 14229.

Chapter 10 – Case study – software reprogramming 158

Experimental Setup

The approaches of chapter 3 and 4 to accelerate data transfer have been implemented

within a prototype project for a V850 CargateM75 microcontroller. Figure 10.1-1 depicts the

evaluation test system layout.

Figure 10.1-1: Test environment

PCU: FlashCedere® V1.20 and PCCOM: V01.61

CAN - PCC-TR2Box: S/N 0700/027-1

Evaluation Board: NEC AB050 CAG4M ; SN CA 0050071D V1.00

Microcontroller: V850 UPD 70F 3461 6J(A1) (“CargateM”)

The PCU (FlashCedere®76) controls the reprogramming process by sending the sequence

of diagnostic services as described in section 2.5.4. The CAN-TR2 Box provides PCU’s

CAN interface. The connector’s pin layout of the CAN-TR2-Box and the evaluation board

are different. Hence, the CAN signals (CAN-High and CAN-Low) are mapped to the corre-

sponding pins by the Patch-Box. The debugger connector allows flashloader reprogram-

ming for the different test scenarios.

10.1.1 ISO15765-2 (CAN-TP) model evaluation

Study’s aim

The aim of this study is the validation of formula 4.1-17. This formula represents the

mathematical model to calculate the data transfer time via CAN transport layer protocol

according to ISO 15765-2.

75 Microcontroller: Renesas V850 D70F3461GJ(A1)
76 SMART Electronic Development GmbH, Germany [Smart]

Chapter 10 – Case study – software reprogramming 159

Experimental Setup

In section 4.1-2 communication via the transport layer protocol according to ISO 15765-2

was discussed. It was stated that segmented data transfer provides benefits compared to

unsegmented data transfer with focus on data transfer rate. Figure 10.1-2 depicts the

PDU sequence for a segmented transmission of 4,082 byte from a sender node to a re-

ceiver node.

Figure 10.1-2: Segmented data transfer according to ISO 15765-2

The model depends on the configuration parameters as listed in table 10.1-1 and the

system runtime parameters as listed below:

a) Sender node’s processing time N_Cs

b) Receiver node’s processing time N_Br

ISO 15765-2 – N_Br and N_Cs parameter

An additional delay is the processing time of ISO 15765-2 transport protocol’s flow control

handling. As discussed in section 4.1.2.4 the ECU (N_Br time) as well as the PCU (N_Cs

time) requires time to process a FlowControl PDU. This delay is independent from the bus

system’s baud rate. The constant value reduces the data transfer rate. This is also an

indication for the theoretically discussion about reduction of FlowControl PDUs to reduce

processing delays by increasing the block size parameter in the transport layer protocol.

To evaluate the model the system related processing times N_Cs and N_Br have to be

measured. These processing times are independent of the underlying bus system.

Chapter 10 – Case study – software reprogramming 160

Table 10.1-1: PCU and ECU communication configuration parameters

Parameter Value

CAN Baud rate 125 ; 250 ; 500 ; 1,000 kBit/s

CAN Address Mode 11 bit – normal addressed

Block size (BS) 32

STmin 0 ms

10.1.1.1 Measurement results

Table 10.1-2 shows the measurement results for the test system.

Table 10.1-2: Measurement results of PCU and ECU processing parameters

unit
125 250 500 1,000 kBit/s

N_Cs 2.9 2.9 2.7 2.6 ms
N_Br 0.003 0.003 0.003 0.003 ms
STmin 0.014 0.024 0.030 0.038 ms

nPDUs 603 603 603 603

nCF_PDUs 583 583 583 583

Transfer Time 665.3 363.7 215.7 144.5 ms
Transferred data

dSDU_ISO15765-2

4,082 4,082 4,082 4,082 Byte

5.99 10.96 18.48 27.59 kByte/s
47.931 87.686 147.827 220.722 kBit/s

Parameters CAN baud rate

Performance

The measurement shows a stable parameter set for N_Cs (2.77ms) and N_Br (0.003ms).

The transport layer is configured to a STmin = 0. Nevertheless, the ECU requires pro-

cessing time between two ConsecutiveFrame (CF) PDUs.

10.1.1.2 Evaluation

In chapter 4 formula 4.1-17 was developed to calculate the net data rate for data transfer

via CAN.

() ()Cs_NBr_N
PDU_CF

minST
PDU_CF

PDU_CFbit11898ISO_PDUPDUs

215765ISO_SDU
net_Data

tt
BS

n
t11

BS

n
ntdn

d
f

+







+⋅














−








−−+⋅⋅

= −

The integration of all configured of measured parameters results in the formula below:

() ()s10773.219t566td603

d
f

3
minSTbit11898ISO_PDU

215765ISO_SDU
net_Data −

−

⋅+⋅+⋅⋅
=

Chapter 10 – Case study – software reprogramming 161

Table 10.1-3: Communication model’s calculation of data transfer rate

unit
125 250 500 1,000 kBit/s

dPDU_ISO11898
123 123 123 123 bit

STmin 0.014 0.024 0.030 0.038 ms
Transferred data

dSDU_ISO15765-2

4,082 4,082 4,082 4,082 Byte

6.09 10.98 18.30 26.87 kByte/s
48.758 87.877 146.425 214.978 kBit/s

Parameters CAN baud rate

Performance

Table 10.1-3 depicts the calculated data transfer rate results of the communication model

based formula 4.1-17. The error between the measured and calculated data transfer rates

is in a range of -1.7% to + 2.7%.

The model depicts that doubling pure CAN bit rate will not result in doubling communica-

tion performance. The reason is the relation between the PDU transfer and the nearly

constant processing delays:

() ()s10773.219t566td603

td603
r

3
minSTbit11898ISO_PDU

bit11898ISO_PDU
−⋅+⋅+⋅⋅

⋅⋅
=

Table 10.1-4: Communication model’s calculation of data transfer rate

unit
125 250 500 1,000 kBit/s

Relation [tTransfer : (tTransfer + tDelay)] 0.91 0.82 0.68 0.50

Theoretically max value (refer to table 4.1-4) 6.7 13.3 26.7 53.3 kByte/s
Corrected value 6.08 10.87 18.19 26.65 kByte/s
Measured value (refer to table 10.1-2) 5.99 10.96 18.48 27.59 kByte/s

Parameters CAN baud rate

Table 10.1-4 depicts the calculated relation. Due to that effect the theoretically possible

maximum data transfer rate will not be reached. Table 10.1-4 depicts the theoretically

possible values (refer to Table 4.1.-4 in chapter 4). According to the calculated relation,

the maximum data transfer rate via CAN (1,000 kBit/s) is only 50% of the theoretically

possible data rate. The comparison between the corrected but theoretically calculated

values and the real measurement values proofs that theory.

10.1.1.3 Conclusion

Formula 4.1-17 works. The additional delays result in a reduction of the maximum data

transfer rate for a segmented data transfer.

Chapter 10 – Case study – software reprogramming 162

10.1.2 ISO14229 (UDS) on CAN model evaluation

Study’s aim

The aim of this study is the validation of formula 4.1-21. This formula represents the

mathematical model to calculate the download time via CAN transport layer protocol

according to ISO 15765-2.

Experimental Setup

In section 4.1-3 the complete download of a reprogramming sequence based on

ISO 14229 - UDS via the transport layer protocol according to ISO 15765-2 on CAN is

discussed. Figure 10.1-3 depicts the PDU sequence of several segmented transmission of

4,082 byte from a PCU to an ECU (Request) and the responses from the ECU to the

PCU.

Figure 10.1-3: Segmented data transfer according to ISO 15765-2

The model depends on the configuration parameters as listed in table 10.1-5 and the

system runtime parameters as listed below:

a) PCU’s processing time N_Cs (refer to section 4.1.2.4)

b) ECU flashloader’s processing time N_Br (refer to section 4.1.2.4)

Chapter 10 – Case study – software reprogramming 163

c) The ECU flashloader’s physical programming time tPhysProg ()

d) The PCU’s processing time tprocessUDS ()

To evaluate the model the system related processing times N_Cs, N_Br, tPhysProg and

tprocessUDS have to be measured. These processing times are independent of the underlying

bus system.

Table 10.1-5: PCU and ECU communication configuration parameters

Parameter Value Comment

CAN Baud rate 125 ; 250 ; 500 ; 1,000 kBit/s configured

CAN Address Mode 11 bit – normal addressed configured

Block size (BS) 32 configured

STmin 0 ms configured

dSDU_ISO15765-2 4,082 Byte configured

nPDUs 603 refer to table 10.1-2

nCF_PDUs 583 refer to table 10.1-2

10.1.2.1 Measurement results

Table 10.1-6 shows the measurement results for the test system.

Table 10.1-6: Measurement results of PCU and ECU processing parameters

unit
125 250 500 1,000 kBit/s

1 N_Cs 2.9 2.9 2.7 2.6 ms
2 N_Br 0.003 0.003 0.003 0.003 ms
3 STmin 0.014 0.024 0.030 0.038 ms
4 tPhysProg 21.41 22.13 22.34 22.61 ms

5 tProcessUDS 5.36 5.27 5.94 5.55 ms

6 Download Time 77.7 44.1 27.5 19.3 s
7 Transferred data

dSDU_ISO14229

458,720 458,720 458,720 458,720 Byte

5.77 10.17 16.27 23.23 kByte/s
46.146 81.354 130.145 185.862 kBit/s

8 Performance

Line Parameters CAN baud rate

The measurement shows a nearly stable parameter set for N_Cs (2.77ms) and N_Br

(0.003ms). The transport layer is configured to a STmin = 0. Nevertheless, the ECU re-

quires processing time between two ConsecutiveFrame (CF) PDUs. The programming

time tPhysProg of this microcontroller is approximately 22.12 ms.

Chapter 10 – Case study – software reprogramming 164

The PCU requires a processing time tprocessUDS of 5.53 ms between a received response

from the ECU and the transmission of the next request.

10.1.2.2 Evaluation

In chapter 4 the formula 4.1-21 was developed to calculate the net data rate for data

transfer via CAN on ISO 15765-2 based on UDS (ISO 14229).

()

()

()

()

()

()




































⋅⋅

+

++








+⋅













−








−−

+⋅⋅

+





































+⋅⋅

+

++








+⋅













−








−−

+⋅⋅

⋅











=

−

bit11898ISO_PDU

)n(ogPrPhys

Cs_NBr_N
)n(PDU_CF

minST
)n(PDU_CF

)n(PDU_CF

bit11898ISO_PDU)n(PDUs

ocessPr_PCU

bit11898ISO_PDU

)x(ogPrPhys

Cs_NBr_N
)x(PDU_CF

minST
)x(PDU_CF

)x(PDU_CF

bit11898ISO_PDU)x(PDUs

215765Iso_SDU

14229ISO_PDU
DL

td1

t

tt
BS

n

t11
BS

n
n

tdn

t

td1

t

tt
BS

n

t11
BS

n
n

tdn

d

d
t

The number of repetitions n is calculated by:

)70(112
082,4

720,458

215765_

14229_
hex

IsoSDU

ISOPDU

d

d
n =







=











=

−

Hence, 112 UDS requests are transmitted with a SDU size of 4,082 bytes. The last UDS

request has a SDU size of 1,760 byte and is calculated by formula 4.1-20:

760,1082,4mod720,458

mod

)(

215765_14229_)(

==

= −

nSDU

IsoSDUISOPDUnSDU

d

ddd

To transmit this data size, 260 PDUs (nPDUs(n)) are necessary (1 First Frame PDU,

251 Consecutive Frame PDUs (nCF_PDU(n)) and 8 Flow Control PDUs).

The integration of all configured of measured parameters results in the formula below:

Chapter 10 – Case study – software reprogramming 165

()

()

()

()




























⋅⋅+
⋅+

⋅⋅+

⋅+

⋅⋅

+





























⋅+

⋅⋅+
⋅+

⋅⋅+

⋅+

⋅⋅

⋅=
−

−

−

−

−

bit11898ISO_PDU

3

3

minST

bit11898ISO_PDU

3

bit11898ISO_PDU

3

3

minST

bit11898ISO_PDU

DL

td1

s1012.22

)s10773.2(8

t245

td260

s1053.5

td1

s1012.22

)s10773.2(19

t566

td603

112t

The data transfer rate is calculated by:






































 ⋅⋅+

−⋅+

−⋅⋅+

⋅+






 ⋅⋅

+



































−⋅+






 ⋅⋅+

−⋅+

−⋅⋅+

⋅+






 ⋅⋅

⋅

=

bitt_ISO11898PDUd1

s31022.12

s)310(2.7738

STmint245

bitt_ISO11898PDUd260

s3105.53

bitt_ISO11898PDUd1

s31022.12

s)310(2.77319

STmint566

bitt_ISO11898PDUd603

112

d
f 14229ISO_SDU

net_Data

Table 10.1-7: Communication model’s calculation of data transfer rate

unit
125 250 500 1,000 kBit/s

dPDU_ISO11898 123 123 123 123 bit

Transferred data

dSDU_ISO14229

458,720 458,720 458,720 458,720 Byte

5.84 10.19 16.23 22.64 kByte/s
46.699 81.543 129.811 181.134 kBit/s

Parameters CAN baud rate

Performance

Table 10.1-7 depicts the calculated data transfer rate results of the communication model

based on formula 4.1-21. The error between the measured and calculated data transfer

rates is in a range of -1.2% to + 2.6%.

10.1.2.3 Conclusion

Formula 4.1-21 works. Compared to the study in section 10.1.1, the additional delays for

the physical data reprogramming, the response transmission and the PCU processing

time results in a reduction of the maximum data transfer rate for a segmented data

transfer.

Chapter 10 – Case study – software reprogramming 166

10.1.3 CAN bus baud rate optimisation

Study’s aim

The aim of this study is the validation of the approach to increase the software repro-

gramming performance for an embedded system by increasing physical layer’s baud rate.

The theoretical background was discussed in section 4.1.

Experimental Setup

The system was configured as listed in table 10.1-8.

Table 10.1-8: PCU and ECU communication configuration parameters

Parameter Value Comment

CAN Baud rate 125 ; 250 ; 500 ; 1,000 kBit/s configured

CAN Address Mode 11 bit – normal addressed configured

Block size (BS) 32 configured

STmin 0 ms configured

dSDU_ISO14299 458,720 Byte configured

10.1.3.1 Measurement results

Figure 10.1-4 depicts the measurement results for the software reprogramming data

transfer between the PCU and the ECU. Table 10.1-9 depicts the details.

Software reprogramming performance on CAN
(Software download based on ISO 14229 UDS protocol)

(ISO 15765-2 configuration: Stmin = 0, Blocksize 32)

5.77

10.17

16.27

23.23

0

5

10

15

20

25

125 250 500 1.000

CAN baud rate [kBit/s]

D
at

a
tr

an
sf

er
 r

at
e

[k
B

yt
e/

s]

+76.2%

+59.9%

+42.8%

Figure 10.1-4: Software reprogramming performance on CAN

Chapter 10 – Case study – software reprogramming 167

Table 10.1-9: Software reprogramming performance on CAN

unit
125 250 500 1,000 kBit/s

Transferred data

dSDU_ISO14229

458,720 458,720 458,720 458,720 Byte

Download Time 77.7 44.1 27.5 19.3 s
5.77 10.17 16.27 23.23 kByte/s

46.15 81.35 130.15 185.86 kBit/s
346.09 610.16 976.09 1,393.97 kByte/min

Parameters CAN baud rate

Performance

10.1.3.2 Evaluation

The critical evaluation of the measurements provides 3 main results:

1) Increasing bit rate results in increasing programming performance.

2) Doubling bit rate does not result in doubling programming performance.

3) The theoretically calculated maximum data transfer rates are not achieved.

As discussed in the previous studies the system’s processing delays have an impact to

the overall performance. The delays are constant and usually independent of the bus

systems bandwidth. In relation to the pure data transfer time the delays’ impact is increas-

ing the shorter the pure data transfer time is. In the study this effect is visible when dou-

bling baud rate (e.g. 500 kBit/s to 1,000 kBit/s) results only in 42.8% performance

increase.

10.1.3.3 Conclusion

System Design Requirements

The system’s delay times have to be analysed before a decision to network optimisation

by increasing CAN baud rate is done. As depicted in this and the previous studies within

this thesis, a bandwidth optimisation will result in a higher data transfer rate but not auto-

matically in a satisfactory system reprogramming performance. Without knowledge of the

system delays a bandwidth optimisation is not advisable.

Chapter 10 – Case study – software reprogramming 168

10.1.4 ISO 15765-2 (CAN TP) Flow Control parameter Block size

Study’s aim

In section 4.1.2.1 the impact of the ISO 15765-2 Flow Control PDU’s parameter BlockSize

was analysed for a data transfer of only 4,095 bytes. The aim of this study is the validation

of the research results even if the data transfer size is increased to

45,870 bytes.

Background

The flow control parameter Block Size (BS) defines the number of Consecutive Frame

(CF) PDUs that can be received by a receiver node in one block within a segmented data

transmission. After reception of that block a Flow Control (FC) PDU has to be sent by the

initial receiver node to signal the current flow state and to continue data transfer.

Experimental Setup

The system was configured as listed in table 10.1-10.

