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Abstract 

This thesis considers the design of new adaptive equalisers for fading digital communica­
tion channels. The role of equalisation is discussed in the context of the functions of a digital 
radio communication system and both conventional and more recent novel equaliser designs 
are described. 

The application of recurrent neural networks to the problem of equalisation is developed 

from a theoretical study of a single node structure to the design of multinode structiu-es. 

These neural networks are shown to cancel intersymbol interference in a maimer mimicking 

conventional techniques and simulations demonstrate their sensitivity to symbol estimation 

errors. In addition the error mechanisms of conventional maximum likelihood equalisers 

operating on rapidly time-varying channels are investigated and highlight the problems of 

channel estimation using delayed and often incorrect symbol estimates. The relative sensi­

tivity of Bayesian equalisation techniques to errors in the cheuinel estimate is studied and 

demonstrates that the structure's equalisation capabihty is also susceptible to such errors. 

Applications of multiple channel estimator methods are developed, leading to reduced 

complexity structures which trade performance for a smaller computational load. These novel 

structiures are shown to provide an improvement over the conventional techniques, especially 

for rapidly time-varying channels, by reducing the time delay in the channel estimation 

process. Finally, the use of confidence measures of the equaliser's symbol estimates in order 

to improve channel estimation is studied and isolates the critical areas in the development 

of the technique — the production of reliable confidence measures by the equaUsers and the 

statistics of symbol estimation error bursts. 
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Chapter 1 

Introduction 

The growth in the demand for radio communications is increasing as new or improved services 
become possible. Digital mobile telephony and, more recently, mobile computing has led to 
the requirement of high quality and ideally large bandwidths to be available to the mobile 
user. However, providing such data transfers rehably over radio links becomes increasingly 
difficult due to the characteristics of radio channels. The reasons for the difficulties are that 
the radio channels have nonconstant frequency responses in amplitude and group delay and 
that they are time-varying. This frequency selectivity, often arising from the presence of 
multiple paths within the radio channel, causes a distortion of the transmitted signals and 
thus accurate determination of the transmitted data becomes more difficult for the receiver. 
The problem is compounded by the fact that the mechanisms causing the distortion process 
are often unknown and vary with time in a random manner. The problem is not limited to 
land mobile radio but also for HF and tropospheric scatter radio links where there is motion 
in the propagating media of the radio channel. 

Transmitting data reliably is of fundamental importance to mobile computing applications 
whereas some forms of digital mobile telephony can often tolerate some degree of error. The 
data overheads associated with coding the transmitted data so that it can either be verified 
and / or corrected in the receiver reduces the available bandwidth of the channel. Thus 
methods of combating the channel-induced distortion whilst keeping the data overhead as 
low as possible are very attractive. Equalisation is the term referring to signal processing 
structures in the radio receiver which are designed to nullify the channel's distorting effects 
prior to the detection of the received signal. Such structiures need to be able to adapt 
to differing distortion processes as changes in the radio channel occur and, the ability of 
the adaptation algorithm to operate sufficiently well is often a Umiting factor on equaliser 
performance. 

Increasing the symbol rate (baud rate) through a given radio channel causes an increase 
in the distortion of the transmitted signal and so the use of multilevel modulation schemes 

1 



CHAPTER 1. INTRODUCTION 

to increase the data rate appears attractive. However, problems of carrier synchronisation 
in phase modulated systems and of noise interference in multilevel amplidude modulated 
systems reduce the error rate performance in many applications — typically for rapidly 
varying channels and for low transmit powers. The development of improved equalisers and 
detectors which can remove the increased distortion due to higher baud rates would provide 
an alternative solution for providing higher data capacity radio links. Such a solution would 
undoubtedly result in a more complex equaliser than ciurrent designs and thus would have 
increased signal processing and power requirements. Current trends in advanced processor 
development indicate that processing hardware is unlikely to be a technological problem (the 
cost, however, may be a significant disincentive) but the power demands, especially in systems 
employing small hand-portable transmitters, may present barriers. In cellular systems the 
power demand is unlikely to be a problem in base stations allowing advanced techniques to 
be used on the uplink from mobile terminal to a fixed network. 

The aim of this thesis is to identify the causes of the limitations of current equaliser designs 
whilst operating on time-varying / fading and frequency selective channels and to address 
the problem of providing solutions to the restrictions. The number of differing radio systems 
which incorporate equalisation is large and the type of channels for which the equalisers are 
designed to compensate is varied. Rather than examining a specific system or channel, a 
general approach to the problems is undertaken followed by investigations into more detailed 
systems and, in particular, channels. 

1.1 Summary of the Thesis 

The main body of the thesis is divided into 7 chapters. Chapters 2 and 3 provide an overview 
of the major components of a radio communications system, showing the relationship of 
equalisation to other error compensating techniques and associated functions, and a siurvey 
of the design and basis of operation of both old and more recent equalisers. 

Chapter 4 examines the possibility of applying recurrent neural networks to equalisation. 
An analysis of the operation of a single node network is undertaJcen followed by the design of 
multinode networks and simulation of their performance whilst operating on time-invariant 
channels. 

Chapter 5 characterises the conventional maximum likelihood based equaliser which op­
erates in conjunction with a channel estimator in order to ascertain the main sources of 
this technique's limitations whilst operating on rapidly time-varying and frequency selective 
channels. 

