760 research outputs found

    Fine-Grained Reliability for V2V Communications around Suburban and Urban Intersections

    Full text link
    Safe transportation is a key use-case of the 5G/LTE Rel.15+ communications, where an end-to-end reliability of 0.99999 is expected for a vehicle-to-vehicle (V2V) transmission distance of 100-200 m. Since communications reliability is related to road-safety, it is crucial to verify the fulfillment of the performance, especially for accident-prone areas such as intersections. We derive closed-form expressions for the V2V transmission reliability near suburban corners and urban intersections over finite interference regions. The analysis is based on plausible street configurations, traffic scenarios, and empirically-supported channel propagation. We show the means by which the performance metric can serve as a preliminary design tool to meet a target reliability. We then apply meta distribution concepts to provide a careful dissection of V2V communications reliability. Contrary to existing work on infinite roads, when we consider finite road segments for practical deployment, fine-grained reliability per realization exhibits bimodal behavior. Either performance for a certain vehicular traffic scenario is very reliable or extremely unreliable, but nowhere in relatively proximity to the average performance. In other words, standard SINR-based average performance metrics are analytically accurate but can be insufficient from a practical viewpoint. Investigating other safety-critical point process networks at the meta distribution-level may reveal similar discrepancies.Comment: 27 pages, 6 figures, submitted to IEEE Transactions on Wireless Communication

    A Measurement Based Shadow Fading Model for Vehicle-to-Vehicle Network Simulations

    Full text link
    The vehicle-to-vehicle (V2V) propagation channel has significant implications on the design and performance of novel communication protocols for vehicular ad hoc networks (VANETs). Extensive research efforts have been made to develop V2V channel models to be implemented in advanced VANET system simulators for performance evaluation. The impact of shadowing caused by other vehicles has, however, largely been neglected in most of the models, as well as in the system simulations. In this paper we present a shadow fading model targeting system simulations based on real measurements performed in urban and highway scenarios. The measurement data is separated into three categories, line-of-sight (LOS), obstructed line-of-sight (OLOS) by vehicles, and non line-of-sight due to buildings, with the help of video information recorded during the measurements. It is observed that vehicles obstructing the LOS induce an additional average attenuation of about 10 dB in the received signal power. An approach to incorporate the LOS/OLOS model into existing VANET simulators is also provided. Finally, system level VANET simulation results are presented, showing the difference between the LOS/OLOS model and a channel model based on Nakagami-m fading.Comment: 10 pages, 12 figures, submitted to Hindawi International Journal of Antennas and Propagatio

    A Two-Stage Allocation Scheme for Delay-Sensitive Services in Dense Vehicular Networks

    Full text link
    Driven by the rapid development of wireless communication system, more and more vehicular services can be efficiently supported via vehicle-to-everything (V2X) communications. In order to allocate radio resource with the reasonable implementation complexity in dense urban intersection, a two-stage allocation algorithm is proposed in this paper, whose main objective is to minimize delay and ensure reliability. In particular, as for the first stage, the allocation policy is based on traffic density information (TDI), which is different from utilizing channel state information (CSI) and queue state information (QSI) in the second stage. Moreover, in order to reflect the influence of TDI on delay, a macroscopic vehicular mobility model is employed in this paper. Simulation results show that the proposed algorithm can acquire an asymptotically optimal performance with the acceptable complexity

    Measurement Based Channel Characterization and Modeling for Vehicle-to-Vehicle Communications

