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Abstract 

 

The exponential growth of computer power is no longer limited to stand alone computing 

systems but applies to all areas of commercial embedded computing systems. The  

ongoing rapid growth in intelligent embedded systems is visible in the commercial auto-

motive area, where a modern car today implements up to 80 different electronic control 

units (ECUs) and their total memory size has been increased to several hundreds of 

megabyte. 

 

This growth in the commercial mass production world has led to new challenges, even 

within the automotive industry but also in other business areas where cost pressure is 

high. The need to drive cost down means that every cent spent on recurring engineering 

costs needs to be justified. A conflict between functional requirements (functionality,  

system reliability, production and manufacturing aspects etc.), testing and maintainability 

aspects is given.  

 

Software reprogramming, as a key issue within the automotive industry, solve that given 

conflict partly in the past. Software Reprogramming for in-field service and maintenance in 

the after sales markets provides a strong method to fix previously not identified software 

errors. But the increasing software sizes and therefore the increasing software  

reprogramming times will reduce the benefits. Especially if ECU’s software size growth 

faster than vehicle’s onboard infrastructure can be adjusted.  

 

The thesis result enables cost prediction of embedded systems’ software reprogramming 

by generating an effective and reliable model for reprogramming time for different existing 

and new technologies. This model and additional research results contribute to a timeline 

for short term, mid term and long term solutions which will solve the currently given  

problems as well as future challenges, especially for the automotive industry but also for 

all other business areas where cost pressure is high and software reprogramming is a key 

issue during products life cycle.  
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Ever since the invention of the car by Carl Benz (1844-1929) 125 years ago engineers 

have been striving to improve performance, increase reliability and reduce costs. Early 

innovations were based around purely mechanical leap forwards in technology. However, 

over the last 30 years electronic systems have been rapidly taking over the technology 

advances to improve functionality, performance, reliability and reduce costs. Currently, 

more and more functionality, which was implemented in hardware in the past, is imple-

mented in software today. In-addition, what was futuristic driver assist or even replace-

ment technology is now a reality due to this computing power. If we consider the mid to 

high range end of the market it is now warrantable to talk about highly complex computer 

systems on wheels. This revolution is primarily due to the rapid trends in more powerful 

microcontrollers and communications technology. Complex mathematical algorithms, 

which required complete computer centres in the past, can be calculated on a single 

powerful microcontroller today. This added to the revolution in real-time sensor technolo-

gy, and has created a new era for personal transport technology. A consequence of this 
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trend in rapid expansion of software quantity in embedded systems is the need to consid-

er the hidden cost of increasing software quality and maintainability in embedded sys-

tems. With focus on the automotive industry, one of the most fitting statements about the 

automotive future is: 

The majority of all automotive innovations will be within the electrics and electronics 

(E/E) area. The vast part will be software.  

This prediction is supported by nearly all vehicle manufacturers [Dra11], suppliers [Hau11] 

and scientists [Bro11]. Of course, the percentage values vary but the basic statement is 

equal: The quota of electronics (hard- and software) and as a result complexity will con-

tinuously increase. This thesis is also supported by the Oliver Wyman Automotive’s study 

“Car Innovation 2015” given by J. Dannenberg and J. Burgard et al. They predict that 

“electrics and electronics will remain the most important enabler of automotive innovations 

through 2015 and beyond, and will grow by six percent annually” [Dan07].  

These prospects have a simple consequence: increasing amounts of software results in 

longer software reprogramming time for those embedded systems. That was not a prob-

lem so far but today software size has been increased in such a way that fundamental 

activities within the product life cycle, e.g. initial programming of the Electronic Control 

Units (ECUs) during production process or software updates within service / after sales 

can no longer be handled within adequate time windows. Expanding reprogramming time 

finally results in economical and therefore financial disadvantages for the automotive 

industry. This aspect raises some crucial questions: 

1) Why is software reprogramming such an important issue? 

2) Why is software reprogramming process acceleration necessary? 

3) Is there a basic approach to solve the reprogramming challenge?  

4) Are there any other industries that have the same essential problems? 

Within this chapter an overview is given to software reprogramming aspects with the aim 

to provide answers to the crucial questions according to ECUs’ or embedded systems’ 

software reprogramming process. 

1.1 Vehicle’s life cycle 

Compared to other electronic systems, vehicles and therefore automotive ECUs have a 

quite different life cycle. As depict in figure 1.1-1 a car is typically developed between 6 

and 8 years. The model line is manufactured and sold also between 6 and 8 years. After 

the vehicle is manufactured the maintenance time period starts where the first 2 -3 years a 



Chapter 1 - Introduction 3 

warranty time is given. The challenge within the automotive industry is the combination of 

a mass product with a long time life cycle combined with the high dynamic in electronic 

development and technology’s evolution.  

 

Figure 1.1-1:  Vehicle model line life cycle 

It is a common intention of all vehicle manufacturers to reduce the development period as 

well as the manufacturing time (hours per vehicle) for new model lines. Hence, several 

model lines will derive from a basic platform. This allows the reuse of electrical and elec-

tronic components (e.g. sensors, actuators and ECUs) to reduce costs. Exact values for 

the different periods in figure 1.1-1 as well as numbers of derived model lines can not be 

given because these are commercial sensitive data, and these vary for different vehicle 

manufacturers. 

Figure 1.1-1 also depicts, that an electrical design decision (e.g. ECU functionality, com-

munication network architecture etc.) have been made a long time period before the mod-

el line is initially produced (Start of Production – SOP). These decisions will also influence 

the maintenance processes for that model line several years after model line’s end of 

production (EOP) time. Typically significant changes of such design decisions can not be 

modified so easily. It might be possible to make some new design aspects in the middle of 

a model line production period, but typically significant changes are not intended e.g. bus 

architectures, network design.  

The thesis is looking at vehicles that are now in the development or production stage and 

identifies the current problems associated with the embedded system’s software repro-

gramming process. The aspects above also make a contribution to the discussions within 

this thesis.  
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1.2 Reprogramming within an ECU’s life cycle 

Today electronic control unit’s application software reprogramming is an important issue. 

At the very least, if the ECU is manufactured the application software still has to be initially 

programmed. Depending on the final usage and the final product’s life time, an ECU could 

be reprogrammed several times during its life cycle. Figure 1.2-1 depicts an abstract 

overview. Below the typical reprogramming stages within a vehicle ECU’s life cycle are 

described with focus on automotive ECUs. 

 

Figure 1.2-1:  Reprogramming stages within an ECU’s life cycle 

Software reprogramming during the development proce ss 

During the ECU’s development process the software may be reprogrammed several times 

because new functionality is developed or bugs are fixed. Especially in an early develop-

ment state only a few ECUs are available for testing. Within typical ECU development 

processes the different features and the complete functionality are not available on the 

first (early) sample. The functionality increases step by step and therefore reprogramming 

of an ECU’s application software is an essential issue. Figure 1.2-2 depicts the current 

typical software volumes for automotive ECUs depending on their assignments. 

If the ECU is part of a more complex system (e.g. vehicle, plane, train, machine etc.) 

functionality could be distributed over several ECUs. In that case it might be necessary to 

reprogram application software of more than one ECU, e.g. for bug fixing purposes or to 

have the latest software version for testing. Especially the last aspect has a strong corre-

lation to software reprogramming time: with focus on the automotive industry, a modern 

high-end class car includes up to 80 different ECUs where each ECU provides several 

functionalities. If such a vehicle-in-development is prepared for test drives (e.g. winter 

tests in Scandinavia or heat tests in the USA etc.) the most recent software for each ECU 
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should be programmed. Hence, the total amount of time per vehicle should be as small as 

possible, especially if a fleet of several vehicles is prepared.  

 

Figure 1.2-2:  Automotive ECU software volume 

Another reprogramming scenario during the development process is the adaptation of 

software to a vehicle, e.g. parameterisation of an engine control unit to the engine. In that 

case the parameter set has to be reprogrammed several times until the final parameter 

set is found. Until the engine control unit is reprogrammed the ignition is off. Hence, the 

engine is not running and the electrical power for all ECUs is supplied completely by the 

vehicle battery. To guarantee a correct process without low system voltage interruption 

the programming time should be as fast as possible.  

Software reprogramming during manufacturing process  

ECU’s application software programming process is an essential part of the value chain. 

During the ECU’s production process the final ECU software is programmed into the 

target system. Two different scenarios could occur: 1) ECU’s application software is com-

pletely programmed during the ECU manufacturing process within the ECU assembling 

line or 2) one or more software fragments are programmed later within the vehicle assem-

bling line. Of course, in both cases the final application software is programmed, but due 

to the different reprogramming places the total reprogramming time has different conse-

quences. 

If the ECU is programmed completely within the ECU’s manufacturing process  

(scenario 1), the ECU could be programmed before packaging. Thus the microcontroller’s 

internal interfaces1 are available and usable. The software is programmed very fast but 

                                                

1 refer to chapter 2 
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typically without standardised protocols. This strategy is preferred if only one software 

variant of the ECU exists and no specific software adaptation for the final control assign-

ment is necessary. 

If the ECU has a specific software part depending on the final control assignment it might 

provide some benefits if the final software is programmed at the vehicle assembly line. For 

example, an engine control module (ECM) could have different parameter sets depending 

on the number of the engine’s cylinders. If vehicles with different engines are produced on 

the same assembly line and the ECMs have been delivered finally programmed, each 

ECM variant allocates storage place. Late programming at the vehicle assembly line 

(scenario 2) provides a) economic benefits because of the smaller and less complex part 

storage requirements and b) assembly complexity is decreased because the manufacturer 

has only one device for selection. These economical benefits will not be achieved if the 

total software programming process time significantly increases the assembling line clock. 

Here a strong necessity is given to quantify and reduce the reprogramming time.  

Software reprogramming within service or after sale s market  

Software reprogramming is an important repair method for the vehicle manufacturers in 

the aftersales or service market. If customer’s complaints could be solved by a new soft-

ware release reprogramming is the preferred repair method. As discussed above, ECU 

software sizes vary in a range of several kByte up to several MByte depending on ECU’s 

control assignment (refer to figure 1.2-2). As a consequence today’s reprogramming 

process time is in regions of several minutes up to hours based on the currently given 

automotive bus systems (discussed later in section 1.3.2). 

The total time for the software reprogramming process has an immediate economic im-

pact. The more time required the higher the costs are. For the garage the equipment (e.g. 

Programming Control Unit (PCU), power supply etc.) and the working area are occupied 

during that time. For the customer the vehicle is not usable. If the total time for software 

updates enlarges up to hours economical and therefore financial disadvantages occur, 

e.g. if a truck requires a longer garage time. In case of a software bug the vehicle manu-

facturer has to pay the down time costs.  

Another aspect is to decrease the risk of process errors. Depending on the existing envi-

ronmental conditions, a software reprogramming process is more or less stable. The more 

time a reprogramming process requires the higher the risk of interruption.  

The acceleration of a software reprogramming phase reduces this risk and provides a 

more stable and reliable process. 
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Table 1.2-1:  World automotive production [Vda11] 

 2010 2011 change in % 

Passenger vehicles 63.377.724 66.237.761 + 4.5 
Commercial vehicles 14.180.650 14.033.714 -1.0 

Total 77.558.374 80.271.475 + 3.5 
 

The increasing software sizes in future vehicles will increase the software reprogramming 

times, too. If it is assumed that only one ECU of each new produced vehicle will be repro-

grammed within the warrantee period, the increased costs will be enormous. As depicted 

in table 1.2-1 the world automotive production was up to 66 million passenger cars in 

2011 [Vda11]. A reprogramming process cost reduction, e.g. by reprogramming time 

reduction etc., of 1 € provides world wide potential up to 80 million € per year. 

Summary  

The necessity to reprogram ECU application software is given during the complete prod-

uct life cycle. The increasing software size provides new problems which have never 

existed before. The result is an economical disadvantage that could be solved by decreas-

ing software reprogramming time. Generally this topic is not only relevant for the automo-

tive industry. The increasing software reprogramming time of a plane requires a longer 

down time in the hangar or machines are longer non-productive. However, the cost mar-

ket of the business areas is completely different. Compared to the automotive industry, 

where vehicle piece costs are responsible for the cost pressure, in other industries the 

maintenance costs are important. 

Hence, approaches to accelerate the software reprogramming process in the automotive 

industry are necessary, especially if the predictions and forecasts as mentioned above 

become true. 

1.3 Aspects of software reprogramming 

Today ECU application software reprogramming is an important issue within an ECU’s life 

cycle. Especially in the after market business software reprogramming is a powerful repair 

method to solve software errors and in some cases it is the only repair method. Of course, 

the reprogramming process was established years ago, but with focus on the current 

automotive industry software reprogramming and the required time for this process  

becomes continuously more important. Also environmental aspects of software repro-

gramming are explained as well as an overview of history and reasons are given why the 

current situation is as it is. 
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1.3.1 Automotive innovation vs. software size 

The automotive market is highly competitive. Innovations and new technologies are influ-

encing customer’s decisions when they select a new car. As already mentioned, the ma-

jority of all automotive innovations will be within the electrics and electronics (E/E) area. 

Today a significant part of vehicle’s characteristics is made by software. This trend was 

already recognized in 2006 by W. Huhn and M. Schaper as they wrote in the McKinsey on 

IT report: “the focus and value in engineering products is shifting from chips to code” 

[Huh06]. Today the amount of software is up to 100 million lines of code and thousands of 

functions are controlled by software [Bro11]. M. Broy has analysed the vehicle software 

ratio during the last 40 years and identified an exponential increase [Bro11]. This state-

ment is supported by the analysis of the software ratio within Mercedes-Benz vehicles 

since 2004 (refer to figure 1.3-1). Starting in 2004 the amount of embedded systems’ 

software has doubled every 2.5 years. The tendency will be supported by the next           

S-Class generation in 2013 where again doubling of the software size is predicted. 

 

Figure 1.3-1:  Amount of vehicle software of Mercedes-Benz 

The exponential growth has now reached the boundary where the amount of software is 

so high that the old concepts for software reprogramming are no longer able to fulfil the 

required process time limits (e.g. given by the assembly line clock). 
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1.3.2 Automotive development focus and priority 

Compared to other industries the automotive industry has a very special role. In 2010 up 

to 77.6 million vehicles were manufactured worldwide2. In contrast to the manufacturing of 

planes or industrial machines with less than 1000 parts/year3, manufacturing cost aspects 

are in focus. M. Broy et al. [Bro11a] describe several reasons, where typical issues to 

reduce system complexity by decoupling system layers are not or only partly implemented 

because of cost aspects. With focus on software reprogramming only the following three 

examples of his list are mentioned and evaluated: 

• The number of running processes on a single microcontroller is increasing such that 

runtime behaviour and the schedule of those implemented processes have to be ex-

tensively organised. 

The consequence is that new software (e.g. tasks or processes) is allocated on that mi-

croprocessor as long as resources are free. Clearly structured and layered software archi-

tecture is not implemented because memory intensive interfaces have been optimised for 

code size and runtime aspects. Also functionalities of different layers are combined to 

save memory resources. This results in an increasing software complexity and the neces-

sity to reprogram the complete application software instead of single software parts. 

• Microcontroller’s memory is so scarcely dimensioned that additional functionality is 

only possible by an expensive step to the next microcontroller’s memory size.  

Another aspect from cost discussion’s point of view is the fact that microcontroller manu-

facturers supply microcontrollers with tiered memory sizes. The step to the next memory 

size results in higher costs for the microcontroller (significantly higher costs during model 

line life cycle because of the high number of parts/year). Hence, the above described 

optimisation of code size is the consequence in order to use the given memory size. 

• Compared to Ethernet commonly used within the PC industry, the simple and less 

resource consuming bus systems have less bandwidth and a strong dependency be-

tween physical layer, transport layer and application layer. Hence, they can not be pa-

rameterised independently.  

Figure 1.3-2 provides an overview about the currently most important and most imple-

mented bus systems. 

                                                

2 OICA - Provisional Production Statistics 2010 [OICA2010] 

3 Refer to M.Broy et.al. in [Bro11a] 
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Figure 1.3-2:  Most implemented automotive field bus systems 

Until today these bus systems are sufficient for normal ECU communication based on 

signal exchange as well as for data transmission in case of software reprogramming. Cost 

aspects as well as construction4 and weight5 aspects are also reasons why an exclusively 

high performance network for software reprogramming purposes is not possible. Hence, 

other less cost intensive approaches are necessary to solve the current situation of in-

creasing software despite the nearly constant vehicle bus system’s bandwidth. 

1.3.3 Automotive system complexity and compatibilit y 

Innovation  

During recent years a noticeable move from single innovations to system innovations is 

visible. In the past a typical ECU provided a single functionality and was used for a single 

assignment. Today more and more different functionalities are combined to a more com-

plex function.  

Figure 1.3-3 depicts this shift on a time line. According to that picture, single innovations 

will move into saturation but systems innovation will expand. M. Broy et al. mentioned that 

prospective innovation for infotainment systems, advanced driver assistance systems or 

safety systems will only be possible by distributed and connected functions [Bro11a].  

 

                                                

4 The position of cable bundles as well as their cross section has to be considered for car body and 

chassis construction. The cable bundle cross selection could not be increased endlessly because 

of car body’s sturdiness. 

5 Additional cable results in a higher weight and this has an impact on the fuel consumption and 

vehicle emissions. This is opposed to the current vehicle manufacturer strategy with green technol-

ogy, less fuel consumption and less/zero emissions. 
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Figure 1.3-3:  Shift from single to system innovation [Dan07] 

J. Dannenberg et al. [Dan07] support the observation of this evolution by an example of 

the Mercedes-Benz PRE-SAFE6 system: “it links existing systems like crash sensors and 

ESP with seat controls, seatbelts and the sunroof, adding safety functions to existing 

components”. 

The move to system innovations is also visible in new automotive terminologies like func-

tion-orientated development. This means that a system’s function is not tightly bound to a 

single ECU but multiple ECUs will be used to support a function based on factors such as 

memory availability and microcontroller load. This will have a significant impact on repro-

gramming times and strategies. 

Compatibility 

Due to the move to system innovations, a new challenge occurs: software compatibility. If 

an error occurs within such a distributed system it has to be guaranteed that a change of a 

single ECU’s software which is part of that system results in a compatible common sys-

tem. Especially within the automotive industry, where vehicles have no fixed and stringent 

service intervals and a customer is free to visit a garage or not, new software could be 

programmed into an old vehicle. The functional distribution of systems and the complexity 

results in an increasing test demand to guarantee compatibility. Depending on the  

                                                

6 Mercedes-Benz PRE-SAFE system was introduced in 2002 as the first anticipatory protection 

system. In case the system recognises that in a situation a crash in unavoidable, the system initi-

ates some activities to optimise passenger’s situation if the crash occurs (e.g. close windows, 

tighten seat belts, move seats in an optimised position etc.).   
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involved ECUs the test permutation is so high, that it is not possible to test each possible 

combination. In that case testing of a well known release is a very efficient method but 

results in a release update where several ECUs have to be reprogrammed.  

Table 1.3-1:  Software release types 

 

Table 1.3-1 provides an overview about possible release types. As a consequence of less 

test demand within development the reprogramming amount to service a vehicle in a 

garage is increasing. 

1.3.4 Automotive network aspects 

Complexity 

Since the first automotive systems were interconnected in the early 1980s vehicle com-

munication networks have become more and more complex. Figure 1.3-4 depicts the 

network evolution. At the beginning only vehicle functionality was interconnected by bus 

systems. The main focus was to reduce the number of sensors and the reduction of dis-

crete wires and cables between the different ECUs. The continuous introduction of elec-

tronic systems results in more complex networks. HMI, telematics and infotainment 

systems become more important and their communication demands have increased. The 

current development trend is on driver assistance systems. Surround camera systems, 

radar, infrared or ultrasonic systems continuously scanning the vehicle’s environment. The 
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corresponding advanced driver assistance systems (e.g. park assistance7, lane departure 

warning8 [merced] etc.) process the generated data and support the driver. As a result 

more and more domains are interconnected. 

 

Figure 1.3-4:  Increasing network complexity 

While as of today only vehicle-internal domains are interconnected, the next technology 

steps will interconnect vehicles (i.e. car-to-car communication) as well as connect a vehi-

cle into normal e-business networks (e.g. car hiring systems or smart charging communi-

cation for e-vehicles9). With focus on software reprogramming this development has some 

impacts: 

• New bus systems are introduced to support functional communication requirements 

e.g. for new regulation systems. Those bus systems shall be used for software re-

programming communication too because cost aspects do not allow a second 

communication link exclusively for reprogramming.  

• Depending on the domain architecture several gateways have to be passed for a 

software reprogramming communication link to establish communication to the most 

outlying ECU. The data routing time of these gateways results in time delays and in-

creases the total programming time. 

• Depending of the network connection type (heterogeneous network or homogene-

ous network) data routing is required on different layers according to the ISO/OSI 

                                                

7 Park Assistance – autonomous car maneuvering from a traffic lane into a parking space. 

8 Lane Departure Warning System – warns a driver when the vehicle begins to leave out of its lane.  

9 E-vehicles: vehicles with electrical engine 
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reference model layered architecture [ISO7498-1]. Due to that fact the data routing 

results in different routing strategies which has impacts to required resources (e.g. 

Buffer) as well as the possible routing performance and routing execution times.  

Costs 

Cost aspects, as described above, are the reason why normal vehicle functional commu-

nication and reprogramming communication share the same vehicle network. As there 

was no functional requirement for a high speed and being more expensive network up to 

now high speed networks have not be placed inside automobiles. Since the amount of 

software has been increasing the resulting programming time is meeting the timing limits 

of network, thus testing and reprogramming requirements are starting to drive the network 

speed requirements and functional becoming less important. To evaluate a business case 

to incorporate design considerations to reduce reprogramming time requires accurate 

predictions of reprogramming times. The physical network infrastructure (e.g. the cable 

trees) within the vehicle is a foundation that forms the heart of the system. New bus sys-

tems and network architectures can not be introduced easily or at low cost within an older 

vehicle. In contrast more powerful ECUs’ (microcontrollers with better performance, more 

interfaces, increased memory size etc.) will be developed during a vehicle’s life cycle and 

could be also introduced into an older car. Hence, network architecture as well as the bus 

systems’ performance and the gateways’ routing performance paired with a long-term 

persistence have a deep impact for software reprogramming strategies.  

1.3.5 Summary 

Software reprogramming of automotive ECUs is a very important issue within a vehicle’s 

life cycle. For bug fixing, software reprogramming is a method (sometimes the only low 

cost method) for the ECU supplier as well as for vehicle manufacturers within develop-

ment, manufacturing and service/after-sales. The required time for software reprogram-

ming is an important economical factor and depends on the software size to be 

reprogrammed as well as the communication link performance.  

 

Figure 1.3-5:  Vehicle development trends 
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Figure 1.3-5 depicts the current development tendencies. The software volume, system 

complexity (e.g. ECU’s functionality dependencies) and network complexity (total number 

of bus systems, gateways and different bus system types) are significantly increased but 

the vehicle’s network performance (bus bandwidth) is nearly constant. If the future trends 

discussed above become true, some challenges with focus on automotive software repro-

gramming occur: 

• The demand for software reprogramming will still increase due to the increasing total 

amount of software within vehicles. 

• Comprehensive reprogramming procedures for several ECUs will be necessary if 

complex distributed systems have to be reprogrammed to retain a compatible system. 

• Software reprogramming time will still be increasing continuously due to increasing 

software size and the need to reprogram several ECUs. 

Independent of future approaches to reduce the total complexity (e.g. software size, sys-

tem dependencies and complexity) it might be necessary to accelerate the total automo-

tive software reprogramming process.  

1.4 Scope of the thesis 

Within the automotive industry the ECU application software reprogramming process is 

quite complex. Figure 1.4-1 depicts the reprogramming process cycle divided into an off-

board (non-vehicle) part and an onboard (vehicle) part.  

 

Figure 1.4-1:  Software reprogramming process circle 

The scope of the work reported in this thesis is on the on-board part of the global repro-

gramming process. ECU aspects (flashloader, application software, network access, 
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communication protocols etc.) and network aspects (architecture, topology etc.) are the 

focus of investigation.  

 

Figure 1.4-2:  Software reprogramming time limitation 

As depicted in figure 1.4-2 for future ECUs the given time limitation requirement to the 

maximum reprogramming time will not be fulfilled any longer without any optimisation. The 

research aims are:  

• Quantify the reprogramming problem in today’s vehicle architectures and communica-

tion standards and provide possible short term solution to the existing reprogramming 

issues.  

• Quantify the impact that future emerging standards and technologies will have on 

reprogramming embedded ECUs and identify solutions to minimise their impact on re-

programming cost. 

1.5 Organisation of the thesis 

The thesis covers the onboard aspects for software reprogramming within automotive 

networks as defined in figure 1.4-1. 

This chapter has identified the potential problem that the uptake of technology revolution, 

driven by the need for increased functionality has on reprogramming of complex embed-

ded systems in the automobile industries. Not only does the industry have high production 

volumes, for an electronic product, it has long design times, production cycles and life 

time warrantee and thus long legacy costs. Problems caused today can have a very long 

term cost implication. Care must be taken to ensure future developments in car design 

consider all key life-time cost drivers. 
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Chapter 2 provides the key architectural and implementation background information to 

the software reprogramming process and the involved components for the current state of 

the art ECUs. It also identifies the key areas where acceleration is possible in reprogram-

ming time for existing technologies i.e. improved data transfer rates and data compression 

strategies. Additionally all necessary terms and definitions are introduced.  

In Chapter 3 a new concept of using double buffering in the reprogramming procedure of 

ECU is introduced. A model is generated to evaluated and quantify the improvement of 

this approach.  

In chapter 4 the research results are discussed to accelerate data transfer by communica-

tion protocol optimisations which are currently in use for automotive systems’ software 

reprogramming process (i.e. vehicles currently in production and legacy systems) and 

new technologies currently being designed into the new generation of car systems. For 

each of these communication protocols this chapter generates quantitative models that 

can be used to evaluate reprogramming data transfer performance.  

Chapter 5 discusses and introduces new approaches to reduce the amount of data need-

ed to be transmitted during software reprogramming. Quantitative models are again pro-

duced to complete the set of techniques needed calculate optimum reprogramming time 

for current technology solution available. 

Chapter 6 introduces theoretical hardware modification that could be made to ECU de-

signs to optimise and to speed up the reprogramming process. 

In chapter 7 the impact of the network architecture on the reprogramming process is 

discussed and evaluated. Coupling of different networks and routing aspects within gate-

ways are discussed. 

Reprogramming several ECUs in parallel is a powerful approach to optimise reprogram-

ming time. The required pre-conditions and a method to schedule the ECUs to be repro-

grammed are discussed in chapter 8. 

Chapter 9 provides an introduction to the newly awaited MRAM technology and identifies 

how it could be utilised to implement some of the reprogramming approaches presented in 

chapter 5. 

Chapter 10 provides case studies where some of the discussed approaches are imple-

mented within an ECU and quantitative models verified. 

Chapter 11 summarises the work and provide an outlook for future methods and        

technologies. 
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This chapter provides a short introduction into the software reprogramming process of 

embedded systems. The sub-components of an electronic control unit (ECU) which are 

relevant for the reprogramming process are explained and an introduction to the specific 

terms is given. The reprogramming sequence sub-clause shows the different steps of a 
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reprogramming process. The communication stack sub-clause introduces into automotive 

embedded system’s communication and the relevant protocols. 

2.1 Embedded Systems 

Today monitoring, control and regulation problems in technical systems (e.g. medical 

instruments, machines, vehicles, aeroplanes) are mainly realised by microcontroller-

supported embedded systems (refer to [Ren11]). “Embedded system” is more a general 

term than a well defined system definition. M. Barr characterised embedded systems as “a 

combination of computer hardware and software, and perhaps additional mechanical or 

other parts, designed to perform a dedicated function” [Bar07]. Today the term “electronic 

control unit” (ECU) is established as a synonym for an embedded system. It could be-

come more complex if at least two or more ECUs are part of a distributed embedded 

system. In that case normally they are interconnected via field bus systems to exchange 

data.  

Figure 2.1-1 depicts a simple embedded system with the relevant components. 

 

Figure 2.1-1:  Embedded system components 

A good example for a complex embedded system is a car where several systems allocat-

ed on several ECUs interact by exchanging data via a network. Such systems are also 

available on aircraft, trains, weapons and machines, and everywhere sensors and actors 

have to be controlled or regulation assignments are given. 

Figure 2.1-2 and figure 2.1-3 depict the more complex embedded system of a  

Mercedes Benz model line 221 (S-Class) vehicle. Each coloured square represents an 

ECU. The coloured lines representing communication bus systems (field bus systems - 

refer to section 2.5.1). The number of ECUs within a vehicle is growing continuously from 

only 2 ECUs (Engine control system (“Motronic”) and breaking system - ABS) in the 1980s 

up to nearly 80 ECUs within modern premium class vehicle. 
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The positions of all ECUs are depicted in figure 2.1-2. 

 

Figure 2.1-2: ECU network of a Mercedes-Benz Model line 221 (S-Class) [Mer09] 

 

Figure 2.1-3:  Mercedes-Benz Model Line 221 (S-Class) network architecture [Mer09-1] 

For modern trains the architecture is similarly complex. In [Sie] the complex architecture of 

the SIEMENS Intercity Express 3 train (ICE-3) is given for different wagons. The list of 
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complex embedded systems could be continued at will. The nomenclature and special 

terms of embedded systems are described below.  

2.2 Electronic Control Unit 

As described above, the term “Electronic Control Unit” is established as a synonym for an 

embedded system too. An ECU is based on at least one microcontroller and is encapsu-

lated in a closed package. The functionality is given by software. Hence, the same micro-

controller with identical periphery could be used for different control assignments. 

2.2.1 Microcontroller 

In the 1960’s Intel and later on Motorola developed the first microprocessor. Based on that 

technology the first single chip micro computer was developed in the 1970s. The structure 

of these initial microcontrollers10 is the base for many other microcontrollers today11. In the 

past microcontrollers were derivatives of microprocessors developed for PCs. Today a lot 

of microcontroller families exist (e.g. Infineon TriCore, C166-family etc.) which were de-

veloped especially for embedded systems. The reasons for that development are very 

extensive because for embedded systems not only the pure computing performance has 

to be considered. Microcontrollers have to fulfil competing and some times opposing 

requirements: In addition to the computing performance, limiting current or energy con-

sumption is very important as well as a lot of integrated interfaces exchange data. 

Today, microcontrollers are no longer used for simple control and regulation purposes. 

Owing to the enormous technological progress high performance microcontrollers are 

available today to solve highly complex control and regulation assignments. Within the 

automotive area, for example, ECUs are used to control typical vehicle regulation systems 

e.g. engine, gearbox etc. During recent years, also additional driver assistance systems 

have been developed. High performance microcontrollers with complex periphery systems 

and sensors are the base for those systems. The computational power and memory sizes 

of embedded systems have been following continually expanding complexity of computer 

systems.  

A detailed description of microprocessor architecture, internal processing, instruction sets 

etc. is given by J. L. Hennessy and D. A. Patterson [Hen03]. This basic knowledge is also 
                                                

10 e.g. Intel 8048 or Motorola 6800 

11 The structure of the compiled and linked software for microcontrollers has been divided into two 

different types: Intel-Hex format [Int88] and Motorola S-Record format [Mot92].  
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true for microcontrollers. J. Schäuffele and T Zurawka published a technical introduction 

to microcontrollers [Scha10] as an introduction to the approaches of embedded software 

engineering.  

With focus on the reprogramming of a microcontroller only the different communication 

interfaces, the central processing unit (CPU) and the memory have to be taken into ac-

count. All other internal or peripheral components like Input/Output ports, analogue/digital 

converters, watchdogs or other interfaces are not necessary in a reprogramming context. 

2.2.2 Memory 

Different memory types for different required functionality (store source code, data, volatile 

information etc.) have been established. Figure 2.2-1 depicts an overview of the different 

memory technologies used for embedded systems.  

 

Figure 2.2-1:  Memory Technologies Overview [Rei11] 

Basically it is distinguished between volatile and non-volatile memory. RAM (Random 

Access Memory ) is used for temporary stored information (e.g. source code variables 

etc.). Only in some special cases executable machine code is stored in RAM. Executable 

software is typically stored in non-volatile memories. ROM (Read Only Memory), PROM 

(Programmable Read Only Memory) and EPROM (Erasable Programmable Read Only 

Memory ) have all together the disadvantage that these memory types are not electrically 

erasable. If application software must be changed the memory device has to be changed.  

 

 



Chapter 2 - Background 23 

Flash Memory 

“Flash Memory” is the current established memory technology for microcontrollers to store 

executable operation code. It is based on the metal oxide semiconductor field-effect tran-

sistor technology (MOS-FET) with floating gates and supports non-volatile storage of data. 

Flash memory could be electrically erased and reprogrammed. Within [Zim10-2]  

W. Zimmermann and R. Schmidgall described the abstract functionality of a  

Flash-Memory cell. The different conditions and the usage scenarios for the different 

memory types have been listed there, too (refer to table 2.2-1). 

Table 2.2-1:  ECU’s semiconductor memory overview [Zim10-2] 

Memory type Programming Erasing Usage 

ROM 

Read Only Memory 

IC production 
time 

no Fix code 

 

EPROM 

Erasable ROM 

Only in dismounted state by the 
ECU supplier 

Fix code 

Data (e.g. characteristic line) 

Flash-ROM In the ECU at any time 

> 100,000 times 

Fix code and data 

 

EEPROM 

Electrical Erasable 
ROM 

In the ECU at any time 

> 100,000 times 

Variable data with less update 
ratio (e.g. operation hour 
counter, status information 
etc.) 

RAM 

Random Access 
Memory 

Not necessary Variable data 

Volatile after power-off 

 

Compared to EEPROM (Electrical Erasable Programmable Read Only Memory), Flash 

memory is faster for both access types: read and write. Flash memory is organised in 

pages or blocks of several kilobyte. Unfortunately Flash memory is only erasable page by 

page (block by block) and until a memory page is erased or reprogrammed no instruction 

code read access is possible. Hence, the normal operation of the ECU has to be inter-

rupted for the erase and program procedure.  

Table 2.2-2:  Physical programming performance  

Microcontroller Programming performance Source 

INFINEON TC1796 51.2 kByte/s (256 Byte / 5 ms) [TC1796] 

NEC V850 Ex3 91 kByte/s (4,096 Byte / 45 ms) [V850-Ex3] 

TMS470 128 kByte/s (256 kByte / 2 s) [TMS470] 
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Table 2.2-2 depicts an overview about typical physical reprogramming performance of 

current automotive microcontrollers.  

For the integration of the erasing and programming process into the remaining ECU soft-

ware, an independent software component is normally used inside the ECU. Compared to 

the remaining functions, this component encapsulates the programming process and 

provides defined interfaces. This component is referred to as the flashloader and will be 

described in section 2.2.3.2 in detail. 

2.2.3 ECU Software Components Overview 

With focus on embedded software reprogramming processes the software on an ECU has 

to be divided into three basic software components: 

a) boot manager  

b) flashloader 

c) application 

All three parts are independent software components allocated in the Flash memory with 

different assignments. Figure 2.2-2 depicts an overview of those different software com-

ponents. 

 

Figure 2.2-2:  ECU Software Components Overview 

The software component’s individual functionalities with respect to a reprogramming 

process are described below. 
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2.2.3.1 Application Software 

The application software (later referred as the application) implements the real control and 

measurement software to fulfil the basic assignment of that specific ECU, e.g. vehicle 

engine control or wash machines heating system etc. Hence, it implements the necessary 

drivers for all communication interfaces as well as the required communication protocol 

stacks, self diagnostic analysing systems, error storage system etc. This application soft-

ware is responsible for the complete normal operation processing of an ECU. In many 

cases application software is divided into several partitions. A typical segmentation is the 

splitting into functional code and parameter sets. Additional segmentation could be possi-

ble too. It depends on the final assignment of the corresponding ECU and on the possibil-

ity to split the software into such logical groups. For example, if the ECU has any 

interaction with the user (HMI12) the fonts could be allocated in a separate partition. 

If an application software update is necessary, e.g. in case of bug fixing or functionality 

upgrade the application software is partly (according to the configured partitions) or fully 

erased and reprogrammed.  

2.2.3.2 Flashloader 

The flashloader software (later referred as flashloader) is an independent software com-

ponent that controls the reprogramming process. Typically it shares software modules 

with the other software components application or Boot Manager. Figure 2.2-3 depicts an 

abstract overview to the flashloader component. The flashloader has access to the com-

plete memory area where the application (all partitions) is allocated and is able to erase 

and reprogram that memory area. A flashloader implements a complete communication 

protocol stack. In case a reprogramming process is initiated, the flashloader communi-

cates with an external programming control unit (PCU). Especially for the automotive 

usage the German OEMs13 have standardized a flashloader within the HIS14 standardisa-

tion group. The document [HIS06-1] specifies the basic requirements for a flashloader 

based on the diagnostic protocol UDS15 (refer to section 2.5.4) and communication via 

CAN. W. Zimmermann and R. Schmidgall also described the requirements and  

                                                

12 HMI .. Human – Machine – Interface  

13 OEM .. Original Equipment Manufacturer 

14 HIS .. German: Hersteller Initiative Software (English: manufacturer’s initiative for software) 

15 UDS – Unified Diagnostic Services (refer to section 2.5.4). UDS is the current standard diagnos-

tic protocol for the automotive industry. 
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implementation approaches of flashloader in context of the ECU’s reprogramming process  

[Zim10-3] in a more abstract view independent of the used field bus system. 

 

Figure 2.2-3:  Overview flashloader component 

The main assignments of a flashloader are: 

a)  Establishing and managing a communication connection to an external Program-

ming Control Unit. 

b)  Control communication access to the ECU. 

c)  Erase the addressed memory segments 

d)  Program the new software parts physically. 

e)  Verification of the programmed software parts (programming, integrity). 

f)  Check compatibility from hardware and software or, if more independent software 

partitions exist, check the compatibility of the different software modules. 

g)  Documentation of a reprogramming process 

h)  Error handling if reprogramming failed 

The different requirements in context of the consecutive steps during a reprogramming 

process are described in section 2.4 where the typical reprogramming sequence is dis-

cussed. 

The flash driver is a part of the flashloader’s software. It is required because it is not pos-

sible to execute code from part of the flash memory section and erase another section 
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concurrently. Hence, the driver has to be copied into RAM and executed there. Because 

of the flash memory development and the fact that on-chip flash memory enlarges very 

fast, many microcontroller manufacturers are able to provide on-chip flash memory with at 

least two memory banks (physically divided memory blocks). Here it is possible to execute 

code from one bank and erase the memory partitions of another bank. In consequence 

the copy process of executable memory driver code to RAM is no longer necessary. To-

day the flashloader’s performance has a significant impact on the total reprogramming 

time. Flashloader implementation aspects are part of the research and the results will be 

discussed within this document. 

2.2.3.3 Boot Manager 

The term boot manager was introduced by the HIS sub-working group for software repro-

gramming process [HIS06-2].  

After Power-On the microcontroller processes the start up sequence (initializing of system 

registers, PLL16 and VCO17 settings etc.). After that initialisation the system has to distin-

guish whether a valid application software is available to execute or the flashloader soft-

ware has to be executed. This distinction is processed by the boot manager software. The 

boot manager is the first active software component after a system reset. 

The boot manager has to distinguish whether application software or flash loader software 

shall be started and executed next. Typically the boot manager starts the application 

software. If no application software is available, the boot manager starts the flash loader 

software and the system waits in flashloader’s idle mode until an external Programming 

Control Unit (refer to section 2.3) initiates a reprogramming process. The decision whether 

application is executable depends on the result of some start-up checks: 

a) Is application software available? 

b) Is the application software correct (not corrupted)? 

c) Is the application software compatible to the hardware? 

d) If the software contains more than one separate reprogrammable module (e.g. 

regulation algorithm and parameter set etc.) are these different modules compati-

ble to each other? 

                                                

16 PLL .. Phase-locked Loop  

17 VCO .. Voltage-controlled Oscillator 
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Depending on the basic reprogramming strategy and the implemented protocol the boot 

manager has also to distinguish if a reprogramming request is available. In that case the 

flashloader has to be executed although valid application software is available.  

Of course, the boot manager is an important module for an ECU but with focus on repro-

gramming application software this component is not of essential interest.  

2.3 Programming Control Unit (Test system) 

The programming control unit (PCU) manages the reprogramming process. The PCU has 

access to the data that shall be programmed and knows the reprogramming sequence for 

the ECU.  

PCU is the generic, abstract term for all the different applications, tools and systems that 

are available in context of microcontroller’s software reprogramming. The spread is from 

simple “download applications” integrated in embedded software development suites up to 

more extensive test systems18 for industrial ECU manufacturing and after sales support. 

Common to all PCUs is the necessity to implement communication interfaces on either the 

microcontroller or the ECU. The available interfaces depend on the current position within 

microcontroller’s or ECU’s life cycle. In the early development phase for example commu-

nication via JTAG19 interface might be possible whereas in a post-development phase 

(e.g. production or service) no access to that interface is possible. Here in many cases 

access to the ECU is only possible via the (normal) application communication interfaces.  

Within the automotive area, PCUs are typically integrated components of more complex 

test systems. The Association for Standardisation of Automation and Measurement Sys-

tems (ASAM) has standardised those test systems and provides many documents for the 

different layers [ASAM]. In [Zim10-8] W. Zimmermann and R. Schmidgall give a short 

overview about the standardised test system, the different interfaces and the standardised 

exchange data formats. In the reprogramming context of this document, the PCU is de-

fined as an abstract data source that communicates via field bus systems and implements 

the corresponding communication protocols (refer to chapter 3). The PCU  

                                                

18 Other terms for test system in publications or standards are: tester, diagnostic tester, external 

test tool, diagnostic test tool, test equipment, diagnostic test system 

19 JTAG .. Joint Test Action Group describes the IEEE-1149.1 standard that collects several meth-

ods for testing and debugging of electrical hardware directly within the circuit. A sub-method is to 

program embedded memory by direct access to the memory cells. 
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implementation, as well as the data exchange formats and container, are not in the scope 

of this work.  

2.4 Programming Sequence 

The reprogramming sequence specifies the consecutive steps that are necessary to pro-

gram the ECU’s memory. From an abstract point of view, the reprogramming process for 

ECUs is always the same. A typical reprogramming sequence for embedded systems 

based on microcontrollers could be divided into three abstract sub-sequences: 

1. Pre-programming sequence 

2. Major programming sequence 

3. Post-programming sequence 

These sequences will differ depending on several environment conditions like the repro-

gramming scenarios (e.g. initial programming, reprogramming), reprogramming places 

(e.g. direct access to the microcontroller, direct link between PCU and ECU, reprogram-

ming via network etc.). Pre- and post-programming sequences are necessary to prepare a 

communication network for the reprogramming process. The major programming se-

quence implements the physical programming process as well as verification and admin-

istration data processing. 

Major programming sequence 

Figure 2.4-1 depicts the major programming sequence in an abstract view. 