Chapter 6 investigates Bayesian equalisers, which can be implemented as radial basis 
function neural networks, with the aim of identifying whether this statistically based equaliser 
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is less prone to errors in the channel estimate than the maximum Ukelihood method. 

Chapter 7 develops the use of multiple chaimel estimators for use with maximum likehhood 
equalisers by modifying the algorithm so that a trade-off between computational complexity 
and performance is available. The original multiple channel estimator technique has a superior 
performance but a laxge computational burden when the channel impulse response becomes 
large. The modifications developed in this thesis axe compared both from a complexity point 
of view and from a symbol error rate performance aspect. 

Finally, Chapter 8 examines the use of soft decisions or confidence information provided 
by the equahser on the rehability of its symbol estimates for use in channel estimator tracking. 
Previously, such confidence methods have been used successfully for aiding channel decoding. 
The potential for application to channel estimation is investigated and the hmitations of the 
technique identified. 

The thesis concludes with a summary of the major findings and identifies further areas of 
research. 



Chapter 2 

Radio Communication Systems 
and Channels 

This chapter outlines the functional elements of radio communication systems, the physical 
attributes of a number of radio channels and discusses methods of modeUing these systems 
and channels. The channel is shown to introduce non-ideal effects on the signal at the radio 
receiver and this commonly leads to the use of a compensating equaliser in the receiver design. 
The subject of equalisation is examined more fully in Chapter 3. The air-radio interfaces of 
a number of ciurrent mobile radio communication systems are discussed in Appendix A, 
highlighting the features which are required in order to compensate for the mobile radio 
channel. 

2.1 Radio Systems 

The functional elements of a digital radio communications system are shown in Figure 2.1. 
The system is designed for the transmission and reception of digital information as opposed 
to analogue and this has a significant impact on the mechanisms employed in the processing 
blocks. Digital data systems are ever more increasingly being deployed for reasons ranging 
from spectral eflSciency and system capacity to integration, security and cost. 

2.1.1 Source Encoding / Decoding 

Depending on the information to be transmitted, the source data may need to be sampled in 
time and magnitude to produce digital data. For example, a huge use of radio communications 
is telephony and this requires the analogue voice source to be quantised prior to processing. 
The function of source coders is to use the statistical redundancy inherent in soiuce signals to 
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Source 
Data 
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Figiure 2.1: Generic representation of the components of a digital radio communications 
system. 

reduce the quantity of data to be transmitted whilst maintaining an acceptable signal quality 
at the output of the decoder [1]. This allows a greater number of users to use a radio link 
using the same spectral resomrce. 

The subject of voice coding (vocoders) is large, ranging from pulse code modulation 
(PCM) to code excited linear prediction (CELP). Coders can be classified by their operation 
on a sample-by-sample basis (scalar quantisers) or on a block of samples (block or vector 
quantisers). Scalar quantisers can further be classified as waveform encoders or anaJysis-by-
synthesis coders. 

The simplest waveform type encoders (PCM) merely sample and quantise the analogue 
waveform. Quantising the analogue waveform introduces noise into the signal which impairs 
the quality of the output signal from the receiver and much of the work in voice coding aims 
to reduce the bit rate from source encoders whilst maintaining an acceptable quality at the 
output of the decoder. Improved variants of PCM use the fact that small amplitude speech 
signals are more common than those with large amphtudes and compress the analogue wave­
form prior to uniform quantisation. The compression reduces the quantisation noise of the 
smaller ampUtude signals. At the decoder the digitally coded data is converted into analogue 
and passed through an expander, the inverse of the compressor. Further developments, such 
as differential PCM (DPCM), quantise the error between the voice signal and a predicted 
version of it and can reduce the bit rate of the soiurce encoder without degrading the decoded 
signal quality. The predictor operates on the decoded speech signal (both in the encoder and 
decoder) and the process uses the fact that successive samples of voice signals sampled at the 
Nyquist rate (twice the bandwidth of the source) or higher are significantly correlated and 
thus can be predicted to some degree. 

Adaptive DPCM (ADCPM) techniques use the non-stationary statistical properties of 
speech to adapt the quantisation levels to the current magnitude of the input signal [2]. Thus 
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if the speech signal is of low magnitude the quantisation step size is reduced together with the 
magnitude of the quantisation noise. Alternatively the predictor coefficients may be adapted 
by an algorithm which operates using the encoded differential signal and the decoded source 
signal. Given that the decoder receives the encoded differential signal without error, the 
prediction coefficients used in the encoder (and required by the decoder) can be calculated 
without the need for transmitting the coefficients themselves. 

Other forms of waveform encoding include delta modulation (DM), sub-band coding 
(SBC) and adaptive transform coding — see [2, 3, 4] for further details. 

The bit rates of waveform encoders can be reduced to 16kbits/s for speech signals be­
fore the quahty becomes unacceptable. Analysis-by-synthesis coders can reduce the bit rate 
further whilst maintaining decoded signal quality and the area is being actively researched. 
The basis of these types of coders is the modelling of the vocal tract by a linear filter driven 
by an appropriate input signal to produce the source signal. The voice signal is analysed in 
terms of this reference model and the coefficients of the resulting model are transmitted to 
the receiver which then synthesises an approximation of the original voice waveform. 