    Get PDF
    Vehicle-to-Vehicle (V2V) communication is a challenging but fast growing technology that has potential to enhance traffic safety and efficiency. It can also provide environmental benefits in terms of reduced fuel consumption. The effectiveness and reliability of these applications highly depends on the quality of the V2V communication link, which rely upon the properties of the propagation channel. Therefore, understanding the properties of the propagation channel becomes extremely important. This thesis aims to fill some gaps of knowledge in V2V channel research by addressing four different topics. The first topic is channel characterization of some important safety critical scenarios (papers I and II). Second, is the accuracy or validation study of existing channel models for these safety critical scenarios (papers III and IV). Third, is about channel modeling (paper V) and, the fourth topic is the impact of antenna placement on vehicles and the possible diversity gains. This thesis consists of an introduction and six papers: Paper I presents a double directional analysis of vehicular channels based on channel measurement data. Using SAGE, a high-resolution algorithm for parameter estimation, we estimate channel parameters to identify underlying propagation mechanisms. It is found that, single-bounce reflections from static objects are dominating propagation mechanisms in the absence of line-of-sight (LOS). Directional spread is observed to be high, which encourages the use of diversity-based methods. Paper II presents results for V2V channel characterization based on channel measurements conducted for merging lanes on highway, and four-way street intersection scenarios. It is found that the merging lane scenario has the worst propagation condition due to lack of scatterers. Signal reception is possible only with the present LOS component given that the antenna has a good gain in the direction of LOS. Thus designing an antenna that has an omni-directional gain, or using multiple antennas that radiate towards different directions become more important for such safety critical scenarios. Paper III presents the results of an accuracy study of a deterministic ray tracing channel model for vehicle-to-vehicle (V2V) communication, that is compared against channel measurement data. It is found that the results from measurement and simulation show a good agreement especially in LOS situations where as in NLOS situations the simulations are accurate as far as existing physical phenomena of wave propagation are captured by the implemented algorithm. Paper IV presents the results of a validation study of a stochastic NLOS pathloss and fading model named VirtualSource11p for V2V communication in urban street intersections. The reference model is validated with the help of independent channel measurement data. It is found that the model is flexible and fits well to most of the measurements with a few exceptions, and we propose minor modifications to the model for increased accuracy. Paper V presents a shadow fading model targeting system simulations based on channel measurements. The model parameters are extracted from measurement data, which is separated into three categories; line-of-sight (LOS), LOS obstructed by vehicles (OLOS), and LOS blocked by buildings (NLOS), with the help of video information recorded during the measurements. It is found that vehicles obstructing the LOS induce an additional attenuation in the received signal power. The results from system level vehicular ad hoc network (VANET) simulations are also presented, showing that the LOS obstruction affects the packet reception probability and this can not be ignored. Paper VI investigates the impact of antenna placement based on channel measurements performed with four omni-directional antennas mounted on the roof, bumper, windscreen and left-side mirror of the transmitter and receiver cars. We use diversity combining methods to evaluate the performance differences for all possible single-input single-output (SIMO), multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) link combinations. This investigation suggests that a pair of antennas with complementary properties, e.g., a roof mounted antenna together with a bumper antenna is a good solution for obtaining the best reception performance, in most of the propagation environments. In summary, this thesis describes the channel behavior for safety-critical scenarios by statistical means and models it so that the system performance can be assessed in a realistic manner. In addition to that the influence of different antenna arrangements has also been studied to exploit the spatial diversity and to mitigate the shadowing effects. The presented work can thus enable more efficient design of future V2V communication systems

    Modelling and Real Deployment of C-ITS by Integrating Ground Vehicles and Unmanned Aerial Vehicles