 

Figure 2.4-1:  Abstract major programming sequence 
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Initially the PCU has to identify the ECU (step 1) and gets access for reprogramming 

process execution (step 2). ECUs Flash memory must be erased previously before it can 

be reprogramming (step 3). The PCU transfers data to the ECU where they are physically 

programmed into the Flash memory (step4). Finally the physical programming process is 

verified (step 5) before the reprogramming sequence has finished.  

Due to the reprogramming sequence according to figure 2.4-1 two approaches are possi-

ble to reduce the total software reprogramming process time significantly:  

1) Accelerate data transfer from PCU to ECU  

2) Reduce data size to be transferred from PCU to ECU.  

The other stages within that sequence are hardware dependant (erase process, verifica-

tion e.g. CRC calculation) and based on technology used or require only a small part of 

the overall reprogramming process time (Identification, authentification).  

Major programming sequence mapped to UDS protocol  

There have been efforts for many years by the ISO and the HIS to standardise the repro-

gramming sequence for the automotive industry. The sequence is based on the diagnostic 

protocol20 and specifies the ordering of the required diagnostic services. In fact, the vehi-

cle manufacturers and suppliers vary significantly in terms of the used diagnostic services. 

An attempt is made in [HIS06-2] to standardise the procedures although a couple of steps 

are optional so that different options are still possible. Within [ISO14229] (Unified diagnos-

tic services – UDS – refer to section 2.5.4) the reprogramming sequence shall now be 

standardised in a common international standard. 

[Zim10-3] explains the reprogramming sequence based on [HIS06-2]. Table 2.4-1 depicts 

the reprogramming sequence in a more generic manner. The text column explains the 

abstract steps and maps the abstract requirement to the corresponding diagnostic ser-

vices as defined in UDS [ISO14229] and [HIS06-2].  

 

 

 

 

                                                

20 Several diagnostic protocols have been standardised in the past. The currently most significant 

protocol is standardised in the document of ISO 14229 – Unified Diagnostic Services (UDS) 

[ISO14229]. 
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Table 2.4-1:  Software Re-Programming Process according to [HIS06-2] and [Zim10-3] 

Step  Sequence  Description 

 (*).. conditional steps    
P

re
-P

ro
gr

am
m

in
g 

S
eq

ue
nc

e 

(1)  Start 

Pre-Progr. Sequence 

 Starting the Pre-Programming sequence for 

the preparation of the programming process.  

UDS: Diagnostic Session Control 
     

(2) * 
ECU Identification 

 Readout of ECU identification to identify the 

hardware and the current software version.  

UDS: Read Data by Identifier 
     

(3) * 
Check Pre-Conditions 

 Checking if all device-specific preconditions 

necessary for the programming are fulfilled 

(e.g. automotive area: engine off). UDS: 

Routine Control - Check Programming Pre 

Condition 

  
  

 

(4) * 
Network Preparation 

 Prepare all ECUs within the network for a 

reprogramming process (e.g. disable the 

normal communication to gain full bandwidth 

for reprogramming communication, deacti-

vation of communication timeout monitoring 

etc.). 

UDS: Communication Control, Link Control 

   

  

 

   
    

M
aj

or
 P

ro
gr

am
m

in
g 

S
eq

ue
nc

e 

(5)  Start Main 

Programming Sequence 

 Switch to ECU’s flashloader.  

UDS: Diagnostic Session Control 

     

(6)  
Authentication 

 Authentication of the tester to the ECU. The 

access is denied if the authentication fails.  

UDS: Security Access – Get Seed, Send 

Key 
     

      

(7)  Loading Flash-Driver 

Part 1 into RAM 

 If the flash-driver is a fixed component of the 

flash-loader, the latter copies the flash-driver 

into the RAM in due time. Otherwise, the 

diagnostic tester carries out this task. 

UDS: Request Download, Transfer Data, 

Request Transfer Exit 
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Continue table 2.4-1    

M
ai

n 
P

ro
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m
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g 
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nc

e 

      

(8)  
Erase Memory 

 The diagnostic tester activates the physical 

erasing of the (Flash) memory.  

UDS: Routine Control - Start Routine by 

Identifier 
     

      

(9) * Loading Flash-Driver Part 2 

into RAM 

 Inside electronic control units with a small 

RAM, it can be impossible to load the 

complete flash-driver. The driver is divided 

into a first part responsible for the erasing 

process and a second part responsible for 

the programming. The latter can only be 

performed if the erasing process was 

completed successfully. 

  

  

 

      

(10)  Transfer and program new 

software 

 The PCU transfers the data to the ECU. The 

flashloader physically programs this data 

into the flash-memory.  

UDS: Request Download, Transfer Data, 

Request Transfer Exit 

  
  

 

      

(11)  
Verification of Programming 

 After completion of data transfer and pro-

gramming, the newly programmed applica-

tion software is authenticated at least by 

CRC calculation. The reliability of the data 

may be checked by signatures based on 

encrypted/decrypted hash values. UDS: 

Routine Control – Start Check Routine 

  

  

 

      

(12)  
Check Dependencies 

 It has to be verified that the software is 

compatible to the ECU’s hardware. Also If 

the application software is subdivided into 

several blocks, the compatibility of every 

single part must be checked too.  

UDS: Routine Control – Check Program-

ming Dependencies 

  

  

 

      

(13)  
ECU Reset 

 A reset stops the programming process. 

After the reset, the boot-manager activates 

the new application software.  

UDS: ECU Reset 
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Continue table 2.4-1    

       

P
os

t-
P

ro
gr

. S
eq

ue
nc

e 
(14)  

Prepare network 
 All electronic control units connected to the 

bus are allowed to resume their normal 

communication. All the network preparations 

in the ECUs shall be repealed.  

UDS: Communication Control, Link Control 

  
  

 

      

(15)  
Stop Diagnostic Session 

 Closure of the reprogramming process.  

UDS: Stop diagnostic session. UDS: Ses-

sion Control - Start default session 
      

Of course, the sequence as mentioned above is a very generic approach. But the condi-

tional steps (marked by a ‘*’) provide the possibility to process these sequences for each 

microcontroller on many different scenarios during the life cycle. Independent of the final 

sequence and common to all reprogramming scenarios is the requirement to reprogram 

an ECU as fast as possible.  

2.5 Communication Stack 

In distributed embedded systems the different ECU applications have the need to ex-

change data. According to the Open System Interconnection model (OSI model) standard-

ised in [ISO7498-1] embedded system’s communication is mapped to that model, too. As 

depicted in table 2.5-1, a communication system is sub-divided into different layers.  

Table 2.5-1:  OSI reference model  

Layer Description 

7 Application Network process to application 

6 Presentation Data representation, encryption and decryption, convert machine 
dependent data to machine independent data 

5 Session Inter-host communication 

4 Transport End-to-end connections, segmentation 

3 Network logical addressing, routing, flow control 

2 Data Link Bus access, physical addressing, bit error detection etc. 

1 Physical Signal and binary transmission, bit coding 

 

Equal layers within different ECUs are communicating via protocols. Besides the payload 

additional layer specific header and trailer information are also transmitted. In many cases 
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the header is also called “Protocol Control Information” (PCI). The trailer implements 

control information, e.g. check sums etc. In some cases, no protocol trailer is defined. 

Each layer instance (N) provides services to the layer instance above (N+1) and below (N-

1) or uses services from the layer instance above or below. Figure 2.5-1 depicts an ab-

stract view of the internal communication structure of a protocol stack. 

 

Figure 2.5-1:  Communication structure within a protocol stack 

Usually embedded software has strict resource restrictions because memory resources 

and microcontroller performance are limited in contradiction to the PC world, whereas 

from an embedded system’s point of view memory resources and processor speed are 

unlimited. Some reasons for those restrictions especially within the automotive area were 

presented in chapter 1. As a result of these resource restrictions within the embedded 

world and their field bus systems (refer to section 2.5.1) it might be possible that some 

layers are either combined (layer 3 – network layer and layer 4 – transport layer) or not 

available (layer 6 – presentation layer).  

Many protocols on the different layers within the automotive area are standardised within 

ISO21 or SAE22.  

 

                                                

21 ISO – International Standardisation Organisation  

22 SAE - Society of Automotive Engineers 
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2.5.1 Field bus systems 

Field bus is the name of a family of industrial computer network protocols. According to 

the ISO/OSI reference model of table 2.5-1, the protocols typically specify layer 1 and 2. 

Field buses connect field components like sensors and actors and ECUs with the purpose 

of exchanging data. The first generation of field bus systems was developed in the 

1980s23. Since 1999 field bus systems are standardised within the specification  

IEC 61158 - Digital data communication for measurement and control – Field bus for use 

in industrial control systems [IEC61158]. The different usage scenarios of field busses 

within the different business areas provide the opportunity for competing field bus tech-

nologies. G. Schnell and B. Wiedemann [Schn08] provide an overview about field bus 

systems within automation systems, while W. Zimmermann and R. Schmidgall do it for 

automotive systems [Zim10-1].  

Table 2.5-2:  Field bus systems in automotive area 

Name Bus access method Bandwidth Payload 

K-Line - 10,4 kBit/s 1..255 Byte 

LIN Master-Slave 1 .. 20 kBit/s 1..8 Byte 

CAN CSMA/CR24 1 MBit/s 0..8 Byte 

TTCAN TDMA25 1 MBit/s 0..8 Byte 

FlexRay TDMA 10 MBit/s 0..254 Byte 

Byteflight26 TDMA 10 MBit/s 0..12 Byte 

 

Today different field bus systems are established within the different business areas. 

Table 2.5-2 provides an overview of the currently most used field bus systems within the 

automotive area. With focus on software reprogramming acceleration, different approach-

es for CAN and FlexRay will be discussed in detail in chapter 4. It is possible to adapt the 

methods to other bus systems based on equal bus access strategies.  

                                                

23 ISA S50.02 standard  

24 Carrier Sense Multiple Access with Collision Resolution (refer to chapter 4) 

25 Time Division Multiple Access (refer to chapter 4)  

26 Developed by the BMW AG 
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2.5.2 Media Access Control Overview 

Master-Slave bus access is a general term for systems where a node has unidirectional 

control over one or more other devices. Only the master initiates a communication link. 

The slave nodes are not allowed to communicate without a master request. Local Inter-

connection Network (LIN) is a typical Master/Slave system for embedded system’s com-

munication.  

Carrier Sense Multiple Access (CSMA) is a general term for asynchronous (event based) 

bus access. A node verifies the idle state (absence of other traffic) of a shared transmis-

sion medium before transmission is initiated. Data transmissions of a node are generally 

received by all other nodes connected to the medium. A. Tanenbaum and 

D. Wetherall provide a detailed introduction into the different media access control (MAC) 

methods [Tan10]. 

Carrier Sense Multiple Access with Collision Detection (CSMA/CD) is a modification of the 

above described CSMA method. If a currently transmitting node detects another transmis-

sion, it stops transmitting the frame and then waits for a random time interval before trying 

to send again.  

Carrier Sense Multiple Access with Collision Resolution (CSMA/CR) is a second modifica-

tion of the above described CSMA method. The method is used to provide a deterministic 

communication system based on CSMA. If a collision is detected, a priority definition 

forces the transmission of the higher priority note or PDU (frame). Controller Area Network 

(CAN) is one of the most popular bus systems based on that media access control. 

The Time Division Multiple Access (TDMA) method allows several nodes to share a bus 

system by dividing the channel bandwidth into different time slots. Each has an exclusive 

transmission access to a time slot defined within a global schedule. Time Triggered Con-

troller Area Network (TTCAN) and FlexRay are two bus systems based on that media 

access control.  

2.5.3 Transport Layer Protocol 

As described in table 2.5-2 the payload of field bus systems is limited. But for the purpose 

of reprogramming, it is necessary to transfer data in larger segments than the maximum 

payload of the physical protocol data unit (PDU). Hence, a protocol mechanism is neces-

sary to adapt large data strings to physical layer protocol’s PDU. According to the ISO 

standardised OSI reference model this mechanism is implemented on layer 4  

[ISO7498-1a]. Figure 2.5-2 depicts an overview. 
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Figure 2.5-2:  Protocol Stack Overview – Transport Layer 

As mentioned above, not all layers of the basic OSI reference model are defined and/or 

implemented within embedded system’s communication protocol stacks. For many field 

bus systems, layer 3 (Network) and 4 (Transport) are combined. The title of [ISO15765-2] 

“Road vehicles – Diagnostics on Controller Area Networks (CAN) – Part 2: Network layer 

services” misleadingly suggests the specification of network layer functionality. Neverthe-

less, a method for segmented data transmission via CAN (according to ISO/OSI reference 

model done on layer 4) is specified too. [ISO10681-2] specifies “Communication Layer 

services” for FlexRay. Address handling (ISO/OSI reference model - layer 3) and transport 

protocol handling (ISO/OSI reference model - layer 4) is defined within the same specifi-

cation. Due to the fact that the terms used within standards are ambiguous where layer 4 

and layer 3 are combined for embedded systems, the term “Transport Protocol” will be 

used within the further document.  

Table 2.5-3:  Automotive related transport protocol specifications  

Name Transport Protocol Specification 

LIN Parts of ISO 15765-2 

CAN ISO 15765-2  

SAE J1939/21 

FlexRay ISO 10681-2 

AUTOSAR 2.1 – FrTp 

Ethernet ISO 13400 

 

It has to be distinguish between ISO standardised protocols and proprietary protocols. 

Proprietary protocols are defined if no ISO standard is available, or also if the physical 

medium is not standardised in ISO or SAE. Especially the automotive industry has a big 

interest to standardise such protocols. Hence, most transport layer protocols for  

automotive usage are standardised or standardizing activities have started. Table 2.5-3 

depicts an overview of the different automotive related standardised protocols.  
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W Zimmermann and R. Schmidgall explain the different protocol mechanisms of the 

transport protocols actually used within the automotive area in detail in [Zim10-5].The 

transport protocol topic will also be discussed in chapter 4. 

The basic functionalities of such a transport protocol are: 

a) Segmentation of large service data units (SDU) into several protocol data  

units (PDU) 

b) Reassembling of received PDUs to an SDU 

c) Data flow control management 

d) Timing control of the established data transfer link (timeout management) 

Within software reprogramming processing large data blocks are transferred from the 

PCU to the different ECUs. Therefore, transport protocols are necessary to segment these 

large data blocks to fragments with size of field bus system’s payload. For some of the 

automotive relevant field bus systems the transport protocols are typically specified within 

the ISO (refer to table 2.5-3). Transport layer configuration has a deep impact on the 

overall communication speed and the data transfer bandwidth. The impact of those differ-

ent configuration possibilities will be discussed in chapter 4. 

2.5.4 Application Protocols 

Today several protocols exist to reprogram ECU’s software. Within the automotive indus-

try software reprogramming in production and service is a part of diagnostics. In recent 

years diagnostic communication was strictly standardised within the ISO. Based on OEM 

specific, manufacturer specific and proprietary protocol implementations Key Word Proto-

col 2000 (KWP2000) was standardised in [ISO14230-3] in 1999. The next generation of 

automotive diagnostic protocol is Unified Diagnostic Services (UDS) and standardised in 

[ISO14229]. 

Some ECUs have to be adapted to the environment, e.g. engine control units to the en-

gine or transmission control module to the engine or the gearbox. Within the automotive 

industry the protocols for measurement and calibration are standardised by the ASAM27 

standardisation group. In [Zim10-8] a detailed introduction to the Universal Measurement 

and Calibration Protocol (XCP) and the older CAN Calibration Protocol (CCP) is given by 

W. Zimmermann and R. Schmidgall. During the adaptation and calibration process, it 

could be necessary to reprogram parts of the memory, e.g. with new values for character-

istic curves etc. If the system is produced or serviced within the after sales  

                                                

27 ASAM .. Association for Standardisation of Automation and Measuring Systems [ASAM]. 
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market, the calibration or measurement protocol is no longer needed. In contrast, diagnos-

tic is required during the ECU’s complete life cycle. Hence, the focus for reprogramming 

process acceleration is on diagnostic protocols. It is also possible to reprogram software 

with calibration protocols, but this is not their initial intention. 

2.6 Network 

“The networks used in distributed systems are built from a variety of transmission media, 

including wire, cable, fibre and wireless channels; hardware devices, including routers, 

switches, bridges, hubs, repeaters and network interfaces; and software components, 

including protocol stacks, communication handlers and drivers” [Cou01-1].  

The definition of James Coulouris et al. is also correct for automotive embedded systems. 

However, wireless transmission media is currently only used to interconnect customer’s 

consumer devices (e.g. mobile connection via blue tooth) and the number of different 

network nodes is reduced to gateways. But, in the case of software reprogramming it is 

also true that “the resulting (…) performance available to distributed system (…) is affect-

ed by all of these” [Cou01-1]. 

In section 2.5 the different field bus systems were described which are currently relevant 

for the automotive industry. A network is the combination of at least two field bus systems. 

The network and its data transfer rate have a significant impact on the overall reprogram-

ming performance. Nevertheless, optimisation of networks for the reprogramming process 

has not been the focus point during recent years. As described in chapter 1, cost aspects 

have the main priority. On the other hand, there was no pressure to optimise the automo-

tive networks because software reprogramming was not a problem. Hence, the focus, in 

terms network architecture aspects, was on the ECU’s application software’s communica-

tion. 

For the network design today, the reprogramming issue has to be taken into account. The 

challenges of diagnostic communication within modern vehicle networks have increased 

and network configuration has become more complex (refer to appendix C) [Sch11-1]. 

Tool supported network analysis is necessary, but tools for diagnostic specific protocol 

analysis are currently not available (refer to appendix D) [Sch11]. Therefore, network 

architecture and design aspects also need to be analysed within this document.  
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2.7 Summary 

This chapter has provided background information to embedded systems and the involved 

components for the software reprogramming process where a PCU communicates with an 

ECU’s flashloader via a communication network. All above discussed aspects contribute 

to a system model for embedded systems’ reprogramming process as depicted in  

figure 2.7-1. 

 

Figure 2.7-1:  System model for embedded system’s software reprogramming  

Current ECUs based on Flash memory technology require a special reprogramming se-

quence because the Flash memory allows not reprogramming a memory cell without 

previously erasing. This is a strong restriction to possible reprogramming strategies.  

Due to the reprogramming sequence of section 2.4, process acceleration is possible if 

a) data transfer is accelerated or  

b) data size to be transferred is reduced. 

The data transfer rate as an indication of communication performance depends on: 

a) The used bus systems,  

b) The upper layers communication protocols,  

c) The hardware performance and  

d) The performance of network coupling elements like gateways.  

Data size reduction will accelerate the data transfer process because less data has to be 

transferred. Different approaches are possible to reduce the total amount of transferred 

data. 
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This chapter is intended to discuss an approach to accelerate the data transfer between 

an external programming control unit (PCU) and an electronic control unit (ECU).  

According to ISO/OSI reference model (refer to section 2.5), communication protocols on 

layer 5 to layer 7 are independent of the underlying bus system (represented by layer 1 to 

layer 4 protocols). Hence, optimisations on layer 5 to 7 are generic approaches, usable for 

data transfer via all field bus systems (refer to section 2.5). Nevertheless, the indisputable 

thesis for a communication system is given as: 

The upper limit for the communication performance on a physical layer is 100% bus load.  

Hence, upper layer protocols shall reduce protocol delays that finally results in delays on 

the physical bus system and therefore reduce data transfer rate. 

Based on the initial thesis and with focus on automotive communication protocols the 

following issues are discussed:  

a) The theoretically maximum of the protocol’s data transfer rate 

b) The influencing parameters and restrictions to reach the maximum value. 
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3.1 Reprogramming Protocol 

Reprogramming protocols control the reprogramming process. Typically they are mapped 

to layer 7 within the ISO/OSI reference model nomenclature. Within the automotive area 

typical protocols to control the reprogramming process are diagnostic protocols like “Key 

Word Protocol 2000” (KWP2000) as defined in [ISO14230-3] or “Unified Diagnostic Ser-

vices” (UDS) as defined in [ISO14229-1]. Figure 3.1-1 depicts a system overview.  

 

Figure 3.1-1:  Reprogramming protocol overview 

With the aim to use the full bandwidth and get 100% bus load the reprogramming protocol 

should be analysed to identify protocol dependent delay times which reduce bus load. Of 

course, the final overall performance depends also on the underlying communication 

system performance. Nevertheless, a delay on higher protocol layers is propagated 

through the communication stack and results usually in a delay on the physical layer. 

Therefore, it might be sufficient to find a generic approach to accelerate data transfer on 

the reprogramming protocol layer. In a second step the power of the generic approach will 

be discussed if it is mapped to the real existing automotive diagnostic communication 

protocol UDS. 

3.2 Double buffered data transfer  

Within this chapter a generic approach to accelerate data transfer on the programming 

protocol layer is discussed. Finally a solution to map this approach to a standardised 

protocol will be provided. 

An electronic control unit (ECU) typically provides buffer to receive data within an estab-

lished communication link (refer to figure 3.1-1). The maximum buffer size can vary  
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depending on the underlying bus system and the corresponding communication protocol 

stack (refer to chapter 4). Today’s state of the art reprogramming process e.g. within the 

automotive industry28 is an alternating sequence of data transfer and physical reprogram-

ming. The programming control unit (PCU) segments the complete data to be pro-

grammed into smaller packages according to the maximum data size that can be 

transferred via the bus system. The ECU receives that data in the buffer and programs 

them into the physical non-volatile-memory (NVM), e.g. flash memory or EEPROM. This 

sequence will repeat until all data are transmitted from the PCU to the ECU and success-

fully programmed. Figure 3.2-1 depicts that basic scenario with a view to the bus system 

traffic and the corresponding single buffer. 

 

Figure 3.2-1:  Single buffer data transfer 

This buffer is the target for the data communication link and also the data source for phys-

ical reprogramming process. During the data transfer the received data are stored in the 

buffer (write access). During the physical reprogramming process (read access) the buffer 

is locked for data reception. Hence, no data are transmitted and a gap is visible on the 

bus. After successful reprogramming process execution the buffer is unlocked and the 

PCU can start to transmit the next data segment.  

According to the initial aim to use the full bandwidth and to get 100% bus load the gap 

shall be filled by a concurrent data transfer to a second buffer while the first buffer content 

is physically programmed. 

This approach will be discussed below by the calculation of data transfer ratio. Starting 

from a single buffer system the time that is required to transmit and program the total 

amount of data is calculated by formula 3.2-1. The total programming time tProg is the sum 

of the total data transfer time tDataTransfer and the total physical programming time tPhysProg: 

∑ ∑+= ogPrPhyserDataTransfogPr ttt    

ogPrPhyserDataTransfogPr tntnt ⋅+⋅=    

                                                

28 Refer to the standardised reprogramming sequence based on diagnostic protocol UDS in    

chapter 2.3 and chapter 4.1.3. 
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( )ogPrPhyserDataTransfogPr ttnt +⋅=
  (3.2-1) 

The term n represents the number of repetitions to transfer the total amount of data 

(“DataSize”) by bus system specific segments (“SegmentSize”) which can be transmitted 

by a single data transfer. 

eSegmentSiz
DataSize

n =
  (3.2-2) 

Typically a data transfer results in a last segment with less data bytes than the segment 

size. In that case the individual time required for that data transfer and physical repro-

gramming has to be calculated. On the other hand the influence of the transmitted last 

data segment and the resulting calculation error is smaller as more data segments are 

transmitted29. Hence, formula 3.2-2 is simplified and the term n will be rounded up to the 

next integer value. 









=

eSegmentSiz
DataSize

n
 (3.2-3) 

If a second application buffer is available, a second data transfer could be initiated in 

parallel to the second buffer until the first buffer’s data are programmed. By this buffer 

architecture two different scenarios are possible for the total programming time calcula-

tion: 

Scenario 1: tData Transfer  ≥  tPhysicalProgramming 

Scenario 2: tData Transfer  <  tPhysicalProgramming 

The maximum value for the total programming performance increase depends on two 

different parameters: 

a)  The number of transmitted segments n (refer to formula 3.2-2) where the gap on 

the bus could be visible. 

b)  The ratio between data transfer time tDataTransfer and the physical programming time 

tPhysProg. 

PhysProg

erDataTransf

t

t
x =

  (3.2-4) 

                                                

29 For n ≥ 20 the last segment influences the total programming time by < 5%. For n ≥ 50 the last 

segment influences the total programming time by < 2%. 
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Scenario 1 (t Data Transfer   ≥  tPhysicalProgramming ) 

Figure 3.2-2 depicts the scenario 1 with tDataTransfer ≥ tPhysicalProgramming. In that case there is 

no gap visible on the bus. The physical programming time is only visible on the very last 

segment.  

 

Figure 3.2-2:  Double buffered data transfer – scenario 1 

The relation between data transfer time tDataTransfer and the physical programming time 

tPhysProg is: 

1x  
x

t
t

t

t
x Transfer

PhysProg
PhysProg

Transfer ≥=⇒=
  (3.2-5) 

The optimised total programming time tProg_opt1 is calculated by: 

ogPrPhysTransfer1opt_ogPr ttnt +⋅=  (3.2-6) 

Compared with the initial transfer concept to a single bus with visible gaps the relative 

programming time reduction relation is: 

PhysProgTransfer

PhysProgTransfer

rogP

Prog_opt1
n tntn

ttn
1

t

t
1R

⋅+⋅
+⋅

−=−=  (3.2-7) 
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With (3.2-5) the generic formula for the overall time reduction ratio is: 








 +
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If tDataTransfer = tPhysicalProgramming the value for x is equal to 1. Depending on the number of 

transmitted segments n the maximum time reduction varies. 
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If tData Transfer = tPhysicalProgramming the maximum reduction is in range of  

0n5.0R0 n >≤≤   

and is in maximum 50%. Figure 3.2-3 depicts the graphical results of formula 3.2-8 and 

3.2-9 and visualise the effect of double buffered data communication. The approach with 

two buffers provides already a benefit if only 2 different data segment transfers are neces-

sary (n=2). A saturation is visible if many data segments transfers (n>20) are necessary.  
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Figure 3.2-3:  Maximum time reduction for tData Transfer ≥ tPhysicalProgramming 
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Figure 3.2-3 depicts also the impact of the relation between the data transfer time  

tDataTransfer and the physically programming time tPhysicalProgramming.  

The maximum value is only possible if data transfer time is equal to physical programming 

time (x=1). In that case the maximum time reduction R(n) for a double buffered data trans-

fer is up to 40% if already 5 segments are transmitted.  

If the microcontroller is able to program data several times faster than it requires to trans-

ferring that amount of data the time reduction benefit will decrease. The longer tData Transfer 

is (x>1), the less programming time reduction R(n) is possible. If tData Transfer >> tPhysicalPro-

gramming (x�∞) no or only a small reduction of the total reprogramming time is possible 

independent of the number of transmitted segments. 
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Figure 3.2-4 depicts the maximum values of total reprogramming time reduction R(x) 

depending on the relation x between the data transfer time tDataTransfer and the physically 

programming time tPhysicalProgramming for different number of transmitted data segments n. 
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Figure 3.2-4:  Total reprogramming time reduction - details 

Figure 3.2-4 depicts that the effect of double buffered data transfer is decreasing if data 

transfer time is longer than the physical programming time. The total programming time 

reduction R(x) is less that 10% if the data transfer time tData Transfer  is 9 times longer than 

the physical programming time tPhysicalProgramming (x ≥ 9).  
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Scenario 2 (t Data Transfer   <  tPhysicalProgramming ) 

For tData Transfer < tPhysicalProgramming a gap on the bus will occur where no data transfer will be 

processed. Figure 3.2-5 depicts that scenario for a double buffered data transfer. 

 

Figure 3.2-5:  Double buffer data transfer – scenario 2 

The relation between data transfer time tDataTransfer and the physical programming time 

tPhysProg is according to formula 3.2-5: 
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The optimised total programming time tProg_opt2 is calculated by: 
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Compared with the initial transfer concept to a single bus with visible gaps the program-

ming time reduction relation is: 
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If the physical programming time is near to the data transfer time (x�1), the maximum 

programming time reduction for a large number of transmitted segments (n� ∞) will be: 
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On the other hand if the physical programming time is several times longer than the data 

transfer time (x� 0), no reduction is possible: 
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3.3 Method’s utilisation 

3.3.1 Mapping to Diagnostic Protocol ISO-14229 – UD S 

Within the automotive area software reprogramming is typically part of the ECU diagnos-

tic. Hence, the approach of doubled receive buffer should be discussed for a reprogram-

ming process based on the diagnostic protocol “Unified Diagnostic Services” (UDS) as 

defined in [ISO14229].  

UDS according to ISO 14229 provides the request-response behaviour for the communi-

cation between the PCU and the ECU. The PCU transmits a diagnostic request. The ECU 

receives that diagnostic request, processes the required functionality and sends a re-

sponse (positive if successful, negative if not successful) back to the PCU.  

W. Zimmermann and R. Schmidgall described an overview about the protocol behaviour 

[Zim10-4]. A more detailed description to all defined diagnostic services is given by  

C. Marscholik and P. Subke [Mar07].  

The programming control unit (PCU) segments the complete data to be programmed into 

smaller packages according to the maximum data size that could be transferred via the 

bus system. Figure 3.3-1 depicts that programming sequence. 
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Figure 3.3-1:  UDS communication via single buffered system 

To transmit each data segment the PCU sends a diagnostic service request Transfer Data 

(Service Identifier $36). The ECU receives the data in the buffer and programs them into 

the physical non-volatile-memory (NVM), e.g. flash memory or EEPROM. After successful 

reprogramming, the ECU sends a positive response and the sequence will repeat until all 

data are transmitted from the PCU to the ECU and successfully programmed.  

ISO-14229 does not specify that the positive response of the diagnostic service request 

“$36 - transfer data” shall be transmitted after physically reprogramming. It is allowed to 

separate data transfer and physical data programming and send the positive response 

immediately after the successfully data reception. Hence, the double buffer approach for 

an ECU is possible. Figure 3.3-2 depicts that approach. 

 

Figure 3.3-2:  UDS communication via double buffer system 
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Sending a positive response requires two fulfilled conditions: 

1) All data have been transferred to bufferx 

2) All data of the previous bufferx-1 have been programmed successfully 

A double buffer system is a possible approach for all reprogramming protocols to  

accelerate the total reprogramming process.  

 

3.3.2 Mapping to other application protocols 

It is possible to map the double buffer communication approach to other application proto-

cols. The only requirement is to prevent the ECU from concurrent access to the same 

buffer. It must be avoided that receive data processing and physical data reprogramming 

processing use the same buffer at the same time. If this is assured the approach could be 

ported to any other embedded application communication protocol (e.g. CCP, XCP etc.). 

 

3.3.3 Mapping to multi controller systems 

Double buffering is also a powerful approach to accelerate data transfer on multi proces-

sor systems. Figure 3.3-3 depicts an example for an ECU with two microcontrollers.  

 

Figure 3.3-3:  Multi controller system 

The double buffered system provides the possibility to communicate externally and inter-

nally in parallel. Depending on the internal communication bandwidth (bus system, inter-

face, protocol etc.) that approach reduces the total communication time.  
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3.4 Conclusion 

With the approaches as discussed above it is possible to accelerate software reprogram-

ming communication independent of the underlying field bus system.  

Method utilisation 

The benefit of double buffered systems for data transfer to a microcontroller depends on 

the relation between data transfer time and microcontroller’s physical reprogramming 

time. Significant benefit is given if two environmental requirements are fulfilled: 

1)  The number of data segments n that shall be transferred to the microcontroller is at 

least more than 1 (n > 1) and 

2)  The data transfer time (tDataTransfer) is in maximum 9 times longer than the microcon-

troller’s physical programming time (tPhysicalProgramming) (x ≤ 9). 

Best results are given if the data transfer time (tDataTransfer) is equal to the microcontroller’s 

physical programming time (tPhysicalProgramming) (x = 1) and more than 100 segments shall be 

transmitted.  

Impact to system design 

The implementation of double buffered data transfer requires additional buffer resources 

(RAM). If the above described basic requirements are fulfilled and RAM is available it is 

recommended to implement that method.  

An implementation of more than two buffers provides no benefit because either the addi-

tional buffers are not filled (scenario 1: tData Transfer ≥ tPhysicalProgramming) or the additional  

buffers are filled and can not be programmed (scenario 2: tData Transfer < tPhysicalProgramming). 

Base method for parallel processing utilisations 

The approach of double buffered data reception can be utilised always when processes 

shall be executed in parallel to an ongoing data reception. Double buffered data transfer is 

a precondition to several other optimisation methods discussed later in this thesis (e.g. 

data compression in chapter 5, gateway routing optimisation in chapter 7 etc.). Hence, 

also if the relation between data transfer time and microcontroller’s programming time is 

not given as discussed above, the implementation of double buffered data reception is re-

commended anyway. 
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This chapter is intended to discuss approaches to accelerate the data transfer via field 

bus system protocol stacks between an external programming control unit (PCU) and an 

electronic control unit (ECU).  

According to ISO/OSI reference model (refer to section 2.5) all bus system’s dependen-

cies are encapsulated within layers 1 to 4. Hence, optimisations on layer 1 to 4 are bus 

system specific and therefore not necessarily common to other protocols on that layer. 

Nevertheless, the indisputable thesis for a communication system is given as: 

The upper limit for the communication performance on a physical layer is 100% bus load.  

Based on the initial thesis and with focus on automotive communication systems the 

following issues are discussed:  
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a) The theoretically maximum of the data transfer rate on the corresponding bus sys-

tem. 

b) The influencing parameters and restrictions to reach the maximum value. 

As introduced in section 2.5, today many different field bus systems exist for the usage 

within (automotive) embedded systems. The bus access method (media access control – 

MAC) is a major criterion to differentiate between the systems. In [Zim10-11]  

W. Zimmermann and R. Schmidgall provide an overview to the different bus access 

methods in section 2.5.2.  

With focus on automotive system’s software reprogramming CAN as a representative 

system based on CSMA/CR media access and FlexRay as a representative of systems 

based on TDMA media access will be discussed. 

In many cases the discussed protocol optimisation has an impact on sender and receiver 

side. Special optimisation steps on the PCU are not discussed explicitly. 

4.1 Controller Area Network  

Currently CAN is the mostly used bus system within the automotive area. CAN was de-

veloped in the late 1980s and is standardised in ISO11898 or SAE J2284 [Ets06]. The 

CAN protocol is required by law as the standardised communication protocol for the 

onboard diagnostic (OBD) communication to emission related systems (refer to ISO 

15765-4 etc). Because of the high cost pressure as discussed in chapter 1 this standard-

ised communication interface is used for the enhanced (not-emission related) diagnostics, 

too. The requirement by law guarantees that this interface is available for each vehicle 

and therefore it is typically used for software reprogramming based on a diagnostic proto-

col like UDS or KWP2000. Acceleration of the data transfer via CAN provides benefits for 

all vehicles independent of the OEM, the class or model line. 

4.1.1 CAN bus protocol according to ISO 11989 

4.1.1.1 Introduction 

CAN is specified as a bit-oriented field bus system with a maximum bit rate of 1 Mbit/s. 

Mostly used bit rates are 500kbit/s, 250kbit/s and 125kbit/s. CAN provides a CSMA/CR30 

bus access. W. Zimmermann and R. Schmidgall give an overview to the physical layer in 

                                                

30 CSMA/CR: Carrier Sense Multiple Access / Collision Resolution.  
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detail [Zim10-7]. The data link layer [ISO11898-1] specifies the basic CAN PDU31  

(“CAN frame”). Table 4.1-1 depicts an overview of the PDU layout in ascending bit order 

and the resulting PDU length. 

Table 4.1-1:  CAN PDU length without stuff bits 

Definition Length [bit] Length [bit] Unit 

Start bit 1 1 bit 

Arbitration field 

(Identifier + RTR + SRR + IDE) 

11 +1 29 + 3 bit 

Control field 6 6 bit 

Data field (Payload) 0 - 64 0 - 64 bit 

CRC field 15 15 bit 

Acknowledge field 3 3 bit 

End of Frame 7 7 bit 

Bus idle time ≥ 3 ≥ 3 bit 

Sum 47 - 111 67 - 131 bit 

 

A CAN specific issue is the receiver’s clock generation method for bit sampling purpose. 

The CAN specification ISO11898 defines that only 5 bits are allowed to be equal. After  

5 equal bits a signal level change must be integrated into the bit stream. These additional 

bits are called stuffing bits.  

The number of stuffing bits depends on the payload values and could be calculated by the 

formula of T. Nolte et al [Nol01] and A. Burns et al [Bur07]: 
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The net data rate can be calculated as follows: 
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A CAN PDU with 11 bit CAN identifier and 64 bit payload can have 24 stuffing bits in 

maximum.  

                                                

31 PDU .. Protocol Data Unit 
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A CAN PDU with 29 bit CAN identifier and 64 bit payload can have 29 stuff bits.  

Table 4.1-2 depicts the PDU length and the corresponding net data rate for different num-

bers of stuffing bits and gross data rates. 

Table 4.1-2:  Net data rate for CAN PDUs with 64 bit payload 

11 bit CAN-ID
PDU Length 1000 kbit/s 500 kbit/s 250 kbit/s 125 kbit/s

111 bit kbit/s
(0 stuff bits) kByte/s
123 bit kbit/s
(12 stuff bits) kByte/s
135 bit kbit/s
(24 stuff bits) kByte/s

29 bit CAN-ID
PDU Length 1000 kbit/s 500 kbit/s 250 kbit/s 125 kbit/s

131 bit kbit/s
(0 stuff bits) kByte/s
145 bit kbit/s
(14 stuff bits) kByte/s
160 bit kbit/s
(29 stuff bits) kByte/s

Net Data Rate (fData_net)

unit

unit

16.3
118.5

14.8

72.1
9.0

65.0

50.0
6.3

122.1
15.3

61.1
7.6

55.2
6.9

110.3
13.8

400.0
50.0

200.0
25.0

100.0
12.5

244.3
30.5

220.7
27.6

488.5
61.1

441.4
55.2

65.0
474.1

59.3
237.0

29.6

32.5 8.1
59.3

7.4

Net Data Rate (fData_net)

576.6
72.1

520.3

144.1
18.0

130.1

288.3
36.0

260.2

 

 

4.1.1.2 Discussion 

The data transfer rate depends a) on the basic bandwidth and b) on the ratio of PDU 

payload and protocol overhead. The PDU payload varies in the specified boundaries  

(0 bit ≤ payload ≤ 64 bit).  

The protocol overhead varies on the CAN Identifier length (11 bit or 29 bit) and the result-

ing stuffing bits (0 bit ≤ stuffing bits ≤ 24 bit11bit ID or 29 bit29 bit ID) . 

Bandwidth 

Increasing bandwidth is an effective approach to accelerate the data transfer if the system 

is not running on the upper limit of 1 MBit/s given by the ISO 11898 protocol. Doubling the 

bandwidth will result in approximately a double of net data transfer rate. On the other hand 

increasing bandwidth reduces the possible cable length [Zim2010-12]. This has to be 

taken into account if a lower bit rate is in use for normal system’s communication especial-

ly for wide area distributed systems (e.g. trucks, planes, trains etc.). Several recommen-

dations are given by different standards (e.g. appendix of [ISO 11898-2],  
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[ISO 11898-3], [ISO 11898-5], [SAE J1939-11], [CiA32 102] etc.). If cable length provides 

no restriction, then increasing the bandwidth provides a strong method to accelerate data 

transfer. 

PDU payload 

According to formula 4.1-1 the maximum ratio between payload and protocol overhead is 

given if the payload is configured to the maximum possible (specified) value. Hence, only 

CAN PDUs with 64 bit payload (maximum value) shall be configured. For further analysis 

and discussion only CAN PDUs with 64 bit payload are assumed. 

CAN Identifier 

The system performance is represented by the net data rate. For a CAN system running 

on 100% bus load the net data rate is limited by ISO 11898 protocol and can be in maxi-

mum only 58.2% for PDUs with 11 bit identifier (no stuffing bits) or 50% for PDUs with 29 

bit identifier (no stuffing bits). But these values are not realistic in practice because a 

communication without any stuffing bits will usually not occur (e.g. a CAN identifier with 5 

consecutive bits of an equal value (one or zero) will force a stuffing bit). No statistical 

evaluation of a best practice value will be discussed because this value is significantly 

influenced by the SDU value (payload of the CAN PDU) and this value is random from a 

statistical point of view.  

The CAN identifier length has a significant influence on the net data rate. Compared to a 

PDU with 11 bit CAN identifier a PDU with 29 bit CAN identifier requires approximately 

16,4%33 more bits to transmit the same data payload of 64 bit. The net data rate is re-

duced equally. Hence, best performance is possible only on 11 bit CAN identifier. CAN 

uses the arbitration method to prevent PDU collisions. According to ISO 11898, if two or 

more sender nodes initiate a data transmission concurrently, the CAN identifiers are  

bit-wise analysed and compared by each sending node to identify the higher priority. 

According to ISO 11898 protocol specification the priority is the higher, the lower the CAN 

identifier is. This fact results in two basic requirements: 1) if reprogramming communica-

tion is in parallel to normal system‘s communication, the CAN identifier of the reprogram-

ming communication shall be low (to get high priority) or 2) normal system’s 

communication shall be disabled. Within the reprogramming sequence according to 

[HIS06-1], a diagnostic service is specified to disable normal communication of all  

                                                

32 CiA .. CAN-in-Automation  
33 16.36% (no stuffing bits); 16.41% (max number of stuffing bits) 
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currently not reprogrammed network nodes to guarantee full bandwidth for reprogramming 

also for less priority CAN identifiers.  

4.1.2 CAN-TP according to ISO 15765-2 

For communication via CAN the ISO has specified a transport protocol in ISO 15765-2. 

“This part of ISO 15765 specifies an unconfirmed network layer communication protocol 

for the exchange of data between network nodes, e.g. from ECU to ECU, or between 

external test equipment and an ECU. If the data to be transferred do not fit into a single 

CAN frame, a segmentation method is provided” [ISO15765-2_1].  

A CAN PDU provides in maximum 8 byte (64 bit) payload data (refer to table 3.2-1). 

Hence, an ISO-15765-2-PDU is up to 8 bytes (64 bit) long. The protocol itself defines a 

Protocol Control Information (PCI). The protocol distinguishes between four different PDU 

types. A Single Frame (SF) is used if the service data unit (SDU) has equal or less than 7 

data bytes. If the SDU is larger than 7 bytes the SDU has to be segmented into several 

PDUs. A segmented data transfer starts with a First Frame (FF) and implements 2 byte 

PCI and 6 byte payload data. All other SDU data are transmitted by Consecutive Frames 

(CF). A CF provides 7 byte payload data.  

The data flow is controlled by Flow Control frames (FC). A FC frame is always sent by the 

initial receiver of the data transfer. The idea is to have a handshake mechanism imple-

mented to control the data flow on the established communication link by only two param-

eters (Minimum Separation Time (STmin) and Block Size (BS)). The receiver is able to 

control data transfer by these parameters. 

Figure 4.1-1 depicts an overview of the different PDU types and the PDU format. 

 

Figure 4.1-1:  ISO 15765-2 Protocol Data Units format 



Chapter 4 – Field bus system protocol stacks 59 

Figure 4.1-2 depicts both possible data transfer scenarios: unsegmented data transfer and 

segmented data transfer: 

 

Figure 4.1-2:  ISO 15765-2 communication scenarios 

Within a Single Frame (SF) up to 7 data bytes can be transferred via CAN. The maximum 

size of an SDU is limited by ISO 15765-2 to 4095 byte because the data length (DL) field 

of a First Frame (FF) is 12 bit (212 -1 = 4095).  