Linear predictive coders (LPC) assumes speech is voiced or unvoiced and models these by 
passing either a sequence of pulses or random noise through an all-pole, linear, discrete-time 
filter [5]. The filter coefficients (known as the short term correlation filter) axe computed by 
predicticing the speech sample firom the previous few samples (8 to 16 samples) and occmrs 
outside the main encoding loop. The output of the filter is a predicted speech signal and the 
error between this prediction and the actual speech signals is weighted perceptually in order 
to shape the noise spectrum so that the voice signal masks the noise. The resulting weighted 
error signal is minimised, usually to a mean square error criterion and is used to control 
the excitation of the short term correlation filter and closes the encoding loop (Fig. 2.2). 
The excitation pulse coefficients and filter coefficients are the model parameters that are 
transmitted to the receiver. 

Further developments of the standard LPC vocoder use multi-pulse excitation (MPE) 
which does not assume voiced or unvoiced signals. The amplitudes and time positions of the 
excitation pulses are determined from the result of minimising the perceptually weighted error 
signal [1]. Regular pulse excitation (RPE) assumes a regular spacing of pulses with variable 
amplitudes. Code excited linear predictors (CELP) use a codebook of pulse sequences which 
are chosen firom the result of the error minimisation operation. 

Block or vector quantisers operate on blocks of samples at a time rather than on a sample-
by-sample basis and use statistical dependencies in the source to produce low bit rate coders 
[2, 4]. The process of vector quantisation may be interpreted as one of pattern matching 
where the input vector is classified as being in a distinct subdomain of the input vector signal 
space. The classification process operates by choosing the best subdomain which matches the 
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Figure 2.2: Components of an analysis-by-synthesis Linear Predictive Coder (LPC) soiurce 
coder. 

input vector according to some error criterion and algorithms exist which can partition the 
input signal space in an efficient / 'optimum' manner. These quantisers are not restricted to 
coding of the input signal. For instance the prediction filter coefficients in LPC vocoders can 
be quantised as a block such that the coded output has low distortion and this can further 
reduce the bit rate of LPC coders. Vector quantisation is often applied to source data which 
is inherently discrete in time and / or magnitude. 

2.1.2 Channel Coding / Decoding 

The function of channel coding is to facilitate the accurate reception of the soiurce encoded 
data at the source decoder in the receiver. Errors in the data sequence being fed into the 
receiver source decoder will degrade, at least, or invalidate the output of the source decoder. 
Typical communication channels are non-ideal and radio channels axe no exception. Errors 
in the transmitted data will occur due to thermal noise, atmospheric noise and interference 
amongst others and it is the function of the channel coder / decoder to transform the source 
encoded data such that the immunity to the types of signal degradation introduced by the 
channel is maximised. 

Some references treat modulation as part of channel coding but for the purposes of this 
overview the two axe separated as per Figure 2.1. 

In contrast to source encoders which decrease the bit rate, channel coders introduce 
redundancy into the signal and hence increase the bit rate. Efficient coders exist for power 
limited and bandwidth limited appUcations. If the transmitted signal power is unUmited then 
the degrading effects of noise can be reduced and the probability of error be made arbitrarily 
small by increasing the transmitter power. If bandwidth is unlimited then the use of many 
orthogonal signalling waveforms, i.e. waveforms which are uncorrected with each other, can 
reduce the error probabihty provided the signal-to-noise ratio (SNR) is kept above certain 
levels. However, both power and spectrum are carefully regulated for radio channels and so 
channel coders are employed to circumvent the restrictions on power and bandwidth. 
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There are two main types of channel coders - block and convolutional [2]. Block codes 
take a block or sequence of input data samples and code them into larger length blocks — 
the ratio of the input to output block length is known as the code rate. Re- Convolutional 
encoders feed their input into a linear shift register and output Hnear combinations of the 
shift register's contents. The code rate is defined as the inverse of the ratio of the number of 
output bits per input bit. 

Linear block codes perform operations of addition and multiplication on blocks of input 
data (containing k information bits) to produce output codes with n information bits and 
are denoted as (n, k) codes. I f the elements of the output code take symbols from a binary 
alphabet then the coder is known as a binary coder. An important subset of linear block 
codes are cyclic codes which have properties that enable efficient decoding. Examples of block 
codes axe Hamming, Golay, Bose-Chaudhuri-Hocquenghem (BCH) and Reed-Solomon codes. 
In the receiver the channel decoder has an increased performance if the samples from the 
output of the demodulator block (Fig. 2.1) are not quantised — soft-decision decoding, but 
this increases the computational load on the demodulator. Block codes have error detecting 
and usually error correcting capabiUties. This latter property allows forward error correction 
(FEC). 

Convolutional coders consist of an L stage shift register with each stage containing k 
information bits. The parameter L is known as the constraint length. Each input symbol 
(containing k information bits) is fed into the delay line and n binary symbols (bits) are 
formed by modulo-2 additions of combinations of the Lk bits in the delay fine and axe output 
firom the coder sequentially. Decoding in the receiver is performed via the Viterbi algorithm 
if the constraint length is small and via a sequential decoding process if the constraint length 
is large. The trade-off is between the improved performance of the Viterbi versus the reduced 
complexity of the sequential decoder. As with block codes, soft-decisions firom the output of 
the demodulator can be used to improve quahty of the Viterbi decoder. 

