334 research outputs found

    Vehicular Ad Hoc Networks: Growth and Survey for Three Layers

    Get PDF
    A vehicular ad hoc network (VANET) is a mobile ad hoc network that allows wireless communication between vehicles, as well as between vehicles and roadside equipment. Communication between vehicles promotes safety and reliability, and can be a source of entertainment. We investigated the historical development, characteristics, and application fields of VANET and briefly introduced them in this study. Advantages and disadvantages were discussed based on our analysis and comparison of various classes of MAC and routing protocols applied to VANET. Ideas and breakthrough directions for inter-vehicle communication designs were proposed based on the characteristics of VANET. This article also illustrates physical, MAC, and network layer in details which represent the three layers of VANET. The main works of the active research institute on VANET were introduced to help researchers track related advanced research achievements on the subject

    Performance evaluation of wake-up radio based wireless body area network

    Get PDF
    Abstract. The last decade has been really ambitious in new research and development techniques to reduce energy consumption especially in wireless sensor networks (WSNs). Sensor nodes are usually battery-powered and thus have very limited lifetime. Energy efficiency has been the most important aspect to discuss when talking about wireless body area network (WBAN) in particular, since it is the bottleneck of these networks. Medium access control (MAC) protocols hold the vital position to determine the energy efficiency of a WBAN, which is a key design issue for battery operated sensor nodes. The wake-up radio (WUR) based MAC and physical layer (PHY) have been evaluated in this research work in order to contribute to the energy efficient solutions development. WUR is an on-demand approach in which the node is woken up by the wake-up signal (WUS). A WUS switches a node from sleep mode to wake up mode to start signal transmission and reception. The WUS is transmitted or received by a secondary radio transceiver, which operates on very low power. The energy benefit of using WUR is compared with conventional duty-cycling approach. As the protocol defines the nodes in WUR based network do not waste energy on idle listening and are only awakened when there is a request for communication, therefore, energy consumption is extremely low. The performance of WUR based MAC protocol has been evaluated for both physical layer (PHY) and MAC for transmission of WUS and data. The probabilities of miss detection, false alarm and detection error rates are calculated for PHY and the probabilities of collision and successful data transmission for channel access method Aloha is evaluated. The results are obtained to compute and compare the total energy consumption of WUR based network with duty cycling. The results prove that the WUR based networks have significant potential to improve energy efficiency, in comparison to conventional duty cycling approach especially, in the case of low data-reporting rate applications. The duty cycle approach is better than WUR approach when sufficiently low duty cycle is combined with highly frequent communication between the network nodes

    Implementing Efficient and Multi-Hop Image Acquisition In Remote Monitoring IoT systems using LoRa Technology

    Get PDF
    Remote sensing or monitoring through the deployment of wireless sensor networks (WSNs) is considered an economical and convenient manner in which to collect information without cumbersome human intervention. Unfortunately, due to challenging deployment conditions, such as large geographic area, and lack of electricity and network infrastructure, designing such wireless sensor networks for large-scale farms or forests is difficult and expensive. Many WSN-appropriate wireless technologies, such as Wi-Fi, Bluetooth, Zigbee and 6LoWPAN, have been widely adopted in remote sensing. The performance of these technologies, however, is not sufficient for use across large areas. Generally, as the geographical scope expands, more devices need to be employed to expand network coverage, so the number and cost of devices in wireless sensor networks will increase dramatically. Besides, this type of deployment usually not only has a high probability of failure and high transmission costs, but also imposes additional overhead on system management and maintenance. LoRa is an emerging physical layer standard for long range wireless communication. By utilizing chirp spread spectrum modulation, LoRa features a long communication range and broad signal coverage. At the same time, LoRa also has low power consumption. Thus, LoRa outperforms similar technologies in terms of hardware cost, power consumption and radio coverage. It is also considered to be one of the promising solutions for the future of the Internet of Things (IoT). As the research and development of LoRa are still in its early stages, it lacks sufficient support for multi-packet transport and complex deployment topologies. Therefore, LoRa is not able to further expand its network coverage and efficiently support big data transfers like other conventional technologies. Besides, due to the smaller payload and data rate in LoRa physical design, it is more challenging to implement these features in LoRa. These shortcomings limit the potential for LoRa to be used in more productive application scenarios. This thesis addresses the problem of multi-packet and multi-hop transmission using LoRa by proposing two novel protocols, namely Multi-Packet LoRa (MPLR) and Multi-Hop LoRa (MHLR). LoRa's ability to transmit large messages is first evaluated in this thesis, and then the protocols are well designed and implemented to enrich LoRa's possibilities in image transmission applications and multi-hop topologies. MPLR introduces a reliable transport mechanism for multi-packet sensory data, making its network not limited to the transmission of small sensor data only. In collaboration with a data channel reservation technique, MPLR is able to greatly mitigate data collisions caused by the increased transmission time in laboratory experiments. MHLR realizes efficient routing in LoRa multi-hop transmission by utilizing the power of machine learning. The results of both indoor and outdoor experiments show that the machine learning based routing is effective in wireless sensor networks