Unsegmented vs. segmented data transfer 

It seems that an unsegmented transmission provides higher performance because no 

additional Flow Control (FC) PDUs have to be transmitted. This is correct if only one 

direction is analysed. For software reprogramming it has to be taken into account that the 

upper layer reprogramming protocol (e.g. UDS, KWP2000) requires a request – response 

behaviour. As depicted in figure 4.1-3 after each request a corresponding response PDU 

has to be sent.  

The number of required PDUs is calculated by  
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To transfer 4095 bytes in unsegmented mode 1170 PDUs (Single Frames) are necessary. 
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Figure 4.1-3:  Request / response communication scenarios based on ISO 15765-2  

To transmit the same number of data in segmented mode, a smaller number of PDUs is 

necessary. The number of PDUs can be calculated according to the protocol behaviour of 

ISO 15765-2: 
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It is assumed that only one Flow Control PDU (FC) is configured (Block size=034). In that 

case a data transfer of 4095 byte requires 1 First Frame (FF), 1 Flow Control (FC),  

585 Consecutive Frames (CF) and 1 response Single Frame (SF) PDU. This results in 

588 PDUs according to formula 4.1-4. 

PDUs58811
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1n rsegTransfe_PDUs =++
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
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 −+=  

Hence, focus for further analysis to accelerate data transfer via CAN will be on segmented 

data transfer only. 

Impact of processing delays 

The communication link performance is also influenced by processing delays because of 

software and hardware runtime. Both, sender and receiver nodes require processing time 

for the protocol handling. For the data transmission performance of the transport layer 
                                                

34 Block Size (BS) equal to zero requires no additional FlowControl PDU (refer to ISO 15765-2). 
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protocol according to ISO 15765-2 the two main influencing delay times are N_Cs and 

N_Br (refer to ISO15765-2). Both parameters depend on the implementation and there-

fore are defined to zero for the theoretical analysis in principle. The impact of those delay 

times is discussed in section 4.1.2.4. 

4.1.2.1 Impact of Block Size parameter 

The flow control parameter Block Size (BS) defines the number of Consecutive Frame 

(CF) PDUs that can be received by a receiver node in one block within a segmented data 

transmission. After reception of that block a Flow Control (FC) PDU has to be sent by the 

initial receiver node to signal the current flow state and to continue data transfer. 

With focus on data transfer acceleration the Block Size (BS) represents an additional 

number of Flow Control (FC) PDUs (refer to figure 4.1-3). Hence, the BS parameter has a 

direct impact on the total number of TP-PDUs required to transfer the requested SDU and 

influences the data transfer rate. Below several formulas have been developed to calcu-

late the total amount of PDUs and the corresponding transfer time. The total number of 

PDUs is calculated as depicted by the developed formula 4.1-5: 

∑ ∑+= lPDUFlowControDataPDUPDUs nnn   (4.1-5) 

According to the definitions in ISO 15765-2 it has to be distinguished between two differ-

ent cases to calculate the total amount of PDUs: 

a) Block Size equal to zero (BS=0) and  

b) Block Size between 1 and 25535 (1 ≤ BS ≤ 255).  

Case 1: BS = 0 

ISO 15765-2 defines that “the BS parameter value zero (0) shall be used to indicate to the 

sender that no more FC PDUs shall be sent during the transmission of the segmented 

message. The sending network layer entity shall send all remaining consecutive frames 

without any stop for further FC PDUs from the receiving network layer entity”  

[ISO15765-2_2]. Hence, after the initial FF PDU only 1 FC PDU is required before the 

others are transmitted as Consecutive Frame (CF) PDUs. The total number of PDUs is 

calculated as depicted by formula 4.1-6. 











 −
+=

CF_PL

FF_PLSDU
PDUs d

dd
2n   (4.1-6) 

                                                

35 The parameter Block Size (BS) is defined as an 8 bit value in ISO 15765-2. 
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Case 2: 1 ≤ BS ≤ 255 

A value of 1 ≤ BS ≤ 255 indicates that the initial sender shall send the corresponding 

number of Consecutive Frames and shall then wait for a next Flow Control PDU 

[ISO15765-2_2]. Formula 4.1-7 depicts a fourth summand that represents the number of 

additional Flow Control PDUs depending on 1) the total number of Consecutive Frame  

(CF) PDUs which are required to transmit the SDU data and 2) the Block Size (BS). 

( ) ( ) 1
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FF_PLSDU
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PDUs   (4.1-7) 

For the first theoretical research an ideal system with no additional delays (system 

runtime, software runtime etc.) during the protocol communication handling is assumed. 

The net data transfer rate fData_net is calculated as depicted below: 

gross_Data
11898ISO_PDUPDUs

215765ISO_SDU
net_Data f

dn

d
f

⋅
= −

  (4.1-8) 

ISO 15765-2 also distinguishes between four different address modes for communication 

via CAN [ISO15765-2_3]. The address mode has an impact on the PDU structure and on 

the communication performance, too. The different parameters for the analysis of the four 

cases are specified in table 4.1-3.  

Table 4.1-3:  Parameter definition for block size analysis  

normal mixed normal mixed
4095 4095 4095 4095 byte

32760 32760 32760 32760 bit
PDU length ISO 11898
dPDU_ISO11989

123 123 145 145 bit

6 5 6 5 byte
48 40 48 40 bit

7 6 7 6 byte
56 48 56 48 bit

unit

SDU length
(data to transmit)

Payload FirstFrame (FF)
d PL_FF

Payload ConsecutiveFrame (CF)
d PL_CF

11 bit 29 bit
Parameter Adress mode [ISO 15765-2_3]
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The data transfer rate is analysed for a bandwidth of 1.000 kbit/s, 500 kbit/s, 250 kbit/s 

and 125 kbit/s. These values are the most important gross data rates within the automo-

tive area. 1.000 kbit/s is the maximum value defined for CAN’s physical layer according to 

[ISO11898-1]. Table 4.1-4 depicts the calculated net data transfer values according to the 

different address modes (CAN identifier lengths and normal/mixed mode). 

Table 4.1-4:  fData_Net max for different bandwidths  

BlockSize 0 1 2 8 18 32 40

Net Data Rate [kBit/s] 439.5 220.3 293.5 390.9 416.8 426.4 429.3
Net Data Rate [kByte/s] 54.9 27.5 36.7 48.9 52.1 53.3 53.7
Net Data Rate [kBit/s] 377.2 189.0 252.0 335.5 357.8 366.0 368.0
Net Data Rate [kByte/s] 47.1 23.6 31.5 41.9 44.7 45.7 46.0
Net Data Rate [kBit/s] 375.9 188.4 251.0 334.3 356.4 364.7 367.1
Net Data Rate [kByte/s] 47.0 23.6 31.4 41.8 44.6 45.6 45.9
Net Data Rate [kBit/s] 322.6 161.6 215.5 286.9 306.0 313.0 314.7
Net Data Rate [kByte/s] 40.3 20.2 26.9 35.9 38.3 39.1 39.3

Net Data Rate [kBit/s] 219.8 110.2 146.8 195.5 208.4 213.2 214.6
Net Data Rate [kByte/s] 27.5 13.8 18.3 24.4 26.1 26.7 26.8
Net Data Rate [kBit/s] 188.6 94.5 126.0 167.8 178.9 183.0 184.0
Net Data Rate [kByte/s] 23.6 11.8 15.7 21.0 22.4 22.9 23.0
Net Data Rate [kBit/s] 187.9 94.2 125.5 167.1 178.2 182.3 183.6
Net Data Rate [kByte/s] 23.5 11.8 15.7 20.9 22.3 22.8 22.9
Net Data Rate [kBit/s] 161.3 80.8 107.7 143.5 153.0 156.5 157.4
Net Data Rate [kByte/s] 20.2 10.1 13.5 17.9 19.1 19.6 19.7

Net Data Rate [kBit/s] 109.9 55.1 73.4 97.7 104.2 106.6 107.3
Net Data Rate [kByte/s] 13.7 6.9 9.2 12.2 13.0 13.3 13.4
Net Data Rate [kBit/s] 94.3 47.3 63.0 83.9 89.5 91.5 92.0
Net Data Rate [kByte/s] 11.8 5.9 7.9 10.5 11.2 11.4 11.5
Net Data Rate [kBit/s] 94.0 47.1 62.8 83.6 89.1 91.2 91.8
Net Data Rate [kByte/s] 11.7 5.9 7.8 10.4 11.1 11.4 11.5
Net Data Rate [kBit/s] 80.6 40.4 53.9 71.7 76.5 78.2 78.7
Net Data Rate [kByte/s] 10.1 5.1 6.7 9.0 9.6 9.8 9.8

Net Data Rate [kBit/s] 54.9 27.5 36.7 48.9 52.1 53.3 53.7
Net Data Rate [kByte/s] 6.9 3.4 4.6 6.1 6.5 6.7 6.7
Net Data Rate [kBit/s] 47.1 23.6 31.5 41.9 44.7 45.7 46.0
Net Data Rate [kByte/s] 5.9 3.0 3.9 5.2 5.6 5.7 5.8
Net Data Rate [kBit/s] 47.0 23.6 31.4 41.8 44.6 45.6 45.9
Net Data Rate [kByte/s] 5.9 2.9 3.9 5.2 5.6 5.7 5.7
Net Data Rate [kBit/s] 40.3 20.2 26.9 35.9 38.3 39.1 39.3
Net Data Rate [kByte/s] 5.0 2.5 3.4 4.5 4.8 4.9 4.9

11 bit ID

29 bit ID Normal Address

Mixed Address

29 bit ID Normal Address

Mixed Address

11 bit ID

29 bit ID

11 bit ID

11 bit ID

29 bit ID

Mixed Address

Normal Address

Mixed Address

Normal Address

Mixed Address

500 kBit/s

250 kBit/s

125 kBit/s

Normal Address

Normal Address

Mixed Address

Normal Address

Mixed Address

1000 kBit/s
Address Mode

Normal Address

Mixed Address

 

Figure 4.1-4 and figure 4.1-5 depict the net data transfer rate fData_net for different block 

sizes. Of course, the parameter Block Size (BS) is a discrete value. Hence, only the calcu-

lated (discrete) values shall be plotted within the diagrams. On the other hand the  

tendency of the BS curve is importand and therefore a line between the discrete meas-

urement points was plotted, too. 
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Impact of ISO 15765-2 Flow Control parameter Blocksize [BS] to th enet data rate
(11 bit CAN Identifier) 

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Block size [BS]

n
et

 d
at

a 
ra

te
 [

kb
it

/s
]

1000 kbit/s - Normal Address
1000 kbit/s - Mixed Address
  500 kbit/s - Normal Address
  500 kbit/s - Mixed Address
  250 kbit/s - Normal Address
  250 kbit/s - Mixed Address
  125 kbit/s - Normal Address
  125 kbit/s - Mixed Address

 

Figure 4.1-4:  Block size analysis for 11 bit CAN identifier 

Impact of ISO 15765-2 Flow Control parameter Blocksize [BS] to th enet data rate
(29 bit CAN Identifier) 

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Block size [BS]

n
et

 d
at

a 
ra

te
 [

kb
it

/s
]

1000 kbit/s - Normal Address

1000 kbit/s - Mixed Address
  500 kbit/s - Normal Address

  500 kbit/s - Mixed Address
  250 kbit/s - Normal Address

  250 kbit/s - Mixed Address
  125 kbit/s - Normal Address
  125 kbit/s - Mixed Address

 

Figure 4.1-5:  Block size analysis for 29 bit CAN identifier 

Discussion 

The ISO 15765-2 transport protocol’s flow control parameter Block Size (BS) has a signifi-

cant impact to the net data rate. The tendencies of all diagrams are similar. The block size 

configuration generates at least 1 additional Flow Control (FC) PDU without any payload. 
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In worst case (BS=1) a Flow Control PDU without any payload data is required after each 

Consecutive Frame (CF). This results in a decreasing net data transfer performance of 

50.1% because the total number of PDUs to transmit the payload is doubled. If PCU’s or 

ECU’s processing time delay (e.g. system or software runtime etc.) is also taken into 

account, the net data rate reduction is additionally increasing (refer to case study). 

The system performance depends significantly on Block Size parameter values in the 

range of 1 ≤ BS ≤ 12 PDUs. A Block Size value more than 12 results in a saturation line. 

For a Block Size value more than 15 the differences between the calculation values are 

less than 0.4%. The maximum Block Size value of 255 results in only 2 additional Flow 

Control PDUs.  

The Block Size configuration depends directly on the system’s buffer resources. If enough 

buffer (buffer size = SDUmax) is available, a block size equal to 0 is possible. But here it 

has also to be distinguished for which scenario data transfer acceleration shall be config-

ured. If a programming control unit (PCU) has a direct link to the ECU, a block size BS = 0 

may be possible. If the PDU communicates via network, then the gateway’s buffer re-

sources could be a reason for controlling data flow via Block Size parameter, especially if 

several communication links are active in parallel. In that case a gateway could work 

nearly its RAM resource boundaries, and flow control based on Block Size is necessary to 

limit the maximum data transfer per block to protect against buffer overrun. As a result a 

good ratio between buffer resources and performance limitation is necessary and has to 

be taken into account during system or network design. 

4.1.2.2 Impact of Minimum Separation Time parameter 

ISO 15765-2 specifies a second Flow Control parameter that has an impact on the data 

transfer rate: The minimum Separation Time (STmin) defines the minimum delay between 

two Consecutive Frames (CF) in a segmented data transfer (refer to figure 4.1-2). The 

value can vary in the range of 0 ≤ STmin ≤ 127 ms [ISO15765-2_4]. 

Of course, with focus on data transfer acceleration and the basic aim to generate 100% 

bus load any delays without any data transfer should be eliminated or at least the delay 

shall be minimised. Hence, this parameter shall be set to zero for the best data transfer 

performance. If STmin is set to zero some other system requirements have to be fulfilled: 

1) a receiver must be able to receive data with no inter frame delay and 2) a sender must 

be able to perform such a data transmission. STmin = 0 means that the sender shall send 

as fast as possible. Therefore it is required that STminreceiver ≤ STminsender to guarantee a 

stable connection link.  
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The time tSTmin is an additional time delay that enlarges the required time for the transmis-

sion of an SDU via protocol. To calculate the possible data transfer rate according to 

parameter STmin, formula 4.1-9 was developed from formula 4.1-8. 

Formula 4.1-8: 

gross_Data
11898ISO_PDUPDUs

215765ISO_SDU
net_Data f

dn

d
f

⋅
= −

  

with 

gross_Data
bit f

1
t =   

( ) mintotalSTbit11898ISO_PDUPDUs

215765ISO_SDU
net_Data ttdn

d
f

+⋅⋅
= −

  (4.1-9) 

As depicted in figure 4.1-2 after the last Consecutive Frame (CF) of a block no further 

separation time (STmin) occurs because now the sender waits either for a Flow Control 

(FC) PDU or for transmission has been finalised. If the Block Size (BS) is equal to zero 

(BS=0), no additional Flow Control (FC) PDU is required. In that case (BS = 0) the overall 

additional time tSTmin is calculated as  

( ) minSTPDU_CFmintotalST t1nt ⋅−=  (4.1-10) 

If 1 ≤ BS ≤ 255, on each end of a block no separation time (STmin) occurs because a 

Flow Control (FC) PDU is required with the exception of the last block. This results in  

minST
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−−=  (4.1-11) 

The total data transfer rate is now calculated as depicted in formula 4.1-12 and 4.1-13: 

For BS = 0: 

( ) ( ) minSTPDU_CFbit11898ISO_PDUPDUs

215765ISO_SDU
net_Data t1ntdn

d
f

⋅−+⋅⋅
= −   (4.1-12) 

For 1 ≤ BS ≤ 255: 
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−−+⋅⋅

= −  (4.1-13) 
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The parameter STmin is only represented in milliseconds (ms) in the range of 1 to 127 

($01 - $7F). For $F1 to $F9 the value has to be interpreted as microseconds (µs) in a 

division of 100µs [ISO15765-2_4]. The value of tSTmin is calculated by: 

( ) 9F$minST1F$µs1000F$minSTt minST ≤≤⋅−=   (4.1-14) 

Figure 4.1-6 depicts the graphical analysis for the minimum separation time parameter 

STmin. It shows that the net data transfer rate is decreasing significantly, if STmin is not 

equal to zero.  
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Figure 4.1-6:  Data transfer rate depending on STmin  

Figure 4.1-6 shows also that the main effects occur in a range of STmin ≤ 2ms. For  

STmin > 2 ms the system approximates asymptotically to 0. Figure 4.1-7 depicts the 

range from 0 ≤ STmin ≤ 1 ms in more detail. 
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Figure 4.1-7:  Data transfer rate depending on STmin – detailed diagram 
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Discussion 

Basically any separation time will decrease the data transfer performance. Within that 

delay no data transfer will be performed. Hence, the first finding to accelerate data  

transfer is to eliminate any delays by ISO 15765-2 protocol and configure the STmin 

parameter equal or at least as close as possible to zero. 

Figure 4.1-6 and figure 4.1-7 show that the net data rate impact of increasing STmin 

values is higher the faster the basic bus system data rate is. The explanation is that the 

faster the basic bus system is the more PDUs can actually be transmitted during an 

STmin time window. Any STmin delay reduces the number of transmitted PDUs within 

that time and as a result the net data transfer rate will decrease significantly, too. 

4.1.2.3 Comparative impact of STmin and BS  

Figure 4.1-8 compares the impact of the Flow Control parameters STmin and Block Size 

(BS)36. The Flow Control parameter minimum Separation Time (STmin) has a significantly 

higher impact on the net data transfer rate than the Flow Control parameter Block Size 

(BS). The BS parameter represents the receiver’s buffer (RAM) resources whereas STmin 

represents receiver’s system performance. Buffer (RAM) resources for buffering of at least 

8 CAN PDUs are typically available. A flashloader has normally access to the complete 

ECU RAM because application software is not active and requires no RAM resources. 

Hence, a Block Size equal to zero (BS = 0) is possible if all other network nodes (gate-

ways) on that communication link provide equal buffer resources.  

Impact comparison of minimum Separation Time 
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Figure 4.1-8:  Comparison of impact of STmin and BS 

                                                

36 Of course, the parameter Block Size (BS) is a discrete value. Hence, only the calculated (dis-
crete) values shall be plotted within the diagrams. On the other hand the tendency of the BS curve 
is importand and therefore it has been dicided to plott a line between the discrete measurement 
points, too. 
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A minimum Separation Time (STmin) greater than 0.1 ms reduces the data transfer per-

formance that significantly, that all other parameters are negligible. Hence, it must be 

possible to design an embedded network which is able to communicate with STmin = 0 

via CAN and provides buffer resources for at least 12 or more CAN PDUs. 

4.1.2.4 Processing delays 

As discussed above additional delays based on the hardware or software runtime for 

protocol processing have to be taken into account. Based on formula 4.1-9 the additional 

processing delay has to be included in the transport layer performance calculation model. 

( ) gsinocesProtocolPrmintotalSTbit11898ISO_PDUPDUs

215765ISO_SDU
net_Data tttdn

d
f

++⋅⋅
= −

  

Figure 4.1-3 depicts that N_Br and N_Cs are the software processing timings of flow 

control handling. Hence, both delays occur if a Flow Control (FC) PDU is processed. The 

number of necessary Flow Control (FC) PDUs is calculated by a part of formula 4.1-7: 
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The final formula to calculate data transfer performance is: 

For BS = 0: 
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For 1 ≤ BS ≤ 255: 
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 (4.1-17) 
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4.1.3 Complete reprogramming process based on UDS 

As described in chapter 2, the ISO 14229 - USD protocol is the currently most common 

diagnostic protocol. Reprogramming of the ECU’s application software is controlled by this 

standard. The communication is based on a diagnostic request – diagnostic response 

behaviour. Due to the UDS protocol all application data which shall be transferred are 

segmented to smaller partitions according to the underlying bus system transport layer 

protocol’s maximum value. In case of the CAN bus system and the transport layer proto-

col according to ISO 15765-2 this value is limited to 4095 byte maximum.  

To calculate the total download time all the PCU to ECU request times, the microcontrol-

ler’s physical reprogramming times, the ECU to PCU response times and the PCU pro-

cessing time for UDS have to be added.  

∑∑∑∑ +++= gsinPCUprocessponseRegminogramPrPhysicalquestReDownload ttttt  

Download time (tDL)for a segmented request and a unsegmented response 

Based on formula 4.1-17 the delays for tPhysicalProgramming, tResponse and tPCUProcessing have to be 

added.  

( )

( )
( ) ocessPr_PCUbit11898ISO_PDUogPrPhys

Cs_NBr_N
PDU_CF

minST
PDU_CF

PDU_CFbit11898ISO_PDUPDUs

DL

ttd1t

tt
BS

n

t11
BS

n
ntdn

t

+⋅⋅+

+























+








+⋅













−








−−+⋅⋅

=
(4.1-18) 

If more data shall be transferred and reprogrammed than can be transmitted by a single 

segmented data transfer (CAN: max 4095 byte) the download sequence is repeated until 

all data are transmitted to the ECU. The request time is calculated as. 
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=
 (4.1-19) 

It has to be distinguished between all previously transmitted downloads and the last down-

load, because the last download might have less than the maximum possible data to 

transmit. The number of repetitions (nDL) is calculated by: 
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The final request’s SDU size is calculated by: 

215765Iso_SDU14229ISO_PDUl)n(SDU dmoddd −=  (4.1-20) 

Hence the total download time via CAN and ISO 15765-2 is calculated by: 
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  (4.1-21) 

Note that after the final response no additional PCU processing time is required. The 

formula 4.1-21 depicts also, that the data transfer rate will decrease once more because 

of the additional delays tPhysicalProgramming, tResponse and tPCUProcessing. The programming time 

can be compensated by the double buffered date transfer approach of chapter 3. 

4.1.4 Conclusion  

The analysis ahead provides several impact parameters for a fast data transfer via a CAN 

protocol stack based on ISO11898 and ISO15765-2. The analysis furthermore depicts 

that a singular optimisation of one parameter provides under some circumstances no 

benefit at all. To reach the optimum data transfer rate an optimised parameter set for all 

corresponding layers and protocols is necessary. 

Increasing baud rate 

Increasing the baud rate is a good approach to accelerate data transfer but if ISO 15765-2 

Flow Control parameter STmin is greater than 0.4 ms, the increased bandwidth has no 

impact on the overall performance. If ISO 15765-2 Flow Control parameter Block Size 
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(BS) is less than 12 a higher CAN baud rate will provide only small effects. Finally, the 

maximum possible bandwidth depends also on the system’s cable length, and the sys-

tem’s dimensions have to be taken into account. 

The different system delays have an impact on the total data transfer rate. The longer 

those delays are the smaller the effect of increasing bandwidth is. This has to be taken 

into account.  

CAN identifier and stuffing bits 

The data transfer performance depends on the CAN identifier size. A 29 bit CAN identifier 

PDU requires 18+2 bit more protocol overhead compared to 11 bit identifier PDU (≈ 15%). 

CAN identifier shall be configured to 11 bit if the number of possible addresses for the 

network is sufficient.  

The stuffing bit mechanism has a big impact on the total PDU length but cannot be calcu-

lated because it depends also on the payload. Hence, for further discussion unique CAN 

PDUs are assumed with a total PDU length of 123 bit37. In that case the net data rate is 

only 52.03%. 

CAN identifier priority, arbitration and busload 

The CAN identifier priority has an impact on the data transfer rate if software reprogram-

ming communication is processed in parallel to normal system’s communication. It de-

pends at least on the total bus load and the identifier priority. To solve that problem it shall 

be possible to switch all other communication nodes into a silent mode38. In that case the 

CAN identifier priority is not important for communication performance.  

The critical evaluation of the feasibility to generate 100% busload shows that several 

commercial CAN communication interfaces (cards) are not able to generate that maxi-

mum busload for the upper bandwidths (500 kBit/s or 1.000 kBit/s). The real net data 

transfer rate will be less than the theoretical value because the PCU’s CAN controller 

hardware is not able to transmit CAN PDUs with only 3 bit length inter-frame time (bus idle 

time). An idle time of less than 15 bit times is a realistic value. For that case the net band-

width will decrease between 8.8% and 10.8% depending on the number of stuffing bits. Of 

course, if the ECU is part of a network this is also required for gateways. 

 

                                                

37 123 bit is the average of a PDU (11 bit CAN identifier) without stuffing bits (111 bit) and a PDU 
with maximum stuff bits (135 bit). 
38 Wihin ISO 14229 – UDS protocol this is possible by the diagnostic service $28 – Communication 
Control (refer to [ISO 14229]) 
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Transport protocol 

The impact of the transport protocol is significant. Optimisation effects on lower layers will 

be inoperative if the transport layer provides communication delays (e.g. separation times 

etc.). Low resources (e.g. buffer) also reduce the communication performance, because 

additional Flow Control PDUs are necessary to control the data flow. The impacts of the 

parameters minimum Separation Time (STmin) and Block Size (BS) configuration are 

more important than the initial baud rate on the physical layer.  

Best results for communication via CAN are only possible if all above discussed parame-

ters and their influences are taken into account during communication system’s design. 

4.2 FlexRay 

FlexRay is currently the mostly used time triggered protocol within the automotive area. 

Within this chapter FlexRay is introduced and the FlexRay protocol stack  

(layer 1 - layer 4) is analysed with focus on software reprogramming purpose. The possi-

bilities to accelerate the data transfer via FlexRay are discussed as well as the main influ-

encing parameters for the net data transfer rate.  

4.2.1 FlexRay (FlexRay Specification 2.1) 

“The FlexRay Communications System is a robust, scalable, deterministic, and fault-

tolerant digital serial bus system designed for use in automotive applications” [Fle11]. 

FlexRay is a time triggered protocol specified by the FlexRay Consortium39. The protocol 

is specified for a bandwidth up to 10 Mbit/s. The FlexRay Communications System Speci-

fication 2.1 was released in 2005. The revision 3.0 is currently standardised within the 

ISO. W. Zimmermann and R. Schmidgall provide a technical introduction in [Zim10-9]. M. 

Rausch also gives an introduction to FlexRay with detailed information also on hardware 

implementations and synchronisation mechanisms [Rau07].  

Time triggered mechanism 

Within a time triggered communication protocol data transmission is only possible within a 

well defined time slot. Only one exclusive sender is allowed to transmit data within a time 

slot. If two senders try to get concurrent access to the network within the same slot, a 

communication error occurs (data collision). To prevent the network from data collisions a 

                                                

39 “FlexRay Consortium: A cooperation of leading companies in the automotive industry, from the 
year 2000 to the year 2009. The FlexRay Consortium has concluded its work with the finalization of 
the FlexRay Communications System Specifications Version 3.0” [Fle11]. 
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network wide common communication plan (communication schedule) defines the  

sender-to-slot arrangement.  

A precondition for time triggered communication systems is a network wide common 

clock. FlexRay provides mechanisms to synchronise this clock on each node via the 

network. 

A FlexRay communication slot is uniquely defined by its slot identification number (slot 

ID). Only if the defined slot ID occurs, a node is allowed to transmit a PDU whereas a 

transmitted PDU can be received by all connected network nodes. 

FlexRay Schedule 

Figure 4.2-1 depicts an abstract FlexRay schedule. The FlexRay schedule is divided into 

four sub-segments: 1) a static segment, 2) a dynamic segment, 3) a symbol window seg-

ment (SW) and 4) a network idle time (NIT).  

 

Figure 4.2-1:  FlexRay Schedule 

The static and the dynamic segments are defined for data communication. The symbol 

window segment (SW) is optional configurable and is for network function monitoring. The 

network idle time segment (NIT) is reserved for the nodes to calculate and applied clock 

correction.  

All segments are transmitted within one communication cycle. The complete schedule 

defines 64 consecutive communication cycles. 

Data transfer is only possible within the static and the dynamic segments. Hence, in the 

following sections and figures only these segments are illustrated. The SW segment and 
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the NIT segment are not used for data transfer and have therefore not been taken into 

account for data transfer acceleration.  

Within the static segment a PDU shall be sent within each slot. The idea behind the static 

segment is to provide a deterministic communication system with equidistant data trans-

mission. 

Within the dynamic segment a PDU is only sent if data for transmission are available. If no 

transmission shall be processed the sender node transmits no PDU and after a defined 

timeout all connected network nodes will switch to the next slot ID. This segment is basi-

cally defined for event triggered communication as given within the CAN protocol (refer to 

section 4.1).  

Static and dynamic segments are subdivided into small communication sections (slots). 

Within each slot a FlexRay PDU can be transmitted whereas each slot within the global 

communication schedule is exclusively allocated to exactly one sender node. 

FlexRay PDU 

All FlexRay PDUs have the same structure and are able to transmit up to 254 byte pay-

load. The PDU structure in detail is given in [Zim10-10] and in [Fle05]. Table 4.2-1 depicts 

the different parts of a FlexRay PDU for static and dynamic segment’s communication and 

their corresponding length. 

Table 4.2-1:  FlexRay PDU length  

Definition length unit 

Header 40 bit 

Trailer 24 bit 

Transmission Start Sequence TSS 3..15 bit 

Frame Start Sequence FSS 1 bit 

Frame End Sequence FES 2 bit 

Payload 0..2032  bit 

Sum 70 .. 2104 bit 

 

The total length on a FlexRay PDU is calculated as [Zim10-9]: 

FESFSSTSSPayloadTrailerHeaderPDUFR nnn)nnn(
8

10
n +++++=−   
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The factor 10/8 is necessary because the physical layer insert a 2 bit long Byte Start 

Sequence (BSS) between each byte of the FlexRay PDU. For the following discussions in 

summary 10 bit are assumed for nTSS, nFSS and nFES. Hence, the calculation for the 

FlexRay PDU length is:  

10)n64(
8

10
n PayloadPDUFR ++=−   (4.2-1) 

Table 4.2-2 depicts the length of a FlexRay PDU depending on the payload size (nPayload) 

and the corresponding PDU runtime TFR-PDU within a 10 MBit/s FlexRay network. 

Table 4.2-2:  FlexRay PDU length and PDU runtime for fbit=10 MBit/s 

Payload per PDU 

(nPayload) 

FlexRay PDU Length 

(nFR-PDU) 

FlexRay PDU runtime  

(TFR-PDU) 

8 Byte 64 bit 170 bit 17 µs 
16 Byte 128 bit 250 bit 25 µs 
32 Byte 256 bit 410 bit 41 µs 
42 Byte 336 bit 510 bit 51 µs 
64 Byte 512 bit 730 bit 73 µs 

128 Byte 1024 bit 1370 bit 137 µs 
254 Byte 2048 bit 2630 bit 263 µs 

 

FlexRay network communication and addressing mode 

The FlexRay addressing mechanism is the slot/cycle assignment within the common 

FlexRay schedule. As described above a sender is only allowed to transmit data if the 

corresponding slot ID occurs within the correct cycle number. Each ECU knows the 

slot/cycle combination of the relevant senders and receives the data within these slots. No 

additional addressing mechanism is defined within the FlexRay specification 2.1. As a 

result of that mechanism, the bandwidth for a single communication link is limited. For 

each communication link slots have to be allocated for the sender node, which are not 

available for another communication link, e.g. for reprogramming communication between 

a PCU and the corresponding ECU. If several ECUs are connected to the FlexRay net-

work, several slots have to be allocated for PCU’s reprogramming communication link. 

Hence, the maximum possible net data rate for the communication between the PCU and 

the ECU depends significantly on the number of allocated slots for that link within the 

global schedule. 
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FlexRay net data transfer rate 

As depicted in Figure 4.2-1 the available or usable bandwidth depends on the overall 

system schedule and the number of slots allocated for the data transfer link of a network 

node. A formula was developed to calculate the net data transfer rate: 

CycleTime

63x

0x
Cycle_Payload

net_Data t64

n
f

x

⋅
=
∑
=

=  (4.2-2) 

If the FR-PDUs have the same length the formula can be simplified: 

petitionRePduCycleCycleTime

ePduPerCyclFRPayload
net_Data rt

xn
f

⋅
⋅

= −
 (4.2-3) 

FlexRay distinguishes between the static and the dynamic segment. Hence the formula 

above can be used only within strict timing boundaries: 

(1) For communication within the static segment: 

entstaticSegmePduPerCyclFR
Bit

PDUFR tx
f

n
<⋅ −

−   (4.2-4) 

(2) For communication within the dynamic segment: 

mentdynamicSegePduPerCyclFR
Bit

PDUFR tx
f

n <⋅ −
−   (4.2-5) 

Summary  

The FlexRay schedule definition has a significant impact on the performance of the differ-

ent communication links. With focus on software reprogramming best performance occurs 

if 100% busload on a single communication link between the PCU and an ECU is given. 

Unfortunately, a slot can be allocated only once for exactly one sender, and the number of 

slots is limited. That means an allocated slot for another link is not usable for the software 

reprogramming communication. In contrast to the CAN bus system where additional CAN 

nodes can be added to an existing network without high effort, an additional FlexRay node 

can only be included if the communication behaviour is considered within the global 

schedule. If the slots for data transmission are not allocated at schedule design time, the 

introduction of a new FlexRay node is only possible if also a new schedule is introduced 

(at least for the corresponding communication partners). That means that each communi-

cation link performance is defined at schedule definition time and can not be changed 

within the finalised schedule. 
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Therefore two different questions are discussed:  

1.) What is the maximum performance of a FlexRay communication link and what are 

the main influencing parameters? 

2.) Are there possibilities to optimise a communication link performance within an  

existing system? 

4.2.1.1 Communication performance 

With focus on software reprogramming the crucial question is how to generate the maxi-

mum net data rate on a communication link. Formula 4.2-3 provides four possible ap-

proaches to accelerate data transfer and increase the net data rate:  

1) Configure a cycle repetition equal to one for all PDUs  

2) Increase FlexRay-PDU’s payload 

3) Increase the number of PDUs per cycle 

4) Decrease the cycle time 

Cycle Repetition 

As depicted in figure 4.2-1 the global FlexRay schedule provides 64 cycles. If the sched-

ule is designed to transmit a PDU not within each cycle (cycle repetition = 1), a data 

transmission gap will occur with a delay of tTransmissionDelay = (rPduCycleRepetition -1) * tCycle. Due to 

the crucial requirement to generate 100% busload for software reprogramming communi-

cation, the cycle repetition for a data transfer PDU shall be configured equal to one  

(rPduCycleRepetition=1). Hence it is guaranteed that data transfer within each communication 

cycle is possible.  

FlexRay PDU payload 

A FlexRay PDU is able to transmit at least 2 Byte and in maximum 254 Byte payload. A 

cycle repetition of 1 is assumed for all PDUs (data transfer within each cycle is possible). 

Furthermore it is assumed that all slots of the communication cycle are allocated for this 

data transfer (e.g. from a PCU to an ECU) whereby for a simplification only a static seg-

ment is configured40.  

Figure 4.2-2 and figure 4.2-3 depict the maximum net data rate for the different possible 

payload lengths (2 Byte – 254 Byte). This approach has to be analysed within the limits of 

formula 4.2-4 and 4.2-5. The cycle time is varying from 1ms to 5 ms. 

                                                

40 This is only a simplification to illustrate the impact of the different payload lengths for the overall 
net data transfer rate. 
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FlexRay maximum data transfer rate
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Figure 4.2-2:  Maximum FlexRay net data rate (tcycle = 1 ms) 

FlexRay maximum data transfer rate 
(fBit = 10 Mbit/s ; tcycle = 5ms ; static segment only )
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Figure 4.2-3:  Maximum FlexRay net data rate (tcycle = 5 ms) 

In both figures the same effect is visible. The ratio between payload and protocol over-

head results in a lesser data transfer rate even though all available slots are in use. The 

peaks occur because of the time limitation of the cycle time. If the last PDU requires more 

transmission time than the residual cycle time, the PDU transmission is skipped. Hence, 

the resulting data transfer rate is less than the rate with the previous payload length. 

There is a direct dependency between the maximum payload length and the communica-

tion cycle time. Especially figure 4.2-2 depicts that the best result is not obligatory given 

by the maximum payload length. 

This effect is less important if the cycle time is higher (refer to figure 4.2-3). Best perfor-

mance will be given if 1) the PDU’s payload is configured to 254 Byte (this reduces the 
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impact of protocol overhead) and 2) the communication cycle time is configured to exactly 

n-times of PDU runtimes41.  

Both configurations depict a net data transfer rate upper limit at nearly 7500 kbit/s. 

FlexRay PDUs per cycle 

As discussed above, best performance is given if each slot per cycle can be used for data 

transmission. The impact of the ratio between communication cycle time, the payload 

length and the number of usable PDUs (slots) per cycle is depicted in figure 4.2-4 and 

figure 4.2-5. 
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Figure 4.2-4:  FlexRay net data rate (tcycle = 1 ms) 
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Figure 4.2-5:  FlexRay net data rate (tcycle = 5 ms) 

Depending on formula 4.2-4 and 4.2-5 limitations occur because the communication cycle 

time allows only the usage of a limited number of PDUs.  

                                                

41 For the communication cycle time calculation the symbol window segment time and network idle 
time have also to be taken into account. 
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Figure 4.2-4 depicts a configured communication cycle time of 1ms. Within that time slot 

only 3 PDUs with 254 byte payload can be transmitted. If the payload is 128 byte, seven 

PDUs can be transmitted and the 8th PDU is skipped by time restriction. Hence, the con-

figuration of less payload PDUs provides better performance on that communication cycle 

time configuration (1ms.). If the communication cycle time is increased (e.g. 5ms) the 

large payload PDUs provide better performance.  

Conclusion 

Even though the FlexRay data link layer provides a 10 MBit/s bandwidth the net data rate 

on that layer has a wide spreading and could be in worst case significantly lower.  

The PDU payload size, the number of PDUs per cycle, the cycle repetition time for a PDU 

and the communication cycle length are the essential parameters. As depicted in formula 

4.2-3 and discussed above, several different parameter sets will provide equal perfor-

mance values.  

The most important parameter for schedule design is the number of connected nodes and 

their required transmission slots. By this value and the required cycle time the payload 

length limitation for each slot is given. For the schedule design several degrees of free-

dom exist. Different value combinations of PDUs per cycle and slot’s cycle repetition will 

provide equal performance results.  

To generate maximum performance it is important to have no transmission gap at a seg-

ment’s end because PDU’s runtime is out of segments time. Hence, PDU’s total runtime, 

i.e. combination of PDU’s payload length and the number of allocated slots, shall be in 

relation to the cycle or segment time.  

In best case configuration a net data transfer rate of 7.500 kBit/s is possible (75% of gross 

data rate). For a CAN bus system in comparison this net data rate is only on 52% (refer to 

section 4.1.4).  

Theoretically, the overall performance of FlexRay could be doubled if the second channel 

was available as defined within FlexRay specification. In that case data transmission 

could be processed via channel A as well as via channel B. Unfortunately, currently there 

is no microcontroller available that supports a second channel. The theoretical maximum 

net data transfer ratio of ≈15.000 kBit/s (7.500 kBit/s on channel A and B) cannot be eval-

uated in practice. 

4.2.1.2 Schedule optimisation 

As mentioned above, FlexRay’s schedule design has to be done within the network de-

velopment phase. If the schedule is fixed, changes on the schedule result in high effort. 
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Also the available slot resources have to be shared between normal ECU’s functional 

communication and the reprogramming communication from a PCU to the corresponding 

ECU. 

An approach to accelerate the reprogramming data transfer is to switch into a second, 

optimised schedule. That means that each ECU supports two different schedules, one for 

the normal ECU functional communication and one for the special scenario of software 

reprogramming. A well defined trigger event (e.g. reception of a diagnostic message etc.) 

initiates the schedule switching process. A second trigger event (e.g. a second diagnostic 

service, power-on reset) initiates switching back to the default schedule. 

Figure 4.2-6 depicts possible approaches to optimise a FlexRay schedule with the aim to 

accelerate data transfer for software reprogramming purpose. 

 

Figure 4.2-6:  FlexRay schedule optimisation  

There are three possible approaches to modify a FlexRay’s schedule:  

1) Slot arrangement modification 

2) Cycle time modification 

3) Relation of static to dynamic segment 

Approach 1: slot arrangement modification  

Slot arrangement modification will change the assignment of slots to the corresponding 

ECUs and the length of the slots. For the reprogramming scenario the normal application 

communication slots are not necessary and therefore they could be skipped from the 

schedule. The resulting bandwidth is used to expand the remaining slots. By this ap-

proach a) more slots could be used for reprogramming communication and b) within these 

slots it is possible to transmit more data. The risk to shut down the communication system 

is less because only the interpretation mask for the received PDUs has to change and no 

global timing values are influenced or modified. Especially for FlexRay each PDU signal 

the start and the end of a frame by a special bit pattern (Start-Of-Frame, End-Of-Frame). 
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Hence, the FlexRay communication controller hardware can identify the real PDU length. 

In case the software analysis detects an invalid length for the expected PDU this mis-

match could be handled without any impact on FlexRay’s physical communication. 

Approach 2: cycle time modification  

The modification of the communication cycle time, i.e. the basic schedule timings, pro-

vides the possibility to design a schedule that maps perfectly to the given reprogramming 

scenario. As described in section 4.2.1.1 it might be possible that the full bandwidth is not 

used because last PDU’s length requires more time to transmit than the remaining cycle 

time. If the schedule is optimised to the corresponding PDU lengths the maximum perfor-

mance (net data rate) is possible.  

The risk of this approach is higher compared to the slot arrangement approach because 

the communication system has to be shut down, reinitialised for the new cycle time and 

restarted. If one or more ECUs do not restart with the new cycle time, a synchronisation is 

not possible and the network will not get a stable state. 

Approach 3: relation of static and dynamic segment  

Whereas the upper approaches have been common to all time triggered communication 

systems, the third approach is FlexRay specific and modifies the relation of static and 

dynamic segment.  

This approach solves the main disadvantage of the FlexRay specification: the addressing 

mode which is given only by the slot-ID and communication cycle number. As discussed 

above, best performance is given if all available slots are mapped to one communication 

link. Even if the schedule is modified, either the different links to each connected ECU are 

defined in that new schedule, or for each communication link to an ECU an individual 

schedule is defined. As a result the PCU or the gateway, in case the PCU is not connect-

ed directly to FlexRay bus, has to deal with several schedules. This challenge is partly 

solved if a small static segment (to guarantee system’s synchronisation) and a large dy-

namic segment are defined. The dynamic segment based on the event driven approach 

requires no permanent PDU transmission. If the sender (PCU or Gateway) does not 

transmit data within a dynamic slot, the FlexRay system, i.e. all ECUs on the bus, switch 

to the next slot-ID after a small delay. In opposite to the static segment, where a PDU with 

full PDU-length has to be sent, the communication in the dynamic segment reduces the 

unusable bandwidth to the minimum defined by physical protocol. 