Table 10.1-10: PCU and ECU communication configuration parameters

Parameter Value Comment

CAN Baud rate 125 ; 250 ; 500 ; 1,000 kBit/s configured

CAN Address Mode 11 bit – normal addressed configured

Block size (BS) {0, 1, 8, 16, 32} configured

STmin 0 ms configured

The BlockSize (BS) parameter of the flashloader’s FlowControl PDU varied according to

the values as listed above.

10.1.4.1 Measurement results

Table 10.1-11 depicts the measurement results (average of 5 independent measure-

ments) for each flashloader BlockSize configuration. Figure 10.1-5 depicts the corre-

sponding graphical evaluation.

Table 10.1-11: Flow Control parameter “BS” measurement results

0 CF-Frames 458,720 Byte 23.16 s 19.34 kByte/s 1,161 kByte/min 100.00 %
1 CF-Frames 458,720 Byte 192.83 s 2.32 kByte/s 139 kByte/min 12.01 %
8 CF-Frames 458,720 Byte 48.51 s 9.24 kByte/s 554 kByte/min 47.74 %

16 CF-Frames 458,720 Byte 35.03 s 12.79 kByte/s 767 kByte/min 66.12 %
32 CF-Frames 458,720 Byte 28.43 s 15.75 kByte/s 945 kByte/min 81.45 %

Flashsize Flashtime Data transfer rate RelationBS

Chapter 10 – Case study – software reprogramming 169

ISO 15765-2 performance analysis
Data transfer rate for different BlockSize parameter values

(CAN 500kBit/s)

2.32

9.24

15.75

12.79

19.34

0

2

4

6

8

10

12

14

16

18

20

22

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Block Size [BS]

D
at

a
tr

an
sf

er
 r

at
e

[k
B

yt
e/

s]

Figure 10.1-5: Impact of Flow Control parameter BS

10.1.4.2 Evaluation

The measurement result has an equal tendency and figure 10.1-5 has an equal character-

istic as figure 4.1-4. As discussed in section 4.1.2.1 the parameter BlockSize (BS) has a

significant impact on the data transfer rate.

A block size equal to 0 provides best results because after the first FlowControl PDU no

additional FlowControl PDUs are required. Hence, neither additional PDU runtimes and

processing times within the ECU nor additional PCU processing times occur.

A Blocksize equal to 1 provides worse results because after each received data PDU the

ECU has to send a flow control PDU. This results in a maximum possible additional PDUs

processing time in the PCU and ECU and additional PDU runtimes for FlowControl PDUs.

Compared to the theoretically calculated values based on an ideal system, without any

system delays, in table 4.1-4 (note: transmission of only 4,095 byte) the measured per-

formance relation between the configuration of BS = 0 and other BS configurations is

higher. This is because of the additional system delays N_Cs, N_Br, tPhysProg and tProcess_UDS

which reduce the data transfer rate even if only a few FlowControl PDUs are necessary.

Chapter 10 – Case study – software reprogramming 170

10.1.4.3 Conclusion

The trend of the curve in figure 4.1-4 (section 4.1.2.1) is correct. The impact of the config-

ured parameter BlockSize is given.

System Design Requirements

With focus on data transfer rate the ISO 15765-2 FlowControl parameter BlockSize shall

be configured equal to zero. On the other hand, this requires buffer to receive the com-

plete SDU without further FlowControl communication to the sender node. If not enough

buffer is available, the BlockSize has to be configured to a value that supports the maxi-

mum possible buffer size. Nevertheless, each reduction of the Blocksize parameter con-

figuration (when unequal to zero) will reduce the data transfer rate.

10.1.5 ISO 15765-2 (CAN TP) FlowControl parameter S Tmin

Study’s aim

The aim of this study is the validation of the research results of section 4.1.2.2 where the

impact of the ISO 15765-2 Flow Control PDU’s parameter of the minimum separation time

STmin was theoretically analysed for a data transfer on 4,095 bytes. The study shall

depict that the system behaviour is equal by trend, even if the data transfer size is in-

creased to 45,870 bytes.

Experimental Setup

The system was configured as listed in table 10.1-12.

Table 10.1-12: PCU and ECU communication configuration parameters

Parameter Value Comment

CAN Baud rate 125 ; 250 ; 500 ; 1,000 kBit/s Configured

CAN Address Mode 11 bit – normal addressed Configured

Block size (BS) 32 Configured

STmin {0, 1, 5} ms Configured

The STmin parameter of the flashloader FlowControl PDU varied according to the values

as listed above.

Chapter 10 – Case study – software reprogramming 171

10.1.5.1 Measurement results

Table 10.1-13 depicts the measurement results (average of 5 independent measure-

ments) for each flashloader BlockSize configuration. Figure 10.1-6 depicts the corre-

sponding graphical evaluation.

Table 10.1-13: Flow Control parameter “STmin” measurement results

unit
0 1 5

Transfered data size 408,720 408,720 408,720 Byte
Total programming time 28.43 73.58 342.61 s
Data transfer rate 15.8 6.1 1.3 kByte/s

945.3 365.3 78.5 kByte/min

STmin [ms]

ISO 15765-2 performance analysis
Data transfer rate for different STmin parameter va lues

(CAN 500kBit/s)

15.75

1.31

6.09

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5
STmin [ms]

D
at

a
tr

an
sf

er
 r

at
e

[k
B

yt
e/

s]

Figure 10.1-6: Impact of Flow Control parameter STmin

10.1.5.2 Evaluation

The measurement result has an equal tendency and figure 10.1-6 has an equal character-

istic as figure 4.1-6. As discussed in section 4.1.2.2 the parameter STmin has a significant

impact to the data transfer rate.

A separation time STmin equal to zero provides best results. However, the measured

maximum data transfer rate value is not as high as in the theoretical discussion in

section 4.1.2.2. This is because of the additional system delays N_Cs, N_Br, tPhysProg and

tProcess_UDS which reduce the data transfer rate even if no separation time by protocol is

configured (refer to section 10.1.3).

Chapter 10 – Case study – software reprogramming 172

10.1.5.3 Conclusion

The trend of the curve in figure 4.1-6 (section 4.1.2.2) is correct. The impact of the config-

ured parameter STmin is given. The conclusion is that each separation time during repro-

gramming communication shall be avoided. Even the smallest gap between the PDUs

provides a large delay time if this time is summarised during a long data transfer period

(depends on the size of total transferred data). This is common to all communication

systems event triggered, as well as time triggered systems. However, for time triggered

systems (e.g. FlexRay) the delay is mainly given by the global schedule.

System Design Requirements

With focus on data transfer rate the ISO 15765-2 FlowControl parameter STmin shall be

configured equal to zero. This is the only possibility to ensure that only the system specific

delays are involved for data transfer and protocol handling. On embedded system’s side it

has to be ensured, that a CAN controller is able to process a received PDU within the

available time period before the next consecutive PDU will receive. A hardware interrupt

based data reception concept as discussed in section 6.2 will be a possible solution.

10.2 Application Protocol ISO 14229 (UDS) Optimisa tion

As theoretically analysed in chapter 3 and chapter 4 there are several approaches to

accelerate the data transfer between a PCU and an ECU. This test series has the focus

on the three approaches based on application layer implementation:

a) Double buffered data transfer

b) Data compression

c) Combination of double buffering and data compression

Study’s aim

The aim of this study is the evaluation of the theoretically discussed performance increase

for the different approaches. The study shall also proof that only the combination of both

approaches will provide best results.

Chapter 10 – Case study – software reprogramming 173

Experimental Setup

The system was configured as listed in table 10.2-1.

Table 10.2-1: Flow Control parameter “STmin” measurement results

Parameter Value Comment

CAN Configuration

CAN Baud rate 125 ; 250 ; 500 ; 1,000 kBit/s configured

CAN Address Mode 11 bit – normal addressed configured

ISO 15765-2 Configuration

Block size (BS) 32 configured

STmin 0 ms configured

SDU size 4,082 Byte ($FF2) configured

Compression algorithm

Uncompressed data size 458,720 Byte (447 kByte)

Compressed data size 328,730 Byte (321 kByte)

Compression ratio 71.66% (-28.34%)

10.2.1.1 Measurement results

Measurement results overview

Table 10.2-2 depicts the measurement results of different data transfer acceleration sce-

narios.

Table 10.2-2: Measurement results of different data transfer acceleration scenarios

5.70 kByte/s 10.09 kByte/s 15.65 kByte/s 17.80 kByte/s
100 % 100 % 100 % 100 %
5.99 kByte/s 10.37 kByte/s 16.25 kByte/s 18.46 kByte/s
105 % 103 % 104 % 104 %
7.41 kByte/s 12.58 kByte/s 18.26 kByte/s 20.61 kByte/s
130 % 125 % 117 % 116 %
8.35 kByte/s 14.32 kByte/s 21.64 kByte/s 24.79 kByte/s
146 % 142 % 133 % 134 %

Data rateScenario

Basic

DoubleBuffer

Compression

DoubleBuffer+Compression

CAN 500 kBit/s CAN 1000 kBit/sCAN 125 kBit/s CAN 250 kBit/s

Chapter 10 – Case study – software reprogramming 174

Data transfer rate via CAN

B
as

ic

D
ou

bl
eB

uf
fe

r
+

C
om

pr
es

si
on

B
as

ic

D
ou

bl
eB

uf
fe

r
+

C
om

pr
.

B
as

ic

D
ou

bl
eB

uf
fe

r
+

C
om

pr
es

si
on

B
as

ic

D
ou

bl
eB

uf
fe

r
+

C
om

pr
es

si
on

0

5

10

15

20

25

30

D
at

a
tr

an
sf

er
 r

at
e

[k
B

yt
e/

s]

125 250 500 1000
Baud rate [kBit/s]

+46%

+42%

+33%

+34%

Figure 10.2-1: Measurement results – best case relation for all scenarios

Contributions of the different parameters

Figure 10.2-2 depicts the data transfer rate for the different scenarios in correlation to the

contributions of the different influencing parameters for all measured scenarios.

Performance Analysis for different Scenarios

0

5

10

15

20

25

30

12
5

12
5

12
5

12
5

25
0

25
0

25
0

25
0

50
0

50
0

50
0

50
0

1.0
00

1.0
00

1.0
00

1.0
00

CAN Bit rate [kBit/s]

D
at

a
tr

an
sf

er
 r

at
e

[k
B

yt
e/

s]

ECU - Physical Programming

Data Tranfer Time
ECU - TP-Protocol Processing Time

PCU - Reprog-Protocol Processing

PCU - TP-Protocol Processing Time

B
as

ic

D
B

C
om

p

D
B

+C
om

p

B
as

ic

B
as

ic

B
as

ic

D
B

D
B

D
B

C
om

p

C
om

p

C
om

p

D
B

+C
om

p

D
B

+C
om

p

D
B

+C
om

p

Figure 10.2-2: Contribution of the different parameters

Chapter 10 – Case study – software reprogramming 175

Table 10.2-3 depicts the measured parameter values.

Table 10.2-3: Measurement results – detailed analysis

unit
125 250 500 1,000 kBit/s

Transferred data

dSDU_ISO14229

458,720 458,720 458,720 458,720 Byte

1 Basic Download Time 78.6 44.4 28.6 25.2 s
2 5.70 10.09 15.65 17.80 kByte/s
3 45.60 80.74 125.18 142.38 kBit/s
4 342.00 605.58 938.88 1,067.87 kByte/min

5 Number of SDU(4080Byte) 113 113 113 113

6 tDownload(4080Byte) 704.55 412.04 247.93 212.38 ms

7 N_Br 0.03 0.02 0.01 0.01 ms
8 N_Cs 3.62 3.12 3.16 4.53 ms

9 tProg 21.80 22.25 22.36 22.79 ms

10 tPCU 4.18 4.70 3.82 7.61 ms

11 DoubleBuffer Download Time 74.8 43.2 27.6 24.3 s
12 5.99 10.37 16.25 18.46 kByte/s
13 47.89 82.99 129.99 147.72 kBit/s
14 359.20 622.44 974.98 1,107.87 kByte/min

15 Number of SDU(4080Byte) 113 113 113 113

16 tDownload(4080Byte) 688.84 393.70 242.24 197.33 ms

17 N_Br 0.03 0.02 0.01 0.01 ms
18 N_Cs 3.42 3.81 4.03 3.46 ms

19 tProg 0.03 0.02 0.02 0.02 ms

20 tPCU 7.71 8.03 6.89 17.15 ms

21 Compression Download Time 60.5 35.6 24.5 21.7 s
22 7.41 12.58 18.26 20.61 kByte/s
23 59.28 100.62 146.05 164.88 kBit/s
24 444.60 754.63 1,095.36 1,236.59 kByte/min

25 Number of SDU(4080Byte) 81 81 81 81

26 tDownload(4080Byte) 777.99 470.47 345.24 298.21 ms

27 N_Br 0.03 0.02 0.01 0.01 ms
28 N_Cs 3.68 2.64 3.41 4.54 ms

29 tProg 72.91 73.12 72.91 73.22 ms

30 tPCU 2.83 5.11 2.95 7.41 ms

31 DoubleBuffer Download Time 53.7 31.3 20.7 18.1 s
32 + Compression 8.35 14.32 21.64 24.79 kByte/s
33 66.79 114.52 173.13 198.35 kBit/s
34 500.91 858.93 1,298.49 1,487.60 kByte/min

35 Number of SDU(4080Byte) 81 81 81 81

36 tDownload(4080Byte) 649.68 366.32 242.62 198.99 ms

37 N_Br 0.04 0.02 0.02 0.01 ms
38 N_Cs 3.04 3.04 3.60 4.04 ms

39 tProg 0.03 0.02 0.02 0.02 ms

40 tPCU 4.20 5.35 6.54 16.32 ms

Performance

Performance

Line Scenario Parameters CAN baud rate

Performance

Performance

10.2.1.2 Evaluation

Figure 10.2-3 depicts a principle, abstract and not in a time content view of the different

test scenario results.

Chapter 10 – Case study – software reprogramming 176

Figure 10.2-3: Test result timing evaluation

Double buffered data transfer (only)

Because of microcontroller’s high performance physical programming (≈ 180kByte/s) the

double buffered data transfer as the only optimisation method provides only a small bene-

fit. The physical programming time for 4,080 Byte is only 22.3 ms. Compared to the corre-

sponding data transfer time of CAN125kBit/s and CAN250kBit/s, the relation between tTransfer and

TProg is too small (refer to figure 3.2-4). For CAN500kBit/s and CAN1000kBit/s a higher increase

of the data transfer rate is expected because of a better relation of tTransfer and tProg. But the

detailed analysis results of table 10.2-3 and figure 10.2-2 depict also that the PCU’s pro-

cessing time to handle the reprogramming protocol UDS is increased. Hence, the benefit

of processing data reception and physical programming in parallel will be reduced.

Data compression (only)

As described in chapter 5 the data compression approach requires additional time to

decompress the data before physical programming. This time can be calculated by the

values of scenario “Basic” (data transfer without compression) and scenario “Compres-

sion” (data transfer with compression):

WithComp_ogPrPhyspWithoutCom_ogPrPhysionDecompress ttt −=

Chapter 10 – Case study – software reprogramming 177

Table 10.2-4: Decompression routine runtime

125 250 500 1000
tProg_uncompressed

(Scenario "Basic")
21.41 22.13 22.34 22.61 ms

tProg_compressed

(Scenario "Compression")
73.01 73.05 72.99 73.24 ms

tDecompression 51.60 50.92 50.65 50.63 ms

Parameter UnitCAN bit Rate

The data compression to 71% reduce the number of 4,080 byte blocks from 113 to 81

(refer to table 10.2-3 – line 5, 15, 25, 35). But the additional delay time for decompression

(visible in figure 10.2-2) of approx. 50.95 ms reduce the benefit of compressed data trans-

fer. Nevertheless, for low speed bus systems the PDU reduction to transmit all data and

therefore the reduction of transmission time is significantly higher than the additional de-

compression time. For high speed bus systems the compression effect will be smaller

because the relation of data transfer time reduction and additional compression time is

smaller.

Combination of double buffered data transfer and da ta compression

The combination of doubled buffered data transfer and compressed data transfer provides

best performance because the disadvantages of both methods are compensated. The

additional time for decompression and the time for physical reprogramming are not visible

because of the parallel processed data reception. Only the pure data transfer time is

visible. The data compression results in a less number of PDUs necessary to transmit all

data. The benefit is the higher the slower the bus system is because each saved PDU

saves runtime and therefore reduce total data transfer time.

The increasing PCU time is noticeable. A guess is that the ECU’s immediate response

and the necessity to compress the data on PCU side require additional time which delays

the data transfer. But those effects in the PCU implementation are not part of this work.

10.2.1.3 Conclusion

System Design Requirements

The theoretically discussed approaches for data transfer acceleration works in principle.

The case study demonstrates this in detail. The impact of the relation of tTransfer and tProg is

given as discussed in chapter 3.

Chapter 10 – Case study – software reprogramming 178

On the other hand the impact of the PCU is given. The higher the bandwidth the higher

the performance reduction that is possible by the PCU because of additional delays during

the protocol handling.

Double buffered data transfer and therefore the possibility to do activities in parallel is the

base for reprogramming acceleration. At least reprogramming and several other thinks

like data de-compression etc. could be done during ongoing data reception. Next steps

should be to do additional thinks in parallel. Signature calculation or CRC calculation, for

example, can be done in parallel, too. But this was not in focus of this work.

10.3 Gateway optimisation

This study is intended to verify the theoretically discussed impacts of a gateway (refer to

section 7.3) by a real implementation.

