377 research outputs found

    Performance analysis of incremental LMS over flat fading channels

    Get PDF
    We study the effect of fading in the communication channels between sensor nodes on the performance of the incremental least mean square (ILMS) algorithm, and derive steady state performance metrics, including the mean-square deviation (MSD), excess mean-square error (EMSE) and mean-square error (MSE). We obtain conditions for mean convergence of the ILMS algorithm, and show that in the presence of fading channels, the ILMS algorithm is asymptotically biased. Furthermore, the dynamic range for mean stability depends only on the mean channel gain, and under simplifying technical assumptions, we show that the MSD, EMSE and MSE are non-decreasing functions of the channel gain variances, with mean-square convergence to the steady states possible only if the channel gain variances are limited. We derive sufficient conditions to ensure mean-square convergence, and verify our results through simulations

    Low order channel estimation for CDMA systems

    Get PDF
    New approaches and algorithms are developed for the identification and estimation of low order models that represent multipath channel effects in Code Division Multiple Access (CDMA) communication systems. Based on these parsimonious channel models, low complexity receivers such as RAKE receivers are considered to exploit these propagation effects and enhance the system performance. We consider the scenario where multipath is frequency selective slowly fading and where the channel components including delays and attenuation coefficients are assumed to be constant over one or few signalling intervals. We model the channel as a long FIR-like filter (or a tapped delay line filter) with the number of taps related to the ratio between the channel delay-spread and the chip duration. Due to the high data rate of new CDMA systems, the channel length in terms of the chip duration will be very large. With classical channel estimation techniques this will result in poor estimates of many of the channel parameters where most of them are zero leading to a reduction in the system performance. Unlike classical techniques which estimate directly the channel response given the number of taps or given an estimate of the channel length, the proposed techniques in this work will firstly identify the significant multipath parameters using model selection techniques, then estimate these identified parameters. Statistical tests are proposed to determine whether or not each individual parameter is significant. A low complexity RAKE receiver is then considered based on estimates of these identified parameters only. The level of significance with which we will make this assertion will be controlled based on statistical tests such as multiple hypothesis tests. Frequency and time domain based approaches and model selection techniques are proposed to achieve the above proposed objectives.The frequency domain approach for parsimonious channel estimation results in an efficient implementation of RAKE receivers in DS-CDMA systems. In this approach, we consider a training based strategy and estimate the channel delays and attenuation using the averaged periodogram and modified time delay estimation techniques. We then use model selection techniques such as the sphericity test and multiple hypotheses tests based on F-Statistics to identify the model order and select the significant channel paths. Simulations show that for a pre-defined level of significance, the proposed technique correctly identifies the significant channel parameters and the parsimonious RAKE receiver shows improved statistical as well as computational performance over classical methods. The time domain approach is based on the Bootstrap which is appropriate for the case when the distribution of the test statistics required by the multiple hypothesis tests is unknown. In this approach we also use short training data and model the channel response as an FIR filter with unknown length. Model parameters are then estimated using low complexity algorithms in the time domain. Based on these estimates, bootstrap based multiple hypotheses tests are applied to identify the non-zero coefficients of the FIR filter. Simulation results demonstrate the power of this technique for RAKE receivers in unknown noise environments. Finally we propose adaptive blind channel estimation algorithms for CDMA systems. Using only the spreading code of the user of interest and the received data sequence, four different adaptive blind estimation algorithms are proposed to estimate the impulse response of frequency selective and frequency non-selective fading channels. Also the idea is based on minimum variance receiver techniques. Tracking of a frequency selective varying fading channel is also considered.A blind based hierarchical MDL model selection method is also proposed to select non-zero parameters of the channel response. Simulation results show that the proposed algorithms perform better than previously proposed algorithms. They have lower complexity and have a faster convergence rate. The proposed algorithms can also be applied to the design of adaptive blind channel estimation based RAKE receivers