Both block and convolutional coders increase the bandwidth of the transmitted signal as 
they increase the bit rate — the expansion is equal to I/Re- For band with limited commu­
nication channels alternative channel coding techniques exist which increase the number of 
signalling symbols rather than the bit rate in order to introduce the coding redundancy and 
hence they have an increased spectrmn efficiency. This form of coding combines some of the 
functionahty of the modulator (Fig. 2.1) as the mapping of data bits onto signalling symbols 
is performed in a coded manner by making the choice of waveform dependent on preceding 
symbols / data bits. TreUis coded modulation (TCM) is an example of this form of coding 
and uses set partitioning principles to maximise the EucUdean distance between consecutive 
symbols and hence reduce the probability that the symbols will be erroneously classified in 
the receiver [6]. The decoder can be implemented by application of the Viterbi algorithm 
and can use soft-decisions firom the 'demodulator' to increase performance. 
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Radio channels often have characteristics which result in bursts of errors from the output 
of the demodulator paxticularly when the received signal power is subject to fading. Both 
channel decoders have a Umited capabiUty to correct errors from the demodulator and if 
the errors are clustered together then the performance of the channel decoders is reduced. 
Interleaving is a technique used to spread the errors out over a number of blocks or disperse 
them across the demodulated symbol sequence. This reduces the burstiness of the error 
events and enables an increased performance from the channel decoder. Interleaving occurs 
in the transmitter at the output of the channel coder, prior to modulation, and deinterleaving 
occurs in the receiver at the output of the demodulator prior to channel decoding. A number 
of different inter leavers exist — diagonal, block and convolutional [5]. 

2.1.3 Modulation / Demodulation 

The principle functions of a digital modulator are to map data bits to signalUng symbols / 
waveforms, shape the symbols and frequency translate the baseband signal to either an inter­
mediate frequency (IF) or the carrier radio frequency (RF). The modulation process trans­
forms the data bits from the discrete to the continuous time domain. The modulated symbols 
axe often represented by a constellation diagram which shows, in a complex baseband format, 
the mappings of the data bits to a discrete set of amphtudes, phases, frequencies or a com­
bination of amplitude and phase (Fig. 2.3). Demodulators transform the corrupted received 
waveforms back to discrete data bits. 

The systems used to transmit and receive the signals and the channels used to convey 
them influence a number of factors affecting the choice of modulation. Radio channels have 
a limited bandwidth (both physically and regulatory) and in order to acheive a high data 
capacity, the spectral efficiency (the ratio of the information rate to the bandwidth required 
— measured in bits/s/Hz) of the modulator must be taken into account. Spectral efficiency 
is increased by using a larger number of symbols or modulation levels whilst keeping the 
bandwidth of each element the same. However, this is achieved at the expense of modula­
tor / demodulator complexity. In land cellular mobile radio networks, bandwidth reductions 
obtained by using multilevel modulation are offset by a larger frequency reuse factor for suf­
ficient carrier-interference (C/I) ratio. In order to achieve an adequate received SNR for the 
lower energy symbols, the transmit power must be increased resulting in the higher energy 
symbols causing increased interference in nearby cells [7]. 

Bandwidth constraints affect the shape and length of the signalling symbol as waveforms 
occupying only the data bit period have large spectral sidelobes. Apphcation of Nyquist's 
criterion leads to the design of bandUmited signal elements which span several symbol periods 
but do not introduce intersymbol interference (ISI) when transmitted across otherwise ideal 
channels. Such waveforms have zero crossing points at all symbol-period sampUng instances 
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Figure 2.3: Constellation diagram for an 8-PSK modulator.The numbers represent the Gray 
coded bit sequences resulting in each symbol. 

other than the instant pertaining to the symbol itself. Thus when the demodulator samples 
the received waveform at the required sampling instances, waveforms of prior and futiure 
symbols do not affect the current sample. Pulse shaping occurs in the modulation process 
after the mapping the data bits to the symbol amplitudes, phases or frequencies. A typical 
pulse shape is the raised cosine: 

9it) 
cos{aTrt/Ts) 

l - 4 a 2 i 2 / r 2 
smc{t/T,) (2.1) 

where is the symbol period and a (0 < a < 1) is the roll-off parameter. When a = 0 the 
pulse occupies the Nyquist minimum bandwidth (= l/2Ts) giving the theoretical maximum 
spectrum efficiency [3]. The filter creating this pulse shape is typically split between the 
modulator and demodulator filters, each implementing a truncated approximation of the 
root-raised cosine filter. In practical implementations of such systems, ISI appears due to 
sampler phase jitter and the inaccuracy of the pulse shaping filter. 

Other bandwidth related factors include the high spectral sidelobes caused by abrupt 
switching of the signalling waveforms as occurs in memoryless modulation methods such as 
pulse amplitude modulation (PAM), quadrature amplitude modulation (QAM) and phase 
shift keying (PSK). Modulators with memory lead to continuous phase modulation (CPM) 
techniques such as continuous phase frequency shift keying (CPFSK), minimum shift keying 
(MSK), and offset quadrature phase shift keying (OQPSK) which have reduced spectral 
sidelobes. See [8] for further details of digital modulation techniques for mobile radio systems. 

10 
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Power efficient amplifiers prior to the transmitting antenna axe usually nonhneax leading to 
spectral lealcage. Modulation schemes which have constant envelope power such as Gaussian 
MSK (GMSK) allow such nonlinear amplifiers to operate at constant power and thus do not 
cause high levels of spectral leakage. 