Experimental Setup

The gateway based on the AUTOSAR layered software architecture and implements a

CAN communication stack according to the protocols ISO 11898 and ISO 15765-2. The

gateway was implemented within a prototype project for a V850 Fx3 and for a V850 Fx4

microcontroller. The implementation was evaluated with the PCU Monaco® developed by

the Softing AG77. The PCU communicates on CAN1. The gateway is processing the trans-

fer from CAN1 to CAN2 and vice versa. The tracing tool documents the bus communica-

tion traffic on both bus systems.

Figure 10.3-1 depicts the evaluation test system layout.

Figure 10.3-1: Gateway test system overview

77 Softing AG, Germany [Softing]

Chapter 10 – Case study – software reprogramming 179

PCU: DTS Monaco (Softing)

Gateway Microcontroller: V850 Fx3 and V850 Fx4

ECU Microcontroller: D70F 3461 6J(A1) (“CargateM”)

Tracing tool: CANoe (Vector)

10.3.1 Buffer for the partly store and forward rout ing strategy

Study’s aim

The aim of this study is to evaluate the impact of the number of buffers for gateway’s

routing performance if a partly store and forward routing strategy is used (refer to

section 7.3).

10.3.1.1 Measurement results

Figure 10.3-2 depicts the measurement results of the data transfer rate for different buffer

configurations.

Routing performance depending on availabe buffer re ssources
(Routing from CAN 500kBit/s to CAN 500 kBit/s)

8.77
9.75

13.43 13.78
14.21

0

2

4

6

8

10

12

14

16

1 2 3 4 5
Buffers

D
at

a
tr

an
sf

er
 r

at
e

[k
B

yt
e/

s]

Figure 10.3-2: Data transfer rate for different buffer scenarios

10.3.1.2 Evaluation

As discussed in section 7.3.2 the partly store and forward routing strategy is a good com-

promise between buffer demand (resources) and routing performance (data transfer rate).

In figure 7.3-3 the necessity of more than one buffer is illustrated to accelerate the gate-

way‘s routing performance and the corresponding data transfer rate.

Chapter 10 – Case study – software reprogramming 180

The study shows that if only one buffer is configured, this buffer is alternatively the target

buffer during data reception on CAN1 or source buffer during data transmission on CAN2.

If no buffer is available, the data transfer on the corresponding side is delayed and the

total data transfer rate is decreased (8.77 kByte/s). In that case the

Table 10.3-1: Trace – data transfer for gateway with 2 buffer resources

 +------------------------------+ +----------------------------+
 | Transfer on CAN 1 | | Transfer on CAN 2 |
 +------------------------------+ +----------------------------+

 Time Bus ID Data ID Data
 [..]
--
Download to Flash
--
 31.076538 1 640 1F F2 36 01 04 06 00 01
 31.076827 2 640 1F F2 36 01 04 06 00 01
 31.076840 1 5C0 30 20 00 00 6E 31 01 00
 31.077087 2 5C0 30 20 00 FF FF FF FF FF
 31.077836 1 640 21 02 03 04 05 06 07 08
 [..]
 31.087283 1 640 20 00 80 07 00 00 80 07
 31.087557 1 5C0 30 20 00 00 6E 31 01 00
 [..]
 31.092758 1 640 2E 07 00 00 80 07 00 00
 31.092963 2 640 21 02 03 04 05 06 07 08
 31.093050 1 640 2F 80 07 00 00 80 07 00
 31.093305 2 640 22 09 0A A0 50 09 22 00
 [..]
 31.098182 1 640 20 00 80 07 00 00 80 07
 31.098299 2 640 20 00 80 07 00 00 80 07
 31.098452 1 5C0 31 20 00 FF 25 A0 21 80
 31.098651 2 640 21 00 00 80 07 00 00 80
 31.099003 2 640 22 07 00 00 80 07 00 00
 [..]
 31.104210 2 5C0 30 20 00 FF FF FF FF FF
 [..]
 31.112257 2 640 27 80 07 00 00 80 07 00
 31.112611 2 640 28 00 80 07 00 00 80 07
 31.112848 1 5C0 30 20 00 04 05 06 07 08
 31.112965 2 640 29 00 00 80 07 00 00 80
 31.113319 2 640 2A 07 00 00 80 07 00 00
 31.113673 2 640 2B 80 07 00 00 80 07 00
 31.113838 1 640 21 00 00 80 07 00 00 80
 31.114027 2 640 2C 00 80 07 00 00 80 07
 31.114128 1 640 22 07 00 00 80 07 00 00
 [..]
 31.438352 2 640 27 00 00 00 00 00 00 00
 31.438618 2 5C0 03 7F 36 78 FF FF FF FF
 31.438895 1 5C0 03 7F 36 78 56 01 00 02
 31.460015 2 5C0 02 76 01 78 FF FF FF FF
 31.460293 1 5C0 02 76 01 78 56 01 00 02

[..]

A second buffer increases the routing performance slightly. A significant optimisation of

routing performance is visible in case of 3 available buffer resources. As discussed in

section 7.3.2 and illustrated in figure 7.3-4, this effect bases on the bandwidth relation of

CAN1 and CAN2. (rBandwidth ≈ 1). The jitter of both bus systems (data transfer, processing

Chapter 10 – Case study – software reprogramming 181

time etc.) is responsible that CAN1 will get no free buffer when necessary. In that case the

communication on CAN1 must be delayed by the gateway until the communication frag-

ment on CAN2 has been finalized and a free buffer is available. Table 10.3-1 depicts a

trace of gateways routing process with only 2 available buffers.

The communication is delayed on CAN1 by a transport layer’s FlowControl PDU with

FlowState = Wait ($31) at time stamp 31.098452. After all data of the buffer are transmit-

ted on CAN2 (visible by a FlowControl PDU with FlowState = ClearToSend ($30) at time

stamp 31.104210) and the buffer is free again a FlowControl PDU on CAN1 is sent with

FlowState = ClearToSend ($30) at time stamp 31.112848.

In between this time of 5.396 ms no data transfer on CAN1 is possible. Hence, the total

data transfer rate is decreased to 11.01 kByte/s (4,080 Byte / 0.361814s). The software

reprogramming performance is decreased, too.

10.3.2 Increasing gateways clock frequency

High performance data routing within a gateway requires, that the routing process is han-

dled in the interrupt modus. That means that a received PDU is immediately processed

(e.g. transport layer protocol analysis, payload separation, buffer storage etc.). If interrupt

runtimes are too long, the system is not able to handle data reception and data transmis-

sion in parallel and typically the data transmission task will be skipped.

An approach to optimise interrupt runtimes or interrupt latencies is to increase the sys-

tems clock frequency. Of course, this is only possible within small boundaries. Therefore

the gateway was implemented on a V850 Fx4 microcontroller with a clock frequency of

160 MHz.

Table 10.3-2: Routing performance on different microcontrollers

V850 Fx3 V850 Fx4
Clock frequency 120 160 MHz
Gateway buffers 3 3 buffer
Data Size 458,752 458,752 Byte
Total Reprogramming time 33.36 26.37 s

13.43 16.99 kByte/s
805.82 1,019.20 kByte/min

Microcontroller unit

Routing Performance

CAN 500kBit/s to CAN 500 kBit/s

Chapter 10 – Case study – software reprogramming 182

10.3.3 Summary

The theoretically discussed aspects for gateways to couple different bus systems in chap-

ter 7 are valid. The partly store and forward routing strategy provides good data transfer

rate results, but the effort for implementation is high.

To provide a high data transfer rate more than one buffer resource has to be implement-

ed. The number of buffers depends on the bandwidth relation of the bus systems. If the

relation between source and target bus system is nearly 1 the jitter has to be taken into

account and additional buffers are required.

An increasing microcontroller’s clock frequency will result in a faster interrupt handling and

therefore in a faster routing. On the other hand the increasing of clock frequencies pro-

vides other disadvantages: system’s temperature is increasing by higher clock frequency

and other cooling mechanisms (cooling elements) are necessary. Also EMC might be a

problem if the clock frequency is increasing. Both topics are critical, especially within the

automotive industry.

10.4 Software reprogramming via FlexRay

This sub-chapter is intended to verify the theoretical discussions of chapter 4 a real im-

plementation.

10.4.1 Vehicle access by CAN bus system

The current vehicle networks implement FlexRay only as an in-vehicle bus system. That

means that FlexRay is not directly accessible by a PCU. Based on the legislative OBD-II

(onboard diagnostics for emission related ECUs based on ISO 15765-4) requirements,

that requires CAN as the vehicle access bus system by low for OBD-II communication,

CAN is also used for enhanced diagnostic communication. Due to that, software repro-

gramming as a part of enhanced diagnosis, is processes via CAN.

The case study based on a real vehicle network configuration prove that communication

for software reprogramming via FlexRay is currently limited by the vehicle access CAN

bus system.

Experimental Setup

The approaches of chapter 4 to accelerate data transfer via FlexRay have been imple-

mented within a prototype project for a V850 Fx478 microcontroller. The flashloader

78 Microcontroller: Renesas V850-D70F3461GJ(A1)

Chapter 10 – Case study – software reprogramming 183

implements a FlexRay communication stack according to the protocols FlexRay 2.1, ISO

10681-2 and ISO 14229. The implementation was evaluated with the PCU FlashCedere®

developed by the SMART GmbH79. The PCU communicates on CAN. The gateway is

processing the transfer from CAN to FlexRay and vice versa. The tracing tool documents

the bus communication traffic on both bus systems. Figure 10.4-1 depicts the evaluation

test system layout.

Figure 10.4-1: FlexRay test system overview

(PCU): FlashCedere® V1.20 (8399) and PCCOM: V01.61

CAN - PCC-TR2Box: S/N 0700/027-1

Gateway Microcontroller: V850 Fx3

ECU Microcontroller: V850 Fx4

With focus on software reprogramming within a vehicle the typical communication link

within implemented: The PCU communicates on CAN. A gateway is processing the data

from CAN to FlexRay and vice versa. The tracing tool documents the bus communication

traffic on both bus systems.

CAN bus system

The CAN bus system was configured as listed below:

Bit rate: 500 kBit/s

ISO15765-2 FlowControl.STmin: 0 ms

ISO15765-2 FlowControl.Blocksize: 32 PDUs

79 SMART Electronik Development GmbH, Germany [Smart]

Chapter 10 – Case study – software reprogramming 184

FlexRay schedule

The FlexRay communication schedule was configured as listed below:

Base cycle time: 5 ms

Number of gateway PDUs per cycle: 8

Gateway PDU cycle repetition 1

Gateway PDU payload length: 42 Byte

Number of ECU PDUs per cycle: 1

ECU slot PDU repetition: 1 or 4

ECU PDU payload length: 42 Byte

10.4.1.1 Protocol Restrictions

As discussed in section 3.2.2 the data transfer rate on FlexRay depends on several con-

figuration parameters.

FlexRay schedule and FlexRay PDU’s payload

A main influencing factor for the data transfer performance is the payload that is transmit-

ted within one communication cycle. In the study 42 byte payload for each FlexRay PDU

are configured and the schedule allows transmission of 8 PDUs per cycle. Due to ISO

10681-2 protocol (refer to section 4.2.2) the possible payload for data transfer must re-

duced by 8 byte for the Start Frame’s PCI and 6 byte for the Consecutive Frame’s PCI.

Hence, if only Consecutive Frame PDUs are transmitted and all PDUs per cycle are in

use, a payload of 288 byte per cycle is possible.

ISO 10681-2 configuration

The FlexRay communication layer protocol ISO 10681-2 defines a data flow controlling

(hand shake) between sender and receiver via Flow Control PDUs (refer to figure 4.2-10).

With focus on data transfer rate optimisation this Flow Control PDUs delay the data

transmission. Because of FlexRay protocol’s exclusive slot allocation for a sender node

(refer to section 4.2.1) the cycle repetition of this slot has an impact to the data transfer

rate. In case, the cycle repetition is configured to 4, in worst case the sender of the Flow

Control PDU is allowed to transmit the PDU after 4 communication cycles. During this

time no data transfer on that communication link is allowed. Hence, the communication

layer must be configured that no additional Flow Control PDUs after the initial one are

required. This is possible if on sender side the transmission mode of

ConsecutiveFrame_EOB PDUs is disabled and on sender side enough buffer for

the data reception is configured (this results in a Flow Control Bandwidth Control

Chapter 10 – Case study – software reprogramming 185

parameter equal to zero and means no bandwidth control is necessary – refer to table

4.2.5 and [ISO 10681-2_2]).

10.4.1.2 Test results

Figure 10.4-2 depicts measured and calculated data transfer rates for the different net-

work configurations.

FlexRay Performance Analyse
(CycleTime: 5ms, Request: max 288 Byte/cycle)

14.32 13.90

19.25 18.68

39.84

34.65

0

5

10

15

20

25

30

35

40

45

50

1 4
FlexRay Response Cycle Repetition

D
at

a
tr

an
sf

er
 r

at
e

[k
B

it/
s]

CAN 500 kBit/s (Measurement)
CAN 1000 kBit/s (Measurement)
FlexRay Limit (Calculation)

+34% +34%

Figure 10.4-2: FlexRay data transfer rate

The data transfer values for CAN500kBit/s and CAN1000kBit/s as the source bus system are

measured. To depict the potential of that FlexRay configuration, the data transfer rate for

an assumed high speed source bus system (e.g. Ethernet) is depicted, too. Table 10.4-1

depicts the measurement and calculation values.

Table 10.4-1: Data transfer performance based on CAN as vehicle interface bus system

FlexRay
(Config-Limit)

unit

500 1,000 kBit/s
Transfered Data Size 3,080,192 3,080,192 4,080 Byte
Download Time 210.10 156.22 0.10 s

14.32 19.25 39.84 kByte/s
859.03 1,155.27 2,390.63 kByte/min

Transfered Data Size 3,080,192 3,080,192 4,080 Byte
Download Time 216.35 161.04 0.12 s

13.90 18.68 34.65 kByte/s
834.22 1,120.69 2,078.80 kByte/min

FlexRay Parameter CAN

Response Cycle
Repetition = 1

Performance

Response Cycle
Repetition = 4

Performance

Chapter 10 – Case study – software reprogramming 186

10.4.1.3 Evaluation

Response cycle repetition impact

The study shows the impact of the response slot’s cycle repetition. With an increasing

value the data transfer rate is decreasing. For this system configuration, where only one

FlowControl PDU and the final Response PDU are sent, the effect is small (only 3% be-

tween CR=1 and CR=4). However, if the cycle repetition is 8 or 16 the data transfer rate

decrease will be significant. By this system configuration 17 cycles are necessary to

transmit 4,080 byte. If the cycle repetition is 16, in worst case the performance will de-

creased to nearly 50%.

Due to the measurement results, a cycle repetition of 2 or 4 in combination with the con-

figuration that no additional FlowControl PDUs are required is a good compromise be-

tween data transfer rate and allocated slot resources.

Bandwidth control configuration impact

Bandwidth control allows limitation of the maximum number of PDUs per cycle that can be

received by a receiver node. If bandwidth control is enabled the ECU will not receive the

maximum number of possible bytes per communication cycle and therefore more cycles

are required to transmit all data. This results in a performance decrease. Hence, if an

ECU provides not sufficient buffer to receive the maximum number of payload per cycle,

the maximum data transfer rate can not reached.

Source bus system’s and gateway’s impact

The step from CAN bus system with 500 kBit/s to a CAN bus system with 1,000 kBit/s

provides a benefit up to 34%. As discussed initially this FlexRay configuration provides a

data transfer rate for the request direction (PCU to ECU) of 28880 byte per cycle

(57.6 kByte/s). The CAN bus system can not support this data transfer rate and is there-

fore the limiting sub-link in that network. The potential of the FlexRay bus system is visible

in figure 10.4-2. The calculation based on the assumption that the ECU requires 20 ms for

physical programming. Due to that the download performance is given for the correspond-

ing cycle repetitions.

10.4.1.4 Summary

The study depicts that the currently given performance limitation is based on the vehicle

interface bus system CAN. The FlexRay system configuration is able to support higher

80 36 Byte Payload/ PDUCF * 8 PDU / Cycle = 288 Byte / Cycle � 288 Byte / 0.005s = 57.6 kByte/s

Chapter 10 – Case study – software reprogramming 187

data transfer rates. This is illustrated in figure 10.4-2 by the calculated data transfer val-

ues. The study depicts also, that the response cycle repetition configuration in the global

communication schedule has only a small impact, if the ISO 10681-2 is configured that no

additional FlowControl PDUs than the initial one are required (disable

ConsecutiveFrame_EOB mode – refer to section 4.2.2).

In section 4.2 the approach of schedule reconfiguration with the aim to increase data

transfer rate was discussed. With a view to the measurement results of this study, sched-

ule reconfiguration is only a powerful approach if either the PCU is connected direct to

FlexRay (FlexRay has to be connected to the vehicle connector) or a powerful high speed

bus system (e.g. Ethernet) as well as a powerful gateway with a high routing performance

are available. In the ahead given network configuration the communication link perfor-

mance limitation is the CAN bus system. In that case a schedule reconfiguration will have

no effect.

Until Ethernet is qualified for automotive usage (refer to chapter 11) all the other methods

to reduce data size (compression, partitioning etc.) are necessary to optimise data trans-

fer performance on FlexRay.