    Adaptive equalisation for fading digital communication channels

    Get PDF
    This thesis considers the design of new adaptive equalisers for fading digital communication channels. The role of equalisation is discussed in the context of the functions of a digital radio communication system and both conventional and more recent novel equaliser designs are described. The application of recurrent neural networks to the problem of equalisation is developed from a theoretical study of a single node structure to the design of multinode structures. These neural networks are shown to cancel intersymbol interference in a manner mimicking conventional techniques and simulations demonstrate their sensitivity to symbol estimation errors. In addition the error mechanisms of conventional maximum likelihood equalisers operating on rapidly time-varying channels are investigated and highlight the problems of channel estimation using delayed and often incorrect symbol estimates. The relative sensitivity of Bayesian equalisation techniques to errors in the channel estimate is studied and demonstrates that the structure's equalisation capability is also susceptible to such errors. Applications of multiple channel estimator methods are developed, leading to reduced complexity structures which trade performance for a smaller computational load. These novel structures are shown to provide an improvement over the conventional techniques, especially for rapidly time-varying channels, by reducing the time delay in the channel estimation process. Finally, the use of confidence measures of the equaliser's symbol estimates in order to improve channel estimation is studied and isolates the critical areas in the development of the technique — the production of reliable confidence measures by the equalisers and the statistics of symbol estimation error bursts

    Complex-valued Adaptive Digital Signal Enhancement For Applications In Wireless Communication Systems

    Get PDF
    In recent decades, the wireless communication industry has attracted a great deal of research efforts to satisfy rigorous performance requirements and preserve high spectral efficiency. Along with this trend, I/Q modulation is frequently applied in modern wireless communications to develop high performance and high data rate systems. This has necessitated the need for applying efficient complex-valued signal processing techniques to highly-integrated, multi-standard receiver devices. In this dissertation, novel techniques for complex-valued digital signal enhancement are presented and analyzed for various applications in wireless communications. The first technique is a unified block processing approach to generate the complex-valued conjugate gradient Least Mean Square (LMS) techniques with optimal adaptations. The proposed algorithms exploit the concept of the complex conjugate gradients to find the orthogonal directions for updating the adaptive filter coefficients at each iteration. Along each orthogonal direction, the presented algorithms employ the complex Taylor series expansion to calculate time-varying convergence factors tailored for the adaptive filter coefficients. The performance of the developed technique is tested in the applications of channel estimation, channel equalization, and adaptive array beamforming. Comparing with the state of the art methods, the proposed techniques demonstrate improved performance and exhibit desirable characteristics for practical use. The second complex-valued signal processing technique is a novel Optimal Block Adaptive algorithm based on Circularity, OBA-C. The proposed OBA-C method compensates for a complex imbalanced signal by restoring its circularity. In addition, by utilizing the complex iv Taylor series expansion, the OBA-C method optimally updates the adaptive filter coefficients at each iteration. This algorithm can be applied to mitigate the frequency-dependent I/Q mismatch effects in analog front-end. Simulation results indicate that comparing with the existing methods, OBA-C exhibits superior convergence speed while maintaining excellent accuracy. The third technique is regarding interference rejection in communication systems. The research on both LMS and Independent Component Analysis (ICA) based techniques continues to receive significant attention in the area of interference cancellation. The performance of the LMS and ICA based approaches is studied for signals with different probabilistic distributions. Our research indicates that the ICA-based approach works better for super-Gaussian signals, while the LMS-based method is preferable for sub-Gaussian signals. Therefore, an appropriate choice of interference suppression algorithms can be made to satisfy the ever-increasing demand for better performance in modern receiver design

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    Implementation of an underwater acoustic modem with network capability

    Get PDF
    This paper introduces the underwater acoustic modem as implemented within the UAN – Underwater Acoustic Network project. The low power modem has implemented turbo equalization algorithms in addition to variable spread rate direct sequence spread spectrum signaling. The network layer implemented on the modem support automatic network discovery, multi hop routing and support for mobile nodes, and when expanded with a single board computer via serial line it supports IP connectivity end-to-end. Experimental results from sea trials are presented

