215 research outputs found

    Inter-carrier interference mitigation for underwater acoustic communications

    Get PDF
    Communicating at a high data rate through the ocean is challenging. Such communications must be acoustic in order to travel long distances. The underwater acoustic channel has a long delay spread, which makes orthogonal frequency division multiplexing (OFDM) an attractive communication scheme. However, the underwater acoustic channel is highly dynamic, which has the potential to introduce significant inter-carrier interference (ICI). This thesis explores a number of means for mitigating ICI in such communication systems. One method that is explored is directly adapted linear turbo ICI cancellation. This scheme uses linear filters in an iterative structure to cancel the interference. Also explored is on-off keyed (OOK) OFDM, which is a signal designed to avoid ICI

    Ciphered BCH Codes for PAPR Reduction in the OFDM in Underwater Acoustic Channels

    Get PDF
    We propose an effective, low complexity and multifaceted scheme for peak-to-average power ratio (PAPR) reduction in the orthogonal frequency division multiplexing (OFDM) system for underwater acoustic (UWA) channels. In UWA OFDM systems, PAPR reduction is a challenging task due to low bandwidth availability along with computational and power limitations. The proposed scheme takes advantage of XOR ciphering and generates ciphered Bose–Chaudhuri–Hocquenghem (BCH) codes that have low PAPR. This scheme is based upon an algorithm that computes several keys offline, such that when the BCH codes are XOR-ciphered with these keys, it lowers the PAPR of BCH-encoded signals. The subsequent low PAPR modified BCH codes produced using the chosen keys are used in transmission. This technique is ideal for UWA systems as it does not require additional computational power at the transceiver during live transmission. The advantage of the proposed scheme is threefold. First, it reduces the PAPR; second, since it uses BCH codes, the bit error rate (BER) of the system improves; and third, a level of encryption is introduced via XOR ciphering, enabling secure communication. Simulations were performed in a realistic UWA channel, and the results demonstrated that the proposed scheme could indeed achieve all three objectives with minimum computational powerThis research was funded by a grant from the Spanish Ministry of Science and Innovation in the framework of the project “NAUTILUS: Swarms of underwater autonomous vehicles guided by artificial intelligence: its time has come” (PID2020-112502RB / AEI / 10.13039/501100011033). Partial funding for open access charge: Universidad de Málag

    A Study on Efficient Receiver Design for UWA Communication System

    Get PDF
    Underwater Acoustic Channels are fast varying channel according to environmental conditions and exhibit strong random fluctuations in amplitude as well as phase due to reflection, refraction, and diffraction. Due to these highly space, time and frequency dependent channel characteristics, it is very difficult to establish reliable and long-range underwater acoustic communication. In this project, channel modeling has been done showing the different channel characteristics of underwater and their dependencies on frequency, temperature, pressure, salinity etc. Also, it has been shown through some theoretical and practical results that the nakagami fading is the best suitable generalized fading to be used in underwater. In this research work various techniques such as equalization, pilot based OFDM and LDPC Coding has also been done to mitigate the channel fading effect and to improve the performance. An adaptive equalizer has been implemented through three different algorithms LMS, NLMS and RLS for linear as well as non-linear channels to mitigate ISI and, their convergence characteristics along with bit error rate performance has been compared. Two types of pilot insertion, block and Comb type has also been done while implementing OFDM. Block type pilot based OFDM is suitable for slow fading and comb type pilot based OFDM is suitable for a fast fading channel. As in underwater, both types of fading exist, hence, lattice type pilot based OFDM is the best suitable for underwater acoustic communication. LDPC channel coding through which almost Shannon capacity performance can be achieved; has also been implemented taking nakagami channel fading. Bit error rate performance has been compared for different LDPC decoding techniques and for different code rate

    LDPC-Coded CAP with Spatial Diversity for UVLC Systems over Generalized-Gamma Fading Channel

    Get PDF
    In this paper, low-density parity-check (LDPC)-coded carrierless amplitude and phase (CAP) modulation with spatial diversity is proposed to mitigate turbulence-induced fading in an underwater visible-light communication (UVLC) channel. Generalized-gamma (GG) distribution was used to model the fading, as this model is valid for weak- and strong-turbulence regimes. On the basis of the characteristic function (CHF) of GG random variables, we derived an approximated bit-error rate (BER) for the CAP modulation scheme with spatial diversity and equal-gain combining (EGC). Furthermore, we simulated the performance of the CAP system with diversity and LDPC for various turbulence conditions and validated the analysis. Obtained results showed that the combination of LDPC and spatial diversity is effective in mitigating turbulence-induced fading, especially when turbulence strength is strong

    Investigation of non-binary trellis codes designed for impulsive noise environments