    Full text link
    [ES] Para proporcionar un entorno de tráfico vial más seguro y eficiente, los sistemas ITS o Sistemas Inteligentes de Transporte representan como una solución dotada de avances tecnológicos de vanguardia. La integración de elementos de transporte como automóviles junto con elementos de infraestructura como RoadSide Units (RSUs) ubicados a lo largo de la vía de comunicación permiten ofrecer un entorno de red conectado con múltiples servicios, incluida conectividad a Internet. Esta integración se conoce con el término C-ITS o Sistemas Inteligentes de Transporte Cooperativos. La conexión de automóviles con dispositivos de infraestructura permite crear redes vehiculares conectadas (V2X) vehículo a dispositivos, que ofrecen la posibilidad de nuevos despliegues en aplicaciones C-ITS como las relacionadas con la seguridad. Hoy en día, con el uso masivo de teléfonos inteligentes y debido a su flexibilidad y movilidad, existen varios esfuerzos para integrarlos con los automóviles. De hecho, con el soporte adecuado de unidad a bordo (OBU), los teléfonos inteligentes se pueden integrar perfectamente con las redes vehiculares, permitiendo a los conductores usar sus teléfonos inteligentes como dispositivos de bordo a que participan en los servicios C-ITS, con el objeto de mejorar la seguridad al volante entre otros. Tópico este, que hoy día representa un tema relevante de investigación. Un problema a solucionar surge cuando las comunicaciones vehiculares sufren inferencias y bloqueos de la señal debidos al escenario. De hecho, el impacto de la vegetación y los edificios, ya sea en áreas urbanas y rurales, puede afectar a la calidad de la señal. Algunas estrategias para mejorar la comunicación vehicular en este tipo de entorno consiste en desplegar UAVs o vehículo aéreo no tripulado (drones), los cuales actúan como enlaces de comunicación entre vehículos. De hecho, UAV ofrece importantes ventajas de implementación, ya que tienen una gran flexibilidad en términos de movilidad, además de un rango de comunicaciones mejorado. Para evaluar la calidad de las comunicaciones, debe realizarse un conjunto de mediciones. Sin embargo, debido al costo de las implementaciones reales de UAV y automóviles, los experimentos reales podrían no ser factibles para actividades de investigación con recursos limitados. Por lo tanto, los experimentos de simulación se convierten en la opción preferida para evaluar las comunicaciones entre UAV y vehículos terrestres. Lograr modelos de propagación de señal correctos y representativos que puedan importarse a los entornos de simulación se vuelve crucial para obtener un mayor grado de realismo, especialmente para simulaciones que involucran el movimiento de UAVs en cualquier lugar del espacio 3D. En particular, la información de elevación del terreno debe tenerse en cuenta al intentar caracterizar los efectos de propagación de la señal. En esta tesis doctoral, proponemos nuevos enfoques tanto teóricos como empíricos para estudiar la integración de redes vehiculares que combinan automóviles y UAVs, así mismo el impacto del entorno en la calidad de las comunicaciones. Esta tesis presenta una aplicación, una metodología de medición en escenarios reales y un nuevo modelo de simulación, los cuales contribuyen a modelar, desarrollar e implementar servicios C-ITS. Más específicamente, proponemos un modelo de simulación que tiene en cuenta las características del terreno en 3D, para lograr resultados confiables de comunicación entre UAV y vehículos terrestres.[CA] Per a proporcionar un entorn de trànsit viari més segur i eficient, els sistemes ITS o Sistemes Intel·ligents de Transport representen una solució dotada d'avanços tecnològics d'avantguarda. La integració d'elements de transport com auto móvils juntament amb elements d'infraestructura com Road Side Units (RSUs) situats al llarg de lav via de comunicació permeten oferir un entorn de xarxa connectat amb multiples serveis, inclusa connectivitat a Internet. Aquesta integració es connex amb el terme C-ITS o Sistemes Intel·ligents de Transport Cooperatius , com ara els automòbils, amb elements d'infraestructura, com ara les road side units (RSU) o pals situats al llarg de la carretera, per a aconseguir un entorn de xarxa que oferisca nous serveis a més de connectivitat a Internet. Aquesta integració s'expressa amb el terme C-ITS, o sistemes intel·ligents de transport cooperatius. La connexió d'automòbils amb dispositius d'infraestructura permet crear xarxes vehiculars connectades (V2X) vehicle a dispositiu, que ofreixen la possibilitat de nous desplegaments en aplicacions C-ITS, com ara les relacionades amb la seguretat. Avui dia, amb l'ús massiu dels telèfons intel·ligents, i a causa de la flexibilitat i mobilitat que presenten, es fan esforços per integrar-los amb els automòbils. De fet, amb el suport adequat d'unitat a bord (OBU), els telèfons intel·ligents es poden integrar perfectament amb les xarxes vehiculars, permetent als conductors usar els seus telèfons intel·ligents com a dispositius per a participar en els serveis de C-ITS, a fi de millorar la seguretat al volant entre altres. Tòpic est, que hui dia representa un tema rellevant d'investigació. Un problema a solucionar sorgeix quan les comunicacions vehiculars ateixen inferències i bloquejos del senyal deguts a l'escenari. De fet, l'impacte de la vegetació i els edificis, tant en àrees urbanes com rurals, pot afectar la qualitat del senyal. Algunes