Conclusion  

Data acceleration approaches by switching to an optimised schedule for software repro-

gramming scenarios provides high potentials and the net data rate can be significantly 
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increased. On the other hand the modification of basic schedule timings provides a high 

risk if communication system’s synchronisation gets lost if a communication node does 

not switch to the new schedule. The approach to modify only slot arrangement provides 

an increasing performance without the risk of loosing synchronisation because basic 

system timings are not modified. 

4.2.2 FlexRay Transport Protocol (ISO 10681-2) 

This section introduces the FlexRay transport layer protocol according to ISO 10681-2, 

analyses different approaches to accelerate data transfer via this protocol and discusses 

the impact of the different protocol parameters. 

Introduction  

As described in section 4.2.1 the basic communication schedule has a big impact on the 

overall data transfer performance. Software reprogramming communication shall work on 

the same network as normal ECU communication but should not require resources (slots) 

when not in use. Unfortunately, for time triggered systems it is necessary to reserve 

bandwidth within the basic communication schedule that is not usable for normal ECU 

communication. With focus on software reprogramming purpose based on the diagnostic 

protocol UDS as defined in ISO 14229, at least one slot has to be reserved for a diagnos-

tic service request to the ECU (exclusive access for PCU to ECU communication) and at 

least one slot for the diagnostic service response (exclusive access for ECU to PCU 

communication). Hence each slot is exclusively dedicated to a PCU-ECU connection. For 

a network with e.g. 20 notes at least 40 slots have to be reserved within the global sched-

ule. This example shows the main disadvantage of the FlexRay system: the address 

mechanism based on the slot-ID and cycle number combination. Even if diagnostic com-

munication is processed only within the dynamic segment a slot could not be shared 

between different communication links. It was one of the main challenges for FlexRay 

communication to find a mechanism that provides the necessary performance for software 

reprogramming as well as reduces the required slot resources. In 2007/2008 an ISO 

standardisation group was established with the aim to standardise a FlexRay transport 

layer protocol that fulfils the above described communication requirements 

(TC22/SC3/WG1/TF13 ISO TP on FlexRay)42. The transport layer protocol for FlexRay 

                                                

42 R. Schmidgall is a member of this ISO standardisation group TC22/SC3/WG1/TF13 “ISO TP on 
FlexRay”. The ISO 10681-2 specification was introduced in AUTOSAR 4.0 (refer to [AUTOSAR]).  
R. Schmidgall took the document ownership for the FlexRay Transport Protocol (FrTp) according to 
ISO 10681-2 (AUTOSAR document ID 029). In 2010 the AUTOSAR steering committee has decid-
ed that ISO 10681-2 shall be available also for AUTOSAR 3.2 (previous AUTOSAR version to 
AUTOSAR 4.0). 
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was standardised in 2009 as international standard [ISO10681-2]. The protocol is called 

“communication layer” protocol, because it provides services and mechanisms of layer 4 

as well as of layer 3. It is also independent from the underlying physical layer FlexRay 

protocol 2.1 or 3.0 (refer to section 4.2.1). The communication protocol works for commu-

nication in the static segment as well as for communication in the dynamic segment.  

PDU according to ISO 10681-2 

For software reprogramming large data have to be transmitted. The maximum payload 

length of a FlexRay PDU can be configured up to 254 byte. Hence, a transport protocol is 

necessary to transmit data packages with more than the configured PDU payload length. 

Also a flow control is required to control the data stream on the bus. The maximum pay-

load length that can be transmitted by a segmented data transfer is up to 65.535. The limit 

is given by the 16 bit MessageLength parameter within the StartFrames’s PCI. 

According to the initial requirements of a more flexible addressing mechanism the 

FlexRay communication protocol defines a target and a source address field. The PCI 

field and the payload are also part of the PDU. Figure 4.2-7 depicts the PDU according to 

ISO 10681-2 specification.  

 

Figure 4.2-7:  FlexRay communication protocol PDU format 

The communication layer PDU is mapped to the FlexRay’s payload field. Table 4.2-3 

depicts the different PDU-types and the corresponding address information fields, the PCI 

length and payload lengths. 

Table 4.2-3:  ISO 10681-2 PDU overview  

PDU Type Address  PCI Max. possible payload nPL 

StartFrame (STF) 4 Byte 4 byte FR-PDU-8 ≤ nPL_SF ≤ 246 Byte 

ConsecutiveFrame 
(CFx) 

4 Byte 2 byte FR-PDU-6 ≤ nPL_CF ≤ 248 Byte  

LastFrame (LF) 4 Byte 4 byte FR-PDU-8 ≤ nPL_LF ≤ 246 Byte 

FlowControl (FC) 4 Byte 1 byte --- 
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The protocol overhead is at maximum 8 bytes. Therefore the maximum payload that can 

be transmitted by one FlexRay PDU is up to 246 byte (123 words16bit). ISO 10681-2 uses 

nearly the same protocol mechanisms as the ISO 15765-2 CAN Transport Protocol.  

Address mechanism 

By the new defined source and target address fields it is possible to define several differ-

ent connection links mapped on the same slot-IDs. For example, a PCU allocates four 

slots for data transmission. All connected ECUs are configured to receive data on these 

slots (broadcast connection). If the target address matches with their own address, they 

have to process the received PDU. If the address doesn’t match, the PDU shall be 

skipped. However, a response slot must be configured for each ECU. By this method the 

required number of slots could be reduced significantly because all slots of the 1:n con-

nection (e.g. PCU to ECUs) could be shared. Figure 4.2-8 depicts the possible communi-

cation scenarios.  

 

Figure 4.2-8:  FlexRay communication layer scenarios 

The specified address mechanism supports a burst mode (all bandwidth is used for com-

munication with one ECU) as well as a parallel mode (shared bandwidth for multiple 

ECUs). A burst mode could be necessary if only one ECU within the network should be 

reprogrammed. The parallel mode is used if several ECUs shall be reprogrammed. With-

out the flexible bandwidth assignment the bandwidth for a burst mode to each ECU has to 

be statically allocated within the basic FlexRay schedule. The bandwidth could be as-

signed dynamically and flexible in a range as depicted in figure 4.2-9. 

 

Figure 4.2-9:  FlexRay Bandwidth assignment 
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4.2.2.1 Communication performance 

The communication protocol according to ISO 10681-2 supports unsegmented and seg-

mented data transfer. Figure 4.2-10 depicts those scenarios.  

 

Figure 4.2-10:  Data transfer according to ISO 10681-2 

For unsegmented data transmission only a Start Frame (SF) is transmitted. A segmented 

data transfer requires more PDUs within a defined sequence. After a connection link has 

been established by a PCU’s Start Frame (SF) the ECU has to send a Flow Control (FC) 

PDU before the PCU continues the data transfer by sending Consecutive Frame (CF) 

PDUs. In contrast to the CAN TP a final Last Frame (LF) PDU terminates the connection. 

In spite of the smart address method the basic FlexRay communication schedule has an 

impact on the protocol’s communication performance especially for segmented data 

transmission. The flow control PDU is sent by the initial receiver node and until no flow 

control PDU is received by the initial sender no additional consecutive PDU is transmitted. 

Therefore ECU’s response slot position and the cycle repetition within the global FlexRay 

schedule is very important. The communication layer protocol supports several protocol 

configuration possibilities for data transmission. To accelerate the data transfer some 

conditional protocol parameters have to be fixed: 

a) No additional Flow Control PDU but the first one shall be sent. Hence, the possible 

delay time without data transmission is reduced.  

Therefore, the configuration option to transmit a PDU type Consecu-

tiveFrame_EOB (End of Block) must be disabled.  

b)  The Cycle Repetition (CR) for all PDUs is equal to 1. This guarantees a data 

transmission within each cycle. 
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Total data transfer time for a single, segmented data transfer 

For total data transfer time calculation some formulas have been developed which takes 

the ISO 10681-2 protocol behaviour into account.  

The net data rate is calculated by the SDU size divided by the transfer time. 

Transfer

SDU
enetDataRat t

n
f =  

The transfer time tTransfer is the sum of all FlexRay cycle times required to transmit all the 

data according to the ISO 10681-2 protocol. 

CycleTransfer txt ⋅=  

The number of cycles (x) is calculated by the initial Start Frame (SF) cycle plus the re-

quired cycles to transmit the Flow Control (FC) PDU plus the required cycles to transmit 

all the payload data by Consecutive Frame (CF) PDUs and the Last Frame (LF) PDU. The 

Cycle Repetition (CR) is assumed equal to 1. The Maximum Number Of PDUs Per Cycle 

(MNPC) parameter depends on the basic schedule time and shall be within the limitations 

as defined in section 4.2.1.  
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Hence, the net data rate can be calculated as: 
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To illustrate the result a system is assumed with tCycle = 5ms; CR = 1; FR-Payload length = 

254 Byte; MNPC = 18(43); nSDU = 65.535 Byte. It requires 17 FlexRay communication 

cycles to transmit all the data. The data rate is 771 kByte/s (6.168 MBit/s). 

                                                

43 Refer to table 4.2-2: FR-PDU with 254 byte payload has a runtime of 263µs. In 5ms cycle time 
19 PDUs could be scheduled. One response slot for a FC-PDU is required. Hence, a MPPC of 18 
is possible and assumed. 
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Impact of Flow Control Parameter  

The flow control configuration of ISO 10681-2 has a deep impact on the overall data trans-

fer performance. Five different Flow States (FS) are defined by protocol but only the flow 

state Clear To Send (CTS) with the parameter Bandwidth Control (BC) influences the data 

transfer performance directly. The flow state Wait (WT) is not relevant to these considera-

tions because that state only occurs when the system resources (buffer etc.) are in a 

critical state and communication can not be continued without a delay for data processing. 

Table 4.2-4 depicts the different Flow Control PCI bytes. 

Table 4.2-4:  ISO 10681-2 Flow Control (FC) PCI Overview [ISO 10681-2] 

 

Table 4.2-5:  ISO 10681-2 Definition of Bandwidth Control (BC) values [ISO 10681-2_2] 

 

The Bandwidth Control (BC) parameter is divided into two values. The Maximum Number 

Of PDUs Per Cycle (MNPC) “limits the number of C_PDUs44 the sender is allowed to 

transmit within a FlexRay cycle ..” [ISO 10681-2, table 3.2-10]. The Separation Cycle 

Exponent (SCexp) “represents the exponent to calculate the minimum number of 

'Separation Cycles' (SC) the sender has to wait for the next transmission of a C_PDU”  

                                                

44 C_PDU is the nomenclature for “communication layer protocol data unit” within ISO 10681-2 
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[ISO 10681-2, table 3.2-10]. As depicted in formula 4.2-7 the net data rate is influenced by 

MNPC and by the cycle repetition value CR. CR is calculated by (refer to table 4.2-5): 

CR = SC +1 = 2SCexp. 

A quantitative evaluation of formula 4.2-6 shows that a large MNPC results in a smaller 

number of FlexRay communication cycles to transmit the SDU. On the other hand a large 

SCexp results in a large value for the Cycle Repetition (CR) and finally in a large number 

of required FlexRay cycles. The best performance will occur if MNPC has the maximum 

value that is possible by the given schedule and a cycle repetition of 1 which results in a 

SCexp value of 1. A large cycle time tCycle must not generally result in less performance 

because a large cycle time provides the possibility to have many PDUs per cycle if the 

schedule is correspondingly configured. 

Summary 

The FlexRay communication layer protocol ISO10681-2 solves a basic problem of time 

triggered communication systems: dealing with the limited resource of time slots (FlexRay 

slots) for communication. By introducing a source and target address field into the PDU 

the possibility of dynamic bandwidth assignment was given in spite of the fix bandwidth 

allocation in the global communication schedule. In between both boundary scenarios, 

burst mode (all bandwidth for communication to one ECU) and parallel mode (shared 

bandwidth for communication with several ECUs) an optimised bandwidth assignment for 

a required scenario could be configured. A disadvantage of this method is the high CPU45 

load because in [FlexRay2.1] specification no address filtering mechanism in hardware is 

defined. As a result the address evaluation must be implemented in software. Typically 

the received PDU must be processed through all underlying software layers before the 

address evaluation can be executed in the communication layer. The next FlexRay speci-

fication will solve that problem by the definition of a hardware filtering mechanism. This 

method will decrease the CPU load if the ECU is not addressed.  

The impact of the underlying basic FlexRay communication schedule to the data trans-

mission performance is apparent (refer also to section 4.2.1). Nevertheless, the influence 

of communication protocol configuration is important, as well, especially the number of 

required Flow Control PDUs and the flow control parameters influencing the communica-

tion net data rate. 

Best results are possible if only one flow control PDU is required and the separation cycle 

is configured equal to one. 
                                                

45 CPU.. Central Processing Unit 
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4.2.3 Complete reprogramming process based on UDS 

As described in chapter 2, the ISO 14229 - USD protocol is the currently most common 

diagnostic protocol. Reprogramming of the ECU’s application software is controlled by this 

standard. The communication is based on a diagnostic request – diagnostic response 

behaviour. Due to the UDS protocol all application data which shall be transferred are 

segmented to smaller partitions according to the underlying bus system transport layer 

protocol’s maximum value. In case of the FlexRay bus system and the transport layer 

protocol according to ISO 10681-2 this value is limited to 65535 byte maximum.  

To calculate the total download time all the PCU to ECU request times, the microcontrol-

ler’s physical reprogramming times, the ECU to PCU response times and the PCU pro-

cessing time for UDS have to be added.  

∑∑∑∑ +++= gsinPCUprocessponseRegminogramPrPhysicalquestReDownload ttttt  

Download time (tDL) for a segmented request and a unsegmented response 

As discussed in section 4.2.2.1 the communication layer’s option to optimise the download 

performance by communication layer’ configuration (disable sending of  

ConsecutiveFrame_EOB PDUs) is here assumed, too. Based on formula 4.2-6 the delays 

for tPhysicalProgramming, tResponse and tPCUProcessing have to be added.  
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If more data shall be transferred and reprogrammed than can be transmitted by a single 

segmented data transfer (FlexRay: max 65535 byte) the download sequence is repeated 

until all data are transmitted to the ECU. The request time is calculated as  

)n(DL

1nx

1x
)x(DLDL ttt += ∑

−=

=
 (4.2-9) 

It has to be distinguished between all previously transmitted downloads and the last down-

load, because the last download might have less than the maximum possible data to 

transmit. 
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The number of repetitions (nDL) is calculated by: 
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Note that after the final response no additional PCU processing time is required. To safe 

FlexRay slot resources it is possible to use the node’s transmission slots twice: a) to send 

communication layer’s FlowControl PDUs in a segmented data transfer and b) to send 

UDS protocol’s response PDUs. In that case the cycle repetition for the request        

FlowControl PDUs (CR(FC_Req)) and the cycle repetition for the UDS response PDU 

(CR(STF_Res)) are equal. 

To accelerate the data transfer the programming time tPhysicalProgramming can be compensated 

by the double buffered date transfer approach of chapter 3. Delays that occur because of 

cycle repetition values unequal to one can not be compensated because they are either 

part of the request or the response is delayed and the PCU is not allowed by UDS proto-

col to start the next request without previously response reception.  
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4.2.4 Conclusion 

The time triggered FlexRay bus system provides benefits for deterministic data communi-

cation e.g. for control and regulation systems which require signals within equidistant time 

slots. FlexRay has disadvantages for event driven communication. The main problem is 

the static, non-sharable allocation of bandwidth (slots) for each signal because of 

FlexRay’s static address mechanism based on the relation of slot-ID and cycle number. 

With focus on software reprogramming bandwidth for each diagnostic request has to be 

allocated as well as bandwidth for the diagnostic response. This bandwidth is not usable 

for normal ECU communication. On the other hand the ECU normal communication is not 

usable for software reprogramming. 

The communication layer protocol according to ISO 10681-2 solves the address problems 

partially but reducing the maximum PDU’s payload length by additional four bytes (source 

address and target address). The address mechanism provides benefit for 1:n  

connections of an exclusive sender like a PCU or a gateway. The diagnostic requests can 

be sent in a broadcast slot. All connected ECUs will receive that PDU and evaluate the 

addresses. For diagnostic responses this mechanism provides no benefit because each 

ECU requires an exclusive slot for diagnostic response transmission. 

The discussion above depicts that best performance is only possible if the basic com-

munication schedule and the communication layer protocol are well concerted. Optimisa-

tions only on one layer (protocol) might not be sufficient. Nevertheless, the main 

influencing factor is the basic communication schedule design. Hence, to accelerate data 

transfer for software reprogramming purpose some aspects have to be taken into account 

during communication schedule design: 

1.) Communication for software reprogramming purpose shall be allocated within the 

dynamic segment. If a communication link is currently not active only the minimum time 

delay as required by the protocol will occur before the FlexRay system switches to the 

next slot. 

2.) The cycle repetition for all allocated slots shall be set to 1. This configuration guaran-

tees that within each cycle communication is possible. 

3.) For PCU’s communication more than one slot shall be allocated. Because of the addi-

tional address information of ISO 10681-2 the PCU could manage the bandwidth depend-

ing on the required scenario, i.e. burst mode or parallel mode. 

4.) If schedule switching is possible the re-organisation of the slot arrangement provides a 

lower risk than the timing modifications (static and dynamic segment length and cycle 
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time). The PDU’s payload length shall be modified depending on the communication cycle 

length to prevent a gap at the end of the cycle because of a too long final PDU. 

A generic evaluation about best configuration and a corresponding absolute maximum of 

data transfer ratio for an individual network is not possible. At least, the number of con-

nected ECUs is influencing the number of available slots and varies from network to net-

work. 

A final approach to accelerate data transfer is the usage of the second FlexRay channel if 

hardware is available that supports the second channel. Some open topics can currently 

not be discussed finally, because the FlexRay communication controller interface is un-

known. For communication on two channels the handling of the data to transmit is  

interesting. Shall a data transfer block be transmitted on only one channel or shall both 

channels be used to accelerate the data transfer? In the last case how the flow control 

shall be handled? On the other hand, if each channel transfers a complete block individu-

ally, is it possible to transfer 64 kByte46 on each channel? Does the microcontroller pro-

vide sufficient RAM resources?  

With the approaches as discussed above, it is possible to accelerate software repro-

gramming communication on a FlexRay bus system. Even if the second channel is cur-

rently not available the system provides good performance if all protocols are optimally  

configured. 

4.3 Summary 

In this chapter approaches to accelerate the data transfer via CAN and FlexRay bus sys-

tem protocol stacks are discussed. These bus systems are currently the most popular bus 

systems for automotive networks. 

CAN bus system 

For the CAN bus system, as a representative for CSMA media access a data transfer 

rate, it is theoretically possible to generate 100% bus load for a single communication link 

between a PCU and an ECU, also within a network of several communication nodes. The 

maximum performance for data transfer via transport layer protocol is less than 50% of 

the gross bit rate (maximum at 1000 kBit/s). Delays on the transport protocol layer have a 

significant impact to the overall system performance. 

                                                

46 64 kByte is the maximum payload that can be transmitted via ISO 10681-2 protocol. 
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With focus on software reprogramming time this bus system shall only be used for ECUs 

with a memory size less than 50 MByte and used for simple or complex control assign-

ment (refer to chapter 1 – figure 1.2-2).  

FlexRay  

For FlexRay, as a representative for time triggered systems (TDMA), it is almost impossi-

ble to generate 100% bus load, particularly within a network with several other communi-

cation nodes. Due to the basic idea of time triggered protocols fixed time slots have to be 

allocated for each network node. Those allocated slots are only usable for the well defined 

communication link to exactly that node. Hence, the bandwidth is not usable for other 

communication links. For FlexRay in particular, the communication cycle division in a 

static and dynamic segment reduce the bandwidth, too.  

Therefore, the communication schedule design has a significant impact to the overall 

communication performance. The schedule design is always a consideration between 

data transfer rate and bus resources (slots). Due to the high gross bit rate of 10 MBit/s in 

maximum an acceptable data transfer rate can be configured for ECUs with a memory 

size less than 50 MByte and used for simple or complex control assignment (refer to 

chapter 1 – figure 1.2-2). If the schedule can be reorganised during runtime also ECUs 

with more memory can be connected. 

The effort to use time triggered protocols for spontaneous communication (as given for 

software reprogramming) is quite high, because the bandwidth for spontaneous communi-

cation has to be allocated statically within the schedule. 
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One approach to accelerate the software reprogramming process is to reduce the data 

size which has to be transmitted from a programming control unit (PCU) to an electronic 

control unit (ECU). The total reprogramming process time will be reduced because of a 

shorter data transmission time. There are two basic approaches to reduce the data size: 

1) Reduce file size  

a) Partitioning - build partitions to divide the application software into several parts  

    to reprogram only those parts that have to be adjusted 

b) Skip fill bytes - skip unused bytes within an embedded software file 
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2) Skip redundancies 

a) Compression – transmit data without redundancies  

b) Differential file – transmit only the differences between the new and the previous  

    file 

The power of these approaches is very different as well as the effort to implement a stable 

process. Within this chapter different methods for data size reduction are evaluated and 

the possibility is discussed to use these methods for automotive systems. 

5.1 Partitioning 

5.1.1 Analysis 

A simple, but powerful approach to reduce the file size is to divide the initial file into sev-

eral partitions, e.g. operating system, sensors, actuators, drivers, characteristic curves, 

communication protocol stacks etc. In case the software has to be changed for any rea-

son (bug fixing, parameter set optimisation, software enhancement etc.) not the complete 

application software, but only the corresponding partition has to be reprogrammed.  

For example, if an ECU supports 2 partitions with an equal size the reduction might be 

50%. An absolute value for size reduction can not be given because it depends on ECU’s 

usage and the possibility to divide the source code into several partitions. Nevertheless, if 

not all partitions have to be reprogrammed, and a data reduction and therefore, a transfer 

time reduction will occur.  

 

Figure 5.1-1:  Application layer partitions [AUT11] 
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Figure 5.1-1 depicts an example with two application partitions and the basic software 

partition within an AUTOSAR47 software architecture model. 

5.1.2 Discussion 

The division of software into several different partitions has to be done initially during 

software development process and is part of the software architecture decisions. The 

AUTOSAR software architecture model regards to the partitioning requirement and pro-

vides methods to divide software into several logical components. On the other hand this 

method increases system complexity and therefore, some additional aspects have to be 

taken into account. 

Microcontroller aspects vs. number of partitions 

The linking process has to take care that the software partition is linked to an own physical 

memory block within microcontrollers memory. This block shall be allocated exclusively for 

that partition to be able to erase and reprogram this block individually from all other parti-

tions. As a consequence unused memory of this partition shall not be used for another 

software part. Hence, the number of possible and reasonable different partitions depends 

on a) the number of microcontroller’s physical memory blocks48 and b) the given size of 

the corresponding blocks. Of course, the definition of many partitions will reduce repro-

gramming time but requires a microcontroller derivate with a corresponding memory lay-

out that physically supports those many partitions. As a result the cost reduction by 

reprogramming time requires a more expensive microcontroller to support the partitioning.  

Software partition management and compatibility 

It is a basic aim to be able to reprogram each partition independently of other partitions. 

For the pure physical reprogramming process this is normally given because each parti-

tion allocates a unique defined memory space with a unique address range. Nevertheless, 

dependencies between the different software partitions of an ECU are available  

(e.g. interfaces etc.) and therefore, their compatibility has to be managed. It has to be 

guaranteed that different partitions’ software, which can be reprogrammed individually are 

compatible after reprogramming. A flashloader based on the HIS specification provides a 

special diagnostic service to check the compatibility (refer to section 2.2.3.2). Typically 

hardware-to-software compatibilities and software-to-software compatibilities have to be 

                                                

47 “[AUTOSAR] (AUTomotive Open System ARchitecture) is an open and standardized automotive 
software architecture, jointly developed by automobile manufacturers, suppliers and tool develop-
ers“. 
48 Within different microcontroller specifications several terms to describe contiguous memory 
fragments are used: e.g. memory section, memory bank, memory page, memory block etc. 
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checked. The complexity of the different compatibility dependencies is increasing the 

more partitions are defined. 

The approach is useless if the address ranges of partitions are moved because of soft-

ware expansion of another partition. In that case all reallocated partitions have to be  

reprogrammed to get compatibility. Hence, memory reserves have to be taken into ac-

count during system design to prevent the ECU for additional reprogramming activities 

because of address shifts.  

5.2 Fill byte skipping 

5.2.1 Analysis 

Typically gaps within the binary code’s allocated address range are filled with so-called fill 

bytes during the linking process. An approach to reduce data size and therefore, transfer 

time is to skip such fill bytes and transfer only pure compiled binary code from PCU to 

ECU. As a result gaps occur within the pure binary code. The corresponding address 

information of each allocated memory space, i.e. start address and length information 

have to be transmitted for each pure binary code part. With another view the pure binary 

code gap ranges have to be transmitted because the ECU needs the memory position 

information where the data transfer has to be continued.  

Of course, it requires some time even to transmit this gap information as well as transmit 

the fill bytes. Hence, the break even point of both methods has to be calculated.  

rGapTransfeansferFillByteTr tt =   (5.2-1) 

Based on the approach of formula 5.2-1 it is possible to calculate the number of fill bytes 

that can be transferred within the time slot where the gap address information is trans-

ferred (refer to the discussion below). Based on the calculation the distinction is possible 

whether fill byte transmission or gap information transmission provides the faster and 

more efficient solution.  

The break even point depends on the individual communication link performance between 

the PCU and the ECU. The bus system’s bandwidth and communication protocol stack’s 

performance have to be taken into account. The value has to be calculated individually for 

each communication link especially within heterogeneous networks where different proto-

col conversions are necessary.  
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5.2.2 Discussion 

To show the influencing aspects a data transfer via UDS49 on ISO 15765-2 (Transport 

Protocol) and CAN is assumed. By the developed generic formula the system perfor-

mance can be calculated to decide whether gap transfer provides benefits compared to fill 

byte transfer. 

Data Transfer based on UDS, ISO15765-2 and CAN 

Figure 5.2-1 depicts the two scenarios of fill byte transfer and gap transfer.  

 

Figure 5.2-1:  Data transfer with and without fill bytes 

Fill byte transfer is processed by the UDS defined diagnostic service $36 – Transfer Data. 

In contrast the transfer of gap address information requires the two additional UDS de-

fined diagnostic services $37 - Request Transfer Exit and $34 - Request Download as 

well as their positive responses with the Service Identifiers (SID) $77 and $74. The diag-

nostic requests with the SID $37, $77 and $74 are transferred as unsegmented Single 

Frame – PDUs (refer to ISO-15765-2 in chapter 3), each transmitted by a single CAN-

PDU. The diagnostic service request $34 – Request Download requires segmentation 

because the complete diagnostic service request with the additional request parameters 

start address information and data length information is in sum longer than 7 bytes. 

                                                

49 UDS – Unified Diagnostic Services [ISO 14229]. Refer to chapter 2.5.4. 
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Hence, based on ISO 15765-2 transport layer protocol three CAN-PDUs are necessary 

(First Frame, Flow Control, Consecutive Frame). In sum 6 CAN-PDUs are required to 

transfer the gap address information via the UDS protocol, the transport layer protocol 

ISO 15765-2 and the CAN protocol.  

According to figure 5.2-1 and formula 5.2-1 the break even point can be calculated as: 

36/7474Transfer74/34

34Transfer34/7777Transfer77/3737Transfer37/7636Transfer

rGapTransfeansferFillByteTr

ttt

ttttttt

tt

++
++++++=

=

  (5.2-2) 

With PCU’s processing time tPCUProcessing = t76/37 = t77/34 = t74/34 and  

with ECU’s processing time tECUProcessing = t37/77 = t34/74  

Transfer74

Transfer34Transfer77Transfer37ingECUProcessingPCUProcessTransfer36

t

tttt2t3t

+

+++++=
  

imeCANPDURuntingECUProcessingPCUProcessTransfer36 t6t2t3t ++=   

BitRate

PDU
6t2t3t

Length
ingECUProcessingPCUProcessTransfer36 ++=   (5.2-3)  

Within the time tTransfer36 a well known number (xPDU) of ISO15765-2 defined Consecutive 

Frames PDUs can be transferred. Each Consecutive Frame PDU transmits nBytePerPDU 

payload (e.g. 7 byte payload for ISO10761-2). The number of fill bytes that are possible to 

transfer can be calculated as depicted below: 

BytePerPDU
Length

Length
ingECUProcessingPCUProcess

BytePerPDU
PDU

36Transfer

BytePerPDUPDU

n

BitRate

PDU
BitRate

PDU
6t2t3

n
t

t

nxFillBytes

⋅
++

=

⋅=

⋅=

 (5.2-4) 

Table 5.2-1 depicts the number of fill bytes according to formula 5.2-4 that can be trans-

ferred depending on different CAN bus system bandwidths, the ideal PDU’s runtime and 

different PCU and ECU processing times50.  

                                                

50 The processing time of PCU and ECU depends on several influencing parameters. For an ECU it 
is important, whether the data reception is done in ECU’s interrupt mode or if the ECU is polling to 
the receiver in a task mode. Therefore, only some examplary values are given in table 5.2-1 to 
illustrate the wide range of that approach. Real processing time values are measured in the case 
study of chapter 10.  
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Generally, the number of possible transferred fill bytes (represents the gap size) is higher, 

the faster the bus system is. As a logical consequence the number of fill bytes is increas-

ing too, the slower PCU’s and ECU’s processing time is.  

Table 5.2-1:  Break even calculation 

single 
PDU 

all 
PDUs

on
PCU

on
ECU

total

1.000.000   0.123 0.738 1 1 5 5.738 322
1.000.000   0.123 0.738 3 3 15 15.738 889
1.000.000   0.123 0.738 5 5 25 25.738 1463
1.000.000   0.123 0.738 10 10 50 50.738 2884

500.000      0.246 1.476 1 1 5 6.476 182
500.000      0.246 1.476 3 3 15 16.476 462
500.000      0.246 1.476 5 5 25 26.476 749
500.000      0.246 1.476 10 10 50 51.476 1463
250.000      0.492 2.952 1 1 5 7.952 112
250.000      0.492 2.952 3 3 15 17.952 252
250.000      0.492 2.952 5 5 25 27.952 392
250.000      0.492 2.952 10 10 50 52.952 749
125.000      0.984 5.904 1 1 5 10.904 77
125.000      0.984 5.904 3 3 15 20.904 147
125.000      0.984 5.904 5 5 25 30.904 217
125.000      0.984 5.904 10 10 50 55.904 392

Number of 
possible 

transmitted 
fill bytes

Processing Time
[ms]

Runtime
[ms]

CAN Bandwidth
[Bit/s]

Total Time
(for gap address 

information 
transfer)

[ms]

 

The main influencing timing factors are changing depending on PCU’s and ECU’s pro-

cessing time. In consequence for high bandwidth bus systems the processing time is a 

very important factor for the distinction whether a fill bytes transfer approach or a gap 

information transfer approach shall be implemented. 

Within the automotive area processing times of 1 ms ≤ tProcessing ≤ 10 ms are possible. As a 

result a gap shall be more than 1463 byte on a CAN bus with 500 kBit/s gross data trans-

fer rate. If the gap is smaller than that value, it requires more time to transmit the gap 

information than the fill bytes.  

As an additional non-communication but safety aspect the usage of “illegal operation 

code” for fill byte values within binary code is best practice. If the microcontroller read from 

that addresses, e.g. if a memory calculation operation failed, the illegal operation code 

forces the microcontroller to a safe state (e.g. reset). In contrast, gaps in data areas (e.g. 

characteristic curves or diagrams etc.) will often be filled with zero.  

System design aspects 

Knowledge about the complete communication system’s processing delays are a precon-

dition to decide, whether fill bytes shall be skipped or not. For fast systems with small 

delays this utilisation of that approach is not recommended. 
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5.3 Data compression 

Data compression is a possible approach for data transfer acceleration. The aim is to 

reduce the total number of data that shall be transmitted. Data compression is a branch of 

information theory and was published the first time by C. E. Shannon in 1948 [Sha48].  

K. Savood provides an overview about data compression and explains most currently 

known compression methods and algorithms [Say05].  

5.3.1 Analysis 

Lossy and lossless compression 

Data compression methods can be divided into two basic types: 1) lossy compression and 

2) lossless compression. With focus on software reprogramming only lossless compres-

sion has to be taken into account because the transferred data file shall be restored com-

pletely without loss of information after the compression, transmission and decompression 

process. Changing even a single bit within the initial binary code cannot be tolerated. A 

brief introduction to “mathematical preliminaries for lossless compression” is given by  

K. Savood in [Say05-1]. Lossless compression is divided then again into two different 

fundamental approaches: 1) statistical data compression or 2) substitutional data com-

pression. 

Statistical data compression methods use the symbol probability of the different charac-

ters within a file to reduce the data length. Popular compression methods based on the 

statistical approach are Arithmetic coding (introduction is given by A. Said in [Sai04]), 

Huffman coding [huffma] and Shannon-Fano [shanno] coding. 

Substitutional data compression methods replacing parts of the uncompressed symbol 

string by references to a dictionary. Popular compression methods based on substitutional 

compression are LZ7751 algorithm [Ziv77] and LZSS52 algorithm [Sto82]. 

For selection of a compression method, running on an embedded system’s microcontroller 

some additional basic requirements have to be taken into account: 

Resource restrictions 

Embedded systems have resource restrictions. The size of available RAM to allocate 

large dictionaries is limited. As a result it might be possible that algorithms based on large 

dictionaries could not provide their full performance because of dictionary size limitations.  

                                                

51 Jacob Ziv, Abraham Lempel, known as Lempel-Ziv algorithm, published 1977. Refer to [Ziv77] 
52 James Storer, Thomas Szymanski, published 1982. Refer to [Sto82] 
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Clock frequency 

Microcontroller’s clock frequency is significantly lower than the typical known clock fre-

quencies within the PC environment. Hence, it is desirable to have fast de-compression 

whereas compression on PCU’s or offboard site could be relatively slower. 

Statistically based approaches for embedded source code 

Compared to typical human languages for microcontroller’s source code it is not easy to 

identify the most used character. Source code in a binary file represents assembler  

commands and depends on microcontroller’s ALU (Arithmetic Logical Unit) implementa-

tion and design. 

Patents 

A non-technical but commercial aspect is the question whether the algorithm is patent-

protected. If a licence fee for the usage is demanded, it has to be distinguished whether 

the strength of that algorithm justifies the financial disadvantage compared to patent free 

approaches. Compression algorithms that consider the previously discussed aspects are 

the LZ77 and LZSS algorithm.  

5.3.2 LZ77 and LZSS Algorithm 

Jacob Ziv and Abraham Lempel published the LZ77 compression method in [Ziv77]. This 

approach is a simple but efficient method where not longer the probability entropy of 

characters was coded. This method uses the repetition of characters within a data string. 

It is based on a sliding window method where a buffer is split into two parts: a) a history 

buffer and b) a look-ahead buffer. The look-ahead buffer contains the next character that 

shall be coded. The history buffer contains characters that have been coded previously. 

The algorithm compares the look-ahead buffer’s characters with characters of the history 

buffer and searches for the position of the longest matching string pattern. The position 

within the history buffer, the length of the matching string and the next character after 

matching string within the look-ahead-buffer is coded. After that step the window of both 

buffers is shifted by the matching length + 1 towards the look-ahead buffer. A detailed 

description of that algorithm is given in [dataco]. 

The LZSS algorithm is based on the LZ77 algorithm. J. Storer and T. Szymanski pub-

lished the method in [Sto82] in 1982. This approach replaces the window buffer mecha-

nism by a ring buffer. Also the coding for matching pattern was changed. Figure 5.3-1 

depicts an overview. 

A single bit indicates whether the original character from the look-ahead buffer is coded or 

if a matching string was found in the history buffer. In the last case the position of the 

matching string within the history buffer is coded. Because of the ring buffer mechanism 
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the position of the data stream within the history buffer doesn’t change. Access by an 

index is possible and a small dictionary tree could be build up very fast. As a result the 

coding speed increases. A detailed description of that algorithm is given in [dataco]. 

 

Figure 5.3-1:  LZSS algorithm 

F. Hees has done research on the implementation of compression algorithms for Vec-

tor’s53 Flashloader in 2004 [Hee04]. He analysed the parameter for offset and length 

coding within an output stream. Figure 5.3-2 depicts the compression ratio depending on 

the length encoding and the offset encoding. 

 

Figure 5.3-2:  LZSS Compression Results [Hee04] 

                                                

53 VECTOR Informatik GmbH, Germany [Vector] 
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A good compression ratio is possible if: 

a) Length encoding is between 3 and 5 bits (best: 4bit). 

b) Offset encoding is between 10 and 12 bits (best: 11 bit). 

For other parameter combinations compression ratio will decrease. F. Hees discussed this 

effect: Because “a larger history buffer size increases the possibility to find a matching 

phrase. But the number of bits used for the offset encoding increases as well. At a certain 

point, this offset encoding requires more bits than the larger history buffer saves” [Hee04]. 

An equal effect will occur for the length encoding. “If the number of bits for length encod-

ing is increased, it will be possible to encode longer phrases. At a certain point, this length 

encoding requires more bits than the larger look-ahead buffer saves” [Hee04].  

The parameter pair of 4 bit length encoding and 12 bit offset encoding provides a com-

pression ratio of approx. 64%. As a consequence the number of bits to be transferred 

from PCU to ECU is reduced too and 35% of transfer time is saved. 

5.3.3 Discussion 

Data compression seems to be a good approach to accelerate data transfer and in the 

end software reprogramming, too. The data ratio diagram of figure 5.3-2 depicts that the 

LZSS compression algorithm, which is possible to be implemented on an embedded 

system, provides nearly 35% data reduction. An important estimation parameter is the 

runtime of that algorithm. If the time reduction based on data compression is compen-

sated by the de-compression runtime only additional resources have been wasted. Hence, 

it is necessary that  

TransferUncompDataionDecompressansferCompDataTr ttt <+   (5.3-1) 

De-compression time depends on microcontroller’s clock frequency, resource availability, 

de-compression algorithm etc. If formula 5.3-1 is not fulfilled compression provides no 

benefit.  

An important part for LZSS optimisation is the problem of aligned buffer access for micro-

controllers. The LZSS algorithm example above provides good results if the offset encod-

ing parameter has 12 bits and the length encoding parameter has 4 bits. Together with the 

single bit of the Identifier (refer to figure 5.3-1) a matching pattern requires 13 bits for 

encoding. A single character requires 9 bit. For both scenarios a microcontroller has to 

shift the compressed data string to get data into a byte aligned format. F. Hees provides 

an optimisation for that problem in [Hee04]: As depict in figure 5.3-3 an optimisation is 

possible if the identifier bits are grouped into 16 bit tuples ahead of a group of 16 com-

pression patterns within the data stream. The advantage is a byte aligned access to the 
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data stream. The bit by bit shifting of the compressed data stream is not longer necessary 

and acceleration of de-compression is possible.  

 

Figure 5.3-3:  LZSS Optimisation  

Of course, optimisation of the discussed compression algorithm to get better compression 

ratio might be possible. But this requires some additional research with focus on algorithm 

optimisation. The scope of these research activities was on data transfer acceleration 

based on data size reduction for embedded systems. Nevertheless, as a conclusion each 

compression algorithm and its optimisations have to be proofed, if it fulfills formula 5.3-1 

and if the resource requirements are within tolerable boundaries. 

5.4 Differential file 

Another method to compress data for their transmission is to transmit only the differences 

of two files. This approach is used within PC operating systems. Microsoft, for example, 

uses the Binary Delta Compression (BDC) technology to “reduce the download size of 

software update packages for Windows operating systems” [Pot05]. The aim is to create 

“smaller software update packages that require less time and network bandwidth to install” 

[Pot05]. The BDC compression ratio could be significantly higher than all other file com-

pression approaches54. 

 

 

                                                

54 BDC compression ratio: 10:1 up to 1.000:1. It depends on the real differences of two files and 
their size [Pot05]. 



Chapter 5 - Data size reduction 108 

Embedded system’s software bug fixing is an issue f or differential file update 

One reason for re-programming embedded software is bug fixing. In most cases embed-

ded software does not change completely when fixing a bug (e.g. changing a value of a 

constant or some parameters within a characteristic curve etc.). As a percentage of the 

total volume of an application the source code modifications required and the resulting 

OP-code changes, required for bug fixing is often very small. Typical errors in the source 

code like wrong exit conditions in loops or wrong statements for a comparison are only a 

few characters. Changes in characteristic curves implemented as arrays covers only a few 

bytes, too.  

Thus an assumption that 80% of bug fixings result in less than 1 kByte OP-code changes 

and 20% in more than 1 kByte is a realistic figure. As a result of this assumption only a 

few bytes within a memory sector or partition needs to be changed.  

Figure 5.4-1 depicts the small OP-code difference within a software partition.  

 

Figure 5.4-1:  Modified Op-Code in case of bug fixing 

 

5.4.1 Analysis 

Method 

The method of differential file calculation seams to be very simple. The difference be-

tween the old file and the new file is calculated. This differential file is transmitted to the 

ECU. In the ECU’s memory the old file is stored. With the received differential file and the 

available old file the new file could be re-calculated. Figure 5.4-2 depicts the differential 

file process. Of course, mapping that approach to the embedded world suggest a strong 

reduction of data to be transmitted. But here some additional environmental requirements 

have to be taken into account to benchmark that method. 
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Figure 5.4-2:  Differential file update 

Embedded system’s flash memory impact 

The Flash memory technology characteristics are described in section 2.2.2. Due to those 

facts, some impacts occur and some restrictions are given to the differential file update 

method: 

1) Flash memory cells can not just be overwritten. The memory cell has to be erased 

previously before the new information can be programmed.  

2) Flash memory can not be erased byte-wise. Typical Flash memory devices provide 

micro pages, blocks or sectors. These are consecutive ranges of several memory 

cells. The size of such a memory block depends on the flash memory technology 

and the overall flash memory size. Depending on the fact of 1) usually such a 

complete block must be erased and reprogrammed even if just one bit within that 

memory area hast to be changed. 

3) In contrast to the PC world where software is stored file oriented and virtual 

addressed, the embedded system’s microcontroller work physical address 

oriented. Typically memory access to operation code elements (e.g. variables or 

arrays in RAM, OP-code or constants in Flash, jump’s target addresses) is in 

relative address mode (basic start address and offsets). Within the PC world a 

single file can be changed and the memory managing system is able to allocate it 

on a free memory space if the new file is expanded. A microcontroller provides 

neither a memory managing system nor that much memory to squander memory 

space. This is why during the embedded software generation process all source 

code elements (e.g. in C-language: functions, arrays etc.) are linked consecutively 

without any larger gaps within the address space. Consequently, if a routine 

expands all other compiled elements will change the allocation address. In that 
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case the differences between a previous file and a new compiled and linked file will 

be quite high while the source code changes are only a few lines of code.  

Issue 1) and 2) are microcontroller’s internal reprogramming process optimisations.  

Issue 3) requires a change within the typical software generation process to generate the 

final output binary file (INTEL-Hex-Record55 or MOTOROLA S-Record56). 

 

Figure 5.4-3:  Differential file update 

To be able to reduce the differences of the embedded software files it is necessary to 

allocate all the software parts always on the same position (address). In that case also the 

correct functionality because of microcontroller’s memory access by relative addresses is 

guaranteed. This requires a fixed linking concept as depicted in figure 5.4-3. If this is not 

guaranteed the smallest possible difference of both files can not be calculated. However, 

a link process with fix addresses can be implemented by different approaches.  