The methods of detecting and differentiating the received signals heavily influences the 
choice of signalling waveform. By choosing a set of mutually orthogonal waveforms (i.e. wave­
forms which have zero cross-correlation) the receiver can correlate the received signal with 
each of the posssible transmitted waveforms and select the one with the highest correlation. 
This method also maximises the received SNR ( ^ — energy per bit/noise power) and is 
known as matched filter or correlation demodulation [2]. The most common detection er­
ror is between adjacent symbols in the constellation diagram and by choosing a Gray coded 
mapping of data bits to symbols in the modulator, the data bit error rate can be reduced 
since adjacent symbols differ only by a single bit. 

Typical radio receivers axe required to detect low power signals and the effect of noise 
generated in the receiver analogue components is to degrade the receiver's abihty to detect 
these weak signals and to differentiate between the received symbols. Analogue components 
(e.g. antennae, filters, mixers and ampUfiers) will introduce noise into the received signal and 
it is important to keep noise figures in the amphfiers low. The noise figure is defined as the 
ratio of the input SNR to the output SNR [4]. The noise added in the receiver is modelled 
as an uncorrelated or white process. In a matched filter demodulator, the filtering process 
colours the additive white noise and this has a hmiting effect on the detection mechanisms as 
the noise becomes correlated with previous noise samples. The situation may be alleviated 
by introducing a discrete-time noise whitening filter which decorrelates the noise between 
successive samples. This filter may be cascaded with the matched filter or incorporated with 
a sampled matched filter. 

Synchronisation of the receiver to the transmitted waveform has a significant effect on 
the quality of the detection process. The synchronisation issues for the demodulator are of 
caxrier and symbol synchronisation [9]. Carrier synchronisation involves generating a local 
caxrier reference with a phase ideally locked to the transmitter caxrier and allows the bandpass 
received signal to be mixed down to baseband without frequency or phase offsets. Coherent 
demodulators require the carrier phase (and therefore frequency) to be known and provide a 
better performance than incoherent demodulators which do not require such constraints. The 
receiver carrier may be generated by phase locked loops (PLLs) operating on the received 
signal when an unmodulated carrier component is present. This requires power to be used 
on transmitting a carrier / pilot tone and so alternative techniques have been developed to 
derive the caxrier from signals transmitted in a suppressed caxrier format. These methods 
involve squaring the received signal to generate a component at twice the caxrier frequency 
and using a PLL followed by a frequency divider to derive the caxrier reference. Alternative 
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methods use decision directed or maximmn likelihood (ML) techniques. 

Constant phase or firequency offsets between the receiver and transmitter carriers result in 
a fixed phase rotational offset or a constant rotation of the baseband signal constellation dia­
gram and leads to crosstalk between the in-phase (I) and quadrature-phase (Q) components 
of the complex baseband signal. In general, higher bandwidth-efficient modulation schemes 
require better carrier synchronisation — i.e. their demodulators are less tolerant of carrier 
phase errors, but extracting the phase information from the received signal becomes more 
onerous. The phase ambiguity resulting from a constant carrier phase error can be compen­
sated for by differential encoding in the modulator, e.g. differentially encoded quadrature 
phase shift keying (DEQPSK). This method encodes the data bits in the phase difference 
between succesive symbols rather than in the phase itself. In the receiver the decoding is per­
formed after coherent detection in DEQPSK systems but the received signal can be detected 
incoherently using a differential detector (DQPSK systems). 

Symbol synchronisation involves generating a timing clock to sample the continuous time 
domain signal after it has been mixed down to baseband. The samphng process transfers the 
signal back into the discrete time domain. The correct timing of the sampler ensures that the 
baseband waveform is sampled at the peaks of the symbol waveforms for maximimi immunity 
to noise and intersymbol interference resulting from time dispersion of the communication 
channel or modulation waveforms which span more than one symbol period. In the case 
of correlation type demodulators the symbol timing is required to synchronise the sampUng 
of the output of the correlators. Common methods of symbol synchronisation use decision 
directed or maximima likelihood techniques. 

Radio communication channels corrupt the transmitted signal in a number of aspects 
and are detailed in Section 2.2. Compensation techniques can be implemented in both the 
modulator and demodulator. Partial response signalhng is a modulation technique which 
introduces a controlled amount of ISI between symbols and is suitable for radio chaimels with 
large amplitude variations within their bandwidth. A subcomponent of the demodulator, the 
equaliser, is introduced to compensate for the time dispersive characteristics of radio channels 
which would otherwise degrade the detection process. Equalisation is discussed in detail in 
Chapter 3 onwards. Another method which can be used independently or in conjunction with 
equalisation is the use of diversity. This technique is particularly useful when the channel 
does not introduce ISI but when the signal power level varies in time. This fading is discussed 
more fully in Section 2.2.1. There are a number of diversity methods including spatial, time, 
polarisation and frequency diversity. Each method is based on the idea that if the received 
signal power drops due to a radio path fading, then another, independent, path is unlikely 
to be mid-fade at the same time. Thus the received signal can be taken from this alternative 
path whose SNR is greater than the original. The most common form is space /antenna 
diversity where two or more antennae are used to receive the signal. 