11 Conclusion and Outlook

Content

11.1 Summary 189

11.1.1 Method’s performance potential .. 190

11.1.2 Method’s potential vs. effort and costs 194

11.1.3 Utilisation in practice ... 196

11.1.4 Further work .. 197

11.2 Outlook.. ... 199

11.2.1 Automotive Ethernet ... 199

11.2.2 MRAM technology ... 199

11.2.3 Wireless access .. 200

11.3 Conclusion 200

The ECU software reprogramming process is a necessity within the automotive industry to

improve production efficiency/cost, improve reuse and flexibility of the complex embedded

systems and perform repair and in field maintenance. Thus, it is in use during the vehicle’s

complete life cycle. In chapter 1 the main challenges of automotive embedded software

and their impacts on the reprogramming method are introduced. Based on several

influencing factors, the reprogramming process time is continuously increasing and the

commercial benefits of that method are no longer available when compared to changing

ECUs. Whilst up to now this time has not caused critical time delays/cost in production or

the in-field maintenance period, chapter 1 suggests that this soon will be the case for

current systems in development without the introduction of new reprogramming strategies.

This thesis has presented research on new strategies to address the acceleration of the

reprogramming process of existing embedded systems technologies and standards by

consideration of communication protocol optimisations (chapter 3 and 4) as well as

approaches to reduce the total data to transfer (chapter 5). Quantitative models have

Chapter 11 – Conclusion and outlook 189

been created to allow for predictions of reprogramming times to be calculated during the

design development cycle. The thesis also presented recommendations and modelling of

new hardware designs within a microcontroller to support faster reprogramming (chapter

6). Network design aspects that influencing the reprogramming time and provide potential

for optimisations have been analysed in chapter 7. Quantitative analysis of the repro-

gramming in parallel as an additional approach was in focus of chapter 8. In chapter 9 a

brief introduction to the future MRAM technology, yet to be released, was given and its

impact on re-programming quantified. In chapter 10 experimental investigation and analy-

sis have been performed to verify the quantitative theoretical modules previous generated

and to evaluate empirically key coefficients and parameters within some of these models.

The thesis does not just analysis the current technologies in production but considers the

new technologies and standards currently being considered in the design development

cycle and future strategies not yet being considered by designers in prototype research

departments. This chapter will introduce to provide the summary of the research work

depending on the initially discussed challenges. Also an outlook on how software repro-

gramming of automotive ECUs will evolve during the next decade and the future

challenges will be given.

11.1 Summary

Theoretical work

The thesis has addressed different approaches to reduce the software reprogramming

process time for automotive ECUs. The focus was on on-board optimisations. To ensure

that the communication on the vehicle connection interface (VCI) bus system was opti-

mised the programming control unit (PCU) was also considered part of the on-board

system. The PCU also plays an important part in programming strategy optimisation (e.g.

reprogramming in parallel). But PCU implementation details were not part of the research

work. Figure 11.1-1 depicts an overview of the thesis’ contributions in principle. The re-

search results are summarised below. The different approaches are compared in relation

to their power to speed up the ECU’s application software reprogramming process.

Case study

The results of the case study confirm the theoretical results and enable important parame-

ters to be quantified. The experimental implementation of the flashloader shows that the

methods work in principle and that the discussed limitations are given. Hardware optimisa-

tion or implementations for the PCU were not part of the case study. These topics provide

potential for additional research work.

Chapter 11 – Conclusion and outlook 190

Figure 11.1-1: Optimisation approaches overview

11.1.1 Method’s performance potential

The comparison of, and the relation between the different methods is quite difficult be-

cause the methods’ power depends on the initial system. Figure 11.1-2 depicts the differ-

ent approaches with their potential to speed up the reprogramming process (graph). The

bubbles’ position on the graph is shows the potential compared to a current state of the art

ECU based on a CAN bus system with a bit rate of 500 kBit/s (e.g. for approach of double

buffered data transfer (1.1) for this ECU the improvement is approx.15% and for the pro-

tocol optimisations (1.2) there would be over 50% improvement).

Figure 11.1-2: Optimisation approaches’ potential

Chapter 11 – Conclusion and outlook 191

Data transfer acceleration

Data transfer acceleration is the basic approach to speed up the reprogramming process.

The maximum possible bandwidth data transfer rate on the physical bus system can be

reduced on several protocol layers within the communication protocol stack.

The potential of double buffered data transfer depends on the relation between data

transfer time and the microcontroller’s reprogramming time. The allocation of a second

buffer is typically not a problem because the flashloader has access to the full RAM of the

ECU (note that application software is not active during that time). Double buffered data

reception is a key functionality for activities in parallel (e.g. data reception and physical

reprogramming as well as to compensate the additional time for data de-compression).

Transport layer and network layer optimisations have a high potential to speed up the

date transfer. Especially the transport layer’s flow control configuration protects the sys-

tem from additional delays because of separation times between consecutive frames

(PDUs).

Data link layer optimisation potential depends on the bus system used and has a wide

spread. The effect of increasing the system’s bandwidth might be invisible if additional

delays are available in the upper layers of the protocol stack. Hence, the delay elimination

has the highest implementation priority.

Data size reduction

Partitioning is a very powerful approach to reduce data to be transferred. It is not possi-

ble to provide an absolute value for the potential because this value depends on the size

relation of the different partitions. Today typically there is a distinction between application

software and parameter sets or data sets (characteristic curve etc.) which are allocated in

separate partitions. Depending on their size the method’s potential is variable. The com-

patibility aspects of the different partitions have to be taken into account, with focus on

complexity.

Fill byte separation was also discussed as a possible approach, but it provides minor

effects. Depending on the data transfer rate it might be possible that the gap transfer

(requires two additional diagnostic services on UDS) requires more time than the fill byte

transfer.

Data compression provides good results. Of course, the compression ratio is limited

because a) the usage of lossy compression algorithms is not possible and b) the limited

RAM resources do not allow dictionary based algorithms. Nevertheless, a data size reduc-

tion up to 30% is possible. To get a good performance for the complete reprogramming

Chapter 11 – Conclusion and outlook 192

process the additional time for data decompression has to be compensated for. This is

possible by the usage of double buffered data transfer in which data reception is ongoing

while data decompression and physical reprogramming of the previews data is processed.

Differential file update provides the best theoretical results of all researched approach-

es. Today the method is only useable with many restrictions. The Flash memory technol-

ogy used today isn’t able to reprogram singe bytes. The memory is organised in sections

which have to be erased completely before reprogramming is possible. Hence, a differ-

ence between current and previews file of only a small number of bytes results in repro-

gramming of the complete sector. The compiled code memory arrangement (start

addresses of functions etc.) also shall not move, because this will result in additional

differences of the current and previews file. Nevertheless, this method provides best

results if all additional process’ requirements are fulfilled.

If the increase of ECU software sizes continues in future, this approach might be the only

sustainable one to solve the problem of increasing reprogramming times.

Hardware optimisation

Implementing memory status information for a microcontroller’s current memory state is

helpful to reduce the erase time. The main focus here is on the vehicle manufacturing

process, where the differentiation of ECUs is only done by software (e.g. engine control

software with different characteristic curves on equal hardware). If this software is repro-

grammed within the assembly line, the microcontroller’s Flash memory is typically empty

and must not be additionally erased. Skipping the physical erase sub-sequence saves

time within the complete reprogramming process. The potential of this approach depends

on the memory size and the time that is necessary to erase the memory in relation to the

data transfer time. A microcontroller with a short erase time and connected to a low

bandwidth bus system has only a small potential. When reprogramming an ECU’s applica-

tion software in the case of bug fixing in a garage, the erase process can’t be skipped

because the previews software must be erased before reprogramming is possible. Hence,

the method is not universally usable.

Doubling the interrupt service routine vector table is a generic approach. This optimisa-

tion provides the possibility to control several activities, e.g. data reception, watchdog

triggering or timer handling etc., by interrupts. The benefit compared to the currently nec-

essary polling-mode is the trigger on an event. Only if the event occurs, the trigger is

given and the interrupt service routine is processed. The permanent monitoring of the

microcontroller’s status information (e.g. data reception flags etc.) is no longer necessary

and the monitoring time could be used for other activities, e.g. data decompression. In

Chapter 11 – Conclusion and outlook 193

terms of software reprogramming activities, the real benefit of this method is small be-

cause the polling-mode approach is also very fast but with a higher effort for the monitor-

ing routines. Hence, the potential of the pure method is very small.

Network optimisation and design

The communication network (bus systems, gateways etc.) has an impact on the repro-

gramming performance. Depending on the network type (homogeneous or heterogene-

ous), the gateways have to route PDUs on different communication protocol layers (ac-

cording to the ISO/OSI reference model) and has to use different routing strategies (direct

routing, store and forward, combinations of both etc.). The higher the layer at which the

routing process is executed within the communication protocol stack, the more resources

are necessary to speed up this process. Hence, processing runtime (CPU time), as well

as resources (RAM for buffers), has to be taken into account for gateway design. The

potential of this method is high because of the impact of the routing strategy and the

corresponding data transfer time. If timing limits for the reprogramming process are given,

(e.g. manufacturing line clock etc.) the network topology must be designed to fulfil the

given timing requirements. The fact that the vehicle network cannot be changed during

vehicle’s life cycle is a problem particular to the automotive industry. Hence, the network

design must be able to deal with future ECUs (faster microcontrollers, more memory,

more software etc.) and therefore, some performance reserves must be calculated in. Of

course, the reserves (additional bus systems or bus systems with higher bandwidth etc.)

are expensive and violate cost limits, but the communication network is the most im-

portant part in guaranteeing the reprogramming performance during vehicle’s life cycle,

even when future ECUs are introduced. Hence, communication network design is the key

func-tionality for future vehicle development.

Reprogramming strategy

Reprogramming in parallel is a powerful approach to reduce the total reprogramming time

if more than one ECU’s application software must be reprogrammed. The potential is high

but a corresponding communication network design is a precondition. If bus systems with

adequate bandwidth are not available, no communication in parallel is possible. Hence,

the network design and the programming strategy are only possible in tandem. A more

detailed analysis of the PCU and the ECU ordering for reprogramming was not part of this

work, but would be interesting if an additional process optimisation for reprogramming in

parallel is possible.

Chapter 11 – Conclusion and outlook 194

11.1.2 Method’s potential vs. effort and costs

The previous section summarised the potential to accelerate the software reprogramming

process of all methods discussed in the thesis. Nevertheless, as described in chapter 1,

the pressure to maintain or reduce production or in-field service (maintenance) time and

keep recurring engineering costs low within the automotive industry is very high because

of the high number of cars that are produced per year. Therefore, the relation between the

methods’ potential and the effort for implementation has to be discussed. This is neces-

sary to support decisions for future implementation strategies for ECU hardware selec-

tions, vehicle network architecture and design, the vehicle communication interface bus

system etc. A criterion to differentiate costs is the effort to implement the method. It has to

be distinguished between different effort types and therefore different cost impacts:

a) Effort in software (SW) to implement the method

 (These are typically singular costs for the initial implementation).

b) Effort in hardware (HW) to implement the method

 (Typically additional hardware costs are costs per ECU or vehicle and have there-

fore a high weight).

c) Other efforts e.g. external overhead.

Table 11.1-1 depicts the different approaches in dependency of the necessary effort in

case of implementation or realisation.

Table 11.1-1: Reprogramming process acceleration methods’ effort

 Method Effort

SW HW other

1.1 Double buffered data transfer low

1.2 Transport / network layer protocol optimisation low

1.3 Data link layer protocol optimisation low mid

2.1 Partitioning low mid

2.2 Fill byte separation low

2.3 Data compression low

2.4 Differential file update high high high

3.1 Memory status information high

3.2 Doubled interrupt vector table high

4.1 Routing strategy mid high

5.1 Reprogramming in parallel low

Chapter 11 – Conclusion and outlook 195

Based on table 11.1-1 and figure 11.1-2 a quantitatively relation of reprogramming per-

formance potential vs. implementation and realisation effort is possible. Figure 11.1-3

depicts that relation in a graph.

Figure 11.1-3: Method’s potential vs. costs

These findings from the research work, based on quantitative evaluation of reprogram-

ming times, make several contributions to future ECU, network and vehicle development

decisions. The different areas are discussed below.

Low costs for implementation

Five methods can be implemented with only a small effort. Those methods require only an

optimisation in software. Protocol optimisations (1.2) provide the best results when only

optimising the configuration parameter set. Reprogramming in parallel (5.1) only re-

quires an additional algorithm in the PCU to order the different ECU reprogramming activi-

ties. There is no change necessary in the flashloader software. The data compression

method (2.3) is an additional software part within the flashloader. The method has to be

implemented once and can be used for all microcontrollers because the method itself is

hardware-independent. RAM resources for buffer are not critical because the Flashloader

has access to the complete ECU RAM. This reasoning also applies to the double buff-

ered data transfer method (1.1). Fill byte separation (2.2) is a method implemented in

the software development process (linker method).

Medium costs for implementation

Costs for optimisation on the data link layer protocol (1.3) depend on the initial system.

If a high speed CAN bus system is available, maximum bandwidth can be configured

without any additional activities. The only precondition is that the resulting maximum cable

lengths are sufficient for the network, because they are reduced in case of increasing

Chapter 11 – Conclusion and outlook 196

bandwidth81. The partitioning method (2.1) is very efficient but provides logistic effort.

The different software parts of an ECU have to be managed (documentation, identifica-

tion, compatibility etc.). Of course, these are typically software management processes

but the effort is given.

High costs for implementation

Each kind of hardware optimisation (3.1 and 3.2) provides high costs because the mi-

cro-controllers have to be changed. If those methods become state of the art in the future,

the cost benefit relation will be better, but today the methods are too expensive for realisa-

tion. The routing strategies in gateways (4.1) have a high potential but require high

resources. Typically a high speed microcontroller with high clock rate is necessary to

provide the CPU time for the routing process and the performance to do this for several

connections in parallel. The high clock frequency has an impact to the EMC82 strategy and

results in additional hardware to reduce radiant emittance. The best potential by highest

effort is provided by the differential file programming method (2.4). The effort is high

within the PCU which has to calculate the difference as well as within the flashloader to

calculate the new file and reprogram it. The currently used flash memory is the reason for

the on-board complexity because it is not possible to reprogram a) without previously

erasing and b) only a few bytes. Erasing complete sections of several kByte is required

before reprogramming is possible. Hence, the non-different data has to be saved and

temporary stored in a RAM mirror of the flash memory. Typically a microcontroller doesn’t

provide the required RAM size for this method. Finally the development process of em-

bedded systems’ application software has to support the differential file approach. That

means that software must be generated in a special way that only small differences occur

between different software releases. But this was not in focus of this work.

11.1.3 Utilisation in practice

The findings of this study have a number of important implications for utilisation in prac-

tice.

Recommendation for implementation from today’s poin t of view

The initial problem of increasing reprogramming times because of increasing software

sizes can partly be solved by the short term implementation of the low cost methods.

Especially the communication protocol optimisations (refer to chapter 3 and chapter 4)

provide short term results on low costs.

81 This could be a problem for trucks with long cable sizes from truck to trailer.
82 EMC - electromagnetic compatibility

Chapter 11 – Conclusion and outlook 197

For the medium costs methods an analysis about of the real effort is necessary. In some

cases (where the hardware impact is small) a benefit is given without any other implica-

tions.

The network design is quite expensive but necessary because of the vehicle’s long life

cycle (refer to chapter 1.3.4). The network must be able to process the data communica-

tion links as fast as possible to guarantee the basically required speed performance of

100% bus load. Nevertheless, network design decisions are made several years before

vehicles start of production and can not be revised quite easily. Hence, it is strongly rec-

ommended to implement all network optimisations in future cars because of vehicle’s, and

therefore networks, long time life cycle.

For the methods “reprogramming by differential file (2.4)” and “hardware optimisations

(3.1 and 3.2)” the implementation is currently not recommended because of the high

implementation effort and therefore, high costs. Additional research work and new hard-

ware technologies will be necessary to reduce costs before these approaches will be

usable in the automotive industry.

11.1.4 Further work

The focus on this thesis was the acceleration of the embedded systems’ software repro-

gramming process. The research that has been undertaken in this thesis has highlighted a

number of different topics to solve the given challenges. First results are provided and a

classification of method’s potential and their effecting to costs was investigated. Neverthe-

less, there are several lines of further research arising from this work.

Moving knowledge to future automotive communication protocol stacks

All the discussed topics in chapter 3 and 4 become also important if new bus systems are

introduced. For each new bus system the protocol stack has to be optimised with focus on

data transfer rate for software reprogramming purpose. In a first step, research work to

automotive usable Ethernet (refer to chapter outlook) is necessary as a base technology

to solve several challenges within automotive communication aspects.

More effective compression algorithms that consider to embedded system’s re-

sources

As discussed in section 5.3 the very special resource situation of embedded systems (e.g.

RAM, clock frequency etc.) does not allow the usage of all possible lossless compression

algorithms. The good costs to performance relation as discussed above excuses further

research work to develop more effective compression algorithms for utilisation in embed-

ded systems.

Chapter 11 – Conclusion and outlook 198

Tool supported network analysis and design

The discussed complexity of currently available and future developed vehicle networks

requires tools to support the network design and analysis process (refer to appendix D).

The communication model of chapter 4 can be the base for performance analysis focused

on diagnostic and reprogramming communication. Nevertheless, tool development as-

pects, e.g. internal data models, calculation or simulation speed performance etc., have to

be discussed and solved.