    Classification of Smart Home Applications’ Requirements for the MAC Layer

    Get PDF
    Abstract—Smart homes and Wireless Home Automation Networks (WHAN) face several challenges in terms of cost, scalability, reliability, delay, energy consumption and many others. Smart homes typically have huge number of communicating devices. Efficient management of network resources is a major challenge in such environments. This paper provides insights on how to improve the MAC layer in smart home networks to fulfil the requirements of the different smart home applications. It provides a classification of the different smart home applications and identifies the main requirements and challenges regarding the MAC layer in this environment. It also provides insights for MAC protocols designers by highlighting the main issues in designing MAC schemes for smart home environment. Based on the analysis, the paper highlights adaptability as the most critical and challenging feature for smart home MAC protocols

    Optimising lower layers of the protocol stack to improve communication performance in a wireless temperature sensor network

    Get PDF
    The function of wireless sensor networks is to monitor events or gather information and report the information to a sink node, a central location or a base station. It is a requirement that the information is transmitted through the network efficiently. Wireless communication is the main activity that consumes energy in wireless sensor networks through idle listening, overhearing, interference and collision. It becomes essential to limit energy usage while maintaining communication between the sensor nodes and the sink node as the nodes die after the battery has been exhausted. Thus, conserving energy in a wireless sensor network is of utmost importance. Numerous methods to decrease energy expenditure and extend the lifetime of the network have been proposed. Researchers have devised methods to efficiently utilise the limited energy available for wireless sensor networks by optimising the design parameters and protocols. Cross-layer optimisation is an approach that has been employed to improve wireless communication. The essence of cross-layer scheme is to optimise the exchange and control of data between two or more layers to improve efficiency. The number of transmissions is therefore a vital element in evaluating overall energy usage. In this dissertation, a Markov Chain model was employed to analyse the tuning of two layers of the protocol stack, namely the Physical Layer (PHY) and Media Access Control layer (MAC), to find possible energy gains. The study was conducted utilising the IEEE 802.11 channel, SensorMAC (SMAC) and Slotted-Aloha (S-Aloha) medium access protocols in a star topology Wireless Temperature Sensor Network (WTSN). The research explored the prospective energy gains that could be realised through optimizing the Forward Error Correction (FEC) rate. Different Reed Solomon codes were analysed to explore the effect of protocol tuning on energy efficiency, namely transmission power, modulation method, and channel access. The case where no FEC code was used and analysed as the control condition. A MATLAB simulation model was used to identify the statistics of collisions, overall packets transmitted, as well as the total number of slots used during the transmission phase. The bit error probability results computed analytically were utilised in the simulation model to measure the probability of successful transmitting data in the physical layer. The analytical values and the simulation results were compared to corroborate the correctness of the models. The results indicate that energy gains can be accomplished by the suggested layer tuning approach.Electrical and Mining EngineeringM. Tech. (Electrical Engineering

    The design and evaluation of Wireless Sensor Networks for applications in industrial locations

    Get PDF
    In manufacturing industries, there exist many applications where Wireless Sensor Networks (WSN\u27s) are integrated to provide wireless solution for the automated manufacturing processes. It is well known that industrial environments characterized by extreme conditions such as high temperature, pressure, and electromagnetic (EM) interference that can affect the performance of the WSN\u27s. The key solution to overcome this performance issue is by monitoring the received Signal Strength Index (RSSI) at the received sensor of the WSN device and track frame error rate of wireless packets. ZigBee is a wireless sensor network (WSN) standard designed for specific needs of the remote monitoring sensor system. Zigbee networks can be established by three different topologies: start, hybrid, and mesh. In this research project, the interest in analyzing the characteristics of the Zigbee performance was completed using a star topology network. Three performance parameters were obtained: the RSSI signal to monitor the received wireless packets from the sending node, path-lost exponent to determine the effect of industrial environment on wireless signals, and the frame error rate to know the discontinue time. The study was in three phases and took place in two settings: The first was at the manufacturing laboratory at the University of Northern Iowa, the second and the third were at the facility of a Midwestern manufacturing company. The study aimed to provide an analytical tool to evaluate the performances of Zigbee networks in industrial environments and compare the results to show that harsh environments do affect its performance. The study also involved testing the performance of WSN. This was done by simulating input/output Line passing with digital and analog data. Packets were sent from one node and counted at the receiving side to measure the packet error rate of WSN in industrial environment. In conclusion, investigating the WSN\u27s systems performance in industrial environment provides is crucial to identify the effects of the harsh conditions. It is necessary to run similar investigation to prevent the malfunction of the manufacturing applications. Testing a simple WSN in industrial environment can be capable of predicting the performance of the network. It is also recommended to have an embedded approach to WSN applications that can self-monitor its performance