12 
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2.2 Radio Channels 

Radio communication channels introduce a number of nonideal effects on the transmitted 
signal. The ideal channel introduces an attenuation and phase shift which remain constant 
across the signalling bandwidth and over time. Coupled with additive noise in the receiver 
'front-end' components, this ideal channel is called the additive white Gaussian noise (AWGN) 
channel and is often the reference channel to which many systems axe compared. The atten­
uation is due to path loss — the power density of the transmitted signal decreases with an 
inverse square law with distance from the transmitter antenna under free-space conditions 
but in many radio channels (e.g. indoor) the decrease is of a higher power than 2 [10]. The 
attenuation may be compensated for by automatic gain control (AGC) circuitry. The phase 
shift of the received signal is affected by the length of the electrical path between transmitter 
and receiver and may be partially compensated for by caxrier synchronisation techniques. 

The nonideal effects may be subdivided into deterministic and nondeterministic. The 
latter includes additive noise-like interference such as atmospheric noise (common in HF radio 
systems) and co-channel interference arising from spectral leakage from adjacent frequency 
bands, geographically remote users transmitting on the same frequency band (land cellular 
radio systems) or users using the same bandwidth (direct sequence spread-spectrum systems 
e.g. code division multiple access, CDMA systems). As these types of interference are random, 
little can be done to remove them from the received signal once they have affected the signal 
and care is taken in system design to limit the areas and the magnitude in which the noise 
can impinge on the transmitted signal. 

Deterministic effects arise from the transmitted signal itself and generally result in inter­
symbol interference (ISI) due to nonuniform amplitude and phase responses of the channel 
over the signalling bandwidth. In the time domain these nonuniformities manifest themselves 
as a spreading of the channel impulse response (CIR) which, ideally, is just a delta function 
with a delay due to the propagation time. The cause of the variations in amplitude and 
phase responses is multipath propagation — the existence of more than one path between 
transmitter and receiver along which the transmitted signal may propagate. Variations in 
the electrical length of these paths result in slightly different propagation times and the sig­
nals arrive with a phase shift relative to one another resulting in constructive or destructive 
interference [5]. The transmitted signal contains frequencies across a certain bandwidth and 
thus the relative phase of the multipath signals varies across the band leading to variations 
in amplitude and phase response. Small variations in propagation time between paths result 
in larger deviations in amplitude and phase response the larger the signal bandwidth and 
caxrier frequency. Time delays between multipath components which are signfficantly less 
than the transmitted symbol period do not cause ISI. 

Multipath conditions arise in many radio channels from line-of-sight (LOS) microwave, 
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high frequency (HF) and land mobile radio channels. The microwave multipath channel 
occurs when atmospheric conditions lead to stratification of the troposphere with variations 
in moisture, temperatiure and refractive index between the layers resulting in many discrete 
paths along which the radio wave can propagate [11]. HF radio chaimels have multiple paths 
arising from multiple reflections between layers in the ionosphere and/or the earth. Land 
mobile radio channels often do not have a hne-of-sight path between transmitter and receiver 
and rely on the scattering, diffraction and reflection of the radio waves by obstacles to acheive 
a communication channel. 

Another classification of radio channels is whether they are time-variant or time-invariant. 
Time-invariant channels remain constant over the dmration of a large number of symbol 
periods and axe, in general, easier to correct. However, many practical radio channels vary 
much more rapidly compared to the symbol duration and result in a significant degradation 
in the bit error rate from conventional detectors. Receiver structures designed for the time-
varying nature of the channel exist but provide fax from ideal performance. 

2,2.1 Time-Variant Radio Channels 

The characterisation and modeUing of time-varying channels has received considerable atten­
tion and is of practical significance particularly in the optimisation of mobile radio networks 
[12, 13, 14]. This section summarises the salient features of time-varying channels and com­
pares the character of a number of such channels. 

Time-varying channels may be classified as frequency selective or frequency non-selective 
2]. In the latter, the impulse response of the charmel at any given instance in time does 

not cause intersymbol interference, i.e. the CIR delay spread is signfficantly less than the 
transmitted symbol period. The spectrum of the channel over the transmission bandwidth is 
flat and thus frequency non-selective chaimels are also termed 'flat fading' channels. As the 
transmitted bit rate increases (decreasing the symbol period) this type of effective sampled 
channel becomes less common and ISI becomes more prevalent. 

Due to the relative motion between transmitter and receiver or within the propagating 
medium itself, the time delay, amplitude, phase and Doppler shift of the received signal varies 
with time and in an essentially random manner. Multipath effects cause the radio waves to 
interfere either constuctively or destructively resulting in varying signal strengths as motion 
occurs. This is primarily due to the significant differences in phase between the multipath 
signals which occur with only a small movement of the transmitter, receiver or propagation 
medium at the transmission frequencies used. If the statistical properties of these random 
variations are constant in time then the channel is termed 'fading'. This type of fading should 
be distinguished from 'fades' in the spectrum — frequency selectivity. Fading radio channels 
which introduce ISI (i.e. are frequency selective) axe not neccesarily detrimental. Indeed the 
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diversity introduced by the paths causing ISI can be used to provide signal power when the 
attenuation of other paths increase during fades. 