Consolidation and concentration of ECUs

A modern vehicle implements up to 80 different ECUs. This high number of independent

network nodes makes a strong contribution to the currently available network complexity.

An interesting question for further research work is about optimisation potentials if the

given functionality is concentrated to only a few, but powerful ECUs. Cost aspects as well

as packaging in the vehicle and increasing systems complexity have to be taken into

account.

High speed vehicle access

A precondition for processing different communication links in parallel is a high speed

vehicle access (e.g. high speed bus system). The currently established CAN bus system

will be no longer sufficient (refer to chapter 8 and the case study in chapter 10). FlexRay

might be a possible alternative but the complexity of time triggered protocol might provide

other disadvantages. Ethernet as a common standard is currently still too expensive for

automotive usage (connectors, shielded cable etc.) but different vehicle manufacturers

and system suppliers have started an initiative to develop and standardise automotive

usable Ethernet (refer to the outlook chapter).

Programming Control Unit

The offboard technology was not in focus of this thesis. But software has to be managed

offboard. Because of increasing dependencies of different ECU (software, routines, func-

tionalities etc.) complexity will continuously increase and the documentation of compatibili-

ties becomes more importance.

Compatibility management of embedded software relea ses.

The differential files approach based on the fact that different software releases have only

small differences of their OP-code. It seams that completely new methods and strategies

for the embedded software development process are necessary, compared to the today’s

established processes. Hence, more research is needed to better understand what must

be changed to support the differential files approach for software reprogramming.

Chapter 11 – Conclusion and outlook 199

11.2 Outlook

The recommended further work will be supported by the ongoing development, not only

within the automotive industry. Some technology aspects, which have been identified in

this thesis as a precondition to raise the next evolution step, will appear on technology’s

horizon. Hence, it will be only a question of time when these technologies will be ready for

automotive usage.

11.2.1 Automotive Ethernet

Ethernet will be the bus system for the next generation of vehicle communication inter-

face. In the past Ethernet according to [IEEE 802] standard was too expensive for auto-

motive usage. Shielded cable and unpractical connectors have prevented the introduction.

Since November 2011 a new alliance of OEMs, ECU and semiconductor distributors was

formed. The aim is to establish chipmaker Broadcom’s83 BroadR-Reach technology as an

open standard for One-Pair-Ethernet (OPEN) [Auo11].

Ethernet as the vehicle interface bus system supports the possibility for reprogramming in

parallel because of high bandwidth. In that case the limitation of the reprogramming pro-

cess will be the microcontroller’s physical reprogramming process.

11.2.2 MRAM technology

The next evolutionary step in embedded memory technologies will be Magnetoresistive

Random Access Memory (MRAM). The advantages of MRAM based systems are quite

evident. In contrast to the currently established Flash memory technology MRAM provides

byte-wise access and the possibility to overwrite data without an initial memory erase

phase.

The byte-wise access allows the usage of the differential file method for software repro-

gramming as discussed previously. The Flash memory disadvantage of storing the non-

changed bytes into RAM mirror is not longer given. Of course, the effort of this method is

high (refer to chapter 4) but the benefit is enormous. The data transfer time could be

reduced significantly and this will finally solve the initial problem.

Hence, industry is looking forward to the introduction of MRAM based embedded micro-

controllers.

83 refer to [Broadcom]

Chapter 11 – Conclusion and outlook 200

11.2.3 Wireless access

The continuously ongoing trend in vehicle inter-connection (car-to-car) and the inter-

connection of vehicles networks and non-vehicle networks (car-to-X) requires wireless

access points within the cars. These infrastructures allow software reprogramming via

wireless connections, too. The potential is enormous because software reprogramming

within the service or after sales market is not longer bound by visiting the garage. The

technique provides also benefits during the manufacturing process because the handling

of the wired PCU is not longer necessary.

LTE (Long Term Evolution) as a new global standard for mobile communication networks

provides high potential. If the vehicle implements an interface, a remote vehicle access is

nearly everywhere given. Of course, some additional topics are currently limiting factors,

especially with focus on software reprogramming. 1) The power supply (vehicle battery)

must provide the power to keep the vehicle network awake until software is repro-

grammed without a running engine. On the other hand, the battery’s charge condition

shall be good enough to restart the vehicle at any time. Especially for new vehicles with

electric drive this is an important criterion. 2) The data have to be stored temporary within

the vehicle to reduce long online times. Due to that an onboard PCU has to be introduced

within a vehicle as well as a large temporary memory unit. Both will increase costs per

vehicle. 3) Wireless communication to a vehicle requires high security standards especial-

ly if software shall be remote reprogrammed. Security within this context means either

security against unauthorised access as well as security to the overall process. It must

never be possible that the vehicle is not usable because of an unsuccessful programming

attempt. Here some given concepts of the PC world can be moved to the embedded world

with the challenges of less resources and computing performance.

Nevertheless all discussed approaches within this thesis to accelerate data transfer will

support the wireless activities, too, because reduced data transfer and processing times

will reduce the time to be online and therefore, reduce costs.

11.3 Conclusion

The scope of the work reported in this thesis was on the on-board part of the global soft-

ware reprogramming process for embedded systems. ECU aspects (flashloader, applica-

tion software, network access, communication protocols etc.) and network aspects

(architecture, topology etc.) were the focus on investigation. As described in section 1.4.1

for future ECUs the given time limitation requirement to the maximum reprogramming time

will not fulfilled any longer without any optimisations.

Chapter 11 – Conclusion and outlook 201

As a major outcome of this thesis several methods have been investigated with different

potential to solve the initial problem. Depending on future embedded systems’ software

sizes and the automotive industry’s cost aspects, the investigation result methods can be

combined to short term, mid term and long term solutions. The impacts of implementation

efforts, given technologies and the availability of future technologies have been taken into

account. Figure 11.3-1 depicts a quantitative view to the roadmap and the different steps

of performance potential.

Figure 11.3-1: Reprogramming method’s implementation roadmap

The software size for embedded systems will not stagnate. Especially within the vehicle

industry the innovation will take place through software functionality. Hence, the

problem of increasing software reprogramming times is permanently given. Of course, by

most of the discussed approaches to accelerate the reprogramming process, the problem

could be solved for a view years but the increasing software sizes will force the problems

again. It might be possible that the combination of all methods could enlarge that time but

the problem cannot be solved forever by the current memory technology (Flash memory)

and automotive bus system technology (CAN).

Hence, the long term solution will be the combination of new memory technologies (e.g.

MRAM), the compressed data transfer of ECU’s partition specific differential file via high

speed bus systems in optimised networks and for software reprogramming purpose opti-

mised microcontrollers.

This thesis made some contributions on the way to that ambitious aim.

12 Figures

Figure 1.1-1: Vehicle model line life cycle ... 3

Figure 1.2-1: Reprogramming stages within an ECU’s life cycle 4

Figure 1.2-2: Automotive ECU software volume.. 5

Figure 1.3-1: Amount of vehicle software of Mercedes-Benz .. 8

Figure 1.3-2: Most implemented automotive field bus systems 10

Figure 1.3-3: Shift from single to system innovation [Dan07] .. 11

Figure 1.3-4: Increasing network complexity ... 13

Figure 1.3-5: Vehicle development trends ... 14

Figure 1.4-1: Software reprogramming process circle ... 15

Figure 1.4-2: Software reprogramming time limitation ... 16

Figure 2.1-1: Embedded system components ... 19

Figure 2.1-2: ECU network of a Mercedes-Benz Model line 221 (S-Class) [Mer09] 20

Figure 2.1-3: Mercedes-Benz Model Line 221 (S-Class) network architecture [Mer09-1] 20

Figure 2.2-1: Memory Technologies Overview [Rei11] .. 22

Figure 2.2-2: ECU Software Components Overview ... 24

Figure 2.2-3: Overview flashloader component ... 26

Figure 2.4-1: Abstract major programming sequence ... 29

Figure 2.5-1: Communication structure within a protocol stack 34

Figure 2.5-2: Protocol Stack Overview – Transport Layer ... 37

Figure 2.7-1: System model for embedded system’s software reprogramming 40

Figure 3.1-1: Reprogramming protocol overview... 42

Figure 3.2-1: Single buffer data transfer .. 43

Figure 3.2-2: Double buffered data transfer – scenario 1 .. 45

Figure 3.2-3: Maximum time reduction for tData Transfer ≥ tPhysicalProgramming 46

Figure 3.2-4: Total reprogramming time reduction - details ... 47

Figure 3.2-5: Double buffer data transfer – scenario 2 .. 48

Figure 3.3-1: UDS communication via single buffered system .. 50

Figure 3.3-2: UDS communication via double buffer system ... 50

Figure 3.3-3: Multi controller system ... 51

Figure 4.1-1: ISO 15765-2 Protocol Data Units format .. 58

Figure 4.1-2: ISO 15765-2 communication scenarios ... 59

Figures 203

Figure 4.1-3: Request / response communication scenarios based on ISO 15765-2 60

Figure 4.1-4: Block size analysis for 11 bit CAN identifier ... 64

Figure 4.1-5: Block size analysis for 29 bit CAN identifier ... 64

Figure 4.1-6: Data transfer rate depending on STmin ... 67

Figure 4.1-7: Data transfer rate depending on STmin – detailed diagram 67

Figure 4.1-8: Comparison of impact of STmin and BS .. 68

Figure 4.2-1: FlexRay Schedule .. 74

Figure 4.2-2: Maximum FlexRay net data rate (tcycle = 1 ms) ... 79

Figure 4.2-3: Maximum FlexRay net data rate (tcycle = 5 ms) ... 79

Figure 4.2-4: FlexRay net data rate (tcycle = 1 ms) ... 80

Figure 4.2-5: FlexRay net data rate (tcycle = 5 ms) ... 80

Figure 4.2-6: FlexRay schedule optimisation .. 82

Figure 4.2-7: FlexRay communication protocol PDU format .. 85

Figure 4.2-8: FlexRay communication layer scenarios .. 86

Figure 4.2-9: FlexRay Bandwidth assignment ... 86

Figure 4.2-10: Data transfer according to ISO 10681-2 ... 87

Figure 5.1-1: Application layer partitions [AUT11] ... 97

Figure 5.2-1: Data transfer with and without fill bytes .. 100

Figure 5.3-1: LZSS algorithm .. 105

Figure 5.3-2: LZSS Compression Results [Hee04] .. 105

Figure 5.3-3: LZSS Optimisation ... 107

Figure 5.4-1: Modified Op-Code in case of bug fixing ... 108

Figure 5.4-2: Differential file update .. 109

Figure 5.4-3: Differential file update .. 110

Figure 5.5-1: method’s complexity vs. typical data size reduction 114

Figure 6.1-1: Early variant building vs. late variant building ... 117

Figure 6.1-2: Memory Status Information Register .. 120

Figure 6.2-1: Single ISR vector table vs. multiple ISR vector tables 121

Figure 6.3-1: Potential vs. effort of hardware implementation 124

Figure 7.1-1: Network Classification .. 128

Figure 7.2-1: Routing within the AUTOSAR layered software architecture 129

Figure 7.3-1: Routing strategy ... 130

Figure 7.3-2: Routing performance ... 132

Figure 7.3-3: Partly store and forward routing strategy.. 133

Figure 7.3-4: Ideal number of buffers .. 134

Figure 7.4-1: Routing performance vs. resources ... 136

Figures 204

Figure 7.4-2: Design based on timing limitations ... 137

Figure 7.4-3: Source bus and target bus definition for reprogramming in parallel 139

Figure 7.4-4: Different, scenario oriented views to the same network 140

Figure 8.1-1: Network classification .. 142

Figure 8.2-1: Bandwidth capacity utilisation .. 144

Figure 8.2-2: Priority calculation on a network with 4 ECU .. 145

Figure 8.2-3: Schedule calculation on a network with 4 ECU .. 146

Figure 8.2-4: Schedule calculation for networks with cascaded bus systems 147

Figure 8.4-1: ODX integration to support reprogramming in parallel.............................. 150

Figure 9.1-1: Bit information storage based on the MTJ effect 152

Figure 10.1-1: Test environment ... 158

Figure 10.1-2: Segmented data transfer according to ISO 15765-2 159

Figure 10.1-3: Segmented data transfer according to ISO 15765-2 162

Figure 10.1-4: Software reprogramming performance on CAN 166

Figure 10.1-5: Impact of Flow Control parameter BS .. 169

Figure 10.1-6: Impact of Flow Control parameter STmin ... 171

Figure 10.2-1: Measurement results – best case relation for all scenarios 174

Figure 10.2-2: Contribution of the different parameters ... 174

Figure 10.2-3: Test result timing evaluation .. 176

Figure 10.3-1: Gateway test system overview ... 178

Figure 10.3-2: Data transfer rate for different buffer scenarios 179

Figure 10.4-1: FlexRay test system overview .. 183

Figure 10.4-2: FlexRay data transfer rate.. 185

Figure 11.1-1: Optimisation approaches overview .. 190

Figure 11.1-2: Optimisation approaches’ potential .. 190

Figure 11.1-3: Method’s potential vs. costs ... 195

Figure 11.3-1: Reprogramming method’s implementation roadmap 201

13 Tables

Table 1.2-1: World automotive production [Vda11] ... 7

Table 1.3-1: Software release types.. 12

Table 2.2-1: ECU’s semiconductor memory overview [Zim10-2] 23

Table 2.2-2: Physical programming performance .. 23

Table 2.4-1: Software Re-Programming Process according to [HIS06-2] and [Zim10-3] . 31

Table 2.5-1: OSI reference model ... 33

Table 2.5-2: Field bus systems in automotive area ... 35

Table 2.5-3: Automotive related transport protocol specifications 37

Table 4.1-1: CAN PDU length without stuff bits ... 55

Table 4.1-2: Net data rate for CAN PDUs with 64 bit payload ... 56

Table 4.1-3: Parameter definition for block size analysis ... 62

Table 4.1-4: fData_Net max for different bandwidths .. 63

Table 4.2-1: FlexRay PDU length ... 75

Table 4.2-2: FlexRay PDU length and PDU runtime for fbit=10 MBit/s 76

Table 4.2-3: ISO 10681-2 PDU overview .. 85

Table 4.2-4: ISO 10681-2 Flow Control (FC) PCI Overview [ISO 10681-2] 89

Table 4.2-5: ISO 10681-2 Definition of Bandwidth Control (BC) values [ISO 10681-2] 89

Table 5.2-1: Break even calculation .. 102

Table 5.5-1: Data transfer time via CAN ... 113

Table 6.1-1: Infineon TC1197 Flash Parameter [TC1197] ... 118

Table 8.1-1: Reprogramming scenarios .. 142

Table 9.1-1: Comparison of expected MRAM features with other memory technologies

[Fre07] .. 153

Table 9.2-1: Example of microcontroller’s erase time for Flash memory 154

Table 9.3-1: Differential file approach comparison to Flash and MRAM technology 156

Table 10.1-1: PCU and ECU communication configuration parameters 160

Table 10.1-2: Measurement results of PCU and ECU processing parameters 160

Table 10.1-3: Communication model’s calculation of data transfer rate 161

Table 10.1-4: Communication model’s calculation of data transfer rate 161

Table 10.1-5: PCU and ECU communication configuration parameters 163

Table 10.1-6: Measurement results of PCU and ECU processing parameters 163

Tables 206

Table 10.1-7: Communication model’s calculation of data transfer rate 165

Table 10.1-8: PCU and ECU communication configuration parameters 166

Table 10.1-9: Software reprogramming performance on CAN 167

Table 10.1-10: PCU and ECU communication configuration parameters 168

Table 10.1-11: Flow Control parameter “BS” measurement results 168

Table 10.1-12: PCU and ECU communication configuration parameters 170

Table 10.1-13: Flow Control parameter “STmin” measurement results 171

Table 10.2-1: Flow Control parameter “STmin” measurement results 173

Table 10.2-2: Measurement results of different data transfer acceleration scenarios 173

Table 10.2-3: Measurement results – detailed analysis... 175

Table 10.2-4: Decompression routine runtime .. 177

Table 10.3-1: Trace – data transfer for gateway with 2 buffer resources 180

Table 10.3-2: Routing performance on different microcontrollers 181

Table 10.4-1: Data transfer performance based on CAN as vehicle interface bus

system .. 185

Table 11.1-1: Reprogramming process acceleration methods’ effort 194

14 Bibliography

Publications (books, magazines, journal papers etc.) are documented by the author’s first

three characters followed by the last two digits of the publication years. If an author had

several publications within the same year, an additional number was attached.

International standards (e.g. ISO, SAE etc.) are documented by their full number.

Publications within the internet are documented by 6 lower case characters

Companies and Organisations are documented by their full name.