1)  A fix position for at least each source code module (e.g. c-file, object-file etc.) must 

be configured within the linker command file.  

2)  Best results provide the fix allocation on source code function level. Here each 

function or array etc. is allocated on a fix position.  

                                                

55 INTEL Hex Record: Hexadecimal object file format initially for the Intel-architecture based micro-
controllers [Int88]. 
56 MOTOROLA S-Record: Hexadecimal object file format initially for the MOTOROLA 6800 archi-
tecture based microcontrollers [Mot92]. 
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If these environmental requirements have been taken into account, the abstract sequence 

to reprogram flash memory by differential file updates can be processes as listed below: 

a) The flashloader identifies the memory section that includes the requested byte(s) 

that shall be changed.  

b) The flashloader copies the complete memory section temporary into RAM. This 

requires that the microcontroller provides enough additional RAM for this step. 

c) The flashloader overwrites the old byte value by the new byte value transmitted via 

the differential file. 

d) The flashloader erases the original memory section within the Flash memory. 

e) The flashloader programs the new values from RAM into the Flash memory sector. 

Step b) and c) could be done within the copy process to optimise runtime. If not enough 

RAM is available, the microcontroller shall provide an additional, usually unused Flash 

memory sector for the copy process. This solution is less powerful than the RAM access 

method, but in some cases this might be the only possibility. 

The differential file structure can have equal structure as the currently given INTEL-Hex-

Record or MOTOROLA S-Record file. Within both file types address information and the 

corresponding data of the identified differences can be stored. 

5.4.2 Discussion 

Differential file update is a very strong approach to accelerate data transfer as well as the 

total reprogramming process. The performance depends on the differences of the initial 

file and the new file and on microcontroller’s memory technology.  

Microcontroller aspects 

The internal mechanisms are complex to reprogram a differential file to the Flash memory 

by a flashloader. It requires large RAM resources to copy the initial, currently active code 

from Flash memory’s internal section. Because of the Flash memory’s restrictions (previ-

ously erase process before programming) this step is necessary to overwrite the corre-

sponding positions with the new data values in RAM. But if sufficient RAM is available and 

the memory micro pages are small enough the total reprogramming time could be re-

duced significantly. 

Memory space vs. cost aspects 

A disadvantage of this new method that has to be discussed is the necessity of gaps (free 

memory spaces) in between the different source code elements for further use. These 

gaps have to be included if code elements will enlarge in the future. The granulation opti-

mum has to be set individually and could be on programming language object  
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level (c-functions, arrays etc.), on source code module level (c-file or object file) or func-

tionality level (communication stack, driver software, sensor software etc.). On the other 

hand this expands the total file size and initially requires more memory space on micro-

controller’s memory device. As discussed in chapter 1 automotive microcontroller provide 

strong memory resource restrictions. Hence, the commercial relation of higher costs for a 

larger memory vs. reprogramming time and cost reduction has to be taken into account. 

Because of that cost pressure the break even point of this solution has to be calculated 

individually. Also the final risk is always given, that the gap is too small for the necessary 

changes and therefore, the complete memory section changes. 

Stringent version and compatibility control managem ent 

Especially within the automotive industry a stringent version and compatibility control 

management are required because software on a car is only reprogrammed if it is in a 

repair shop. Because of the large service intervals of modern vehicles it might be possible 

that several software versions are in between the current vehicle software and the current 

OEM software.  

MRAM technology 

As written above, today’s established Flash memory technology provides the elementary 

disadvantage that a byte-wise erase and write access is not possible.  

With focus on differential file updates the erasing of complete physical memory sectors is 

required and a complete writing of those sectors is the consequence. However a real 

improvement will be possible if the established flash memory technology in currently 

available microcontrollers is replaced by the new MRAM technology (Magnetoresistive 

Random Access Memory). In contrast to other memory technologies MRAM semiconduc-

tors store the information not by electrical, but by magnetic load elements.. 

In chapter 9 a short introduction as well as a discussion to benefits of this new memory 

technology is given. Until today there are no experiences with MRAM based microcontrol-

lers because those systems are not available. However, the theoretical discussion of 

MRAM depicts the high potential of that memory technology (refer to appendix A). 

5.5 Conclusion 

There are several approaches for data size reduction with the aim to reduce data transfer 

time and as a result reduce total reprogramming time. However, the methods provide 

significant differences with focus on automotive usage.  
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Theoretical case study to compare the approaches 

The power of the different approaches is compared by a theoretical case study based on 

the following assumptions and on typical data for an ECU that processes complex control 

assignments, e.g. diver assistance systems: 

Assumption: 

Total file size:   32 MByte 

Modified OP code size:  1 kByte 

Memory partitions:   2 (results in 2 x 16 MByte) 

Compression ratio:   75%  

CAN Payload:    8 Byte / PDU (no transport protocol etc.) 

Approximate frame length:  123 bit (11 bit CAN Identifier) 

CAN bit rate:    125 kbit/s, 500 kbit/s, 1 Mbit/s 

The data transfer time tTransfer is calculated by formula 4.5-1. Additional protocols have not 

been taken into account at this quantitative method comparison. The aim is to illustrate 

the power of the different approaches. 

bitrate
1

hFrameLengt
Payload

DataVolume
t transfer ⋅⋅=   (5.5-1) 

Table 5.5-1 depicts an overview of the data transfer time on different CAN bus systems. 

Table 5.5-1:  Data transfer time via CAN 

Data Transfer Time on CAN unit
125 500 1000 kbit/s

Original file (complete) 32 MByte 4127.2 1031.8 515.9 s
Compression (-25%) 24 MByte 3095.4 773.8 386.9 s
2 Partitions 16 MByte 2063.6 515.9 257.9 s
Partitioning and
Compression

12 MByte 1547.7 386.9 193.5 s

Differential File 1 kByte 0.1 0.031 0.016 s

Description File Size
(Data to transmit)

 

Table 5.5-1 depicts that if only the differences of two files will be transferred the data 

transfer time is significantly reduced compared to conventional data size reduction meth-

ods e.g. partitioning and compression. The data transfer time is a function of the data size 

to be transmitted. The experiment depicts the power of the differential file transfer ap-

proach. Of course, the model is simplified and additional overhead of upper layer proto-

cols, additional processing delays, the erase time and the programming time will decrease 

the performance. Nevertheless, these performance reduction parameters are similar to all 

approaches.  



Chapter 5 - Data size reduction 114 

Effort vs. data size reduction 

Especially the relation between effort and the typically possible data size reduction value 

depicts those differences. Figure 5.5-1 depicts this relation in a diagram.  

 

Figure 5.5-1:  method’s complexity vs. typical data size reduction 

Partitioning is from technical point of view a simple method and provides good data size 

reduction results in a very special case. Transfer time reduction is given if at least one of 

these partitions is not reprogrammed. If all partitions shall be reprogrammed no benefit is 

given by this method. The ECU’s internal implementation of partitioning is simple. On the 

other hand the effort for compatibility management of the different partitions is increasing 

because the software compatibility of the different partitions has to be verified. 

Skipping fill bytes is the easiest way to reduce data because this can be configured for 

embedded software’s linking process. But that method is less powerful. In the worst case 

the fill byte separation will result in a longer reprogramming time because the transfer of 

the gap addresses during the reprogramming process requires more time than the contin-

uous data transfer inclusive the fill bytes. 

The power of data compression algorithms is limited by the given microcontroller re-

sources as well as the fact of only lossless methods can be used. Especially the RAM 

limitation avoids the usage of dictionary based algorithms. Compared to the other meth-

ods the effort for implementation and the off-board processes is high. 

Differential file update could provide best results for data size reduction. However, this is 

only possible if the software development process is modified for that approach. The 

necessity of fixed module start addresses to avoid a general address offset for the whole 

code requires more memory, which results in higher costs. On the other hand if several 

megabytes of binary code could be reduced to a few bytes the time benefit is very high. 

The break even point of cost benefit relation for that method has to be evaluated individu-

ally for an ECU. Nevertheless, with focus on the continuously increasing automotive soft-

ware sizes this method might be the best solution to solve the timing problems in future. 
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Only by a size reduction of 90% and more, acceptable reprogramming times will be possi-

ble. Additionally, this method can be combined with all other discussed methods.  

Outlook 

The next evolutionary step in embedded memory technologies will be Magnetoresistive 

Random Access Memory (MRAM). The advantages of MRAM based systems are quite 

evident. The main advantages of MRAM vs. Flash memory technology with a focus on 

reprogramming activities are the byte-wise access and the possibility to overwrite data 

without an initial memory erase phase. Then reprogramming by the differential file ap-

proach will become the best solution, because the implementation of ECU’s internal data 

handling looses complexity. Due to the reduced amount of data to transfer, the data trans-

fer time and the physical programming time could be reduced significantly (refer to  

appendix A).  
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Within this chapter approaches are discussed to accelerate the physical memory  

programming process on an electronic control unit (ECU) by implementing functionality in 

microcontroller’s hardware rather than in software as it is currently done.  

The main advantage of a hardware implementation in contrast to a software implementa-

tion is the concurrent execution. Software implementations are typically organised in tasks 

and interrupts. The operating system schedules the tasks within a task cycle time. Task 

activities, e.g. calculations, communication processing etc., can only be executed if the 

task is active. If the task is inactive, e.g. in case an interrupt task is executed, a delay for 

the activity occurs. By an implementation in hardware neither task time nor interrupt 

runtime are required. The action can be executed concurrently to other hardware or soft-

ware operations. 

6.1 Memory status information  

An implementation of a memory status information register within microcontroller’s  

hardware provides trustable information about the current memory state (erased or  

programmed). Based on this information it is possible to accelerate the reprogramming 
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process. In case, an ECU is reprogrammed within the assembly line, the erase memory 

step can be skipped, if the memory status signals an erased memory.  

6.1.1 Analysis 

ECU’s functionality is the summary of hardware functionality (e.g. periphery elements like 

drivers, actuators, sensors etc.) and the corresponding software functionality to handle the 

hardware. Differentiations in functionality will be solved by different ECU software  

because different hardware variants (e.g. non-placement of components etc.) are too 

expensive. Hardware variations split the number of equal parts and therefore increase the 

hardware costs per part. A good illustration is an engine control module (ECM). Typically 

an engine will be integrated into several vehicle model lines. The ECM software  

implements the individual adaptation between engine, gear box and the corresponding 

vehicle but the hardware is always equal.  

Finally, an ECU is always a combination of hardware and software parts and these  

combinations result in individual ECUs (variants). Nevertheless, the point in time when the 

combination is executed (ECU variant setting) has a deep impact on handling as well as 

on the final costs and process complexity. 

Reduction of hardware / software variants 

The cost pressure within the automotive industry requires optimisations within the ECU 

variation building process. Figure 6.1-1 depicts the different possibilities.  

 

Figure 6.1-1:  Early variant building vs. late variant building 

If the ECU variant is built within ECU manufacturer’s assembly line (early variant setting), 

the different ECU types have to be handled during the complete logistic process  

(e.g. ordering, delivery etc.) for manufacturing as well as for the after sales market spare 

parts. Therefore, a trend is visible in an increasing manner: ECUs won’t be delivered fully  

programmed to the OEM’s production line. Especially for those ECUs with many software 

variants, the tendency is to deliver them without application software (only with  

flashloader) to the OEM and program them within the assembly line during vehicle’s  
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manufacturing process (late variant setting). The advantage of that approach is to reduce 

hardware / software combination variants. In consequence this results in a lean logistical 

process starting from the ordering process up to the allocated area for material boxes on 

the assembling line because only one (hardware) part has to be handled instead different 

ECUs for all combinations. The probability to produce an error vehicle because of a wrong 

ECU selection during manufacturing process is reduced, too. 

An equal effect is visible for the after sales market spare parts. For late building variants 

only the hardware parts must be stored in the central logistic centres. In contrast to the 

early set variants of hardware and software combination this method requires less  

different stock grounds. 

Skipping the “ erase memory” process 

Unfortunately, the currently used microcontroller’s flash memory technology requires the 

erasing of a flash memory cell before the cell can be programmed (refer to section 2.4). 

Especially for microcontrollers with large memory this behaviour results in a long erase 

time. Table 6.1-1 depicts the erase time for Infineon’s TC1197 microcontroller [TC1197].  

Table 6.1-1:  Infineon TC1197 Flash Parameter [TC1197] 
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The Infineon TC1197 microcontroller provides currently 2 MB on chip flash memory bank 

[TC1197-1]. It results in a total erase time of 40s57. If the late variant building process is 

used, the ECU is delivered without the specific application software only with the 

flashloader software to process reprogramming. If trustable information about the current 

memory state is available the erase process can be skipped, if the ECU’s memory is 

currently erased. The initial erase process can be done either by the ECU supplier or by 

the microcontroller manufacturer. 

Optimisation in case of programming process restart  

The implementation of a memory state monitoring system enables additional possibilities 

to accelerate the reprogramming process: In case a currently executed reprogramming 

process is interrupted, e.g. by a communication interruption, it is not necessary to erase 

the complete memory again. If the flashloader is able to inform the PCU about the last 

successfully programmed sector, the PCU could restart programming process at exactly 

that position. Depending on the instant of interruption time, this approach will reduce the 

process time of the second programming sequence. 

6.1.2 Discussion 

To store the memory status of a physical memory sector58 a single bit is sufficient (sector 

erased / not erased). It should be stored within non volatile memory.  

Software approach 

A first approach is to monitor the memory status by software and store that information 

within a non-volatile memory (NVM), e.g. an EEPROM. If the memory sector is completely 

erased, the corresponding flag shall be modified within the NVM. If the first memory cell is 

programmed within that memory sector, the flag shall be modified again. However, this 

simple implementation provides some disadvantages:  

(1) If the microcontroller has been changed the memory status information might be 

wrong. At least it is fortuity, if the values will match.  

(2) If the EEPROM’s bit will toggle because of ageing or environmental influences the 

status will not be correct.  

In both cases a reprogramming of a not erased memory is possible. In good case some 

memory cells will not have the required state (logical ‘1’ or ‘0’). This will be detected by the 

memory check, e.g. by calculating a CRC sum. In worst case all cells provide the required 

                                                

57 2048 kByte total size / 256 kByte sector size = 8 sectors � 8 x 5 sec = 40 sec. 
58 Current available Flash memory supports only erasing of complete sectors. 
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value but the programming quality is not good enough to fulfil the data retention time59 

(“i.e. the time after which stored data can still be retrieved” [TC1197]) as specified in the 

data sheet. In that case the memory cell will loose the programmed value over the years.  

(3) If one of the components was changed a software implementation could check the 

memory cells to synchronise the corresponding status. Unfortunately it is not  

possible to detect whether $FF60 was programmed or the cell has $FF as its initial 

erase state. A sector with $FF cell values could not unambiguously be detected as 

erased. 

Hardware approach 

Another approach is to handle the memory status information in hardware61. The  

microcontroller’s memory control unit implements a register with read-only access. For 

each memory sector a corresponding flag exists that is updated each time the sector is 

either completely erased or the first memory cell is programmed. Figure 6.1-2 depicts an  

abstract overview of a memory status information register implementation in hardware. 

The main advantage is that the information is more trustable than a simple software  

solution. 

 

Figure 6.1-2:  Memory Status Information Register 

                                                

59 Data retention for currently used flash memory cells is up to several years. For Infineon’s micro-
controller TC1197: min. 20 years (refer to table 6.1-1). 
60 Hexadecimal nomenclature: $FF represents ‘1111 1111’ in binary nomenclature 
61 Submitted for patent: IP-Number P813194/DE/1 (06.10.2008) – Document Number 1455555 by    
Ralf Schmidgall / Daimler AG 
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6.2 Doubling interrupt vector tables  

“In computing, an interrupt is an asynchronous signal indicating the need for attention 

(…)” [wikipe]. Hardware interrupts are typically triggered by events within the hardware 

like the reception of a PDU at the communication interface or an expired hardware timer. 

If an interrupt occurs the microcontroller suspends the current software execution and 

starts the interrupt service routine (ISR) execution. If the ISR has been finalised, the  

microcontroller continues the normal software execution. Interrupts are a powerful  

approach to react very fast to hardware or software events. With focus on software  

reprogramming typical events are the reception of data on the communication interface or 

internal timers that have expired. Especially for concurrently executed work (e.g. data 

decompression etc.) interrupt managed software execution provides execution speed 

benefits. Nevertheless, today’s typical microcontroller hardware is not able to select  

different interrupt services depending on a currently active software mode like application 

mode or flashloader mode. This selection has to be done by software and therefore  

requires code size and runtime. A selection of different interrupt service routines based on 

the currently active software mode directly by the microcontroller’s hardware will provide 

some advantages. 

6.2.1 Analysis 

Today a microcontroller supports only a single interrupt service routine vector table. This 

table stores the start address of the corresponding interrupt service routine that shall be 

executed if the interrupt of the corresponding interrupt source occurs. If the ECU software 

is divided into different functional parts which are not concurrently active (e.g. application 

mode or flashloader mode), multiple ISR are necessary.  

 

Figure 6.2-1:  Single ISR vector table vs. multiple ISR vector tables 
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Software approach based on single ISR vector table 

An approach to solve the problem is the implementation of an additional ISR jump table. 

Figure 6.2-1 depicts the general software based method for a single ISR vector table 

system. 

For each ECU mode different ISR are implemented. The base address of each ISR  

allocated in the different, mode specific areas (application or flashloader) is stored within 

an additional ISR jump table. The base address for the ISR selection within the jump table 

is stored in the ISR vector table. The execution of an interrupt is processed in the  

following manner (refer to figure 6.2-1): 

1) An interrupt source (e.g. a communication interface etc.) initiates an interrupt. 

2) The microcontroller hardware selects the corresponding base address of the ISR 

jump table entry. 

3) Within the ISR jump table the corresponding start address of the ISR is selected 

depending on the currently active ECU mode. 

4) The ISR is executed within the currently active software. 

Hardware approach based on multiple ISR vector tabl es62 

The support of multiple ISR vector table requires a table selection mechanism  

implemented in microcontroller’s hardware. In that case today’s typically implemented ISR 

selection mechanism is still usable. The ISR selection mechanism is working in the  

following manner (refer to figure 6.2-1): 

1) After microcontroller’s basic initialisation the currently active ECU mode is set in a 

table selection register. The ISR vector table is allocated in the memory section of 

the corresponding ECU mode’s software. 

2) An interrupt source (e.g. a communication interface etc.) initiates an interrupt. 

3) The microcontroller hardware selects the corresponding base address of the ISR 

vector table based on the ISR table selection information. 

4) Within the ISR vector table the corresponding start address of the ISR is selected 

and the corresponding ISR is executed within the currently active software. 

6.2.2 Discussion 

Today ISR selection by hardware is state of the art for all microcontrollers. The innovation 

is the selection of different ISR vector tables based on an additional selection  

                                                

62 Submitted for patent: IP-Number P813195/DE/1 (11.10.2008) – Document Number 
102008051390.3 by Ralf Schmidgall / Daimler AG  
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information which is processed in hardware. Of course, the software solution will also 

work but the hardware approach provides some benefits. 

ISR vector table allocation 

If only one ISR vector table is available and shall be used by both software parts  

(application and flashloader), this basic ISR vector table has to be allocated within the 

flashloader memory area. This is necessary to guarantee functionality also if no  

application software is programmed (refer to figure 6.2-1).  

Programming flexibility 

The software solution provides less flexibility for the software development process. If an 

ISR start address for the application software moves by any reason, new Flashloader 

software is necessary to modify the ISR address within the jump table. The hardware 

approach solves that problem. A re-allocation of the ISR results in a new address value of 

the ISR vector table which is also part of the application software. Hence, all relevant 

address information are allocated within the same memory space. 

Execution speed 

The software solution requires a two jump strategy to execute an ISR. This might be a 

runtime disadvantage (or problem) for critical software where a very fast reaction to an 

event is required (e.g. airbag activation etc.). If the ISR selection is executed by the  

currently available hardware mechanisms, the address evaluation (ISR address vector) for 

the interrupt processing is very fast by direct register access. The selection of the second 

ISR vector table is done by adding an offset to the basic ISR vector table address.  

6.3 Conclusion 

With focus on ECU’s embedded software reprogramming process the above discussed 

hardware solutions provide two advantages compared to the corresponding software 

implementations: 1) higher signal or information integrity and 2) higher execution speed. 

Signal integrity 

If erasing the memory is not necessary during a reprogramming sequence (refer to sec-

tion 2.4), skipping this erase process results in a total reprogramming time reduction of 

several seconds. The decision to skip or to execute the erasing process is based on the 

memory status information. A misinformation will have important effects because micro-

controller’s memory retention time can not be guaranteed. Hence, if this information is 

provided by microcontroller’s memory hardware, it might be a more trustable information 

than a software implementation, because the possibility to falsify the signal is reduced. 
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This is also correct for the interrupt source detection in hardware and a direct jump to the 

ISR vector table. 

Execution speed 

With focus on software reprogramming the direct effect of the increasing execution speed 

is small because there are only a few time critical activities. Nevertheless, the benefit of 

hardware interrupt usage is visible because this provides the possibility to do concurrent 

activities, e.g. data reception via communication interface and decompression of the 

previously received data block.  

Potential for increasing performance 

The potential to speed up the reprogramming process of both discussed approaches is 

quite different. Also the effort to implement the discussed approaches is significantly  

different, too. As discussed in chapter 1, cost pressure within the automotive area is high 

and therefore the relation between potential vs. effort has to be discussed, too.  

Figure 6.3-1 depicts the relationship. 

 

Figure 6.3-1:  Potential vs. effort of hardware implementation 

The memory status information provides high potential but requires high effort. If not only 

the memory status, but also the conditions to guarantee data retention shall be analysed, 

the effort is quite evident. On the other hand, a trustable signal will accelerate the erase 

process. 

The effort to implement multiple ISR vector tables seems to be low because a simple 

offset to the address calculation might be sufficient. The offset addition is based on the 

information about the currently active software. On the other hand, the potential for  

process acceleration is smaller. Nevertheless, the implementation in hardware provides at 

least a simplification of the flashloader software and reduces software’s complexity and 

therefore the possibility to make mistakes.  
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This chapter is intended to discuss the influence of the network elements on the total 

reprogramming process performance. 

Typical vehicle networks are organised depending on the different functionalities that are 

necessary within a modern car. The global network is divided into several domains (refer 

to figure 2.1-2). Each domain encapsulates special vehicle functionalities like power train 

systems, infotainment systems, driver assistance systems etc. The ECUs within a domain 

communicate via a bus system that fulfils communication requirements to solve the do-

main specific functional assignments sufficiently, e.g. via low speed CAN within the com-

fort or body domain, via FlexRay for driver assistance and regulation systems etc. The 

domains are coupled by gateways. If ECU’s signal is necessary within another domain, 

the gateway is routing that signal into the corresponding domain.  
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In the past, CAN was the established automotive bus system. The different domains 

differed only by the used CAN bandwidth. Due to the smaller number of ECUs within a car 

in the past, networks were flat and the different domains were decoupled by only one 

gateway. Of course, software reprogramming was also an issue in the past, but because 

of the smaller software size the resulting reprogramming time was not critical. Today 

vehicle networks are quite complex for several reasons:  

The vehicle functionality has been increased during the last years. Due to that the number 

of ECUs has been increased and the communication demand increased, too. Sub-

networks have become necessary to handle the communication’s bus load and to guaran-

tee stable communication. The sub-networks are coupled by gateways. 

Due to new innovative functionality the requirements on data communication have been 

increased, too. For complex driver assistance systems, busses with guaranteed latency 

times are necessary. FlexRay was established for regulation systems.  

Due to the cost aspects as discussed in chapter 1 the same network is used for software 

reprogramming purpose as for normal vehicle system’s functional communication. Unfor-

tunately the dedicated bus systems, that solve ECU application software’s functional 

communication requirements, are not optimised for software reprogramming aspects. This 

topic was discussed in chapters 3, 4 and 5, where possibilities were discussed to acceler-

ate data transfer on field bus systems. 

During the software reprogramming process, the PCU and the ECU are exchanging data. 

If both components are directly interconnected, the reprogramming process performance 

depends on a) PCU’s bus access performance, b) ECU’s bus access performance and  

c) the bandwidth of the communication link (performance of the protocol stack). In case 

the ECU is part of a network and more than two (field) bus systems are part of the com-

munication link between PCU and ECU, the performance of that network also has to be 

taken into account. In that case an overall communication link has to be divided into  

several sub-links on the corresponding (field) bus systems which are connected by  

coupling (routing) nodes like bridges or gateways. Thus, the overall communication  

performance and therefore the reprogramming process performance depends on a) the 

bus access performance of the PCU and the ECU, b) the different bus systems’ band-

width (performance of the protocol stack) as well as c) the data routing performance of the 

routing nodes. 

With focus on ECU’s application software reprogramming the network performance has to 

be analysed, because data routing delays are delays in data transmission and enlarge the 

overall reprogramming process (refer also to appendix B) [Sch10]. 



Chapter 7 – Network architecture 127 

7.1 Introduction 

The term “network” defines the physical interconnection of two or more nodes (e.g. 

ECUs). A.S. Tanenbaum et al. define that “two computers are said to be interconnected if 

they are able to exchange information” [Tan10-1].  

As discussed in chapter 1 the design of today’s automotive networks is driven by require-

ments for application’s functional communication and costs. Software reprogramming 

aspects have not been an issue in the past. Due to increasing ECU’s software and the 

resulting extension of reprogramming times with increasing costs reprogramming aspects 

become more interesting. Now the communication network components as a part of the 

communication link between PCU and ECU have to be analysed and discussed with the 

aim to accelerate data transfer. Derived from the analysis, design rules for future automo-

tive network design are possible to fulfil ECU’s application function communication as well 

as ECU’s software reprogramming. 

7.1.1 Networking issues 

In [Cou01-1] James Coulouris et al. define the following network issues: performance, 

scalability, reliability, security, mobility, quality of service and multicasting. With the inten-

tion of reprogramming automotive ECUs and data transfer acceleration within an automo-

tive network only performance and reliability are important. Scalability is an independent 

design issue, mobility is not in focus for automotive networks and security is currently not 

relevant for data transfer acceleration. Security aspects will become an issue for software 

reprogramming if secured data transfer, i.e. encrypted data, is required and the data 

encryption results in additional protocol overhead that reduce the net data transfer ratio. 

The quality of service is given because if the ECU is reprogrammed, the Flashloader has 

only the assignment to reprogram the ECU and therefore multicasting is not necessary. 

Performance 

The performance parameters of primary interest were those affecting the data transfer 

speed: data transfer rate and latency [Cou01-1].  

Data transfer rate and the influencing factors (Protocols etc.) are discussed in chapters 3 

and 4. The latency is discussed here and is visible as the time delay for transmitting re-

ceived messages from a source bus system to a target bus system. 

Reliability 

Reliability of networks based on automotive field bus systems is typically given and not a 

problem. Communication failures usually occur due to receiver’s or sender’s application 

software (e.g. protocol implementation, buffer handling etc.) rather than network errors. 
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For example, CAN or FlexRay implements complex CRC to identify bit errors within the 

data stream.  

7.1.2 Network types 

For embedded systems an “embedded network” couples at least two field bus systems. 

Two different network types are classified: homogeneous networks and heterogeneous 

networks. Figure 7.1-1 depicts an overview.  

 

Figure 7.1-1:  Network Classification 

Both network types have some characteristics which have a significant impact to the 

network performance. 

Homogeneous Networks 

Homogeneous networks couple equal bus types. With focus on embedded systems, that 

means equal field bus systems (refer to section 2.5.1). Within homogeneous networks it is 

possible to route a PDU directly on ISO/OSI reference model layer 3 (refer to figure 7.1-1). 

This is possible because the network layer PDUs have an identical format and therefore 

only address information have to be analysed. A PDU received from a source bus system 

could be send without further activities or PDU modifications on layer 3 or upper layers on 

the target bus system.  

Heterogeneous Networks 

Heterogeneous networks couple different bus types. In the context of embedded systems 

that means different field bus systems (refer to section 2.5.1). Because of unequal net-

work layer PDUs (e.g. different number of payload, different address methods etc.) the 

data (SDU) have to be received completely (i.e. reassembled on layer 4 – transport layer) 

before a new transmission on the other bus system can be initiated. Hence, routing is 

placed on ISO/OSI reference model layer 4 (refer to figure 7.1-1).  
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7.2 Routing nodes (Gateways) 

There is no uniform naming convention for routing elements. Within embedded systems 

(especially within the automotive area) network coupling elements are always named as 

gateways because they are able to decide whether a message or signal from a sender 

must be routed to another bus system or not. The term router, as known from PC net-

works, is typically not used in the automotive area. In [Zim10-13] W. Zimmermann and  

R. Schmidgall classified three different bus coupling elements: (1) transceiver for the ECU 

bus access, (2) repeater to enlarge the physically length limits of a bus system (e.g. 

FlexRay star or coupling of truck and trailer bus systems) and (3) gateways. Nevertheless, 

automotive repeaters are typically implemented as gateways because in many cases not 

all signals and messages63 are transferred to the other bus systems or domains. Hence, a 

selection method is implemented to process a kind of selective routing. For the following 

discussion a more detailed definition for gateways is necessary. A possible differentiation 

criterion is the highest layer (refer to figure 7.1-1), on which routing will be performed. 

Hence, we distinguish between layer-3-gateways64 and layer-4-gateways to classify the 

routing strategy. Within the AUTOSAR layered software architecture routing is always 

executed by the PDU-Router (PduR) module, but on top of different layers (refer to  

figure 7.2-1).  

 

Figure 7.2-1:  Routing within the AUTOSAR layered software architecture 

                                                

63 Within a modern vehicle several thousand signals and messages are emitted by the ECUs’ 
application software. But not all signals are relevant for all other ECUs in all domains. For gateway 
configuration only the signals for a receiver from other domains are relevant. For example, the 
ignition status (on/off, clamp 15 or clamp 30 etc.) as well as the speed signal are important infor-
mation for all ECUs and are therefore routed into all domains. On the other hand internal signals of 
the power train domain are not relevant for the body domain and are therefore blocked and not 
routed. 
64 Within the automotive industry the differentiation between layer 3 and layer 4 are not always 
clearly structured. Because of resource limitations, implementations for embedded systems have 
combined both layers (refer to chapter 3). The CAN transport layer protocol as defined in          
[ISO 16765-2_3] specifies the mapping of network layer PDUs. Nevertheless, the basic idea is to 
route ahead of layer 3. That means that only address aspects have to be taken into account but not 
protocol control information (PCI). 
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7.3 Routing strategy 

Depending on the coupled network types different routing strategies are required. 

Figure 7.3-1 depicts an overview. 

 

Figure 7.3-1:  Routing strategy  

7.3.1 Analysis 

Typically routing within networks is basically the problem of finding the shortest path be-

tween two nodes. Many of today’s common algorithms are based on the shortest path 

algorithm published by R.E. Bellman [Bel57] and the algorithm for large networks pub-

lished by Ford and Fulkerson [For62]. Compared to typical problems of routing information 

through LAN networks or the internet, the problem within automotive networks is very 

simple. Especially for software reprogramming purpose the network aspects could be 

significantly simplified: (1) the connection links are stable, i.e. not floating, and (2) there is 

exactly one way for the diagnostic connection link, i.e. there are no alternative possibilities 

to establish a communication link from the PCU to the ECU and vice versa. Hence, no 

complex algorithms are necessary to calculate the best path because there is only one.  

Therefore, for automotive networks the routing problem is reduced to the question of how 

fast received data can be processed and transmitted onto the target bus. But here the 

routing strategy has a significant influence on the routing performance. 

Direct routing (routing “ On-the-fly”) 
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Within the direct routing strategy a received PDU is immediately processed and routed 

from the receiver side to the sender side. The PDU is neither analysed nor modified. The 

PDU is only copied to the transmission buffer. 

This method is possible if the physical bus systems on receiver and sender side are equal 

(same type), e.g. CAN to CAN routing. In that case the network layer PDUs are equal on 

both bus systems and the network-layer-gateway or layer-3-gateway can copy the PDUs 

without further activities. Protocol conformity is given by FIFO65-buffers for the PDUs on 

transmission or sender side.  

Within the automotive industry the term “routing-on-the-fly” was introduced for layer-3 

routing. In the normal communication or network terminology of network nodes this is 

typically done by a simple repeater but if there are other PDUs in the network which are 

not routed to the other connected bus systems, a selective routing is given and therefore it 

is a layer-3-gateway. Figure 7.3-1 depicts an abstract view to that routing mechanism. 

Store and forward 

Compared to a layer-3 gateway a layer-4 gateway is necessary if the physical bus sys-

tems differ (e.g. CAN to FlexRay routing). In that case the network layer PDU can not be 

simply copied to the transmission buffer because typically the network layer PDUs are 

different. Hence, a routing is possible only on the top of layer 4 (transport layer). As a 

consequence the complete transport layer protocol has to be processed on the receiver 

side. If the layer 4 SDU is completely received the routing process can be executed and 

the SDU is transmitted via target bus system’s transport layer protocol. In that case the 

differences on the network layer are not relevant. 

7.3.2 Discussion 

Due to the coupling of different networks different routing mechanisms are necessary and 

different strategies are possible. As discussed in section 7.1.1 routing performance is an 

important criterion for gateways and has a significant impact for data transfer acceleration 

and reprogramming performance.  

Performance  

A gateway’s routing performance within a network can be calculated as the time which is 

necessary to forward data received on a source bus system to a target bus system.  

Figure 7.3-2 depicts an abstract overview. 

                                                

65 FIFO… First In First Out – A mechanism for data buffering within a queue. 
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Figure 7.3-2:  Routing performance  

The routing performance is calculated as 

StartEnd tt
LengthData

ePerformancRouting
−

=   (7.3-1) 

For the routing performance discussion and the comparison of routing strategies it is 

assumed that source and target bus systems have equal bandwidths. In that case  

figure 7.3-2 depicts that a direct routing strategy on layer 3 has a higher performance 

because the delay based on routing processing is very short. Store and forward strategies 

require more time because data reception on layer 4 and therefore the complete transport 

layer protocol handling has to be finalised until routing could be performed. After the sin-

gle routing step transport layer protocol handling for the target bus system is required. In 

sum the time for reception on the source bus and transmission of data on the target bus 

on a “store and forward routing” system is longer than on a “direct routing” system.  

Resources  

The different routing strategies also have an impact on the required gateway resources. 

As depicted in figure 7.3-2 the CPU load for a “store and forward” mechanism is higher 

than for a direct routing. This is because of the additional layer interaction between layer 3 

and layer 4 and the processing of the transport layer protocol.  

For data routing a buffer is an important resource. Routing on layer 3 requires buffer 

especially if the bandwidth of the target bus system is less than the source bus system 

(e.g. routing from CAN500kBit/s to CAN125kBit/s). In that case an adequate queue for the data 

to transmit is necessary. Depending on the differences between the bandwidths the queue 
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depth could vary. For layer 4 routing a complete transport layer SDU must be stored 

during data reception before routing can be processed. For CAN transport protocol  

according to ISO 15765-2 this are 4095 bytes in maximum. For FlexRay communication 

layer protocol according to ISO 10681-2 this are 65.535 bytes in maximum. For  

communication in parallel those buffer sizes have to be allocated for each concurrently 

active channel.  

As illustrated in chapter 1 the cost pressure for automotive systems is high and therefore 

resource management is an important issue. Due to that fact several hundred kByte of 

RAM for routing buffers are not a realistic scenario. On the other hand the coupling of 

different physical bus systems via layer 4 routing is state of the art. Hence, a combination 

of routing strategies is necessary to reduce required RAM size for economic aspects and 

fulfil the technical requirements for coupling bus systems via transport layers. 

Partly store and forward 

A partly store and forward approach reduces the demand for buffer resources, as well as 

increases system’s performance in case a layer-4 routing is required. If a defined data 

volume (threshold) is received, routing is processed. Figure 7.3-3 depicts the details.  

 

Figure 7.3-3:  Partly store and forward routing strategy  

If the defined threshold value is less than the maximum possible SDU length of the 

transport layer protocol, the required buffer resources could be reduced significantly. The 

data flow on the source bus system has to be controlled by the transport layer protocol’s 

flow control mechanism and depends primarily on the availability of a free buffer. On the 
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other hand, a smaller buffer (small threshold) results in more flow control PDUs (PDUs 

without payload) and reduces performance. 

The overall system’s performance is increasing if more than one buffer is available and 

these buffers can be used alternatively. The number of different buffers depends on the 

bandwidth relation between source and target bus system. This is necessary if the band-

widths of the source and target bus systems are different. The system has to be config-

ured in such a way that no additional delay or communication gap is visible on the slower 

bus system. The relation is given as: 

SourceBus

etBusargT
Bandwidth f

f
r =  (7.3-2) 

If the bandwidth of a source bus system does not equal the one of the target bus system, 

the relation rBandwidth is not equal to 1 (rBandwidth ≠ 1). In that case two buffers are sufficient 

because until the slower bus system has processed the first buffer (reception or transmis-

sion) the second buffer is processed by the faster bus system (transmission or reception). 

In case both bus systems have an equal bandwidth, rBandwidth is equal to 1 (rBandwidth = 1). In 

that case only two buffers are not sufficient. It is possible that a buffer is completely  

processed before the other system has freed the other buffer (mutual exclusion principle). 

Therefore a third buffer is necessary to provide a free buffer if the currently faster bus 

system is requesting a new buffer. If no free buffer is available, the system has to interrupt 

data transmission by flow control processing and continue later on. Figure 7.3-4 depicts 

the ideal number of buffers. 

 

Figure 7.3-4:  Ideal number of buffers  

The jitter and the resulting boundary for the step from two buffers to three buffers have to 

be analysed for each gateway individually. It depends on internal criteria like  

microcontroller performance, interrupt service processing runtime, task management etc. 

and could not be calculated in a generic way. 
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“Store and forward” method vs. tunnelling method 

Another approach known from the telecommunication industry is the tunnelling method. A 

PDU from one system is integrated completely as payload (SDU) into the PDU of a  

second system. For example, a CAN protocol stack’s network layer PDU is directly for-

warded to the FlexRay protocol stack’s transport layer. However this approach provides 

only benefits if the target bus system that is tunnelled is (a) significantly faster than the 

source bus system and (b) the source bus system is only a transfer bus where as the 

destination node is a gateway. Typically automotive networks provide no mere transfer 

bus systems and therefore tunnelling is not possible. 

Cascaded sub-networks 

Within an automotive network it is possible that more than two different networks are 

coupled via gateways for a link between PCU and ECU. In that case data are packed and 

repacked several times by the corresponding transport layer protocols. Maximum perfor-

mance is given if 100% bus load is processed on the slowest sub-bus system. The num-

ber of necessary buffers (as discussed above) has to be calculated for each gateway. 

7.4 Conclusion 

An additional influencing parameter of automotive embedded system’s reprogramming 

performance is the network performance. The network performance depends on two 

parameters: 

a)  The data transfer performance (protocol stack performance) of the coupled sub-

links (refer to chapters 3, 4 and 5). 

b)  The gateway’s routing performance depending on the routing strategy based on 

the network type (heterogeneous and homogeneous) 

 

7.4.1 Routing strategy 

The network type (heterogeneous or homogeneous) is based on the type of coupled bus 

systems. The routing performance of a gateway is influenced by the network type, i.e. the 

coupling of equal or different bus systems. For equal bus systems a coupling on layer 3 - 

network layer is possible (homogeneous network). Different bus systems are typically 

coupled on layer 4 - transport layer (heterogeneous networks). Due to the routing layer 

different routing strategies are possible. Figure 7.4-1 depicts different routing strategies in 

relation to possible routing performance and the required resources. 
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Figure 7.4-1:  Routing performance vs. resources  

Direct routing provides best performance vs. resources relation because each received 

PDU on a source bus system could be routed directly to the target bus system. A buffer 

queue for the layer 3 PDUs is necessary to prevent overwriting in case of jitter on equal 

bus systems with equal bandwidth or in case of transmission accumulation on equal bus 

systems with different bandwidth.  

Store and forward routing provides less performance vs. resources relation because 

routing is only possible when all payload data have been received via the source bus 

system. While reception on the source bus system is ongoing, no data transmission on 

the target bus is processed. The result is a delay in transmission and therefore less per-

formance for reprogramming. Additional buffer for the complete payload is required to 

store the SDU until all data have been received (CAN via ISO 15765-2: 4095 byte; 

FlexRay via ISO10681-2: 65535 byte). Finally, routing on layer 4 increases demand on 

inter-layer communication and enlarges the CPU runtime for routing processing.  

Partly store and forward routing strategy is a good compromise between the other  

strategies. Routing runtime is equal but, depending on the current situation routing could 

be configured either on performance requirements or on RAM resources requirements. 

If prices for microcontroller RAM decreases in future and the CPU power increases, the 

partly store and forward strategy might be nearly as powerful as direct routing because 

resource disadvantages (memory size, runtime, etc.) are no longer critical. 

7.4.2 Network design 

The discussion about network impacts for the reprogramming process results in a discus-

sion about network design aspects. Future automotive networks have to be designed to 

support the software reprogramming issue, too. As described in chapter 1, network design 

was influenced by application software’s functional communication requirements and cost 
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aspects in the past. Up to now software reprogramming is an important, but mostly uncriti-

cal issue. Currently it is processed via the same network than functional communication to 

safe costs. The costs are still an important aspect but the different contributions to calcu-

late a total cost of ownership are changing: The relation between invest in network infra-

structure (gateways, bus systems etc.) and reprogramming costs is moving towards 

increasing programming costs. Due to that potential commercial disadvantage, an addi-

tional parameter has to be taken into account for network design aspects: reprogramming 

time limit. 

Design aspects based on reprogramming time limits 

Within several scenarios an upper limitation for the reprogramming time is given. Within a 

vehicle plant, for example, the assembly line timing defines the upper limit. Software 

programming has to be finalised within one or, in good cases, in a well defined number of 

timing cycles. If the reprogramming time is fix, either ECU’s upper memory limitation 

depends on bus system bandwidth or a bus system has to be selected, whose bandwidth 

is sufficient to program the given memory. Figure 7.4-2 depicts the relation between ECU 

memory and reprogramming time limitation. 

 

Figure 7.4-2:  Design based on timing limitations  

According to the following equation for given bus systems the maximum reprogramming 

time is limited by the ECU’s memory. 

programRe

EcuMemory

t

n
erRateDataTransf =  (7.4-1) 

The data transfer rate calculation is important especially for new developed ECUs. With 

focus on reprogramming it has to be distinguished, whether the ECU could be repro-
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grammed within time limitations via the regular connected bus system for normal applica-

tion communication. Alternatively the ECU has to be connected to another bus system 

with more bandwidth. Of course, in that case all other network design issues (e.g. maxi-

mum bus load, cable length, costs, weight etc.) have to be taken into account to find the 

best economic solution. Based on that decision the gateways on the communication link 

can be designed, too. Because of the complex optimisation process and the large number 

of influencing parameters this analysis has to be supported by network analysis tools66. 