The baseband representation of the channels have complex paths to represent the am­
plitude and phase variations of the bandpass channel [2]. An individual path is tj^jically 
modelled as a white, zero mean complex Gaussian process with independent real and imag­
inary components. This results in a signal envelope with a Rayleigh probabiUty density 
function and this type of channel is termed a Rayleigh fading channel. The time correlations 
axe described by filtering the Gaussian process components with a filter whose frequency 
response matches the square root of the Doppler power spectrum of the channel. I f this filter 
is Unear, then the filtered Gaussian components will also be Gaussian and the resulting com­
plex process will remain Rayleigh distributed. If the charmel has fixed scatterers, reflectors 
or a dominant Une-of-sight path in addition to random Gaussian variations then the channel 
is termed a Ricean fading channel. The validity of these models to various apphcations is 
discussed later in the section. 

The multipath nature of channels is often characterized, in the time domain, by a pa­
rameter Tm, the multipath delay spread of the channel, which is the range of delay values 
over which the CIR is much greater than zero. If the symbol period is greater than this 
value then the channel is treated as frequency non-selective. The frequency domain param­
eter (w 1/Tm) is called the coherence bandwidth of the channel. The time-varying nature 
of individual paths is characterised by the coherence time, Tc, in the time domain or by the 
Doppler spread of the channel in the frequency domain. For a maximum Doppler shift of fa, 
the coherence time is often defined as Tc = [4]. A channel with laxge Doppler spread 
has more rapid variations in ampUtude and phase. The Bello system of functions relate these 
channel characteristics in the time and frequency domains with a 2-dimensional scattering 
function representing both time and frequency dispersion of the channel [5]. 

Land Mobile Radio Channels 

Land mobile radio channels have varying characteristics depending on the local terrain [15]. 
In urban areas the CIR is modelled as having a typical multipath delay spread of 5 us which 
results in a significant amount of ISI for symbol rates in the order of 270 kBaud (e.g. GSM — 
Global System for Mobile communications). The paths within the channel axe Rayleigh fading 
with the time variations of all paths being modelled by the classical Doppler spectrum (a 
simpUfication as some paths have Ricean-tjT)e characteristics). This Doppler spectrum model 
is a worst case scenario which assumes that there are a laxge number of uncorrelated signals 
arriving with a uniformly distributed angle of incidence at the isotropic receive antenna and 
with similar time delays [5]. This laxge number of local paths is due to multiple reflectors 
and scatterers present in an urban environment. The assumption of uncorrelated paths is 
due to the fact that small changes in path length result in significant changes in phase of the 
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Figure 2.4: Power spectrum of baseband classical Doppler spreading. In this example the 
maximum Doppler shift is ±100 Hz. 

R F signal — typical wavelengths being in the order of 0.3 m. As the mobile receiver moves 

directly towards / away from the transmitter, the R F experiences a maximum Doppler shift 

of /d = , where ft is the R F carrier frequency and c,v are the velocity of Ught and 

mobile velocity (in ms~^) respectively. For a carrier frequency of 900 MHz and a mobile 

velocity of 120 km/hr, the maximmn Doppler shift is approximately 100 Hz. At other angles 

of incidence the magnitude of the Doppler shift is not as great and the spectnma of combined 

signal from the local paths, together with the assumption of a uniform distribution of angles 

of incidence, leads to the baseband classical Doppler power spectrum, (Fig. 2.4), 

S i f ) = < 

0 

- f d < f < +fd 

otherwise. 

(2.2) 

For riural areas the channel is modelled as having a multipath delay spread in the order of 

0.5 /LiS, resulting in negligible ISI and with a dominant main path modelled as having Ricean 

characteristics — a specular component / Doppler shift together with a Doppler spread (see 

Figure 2.5). The Hilly Terrain model has a burst of local paths with time delays in the region 

of 1 fj,s and a burst of paths with delays from 15 fis to 20 /zs resulting from distant reflections. 

All paths in this model have classical Doppler spread characteristics. Although the multipath 

spread causes ISI, it can also be viewed as diversity which enables receivers to operate even 

when an individual path's signal strength drops during a fade. 
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Figure 2.5: Power spectrum of a Ricean spreading function. In this example the maximum 
Doppler shift is ±100 Hz with a specular component at -1-25 Hz. 

Strictly, fading channels occur only when the relative velocity between transmitter and 

receiver is constant and thus practical land mobile communication channels are statistically 

non-stationary. However, the variations in velocity are significantly slower than the transmit 

bit rate, allowing the channel to be reasonably modelled with constant statistical parameters 

(Doppler spread etc.). 

Tropospheric Scatter Channels 

Tropospheric scatter conmixmication links sufî er from multipath fading due to the changing 

characteristics of the troposphere [16, 17]. These radio systems provide Unk lengths from 100 

to 1000 km (i.e. much greater than Une-of-sight systems) by radiating power of the order of 1 

— 10 kW into the trophosphere in a narrow beam a few degrees above the horizon with R F 

carriers in the UHF band (900 MHz — 5 GHz). The troposphere extends from the eaxth's 

surface up to 8 to 10km high. Scattering occurs due to turbulence in the troposphere creating 

many small volumes of air with varying refractive index which reflect or refract incident radio 

waves in all directions. Alternatively, stratification of the troposhere creates layers of air with 

differing refractive indicies and affects the propagation of radio waves through refraction and 

partial reflection at each layer / boundary. 