    Spatio-Temporal processing for Optimum Uplink-Downlink WCDMA Systems

    Get PDF
    The capacity of a cellular system is limited by two different phenomena, namely multipath fading and multiple access interference (MAl). A Two Dimensional (2-D) receiver combats both of these by processing the signal both in the spatial and temporal domain. An ideal 2-D receiver would perform joint space-time processing, but at the price of high computational complexity. In this research we investigate computationally simpler technique termed as a Beamfom1er-Rake. In a Beamformer-Rake, the output of a beamfom1er is fed into a succeeding temporal processor to take advantage of both the beamformer and Rake receiver. Wireless service providers throughout the world are working to introduce the third generation (3G) and beyond (3G) cellular service that will provide higher data rates and better spectral efficiency. Wideband COMA (WCDMA) has been widely accepted as one of the air interfaces for 3G. A Beamformer-Rake receiver can be an effective solution to provide the receivers enhanced capabilities needed to achieve the required performance of a WCDMA system. We consider three different Pilot Symbol Assisted (PSA) beamforming techniques, Direct Matrix Inversion (DMI), Least-Mean Square (LMS) and Recursive Least Square (RLS) adaptive algorithms. Geometrically Based Single Bounce (GBSB) statistical Circular channel model is considered, which is more suitable for array processing, and conductive to RAKE combining. The performances of the Beam former-Rake receiver are evaluated in this channel model as a function of the number of antenna elements and RAKE fingers, in which are evaluated for the uplink WCDMA system. It is shown that, the Beamformer-Rake receiver outperforms the conventional RAKE receiver and the conventional beamformer by a significant margin. Also, we optimize and develop a mathematical formulation for the output Signal to Interference plus Noise Ratio (SINR) of a Beam former-Rake receiver. In this research, also, we develop, simulate and evaluate the SINR and Signal to Noise Ratio (Et!Nol performances of an adaptive beamforming technique in the WCDMA system for downlink. The performance is then compared with an omnidirectional antenna system. Simulation shows that the best perfom1ance can be achieved when all the mobiles with same Angle-of-Arrival (AOA) and different distance from base station are formed in one beam

    Space-time processing for wireless mobile communications

    Get PDF
    Intersymbol interference (ISI) and co-channel interference (CCI) are two major obstacles to high speed data transmission in wireless cellular communications systems. Unlike thermal noise, their effects cannot be removed by increasing the signal power and are time-varying due to the relative motion between the transmitters and receivers. Space-time processing offers a signal processing framework to optimally integrate the spatial and temporal properties of the signal for maximal signal reception and at the same time, mitigate the ISI and CCI impairments. In this thesis, we focus on the development of this emerging technology to combat the undesirable effects of ISI and CCL We first develop a convenient mathematical model to parameterize the space-time multipath channel based on signal path power, directions and times of arrival. Starting from the continuous time-domain, we derive compact expressions of the vector space-time channel model that lead to the notion of block space-time manifold, Under certain identifiability conditions, the noiseless vector-channel outputs will lie on a subspace constructed from a set. of basis belonging to the block space-time manifold. This is an important observation as many high resolution array processing algorithms Can be applied directly to estimate the multi path channel parameters. Next we focus on the development of semi-blind channel identification and equalization algorithms for fast time-varying multi path channels. Specifically. we develop space-time processing algorithms for wireless TDMA networks that use short burst data formats with extremely short training data. sequences. Due to the latter, the estimated channel parameters are extremely unreliable for equalization with conventional adaptive methods. We approach the channel acquisition, tracking and equalization problems jointly, and exploit the richness of the inherent structural relationship between the channel parameters and the data sequence by repeated use of available data through a forward- backward optimization procedure. This enables the fuller exploitation of the available data. Our simulation studies show that significant performance gains are achieved over conventional methods. In the final part of this thesis, we address the problem identifying and equalizing multi path communication channels in the presence of strong CCl. By considering CCI as stochasic processes, we find that temporal diversity can be gained by observing the channel outputs from a tapped delay line. Together with the assertion that the finite alphabet property of the information sequences can offer additional information about the channel parameters and the noise-plus-covariance matrix, we develop a spatial temporal algorithm, iterative reweighting alternating minimization, to estimate the channel parameters and information sequence in a weighted least squares framework. The proposed algorithm is robust as it does not require knowledge of the number of CCI nor their structural information. Simulation studies demonstrate its efficacy over many reported methods
    • …
    corecore