Design aspects for reprogramming in parallel 

Within distributed systems it is also possible that more than one ECU have to be re-

programmed67. In that case the execution in parallel is a powerful approach to accelerate 

the overall process and to save time. The network design has to take care that repro-

gramming parallel is possible and concurrent communication links can be supported. 

Hence, the data transfer ratio C (refer to formula 7.4-2 below) of the different sub-bus 

systems within the network is important.  

Figure 7.4-3 depicts a network that supports reprogramming in parallel. It is divided into 

several sub-bus systems coupled by gateways. The developed formula 7.4-2 defines the 

basic requirement to guarantee sufficient data transfer rates on all sub-bus systems for a 

concurrent communication traffic.  

∑
=

=
≥

ni

1i
i_etBusargTSourceBus CC  (7.4-2) 

                                                

66 The Symta Vision GmbH develope and sell the tool „SymTA/S“ to analyse diagnostic communi-
cation via network. It is a „model-based solution for timing design, performance optimisation and 
timing verification for real-time systems“ [Sym] During the „5th Symtavision NewsConference on 
Timing Analysis“ R.Schmidgall spoke about „Diagnostic Communication – A Challenge For Network 
Analysis“ [Sch11]. The presentation depicts the different aspects of diagnostic communication 
(inclusive software reprogramming aspects) and the challenges and complexity if the different 
communication stack protocols shall be analysed for realtime network analysis (refer to appendix 
D). 
67 The introduction of AUTOSAR’s layered software architecture allows to divide system func-
tionallity from the physical ECU. That means that a system is developed or modeled first in an 
abstract way. Later on the different function modules are mapped to one or more physical nodes 
(ECUs) (refer to [AUTOSAR] key features). In case an error occurs within a system that is mapped 
to several physical ECUs, the functional dependencies might require reprogramming of all ECUs. 
This scenario is also possible for non-AUTOSAR based systems if functional dependencies exist.  
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Figure 7.4-3:  Source bus and target bus definition for reprogramming in parallel 

As discussed in chapter 3 maximum performance for data transfer is reached for ECU 

reprogramming if the bus load for data transfer is up to 100%. Hence, for reprogramming 

in parallel this must be possible on each sub-bus system, too. According to formula 7.4-2 

the network design shall provide source bus systems that are able to generate 100% 

busload on all target bus systems. In case of cascaded networks with several gateways, 

this has to be guaranteed for each source bus - target bus relation.  

For the network in figure 7.4-3 the bandwidth for bus 0 shall be according to formula 7.4-2: 

CBus0_max ≥ CBus1_max + CBus2_max  

CBus0_max ≥ CBus1_max + CBus3_max + CBus4_max 

Nevertheless, even if the network (bus 0 or bus 2) does not support the maximum data 

transfer rate according to formula 7.4-2, reprogramming in parallel is possible, however 

without 100% busload on each bus system. The strategy for reprogramming in parallel is 

discussed in chapter 8. 

7.4.3 Summary 

Network design and the routing strategy have a deep impact to the data transfer perfor-

mance via network and also an impact to the overall ECU software reprogramming per-

formance.  

The necessity of different physical bus systems for application software communication 

results in heterogeneous networks. Due to that the gateways become more complex 

(routing on layer 3 vs. routing on layer 4) and require more resources (RAM, execution 

runtime, etc.) to provide the same data transfer rate as for homogeneous networks.  
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With focus on reprogramming several ECUs in parallel (refer to chapter 8), the available 

data transfer rate is an important parameter. The possibility to reprogram in parallel is built 

in during network design phase when the bandwidths of the sub bus systems are defined. 

The smallest bandwidth on the communication link between the PCU and the ECU will 

affect the link performance.  

For future network design it is necessary to have different, scenario oriented views to the 

same network: a) the established view on application function’s communication and b) a 

view for reprogramming aspects. Figure 7.4-4 depicts the approach. 

 

Figure 7.4-4:  Different, scenario oriented views to the same network 

For software reprogramming purpose some design requirements are necessary to guar-

antee high performance: 

a)  If a cascaded network with sub-domains is necessary (Domain B/C) the network 

shall be homogeneous.  

b)  If the bandwidth can not be equal on all bus systems, the bandwidth shall be at 

least decreasing from the vehicle communication interface to the sub-domains ac-

cording to formula 7.4-2. 

Finally, there is the question whether a network which is designed for software repro-

gramming will solve the normal ECU application communication, too?  

Of course, this is a new approach for automotive network design, but the given cost pres-

sure requires to think about communication via the same network. Why not move the 

design priority? 
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As mentioned in chapter 1, several trends are visible within the automotive industry that 

influence the ECU reprogramming process. Of course, automotive ECUs’ application 

software sizes are increasing continuously, but during the last years this trend has  

affected only single ECUs with their own application software. As a result the total repro-

gramming time for those ECUs has been increased. Nevertheless, an additional trend is 

visible: increasing system complexity based on the distribution of functionality to several 

ECUs. Jan Danenberg et al. described in [Dan07] that 90% of all innovation will be build in 

software. The trend is to combine available information of ECUs to new functionalities. 

Especially for driver assistance systems new innovative systems based on available 

signals. The AUTOSAR software architecture model supports this trend. In AUTOSAR 

hardware independent modelling of functions (inclusive all communication signals) is 

possible. After modelling has been finalised the function could be distributed to several 

host ECUs. The communication is done by the basic software68.  

A disadvantage of the new trend of model based software development and distributed 

system functionality is the risk that in case of an error all ECUs which are hosting a part of 

the system are affected by reprogramming. In that case software reprogramming of all 

affected ECUs in parallel is a powerful approach to reduce the overall reprogramming 

time. Within this chapter the approach of reprogramming ECUs’ application software in 

parallel is discussed.  
                                                

68 “Basic software“ (BSW) is a term of the AUTOSAR nomenclature and comprehend all software 
modules responsible for the basic functionality of an ECU. In the AUTOSAR architecture the basic 
software is below the Runtime Environment (RTE). Refer to [Aut11]. 
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8.1 Introduction 

To reprogram several ECUs’ application software, concurrent communication links have to 

be processed. There are different scenarios to reprogram ECUs in parallel. 

  

Figure 8.1-1:  Network classification 

Figure 8.1-1 depicts a network to illustrate the different scenarios as described in  

table 8.1-1. 

Table 8.1-1:  Reprogramming scenarios 

Scenario Description Example 

1 Single ECU on a single bus system. Only ECU 1.1 

2 Single ECU on different bus systems. ECU 1.1 and ECU 2.1 in parallel 

3 Multiple ECUs on a single bus system. ECU 1.1 and ECU 1.2 in parallel 

4 Multiple ECUs on different bus systems. ECU 1.1, 1.2, 2.1, 2.2 in parallel 

 

The scenario 1 (reprogramming of a single ECU) is only for list’s completeness. The  

scenarios 2, 3 and 4 have to be discussed for reprogramming in parallel. Especially  

scenario 3 and scenario 4 seem to be quite complex, because the bandwidth has to be 

shared between several ECUs on the same bus system. 

Simplification of the scenarios 

For the theoretical approach it is assumed that bandwidth of the source bus system is 

sufficient to process all concurrently active communication links. Nevertheless, the  

scheduling of the active communication links is quite complex. A simplification is possible 

if the research results of chapter 3, 4 and 7 are taken into account: 
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a) Best data transfer performance is reached if 100% busload is reached. In that case 

only one communication link allocates the complete bus system’s bandwidth to 

communicate with only one ECU. This is possible by implementing double buffered 

data reception and optimisation of the communication protocol stack. 

b) The network is designed to support 100% bus load on the slowest communication 

link sub-bus system for the corresponding communication link. In best case this is 

the target bus system itself.  

In that case scenario 3 (reprogramming of multiple ECUs on a single bus system) could 

be mapped to scenario 1, a sequential reprogramming process of two ECUs on the same 

bus system. Scenario 4 (reprogramming of multiple ECUs on different bus systems) can 

be mapped to scenario 2, where single ECUs on different bus systems are repro-

grammed. 

8.2 ECU schedule calculation 

The overall time to reprogram all ECUs depends on the schedule that defines in which 

order the different ECUs are processed. To calculate the best schedule some previous 

steps are necessary. 

1.)  Evaluation of the slowest sub-bus segment (bandwidth limiter) on the communica-

tion link for each ECU. 

2.)  Calculation of the expected reprogramming time for each ECU based on the  

corresponding communication link’s slowest sub-bus system’s bandwidth. 

3.)  Definition of a priority list depending on the expected reprogramming time. The 

ECU with the longest reprogramming time has the highest priority. 

4)  Definition of a processing schedule. The ECUs are arranged based on the priority 

list and the available bandwidth on the network. 

Bandwidth capacity utilisation 

To calculate an optimised schedule the available bus system’s bandwidth must be   

evaluated. This is possible, if the time-discrete view to the network is moved to a con-

tinuous bandwidth view.  

At one discrete point in time only one communication link can be supported by a   

transmitter. A real concurrent communication is not possible, because at one discrete 

point in time only one bit of a well defined connection is transmitted. If transmission of one 

connection link’s PDU has been finalised a new PDU, maybe of another communication 

link, could be processed.  
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If two bus systems are connected via a gateway (best practice) and both bus systems 

have an equal bandwidth and 100% bus load is produced, no concurrent communication 

on another link will be possible.  

If two bus systems with different bandwidths are connected via gateway (best practice) 

and 100% bus load is produced on the slower bus system, some bandwidth is free on the 

faster bus system. This view is helpful to arrange different ECUs on a bus system. Figure 

8.2-1 depicts that example. The time discrete view is moved to a continuous  

bandwidth view.  

 

Figure 8.2-1:  Bandwidth capacity utilisation 

The time t1 is the required time to transmit all data via that communication link. The time t1 

is calculated as 

f
S

t x =    (8.2-1) 

S .. Software Size [bit]; f .. bandwidth [bit/s]; t .. data transfer time [s] 

Up to t1 the bandwidth n is allocated for the communication link with ECU1. The remaining 

bandwidth is 3n (4n - n = 3n) and can be used for other communication links. Additional 

communication links can be established as long as the remaining bandwidth n of bus A  

is more than zero (n>0). 



Chapter 8 – Reprogramming in parallel 145 

Example with 4 ECUs on three sub bus systems 

The following example illustrates the method to arrange ECUs for reprogramming in paral-

lel. Figure 8.2-2 depicts a network with 4 bus systems and 4 ECUs. The source bus  

system A does not support the necessary bandwidth to process 100% busload on all sub-

bus systems (refer to chapter 7). Nevertheless, reprogramming in parallel is possible. 

 

Figure 8.2-2:  Priority calculation on a network with 4 ECU 

The expected time for the complete data transfer via the communication link can be   

calculated according to formula 8.2-1 and under consideration of the slowest sub-bus 

system on the corresponding communication link. The priority is given based on the   

expected data transfer time.  

The schedule can be defined under consideration of the rules below: 

1) Start with the highest priority (longest expected data transfer time) 

2) Calculate always if the remaining bandwidth is sufficient for the next ECU.  

ystemSourceBusSk ff ≤    (8.2-2) 

∑
=

=
kiorityPr

1iorityPrx
ECUxk ff    (8.2-3) 

If a recalculation of the finalisation time tx is not necessary based on the remaining band-

width, then: 

3) Arrange only one ECU from a sub-bus system at a single point in time. Note that 

100% bus load is processed on the limiting sub bus system. 
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Figure 8.2-3 depicts a possible schedule to reprogram the given network in parallel. 

 

Figure 8.2-3:  Schedule calculation on a network with 4 ECU 

ECU1 has the highest priority because the expected data transfer time is t = 10 1/n.  

ECU2 and ECU3 have equal priorities. Additionally they are both connected to the same 

bus system. Hence, only ECU2 is scheduled in the first phase. Until t = (4 1/n) the remain-

ing bandwidth is only n bit/s (4n-n-2n = n) and therefore ECU4 could not be arranged with 

full bandwidth. As a result the data transfer time has to be recalculated. The bandwidth 

limiting bus system is now bus A.  

At tECU2 the data transfer to ECU2 has been finalised. Data transfer to ECU3 could be 

scheduled (priority is higher than to ECU4, no concurrent communication on the limiting 

bus C). Communication of ECU4 is ongoing with bandwidth n bit/sec. 

At tECU3 the data transfer to ECU3 has been finalised. For communication to ECU4 now a 

bandwidth of 3n is available for the remaining software size of 4 bit (8 bit have been 

transmitted with a bandwidth of n bit/s). Recalculation of the finalisation time results in 
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At tECU1 data transfer to all ECUs had been finalised. Reprogramming all ECUs sequential-

ly requires 21 a/n seconds. Reprogramming in parallel requires only 10 a/n seconds and 

reduces reprogramming time to 47%.  
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Bandwidth capacity utilisation for cascaded bus systems 

The schedule development method will work also for cascaded bus systems. Figure 8.2-4 

depicts the principle.  

 

Figure 8.2-4:  Schedule calculation for networks with cascaded bus systems 

8.3 Discussion 

The method to calculate a schedule for ECU reprogramming is based on a simple princi-

ple. The slowest sub bus system’s bandwidth on the communication link between PCU 

and ECU is allocated also on all other sub-bus systems. The remaining bandwidth can be 

used to establish another communication link to another ECU. The aim is to utilise the 

given bandwidth well.  

The method is simple because the assumption that 100% bus load on a bus is possible. 

This can be reached by implementing double buffered data reception on the receiver 

ECU.  

100% busload not possible 

The basic method will work also, if 100% bus load will not be possible by a single ECU. 

However, the calculation of the real bandwidth for each ECU is quite complex, but if the 

bandwidth is determined, the normal schedule calculation can be processed. Without 

double buffered data reception the reprogramming time cannot be compensated (refer to 

chapter 3). Hence, a forecast for the reprogramming time is necessary. However, the 

physical reprogramming time can drift by aging of the microcontroller. Unfortunately, such 

a drift is only detected, if a data transfer to the ECU and therefore a physical reprogram-

ming process is executed. The measurement of the time between the transmission of the 



Chapter 8 – Reprogramming in parallel 148 

request’s69 last data transfer frame and the reception of the response70 reduced by the 

network’s Transmission runtime represents the physical reprogramming time and the 

internal processing time. In worst case the given forecast based on the physical pro-

gramming time is not longer valid and a recalculation is necessary. In that case a recalcu-

lation of the schedule might be necessary, too.  

How to get the information about sub-bus bandwidths? 

The schedule calculation method is based on the knowledge of the network’s sub-bus 

systems bandwidth. Hence, a method is necessary to provide the network topology for the 

schedule calculation.  

The ASAM MCD-2D71 standard (market name ODX – Open Diagnostic Data Excange) 

provides abstract information about the topology of the network. In [Zim10-14]  

W. Zimmermann and R. Schmidgall give an introduction to the ODX sub document 

„VEHICLE-INFO-SPEC“ (ODX-V). This document is defined to provide the logical links 

from an external diagnostic test tool to the corresponding ECU. Unfortunately, the ODX-V 

is currently not prepared to describe a complete network in detail with all information 

required to calculate a schedule (e.g. bus’ bandwidth, ECU arrangement etc.). S. Karic 

analysed in his bachelor thesis the ODX-V data model and developed a method to  

describe all relevant information for reprogramming in parallel [Kar11]. The conclusion of 

this work is that the ODX-V data model is currently not applicable to support reprogram-

ming in parallel, because some important information (e.g. gateway information etc.) are 

not part of the data model.  

Without ODX-V the topology information has to be stored in another format or document 

for the schedule calculation. 

Reprogramming of gateways 

It is possible that the gateway application software shall be reprogrammed. This can occur 

if routing relations will change, e.g. in case a new ECU (new innovation) is introduced into 

a network. As described in chapter 1, typically ECUs flashloader software is optimised 

only for software reprogramming purpose because of less ROM or Flash memory  

resources. Typically gateways in flashloader mode will route only broadcast  

                                                

69 Diagnostic Request (refer to UDS) 
70 Diagnostic Response (refer to UDS) 
71 ODX defines a unique, open XML exchange format for diagnostics data.  



Chapter 8 – Reprogramming in parallel 149 

diagnostic72 messages but no normal application communication PDUs of other ECUs. 

Hence, it is necessary to have information during schedule calculation whether an ECU is 

a gateway or not. This information could be also a part of ODX-V. 

Due to the above described gateway behaviour in flashloader mode, gateways has to be 

reprogrammed within an own schedule. However, it has to be taken into account that 

gateways of cascaded networks have to be reprogrammed sequentially. 

8.4 Conclusion 

Reprogramming of ECUs application software in parallel is a powerful approach to reduce 

the total reprogramming time. However, some prerequisites are necessary to be able to 

reprogram in parallel: a) the network shall be designed for that approach and b) topology 

information shall be available for schedule calculation.  

The calculation of the reprogramming schedule has the aim a) to utilise the available 

bandwidth well and b) to create an arrangement to reprogram all ECUs in the shortest 

possible time. Gateways shall be reprogrammed separately in sequential order because 

gateways typically stop routing in flashloader mode. 

Best practice for schedule calculation based on ASAM MCD-2 (ODX) 

The VEHICLE-INFO-SPEC document of the ODX standard is partly not applicable to 

support the reprogramming process. Hence, some optimisation proposals for ODX-V are 

provided to the ASAM MCD 2 standardisation working group. 

In case the ASAM MCD-2 (ODX) standard model provides the network topology infor-

mation in future, the offboard activities can be managed completely by the ODX data 

model. Figure 8.4-1 depicts an overview in principle.  

The ODX-F document provides all information about ECU’s application software (e.g. 

software size, possible compression algorithm etc.) The ODX-D document provides all 

diagnostic information of the ECU (e.g. supported diagnostic services according to the 

                                                

72 Diagnostic broadcast messages are typically send by the PCU and received by all ECUs to keep 
the ECUs into diagnostic session. Typically an ECU supports a “normal default session” at least 
two diagnostic sessions (extended diagnostic session and reprogramming session). Diagnosis is 
only possible in a non-default session and is initiated by the diagnostic service request “$10 – 
Session Control” (refer to UDS). An important broadcast message is the cyclic transmitted diagnos-
tic service request “$3E – Tester Present”. It signals that a diagnostic test tool is connected and 
prevents ECUs fall back from non-default (diagnostic) session to normal default session. Hence, 
broadcast messages have to be routed also if the gateway is in boot mode to keep the domain into 
diagnostic mode. 
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UDS standard). The ODX-V document provides the network information (e.g. network 

topology, sub-buses’ bandwidth, gateway declarations etc.).  

 

Figure 8.4-1:  ODX integration to support reprogramming in parallel 

By evaluating the ODX-F document and the ODX-V document the reprogramming time for 

each ECU can be calculated. These values are used to calculate the reprogramming 

schedule and process reprogramming. The sequence for schedule calculation is as listed 

below: 

1)  Calculate reprogramming time of each ECU. 

2)  Select all ECUs which are marked as a gateway and skip them from the list.  

Gateways are reprogrammed separately before the other ECUs are processed. 

3) Calculate the priority depending on the reprogramming time. Highest priority for 

longest reprogramming time 

4) Calculate the schedule depending on the priority. The following rules have to be 

taken into account: 

 a) Bus system’s bandwidth limitations have to be considered. 

 b) If 100% bus load is possible (e.g. by double buffered data transfer) only one  

     ECU on the final target bus system shall be scheduled at one point in time. 

 c) Arrange the ECUs that on the first source bus (from PCU to first gateway) in that 

    way that as less as possible bandwidth is free.  

Based on this algorithm, ECUs’ application software reprogramming in parallel will be a 

powerful approach to reduce the total reprogramming time significantly. 
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As discussed in the chapters before the current software reprogramming process is signif-

icantly influenced and limited by the currently given memory technology. Of course, the 

Flash memory technology provides benefits which were never given before for embedded 

systems by the old ROM mask technology and, of course, without the established repro-

gramming process for Flash memory the product costs especially within the automotive 

industry, will be still higher. Nevertheless, the Flash memory technology has some re-

strictions which constrain and limit an optimized reprogramming process. A real quantum 

transition will be possible if the established Flash memory technology is replaced by the 

new proposed MRAM technology (Magnetoresistive Random Access Memory) in micro-

controllers. Some disadvantages of flash memory caused by the inherent technology can 

be eliminated by the employment of possible MRAM technology. With focus on repro-

gramming time the MRAM technology provides essential advantages. In contrast to the 

currently established flash memory technologies MRAM semiconductors store the  

information not by electrical, but by magnetic load elements.  

Of course, currently there is no microcontroller available that supports MRAM on chip. 

However, Freescale Semiconductor provides MRAM as an external memory device 

[Fre07-1]. Nevertheless, it seems that this memory technology will be the next evolution 

step for embedded systems’ memory and therefore this memory technology is discussed 

within this thesis.  

This chapter is intended to discuss the impact of MRAM technology to the reprogramming 

process of embedded systems as well as to depict the necessary changes for software 

development process.  
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9.1 Introduction 

In contrast to currently established memory technologies, MRAM semiconductors store 

the information not using electrical, but by magnetic load elements. The effect is based on 

the fact that certain materials change their electrical resistance if they are influenced by 

magnetic fields. Alfred Hammerl and Halit Bag give an overview of the different  

magnetoresistive effects [Ham03]. R.C. Sousa et al. reviewed the progress of the MRAM  

research process and provide a briefly overview to “conventional MRAM operations” like 

reading or writing a bit [Sou05]. 

Magnetic Tunnel Junction (MTJ) effect 

In an MRAM cell the information zero (0) and one (1) are represented by the orientation of 

magnetic fields and is based on the Magnetic Tunnel Junction (MTJ) effect. A MTJ semi-

conductor has a three-layer structure. It consists of two magnetic layers and an insulation 

layer. One of the magnetic layers is a fixed ferromagnetic layer and has a fixed orientation 

(fixed magnetic layer). The other magnetic layer can change its magnetic polarization 

(floating magnetic layer). It is aligned either in the same orientation as the fixed layer 

(parallel magnetic orientation) or in the opposite (opposite magnetic orientation). Although 

not shown in figure 9.1-1, a bit line and digit line are located above and below the MTJ. 

The electrical resistance of the memory cell changes depending to the magnetic  

orientation of the floating magnetic layer. According to the electrical resistance a high or 

low current could occur. A current switch converts the binary information low current and 

high current to voltage levels (low current = 0bin; high current = 1bin).  

 

Figure 9.1-1:  Bit information storage based on the MTJ effect 

The MRAM technology does not need any electrical current in order to hold the stored 

information. Once the magnetic adjustment is made the variable magnetic layer remains 

static, i.e. no further current is required.  
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Comparison of MRAM to other memory technologies 

MRAM adopts the advantages of several memory technologies available today. Similar to 

flash memory or EEPROM (Electrical Erasable and Programmable Read Only Memory), a 

non-volatile data retention takes place, i.e. program code and data are sustained without 

power supply. MRAM reduces the power consumption because the refresh pulses as 

required for DRAM are no longer necessary. The data access is very fast (cf. SRAM) and 

the cells are small which results in a high device integration level. Table 9.1-1 depicts an 

overview to the typical memory parameters and compares MRAM and other memory 

technologies [Fre07]. 

Table 9.1-1:  Comparison of expected MRAM features with other memory technologies 

[Fre07] 

 MRAM SRAM DRAM Flash FeRAM 

Read Speed fast fastest medium fast fast 

Write Speed fast fastest medium low medium 

Non-Volatile yes no no yes yes 

Low Voltage yes yes limited limited limited 

Complexity medium low medium medium medium 

 

The advantages of MRAM based systems are quite evident. The main advantages of 

MRAM compared to Flash memory technology, with respect to reprogramming activities, 

is the byte-wise access and the possibility to overwrite data without an initial memory 

erase phase.  

9.2 Discussion 

Some disadvantages of Flash memory’s reprogramming process caused by the inherent 

technology can be eliminated by the employment of possible MRAM technologies.  

Erase process skipping 

In section 2.4 the typical reprogramming process of a flash memory based embedded 

system was described. Normally Flash memory technology does not allow the overwriting 

of programmed memory cells without prior erasing memory partitions/blocks. It is currently 

not possible to erase a single memory cell.  
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MRAM technology allows overwriting of individual programmed memory cells without prior 

erasing of the cell. Therefore the erase step within the reprogramming process is no long-

er required. Table 9.2-1 shows the potential to safe processing time based on the erase 

time of two different, currently state of the art microcontrollers’ Flash memory.  

Table 9.2-1:  Example of microcontroller’s erase time for Flash memory 

Infineon TriCore TC 1797 [TC1197] min. typ. max unit 

Program Flash Erase Time per 256 kByte Sector - - 5 s 

 

Freescale MC9S12XEP [MC9S12X] min. typ. max  

Program Flash Erase Time per 1024 Byte  20 21 ms 

Normalized to 256 kByte  5.1 5.4 s 

 

Based on this data given by the manufacturer’s data sheets [TC1197, MC9S12X] the 

predicted total erase time for a 2 MByte on-chip flash memory is up to 40 seconds. This 

time can be saved potentially in case of skipping the erase process because of using 

MRAM. With focus on the total amount of automotive embedded systems as discussed in 

chapter 1 these potential might be considerably higher. 

Byte-wise read/write access  

In a Flash memory complete physical memory sectors must be erased and repro-

grammed. Erasing the complete physical sector is necessary no matter if a complete 

memory section or only a few bytes have changed. Thus, the data for reprogramming the 

complete physical sector always has to be transferred and programmed. MRAM technolo-

gy allows read/write access basically for each single byte (alignment has to be taken into 

account). This byte-wise read/write access allows the usage of the method of differential 

file update as discussed previously in section 5.4 but without the Flash memory’s  

disadvantage of storing the non-changed bytes into RAM mirror. Only the real differences 

of the old and new compiler/linker output file have to be transferred and reprogrammed. 

Of course, the overall effort of this method is high but the benefit is enormous. The data 

transfer time could be reduced significantly and this will finally solve the initial problem. 

9.3 Case study to the differential file approach 

In section 5.4 the approach of software reprogramming based on differential file data 

transfer was discussed in principle. The assumption in section 5.4 was that software bug 
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fixing is the most important reason for software reprogramming and 80% of bug fixings 

result in less than 1 kByte OP-code changes and only 20% in more than 1 kByte. As a 

result of this assumption only a few bytes within a memory sector/partition need to be 

changed compared to the total software size. 

The case study below continues the case study of section 5.4 and compares the differen-

tial file approach for Flash memory technology systems as well as for MRAM technology 

based systems.  

According to chapter 2 and as mentioned above Flash memory requires that the corre-

sponding memory part is previously erased before it can be programmed. If the RAM 

resources are not given to mirror the corresponding memory part, this memory part will be 

erased and the data for that part have to be transferred completely. For MRAM technology 

only the differences have to be transferred.  

The microcontroller parameters (Flash memory section size etc.) are based on Infineon’s 

TriCore TC1197 microcontroller. According to table 9.1-1 it is assumed that the write 

speed to MRAM is equal to existing Flash memories and therefore we use the write speed 

value of the TC1767, too. We assume that the size of the modified OP code is 1 kByte 

and all modifications are constrained within 4 memory pages73.  

The case study based on the assumptions and parameters as listed below: 

Modified OP code size: 1 kByte 

Flash memory size: 16 kByte, 128 kByte, 256 kByte 

Erase performance: 51.2 kByte/s (refer to table 9.1-1) 

Program performance: 50 kByte/s74 [TC1197, TC1197-2] 

Payload:   8 Byte (pure CAN protocol without any transport protocol) 

FrameLength:  123 bit (refer to table 4.1-1) 

CAN bit rate:  500 kbit/s 

The memory erase time tErase is calculated as  

Erase
Erase f

MemorySize
t =    (9.3-1) 

The data transfer time tTransfer is calculated by formula 9.3-2: 

                                                

73 Page = 256 Byte Refer to [TC1797-2] 
74 256 byte per page programmed in 5 ms � (256 byte : 0.005s) : 1024 = 50 kByte/s 
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bitrate
1

hFrameLengt
Payload

DataVolume
t transfer ⋅⋅=    (9.3-2) 

Table 9.3-1 depicts the results of that theoretical case study: 

Table 9.3-1:  Differential file approach comparison to Flash and MRAM technology 

Flash 256 kByte 256 kByte 5.000 s 8.061 s 5.120 s 18.181 s
Flash 128 kByte 128 kByte 2.500 s 4.030 s 2.560 s 9.090 s
Flash 16 kByte 16 kByte 0.313 s 0.504 s 0.320 s 1.136 s
MRAM 256 kByte 1 kByte 0.000 s 0.031 s 0.020 s 0.051 s
MRAM 128 kByte 1 kByte 0.000 s 0.031 s 0.020 s 0.051 s
MRAM 16 kByte 1 kByte 0.000 s 0.031 s 0.020 s 0.051 s

Memory
Type

Total
time

Data volume
to transfer

Erase
time

Transfer
time

Program.
time

Sector Size
[TC1197]

 

The total time depicts a significant benefit for MRAM technology based software repro-

gramming process. The data transfer time as well as the reprogramming time is reduced. 

An erase process is not required and therefore an erase time will not occur. 

Nevertheless, to get the results as depicted ahead, a corresponding software develop-

ment process is a previously required. If the software is not designed and prepared to 

support differential file updates (refer to chapter 4) the benefits will not be realized.  

9.4 Conclusion 

The MRAM technology’s byte-wise access allows software updates by transferring and 

overwriting only differences between the old and new software. Due to the reduced 

amount of data to transfer, the data transfer time and the physical programming time 

significant time savings can be made. Thus the potential cost savings of the new  

technologies could solve the rapidly approaching technological limitation of flash  

memories in modern complex embedded vehicle systems. 

As introduced ahead, MRAM seems to be the next technology step for embedded  

non-volatile memory. With respect to software reprogramming the typical software  

architecture and software structure has to be modified to fulfil the initial requirements to 

use the differential file update approach. Only if software is designed to produce smallest 

possible OP-code differences between an actual and a preview file the full power of the 

differential file update method can be realized.  

Appendix A provides a concentrated view to MRAM technology with focus to software 

reprogramming aspects which are discussed in several chapters of this work. 
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This chapter presents a case study to verify the quantitative models presented to evaluat-

ed software reprogramming purpose in the earlier chapters. The study provides answers 

to the question of performance increase based on protocol optimisations as well as the 

effects of data size reduction (compression). 

10.1 Software reprogramming via CAN 

This section is intended to verify the theoretical discussions of chapter 3 and chapter 4 by 

a real implementation. The flashloader implements a CAN communication stack according 

to the protocols ISO 11898, ISO 15765-2 and ISO 14229. 
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Experimental Setup 

The approaches of chapter 3 and 4 to accelerate data transfer have been implemented 

within a prototype project for a V850 CargateM75 microcontroller. Figure 10.1-1 depicts the 

evaluation test system layout.  

 

Figure 10.1-1:  Test environment 

PCU:   FlashCedere®  V1.20 and PCCOM: V01.61 

CAN - PCC-TR2Box: S/N 0700/027-1 

Evaluation Board:  NEC AB050 CAG4M ; SN CA 0050071D V1.00 

Microcontroller:  V850 UPD 70F 3461 6J(A1) (“CargateM”) 

The PCU (FlashCedere®76) controls the reprogramming process by sending the sequence 

of diagnostic services as described in section 2.5.4. The CAN-TR2 Box provides PCU’s 

CAN interface. The connector’s pin layout of the CAN-TR2-Box and the evaluation board 

are different. Hence, the CAN signals (CAN-High and CAN-Low) are mapped to the corre-

sponding pins by the Patch-Box. The debugger connector allows flashloader reprogram-

ming for the different test scenarios. 

10.1.1 ISO15765-2 (CAN-TP) model evaluation  

Study’s aim 

The aim of this study is the validation of formula 4.1-17. This formula represents the 

mathematical model to calculate the data transfer time via CAN transport layer protocol 

according to ISO 15765-2.  

                                                

75 Microcontroller: Renesas V850 D70F3461GJ(A1) 
76 SMART Electronic Development GmbH, Germany [Smart] 
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Experimental Setup 

In section 4.1-2 communication via the transport layer protocol according to ISO 15765-2 

was discussed. It was stated that segmented data transfer provides benefits compared to 

unsegmented data transfer with focus on data transfer rate. Figure 10.1-2 depicts the 

PDU sequence for a segmented transmission of 4,082 byte from a sender node to a re-

ceiver node. 

 

Figure 10.1-2:  Segmented data transfer according to ISO 15765-2 

The model depends on the configuration parameters as listed in table 10.1-1 and the 

system runtime parameters as listed below: 

a) Sender node’s processing time N_Cs  

b) Receiver node’s processing time N_Br  

 

ISO 15765-2 – N_Br and N_Cs parameter 

An additional delay is the processing time of ISO 15765-2 transport protocol’s flow control 

handling. As discussed in section 4.1.2.4 the ECU (N_Br time) as well as the PCU (N_Cs 

time) requires time to process a FlowControl PDU. This delay is independent from the bus 

system’s baud rate. The constant value reduces the data transfer rate. This is also an 

indication for the theoretically discussion about reduction of FlowControl PDUs to reduce 

processing delays by increasing the block size parameter in the transport layer protocol.  

To evaluate the model the system related processing times N_Cs and N_Br have to be 

measured. These processing times are independent of the underlying bus system. 
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Table 10.1-1:  PCU and ECU communication configuration parameters  

Parameter Value 

CAN Baud rate 125 ; 250 ; 500 ; 1,000 kBit/s 

CAN Address Mode 11 bit – normal addressed 

Block size (BS) 32 

STmin 0 ms 

 

10.1.1.1 Measurement results 

Table 10.1-2 shows the measurement results for the test system.  

Table 10.1-2:  Measurement results of PCU and ECU processing parameters  

unit
125 250 500 1,000 kBit/s

N_Cs 2.9 2.9 2.7 2.6 ms
N_Br 0.003 0.003 0.003 0.003 ms
STmin 0.014 0.024 0.030 0.038 ms

nPDUs 603 603 603 603

nCF_PDUs 583 583 583 583

Transfer Time 665.3 363.7 215.7 144.5 ms
Transferred data

dSDU_ISO15765-2

4,082 4,082 4,082 4,082 Byte

5.99 10.96 18.48 27.59 kByte/s
47.931 87.686 147.827 220.722 kBit/s

Parameters CAN baud rate

Performance

 

The measurement shows a stable parameter set for N_Cs (2.77ms) and N_Br (0.003ms). 

The transport layer is configured to a STmin = 0. Nevertheless, the ECU requires pro-

cessing time between two ConsecutiveFrame (CF) PDUs. 

10.1.1.2 Evaluation 

In chapter 4 formula 4.1-17 was developed to calculate the net data rate for data transfer 

via CAN.  

( ) ( )Cs_NBr_N
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minST
PDU_CF
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The integration of all configured of measured parameters results in the formula below: 
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Table 10.1-3:  Communication model’s calculation of data transfer rate  

unit
125 250 500 1,000 kBit/s

dPDU_ISO11898
123 123 123 123 bit

STmin 0.014 0.024 0.030 0.038 ms
Transferred data

dSDU_ISO15765-2

4,082 4,082 4,082 4,082 Byte

6.09 10.98 18.30 26.87 kByte/s
48.758 87.877 146.425 214.978 kBit/s

Parameters CAN baud rate

Performance

 

Table 10.1-3 depicts the calculated data transfer rate results of the communication model 

based formula 4.1-17. The error between the measured and calculated data transfer rates 

is in a range of -1.7% to + 2.7%. 

The model depicts that doubling pure CAN bit rate will not result in doubling communica-

tion performance. The reason is the relation between the PDU transfer and the nearly 

constant processing delays: 

( ) ( )s10773.219t566td603

td603
r

3
minSTbit11898ISO_PDU

bit11898ISO_PDU
−⋅+⋅+⋅⋅

⋅⋅
=  

Table 10.1-4:  Communication model’s calculation of data transfer rate  

unit
125 250 500 1,000 kBit/s

Relation [ tTransfer : (tTransfer + tDelay) ] 0.91 0.82 0.68 0.50

Theoretically max value (refer to table 4.1-4) 6.7 13.3 26.7 53.3 kByte/s
Corrected value 6.08 10.87 18.19 26.65 kByte/s
Measured value (refer to table 10.1-2) 5.99 10.96 18.48 27.59 kByte/s

Parameters CAN baud rate

 

Table 10.1-4 depicts the calculated relation. Due to that effect the theoretically possible 

maximum data transfer rate will not be reached. Table 10.1-4 depicts the theoretically  

possible values (refer to Table 4.1.-4 in chapter 4). According to the calculated relation, 

the maximum data transfer rate via CAN (1,000 kBit/s) is only 50% of the theoretically 

possible data rate. The comparison between the corrected but theoretically calculated 

values and the real measurement values proofs that theory. 

10.1.1.3 Conclusion 

Formula 4.1-17 works. The additional delays result in a reduction of the maximum data 

transfer rate for a segmented data transfer.  
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10.1.2 ISO14229 (UDS) on CAN model evaluation 

Study’s aim 

The aim of this study is the validation of formula 4.1-21. This formula represents the 

mathematical model to calculate the download time via CAN transport layer protocol 

according to ISO 15765-2. 

Experimental Setup 

In section 4.1-3 the complete download of a reprogramming sequence based on  

ISO 14229 - UDS via the transport layer protocol according to ISO 15765-2 on CAN is 

discussed. Figure 10.1-3 depicts the PDU sequence of several segmented transmission of 

4,082 byte from a PCU to an ECU (Request) and the responses from the ECU to the 

PCU. 

 

Figure 10.1-3:  Segmented data transfer according to ISO 15765-2 

The model depends on the configuration parameters as listed in table 10.1-5 and the 

system runtime parameters as listed below: 

a) PCU’s processing time N_Cs (refer to section 4.1.2.4) 

b) ECU flashloader’s processing time N_Br (refer to section 4.1.2.4) 
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c) The ECU flashloader’s physical programming time tPhysProg () 

d) The PCU’s processing time tprocessUDS () 

To evaluate the model the system related processing times N_Cs, N_Br, tPhysProg and  

tprocessUDS have to be measured. These processing times are independent of the underlying 

bus system. 

Table 10.1-5:  PCU and ECU communication configuration parameters  

Parameter Value Comment 

CAN Baud rate 125 ; 250 ; 500 ; 1,000 kBit/s configured 

CAN Address Mode 11 bit – normal addressed configured 

Block size (BS) 32 configured 

STmin 0 ms configured 

dSDU_ISO15765-2 4,082 Byte configured 

nPDUs 603 refer to table 10.1-2 

nCF_PDUs 583 refer to table 10.1-2 

 

10.1.2.1 Measurement results 

Table 10.1-6 shows the measurement results for the test system.  

Table 10.1-6:  Measurement results of PCU and ECU processing parameters  

unit
125 250 500 1,000 kBit/s

1 N_Cs 2.9 2.9 2.7 2.6 ms
2 N_Br 0.003 0.003 0.003 0.003 ms
3 STmin 0.014 0.024 0.030 0.038 ms
4 tPhysProg 21.41 22.13 22.34 22.61 ms

5 tProcessUDS 5.36 5.27 5.94 5.55 ms

6 Download Time 77.7 44.1 27.5 19.3 s
7 Transferred data

dSDU_ISO14229

458,720 458,720 458,720 458,720 Byte

5.77 10.17 16.27 23.23 kByte/s
46.146 81.354 130.145 185.862 kBit/s

8 Performance

Line Parameters CAN baud rate

 

The measurement shows a nearly stable parameter set for N_Cs (2.77ms) and N_Br 

(0.003ms). The transport layer is configured to a STmin = 0. Nevertheless, the ECU re-

quires processing time between two ConsecutiveFrame (CF) PDUs. The programming 

time tPhysProg of this microcontroller is approximately 22.12 ms.  
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The PCU requires a processing time tprocessUDS of 5.53 ms between a received response 

from the ECU and the transmission of the next request. 

10.1.2.2 Evaluation 

In chapter 4 the formula 4.1-21 was developed to calculate the net data rate for data 

transfer via CAN on ISO 15765-2 based on UDS (ISO 14229).  
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The number of repetitions n is calculated by: 
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Hence, 112 UDS requests are transmitted with a SDU size of 4,082 bytes. The last UDS 

request has a SDU size of 1,760 byte and is calculated by formula 4.1-20: 

760,1082,4mod720,458
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To transmit this data size, 260 PDUs (nPDUs(n)) are necessary (1 First Frame PDU,  

251 Consecutive Frame PDUs (nCF_PDU(n)) and 8 Flow Control PDUs). 

The integration of all configured of measured parameters results in the formula below: 
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Table 10.1-7:  Communication model’s calculation of data transfer rate  

unit
125 250 500 1,000 kBit/s

dPDU_ISO11898 123 123 123 123 bit

Transferred data

dSDU_ISO14229

458,720 458,720 458,720 458,720 Byte

5.84 10.19 16.23 22.64 kByte/s
46.699 81.543 129.811 181.134 kBit/s

Parameters CAN baud rate

Performance

 

Table 10.1-7 depicts the calculated data transfer rate results of the communication model 

based on formula 4.1-21. The error between the measured and calculated data transfer 

rates is in a range of -1.2% to + 2.6%. 

10.1.2.3 Conclusion 

Formula 4.1-21 works. Compared to the study in section 10.1.1, the additional delays for 

the physical data reprogramming, the response transmission and the PCU processing 

time results in a reduction of the maximum data transfer rate for a segmented data  

transfer.  
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10.1.3 CAN bus baud rate optimisation 

Study’s aim 

The aim of this study is the validation of the approach to increase the software repro-

gramming performance for an embedded system by increasing physical layer’s baud rate. 

The theoretical background was discussed in section 4.1. 

Experimental Setup 

The system was configured as listed in table 10.1-8.  

Table 10.1-8:  PCU and ECU communication configuration parameters  

Parameter Value Comment 

CAN Baud rate 125 ; 250 ; 500 ; 1,000 kBit/s configured 

CAN Address Mode 11 bit – normal addressed configured 

Block size (BS) 32 configured 

STmin 0 ms configured 

dSDU_ISO14299 458,720 Byte configured 

 

10.1.3.1 Measurement results 

Figure 10.1-4 depicts the measurement results for the software reprogramming data 

transfer between the PCU and the ECU. Table 10.1-9 depicts the details. 

Software reprogramming performance on CAN
(Software download based on ISO 14229 UDS protocol)

(ISO 15765-2 configuration: Stmin = 0, Blocksize 32)
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Figure 10.1-4:  Software reprogramming performance on CAN 
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Table 10.1-9:  Software reprogramming performance on CAN  

unit
125 250 500 1,000 kBit/s

Transferred data

dSDU_ISO14229

458,720 458,720 458,720 458,720 Byte

Download Time 77.7 44.1 27.5 19.3 s
5.77 10.17 16.27 23.23 kByte/s

46.15 81.35 130.15 185.86 kBit/s
346.09 610.16 976.09 1,393.97 kByte/min

Parameters CAN baud rate

Performance

 

 

10.1.3.2 Evaluation 

The critical evaluation of the measurements provides 3 main results: 

1) Increasing bit rate results in increasing programming performance. 

2) Doubling bit rate does not result in doubling programming performance. 

3) The theoretically calculated maximum data transfer rates are not achieved. 