ASAM Association for standardisation of automation and measurement systems.
www.asam.net

AUTOSAR AUTOSAR, Bernhard-Wicki-Strasse 3, 80636 Munich, Germany
www.autosar.org

Auo11 Automotive IT, “Alliance formed to advance ethernet for in-car
connectivity”, 13.11.2011, AutomotiveIT
http://www.automotiveit.com/alliance-formed-to-advance-in-car-
ethernet/news/id-004435

Aut11 AUTOSAR - Layered software architecture, Specification 4.0,
AUTOSAR_EXP_LayeredSoftwareArchitecture, Document-ID 053 , Version
3.1.0, Revision 2, page 57, www.autosar.org

Bar07 Barr, M.: “Embedded Systems Glossary”, Netrino Technical Library.
http:\\www.netrino.com/Embedded-Systems/Glossary. Retrieved 2007-04-21

Bel57 Bellman, R. E.: “Dynamic Programming”, Princeton University Press, 1957

BMW BMW AG, Munich www.bmw-group.com

Broadcom Broadcom Corporation, 5300 California Avenue, Irvine, California 92617,
www.broadcom.com

Bro11 Broy, M.: “Mit welcher Software fährt das Auto der Zukunft?”, ATZ extra,
Springer Automotive Media, April 2011, Page 92 – 97

Bro11a Broy, M., Reichart, G., Rothhardt, L.: “Architekturen software-basierter Funk-
tionen im Fahrzeug: von der Anforderung zur Umsetzung”, 2011, Informatik
Spectrum, ISSN: 0170-6012, Band 34 Heft 1, Page 42-59

Bur07 Burns,A., Davis R., Bril R., Lukkien J.: “CAN Schedulability Analysis: Refuted,
Revised and Revisited”, Real-Time Systems Journal, Springer Verlag Heft 3,
2007, Page 239-272

CiA102 CiA 102: CAN in Automation - CAN Physical layer for industrial applications,
V3.0.0, www.can-cia.org

Cou01-1 Coulouris, G., Dollimore, J., Kindberg, T.: “Distributed Systems – Concepts and
Design”, 3rd edition 2001, Addison-Wesley, ISBN 0201-61981-0, Chapter 3.1 –
Intoduction

Daimler Daimler AG, 70546 Stuttgart, Germany
www.daimler.com

Bibliography 208

Dan07 Dannenberg, J., Burgard, J. et. al.: “Car innovation 2015 – A comprehensive
study on innovation in the automotive industry”, 2007, Oliver Wyman Automo-
tive, www.oliverwyman.com

dataco Data compression, http://de.wikibooks.org/wiki/Datenkompression (last access
18.02.2011)

Dra11 Draeger, K.: “Das Automobil in einer vernetzten Welt”, ATZ extra, Springer
Automotive Media, April 2011, Page 22 – 26

Ets06 Etschberger, K.: “Controller Area Network”, Hanser Verlag, 3. Auflage 2006

Fle05 FlexRay Consortium: “FlexRay Communications System, Protocol Specification
Version 2.1”, May 2005, Chapter 4: Frame Format

Fle11 FlexRay consortium, http://www.flexray.com, last access: 2011

For62 Ford, L.R., Fulkerson, D. R.: “Flows in networks”, Princeton University Press,
1962

Fre07 Freescale Semiconductors; MRAM fact sheet, Document number
MRAMTECHFS Rev.6, 2007

Fre07-1 Freescale Semiconductors; Data sheet “256k x 16bit 3.3V Asynchronous
MRAM” document number MR2A16A Rev.6, 11/2007. www.freescale.com

Ham03 Hammerl, A., Bag, H.: “MRAM – Magneteische Speicher” , 2003 , Studienarbeit
an der TU Wien ,
http://upload.wikimedia.org /wikipedia/de/f/fb/MRAM_V3.pdf (last access 2009)

Hau11 Haub, M., Mathes, J.: “Fahrerassistenz der Zukunft – Fahren oder gefahren
warden”, ATZ extra, Springer Automotive Media, April 2011, Page 72 – 76

Hee04 Hees, F.: “Transfer of Compressed Binary Data”, Vector Informatik GmbH, 2004,
www.vector-informatik.com

Hen03 Hennessy, J. L., Patterson D. A.: “Computer Architecture – A Quantitative Ap-
proach”, 3rd edition 2003, Morgan Kaufmann Publishers, ISBN 1-55860-724-2,

HIS06-1 Hersteller Initiative Software: “HIS-konforme Programmierung von Steuer-
geräten auf Basis von UDS”, V1.0, 2006, http://www.automotive-his.de/

HIS06-2 Hersteller Initiative Software: “HIS-konforme Programmierung von Steuer-
geräten auf Basis von UDS”, V1.0, 2006, Chapter 3.2.4.1 Boot manager,
http://www.automotive-his.de/

huffma Huffman coding
http://en.wikipedia.org/wiki/Huffman_coding (last access: 10.01.2011)

Huh06 Huhn, W., Schaper, M.: “Getting better software into manufactured products”,
McKinsey on IT – Innovations in IT management, Number 7, Page 3 – 7, Spring
2006

IEC 61158 IEC 61158: “Digital data communication for measurement and control - Fieldbus
for use in industrial control systems”

Infineon Infineon technologies AG,
www.infineon.com

Int88 INTEL: “Hexadecimal Object File Format Specification”, Revision A, 06.01.1988
http://microsym.com/editor/assets/intelhex.pdf (last access: 01/2010)

ISO International Organization for Standardization
ISO Central Secretariat, 1, ch. de la Voie-Creuse, CP 56
CH-1211 Geneva 20
Switzerland, www.iso.org
Public standards:
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

Bibliography 209

ISO7498-1 ISO/IEC 7498-1:1994: “Information technology – Open Systems Interconnection
– Basic Reference Model: The Basic Model”

ISO10681-2 ISO 10681-2: “Road Vehicles - Communication on FlexRay – Part 2: Communi-
cation Layer Services”, 2010, www.iso.org

ISO10681-2_1 ISO 10681-2: “Road Vehicles - Communication on FlexRay – Part 2: Communi-
cation Layer Services”, 2010, Table 17, www.iso.org

ISO10681-2_2 ISO 10681-2: “Road Vehicles - Communication on FlexRay – Part 2: Communi-
cation Layer Services”, 2010, Table 21, www.iso.org

ISO11898-1 “ISO 11898-1: Road Vehicles - Controller area network (CAN) – Part 1: Data link
layer and physical signalling”, 2003 and 2006, www.iso.org

ISO11898-2 ISO 11898-2: “Road Vehicles - Controller area network (CAN) – Part 2: High-
speed medium access unit”, 2003, www.iso.org

ISO11898-3 ISO 11898-3: “Road Vehicles - Controller area network (CAN) – Part 3: Low-
speed, fault-tolerant, medium dependent interface”, 2006, www.iso.org

ISO11898-5 ISO 11898-5: “Road Vehicles - Controller area network (CAN) – Part 5: High-
speed medium access unit with low-power mode”, 2007, www.iso.org

ISO14229 ISO 14229: “Road vehicles – Unified diagnostic services (UDS) – Specification
and requirements”, 2006-12,www.iso.org

ISO14230-3 ISO 14230-3: “Road vehicles – Diagnostic systems - Keyword Protocol 2000”,
1999-03, Part 3: Application Layer. www.iso.org

ISO15765-2 ISO 15765-2: “Road vehicles – Diagnostics on Controller Area Networks (CAN)
— Part 2: Network layer services”, 2004-10, Chapter 4.1 General, www.iso.org

ISO15765-2_2 ISO 15765-2: “Road vehicles – Diagnostics on Controller Area Networks (CAN)
— Part 2: Network layer services”, 2004-10,Table 14 - Definition of BS value,
www.iso.org

ISO15765-2_3 ISO 15765-2: “Road vehicles – Diagnostics on Controller Area Networks (CAN)
— Part 2: Network layer services”, 2004-10, Chapter 7.3 – Mapping of the
N_PDU fields, www.iso.org

ISO15765-2_4 ISO 15765-2 2004-10, Road vehicles – Diagnostics on Controller Area Networks
(CAN) — Part 2: Network layer services, Chapter 6.5.5.5 Definition of Separa-
tionTime (STmin) parameter, www.iso.org

Kar11 Karic, S.: “Evaluierung und Implementierung einer Datenmodellkonvertierung
von AUTOSAR-Systemdescription nach ODX-Vehicle-Information-Specification”,
Wilhelm Büchner Hochschule, 2011

Mar07 Marscholik, V., Subke, P.: “Datenkommunikation im Automobil”, 1. Auflage 2007,
Hüthig GmbH & Co. KG, ISBN 978-3-7785-2969-0, Chapter 5: Unified Diagnos-
tic Services

MC9S12X Freescale Semiconductors; MC9S12XEP100 Reference Manual V1.18 – Chap-
ter 2.3.6.5 Program and data Flash; 2008; www.freescale.com

merced Mercedes-Benz, Lane Departure Warning System
http://media.daimler.com/dcmedia/0-921-614216-1-1147529-1-0-0-0-0-0-11702-
0-0-1-0-0-0-0-0.html

Mer09 Mercedes-Benz, Model Line 221 (S-Class), 08/2009,
www.mercedes-benz.com

Mer09-1 Mercedes-Benz, Model Line 221 (S-Class),
www.mercedes-benz.com

Bibliography 210

Mot92 MOTOROLA Inc.: “Programmer’s Reference Manual”, Appendix-C S-Record
Output Format, 1992,
http://www.freescale.com/files/archives/doc/ref_manual/M68000PRM.pdf (last
access: 01/2011)

Nol01 Nolte, T., Hansson, H., Norström, c., Punnekkat, s.: “Using Bit-stuffing Distribu-
tions in CAN analysis”, IEEE Real-time Embedded Systems Workshop, London,
2001

OCIA ORGANISATION INTERNATIONALE DES CONSTRUCTEURS
D’AUTOMOBILES
4 rue de Berri, 8ème arrondissement, Paris, France
www.oica.net

ocia Organisation internationale des Constructeurs d’Automobiles: “Provisional
Production Statistics”, 2010, http://oica.net /category/production-statistics/

Pot05 Potter, S.: “Using Binary Delta Compression (BDC)”, Technology to Update
Windows XP and Windows Server 2003, June 2005, Microsoft Cooperation
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=4789196c-d60a-
497c-ae89-101a3754bad6&DisplayLang=en

Rau07 Rausch, M.: “FlexRay – Grundlagen, Funktionsweisen, Anwendungen”, 1st
Edition 2007, Hanser Verlag, ISBN 978-3446412491

Rei11 Konrad, R.: “Elektrik und Elektronik - Steuergeräte, Aktoren und Mechatronik”,
6th edition 2011, Vieweg+Teubner Verlag, ISBN: 978-3-8348-1274-2, Series:
Bosch Fachinformation Automobil

Ren05 RENESAS (2005) , Renesas Edge 2005-Vol 9, page 12; www.renesas.com

Ren11 RENESAS Electronics, “Renesas Microcomputer General Catalog”, page 1-2,
2011.06, R01CS0001EJ0201, www.renesas.com

SAE J1939/11 SAE J1939/11 – “Physical Layer – 250 kBits/s, Shielded Twisted Pair”, 1999-10,
www.sae.org

Sai04 Said, A.: “Introduction to Arithmetic Coding - Theory and Practice”, Hewlett-
Packard Laboratories Report, HPL-2004-76, Palo Alto, CA, April 2004.

Say05 Savood, K.: “Introduction to data compression”, 3rd edition 2005, Morgan Kauf-
mann, ISBN-10: 012620862X

Say05-1 Savood, K.: “Introduction to data compression”, 3rd edition 2005, Morgan Kauf-
mann, ISBN-10: 012620862X, Chapter 2 – Mathematical preliminaries for loss-
less compression.

Scha10 Schäuffele, J., Zurawka, T.: “Automotive Software Engineering”, 4th edition,
2010, Vieweg+Teubner Verlag, ISBN: 978-3-8348-0364-1,

Sch10 Schmidgall, R.: “Diagnostic Communication within networks based on
AUTOSAR configuration”, 5th Vector Congress 2010, December 2010,
http://www.vector.com/portal/medien/cmc/events/commercial_events/VectorCon
gress_2010/Diagnostics_3_Schmidgall_V7.pdf

Sch11 Schmidgall, R.: “Diagnostic Communication – A Challenge for Network Analy-
sis”, 5th Symta Vision News Conference on Timing Analysis, October 2011,
http://www.symtavision.com/downloads/Events-Info/NC5_Programm_2011.pdf

Sch11-1 Schmidgall, R.: “Diagnostic Communication – Opportunities and Challenges ”,
8th CTI Forum “Automotive Diagnostic Systems”,
March 2011,

Schn08 Schnell, G., Wiedemann, B.: “Bussysteme in der Automatisierungs- und Pro-
zesstechnik - Grundlagen, Systeme und Trends der industriellen Kommunika-
tion”, 7th edition, Vieweg+Teubner Verlag, Wiesbaden 2008, ISBN 978-3-8348-
0425-9.

Bibliography 211

shanno Shannon-Fano coding
http://en.wikipedia.org/wiki/Shannon-Fano_coding
(last access: 10.01.2011)

Sha48 Shannon, C. E.: “A Mathematical Theory of Communication”, Bell System Tech-
nical Journal. Short Hills N.J. vol. 27, July, October 1948, p. 379–423, 623–656.
ISSN 0005-8580

Siemens Siemens AG Transportation systems, Wittelsbacherplatz 2, 80333 München,
Germany, www.siemens.com

Sie SIEMENS AG Transportation systems, The Multiple-Unit Train for the European
High-Speed Network, TH166-031091 199637 PA 12031.5
http://euroferroviarios.net/descargas/Empresas_Publicas/RENFE/Guias-
Procedimientos/S-103.pdf

Smart SMART Electronik Development GmbH, Rötestr. 17, 70197 Stuttgart,
Germany, www.smart-gmbh.de

Softing Softing AG, Richard-Reitzner-Allee 6, 85540 Haar , Germany
www.softing.com

Sou05 R.C. Sousa, I.L. Prejbeanu; Non-volatile magnetic random access memories
(MRAM); C. R. Physique 6, (2005) 1013–1021

Sto82 Storer, J., Szymanski, T.G.: “Data compression via textual substitution”, Journal
of the ACM, Vol. 29, No. 4, page 928-951, October 1982,
ISSN:004-5411

Symtavision Symtavision GmbH, Frankfurter Straße 3C, 38122 Braunschweig, Germany
www.symtavision.com

Tan10 Tanenbaum, A. S., Wetherall, D. J.: “Computer networks”, 5th edition, Septem-
ber 2010, Prentice Hall, ISBN 0132126958, Chapter 4.2 Multiple Access Proto-
cols.

Tan10-1 Tanenbaum, A. S., Wetherall, D. J.: “Computer networks”, 5th edition, Septem-
ber 2010, Prentice Hall, ISBN 0132126958, Chapter 1 Introduction.

TC1796 INFINEON: TC1796, 32-Bit Single-Chip Microcontroller, Data Sheet, V1.0,
Infineon Technologies AG, April 2008, page 37 and Table 36 - Flash Parameters

TC1197 Infineon; TriCore TC 1197 microcontroller data sheet, “TC1197 32-Bit Single-
Chip Microcontroller”, data sheet V1.1, Chapter 5.4.3 Flash Memory Parame-
ters, Table 32: Flash Parameters, May 2009,
www.infineon.com

TC1197-1 Infineon; TriCore TC 1197 microcontroller data sheet, “TC1197 32-Bit Single-
Chip Microcontroller”, data sheet V1.1, Chapter 2.3.6.5 Program and Data Flash,
sub-clause “Program Flash Features and Function; page 28, May 2009,
www.infineon.com

Tin95 Tindell, K., Burns, A. , Wellings, A.: “Calculating CAN Message Response Time”,
Control Engineering Practice, Heft 8, 1995, page 1163-1169

TMS470 Texas Instruments: TMS470 R1A256, 16/32-Bit RISC Flash Microcontroller,
SPNS100B – November 2004 – revised august 2006, Texas Instruments, 2006,
page 31

V850-Ex3 NEC: V850E/Dx3 - DJ3/DL3, 32-Bit Single-Chip Microcontroller, Document No.
U20110EE1V0DS00, NEC Electronics, 2009, Table 9-2: Flash Memory Selfpro-
gramming Characteristics

Vda11 Verband der Automobilindustrie e. V. (VDA), Behrenstr. 35, 10117 Berlin,
“Automobile production”, http://www.vda.de/en/zahlen/jahreszahlen/auto-
mobilproduktion (last acces 05/2012)

Bibliography 212

Vector VECTOR Informatik GmbH, Ingersheimer Str. 24, 70499 Stuttgart, Germany
www.vector.com

wikipe Wikipedia – Interrupt. http://en.wikipedia.org/wiki/Interrupt (last access 05/2012)

Zim10-1 Zimmermann, W. Schmidgall, R. “Bussysteme in der Fahrzeugtechnik”, 4th
edition 2010, Vieweg+Teubner Verlag, ISBN 978-3-8348-0907-0, Chapter 3 KfZ-
Bussysteme – Physical und Data Link Layer

Zim10-2 Zimmermann, W. Schmidgall, R. “Bussysteme in der Fahrzeugtechnik”, 4th
edition 2010, Vieweg+Teubner Verlag, ISBN 978-3-8348-0907-0, Chapter 8.4.2
Flashspeicher

Zim10-3 Zimmermann, W. Schmidgall, R. “Bussysteme in der Fahrzeugtechnik”, 4th
edition 2010, Vieweg+Teubner Verlag, ISBN 978-3-8348-0907-0, Chapter 8.4
Flashprogrammierung von Steuergeräten

Zim10-4 Zimmermann, W. Schmidgall, R. “Bussysteme in der Fahrzeugtechnik”, 4th
edition 2010, Vieweg+Teubner Verlag, ISBN 978-3-8348-0907-0, Chapter 5.2
Unified Diagnostic Services UDS nach ISO14229/15765-3