estratègies de millorar la comunicació vehicular en aquest tipus d'entorn consisteix a desplegar UAVs o vehicles aeris no tripulats (drones), els quals actuen com a enllaços de comunicació entre vehicles. De fet, l'ús d'UAVs ofereix importants avantatges d'implementació, ja que tenen una gran flexibilitat en termes de mobilitat, a més d'un rang de comunicacions millorat. Per a avaluar la qualitat de les comunicacions, s'han de realitzar mesures en escenaris reals. No obstant això, a causa del cost de les implementacions i desplegaments reals d'UAV i el seu ús combinat amb vehicles, aquests experiments reals podrien no ser factibles per a activitats d'investigació amb recursos limitats. Per tant, la metodologia basada en simulació es converteixen en l'opció preferida entre els investigadors per a avaluar les comunicacions entre UAV i vehicles terrestres. Aconseguir models de propagació de senyal correctes i representatius que puguen importar-se als entorns de simulació resulta crucial per a obtenir un major grau de realisme, especialment per a simulacions que involucren el moviment d'UAV en qualsevol lloc de l'espai 3D. En particular, cal tenir en compte la informació d'elevació del terreny per a intentar caracteritzar els efectes de propagació del senyal. En aquesta tesi doctoral proposem enfocaments tant teòrics com empírics per a estudiar la integració de xarxes vehiculars que combinen automòbils i UAV, així com l'impacte de l'entorn en la qualitat de les comunicacions. Aquesta tesi presenta una aplicació, una metodología de mesurament en escenaris reals i un nou model de simulació, els quals contribueixen a modelar, desenvolupar i implementar serveis C-ITS. Més específicament, proposem un model de simulació que té en compte les característiques del terreny en 3D, per a aconseguir resultats fiables de comunicació entre UAV i vehicles terrestres.[EN] To provide a safer road traffic environment and make it more convenient, Intelligent Transport Systems (ITSs) are proposed as a solution endowed with cutting-edge technological advances. The integration of transportation elements like cars together with infrastructure elements like Road Side Units to achieve a networking environment offers new services in addition to Internet connectivity. This integration comes under the term Cooperative Intelligent Transport System (C-ITS). Connecting cars with surrounding devices forming vehicular networks in Vehicle-to-Everything (V2X) open new deployments in C-ITS applications like safety-related ones. With the massive use of smartphones nowadays, and due to their flexibility and mobility, several efforts exist to integrate them with cars. In fact, with the right support from the vehicle's On-Board Unit (OBU), smartphones can be seamlessly integrated with vehicular networks. Hence, drivers can use their smartphones as a device to participate in C-ITS services for safety purposes, among others, which is a quite interesting research topic. A significant problem arises when vehicular communications face signal obstructions caused by the environment. In fact, the impact of vegetation and buildings, whether in urban and rural areas, can result in a lower signal quality. One way to enhance vehicular communication networks is to deploy Unmanned Aerial Vehicles (UAVs) to act as relays for communication between cars, or ground vehicles. In fact, UAVs offer important deployment advantages, as they offer great flexibility in terms of mobility, in addition to an enhanced communications range. To assess the quality of the communications, a set of measurements must take place. However, due to the cost of real deployments of UAVs and cars, real experiments might not be feasible for research activities with limited resources. Hence, simulation experiments become the preferred option to assess UAV-to- car communications. Achieving correct and representative signal propagation models that can be imported to the simulation environments becomes crucial to obtain a higher degree of realism, especially for simulations involving UAVs moving anywhere throughout the 3D space. In particular, terrain elevation information must be taken into account when attempting to characterize signal propagation effects. In this research work, we propose both theoretical and empirical approaches to study the integration of vehicular networks combining cars and UAVs, and we study the impact of the surrounding environment on the communications quality. An application, a measurement framework, and a simulation model are presented in this thesis in an effort to model, develop, and deploy C-ITS services. More specifically, we propose a simulation model that takes into account 3D terrain features to achieve reliable UAV-to-car communication results.I want to thank the Spanish government through the Ministry of Economy and Competitiveness (MINECO) and the European Union Commission through the European Social Fund (ESF) for co-financing and granting me the fellowship to fund my studies in Spain and my research stay in Russia. In addition, I would to thank the National Institute of Informatics for granting me the internship fund and the Japanese government through the Japan Society for the Promotion of Science (JSPS) for supporting my research work in Japan.Hadiwardoyo, SA. (2019). Modelling and Real Deployment of C-ITS by Integrating Ground Vehicles and Unmanned Aerial Vehicles [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/118796TESI

