22 research outputs found

    An Efficient Activity Detection System based on Skeleton Joints Identification

    Get PDF
    The increasing criminal activities in the current world has drawn lot of interest activity recognition techniques which helps to perform the sophistical analytical operations on human activity and also helps to interface the human and computer interactions. From the existing review analysis it is found that most of the existing systems are not emphasize on computational performance but are more application specific by identifying specific problems. Hence, it is found that all the features are not required for accurate and cost effective human activity detection. Thus, the human skelton action can be considered and presented a simple and accurate process to identify the significant joints only. From the outcomes it is found that the proposed system is cost effective and computational efficient activity recognition technique for human actions

    SmartARM: A smartphone-based group activity recognition and monitoring scheme for military applications

    Get PDF
    © 2017 IEEE. In this paper we propose SmartARM-A Smartphone-based group Activity Recognition and Monitoring (ARM) scheme, which is capable of recognizing and centrally monitoring coordinated group and individual group member activities of soldiers in the context of military excercises. In this implementation, we specifically consider military operations, where the group members perform similar motions or manoeuvres on a mission. Additionally, remote administrators at the command center receive data from the smartphones on a central server, enabling them to visualize and monitor the overall status of soldiers in situations such as battlefields, urban operations and during soldier's physical training. This work establishes-(a) the optimum position of smartphone placement on a soldier, (b) the optimum classifier to use from a given set of options, and (c) the minimum sensors or sensor combinations to use for reliable detection of physical activities, while reducing the data-load on the network. The activity recognition modules using the selected classifiers are trained on available data-sets using a test-train-validation split approach. The trained models are used for recognizing activities from live smartphone data. The proposed activity detection method puts forth an accuracy of 80% for real-time data

    Ensemble residual network-based gender and activity recognition method with signals

    Get PDF
    Nowadays, deep learning is one of the popular research areas of the computer sciences, and many deep networks have been proposed to solve artificial intelligence and machine learning problems. Residual networks (ResNet) for instance ResNet18, ResNet50 and ResNet101 are widely used deep network in the literature. In this paper, a novel ResNet-based signal recognition method is presented. In this study, ResNet18, ResNet50 and ResNet101 are utilized as feature extractor and each network extracts 1000 features. The extracted features are concatenated, and 3000 features are obtained. In the feature selection phase, 1000 most discriminative features are selected using ReliefF, and these selected features are used as input for the third-degree polynomial (cubic) activation-based support vector machine. The proposed method achieved 99.96% and 99.61% classification accuracy rates for gender and activity recognitions, respectively. These results clearly demonstrate that the proposed pre-trained ensemble ResNet-based method achieved high success rate for sensors signals. © 2020, Springer Science+Business Media, LLC, part of Springer Nature

    Triaxial accelerometer-based human activity recognition using 1D convolution neural network

    Get PDF
    Deep learning has been instrumental for human activity recognition (HAR). In spite of its strong potential, significant challenges exist, wherein the real case, deep learning model requires a massive dataset for training. However, existing research require an improvement to classify static and dynamic activity with more significant achievement. To address such challenges, we proposed a model utilizing 1-dimensional Convolution Neural Network (CNN) to classify static and dynamic activity using public dataset. The proposed scheme in this study has been conducted (through experiments), in which the result denotes the state-of-the-art methods, obtaining better performance than others

    Synthetic Sensor Data for Human Activity Recognition

    Get PDF
    Human activity recognition (HAR) based on wearable sensors has emerged as an active topic of research in machine learning and human behavior analysis because of its applications in several fields, including health, security and surveillance, and remote monitoring. Machine learning algorithms are frequently applied in HAR systems to learn from labeled sensor data. The effectiveness of these algorithms generally relies on having access to lots of accurately labeled training data. But labeled data for HAR is hard to come by and is often heavily imbalanced in favor of one or other dominant classes, which in turn leads to poor recognition performance. In this study we introduce a generative adversarial network (GAN)-based approach for HAR that we use to automatically synthesize balanced and realistic sensor data. GANs are robust generative networks, typically used to create synthetic images that cannot be distinguished from real images. Here we explore and construct a model for generating several types of human activity sensor data using a Wasserstein GAN (WGAN). We assess the synthetic data using two commonly-used classifier models, Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM). We evaluate the quality and diversity of the synthetic data by training on synthetic data and testing on real sensor data, and vice versa. We then use synthetic sensor data to oversample the imbalanced training set. We demonstrate the efficacy of the proposed method on two publicly available human activity datasets, the Sussex-Huawei Locomotion (SHL) and Smoking Activity Dataset (SAD). We achieve improvements of using WGAN augmented training data over the imbalanced case, for both SHL (0.85 to 0.95 F1-score), and for SAD (0.70 to 0.77 F1-score) when using a CNN activity classifier

    Comparing Sampling Strategies for Tackling Imbalanced Data in Human Activity Recognition