Zim10-5 Zimmermann, W. Schmidgall, R. “Bussysteme in der Fahrzeugtechnik”, 4th
edition 2010, Vieweg+Teubner Verlag, ISBN 978-3-8348-0907-0, Chapter 4
Transportprotokolle

Zim10-6 Zimmermann, W. Schmidgall, R. “Bussysteme in der Fahrzeugtechnik”, 4th
edition 2010, Vieweg+Teubner Verlag, ISBN 978-3-8348-0907-0, Chapter 3.1.7
Zeitverhalten von CAN-Systemen, Wahl der Botschaftspriorität

Zim10-7 Zimmermann, W. Schmidgall, R. “Bussysteme in der Fahrzeugtechnik”, 4th
edition 2010, Vieweg+Teubner Verlag, ISBN 978-3-8348-0907-0, Chapter 3.1.2
Bus-Topologie und Physical Layer and , Wahl der Botschaftspriorität

Zim10-8 Zimmermann, W. Schmidgall, R. “Bussysteme in der Fahrzeugtechnik”, 4th
edition 2010, Vieweg+Teubner Verlag, ISBN 978-3-8348-0907-0, Chapter 6
Anwendungen für Messen, Kalibrieren und Diagnose (ASAM AE MCD)

Zim10-9 Zimmermann, W. Schmidgall, R. “Bussysteme in der Fahrzeugtechnik”, 4th
edition 2010, Vieweg+Teubner Verlag, ISBN 978-3-8348-0907-0, Chapter 3.3
FlexRay

Zim10-10 Zimmermann, W. Schmidgall, R. “Bussysteme in der Fahrzeugtechnik”, 4th
edition 2010, Vieweg+Teubner Verlag, ISBN 978-3-8348-0907-0, Chapter 3.3
FlexRay – figure 3.3.5 logisches (Data Link Layer) FlexRay-Botschaftsformat

Zim10-11 Zimmermann, W. Schmidgall, R. “Bussysteme in der Fahrzeugtechnik”, 4th
edition 2010, Vieweg+Teubner Verlag, ISBN 978-3-8348-0907-0, Table 2.1.2 –
Buszugriffsverfahren

Zim10-12 Zimmermann, W. Schmidgall, R. “Bussysteme in der Fahrzeugtechnik”, 4th
edition 2010, Vieweg+Teubner Verlag, ISBN 978-3-8348-0907-0, Chapter 3.3.2
– Bus Topologie und Physical Layer

Zim10-13 Zimmermann, W. Schmidgall, R. “Bussysteme in der Fahrzeugtechnik”, 4th
edition 2010, Vieweg+Teubner Verlag, ISBN 978-3-8348-0907-0, Chapter 2.1.2
–Topologie und Kopplung von Bussystemen

Zim10-14 Zimmermann, W. Schmidgall, R. “Bussysteme in der Fahrzeugtechnik”, 4th
edition 2010, Vieweg+Teubner Verlag, ISBN 978-3-8348-0907-0, Chapter 6.6.3
– VEHICLE-INFO-SPEC: Fahrzeugzugang und Bustopologie

Ziv77 Ziv, J. Lempel, A.: “A Universal Algorithm for Sequential Data Compression”,
IEEE Transactions on information theory, Vol. IT-23, No. 3, page 337-343, May
1977

A Journal Paper – IEEE TVT

The journal paper below was submitted to the IEEE magazine “Transactions on Vehicular

Technologies” at 27-03-2012.

The paper has the IEEE identification number VT-2012-00404.

Solutions and Strategies for Faster Embedded
System Reprogramming

Will MRAM Technology Solve Reprogramming Problems for Embedded
Systems?

Ralf Schmidgall, Dr. Ian Dear

Abstract— Software reprogramming is an important
issue during an electronic control unit’s (ECU) life
cycle. Software reprogramming takes place at ECU’s
development, manufacturing and maintenance. The
continuously increasing software size for embedded
systems during the last years results in continuously
increasing reprogramming times. This is especially
applicable to the automotive industry but also in other
business areas where cost pressure is high in produc-
tion or in-field reprogramming. With the currently
established Flash memory technology for embedded
system’s microcontrollers a significant improvement of
the reprogramming process might not be possible. The
next evolutionary step in embedded memory technolo-
gies will be Magnetoresistive Random Access Memory
(MRAM). With focus on reprogramming time the
MRAM technology provides essential advantages and
the reprogramming process execution time could be
decreased significantly. This paper identifies the
current problems associated with the embedded
system’s software reprogramming process and sug-
gests some new methods for reprogramming software
using the newly proposed MRAM technology.

Index Terms—Microcontroller, Software Repro-
gramming, Flash Memory, MRAM,

I. INTRODUCTION

Today, microcontrollers are no longer used only for
simple control and regulation purposes. Owing to the
enormous technological progress in this area high

performance microcontrollers are available today to solve
highly complex control and regulation assignments. Hence
more and more functionality is implemented on these
microcontrollers which have resulted in the continuously
increasing software sizes, the end of which is not foresee-
able [20]. In many applications microcontrollers have
reached the mega byte (MB) boundary for on-board
memory. For example, electronic control units (ECU),
used in the automotive industry, provide memory re-
sources of several MB to solve complex control

assignments like engine control or any kind of driver
assistance systems.

Figure 1: Automotive ECU software volume

ECUs used for human machine interfaces (e.g. displays,
instrument cluster etc.) have increased up to several 100
MB of Flash memory space. For telematic and in-vehicle
infotainment (IVI) systems memory has reached the GB
boundary. Typically these systems are based not on Flash
memory but on hard disks. Fig. 1 depicts an overview of
typical software volumes within the automotive area.

A Software reprogramming within ECU’s life cycle

Software reprogramming is an important issue within
ECU’s life cycle particularly for the automotive industry.
During the vehicle’s development phase an ECU is
reprogrammed several times to replace the previous
software with the current release.

Today several manufacturing strategies exist within the
automotive industry. Mainly the ECU’s are delivered fully
programmed by the ECU manufacturer to the vehicle
manufacturer (OEM). Another method is to deliver the
ECU partly programmed or without software and pro-
gramme the final release within OEM’s vehicle assembly
line.

T

Appendix B – Journal paper – IEEE TVT – MRAM A-2

Software reprogramming is also an important repair
method for OEMs in the aftersales service. If customer’s
complaints could be solved by a new software release
reprogramming is the preferred repair method.

B. Introduction of Flash memory technology to reduce
production costs

Particularly in the automotive industry but also in other
industries an enormous cost pressure prevails. With the
introduction of the Flash memory technology it became
possible to correct an ECU software error in the field
without the necessity to replace the node physically.
ECU’s software is simply reprogrammed via the micro-
controller’s communication interface. By this approach it
was possible to reduce aftersales costs significantly,
because neither costs for a new node or worker costs any
longer occur. Software reprogramming’s benefit is
particularly given in the case for ECUs that are difficult to
physically access like a vehicle engine controller or gear
box controller. For commercial vehicles long idle times in
a garage or repair shop are not accepted by transport
companies. In other business areas it was no longer
necessary to exchange a component on complex machines
to eliminate a software error.

A second important benefit of Flash memory technol-
ogy compared to the thitherto available ROM mask
memory is the possibility to reduce ECU’s hard-
ware/software variants and therefore logistic costs. If
special functionality depends only on software, then the
same hardware can be re-used. For example, a 4 door
vehicle could utilise the same hardware for each door and
the functionality differentiation between front and rear
door (e.g. mirror controlling) would be done by software.
Logistic costs (i.e. stock control and storage complexity)
have been reduced as well as decreased complexity within
the OEM’s assembly line because only one part has to be
selected for vehicle manufacturing. Additionally increased
part volume can reduce the purchase price. There is also a
cost benefit for field repair and maintenance costs.

C. The cost of long programming times for Flash memo-
ries.

A consequence of the increasing ECU software size in
embedded systems is the increasing programming time for
a software update. This might lead to potential economical
disadvantages.

Figure 2: Cost / Time relation

The increasing reprogramming times significantly re-

duce the cost advantage of reprogramming software.
Within the production process the time given to finalize an
assembly step can be exceeded resulting in a cost penalty.
In the maintenance and service industry there are similar
time limitations and cost penalties. Additionally the
reprogramming procedure will require specific off-board

equipment (e.g. diagnostic test system, power supply etc.)
This complicates the logistics and thus costs within the
field test and repair centre e.g. the need to purchase
multiple off-board equipment or increased service times in
busy periods. As depicted in Fig. 2 the break even point of
software reprogramming vs. ECU replacement is moved,
if reprogramming time increases. As a result the cost
advantage of reprogramming an ECU disappears.

Today replacing and recycling ECUs is not economic
but if reprogramming costs continue to increase replacing
and recycling ECUs will be an alternative approach.

The aspects above depict that it is necessary to find
methods and strategies to reduce reprogramming times
significantly to guarantee the economic advantage of
onboard software reprogramming. There are two impor-
tant questions:

(1) Is it possible to reduce programming time signifi-
cantly for the Flash memory based systems?

(2) Could the magnetoresistive random access memory
(MRAM) technology solve the reprogramming time and
thus cost issues faced by the automotive industry?

II. SOFTWARE REPROGRAMMING PROCESS FOR FLASH

MEMORY TECHNOLOGY BASED EMBEDDED SYSTEMS

A. Flashloader and application software

As depicted in Fig. 3 the microcontroller implements
two independent software components: The application
software and the flashloader. The application software
implements the functionality of the ECU. A flashloader
component handles the complete reprogramming process
if the application software is to be reprogrammed. The
flashloader communicates via the normal communication
interface of the microcontroller and exchanges data with
an off-board programming device (e.g. diagnostic tester).

Figure 3: Components overview

B. Reprogramming Sequence

Fig. 4 illustrates the Flash memory programming se-
quence. The first step in programming a device is to
identify the ECU e.g. the microcontroller type, software
version, and associated hardware. Step 2 the programming
device needs to authenticate itself to the flashloader of the
microcontroller. This is achieved by implementing special
authentication methods (e.g. seed & key algorithm etc.)
the reprogramming sequence could be aborted if authenti-
cation fails. Normally this is a first part of a (more or less
powerful) security concept to prevent unauthorised
software manipulation.

After successful authentication the Flash memory can
be erased (step 3). After a successful erasing process the
new data can be transmitted to the microcontroller and be
programmed into the Flash memory (step 4). This opera-

Appendix B – Journal paper – IEEE TVT – MRAM A-3

tion is the most time consuming sequence and depends on
the total amount of data to be programmed. The sequence
is finalised by a verification of the programmed data (i.e.
application software). Typically, methods like cyclic
redundancy check (CRC) are used.

The programming of an ECU is more complex when it
is embedded within a vehicle network and when it has no
direct access between the programming device and the
ECU. Within the automotive area reprogramming is
established via the communication interfaces CAN [10],
[11], FlexRay [9], LIN [8] etc. In some case a multiple
network interface is used.

Figure 4: Reprogramming sequence overview.

Microcontrollers can provide other interfaces, e.g. the

debugging interface JTAG (Joint Test Action Group [12]).
It is also possible to reprogram via this interface. Typically
these interfaces are not connected to ECU’s communica-
tion connector within a vehicle for some reasons:

Assume that the position of an ECU allows neither a
physically access for a worker nor is it possible to open
the chassis e.g. a vehicle’s gear box within the oil sump is
here a good example. To get access to the interface JTAG
should be connected to the normal ECU’s vehicle commu-
nication connector. This results in a larger connector
(more pins), an additional cable or a second network in
parallel. A complex system consists of several ECUs
based on different microcontrollers and is supplied by
different manufacturers (e.g. vehicle with up to 70 ECUs)
the external test system which controls the reprogramming
process has to implement all the individual communica-
tion protocols available. This complexity/effort is enor-
mous and only practicable for software programming
within manufacturer’s ECU assembling lines and not for
software reprogramming in the field. A unique repro-
gramming sequence with standardized protocols must be
used to reduce the effort and thus cost.

The reprogramming sequence as depicted in Fig. 4 is
independent of the different communication protocols.
Within the automotive industry software reprogramming is
part of the vehicle diagnostics and is based on the UDS
protocol (Unified Diagnostic Services) which is standard-
ised in the specification ISO 14229 [15] and ISO 15765-3
[16]. Depending to the available vehicle bus systems the
reprogramming sequence is executable via CAN, LIN,
FlexRay or K-Line.

The reprogramming sequence could be mapped to other
(non-diagnostic) communication protocols like CCP

(CAN Calibration Protocol) or XCP (eXtended Calibration
Protocol) [17], [18]. However, these protocols are not
available on every communication interface. Werner
Zimmermann and Ralf Schmidgall [7] give a detailed
overview of the required components to execute a repro-
gramming process.

III. REPROGRAMMING PROCESS TIME REDUCTION

OPTIMIZATION APPROACHES

Due to the reprogramming sequence according to Fig.
4, to reduce the total software reprogramming time
significantly two approaches are possible: (1) Accelerate
data transfer and (2) reduce to be transferred data size. The
other stages within that sequence are hardware dependant
and based on technology used.

A. Data transfer acceleration

1) Data transfer acceleration on ISO/OSI layer 2
 data link protocols

A simple method to speed up data transfer is to speed
up the underlying vehicle bus systems. But the maximum
bandwidth of the most common used automotive bus
systems is limited. Fig. 5 depicts an overview of the
bandwidths for the most common automotive bus systems.

Figure 5: Most common automotive bus system’s band-
width

The CAN bus system is limited to 1 MBit/s by specifi-

cation ISO 11898. Also some other limitations have to be
taken into account: If bandwidth is increase the maximum
cable length is reduced. The split of the bus system results
in additional, more expensive and more complex gate-
ways. Also increase shielding is necessary because of
electromagnetic compatibility (EMC).

For the FlexRay bus systems the maximum specified
system’s bandwidth (max 10 Mbit/s) is not the only
limiting aspect. The data transfer rate for the time trig-
gered FlexRay bus system is mainly influenced by the fix
defined communication schedule and the corresponding
communication slot arrangement. If the communication
slot is not allocated for a FlexRay flashloader it is not
usable for data transmission for a reprogramming process.

Automotive Ethernet (100 Mbit/s) might be an approach
to speed up data transfer for an offboard diagnostic test
system via a vehicles connector interface (VCI). The

Appendix B – Journal paper – IEEE TVT – MRAM A-4

challenge is now the distribution of the received data via
the vehicles network. Therefore the new standardisation
co-operation OPEN Alliance (One Pair Ethernet) was
founded to “encourage wide scale adoption of Ethernet-
based, single pair unshielded networks as the standard in
automotive applications” [13].

Nevertheless, the slowest bus system section on the
communication link (especially within a heterogeneous
network with several different bus systems) will dictate
the possible bandwidth and therefore the communication
performance.

2) Data transfer acceleration on ISO/OSI layers 3-5 -
transport and diagnostic layers

Software reprogramming within the automotive indus-
try is done via diagnostic communication and based on the
standardized diagnostic protocol “Unified Diagnostic
Services (UDS) according to the specification ISO 14229.
Depending on the underlying bus systems a standardized
transport layer protocol (e.g. for CAN: ISO 15765-2, for
FlexRay: ISO 10681-2 etc.) is in use for data segmentation
and re-assembling for large data frames. Of course, all the
different communication protocol stacks could be opti-
mized and configured to eliminate protocol specific delays
e.g. minimum separation time (STmin) for CAN commu-
nication, but if all protocols have been optimized the
limiting factor is the underlying bus system bandwidth as
shown in Fig. 5.

3) Summary

Hence, the possibility of speeding up bus systems and
their corresponding communication protocol stacks is
given and possible results are formidable, but it will be not
enough to solve the challenges of increasing software. An
important impact factor is the time limitation for a repro-
gramming process e.g. as given in a vehicle assembly line
in a plant (assembly line clock).

Figure 6: Data transfer acceleration limits on CAN

Fig. 6 depicts an overview of possible data volumes

which can be transferred via CAN within the given time
limits. Due to the data volumes as highlighted in Fig. 1
and the maximum bandwidth of the currently established
automotive bus systems as shown detailed in Fig. 5 the
data transfer acceleration approach is not sufficient to
solve the problem of increasing programming times for all
vehicle domains.

B. Reduce data size

1) Data size reduction by software partitioning
A powerful method to reduce the transferred data size is

the partitioning of the ECU’s application software into
several sub parts. Typically the real application could be
separated from the data set (e.g. characteristic curves for
mathematical algorithm processing etc.). In case of

software reprogramming only the affected partition has
then to be transferred. Fig. 7 illustrates the separation into
different software partitions where only partition B is
affected and has to be reprogrammed. However, an
additional logistic overhead is introduced: the partition’s
software compatibility has to be managed.

Figure 7: Mapping of SW partitions to physical memory
sectors

2) Data size reduction by data compression

Data compression is an alternative standard approach to
reduce transferred data size. Compressed data transfer is
an established method. The reduction in data transfer time
depends on the compression ratio of the used algorithm.
Unfortunately not all known compression algorithms are
usable within embedded systems. First of all, only lossless
compression methods can be used. Also dictionary based
algorithms are not possible due to the resource limitations
of RAM within a microcontroller. However, substitution
strategy based compression algorithms (e.g. LZSS [14])
provide good results for software with high redundancies
like characteristic curves for regulation systems etc. As the
compression ratios proportional to the redundancy with
the actual data the data compression this is not a generic
approach to solve the problem of increasing reprogram-
ming times.