    Fastening the Initial Access in 5G NR Sidelink for 6G V2X Networks

    Full text link
    The ever-increasing demand for intelligent, automated, and connected mobility solutions pushes for the development of an innovative sixth Generation (6G) of cellular networks. A radical transformation on the physical layer of vehicular communications is planned, with a paradigm shift towards beam-based millimeter Waves or sub-Terahertz communications, which require precise beam pointing for guaranteeing the communication link, especially in high mobility. A key design aspect is a fast and proactive Initial Access (IA) algorithm to select the optimal beam to be used. In this work, we investigate alternative IA techniques to fasten the current fifth-generation (5G) standard, targeting an efficient 6G design. First, we discuss cooperative position-based schemes that rely on the position information. Then, motivated by the intuition of a non-uniform distribution of the communication directions due to road topology constraints, we design two Probabilistic Codebook (PCB) techniques of prioritized beams. In the first one, the PCBs are built leveraging past collected traffic information, while in the second one, we use the Hough Transform over the digital map to extract dominant road directions. We also show that the information coming from the angular probability distribution allows designing non-uniform codebook quantization, reducing the degradation of the performances compared to uniform one. Numerical simulation on realistic scenarios shows that PCBs-based beam selection outperforms the 5G standard in terms of the number of IA trials, with a performance comparable to position-based methods, without requiring the signaling of sensitive information

    SymbioCity: Smart Cities for Smarter Networks

    Get PDF
    The "Smart City" (SC) concept revolves around the idea of embodying cutting-edge ICT solutions in the very fabric of future cities, in order to offer new and better services to citizens while lowering the city management costs, both in monetary, social, and environmental terms. In this framework, communication technologies are perceived as subservient to the SC services, providing the means to collect and process the data needed to make the services function. In this paper, we propose a new vision in which technology and SC services are designed to take advantage of each other in a symbiotic manner. According to this new paradigm, which we call "SymbioCity", SC services can indeed be exploited to improve the performance of the same communication systems that provide them with data. Suggestive examples of this symbiotic ecosystem are discussed in the paper. The dissertation is then substantiated in a proof-of-concept case study, where we show how the traffic monitoring service provided by the London Smart City initiative can be used to predict the density of users in a certain zone and optimize the cellular service in that area.Comment: 14 pages, submitted for publication to ETT Transactions on Emerging Telecommunications Technologie
    corecore