    Get PDF
    PhD ThesisIt is well known that binary codes with iterative decoders can achieve near Shannon limit performance on the additive white Gaussian noise (AWGN) channel, but their performance on more realistic wired or wireless channels can become degraded due to the presence of burst errors or impulsive noise. In such extreme environments, error correction alone cannot combat the serious e ect of the channel and must be combined with the signal processing techniques such as channel estimation, channel equalisation and orthogonal frequency division multiplexing (OFDM). However, even after the received signal has been processed, it can still contain burst errors, or the noise present in the signal maybe non Gaussian. In these cases, popular binary coding schemes such as Low-Density Parity-Check (LDPC) or turbo codes may not perform optimally, resulting in the degradation of performance. Nevertheless, there is still scope for the design of new non-binary codes that are more suitable for these environments, allowing us to achieve further gains in performance. In this thesis, an investigation into good non-binary trellis error-correcting codes and advanced noise reduction techniques has been carried out with the aim of enhancing the performance of wired and wireless communication networks in di erent extreme environments. These environments include, urban, indoor, pedestrian, underwater, and powerline communication (PLC). This work includes an examination of the performance of non-binary trellis codes in harsh scenarios such as underwater communications when the noise channel is additive S S noise. Similar work was also conducted for single input single output (SISO) power line communication systems for single carrier (SC) and multi carrier (MC) over realistic multi-path frequency selective channels. A further examination of multi-input multi-output (MIMO) wired and wireless systems on Middleton class A noise channel was carried out. The main focus of the project was non-binary coding schemes as it is well-known that they outperform their binary counterparts when the channel is bursty. However, few studies have investigated non-binary codes for other environments. The major novelty of this work is the comparison of the performance of non-binary trellis codes with binary trellis codes in various scenarios, leading to the conclusion that non-binary codes are, in most cases, superior in performance to binary codes. Furthermore, the theoretical bounds of SISO and MIMO binary and non-binary convolutional coded OFDM-PLC systems have been investigated for the rst time. In order to validate our results, the implementation of simulated and theoretical results have been obtained for di erent values of noise parameters and on di erent PLC channels. The results show a strong agreement between the simulated and theoretical analysis for all cases.University of Thi-Qar for choosing me for their PhD scholarship and the Iraqi Ministry of Higher Education and Scienti c Research (MOHESR) for granting me the funds to study in UK. In addition, there was ample support towards my stay in the UK from the Iraqi Cultural Attach e in Londo

    An Iterative Receiver for OFDM With Sparsity-Based Parametric Channel Estimation

    Get PDF
    In this work we design a receiver that iteratively passes soft information between the channel estimation and data decoding stages. The receiver incorporates sparsity-based parametric channel estimation. State-of-the-art sparsity-based iterative receivers simplify the channel estimation problem by restricting the multipath delays to a grid. Our receiver does not impose such a restriction. As a result it does not suffer from the leakage effect, which destroys sparsity. Communication at near capacity rates in high SNR requires a large modulation order. Due to the close proximity of modulation symbols in such systems, the grid-based approximation is of insufficient accuracy. We show numerically that a state-of-the-art iterative receiver with grid-based sparse channel estimation exhibits a bit-error-rate floor in the high SNR regime. On the contrary, our receiver performs very close to the perfect channel state information bound for all SNR values. We also demonstrate both theoretically and numerically that parametric channel estimation works well in dense channels, i.e., when the number of multipath components is large and each individual component cannot be resolved.Comment: Major revision, accepted for IEEE Transactions on Signal Processin

    Analysis of using OFDM for short-range, multı-user, underwater acoustic communication

    Get PDF
    Cataloged from PDF version of article.Acoustic waves are being used in several underwater applications, such as SONARs, underwater communication systems. Most of already developed and deployed underwater communication systems use narrow band communication and lacks layered communication approach. In this thesis, we propose a spread spectrum, layered architecture for underwater communication system, such as for SCUBA divers. The communication device shall be designed such that divers can communicate with each other in shallow water, short range in a multi-user fashion and provide not only voice communication but also data transmission as well. The device shall use Orthogonal Frequency Division Multiplexing (OFDM) as a spread spectrum technique. The OFDM technique is selected from other spread spectrum techniques due to it’s inherent ability to combat the channel impairments and flexibility of implementing the communication system using software defined radio (SDR). The spread spectrum system shall operate in 100 kHz to 300 kHz frequency band using wideband acoustic transducers. In this work, we studied a layered architecture for the communication device. We mainly studied the application layer, data link layer and physical layer in order to analyze the achievable data rate and performance. In this work, we tried to find the optimal communication parameters to achieve guaranteed communication performance for possible scenarios. The communication parameters are set in order to achieve best performance for the worst condition. Using the optimal parameters, the system shall occupy 5 users voice and data communication at the same time using the entire frequency band at the same time, however with certain Grade of Service (GOS) the capacity shall be increased. The capacity of the system shall further be increased if the system uses adaptive communication parameters that are adapted to changing channel and user conditions. The system using adaptive communication parameters shall provide at most 16 users’ voice and data communication using the entire frequency band at the same time.Öktem, Kemalettin KeremM.S
    corecore