    Controlo de acesso ao meio em comunicações veiculares de tempo-real

    Get PDF
    Despite several preventive measures, the number of roadway accidents is still very high, being considered even a problem of public health by some entities. This thesis has as global purpose of contributing to the reduction of that number of accidents, and consequent fatalities, by using safety-related applications that use communication among vehicles. In particular, the primary goal is guaranteeing that communication between users in vehicular environments is done with appropriate time bounds to transfer safety-critical information. In detail, it is studied how to manage the scheduling of message’s transmissions (medium access control - MAC), in order to define precisely who will communicate and when is the appropriate instant. The preferable situation where a communication infrastructure is present with full coverage (RSUs) is also studied, from which medium access control is defined precisely, and vehicles (OBUs) become aware of medium utilization. Also, sporadic situations (e.g., absence of RSUs) are studied in which the communication network is “ad hoc” and solely formed by the current vehicles. It is used the recently WAVE / IEEE 802.11p standard, specific for vehicular communications, and it is proposed a TDMA based solution, with appropriate coordination between RSUs in order to effectively disseminate a critical safety event. It is taken into account two different ways of choosing the instant for the initial broadcast, and both cases are compared. In case there is no infrastructure available, methods are derived to minimize communication medium access collisions, and to maximize the available bandwidth. The results reflect the total end-to-end delay, and show that adequate times are attained, and meet with the requisites for the type of applications being considered. Also, enhancements are obtained when using the alternate choice for the initial broadcast instant.Apesar de diversas medidas preventivas, o número de acidentes rodoviários continua a ser muito elevado, sendo mesmo considerado uma questão de saúde pública por algumas entidades. Esta tese tem como objetivo geral contribuir para a redução desse número de acidentes, e consequentes fatalidades, através da utilização de aplicações de segurança que envolvem comunicação entre veículos. Em particular, o objetivo principal é garantir que a comunicação entre utentes, em ambientes veiculares, seja efetuada com limites temporais apropriados à transferência de informações críticas. De forma mais detalhada, é estudada a gestão do escalonamento das transmissões (controlo de acesso ao meio – MAC) que irá definir quem vai comunicar e quando o pode fazer. São estudadas situações (desejadas) onde há uma infra-estrutura de comunicações com cobertura integral (RSUs), a partir da qual se faz a coordenação do acesso ao meio pelos veículos (OBUs), e situações (esporádicas, por ausência de RSU) em que a rede de comunicação é “ad hoc” e apenas constituída pelos veículos presentes. Utiliza-se a recente norma WAVE / IEEE 802.11p, específica para comunicações veiculares, e propõe-se uma solução baseada em TDMA, com coordenação apropriada entre RSUs para disseminação efetiva de um evento crítico de segurança. A escolha do instante para o broadcast inicial do evento de segurança também é tida em conta, e são comparados dois casos distintos. No caso da ausência de infraestrutura, derivam-se métodos para minimizar colisões no acesso ao meio de comunicação, e maximizar a largura de banda disponível. Os resultados refletem o atraso total end-to-end, mostrando tempos apropriados para os requisitos das aplicações em causa, e evidenciando melhorias aquando da escolha alternativa para o instante do broadcast inicial.Programa Doutoral em Engenharia Eletrotécnic

    Spacelab system analysis: The modified free access protocol: An access protocol for communication systems with periodic and Poisson traffic

    Get PDF
    The protocol definition and terminal hardware for the modified free access protocol, a communications protocol similar to Ethernet, are developed. A MFA protocol simulator and a CSMA/CD math model are also developed. The protocol is tailored to communication systems where the total traffic may be divided into scheduled traffic and Poisson traffic. The scheduled traffic should occur on a periodic basis but may occur after a given event such as a request for data from a large number of stations. The Poisson traffic will include alarms and other random traffic. The purpose of the protocol is to guarantee that scheduled packets will be delivered without collision. This is required in many control and data collection systems. The protocol uses standard Ethernet hardware and software requiring minimum modifications to an existing system. The modification to the protocol only affects the Ethernet transmission privileges and does not effect the Ethernet receiver

    Ethernet Performance: Design and Implementation Study

    Get PDF
    General concepts concerning local area network designs, functions and topologies will be presented. Ethernet as a multipoint bus topology local area network will be presented in detail. The Carrier Sense Multiple Access/Collision Detect (CSMA/CD) method of fairly regulating access to the shared network bus is studied. The Ethernet Network in relation to the Open Systems Interconnect (OSI) is reviewed, but only the layers pertaining to Ethernet are discussed throughout the majority of the paper. The specifications as described by Xerox, Digital and Intel are presented to help the designer understand the network\u27s physical limitations. Analytical models are used to predict performance and actual measured performance studies will be used to make performance assumptions. The performance is studied under varying load conditions. The data gathered concerns both limits imposed on the number of users by the finite bandwidth of the channel and efficient utilization of that channel. In conclusion, design specifications and performance data will be used together to formulate a design methodology for building the most efficient Ethernet network
    corecore