3) Data size reduction by differential file transfer

One reason for reprogramming embedded software is
bug fixing. In most cases embedded software does not
change completely when fixing a bug (e.g. changing a
value of a constant or some parameters within a character-
istic curve etc.). As a percentage of the total volume of an
application the source code modifications required and the
resulting OP-code changes, required for bug fixing is often
very small. Typical errors in the source code like wrong
exit conditions in loops or wrong statements for a com-
parison are only one character. Changes in characteristic
curves implemented as arrays covers only a few bytes.
Thus an assumption that 80% of bug fixings result in less
than 1 kB OP-code changes and 20% in more than 1 kB is
safe and realistic figure. As a result of this assumption
only a few bytes within a memory sector/partition needs to
be changed. Fig. 7 depicts the small OP-code difference
within a software partition.

The today’s state of the art and established Flash mem-
ory technology provides the technical disadvantage that a
byte-wise overwriting of a Flash memory cell is not

Appendix B – Journal paper – IEEE TVT – MRAM A-5

possible. Due to that technical fact, the smallest physical
memory partition (page, sector etc.) must be previously
erased before it can be re-programmed. Hence, erasing the
complete physical sector is necessary no matter if a
complete memory section or only a few bytes have
changed. A temporary storage of these page or sector data
(data mirror) requires large RAM resources with at least
the size of that page or sector (e.g. INFINEON TC1797:
256 kB). Because of the typically not available RAM
resources, thus the data for reprogramming the complete
physical section always has to be transferred and pro-
grammed. The powerful approach of reprogramming
software by differential file is not usable for currently
established Flash memory technology.

4) Conclusion

Based on existing Flash based memory architectures
current approaches and suggested variations to existing
approaches to reduce data transfer time and thus constrain
future trends in reprogramming time for vehicle based
embedded systems will not solve the initial problem. It has
been shown that only relatively small improvements can
be achieved; a radically new approach is needed.

IV. MRAM TECHNOLOGY

A real quantum transition will be possible if the cur-
rently available and established Flash memory technology
is replaced by the new proposed MRAM technology
(Magnetoresistive Random Access Memory) in microcon-
trollers [e.g. Infineon’s TriCore family, Freescale’s HCx
family, Texas Instruments’ TMS or Hercules family etc.].
Some disadvantages of Flash memory caused by the
inherent technology can be eliminated by the employment
of possible MRAM technologies.

TABLE 1: COMPARISON OF EXPECTED MRAM FEATURES WITH

OTHER MEMORY TECHNOLOGIES [6]

In contrast to currently established memory technolo-
gies, MRAM semiconductors store the information not
using electrical, but by magnetic load elements. The effect
is based on the fact that certain materials change their
electrical resistance if they are influenced by magnetic
fields [4], [19], [21].

Effective fundamental research activities to the magne-
toresitive started in 1989. At that time IBM scientists
made a set of key discoveries. In the year 2000 IBM and
Infineon started a joint MRAM development program. In
2005 Renesas presented a 1MBit memory for a 100MHz
clock frequency [5].

In a MRAM cell the information zero (0) and one (1)
are represented by the orientation of magnetic fields and is
based on the Magnetic Tunnel Junction (MTJ) effect [21].
A MTJ semiconductor has a three-layer structure. It
consists of two magnetic layers and an insulation layer.
One of the magnetic layers has a fixed orientation (fixed
magnetic layer). The other magnetic layer can change its
magnetic polarization (floating magnetic layer). It is
aligned either in the same orientation as the fixed layer
(parallel magnetic orientation) or in the opposite (opposite
magnetic orientation). Although not shown in Fig. 8, a bit

line and digit line are located above and below the MTJ.
The electrical resistance of the memory cell changes
depending to the magnetic orientation of the floating
magnetic layer. According to the electrical resistance a
high or low current could occur. A current switch converts
the binary information low current and high current to
voltage levels (low current = 0bin; high current = 1bin).

Figure 8 - MRAM

The MRAM technology does not need any electrical

current in order to hold the stored information. Once the
magnetic adjustment is made the variable magnetic layer
remains static, i.e. no further current is required.

MRAM adopts the advantages of several memory tech-
nologies available today. Similar to Flash memory or
EEPROM (Electrical Erasable and Programmable Read
Only Memory) a non-volatile data retention takes place,
i.e. program code and data are sustained without power
supply. MRAM reduces the power consumption because
the refresh pulses as required for DRAM are not longer
necessary. The data access is very fast (cf. SRAM) and
MRAM cells are small which results in a high device
integration level.

V. REPROGRAMMING PROCESS OPTIMISATION USING

MRAM TECHNOLOGY

As depict in Fig. 4 the steps erasing memory (step 3)
and download and reprogramming (step 4) of a Flash
memory based system have a significant impact on total
reprogramming time. MRAM technology can make
significant improvements in these areas.

A. Reduce Memory Erase Time

As mentioned above, normally Flash memory technol-
ogy does not allow the overwriting of programmed
memory cells without prior erasing memory partitions or
sectors. It is currently not possible to erase a single
memory cell. MRAM technology allows overwriting of
individual programmed memory cells without prior
erasing of the cell. Therefore step 3 of the reprogramming
process is no longer required.

TABLE 2: MICROCONTROLLER’S ERASE TIME FOR FLASH

MEMORY

Table 2 shows the normalized erase time values for 256

kB on-chip Flash memory of two different microcontrol-
lers. Based on this data given by the manufacturer’s data
sheets [1], [2] the predicted total erase time for a 256 kB
sector of on-chip Flash memory is up to 5 seconds. This

Appendix B – Journal paper – IEEE TVT – MRAM A-6

time could be saved potentially in case of using MRAM.
The benefit is still higher in case of the Op-code modifica-
tions are not only located to a single physical memory
section.

It is not possible to make a precise generic statement for
the saved erase time because this value depends on several
parameters e.g. memory technology, oscillator frequency,
and the size of memory that is to be erased. As depict in
Fig. 1, within the automotive industry ECUs exist with a
total amount of Flash memory up to several 100 MB.

B) Reprogramming by differential File

For a detailed analysis of reprogramming process ac-
celeration it is helpful to divide step 4 of Fig. 4 into the
two sub-sequences “data transfer” and “physical repro-
gramming”.

The MRAM technology allows read/write access basi-
cally for each single byte (alignment has to be taken into
account). Hence, MRAM allows an optimisation to the
reprogramming process were only the real differences of
the old and new compiler/linker output file (OP-code)
have to be transferred and reprogrammed (refer to Fig. 9).
This results in significant time reductions for the data
transfer and the corresponding physical programming
process.
1) MRAM vs. Flash memory

In contrast, the differential file approach for a Flash
memory technology based system requires large RAM
resources to mirror the current memory sector content
(refer to III-2c) and therefore typically the complete sector
content will be transferred.

Figure 9: Usage of a differential file for physical memory
sector reprogramming

In table 3 a comparison of both approaches (MRAM

with differential file transfer and Flash memory with
complete file transfer) is given. The data volume to be
transferred and reprogrammed is the main influencing
factor for the total reprogramming time. Based on the
Flash memory sector sizes of Infineon’s TriCore TC1767
[3] microcontroller we assume that the modified OP-code
is less that 1kByte (refer to III-2c) within on memory
section. The corresponding data transfer times on a CAN
bus system with 500 kbit/s bandwidth are calculated
according to formula 1 and the given assumptions. To

simplify the model neither upper communication protocols
(e.g. transport protocol for CAN according to ISO 15765-2
etc.) nor communication delays (inter-frame times be-
tween two CAN-PDUs) have been taken into account.

Fehler! Es ist nicht möglich, durch die Bearbeitung

von Feldfunktionen Objekte zu erstellen.Formula 1 – data
transfer time

Assumption:
Payload for CAN 8 Byte / frame
Approximate frame length: 123 bit
BitRate: 500 kbit/s

We assume also that the write speed to MRAM is equal

to existing Flash memories (a safe assumption as shown
by predictions in table 1).

Fehler! Es ist nicht möglich, durch die Bearbeitung

von Feldfunktionen Objekte zu erstellen.
Formula 2 – programming time

Assumption:
Programming rate 50 kByte/s [1,3]

TABLE 3: DATA VOLUME AND TRANSFER TIME FOR INFINEON’S

TRICORE 1797 FLASH MEMORY SECTOR SIZES

Table 3 illustrates the power of the differential file ap-

proach. Especially for large physical memory sections the
benefit of reduced transfer time and reduced programming
time is quite evident. Upper layer communication proto-
cols will reduce the data transfer rate in addition and
results in increasing transfer times. Of course, the data
transfer time depends fundamentally on the underlying bus
systems and the network architecture. A slow bus system
with small bandwidth will increase the data transfer time
compared to a faster bus system. But even for small
bandwidth bus systems data reduction has a significant
impact to the data transfer time and the total reprogram-
ming time.

2) Comparison to data size reduction approaches

The benefit of the MRAM based differential file ap-
proach for software reprogramming is also quite evident if
the method is compared to other typical data reduction
methods. Table 4 shows a comparison depicting saving
due to typical data reduction methods and differential file
approaches based on formula 1. The transport protocol
overhead or differential file overhead has not been taken
into account. Table 4 has been generated by making the
following assumptions based on typical data for an ECU
that process complex control assignments, e.g. driver
assistance systems (refer to Fig. 1):

Assumption:
File size: 32 MByte

Appendix B – Journal paper – IEEE TVT – MRAM A-7

Compression ratio: 75%
Modified OP code size: 1 kByte
CAN Payload: 8 Byte / frame
Approximate frame length: 123 bit
CAN Baud rate: 125 kbit/s,

500 kBit/s
1 Mbit/s

The table 4 shows that if only the differences of both

files will be transferred the data transfer time is signifi-
cantly reduced compared to conventional data size reduc-
tion methods e.g. partitioning and compression. According
to the reprogramming sequence in Fig. 4 the benefit of
step 4 (download & programming) is visible. For Flash
memory the step 3 (erase memory) still has to be proc-
essed. Within the given example the interpolation erase
time for 32 MB is up to 640 s or 240 s for 12 MB (refer to
table 1). For an MRAM based system this time is not
relevant. The step 5 (verification) is necessary for both
memory approaches. At least a CRC must be calculated to
verify the correct programming and the consistency of the
new software. Due to the equal read access speed of both
memory technologies (refer to table 1) this step provides
no differences. The required execution time of step 5
depends on the CRC calculation algorithm, microcontrol-
ler’s clock frequency etc. and can take up to several
minutes.

Of course, the model is simplified and is not complete
but it depicts that an approach of differential file transfer
based on MRAM technology provides significant potential
saving.

TABLE 4: DATA TRANSFER TIME VIA CAN

3) Restrictions
Of course, the differential file transfer approach pro-

vides some restrictions and has some additional require-
ments to the software development process.

In contrast to the file oriented software storage PC
world with its virtual addresses, an embedded system’s
microcontroller works physical address oriented. A
microcontroller provides neither a memory managing
system nor that much memory to squander memory space.
This is why during the embedded software generation
process all source code elements (e.g. in C-language:
functions, arrays etc.) are linked consecutively without
any larger gaps within the address space. Consequently, if
a routine expands all other compiled elements will change
the allocation address. In that case the differences between
a previous file and a new compiled and linked file will be
quite high whereas the source code changes are only a few
lines of code. To be able to reduce the differences of the
embedded software files it is necessary to allocate all the
software parts always on the same position (address). This
requires a fixed linking concept to guarantee that the

smallest possible difference of both files can be calculated.
However, a link process with fix addresses can be imple-
mented by different approaches. A fix position for at least
each source code module (e.g. c-file, object-file etc.) must
be configured within the linker command file. Best results
provide the fix allocation on source code function level.
Here each function or array etc. is allocated on a fix
position.

The disadvantage is the necessity to have address gaps
(empty space) between the single linking objects to
prevent the system from overwriting other allocated code
objects in case of further upgrades of another code object.
Hence, the commercial relation of higher costs for a larger
memory vs. reprogramming time and cost reduction has to
be taken into account.

Especially within the automotive industry a stringent
version and compatibility control management is required
because software on a car is only reprogrammed if it is in
a repair shop. Because of the large service intervals of
modern vehicles it might be possible that several software
versions are in between the current vehicle software and
the current OEM software.

To guarantee equally high process’ safeness and secu-
rity of the MRAM based on differential file approach
compared to the established Flash memory programming
process these basic issues have to be taken into account.

VI. CONCLUSION AND OUTLOOK

The paper has discussed the rapidly approaching limita-
tion of Flash technologies in embedded vehicle systems
for in-system reprogramming. The main advantages of
MRAM vs. Flash memory technology with a focus on
reprogramming have been presented. The benefits of new
programming approaches have been discussed and the
possibilities of bit is the byte-wise access of MRAM
memories with the possibility to overwriting data without
an initial memory erase phase highlighted. Byte-wise
access allows software updates by transferring and
overwriting only differences between the old and new
software. Due to the reduced amount of data to transfer,
the data transfer time and the physical programming time
significant time savings can be made. Thus the potential
cost savings of the new technologies could solve the
rapidly approaching technological limitation of Flash
memories in modern complex embedded vehicle systems.

The paper has not quantified the possible overheads
associated with differential file programming, however,
neither has it detailed such factors as the increased risk of
process interruption as programming time increases for
conventional Flash technologies.

For the resulting cost aspects two different scenarios
occur: If high speed communication bus systems are
available data transfer time could reduced. A total process
time reduction provides cost advantages for production
and within some business areas (e.g. vehicle industry etc.)
in service/after sales activities, too. On the other hand
differential file transfer would make it possible to use low
cost small bandwidth bus systems but maintain the current
data transfer times.

In conclusion the presented study shows that the prob-
lem of increasing costs because of increasing software
sizes and resulting reprogramming times could be partly
solved when MRAM becomes commercially available.

This paper has concentrated on the problem facing all
business areas where software programming time provides

Appendix B – Journal paper – IEEE TVT – MRAM A-8

a rapidly increasing potential cost. It has proposed that the
new MRAM technologies will potentially resolve this
issue. However, there are other significant benefits that the
technology can offer related to the types of bus architec-
ture needed.

REFERENCES

[1] Infineon; TriCore 1797 Data Sheet
“TC1797_DS_v1.1”; Table 32 Flash Parameters;
2009; available: www.infineon.com

[2] Freescale Semiconductors; “MC9S12XEP100
Reference Manual V1.18”; Chapter 2.3.6.5 Program
and data Flash; 2008;
available: www.freescale.com

[3] Infineon; TriCore 1797 Data Sheet
“TC1797_DS_v1.1”; Chapter 2.3.6.5 Program and
Data Flash; 2009; available:www.infineon.com

[4] A. Hammerl, H. Bag; “MRAM – Magneteische
Speicher”; 2003; Vienna University of Technology;

[5] RENESAS ; Renesas Edge 2005-Vol 9, page 12,
2005 available: www.renesas.com

[6] Freescale Semiconductors; MRAM fact sheet,
Document number MRAMTECHFS Rev.6, 2007.
available: www.freescale.com

[7] W. Zimmermann, R. Schmidgall, „Bussysteme in der
Fahrzeugtechnik“, 4th edition 2011, ViewegTeubner
Verlag

[8] W. Zimmermann, R. Schmidgall, „Bussysteme in der
Fahrzeugtechnik“, 4th edition 2011, ViewegTeubner
Verlag

[9] FlexRay Communication system – Protocol Specifi-
cation, Version 2.1, 2005, available:
www.flexray.com

[10] ISO 11898-1, Road Vehicles - Controller area
network (CAN) - Part 1: Data link layer and physical
signaling, 2003, available: www.iso.org

[11] ISO 11898-2, Road Vehicles - Controller area
network (CAN) - Part 2: High speed medium access
unit, 2003, available: www.iso.org.

[12] IEEE Standard 1149.1-2001, IEEE standard test
access port and boundary-scan architecture,
doi:10.1109/IEEESTD.2001.92950, available:
www.ieee.org.

[13] OPEN ALLIANCE SIG, www.opensig.org
[14] J. A. Storer and T. G. Szymanski, Data compression

via textual substitution, Journal of the ACM, Volume
29, Number 4, Pages 928-951, ISSN:0004-5411, Oc-
tober 1982

[15] ISO 14229-1, Road vehicles - Unified diagnostic
services (UDS) - Specification and requirements,
2006-12

[16] ISO 15765-3:2004 – Diagnostics on Controller Area
Networks (CAN) - Part 3: Implementation of unified
diagnostic services (UDS on CAN) - chapter 10

[17] ASAM MCD-1.CCP V2.1.0, CAN Calibration
Protocol, available: www.asam.net

[18] ASAM MCD-1.XCP, “The Universal Measurement
and Calibration Protocol Family”, V1.1.0, available:
www.asam.net

[19] R.C. Sousa, I.L. Prejbeanu, “Non-volatile magnetic
random access memories (MRAM)”, C. R. Physique
6, p1013–1021, 2005

[20] J. Dannenberg, J. Burgard, “Car Innovation 2015 – A
comprehensive study on innovation in the automotive
industry”, Oliver Wyman, 2007; available:
www.oliverwyman.com

[21] R.Gross, Magnetic Tunnel Junction based on Half-
MetallicOxids, Nanoscale Devices, Fundamentals
and Applications, p.49,
ISBN 1-4020-5106-9, 2006, Springer Verlag