As discussed in the previous studies the system’s processing delays have an impact to 

the overall performance. The delays are constant and usually independent of the bus 

systems bandwidth. In relation to the pure data transfer time the delays’ impact is increas-

ing the shorter the pure data transfer time is. In the study this effect is visible when dou-

bling baud rate (e.g. 500 kBit/s to 1,000 kBit/s) results only in 42.8% performance 

increase. 

10.1.3.3 Conclusion 

System Design Requirements 

The system’s delay times have to be analysed before a decision to network optimisation 

by increasing CAN baud rate is done. As depicted in this and the previous studies within 

this thesis, a bandwidth optimisation will result in a higher data transfer rate but not auto-

matically in a satisfactory system reprogramming performance. Without knowledge of the 

system delays a bandwidth optimisation is not advisable. 

 

 

 

 



Chapter 10 – Case study – software reprogramming 168 

10.1.4 ISO 15765-2 (CAN TP) Flow Control parameter Block size 

Study’s aim 

In section 4.1.2.1 the impact of the ISO 15765-2 Flow Control PDU’s parameter BlockSize 

was analysed for a data transfer of only 4,095 bytes. The aim of this study is the validation 

of the research results even if the data transfer size is increased to  

45,870 bytes. 

Background 

The flow control parameter Block Size (BS) defines the number of Consecutive Frame 

(CF) PDUs that can be received by a receiver node in one block within a segmented data 

transmission. After reception of that block a Flow Control (FC) PDU has to be sent by the 

initial receiver node to signal the current flow state and to continue data transfer. 

Experimental Setup 

The system was configured as listed in table 10.1-10.  

Table 10.1-10:  PCU and ECU communication configuration parameters  

Parameter Value Comment 

CAN Baud rate 125 ; 250 ; 500 ; 1,000 kBit/s configured 

CAN Address Mode 11 bit – normal addressed configured 

Block size (BS) {0, 1, 8, 16, 32} configured 

STmin 0 ms configured 

 

The BlockSize (BS) parameter of the flashloader’s FlowControl PDU varied according to 

the values as listed above. 

10.1.4.1 Measurement results 

Table 10.1-11 depicts the measurement results (average of 5 independent measure-

ments) for each flashloader BlockSize configuration. Figure 10.1-5 depicts the corre-

sponding graphical evaluation. 

Table 10.1-11:  Flow Control parameter “BS” measurement results 

0 CF-Frames 458,720 Byte 23.16 s 19.34 kByte/s 1,161 kByte/min 100.00 %
1 CF-Frames 458,720 Byte 192.83 s 2.32 kByte/s 139 kByte/min 12.01 %
8 CF-Frames 458,720 Byte 48.51 s 9.24 kByte/s 554 kByte/min 47.74 %

16 CF-Frames 458,720 Byte 35.03 s 12.79 kByte/s 767 kByte/min 66.12 %
32 CF-Frames 458,720 Byte 28.43 s 15.75 kByte/s 945 kByte/min 81.45 %

Flashsize Flashtime Data transfer rate RelationBS
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ISO 15765-2 performance analysis
Data transfer rate for different BlockSize parameter values
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Figure 10.1-5:  Impact of Flow Control parameter BS 

10.1.4.2 Evaluation 

The measurement result has an equal tendency and figure 10.1-5 has an equal character-

istic as figure 4.1-4. As discussed in section 4.1.2.1 the parameter BlockSize (BS) has a 

significant impact on the data transfer rate. 

A block size equal to 0 provides best results because after the first FlowControl PDU no 

additional FlowControl PDUs are required. Hence, neither additional PDU runtimes and 

processing times within the ECU nor additional PCU processing times occur.  

A Blocksize equal to 1 provides worse results because after each received data PDU the 

ECU has to send a flow control PDU. This results in a maximum possible additional PDUs 

processing time in the PCU and ECU and additional PDU runtimes for FlowControl PDUs. 

Compared to the theoretically calculated values based on an ideal system, without any 

system delays, in table 4.1-4 (note: transmission of only 4,095 byte) the measured per-

formance relation between the configuration of BS = 0 and other BS configurations is 

higher. This is because of the additional system delays N_Cs, N_Br, tPhysProg and tProcess_UDS 

which reduce the data transfer rate even if only a few FlowControl PDUs are necessary. 
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10.1.4.3 Conclusion 

The trend of the curve in figure 4.1-4 (section 4.1.2.1) is correct. The impact of the config-

ured parameter BlockSize is given.  

System Design Requirements 

With focus on data transfer rate the ISO 15765-2 FlowControl parameter BlockSize shall 

be configured equal to zero. On the other hand, this requires buffer to receive the com-

plete SDU without further FlowControl communication to the sender node. If not enough 

buffer is available, the BlockSize has to be configured to a value that supports the maxi-

mum possible buffer size. Nevertheless, each reduction of the Blocksize parameter con-

figuration (when unequal to zero) will reduce the data transfer rate.  

 

10.1.5 ISO 15765-2 (CAN TP) FlowControl parameter S Tmin 

Study’s aim 

The aim of this study is the validation of the research results of section 4.1.2.2 where the 

impact of the ISO 15765-2 Flow Control PDU’s parameter of the minimum separation time 

STmin was theoretically analysed for a data transfer on 4,095 bytes. The study shall 

depict that the system behaviour is equal by trend, even if the data transfer size is in-

creased to 45,870 bytes. 

Experimental Setup 

The system was configured as listed in table 10.1-12.  

Table 10.1-12:  PCU and ECU communication configuration parameters 

Parameter Value Comment 

CAN Baud rate 125 ; 250 ; 500 ; 1,000 kBit/s Configured 

CAN Address Mode 11 bit – normal addressed Configured 

Block size (BS) 32 Configured 

STmin {0, 1, 5} ms Configured 

 

The STmin parameter of the flashloader FlowControl PDU varied according to the values 

as listed above. 
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10.1.5.1 Measurement results 

Table 10.1-13 depicts the measurement results (average of 5 independent measure-

ments) for each flashloader BlockSize configuration. Figure 10.1-6 depicts the corre-

sponding graphical evaluation.  

Table 10.1-13:  Flow Control parameter “STmin” measurement results 

unit
0 1 5

Transfered data size 408,720 408,720 408,720 Byte
Total programming time 28.43 73.58 342.61 s
Data transfer rate 15.8 6.1 1.3 kByte/s

945.3 365.3 78.5 kByte/min

STmin [ms]
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Figure 10.1-6:  Impact of Flow Control parameter STmin 

10.1.5.2 Evaluation 

The measurement result has an equal tendency and figure 10.1-6 has an equal character-

istic as figure 4.1-6. As discussed in section 4.1.2.2 the parameter STmin has a significant 

impact to the data transfer rate. 

A separation time STmin equal to zero provides best results. However, the measured 

maximum  data  transfer  rate  value  is  not  as  high  as  in  the  theoretical  discussion  in  

section 4.1.2.2. This is because of the additional system delays N_Cs, N_Br, tPhysProg and 

tProcess_UDS which reduce the data transfer rate even if no separation time by protocol is 

configured (refer to section 10.1.3). 
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10.1.5.3 Conclusion 

The trend of the curve in figure 4.1-6 (section 4.1.2.2) is correct. The impact of the config-

ured parameter STmin is given. The conclusion is that each separation time during repro-

gramming communication shall be avoided. Even the smallest gap between the PDUs 

provides a large delay time if this time is summarised during a long data transfer period 

(depends on the size of total transferred data). This is common to all communication 

systems event triggered, as well as time triggered systems. However, for time triggered 

systems (e.g. FlexRay) the delay is mainly given by the global schedule. 

 

System Design Requirements 

With focus on data transfer rate the ISO 15765-2 FlowControl parameter STmin shall be 

configured equal to zero. This is the only possibility to ensure that only the system specific 

delays are involved for data transfer and protocol handling. On embedded system’s side it 

has to be ensured, that a CAN controller is able to process a received PDU within the 

available time period before the next consecutive PDU will receive. A hardware interrupt 

based data reception concept as discussed in section 6.2 will be a possible solution.  

10.2  Application Protocol ISO 14229 (UDS) Optimisa tion 

As theoretically analysed in chapter 3 and chapter 4 there are several approaches to 

accelerate the data transfer between a PCU and an ECU. This test series has the focus 

on the three approaches based on application layer implementation: 

a) Double buffered data transfer 

b) Data compression  

c) Combination of double buffering and data compression 

Study’s aim 

The aim of this study is the evaluation of the theoretically discussed performance increase 

for the different approaches. The study shall also proof that only the combination of both 

approaches will provide best results. 
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Experimental Setup 

The system was configured as listed in table 10.2-1.  

Table 10.2-1:  Flow Control parameter “STmin” measurement results 

Parameter Value Comment 

CAN Configuration 

CAN Baud rate 125 ; 250 ; 500 ; 1,000 kBit/s configured 

CAN Address Mode 11 bit – normal addressed configured 

ISO 15765-2 Configuration 

Block size (BS) 32 configured 

STmin 0 ms configured 

SDU size 4,082 Byte ($FF2) configured 

Compression algorithm 

Uncompressed data size  458,720 Byte (447 kByte)  

Compressed data size 328,730 Byte (321 kByte)  

Compression ratio 71.66% (-28.34%)  

 

10.2.1.1 Measurement results 

Measurement results overview 

Table 10.2-2 depicts the measurement results of different data transfer acceleration sce-

narios. 

Table 10.2-2:  Measurement results of different data transfer acceleration scenarios 

5.70 kByte/s 10.09 kByte/s 15.65 kByte/s 17.80 kByte/s
100 % 100 % 100 % 100 %
5.99 kByte/s 10.37 kByte/s 16.25 kByte/s 18.46 kByte/s
105 % 103 % 104 % 104 %
7.41 kByte/s 12.58 kByte/s 18.26 kByte/s 20.61 kByte/s
130 % 125 % 117 % 116 %
8.35 kByte/s 14.32 kByte/s 21.64 kByte/s 24.79 kByte/s
146 % 142 % 133 % 134 %

Data rateScenario

Basic

DoubleBuffer

Compression

DoubleBuffer+Compression

CAN 500 kBit/s CAN 1000 kBit/sCAN 125 kBit/s CAN 250 kBit/s
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Figure 10.2-1:  Measurement results – best case relation for all scenarios 

Contributions of the different parameters 

Figure 10.2-2 depicts the data transfer rate for the different scenarios in correlation to the 

contributions of the different influencing parameters for all measured scenarios. 
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Figure 10.2-2:  Contribution of the different parameters 
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Table 10.2-3 depicts the measured parameter values.  

Table 10.2-3:  Measurement results – detailed analysis 

unit
125 250 500 1,000 kBit/s

Transferred data

dSDU_ISO14229

458,720 458,720 458,720 458,720 Byte

1 Basic Download Time 78.6 44.4 28.6 25.2 s
2 5.70 10.09 15.65 17.80 kByte/s
3 45.60 80.74 125.18 142.38 kBit/s
4 342.00 605.58 938.88 1,067.87 kByte/min

5 Number of SDU(4080Byte) 113 113 113 113

6 tDownload(4080Byte) 704.55 412.04 247.93 212.38 ms

7 N_Br 0.03 0.02 0.01 0.01 ms
8 N_Cs 3.62 3.12 3.16 4.53 ms

9 tProg 21.80 22.25 22.36 22.79 ms

10 tPCU 4.18 4.70 3.82 7.61 ms

11 DoubleBuffer Download Time 74.8 43.2 27.6 24.3 s
12 5.99 10.37 16.25 18.46 kByte/s
13 47.89 82.99 129.99 147.72 kBit/s
14 359.20 622.44 974.98 1,107.87 kByte/min

15 Number of SDU(4080Byte) 113 113 113 113

16 tDownload(4080Byte) 688.84 393.70 242.24 197.33 ms

17 N_Br 0.03 0.02 0.01 0.01 ms
18 N_Cs 3.42 3.81 4.03 3.46 ms

19 tProg 0.03 0.02 0.02 0.02 ms

20 tPCU 7.71 8.03 6.89 17.15 ms

21 Compression Download Time 60.5 35.6 24.5 21.7 s
22 7.41 12.58 18.26 20.61 kByte/s
23 59.28 100.62 146.05 164.88 kBit/s
24 444.60 754.63 1,095.36 1,236.59 kByte/min

25 Number of SDU(4080Byte) 81 81 81 81

26 tDownload(4080Byte) 777.99 470.47 345.24 298.21 ms

27 N_Br 0.03 0.02 0.01 0.01 ms
28 N_Cs 3.68 2.64 3.41 4.54 ms

29 tProg 72.91 73.12 72.91 73.22 ms

30 tPCU 2.83 5.11 2.95 7.41 ms

31 DoubleBuffer Download Time 53.7 31.3 20.7 18.1 s
32  + Compression 8.35 14.32 21.64 24.79 kByte/s
33 66.79 114.52 173.13 198.35 kBit/s
34 500.91 858.93 1,298.49 1,487.60 kByte/min

35 Number of SDU(4080Byte) 81 81 81 81

36 tDownload(4080Byte) 649.68 366.32 242.62 198.99 ms

37 N_Br 0.04 0.02 0.02 0.01 ms
38 N_Cs 3.04 3.04 3.60 4.04 ms

39 tProg 0.03 0.02 0.02 0.02 ms

40 tPCU 4.20 5.35 6.54 16.32 ms

Performance

Performance

Line Scenario Parameters CAN baud rate

Performance

Performance

 

10.2.1.2 Evaluation 

Figure 10.2-3 depicts a principle, abstract and not in a time content view of the different 

test scenario results.  
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Figure 10.2-3:  Test result timing evaluation 

 

Double buffered data transfer (only)  

Because of microcontroller’s high performance physical programming (≈ 180kByte/s) the 

double buffered data transfer as the only optimisation method provides only a small bene-

fit. The physical programming time for 4,080 Byte is only 22.3 ms. Compared to the corre-

sponding data transfer time of CAN125kBit/s and CAN250kBit/s, the relation between tTransfer and 

TProg is too small (refer to figure 3.2-4). For CAN500kBit/s and CAN1000kBit/s a higher increase 

of the data transfer rate is expected because of a better relation of tTransfer and tProg. But the 

detailed analysis results of table 10.2-3 and figure 10.2-2 depict also that the PCU’s pro-

cessing time to handle the reprogramming protocol UDS is increased. Hence, the benefit 

of processing data reception and physical programming in parallel will be reduced.  

Data compression (only) 

As described in chapter 5 the data compression approach requires additional time to 

decompress the data before physical programming. This time can be calculated by the 

values of scenario “Basic” (data transfer without compression) and scenario “Compres-

sion” (data transfer with compression): 

WithComp_ogPrPhyspWithoutCom_ogPrPhysionDecompress ttt −=  
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Table 10.2-4:  Decompression routine runtime 

125 250 500 1000
tProg_uncompressed

(Scenario "Basic")
21.41 22.13 22.34 22.61 ms

tProg_compressed

(Scenario "Compression")
73.01 73.05 72.99 73.24 ms

tDecompression 51.60 50.92 50.65 50.63 ms

Parameter UnitCAN bit Rate

 

 

The data compression to 71% reduce the number of 4,080 byte blocks from 113 to 81 

(refer to table 10.2-3 – line 5, 15, 25, 35). But the additional delay time for decompression 

(visible in figure 10.2-2) of approx. 50.95 ms reduce the benefit of compressed data trans-

fer. Nevertheless, for low speed bus systems the PDU reduction to transmit all data and 

therefore the reduction of transmission time is significantly higher than the additional de-

compression time. For high speed bus systems the compression effect will be smaller 

because the relation of data transfer time reduction and additional compression time is 

smaller. 

Combination of double buffered data transfer and da ta compression 

The combination of doubled buffered data transfer and compressed data transfer provides 

best performance because the disadvantages of both methods are compensated. The 

additional time for decompression and the time for physical reprogramming are not visible 

because of the parallel processed data reception. Only the pure data transfer time is 

visible. The data compression results in a less number of PDUs necessary to transmit all 

data. The benefit is the higher the slower the bus system is because each saved PDU 

saves runtime and therefore reduce total data transfer time. 

The increasing PCU time is noticeable. A guess is that the ECU’s immediate response 

and the necessity to compress the data on PCU side require additional time which delays 

the data transfer. But those effects in the PCU implementation are not part of this work. 

10.2.1.3 Conclusion 

System Design Requirements 

The theoretically discussed approaches for data transfer acceleration works in principle. 

The case study demonstrates this in detail. The impact of the relation of tTransfer and tProg is 

given as discussed in chapter 3. 
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On the other hand the impact of the PCU is given. The higher the bandwidth the higher 

the performance reduction that is possible by the PCU because of additional delays during 

the protocol handling. 

Double buffered data transfer and therefore the possibility to do activities in parallel is the 

base for reprogramming acceleration. At least reprogramming and several other thinks 

like data de-compression etc. could be done during ongoing data reception. Next steps 

should be to do additional thinks in parallel. Signature calculation or CRC calculation, for 

example, can be done in parallel, too. But this was not in focus of this work. 

10.3 Gateway optimisation 

This study is intended to verify the theoretically discussed impacts of a gateway (refer to 

section 7.3) by a real implementation.  

Experimental Setup 

The gateway based on the AUTOSAR layered software architecture and implements a 

CAN communication stack according to the protocols ISO 11898 and ISO 15765-2. The 

gateway was implemented within a prototype project for a V850 Fx3 and for a V850 Fx4 

microcontroller. The implementation was evaluated with the PCU Monaco® developed by 

the Softing AG77. The PCU communicates on CAN1. The gateway is processing the trans-

fer from CAN1 to CAN2 and vice versa. The tracing tool documents the bus communica-

tion traffic on both bus systems. 

Figure 10.3-1 depicts the evaluation test system layout.  

 

Figure 10.3-1:  Gateway test system overview 

                                                

77 Softing AG, Germany [Softing] 
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PCU:   DTS Monaco (Softing) 

Gateway Microcontroller: V850 Fx3 and V850 Fx4 

ECU Microcontroller: D70F 3461 6J(A1) (“CargateM”) 

Tracing tool:  CANoe (Vector) 

 

10.3.1 Buffer for the partly store and forward rout ing strategy  

Study’s aim 

The aim of this study is to evaluate the impact of the number of buffers for gateway’s 

routing performance if a partly store and forward routing strategy is used (refer to  

section 7.3).  

10.3.1.1 Measurement results 

Figure 10.3-2 depicts the measurement results of the data transfer rate for different buffer 

configurations. 
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Figure 10.3-2:  Data transfer rate for different buffer scenarios 

10.3.1.2 Evaluation 

As discussed in section 7.3.2 the partly store and forward routing strategy is a good com-

promise between buffer demand (resources) and routing performance (data transfer rate). 

In figure 7.3-3 the necessity of more than one buffer is illustrated to accelerate the gate-

way‘s routing performance and the corresponding data transfer rate.  
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The study shows that if only one buffer is configured, this buffer is alternatively the target 

buffer during data reception on CAN1 or source buffer during data transmission on CAN2. 

If no buffer is available, the data transfer on the corresponding side is delayed and the 

total data transfer rate is decreased (8.77 kByte/s). In that case the  

Table 10.3-1:  Trace – data transfer for gateway with 2 buffer resources 

            +------------------------------+   +----------------------------+ 
            |  Transfer on CAN 1           |   | Transfer on CAN 2          | 
            +------------------------------+   +----------------------------+ 
 
  Time     Bus  ID  Data                       ID   Data 
  [..] 
---------------------------------------------------------------------------- 
Download to Flash  
---------------------------------------------------------------------------- 
  31.076538 1  640  1F F2 36 01 04 06 00 01 
  31.076827 2                                  640  1F F2 36 01 04 06 00 01 
  31.076840 1  5C0  30 20 00 00 6E 31 01 00 
  31.077087 2                                  5C0  30 20 00 FF FF FF FF FF 
  31.077836 1  640  21 02 03 04 05 06 07 08 
  [..] 
  31.087283 1  640  20 00 80 07 00 00 80 07 
  31.087557 1  5C0  30 20 00 00 6E 31 01 00 
  [..] 
  31.092758 1  640  2E 07 00 00 80 07 00 00 
  31.092963 2                                  640  21 02 03 04 05 06 07 08 
  31.093050 1  640  2F 80 07 00 00 80 07 00 
  31.093305 2                                  640  22 09 0A A0 50 09 22 00 
  [..] 
  31.098182 1  640  20 00 80 07 00 00 80 07 
  31.098299 2                                  640  20 00 80 07 00 00 80 07 
  31.098452 1  5C0  31 20 00 FF 25 A0 21 80 
  31.098651 2                                  640  21 00 00 80 07 00 00 80 
  31.099003 2                                  640  22 07 00 00 80 07 00 00 
  [..] 
  31.104210 2                                  5C0  30 20 00 FF FF FF FF FF 
  [..] 
  31.112257 2                                  640  27 80 07 00 00 80 07 00 
  31.112611 2                                  640  28 00 80 07 00 00 80 07 
  31.112848 1  5C0  30 20 00 04 05 06 07 08 
  31.112965 2                                  640  29 00 00 80 07 00 00 80 
  31.113319 2                                  640  2A 07 00 00 80 07 00 00 
  31.113673 2                                  640  2B 80 07 00 00 80 07 00 
  31.113838 1  640  21 00 00 80 07 00 00 80 
  31.114027 2                                  640  2C 00 80 07 00 00 80 07 
  31.114128 1  640  22 07 00 00 80 07 00 00 
  [..] 
  31.438352 2                                  640  27 00 00 00 00 00 00 00 
  31.438618 2                                  5C0  03 7F 36 78 FF FF FF FF 
  31.438895 1  5C0  03 7F 36 78 56 01 00 02 
  31.460015 2                                  5C0  02 76 01 78 FF FF FF FF 
  31.460293 1  5C0  02 76 01 78 56 01 00 02 
--------------------------------------------------------------------------- 

[..] 

A second buffer increases the routing performance slightly. A significant optimisation of 

routing performance is visible in case of 3 available buffer resources. As discussed in 

section 7.3.2 and illustrated in figure 7.3-4, this effect bases on the bandwidth relation of 

CAN1 and CAN2. (rBandwidth ≈ 1). The jitter of both bus systems (data transfer, processing 
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time etc.) is responsible that CAN1 will get no free buffer when necessary. In that case the 

communication on CAN1 must be delayed by the gateway until the communication frag-

ment on CAN2 has been finalized and a free buffer is available. Table 10.3-1 depicts a 

trace of gateways routing process with only 2 available buffers.  

The communication is delayed on CAN1 by a transport layer’s FlowControl PDU with 

FlowState = Wait ($31) at time stamp 31.098452. After all data of the buffer are transmit-

ted on CAN2 (visible by a FlowControl PDU with FlowState = ClearToSend ($30) at time 

stamp 31.104210) and the buffer is free again a FlowControl PDU on CAN1 is sent with 

FlowState = ClearToSend ($30) at time stamp 31.112848.  

In between this time of 5.396 ms no data transfer on CAN1 is possible. Hence, the total 

data transfer rate is decreased to 11.01 kByte/s (4,080 Byte / 0.361814s). The software 

reprogramming performance is decreased, too. 

10.3.2 Increasing gateways clock frequency  

High performance data routing within a gateway requires, that the routing process is han-

dled in the interrupt modus. That means that a received PDU is immediately processed 

(e.g. transport layer protocol analysis, payload separation, buffer storage etc.). If interrupt 

runtimes are too long, the system is not able to handle data reception and data transmis-

sion in parallel and typically the data transmission task will be skipped.  

An approach to optimise interrupt runtimes or interrupt latencies is to increase the sys-

tems clock frequency. Of course, this is only possible within small boundaries. Therefore 

the gateway was implemented on a V850 Fx4 microcontroller with a clock frequency of 

160 MHz.  

Table 10.3-2:  Routing performance on different microcontrollers 

V850 Fx3 V850 Fx4
Clock frequency 120 160 MHz
Gateway buffers 3 3 buffer
Data Size 458,752 458,752 Byte
Total Reprogramming time 33.36 26.37 s

13.43 16.99 kByte/s
805.82 1,019.20 kByte/min

Microcontroller unit

Routing Performance

CAN 500kBit/s to CAN 500 kBit/s
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10.3.3 Summary 

The theoretically discussed aspects for gateways to couple different bus systems in chap-

ter 7 are valid. The partly store and forward routing strategy provides good data transfer 

rate results, but the effort for implementation is high.  

To provide a high data transfer rate more than one buffer resource has to be implement-

ed. The number of buffers depends on the bandwidth relation of the bus systems. If the 

relation between source and target bus system is nearly 1 the jitter has to be taken into 

account and additional buffers are required.  

An increasing microcontroller’s clock frequency will result in a faster interrupt handling and 

therefore in a faster routing. On the other hand the increasing of clock frequencies pro-

vides other disadvantages: system’s temperature is increasing by higher clock frequency 

and other cooling mechanisms (cooling elements) are necessary. Also EMC might be a 

problem if the clock frequency is increasing. Both topics are critical, especially within the 

automotive industry. 

10.4 Software reprogramming via FlexRay 

This sub-chapter is intended to verify the theoretical discussions of chapter 4 a real im-

plementation.  

10.4.1 Vehicle access by CAN bus system 

The current vehicle networks implement FlexRay only as an in-vehicle bus system. That 

means that FlexRay is not directly accessible by a PCU. Based on the legislative OBD-II 

(onboard diagnostics for emission related ECUs based on ISO 15765-4) requirements, 

that requires CAN as the vehicle access bus system by low for OBD-II communication, 

CAN is also used for enhanced diagnostic communication. Due to that, software repro-

gramming as a part of enhanced diagnosis, is processes via CAN.  

The case study based on a real vehicle network configuration prove that communication 

for software reprogramming via FlexRay is currently limited by the vehicle access CAN 

bus system.  

Experimental Setup 

The approaches of chapter 4 to accelerate data transfer via FlexRay have been imple-

mented within a prototype project for a V850 Fx478 microcontroller. The flashloader 

                                                

78 Microcontroller: Renesas V850-D70F3461GJ(A1) 
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implements a FlexRay communication stack according to the protocols FlexRay 2.1, ISO 

10681-2 and ISO 14229. The implementation was evaluated with the PCU FlashCedere® 

developed by the SMART GmbH79. The PCU communicates on CAN. The gateway is 

processing the transfer from CAN to FlexRay and vice versa. The tracing tool documents 

the bus communication traffic on both bus systems. Figure 10.4-1 depicts the evaluation 

test system layout.  

 

Figure 10.4-1:  FlexRay test system overview 

(PCU):   FlashCedere® V1.20  (8399) and PCCOM: V01.61 

CAN - PCC-TR2Box: S/N 0700/027-1 

Gateway Microcontroller: V850 Fx3 

ECU Microcontroller: V850 Fx4 

With focus on software reprogramming within a vehicle the typical communication link 

within implemented: The PCU communicates on CAN. A gateway is processing the data 

from CAN to FlexRay and vice versa. The tracing tool documents the bus communication 

traffic on both bus systems.  

CAN bus system 

The CAN bus system was configured as listed below: 

Bit rate:     500 kBit/s 

ISO15765-2 FlowControl.STmin:  0 ms 

ISO15765-2 FlowControl.Blocksize: 32 PDUs 

 

 

                                                

79 SMART Electronik Development GmbH, Germany [Smart] 
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FlexRay schedule 

The FlexRay communication schedule was configured as listed below: 

Base cycle time:    5 ms 

Number of gateway PDUs per cycle: 8 

Gateway PDU cycle repetition  1 

Gateway PDU payload length:  42 Byte 

Number of ECU PDUs per cycle:  1 

ECU slot PDU repetition:   1 or 4 

ECU PDU payload length:   42 Byte 

 

10.4.1.1 Protocol Restrictions 

As discussed in section 3.2.2 the data transfer rate on FlexRay depends on several con-

figuration parameters. 

FlexRay schedule and FlexRay PDU’s payload 

A main influencing factor for the data transfer performance is the payload that is transmit-

ted within one communication cycle. In the study 42 byte payload for each FlexRay PDU 

are configured and the schedule allows transmission of 8 PDUs per cycle. Due to ISO 

10681-2 protocol (refer to section 4.2.2) the possible payload for data transfer must re-

duced by 8 byte for the Start Frame’s PCI and 6 byte for the Consecutive Frame’s PCI. 

Hence, if only Consecutive Frame PDUs are transmitted and all PDUs per cycle are in 

use, a payload of 288 byte per cycle is possible. 

ISO 10681-2 configuration 

The FlexRay communication layer protocol ISO 10681-2 defines a data flow controlling 

(hand shake) between sender and receiver via Flow Control PDUs (refer to figure 4.2-10). 

With focus on data transfer rate optimisation this Flow Control PDUs delay the data 

transmission. Because of FlexRay protocol’s exclusive slot allocation for a sender node 

(refer to section 4.2.1) the cycle repetition of this slot has an impact to the data transfer 

rate. In case, the cycle repetition is configured to 4, in worst case the sender of the Flow 

Control PDU is allowed to transmit the PDU after 4 communication cycles. During this 

time no data transfer on that communication link is allowed. Hence, the communication 

layer must be configured that no additional Flow Control PDUs after the initial one are 

required. This is possible if on sender side the transmission mode of  

ConsecutiveFrame_EOB PDUs is disabled and on sender side enough buffer for  

the data reception is configured (this results in a Flow Control Bandwidth Control  
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parameter equal to zero and means no bandwidth control is necessary – refer to table 

4.2.5 and [ISO 10681-2_2]). 

10.4.1.2 Test results 

Figure 10.4-2 depicts measured and calculated data transfer rates for the different net-

work configurations.  
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Figure 10.4-2:  FlexRay data transfer rate  

The data transfer values for CAN500kBit/s and CAN1000kBit/s as the source bus system are 

measured. To depict the potential of that FlexRay configuration, the data transfer rate for 

an assumed high speed source bus system (e.g. Ethernet) is depicted, too. Table 10.4-1 

depicts the measurement and calculation values. 

Table 10.4-1:  Data transfer performance based on CAN as vehicle interface bus system 

FlexRay
(Config-Limit)

unit

500 1,000 kBit/s
Transfered Data Size 3,080,192 3,080,192 4,080 Byte
Download Time 210.10 156.22 0.10 s

14.32 19.25 39.84 kByte/s
859.03 1,155.27 2,390.63 kByte/min

Transfered Data Size 3,080,192 3,080,192 4,080 Byte
Download Time 216.35 161.04 0.12 s

13.90 18.68 34.65 kByte/s
834.22 1,120.69 2,078.80 kByte/min

FlexRay Parameter CAN

Response Cycle
Repetition = 1

Performance

Response Cycle
Repetition = 4

Performance
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10.4.1.3 Evaluation 

Response cycle repetition impact 

The study shows the impact of the response slot’s cycle repetition. With an increasing 

value the data transfer rate is decreasing. For this system configuration, where only one 

FlowControl PDU and the final Response PDU are sent, the effect is small (only 3% be-

tween CR=1 and CR=4). However, if the cycle repetition is 8 or 16 the data transfer rate 

decrease will be significant. By this system configuration 17 cycles are necessary to 

transmit 4,080 byte. If the cycle repetition is 16, in worst case the performance will de-

creased to nearly 50%. 

Due to the measurement results, a cycle repetition of 2 or 4 in combination with the con-

figuration that no additional FlowControl PDUs are required is a good compromise be-

tween data transfer rate and allocated slot resources. 

Bandwidth control configuration impact 

Bandwidth control allows limitation of the maximum number of PDUs per cycle that can be 

received by a receiver node. If bandwidth control is enabled the ECU will not receive the 

maximum number of possible bytes per communication cycle and therefore more cycles 

are required to transmit all data. This results in a performance decrease. Hence, if an 

ECU provides not sufficient buffer to receive the maximum number of payload per cycle, 

the maximum data transfer rate can not reached. 

Source bus system’s and gateway’s impact  

The step from CAN bus system with 500 kBit/s to a CAN bus system with 1,000 kBit/s 

provides a benefit up to 34%. As discussed initially this FlexRay configuration provides a 

data transfer rate for the request direction (PCU to ECU) of 28880 byte per cycle  

(57.6 kByte/s). The CAN bus system can not support this data transfer rate and is there-

fore the limiting sub-link in that network. The potential of the FlexRay bus system is visible 

in figure 10.4-2. The calculation based on the assumption that the ECU requires 20 ms for 

physical programming. Due to that the download performance is given for the correspond-

ing cycle repetitions. 

10.4.1.4 Summary 

The study depicts that the currently given performance limitation is based on the vehicle 

interface bus system CAN. The FlexRay system configuration is able to support higher 

                                                

80 36 Byte Payload/ PDUCF *  8 PDU / Cycle = 288 Byte / Cycle � 288 Byte / 0.005s = 57.6 kByte/s 
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data transfer rates. This is illustrated in figure 10.4-2 by the calculated data transfer val-

ues. The study depicts also, that the response cycle repetition configuration in the global 

communication schedule has only a small impact, if the ISO 10681-2 is configured that no 

additional FlowControl PDUs than the initial one are required (disable  

ConsecutiveFrame_EOB mode – refer to section 4.2.2).  

In section 4.2 the approach of schedule reconfiguration with the aim to increase data 

transfer rate was discussed. With a view to the measurement results of this study, sched-

ule reconfiguration is only a powerful approach if either the PCU is connected direct to 

FlexRay (FlexRay has to be connected to the vehicle connector) or a powerful high speed 

bus system (e.g. Ethernet) as well as a powerful gateway with a high routing performance 

are available. In the ahead given network configuration the communication link perfor-

mance limitation is the CAN bus system. In that case a schedule reconfiguration will have 

no effect. 

Until Ethernet is qualified for automotive usage (refer to chapter 11) all the other methods 

to reduce data size (compression, partitioning etc.) are necessary to optimise data trans-

fer performance on FlexRay. 
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The ECU software reprogramming process is a necessity within the automotive industry to 

improve production efficiency/cost, improve reuse and flexibility of the complex embedded 

systems and perform repair and in field maintenance. Thus, it is in use during the vehicle’s 

complete life cycle. In chapter 1 the main challenges of automotive embedded software 

and their impacts on the reprogramming method are introduced. Based on several  

influencing factors, the reprogramming process time is continuously increasing and the 

commercial benefits of that method are no longer available when compared to changing 

ECUs. Whilst up to now this time has not caused critical time delays/cost in production or 

the in-field maintenance period, chapter 1 suggests that this soon will be the case for 

current systems in development without the introduction of new reprogramming strategies. 

This thesis has presented research on new strategies to address the acceleration of the 

reprogramming process of existing embedded systems technologies and standards by  

consideration of communication protocol optimisations (chapter 3 and 4) as well as  

approaches to reduce the total data to transfer (chapter 5). Quantitative models have 
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been created to allow for predictions of reprogramming times to be calculated during the 

design development cycle. The thesis also presented recommendations and modelling of 

new hardware designs within a microcontroller to support faster reprogramming (chapter 

6). Network design aspects that influencing the reprogramming time and provide potential 

for optimisations have been analysed in chapter 7. Quantitative analysis of the repro-

gramming in parallel as an additional approach was in focus of chapter 8. In chapter 9 a 

brief introduction to the future MRAM technology, yet to be released, was given and its 

impact on re-programming quantified. In chapter 10 experimental investigation and analy-

sis have been performed to verify the quantitative theoretical modules previous generated 

and to evaluate empirically key coefficients and parameters within some of these models.  

The thesis does not just analysis the current technologies in production but considers the 

new technologies and standards currently being considered in the design development 

cycle and future strategies not yet being considered by designers in prototype research 

departments. This chapter will introduce to provide the summary of the research work 

depending on the initially discussed challenges. Also an outlook on how software repro-

gramming of automotive ECUs will evolve during the next decade and the future  

challenges will be given.  

11.1 Summary 

Theoretical work 

The thesis has addressed different approaches to reduce the software reprogramming 

process time for automotive ECUs. The focus was on on-board optimisations. To ensure 

that the communication on the vehicle connection interface (VCI) bus system was opti-

mised the programming control unit (PCU) was also considered part of the on-board 

system. The PCU also plays an important part in programming strategy optimisation (e.g. 

reprogramming in parallel). But PCU implementation details were not part of the research 

work. Figure 11.1-1 depicts an overview of the thesis’ contributions in principle. The re-

search results are summarised below. The different approaches are compared in relation 

to their power to speed up the ECU’s application software reprogramming process. 

Case study 

The results of the case study confirm the theoretical results and enable important parame-

ters to be quantified. The experimental implementation of the flashloader shows that the 

methods work in principle and that the discussed limitations are given. Hardware optimisa-

tion or implementations for the PCU were not part of the case study. These topics provide 

potential for additional research work. 
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Figure 11.1-1:  Optimisation approaches overview 

11.1.1 Method’s performance potential 

The comparison of, and the relation between the different methods is quite difficult be-

cause the methods’ power depends on the initial system. Figure 11.1-2 depicts the differ-

ent approaches with their potential to speed up the reprogramming process (graph). The 

bubbles’ position on the graph is shows the potential compared to a current state of the art 

ECU based on a CAN bus system with a bit rate of 500 kBit/s (e.g. for approach of double 

buffered data transfer (1.1) for this ECU the improvement is approx.15% and for the pro-

tocol optimisations (1.2) there would be over 50% improvement).  

 

Figure 11.1-2:  Optimisation approaches’ potential 
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Data transfer acceleration 

Data transfer acceleration is the basic approach to speed up the reprogramming process. 

The maximum possible bandwidth data transfer rate on the physical bus system can be 

reduced on several protocol layers within the communication protocol stack.  

The potential of double buffered data transfer  depends on the relation between data 

transfer time and the microcontroller’s reprogramming time. The allocation of a second 

buffer is typically not a problem because the flashloader has access to the full RAM of the 

ECU (note that application software is not active during that time). Double buffered data 

reception is a key functionality for activities in parallel (e.g. data reception and physical 

reprogramming as well as to compensate the additional time for data de-compression). 

Transport layer and network layer optimisations  have a high potential to speed up the 

date transfer. Especially the transport layer’s flow control configuration protects the sys-

tem from additional delays because of separation times between consecutive frames 

(PDUs). 

Data link layer optimisation  potential depends on the bus system used and has a wide 

spread. The effect of increasing the system’s bandwidth might be invisible if additional 

delays are available in the upper layers of the protocol stack. Hence, the delay elimination 

has the highest implementation priority. 

Data size reduction 

Partitioning  is a very powerful approach to reduce data to be transferred. It is not possi-

ble to provide an absolute value for the potential because this value depends on the size 

relation of the different partitions. Today typically there is a distinction between application 

software and parameter sets or data sets (characteristic curve etc.) which are allocated in 

separate partitions. Depending on their size the method’s potential is variable. The com-

patibility aspects of the different partitions have to be taken into account, with focus on 

complexity. 

Fill byte separation  was also discussed as a possible approach, but it provides minor 

effects. Depending on the data transfer rate it might be possible that the gap transfer 

(requires two additional diagnostic services on UDS) requires more time than the fill byte 

transfer. 

Data compression  provides good results. Of course, the compression ratio is limited 

because a) the usage of lossy compression algorithms is not possible and b) the limited 

RAM resources do not allow dictionary based algorithms. Nevertheless, a data size reduc-

tion up to 30% is possible. To get a good performance for the complete reprogramming 
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process the additional time for data decompression has to be compensated for. This is 

possible by the usage of double buffered data transfer in which data reception is ongoing 

while data decompression and physical reprogramming of the previews data is processed. 

Differential file update  provides the best theoretical results of all researched approach-

es. Today the method is only useable with many restrictions. The Flash memory technol-

ogy used today isn’t able to reprogram singe bytes. The memory is organised in sections 

which have to be erased completely before reprogramming is possible. Hence, a differ-

ence between current and previews file of only a small number of bytes results in repro-

gramming of the complete sector. The compiled code memory arrangement (start 

addresses of functions etc.) also shall not move, because this will result in additional 

differences of the current and previews file. Nevertheless, this method provides best 

results if all additional process’ requirements are fulfilled.  

If the increase of ECU software sizes continues in future, this approach might be the only 

sustainable one to solve the problem of increasing reprogramming times. 

Hardware optimisation 

Implementing memory status information  for a microcontroller’s current memory state is 

helpful to reduce the erase time. The main focus here is on the vehicle manufacturing 

process, where the differentiation of ECUs is only done by software (e.g. engine control 

software with different characteristic curves on equal hardware). If this software is repro-

grammed within the assembly line, the microcontroller’s Flash memory is typically empty 

and must not be additionally erased. Skipping the physical erase sub-sequence saves 

time within the complete reprogramming process. The potential of this approach depends 

on the memory size and the time that is necessary to erase the memory in relation to the 

data transfer time. A microcontroller with a short erase time and connected to a low 

bandwidth bus system has only a small potential. When reprogramming an ECU’s applica-

tion software in the case of bug fixing in a garage, the erase process can’t be skipped 

because the previews software must be erased before reprogramming is possible. Hence, 

the method is not universally usable. 

Doubling the interrupt service routine vector table  is a generic approach. This optimisa-

tion provides the possibility to control several activities, e.g. data reception, watchdog 

triggering or timer handling etc., by interrupts. The benefit compared to the currently nec-

essary polling-mode is the trigger on an event. Only if the event occurs, the trigger is 

given and the interrupt service routine is processed. The permanent monitoring of the 

microcontroller’s status information (e.g. data reception flags etc.) is no longer necessary 

and the monitoring time could be used for other activities, e.g. data decompression. In 
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terms of software reprogramming activities, the real benefit of this method is small be-

cause the polling-mode approach is also very fast but with a higher effort for the monitor-

ing routines. Hence, the potential of the pure method is very small. 

Network optimisation and design 

The communication network (bus systems, gateways etc.) has an impact on the repro-

gramming performance. Depending on the network type (homogeneous or heterogene-

ous), the gateways have to route PDUs on different communication protocol layers (ac-

cording to the ISO/OSI reference model) and has to use different routing strategies (direct 

routing, store and forward, combinations of both etc.). The higher the layer at which the 

routing process is executed within the communication protocol stack, the more resources 

are necessary to speed up this process. Hence, processing runtime (CPU time), as well 

as resources (RAM for buffers), has to be taken into account for gateway design. The 

potential of this method is high because of the impact of the routing strategy and the 

corresponding data transfer time. If timing limits for the reprogramming process are given, 

(e.g. manufacturing line clock etc.) the network topology must be designed to fulfil the 

given timing requirements. The fact that the vehicle network cannot be changed during 

vehicle’s life cycle is a problem particular to the automotive industry. Hence, the network 

design must be able to deal with future ECUs (faster microcontrollers, more memory, 

more software etc.) and therefore, some performance reserves must be calculated in. Of 

course, the reserves (additional bus systems or bus systems with higher bandwidth etc.) 

are expensive and violate cost limits, but the communication network is the most im-

portant part in guaranteeing the reprogramming performance during vehicle’s life cycle, 

even when future ECUs are introduced. Hence, communication network design is the key 

func-tionality for future vehicle development. 