    Get PDF
    Human activity recognition (HAR) using wearable sensors is an increasingly active research topic in machine learning, aided in part by the ready availability of detailed motion capture data from smartphones, fitness trackers, and smartwatches. The goal of HAR is to use such devices to assist users in their daily lives in application areas such as healthcare, physical therapy, and fitness. One of the main challenges for HAR, particularly when using supervised learning methods, is obtaining balanced data for algorithm optimisation and testing. As people perform some activities more than others (e.g., walk more than run), HAR datasets are typically imbalanced. The lack of dataset representation from minority classes hinders the ability of HAR classifiers to sufficiently capture new instances of those activities. We introduce three novel hybrid sampling strategies to generate more diverse synthetic samples to overcome the class imbalance problem. The first strategy, which we call the distance-based method (DBM), combines Synthetic Minority Oversampling Techniques (SMOTE) with Random_SMOTE, both of which are built around the k-nearest neighbors (KNN). The second technique, referred to as the noise detection-based method (NDBM), combines SMOTE Tomek links (SMOTE_Tomeklinks) and the modified synthetic minority oversampling technique (MSMOTE). The third approach, which we call the cluster-based method (CBM), combines Cluster-Based Synthetic Oversampling (CBSO) and Proximity Weighted Synthetic Oversampling Technique (ProWSyn). We compare the performance of the proposed hybrid methods to the individual constituent methods and baseline using accelerometer data from three commonly used benchmark datasets. We show that DBM, NDBM, and CBM reduce the impact of class imbalance and enhance F1 scores by a range of 9–20 percentage point compared to their constituent sampling methods. CBM performs significantly better than the others under a Friedman test, however, DBM has lower computational requirements

    Online Human Activity Recognition using Low-Power Wearable Devices

    Full text link
    Human activity recognition~(HAR) has attracted significant research interest due to its applications in health monitoring and patient rehabilitation. Recent research on HAR focuses on using smartphones due to their widespread use. However, this leads to inconvenient use, limited choice of sensors and inefficient use of resources, since smartphones are not designed for HAR. This paper presents the first HAR framework that can perform both online training and inference. The proposed framework starts with a novel technique that generates features using the fast Fourier and discrete wavelet transforms of a textile-based stretch sensor and accelerometer. Using these features, we design an artificial neural network classifier which is trained online using the policy gradient algorithm. Experiments on a low power IoT device (TI-CC2650 MCU) with nine users show 97.7% accuracy in identifying six activities and their transitions with less than 12.5 mW power consumption.Comment: This is in proceedings of ICCAD 2018. The datasets are available at https://github.com/gmbhat/human-activity-recognitio

    Unobtrusive monitoring of behavior and movement patterns to detect clinical depression severity level via smartphone

    Get PDF
    The number of individuals with mental disorders is increasing and they are commonly found among individuals who avoid social interaction and like to live alone. Amongst such mental health disorders is depression which is both common and serious. The present paper introduces a method to assess the depression level of an individual using a smartphone by monitoring their daily activities. The time domain characteristics from a smartphone acceleration sensor were used alongside a vector machine algorithm to classify physical activities. Additionally, the geographical location information was clustered using a smartphone GPS sensor to simplify movement patterns. A total of 12 features were extracted from individuals’ physical activity and movement patterns and were analyzed alongside their weekly depression scores using the nine-item Patient Health Questionnaire. Using a wrapper feature selection method, a subset of features was selected and applied to a linear regression model to estimate the depression score. The support vector machine algorithm was then used to classify the depression severity level among individuals (absence, moderate, severe) and had an accuracy of 87.2% in severe depression cases which outperformed other classification models including the k-nearest neighbor and artificial neural network. This method of identifying depression is a cost-effective solution for long-term use and can monitor individuals for depression without invading their personal space or creating other day-to-day disturbances

    Leveraging wearable sensors for human daily activity recognition with stacked denoising autoencoders

    Get PDF
    Activity recognition has received considerable attention in many research fields, such as industrial and healthcare fields. However, many researches about activity recognition have focused on static activities and dynamic activities in current literature, while, the transitional activities, such as stand-to-sit and sit-to-stand, are more difficult to recognize than both of them. Consider that it may be important in real applications. Thus, a novel framework is proposed in this paper to recognize static activities, dynamic activities, and transitional activities by utilizing stacked denoising autoencoders (SDAE), which is able to extract features automatically as a deep learning model rather than utilize manual features extracted by conventional machine learning methods. Moreover, the resampling technique (random oversampling) is used to improve problem of unbalanced samples due to relatively short duration characteristic of transitional activity. The experiment protocol is designed to collect twelve daily activities (three types) by using wearable sensors from 10 adults in smart lab of Ulster University, the experiment results show the significant performance on transitional activity recognition and achieve the overall accuracy of 94.88% on three types of activities. The results obtained by comparing with other methods and performances on other three public datasets verify the feasibility and priority of our framework. This paper also explores the effect of multiple sensors (accelerometer and gyroscope) to determine the optimal combination for activity recognition
    corecore