Reprogramming strategy 

Reprogramming in parallel is a powerful approach to reduce the total reprogramming time 

if more than one ECU’s application software must be reprogrammed. The potential is high 

but a corresponding communication network design is a precondition. If bus systems with 

adequate bandwidth are not available, no communication in parallel is possible. Hence, 

the network design and the programming strategy are only possible in tandem. A more 

detailed analysis of the PCU and the ECU ordering for reprogramming was not part of this 

work, but would be interesting if an additional process optimisation for reprogramming in 

parallel is possible. 
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11.1.2 Method’s potential vs. effort and costs 

The previous section summarised the potential to accelerate the software reprogramming 

process of all methods discussed in the thesis. Nevertheless, as described in chapter 1, 

the pressure to maintain or reduce production or in-field service (maintenance) time and 

keep recurring engineering costs low within the automotive industry is very high because 

of the high number of cars that are produced per year. Therefore, the relation between the 

methods’ potential and the effort for implementation has to be discussed. This is neces-

sary to support decisions for future implementation strategies for ECU hardware selec-

tions, vehicle network architecture and design, the vehicle communication interface bus 

system etc. A criterion to differentiate costs is the effort to implement the method. It has to 

be distinguished between different effort types and therefore different cost impacts: 

a) Effort in software (SW) to implement the method 

 (These are typically singular costs for the initial implementation). 

b) Effort in hardware (HW) to implement the method  

 (Typically additional hardware costs are costs per ECU or vehicle and have there-

fore a high weight). 

c) Other efforts e.g. external overhead.  

Table 11.1-1 depicts the different approaches in dependency of the necessary effort in 

case of implementation or realisation. 

Table 11.1-1:  Reprogramming process acceleration methods’ effort 

 Method Effort 

SW HW other  

1.1 Double buffered data transfer low   

1.2 Transport / network layer protocol optimisation low   

1.3 Data link layer protocol optimisation low mid  

2.1 Partitioning low  mid 

2.2 Fill byte separation low   

2.3 Data compression low   

2.4 Differential file update high high high 

3.1 Memory status information  high  

3.2 Doubled interrupt vector table  high  

4.1 Routing strategy mid high  

5.1 Reprogramming in parallel   low 
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Based on table 11.1-1 and figure 11.1-2 a quantitatively relation of reprogramming per-

formance potential vs. implementation and realisation effort is possible. Figure 11.1-3 

depicts that relation in a graph.  

 

Figure 11.1-3:  Method’s potential vs. costs 

These findings from the research work, based on quantitative evaluation of reprogram-

ming times, make several contributions to future ECU, network and vehicle development 

decisions. The different areas are discussed below. 

Low costs for implementation 

Five methods can be implemented with only a small effort. Those methods require only an 

optimisation in software. Protocol optimisations  (1.2) provide the best results when only 

optimising the configuration parameter set. Reprogramming in parallel  (5.1) only re-

quires an additional algorithm in the PCU to order the different ECU reprogramming activi-

ties. There is no change necessary in the flashloader software. The data compression  

method (2.3) is an additional software part within the flashloader. The method has to be 

implemented once and can be used for all microcontrollers because the method itself is 

hardware-independent. RAM resources for buffer are not critical because the Flashloader 

has access to the complete ECU RAM. This reasoning also applies to the double buff-

ered data transfer  method (1.1). Fill byte separation  (2.2) is a method implemented in 

the software development process (linker method). 

Medium costs for implementation 

Costs for optimisation on the data link layer protocol  (1.3) depend on the initial system. 

If a high speed CAN bus system is available, maximum bandwidth can be configured 

without any additional activities. The only precondition is that the resulting maximum cable 

lengths are sufficient for the network, because they are reduced in case of increasing 
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bandwidth81. The partitioning method  (2.1) is very efficient but provides logistic effort. 

The different software parts of an ECU have to be managed (documentation, identifica-

tion, compatibility etc.). Of course, these are typically software management processes 

but the effort is given.  

High costs for implementation 

Each kind of hardware optimisation  (3.1 and 3.2) provides high costs because the mi-

cro-controllers have to be changed. If those methods become state of the art in the future, 

the cost benefit relation will be better, but today the methods are too expensive for realisa-

tion. The routing strategies  in gateways (4.1) have a high potential but require high 

resources. Typically a high speed microcontroller with high clock rate is necessary to 

provide the CPU time for the routing process and the performance to do this for several 

connections in parallel. The high clock frequency has an impact to the EMC82 strategy and 

results in additional hardware to reduce radiant emittance. The best potential by highest 

effort is provided by the differential file  programming method (2.4). The effort is high 

within the PCU which has to calculate the difference as well as within the flashloader to 

calculate the new file and reprogram it. The currently used flash memory is the reason for 

the on-board complexity because it is not possible to reprogram a) without previously 

erasing and b) only a few bytes. Erasing complete sections of several kByte is required 

before reprogramming is possible. Hence, the non-different data has to be saved and 

temporary stored in a RAM mirror of the flash memory. Typically a microcontroller doesn’t 

provide the required RAM size for this method. Finally the development process of em-

bedded systems’ application software has to support the differential file approach. That 

means that software must be generated in a special way that only small differences occur 

between different software releases. But this was not in focus of this work.  

11.1.3 Utilisation in practice 

The findings of this study have a number of important implications for utilisation in prac-

tice.  

Recommendation for implementation from today’s poin t of view 

The initial problem of increasing reprogramming times because of increasing software 

sizes can partly be solved by the short term implementation of the low cost methods. 

Especially the communication protocol optimisations (refer to chapter 3 and chapter 4) 

provide short term results on low costs.  

                                                

81 This could be a problem for trucks with long cable sizes from truck to trailer. 
82 EMC - electromagnetic compatibility 
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For the medium costs methods an analysis about of the real effort is necessary. In some 

cases (where the hardware impact is small) a benefit is given without any other implica-

tions.  

The network design is quite expensive but necessary because of the vehicle’s long life 

cycle (refer to chapter 1.3.4). The network must be able to process the data communica-

tion links as fast as possible to guarantee the basically required speed performance of 

100% bus load. Nevertheless, network design decisions are made several years before 

vehicles start of production and can not be revised quite easily. Hence, it is strongly rec-

ommended to implement all network optimisations in future cars because of vehicle’s, and 

therefore networks, long time life cycle.  

For the methods “reprogramming by differential file (2.4)” and “hardware optimisations 

(3.1 and 3.2)” the implementation is currently not recommended because of the high 

implementation effort and therefore, high costs. Additional research work and new hard-

ware technologies will be necessary to reduce costs before these approaches will be 

usable in the automotive industry.  

11.1.4 Further work 

The focus on this thesis was the acceleration of the embedded systems’ software repro-

gramming process. The research that has been undertaken in this thesis has highlighted a 

number of different topics to solve the given challenges. First results are provided and a 

classification of method’s potential and their effecting to costs was investigated. Neverthe-

less, there are several lines of further research arising from this work.  

Moving knowledge to future automotive communication  protocol stacks 

All the discussed topics in chapter 3 and 4 become also important if new bus systems are 

introduced. For each new bus system the protocol stack has to be optimised with focus on 

data transfer rate for software reprogramming purpose. In a first step, research work to 

automotive usable Ethernet (refer to chapter outlook) is necessary as a base technology 

to solve several challenges within automotive communication aspects. 

More effective compression algorithms that consider  to embedded system’s re-

sources 

As discussed in section 5.3 the very special resource situation of embedded systems (e.g. 

RAM, clock frequency etc.) does not allow the usage of all possible lossless compression 

algorithms. The good costs to performance relation as discussed above excuses further 

research work to develop more effective compression algorithms for utilisation in embed-

ded systems. 
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Tool supported network analysis and design 

The discussed complexity of currently available and future developed vehicle networks 

requires tools to support the network design and analysis process (refer to appendix D). 

The communication model of chapter 4 can be the base for performance analysis focused 

on diagnostic and reprogramming communication. Nevertheless, tool development as-

pects, e.g. internal data models, calculation or simulation speed performance etc., have to 

be discussed and solved.  

Consolidation and concentration of ECUs 

A modern vehicle implements up to 80 different ECUs. This high number of independent 

network nodes makes a strong contribution to the currently available network complexity. 

An interesting question for further research work is about optimisation potentials if the 

given functionality is concentrated to only a few, but powerful ECUs. Cost aspects as well 

as packaging in the vehicle and increasing systems complexity have to be taken into 

account.  

High speed vehicle access 

A precondition for processing different communication links in parallel is a high speed 

vehicle access (e.g. high speed bus system). The currently established CAN bus system 

will be no longer sufficient (refer to chapter 8 and the case study in chapter 10). FlexRay 

might be a possible alternative but the complexity of time triggered protocol might provide 

other disadvantages. Ethernet as a common standard is currently still too expensive for 

automotive usage (connectors, shielded cable etc.) but different vehicle manufacturers 

and system suppliers have started an initiative to develop and standardise automotive 

usable Ethernet (refer to the outlook chapter).  

Programming Control Unit 

The offboard technology was not in focus of this thesis. But software has to be managed 

offboard. Because of increasing dependencies of different ECU (software, routines, func-

tionalities etc.) complexity will continuously increase and the documentation of compatibili-

ties becomes more importance. 

Compatibility management of embedded software relea ses. 

The differential files approach based on the fact that different software releases have only 

small differences of their OP-code. It seams that completely new methods and strategies 

for the embedded software development process are necessary, compared to the today’s 

established processes. Hence, more research is needed to better understand what must 

be changed to support the differential files approach for software reprogramming. 
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11.2  Outlook 

The recommended further work will be supported by the ongoing development, not only 

within the automotive industry. Some technology aspects, which have been identified in 

this thesis as a precondition to raise the next evolution step, will appear on technology’s 

horizon. Hence, it will be only a question of time when these technologies will be ready for 

automotive usage. 

11.2.1 Automotive Ethernet  

Ethernet will be the bus system for the next generation of vehicle communication inter-

face. In the past Ethernet according to [IEEE 802] standard was too expensive for auto-

motive usage. Shielded cable and unpractical connectors have prevented the introduction. 

Since November 2011 a new alliance of OEMs, ECU and semiconductor distributors was 

formed. The aim is to establish chipmaker Broadcom’s83 BroadR-Reach technology as an 

open standard for One-Pair-Ethernet (OPEN) [Auo11].  

Ethernet as the vehicle interface bus system supports the possibility for reprogramming in 

parallel because of high bandwidth. In that case the limitation of the reprogramming pro-

cess will be the microcontroller’s physical reprogramming process. 

11.2.2 MRAM technology  

The next evolutionary step in embedded memory technologies will be Magnetoresistive 

Random Access Memory (MRAM). The advantages of MRAM based systems are quite 

evident. In contrast to the currently established Flash memory technology MRAM provides 

byte-wise access and the possibility to overwrite data without an initial memory erase 

phase.  

The byte-wise access allows the usage of the differential file method for software repro-

gramming as discussed previously. The Flash memory disadvantage of storing the non-

changed bytes into RAM mirror is not longer given. Of course, the effort of this method is 

high (refer to chapter 4) but the benefit is enormous. The data transfer time could be 

reduced significantly and this will finally solve the initial problem. 

Hence, industry is looking forward to the introduction of MRAM based embedded micro-

controllers. 

                                                

83 refer to [Broadcom] 
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11.2.3 Wireless access  

The continuously ongoing trend in vehicle inter-connection (car-to-car) and the inter-

connection of vehicles networks and non-vehicle networks (car-to-X) requires wireless 

access points within the cars. These infrastructures allow software reprogramming via 

wireless connections, too. The potential is enormous because software reprogramming 

within the service or after sales market is not longer bound by visiting the garage. The 

technique provides also benefits during the manufacturing process because the handling 

of the wired PCU is not longer necessary.  

LTE (Long Term Evolution) as a new global standard for mobile communication networks 

provides high potential. If the vehicle implements an interface, a remote vehicle access is 

nearly everywhere given. Of course, some additional topics are currently limiting factors, 

especially with focus on software reprogramming. 1) The power supply (vehicle battery) 

must provide the power to keep the vehicle network awake until software is repro-

grammed without a running engine. On the other hand, the battery’s charge condition 

shall be good enough to restart the vehicle at any time. Especially for new vehicles with 

electric drive this is an important criterion. 2) The data have to be stored temporary within 

the vehicle to reduce long online times. Due to that an onboard PCU has to be introduced 

within a vehicle as well as a large temporary memory unit. Both will increase costs per 

vehicle. 3) Wireless communication to a vehicle requires high security standards especial-

ly if software shall be remote reprogrammed. Security within this context means either 

security against unauthorised access as well as security to the overall process. It must 

never be possible that the vehicle is not usable because of an unsuccessful programming 

attempt. Here some given concepts of the PC world can be moved to the embedded world 

with the challenges of less resources and computing performance. 

Nevertheless all discussed approaches within this thesis to accelerate data transfer will 

support the wireless activities, too, because reduced data transfer and processing times 

will reduce the time to be online and therefore, reduce costs. 

11.3 Conclusion 

The scope of the work reported in this thesis was on the on-board part of the global soft-

ware reprogramming process for embedded systems. ECU aspects (flashloader, applica-

tion software, network access, communication protocols etc.) and network aspects 

(architecture, topology etc.) were the focus on investigation. As described in section 1.4.1 

for future ECUs the given time limitation requirement to the maximum reprogramming time 

will not fulfilled any longer without any optimisations. 
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As a major outcome of this thesis several methods have been investigated with different 

potential to solve the initial problem. Depending on future embedded systems’ software 

sizes and the automotive industry’s cost aspects, the investigation result methods can be 

combined to short term, mid term and long term solutions. The impacts of implementation 

efforts, given technologies and the availability of future technologies have been taken into 

account. Figure 11.3-1 depicts a quantitative view to the roadmap and the different steps 

of performance potential. 

 

Figure 11.3-1:  Reprogramming method’s implementation roadmap 

The software size for embedded systems will not stagnate. Especially within the vehicle 

industry the innovation will take place through software functionality. Hence, the  

problem of increasing software reprogramming times is permanently given. Of course, by 

most of the discussed approaches to accelerate the reprogramming process, the problem 

could be solved for a view years but the increasing software sizes will force the problems 

again. It might be possible that the combination of all methods could enlarge that time but 

the problem cannot be solved forever by the current memory technology (Flash memory) 

and automotive bus system technology (CAN).  

Hence, the long term solution will be the combination of new memory technologies (e.g. 

MRAM), the compressed data transfer of ECU’s partition specific differential file via high 

speed bus systems in optimised networks and for software reprogramming purpose opti-

mised microcontrollers.  

This thesis made some contributions on the way to that ambitious aim. 
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Abstract— Software reprogramming is an important 
issue during an electronic control unit’s (ECU) life 
cycle. Software reprogramming takes place at ECU’s 
development, manufacturing and maintenance. The 
continuously increasing software size for embedded 
systems during the last years results in continuously 
increasing reprogramming times. This is especially 
applicable to the automotive industry but also in other 
business areas where cost pressure is high in produc-
tion or in-field reprogramming. With the currently 
established Flash memory technology for embedded 
system’s microcontrollers a significant improvement of 
the reprogramming process might not be possible. The 
next evolutionary step in embedded memory technolo-
gies will be Magnetoresistive Random Access Memory 
(MRAM). With focus on reprogramming time the 
MRAM technology provides essential advantages and 
the reprogramming process execution time could be 
decreased significantly. This paper identifies the 
current problems associated with the embedded 
system’s software reprogramming process and sug-
gests some new methods for reprogramming software 
using the newly proposed MRAM technology. 
 

Index Terms—Microcontroller, Software Repro-
gramming, Flash Memory, MRAM,  
 

I.   INTRODUCTION 

Today, microcontrollers are no longer used only for 
simple control and regulation purposes. Owing to the 
enormous technological progress in this area high 

performance microcontrollers are available today to solve 
highly complex control and regulation assignments. Hence 
more and more functionality is implemented on these 
microcontrollers which have resulted in the continuously 
increasing software sizes, the end of which is not foresee-
able [20]. In many applications microcontrollers have 
reached the mega byte (MB) boundary for on-board 
memory. For example, electronic control units (ECU), 
used in the automotive industry, provide memory re-
sources of several MB to solve complex control  

assignments like engine control or any kind of driver 
assistance systems. 
 

 
Figure 1: Automotive ECU software volume 
 

ECUs used for human machine interfaces (e.g. displays, 
instrument cluster etc.) have increased up to several 100 
MB of Flash memory space. For telematic and in-vehicle 
infotainment (IVI) systems memory has reached the GB 
boundary. Typically these systems are based not on Flash 
memory but on hard disks. Fig. 1 depicts an overview of 
typical software volumes within the automotive area. 

A Software reprogramming within ECU’s life cycle 

Software reprogramming is an important issue within 
ECU’s life cycle particularly for the automotive industry. 
During the vehicle’s development phase an ECU is 
reprogrammed several times to replace the previous 
software with the current release.  

Today several manufacturing strategies exist within the 
automotive industry. Mainly the ECU’s are delivered fully 
programmed by the ECU manufacturer to the vehicle 
manufacturer (OEM). Another method is to deliver the 
ECU partly programmed or without software and pro-
gramme the final release within OEM’s vehicle assembly 
line. 

 

T 
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Software reprogramming is also an important repair 
method for OEMs in the aftersales service. If customer’s 
complaints could be solved by a new software release 
reprogramming is the preferred repair method. 

B.  Introduction of Flash memory technology to reduce 
production costs 

Particularly in the automotive industry but also in other 
industries an enormous cost pressure prevails. With the 
introduction of the Flash memory technology it became 
possible to correct an ECU software error in the field 
without the necessity to replace the node physically. 
ECU’s software is simply reprogrammed via the micro-
controller’s communication interface. By this approach it 
was possible to reduce aftersales costs significantly, 
because neither costs for a new node or worker costs any 
longer occur. Software reprogramming’s benefit is 
particularly given in the case for ECUs that are difficult to 
physically access like a vehicle engine controller or gear 
box controller. For commercial vehicles long idle times in 
a garage or repair shop are not accepted by transport 
companies. In other business areas it was no longer 
necessary to exchange a component on complex machines 
to eliminate a software error. 

A second important benefit of Flash memory technol-
ogy compared to the thitherto available ROM mask 
memory is the possibility to reduce ECU’s hard-
ware/software variants and therefore logistic costs. If 
special functionality depends only on software, then the 
same hardware can be re-used. For example, a 4 door 
vehicle could utilise the same hardware for each door and 
the functionality differentiation between front and rear 
door (e.g. mirror controlling) would be done by software. 
Logistic costs (i.e. stock control and storage complexity) 
have been reduced as well as decreased complexity within 
the OEM’s assembly line because only one part has to be 
selected for vehicle manufacturing. Additionally increased 
part volume can reduce the purchase price. There is also a 
cost benefit for field repair and maintenance costs. 

C.  The cost of long programming times for Flash memo-
ries. 

A consequence of the increasing ECU software size in 
embedded systems is the increasing programming time for 
a software update. This might lead to potential economical 
disadvantages.  

 

 
Figure 2: Cost / Time relation 

 
The increasing reprogramming times significantly re-

duce the cost advantage of reprogramming software. 
Within the production process the time given to finalize an 
assembly step can be exceeded resulting in a cost penalty. 
In the maintenance and service industry there are similar 
time limitations and cost penalties. Additionally the 
reprogramming procedure will require specific off-board 

equipment (e.g. diagnostic test system, power supply etc.) 
This complicates the logistics and thus costs within the 
field test and repair centre e.g. the need to purchase 
multiple off-board equipment or increased service times in 
busy periods. As depicted in Fig. 2 the break even point of 
software reprogramming vs. ECU replacement is moved, 
if reprogramming time increases. As a result the cost 
advantage of reprogramming an ECU disappears. 

Today replacing and recycling ECUs is not economic 
but if reprogramming costs continue to increase replacing 
and recycling ECUs will be an alternative approach.  

The aspects above depict that it is necessary to find 
methods and strategies to reduce reprogramming times 
significantly to guarantee the economic advantage of 
onboard software reprogramming. There are two impor-
tant questions:  

(1) Is it possible to reduce programming time signifi-
cantly for the Flash memory based systems?  

(2) Could the magnetoresistive random access memory 
(MRAM) technology solve the reprogramming time and 
thus cost issues faced by the automotive industry? 

II.    SOFTWARE REPROGRAMMING PROCESS FOR FLASH 

MEMORY TECHNOLOGY BASED EMBEDDED SYSTEMS 

A.  Flashloader and application software 

As depicted in Fig. 3 the microcontroller implements 
two independent software components: The application 
software and the flashloader. The application software 
implements the functionality of the ECU. A flashloader 
component handles the complete reprogramming process 
if the application software is to be reprogrammed. The 
flashloader communicates via the normal communication 
interface of the microcontroller and exchanges data with 
an off-board programming device (e.g. diagnostic tester).  

 
Figure 3: Components overview 

B.  Reprogramming Sequence 

Fig. 4 illustrates the Flash memory programming se-
quence. The first step in programming a device is to 
identify the ECU e.g. the microcontroller type, software 
version, and associated hardware. Step 2 the programming 
device needs to authenticate itself to the flashloader of the 
microcontroller. This is achieved by implementing special 
authentication methods (e.g. seed & key algorithm etc.) 
the reprogramming sequence could be aborted if authenti-
cation fails. Normally this is a first part of a (more or less 
powerful) security concept to prevent unauthorised 
software manipulation. 

After successful authentication the Flash memory can 
be erased (step 3). After a successful erasing process the 
new data can be transmitted to the microcontroller and be 
programmed into the Flash memory (step 4). This opera-
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tion is the most time consuming sequence and depends on 
the total amount of data to be programmed. The sequence 
is finalised by a verification of the programmed data (i.e. 
application software). Typically, methods like cyclic 
redundancy check (CRC) are used.  

The programming of an ECU is more complex when it 
is embedded within a vehicle network and when it has no 
direct access between the programming device and the 
ECU. Within the automotive area reprogramming is 
established via the communication interfaces CAN [10], 
[11], FlexRay [9], LIN [8] etc. In some case a multiple 
network interface is used. 

 
Figure 4:  Reprogramming sequence overview. 

 
Microcontrollers can provide other interfaces, e.g. the 

debugging interface JTAG (Joint Test Action Group [12]). 
It is also possible to reprogram via this interface. Typically 
these interfaces are not connected to ECU’s communica-
tion connector within a vehicle for some reasons: 

Assume that the position of an ECU allows neither a 
physically access for a worker nor is it possible to open 
the chassis e.g. a vehicle’s gear box within the oil sump is 
here a good example. To get access to the interface JTAG 
should be connected to the normal ECU’s vehicle commu-
nication connector. This results in a larger connector 
(more pins), an additional cable or a second network in 
parallel. A complex system consists of several ECUs 
based on different microcontrollers and is supplied by 
different manufacturers (e.g. vehicle with up to 70 ECUs) 
the external test system which controls the reprogramming 
process has to implement all the individual communica-
tion protocols available. This complexity/effort is enor-
mous and only practicable for software programming 
within manufacturer’s ECU assembling lines and not for 
software reprogramming in the field. A unique repro-
gramming sequence with standardized protocols must be 
used to reduce the effort and thus cost. 

The reprogramming sequence as depicted in Fig. 4 is 
independent of the different communication protocols. 
Within the automotive industry software reprogramming is 
part of the vehicle diagnostics and is based on the UDS 
protocol (Unified Diagnostic Services) which is standard-
ised in the specification ISO 14229 [15] and ISO 15765-3 
[16]. Depending to the available vehicle bus systems the 
reprogramming sequence is executable via CAN, LIN, 
FlexRay or K-Line.  

The reprogramming sequence could be mapped to other 
(non-diagnostic) communication protocols like CCP 

(CAN Calibration Protocol) or XCP (eXtended Calibration 
Protocol) [17], [18]. However, these protocols are not 
available on every communication interface. Werner 
Zimmermann and Ralf Schmidgall [7] give a detailed 
overview of the required components to execute a repro-
gramming process.  

III.    REPROGRAMMING PROCESS TIME REDUCTION 

OPTIMIZATION APPROACHES 

Due to the reprogramming sequence according to Fig. 
4, to reduce the total software reprogramming time 
significantly two approaches are possible: (1) Accelerate 
data transfer and (2) reduce to be transferred data size. The 
other stages within that sequence are hardware dependant 
and based on technology used.  

A.   Data transfer acceleration 

1)   Data transfer acceleration on ISO/OSI layer 2 
 data link protocols  

A simple method to speed up data transfer is to speed 
up the underlying vehicle bus systems. But the maximum 
bandwidth of the most common used automotive bus 
systems is limited. Fig. 5 depicts an overview of the 
bandwidths for the most common automotive bus systems.  

 

 
Figure 5:  Most common automotive bus system’s band-
width 

 
The CAN bus system is limited to 1 MBit/s by specifi-

cation ISO 11898. Also some other limitations have to be 
taken into account: If bandwidth is increase the maximum 
cable length is reduced. The split of the bus system results 
in additional, more expensive and more complex gate-
ways. Also increase shielding is necessary because of 
electromagnetic compatibility (EMC). 

For the FlexRay bus systems the maximum specified 
system’s bandwidth (max 10 Mbit/s) is not the only 
limiting aspect. The data transfer rate for the time trig-
gered FlexRay bus system is mainly influenced by the fix 
defined communication schedule and the corresponding 
communication slot arrangement. If the communication 
slot is not allocated for a FlexRay flashloader it is not 
usable for data transmission for a reprogramming process.  

Automotive Ethernet (100 Mbit/s) might be an approach 
to speed up data transfer for an offboard diagnostic test 
system via a vehicles connector interface (VCI). The 
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challenge is now the distribution of the received data via 
the vehicles network. Therefore the new standardisation 
co-operation OPEN Alliance (One Pair Ethernet) was 
founded to “encourage wide scale adoption of Ethernet-
based, single pair unshielded networks as the standard in 
automotive applications” [13]. 

Nevertheless, the slowest bus system section on the 
communication link (especially within a heterogeneous 
network with several different bus systems) will dictate 
the possible bandwidth and therefore the communication 
performance. 

 
2)   Data transfer acceleration on ISO/OSI layers 3-5 -
transport and diagnostic layers 

Software reprogramming within the automotive indus-
try is done via diagnostic communication and based on the 
standardized diagnostic protocol “Unified Diagnostic 
Services (UDS) according to the specification ISO 14229. 
Depending on the underlying bus systems a standardized 
transport layer protocol (e.g. for CAN: ISO 15765-2, for 
FlexRay: ISO 10681-2 etc.) is in use for data segmentation 
and re-assembling for large data frames. Of course, all the 
different communication protocol stacks could be opti-
mized and configured to eliminate protocol specific delays 
e.g. minimum separation time (STmin) for CAN commu-
nication, but if all protocols have been optimized the 
limiting factor is the underlying bus system bandwidth as 
shown in Fig. 5.  

 
3)  Summary 

Hence, the possibility of speeding up bus systems and 
their corresponding communication protocol stacks is 
given and possible results are formidable, but it will be not 
enough to solve the challenges of increasing software. An 
important impact factor is the time limitation for a repro-
gramming process e.g. as given in a vehicle assembly line 
in a plant (assembly line clock).  

 
Figure 6:  Data transfer acceleration limits on CAN 

 
Fig. 6 depicts an overview of possible data volumes 

which can be transferred via CAN within the given time 
limits. Due to the data volumes as highlighted in Fig. 1 
and the maximum bandwidth of the currently established 
automotive bus systems as shown detailed in Fig. 5 the 
data transfer acceleration approach is not sufficient to 
solve the problem of increasing programming times for all 
vehicle domains.  

B.   Reduce data size 

1)   Data size reduction by software  partitioning 
A powerful method to reduce the transferred data size is 

the partitioning of the ECU’s application software into 
several sub parts. Typically the real application could be 
separated from the data set (e.g. characteristic curves for 
mathematical algorithm processing etc.). In case of 

software reprogramming only the affected partition has 
then to be transferred. Fig. 7 illustrates the separation into 
different software partitions where only partition B is 
affected and has to be reprogrammed. However, an 
additional logistic overhead is introduced: the partition’s 
software compatibility has to be managed. 

 

 
Figure 7:  Mapping of SW partitions to physical memory 
sectors 

 
2)   Data size reduction by data compression 

Data compression is an alternative standard approach to 
reduce transferred data size. Compressed data transfer is 
an established method. The reduction in data transfer time 
depends on the compression ratio of the used algorithm. 
Unfortunately not all known compression algorithms are 
usable within embedded systems. First of all, only lossless 
compression methods can be used. Also dictionary based 
algorithms are not possible due to the resource limitations 
of RAM within a microcontroller. However, substitution 
strategy based compression algorithms (e.g. LZSS [14]) 
provide good results for software with high redundancies 
like characteristic curves for regulation systems etc. As the 
compression ratios proportional to the redundancy with 
the actual data the data compression this is not a generic 
approach to solve the problem of increasing reprogram-
ming times.  

 
3)  Data size reduction by differential file transfer 

One reason for reprogramming embedded software is 
bug fixing. In most cases embedded software does not 
change completely when fixing a bug (e.g. changing a 
value of a constant or some parameters within a character-
istic curve etc.). As a percentage of the total volume of an 
application the source code modifications required and the 
resulting OP-code changes, required for bug fixing is often 
very small. Typical errors in the source code like wrong 
exit conditions in loops or wrong statements for a com-
parison are only one character. Changes in characteristic 
curves implemented as arrays covers only a few bytes. 
Thus an assumption that 80% of bug fixings result in less 
than 1 kB OP-code changes and 20% in more than 1 kB is 
safe and realistic figure. As a result of this assumption 
only a few bytes within a memory sector/partition needs to 
be changed. Fig. 7 depicts the small OP-code difference 
within a software partition.  

The today’s state of the art and established Flash mem-
ory technology provides the technical disadvantage that a 
byte-wise overwriting of a Flash memory cell is not 
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possible. Due to that technical fact, the smallest physical 
memory partition (page, sector etc.) must be previously 
erased before it can be re-programmed. Hence, erasing the 
complete physical sector is necessary no matter if a 
complete memory section or only a few bytes have 
changed. A temporary storage of these page or sector data 
(data mirror) requires large RAM resources with at least 
the size of that page or sector (e.g. INFINEON TC1797: 
256 kB). Because of the typically not available RAM 
resources, thus the data for reprogramming the complete 
physical section always has to be transferred and pro-
grammed. The powerful approach of reprogramming 
software by differential file is not usable for currently 
established Flash memory technology. 

 
4)   Conclusion 

Based on existing Flash based memory architectures 
current approaches and suggested variations to existing 
approaches to reduce data transfer time and thus constrain 
future trends in reprogramming time for vehicle based 
embedded systems will not solve the initial problem. It has 
been shown that only relatively small improvements can 
be achieved; a radically new approach is needed. 

IV.    MRAM  TECHNOLOGY 

A real quantum transition will be possible if the cur-
rently available and established Flash memory technology 
is replaced by the new proposed MRAM technology 
(Magnetoresistive Random Access Memory) in microcon-
trollers [e.g. Infineon’s TriCore family, Freescale’s HCx 
family, Texas Instruments’ TMS or Hercules family etc.]. 
Some disadvantages of Flash memory caused by the 
inherent technology can be eliminated by the employment 
of possible MRAM technologies.  
 

TABLE 1: COMPARISON OF EXPECTED MRAM  FEATURES WITH 

OTHER MEMORY TECHNOLOGIES [6] 

 
 

In contrast to currently established memory technolo-
gies, MRAM semiconductors store the information not 
using electrical, but by magnetic load elements. The effect 
is based on the fact that certain materials change their 
electrical resistance if they are influenced by magnetic 
fields [4], [19], [21].  

Effective fundamental research activities to the magne-
toresitive started in 1989. At that time IBM scientists 
made a set of key discoveries. In the year 2000 IBM and 
Infineon started a joint MRAM development program. In 
2005 Renesas presented a 1MBit memory for a 100MHz 
clock frequency [5]. 

In a MRAM cell the information zero (0) and one (1) 
are represented by the orientation of magnetic fields and is 
based on the Magnetic Tunnel Junction (MTJ) effect [21]. 
A MTJ semiconductor has a three-layer structure. It 
consists of two magnetic layers and an insulation layer. 
One of the magnetic layers has a fixed orientation (fixed 
magnetic layer). The other magnetic layer can change its 
magnetic polarization (floating magnetic layer). It is 
aligned either in the same orientation as the fixed layer 
(parallel magnetic orientation) or in the opposite (opposite 
magnetic orientation). Although not shown in Fig. 8, a bit 

line and digit line are located above and below the MTJ. 
The electrical resistance of the memory cell changes 
depending to the magnetic orientation of the floating 
magnetic layer. According to the electrical resistance a 
high or low current could occur. A current switch converts 
the binary information low current and high current to 
voltage levels (low current = 0bin; high current = 1bin). 

 

 
Figure 8 - MRAM 

 
The MRAM technology does not need any electrical 

current in order to hold the stored information. Once the 
magnetic adjustment is made the variable magnetic layer 
remains static, i.e. no further current is required.  

MRAM adopts the advantages of several memory tech-
nologies available today. Similar to Flash memory or 
EEPROM (Electrical Erasable and Programmable Read 
Only Memory) a non-volatile data retention takes place, 
i.e. program code and data are sustained without power 
supply. MRAM reduces the power consumption because 
the refresh pulses as required for DRAM are not longer 
necessary. The data access is very fast (cf. SRAM) and 
MRAM cells are small which results in a high device 
integration level. 

V.  REPROGRAMMING PROCESS OPTIMISATION USING 

MRAM  TECHNOLOGY 

As depict in Fig. 4 the steps erasing memory (step 3) 
and download and reprogramming (step 4) of a Flash 
memory based system have a significant impact on total 
reprogramming time. MRAM technology can make 
significant improvements in these areas. 

A.   Reduce Memory Erase Time 

As mentioned above, normally Flash memory technol-
ogy does not allow the overwriting of programmed 
memory cells without prior erasing memory partitions or 
sectors. It is currently not possible to erase a single 
memory cell. MRAM technology allows overwriting of 
individual programmed memory cells without prior 
erasing of the cell. Therefore step 3 of the reprogramming 
process is no longer required. 

 
TABLE 2:  MICROCONTROLLER’S ERASE TIME FOR FLASH 

MEMORY 

 
 
Table 2 shows the normalized erase time values for 256 

kB on-chip Flash memory of two different microcontrol-
lers. Based on this data given by the manufacturer’s data 
sheets [1], [2] the predicted total erase time for a 256 kB 
sector of on-chip Flash memory is up to 5 seconds. This 
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time could be saved potentially in case of using MRAM. 
The benefit is still higher in case of the Op-code modifica-
tions are not only located to a single physical memory 
section. 

It is not possible to make a precise generic statement for 
the saved erase time because this value depends on several 
parameters e.g. memory technology, oscillator frequency, 
and the size of memory that is to be erased. As depict in 
Fig. 1, within the automotive industry ECUs exist with a 
total amount of Flash memory up to several 100 MB.  

B)   Reprogramming by differential File  

For a detailed analysis of reprogramming process ac-
celeration it is helpful to divide step 4 of Fig. 4 into the 
two sub-sequences “data transfer” and “physical repro-
gramming”.  

The MRAM technology allows read/write access basi-
cally for each single byte (alignment has to be taken into 
account). Hence, MRAM allows an optimisation to the 
reprogramming process were only the real differences of 
the old and new compiler/linker output file (OP-code) 
have to be transferred and reprogrammed (refer to Fig. 9). 
This results in significant time reductions for the data 
transfer and the corresponding physical programming 
process.  
1)   MRAM vs. Flash memory 

In contrast, the differential file approach for a Flash 
memory technology based system requires large RAM 
resources to mirror the current memory sector content 
(refer to III-2c) and therefore typically the complete sector 
content will be transferred.  

 

 
Figure 9: Usage of a differential file for physical memory 
sector reprogramming 

 
In table 3 a comparison of both approaches (MRAM 

with differential file transfer and Flash memory with 
complete file transfer) is given. The data volume to be 
transferred and reprogrammed is the main influencing 
factor for the total reprogramming time. Based on the 
Flash memory sector sizes of Infineon’s TriCore TC1767 
[3] microcontroller we assume that the modified OP-code 
is less that 1kByte (refer to III-2c) within on memory 
section. The corresponding data transfer times on a CAN 
bus system with 500 kbit/s bandwidth are calculated 
according to formula 1 and the given assumptions. To 

simplify the model neither upper communication protocols 
(e.g. transport protocol for CAN according to ISO 15765-2 
etc.) nor communication delays (inter-frame times be-
tween two CAN-PDUs) have been taken into account.  

 
Fehler! Es ist nicht möglich, durch die Bearbeitung 

von Feldfunktionen Objekte zu erstellen.Formula 1 – data 
transfer time 

 
Assumption: 
Payload for CAN   8 Byte / frame 
Approximate frame length:  123 bit 
BitRate:   500 kbit/s 
 
We assume also that the write speed to MRAM is equal 

to existing Flash memories (a safe assumption as shown 
by predictions in table 1). 

 
Fehler! Es ist nicht möglich, durch die Bearbeitung 

von Feldfunktionen Objekte zu erstellen. 
Formula 2 – programming time 

 
Assumption: 
Programming rate   50 kByte/s [1,3] 

 
TABLE 3: DATA VOLUME AND TRANSFER TIME FOR INFINEON’S 

TRICORE 1797 FLASH MEMORY SECTOR SIZES 

 
 
Table 3 illustrates the power of the differential file ap-

proach. Especially for large physical memory sections the 
benefit of reduced transfer time and reduced programming 
time is quite evident. Upper layer communication proto-
cols will reduce the data transfer rate in addition and 
results in increasing transfer times. Of course, the data 
transfer time depends fundamentally on the underlying bus 
systems and the network architecture. A slow bus system 
with small bandwidth will increase the data transfer time 
compared to a faster bus system. But even for small 
bandwidth bus systems data reduction has a significant 
impact to the data transfer time and the total reprogram-
ming time.  

 
2)   Comparison to data size reduction approaches 

The benefit of the MRAM based differential file ap-
proach for software reprogramming is also quite evident if 
the method is compared to other typical data reduction 
methods. Table 4 shows a comparison depicting saving 
due to typical data reduction methods and differential file 
approaches based on formula 1. The transport protocol 
overhead or differential file overhead has not been taken 
into account. Table 4 has been generated by making the 
following assumptions based on typical data for an ECU 
that process complex control assignments, e.g. driver 
assistance systems (refer to Fig. 1): 

 
 
 
Assumption: 
File size:   32 MByte 
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Compression ratio:  75%  
Modified OP code size:  1 kByte 
CAN Payload:    8 Byte / frame 
Approximate frame length:  123 bit 
CAN Baud rate:   125 kbit/s,  

500 kBit/s 
1 Mbit/s 

 
The table 4 shows that if only the differences of both 

files will be transferred the data transfer time is signifi-
cantly reduced compared to conventional data size reduc-
tion methods e.g. partitioning and compression. According 
to the reprogramming sequence in Fig. 4 the benefit of 
step 4 (download & programming) is visible. For Flash 
memory the step 3 (erase memory) still has to be proc-
essed. Within the given example the interpolation erase 
time for 32 MB is up to 640 s or 240 s for 12 MB (refer to 
table 1). For an MRAM based system this time is not 
relevant. The step 5 (verification) is necessary for both 
memory approaches. At least a CRC must be calculated to 
verify the correct programming and the consistency of the 
new software. Due to the equal read access speed of both 
memory technologies (refer to table 1) this step provides 
no differences. The required execution time of step 5 
depends on the CRC calculation algorithm, microcontrol-
ler’s clock frequency etc. and can take up to several 
minutes. 

Of course, the model is simplified and is not complete 
but it depicts that an approach of differential file transfer 
based on MRAM technology provides significant potential 
saving. 
 

TABLE 4:  DATA TRANSFER TIME VIA CAN  

 
 

3)   Restrictions 
Of course, the differential file transfer approach pro-

vides some restrictions and has some additional require-
ments to the software development process.  

In contrast to the file oriented software storage PC 
world with its virtual addresses, an embedded system’s 
microcontroller works physical address oriented. A 
microcontroller provides neither a memory managing 
system nor that much memory to squander memory space. 
This is why during the embedded software generation 
process all source code elements (e.g. in C-language: 
functions, arrays etc.) are linked consecutively without 
any larger gaps within the address space. Consequently, if 
a routine expands all other compiled elements will change 
the allocation address. In that case the differences between 
a previous file and a new compiled and linked file will be 
quite high whereas the source code changes are only a few 
lines of code. To be able to reduce the differences of the 
embedded software files it is necessary to allocate all the 
software parts always on the same position (address). This 
requires a fixed linking concept to guarantee that the 

smallest possible difference of both files can be calculated. 
However, a link process with fix addresses can be imple-
mented by different approaches. A fix position for at least 
each source code module (e.g. c-file, object-file etc.) must 
be configured within the linker command file. Best results 
provide the fix allocation on source code function level. 
Here each function or array etc. is allocated on a fix 
position.  

The disadvantage is the necessity to have address gaps 
(empty space) between the single linking objects to 
prevent the system from overwriting other allocated code 
objects in case of further upgrades of another code object. 
Hence, the commercial relation of higher costs for a larger 
memory vs. reprogramming time and cost reduction has to 
be taken into account. 

Especially within the automotive industry a stringent 
version and compatibility control management is required 
because software on a car is only reprogrammed if it is in 
a repair shop. Because of the large service intervals of 
modern vehicles it might be possible that several software 
versions are in between the current vehicle software and 
the current OEM software.  

To guarantee equally high process’ safeness and secu-
rity of the MRAM based on differential file approach 
compared to the established Flash memory programming 
process these basic issues have to be taken into account. 

VI.  CONCLUSION AND OUTLOOK 

The paper has discussed the rapidly approaching limita-
tion of Flash technologies in embedded vehicle systems 
for in-system reprogramming. The main advantages of 
MRAM vs. Flash memory technology with a focus on 
reprogramming have been presented. The benefits of new 
programming approaches have been discussed and the 
possibilities of bit is the byte-wise access of MRAM 
memories with the possibility to overwriting data without 
an initial memory erase phase highlighted. Byte-wise 
access allows software updates by transferring and 
overwriting only differences between the old and new 
software. Due to the reduced amount of data to transfer, 
the data transfer time and the physical programming time 
significant time savings can be made. Thus the potential 
cost savings of the new technologies could solve the 
rapidly approaching technological limitation of Flash 
memories in modern complex embedded vehicle systems.  

The paper has not quantified the possible overheads 
associated with differential file programming, however, 
neither has it detailed such factors as the increased risk of 
process interruption as programming time increases for 
conventional Flash technologies. 

For the resulting cost aspects two different scenarios 
occur: If high speed communication bus systems are 
available data transfer time could reduced. A total process 
time reduction provides cost advantages for production 
and within some business areas (e.g. vehicle industry etc.) 
in service/after sales activities, too. On the other hand 
differential file transfer would make it possible to use low 
cost small bandwidth bus systems but maintain the current 
data transfer times. 

In conclusion the presented study shows that the prob-
lem of increasing costs because of increasing software 
sizes and resulting reprogramming times could be partly 
solved when MRAM becomes commercially available.  

This paper has concentrated on the problem facing all 
business areas where software programming time provides 
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a rapidly increasing potential cost. It has proposed that the 
new MRAM technologies will potentially resolve this 
issue. However, there are other significant benefits that the 
technology can offer related to the types of bus architec-
ture needed.  
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