There are no resolvable discrete paths, unlike some land mobile radio channels and HF 

channels, but a continous range of paths with differing propagation delays. The average 
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envelope of these multipath components is Gaussian with a spread factor defined by 2cr 
where cr^ is the variance of the Gaussian process or a is the RMS width of the mean square 
envelope of the channel impulse response. This spread factor is sometimes normaUsed to the 
symbol period, Tg, resulting in the spread factor definition ^ [18]. The multipath spread of 
typical channels are a function of Unk length and are in the region of « 6a w 1/iS for 
300 km links [19, 20]. Typical symbol rates are in the order of 8 MBaud (QPSK modulation) 
resulting in the normaUsed spread values in the order of 1 to 3. 

The time variations of troposcatter channels are divided into slow and fast variations 

with the timescale of the slow variations being in the order of days. The effects of the fast 

variations are more appropriate in the timescale of the symbol period and each path of the 

sampled channel impulse response is treated as Rayleigh fading with the changes having a 

Gaussian shaped Doppler power spectrum and Doppler spreads of up to 20 Hz. 

H F Channels 

High Frequency (HF) radio systems use the ionosphere to provide beyond the Une-of-sight 

communication Unks of greater length than tropospheric scatter links. The ionosphere is 

caused by solar radiation (cosmic. X-rays and UV) which ionises the atmosphere and com­

prises of a number of layers which reflect and refract R F signals with carrier frequencies of 

3 — 30 MHz. The D layer Ues between 50 and 90 km above the earth's surface and only 

exists during the day with peak ionisation at midday during the simimer months [21]. For 

communication purposes this layer is principally an attenuator. The E layer is at a height 

of 90 to 130 km and contains the highest ion density in the ionosphere. The layer is caused 

by the ionisation of atomic oxygen and is at a maximum level around noon, dropping off to 

. residual levels at night. The F layers ( F l and F2) are above the E layer to a height of 450 km 

and exist during both day and night. Although the ionising radiation is greatest in the F 

layer, the ion density is not as great as the E layer as the atmosphere becomes increasingly 

rarified. The F layers and to some extent the E layer exist diuring the night (and absence 

of solar radiation) as the probabiUty of electron / ion recombination is small for the lower 

density air. 

Depending on the prevailing conditions and communication link length, the channel has 

predominantly one or two paths resulting from single and double hops (reflections between 

the ionosphere's layers and / or the earth's surface) and the constant motion of the ions 

results in a fading channel [22]. For a single path, the flat-fading channel has fade rates in 

the order of 0.2 Hz to 1 Hz. For the two path case, each path has the same mean power 

or the second path is up to 40 dB lower and the paths are separated in time by a delay 

of 0.5 ms to 3 ms. Symbol rates over HF Unks are in the order of 2.4 kBaud resulting in 

significant ISI. The paths fade independently with a Gaussian spectrum and have Doppler 

spreads in the order of 0.1 Hz to 10 Hz in the case of flutter fading (caused by aircraft) [14, 
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23, 24]. 

Atmospheric noise is, in practice, impulsive in nature with large, rapid variations but 

relatively constant average value [25]. However the noise is often modelled as being Gaussian 

for convenience. 

2.3 Radio Communication System and Channel Modelling 

The majority of the results presented in this thesis have been obtained through the use of com­

puter simulations, in particular Monte Carlo analysis to approximate the symbol error rates. 

The radio communication systems have been simphfied, where appropriate, to reduce the 

computational overhead and standard baseband representations of the R F carrier waveforms 

and communication channels have been used throughout [2]. The SPW software package [26] 

has been used extensively to model and simulate the characteristics and performance of both 

channels and radio systems. 

Prom the previous sections in this chapter, it can be seen that there are a large number of 

factors affecting the overall performance of a radio communication system, from somrce cod­

ing, channel coding, modulation format and radio chaimel. Thus, for comparative purposes, 

many of the system and chaimel models have been kept constant or generalised. In partic­

ular no soirrce coding, channel coding or interleaving has been appUed and the modulation 

format has been restricted to QPSK / QAM or multi-level PAM. The emphasis has been on 

comparing the performance of various equalisation strategies on more or less similar systems 

rather than examining the quantative effects of other system parameters on the performance 

of the equalisers. 

All radio channels have been simulated rather than using measurements from a real chan­

nel as the simulation methods can be easily applied to different radio channels. In addition 

the relative performances between various systems operating on a simulated channel provide 

a better indication of the relative merits of operational systems rather than absolute perfor­

mance measurements using a snapshot of a real channel [27]. In the latter case, the system 

is often tailored to the sample of the channel which may not be representative of typical 

channels in the longer term. 

The SPW package simulates the communication systems on a sample-by-sample basis with 

each sample passing through the whole system prior to the next sample being simulated. The 

sample rate is not restricted to the symbol rate and thus the continuous time domain portions 

of the system can be better approximated by using more than one sample per symbol. This 

allows the effects of transmit / receive filters and symbol clock synchronisation to be studied 

and to provide more accurate modelling of the continuous nature of the chaimel. 

For simulation purposes the continuous time CIR is sampled in time and implemented 
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Figure 2.6: Generic fading channel model. 

as an F I R filter with either real or complex and time-varying or constant taps depending on 

the radio channel being simulated. The propagation delay of the channel is ignored resulting 

in the first path / tap with finite attenuation being assigned zero propagation delay. The 

majority of the simulations examine the effects of time-varying and complex channel taps 

(as a result of the baseband representation). For a Rayleigh fading channel, these taps are 

generated by passing complex white Gaussian noise through a filter whose frequency response 

is matched to the Doppler spread characteristics of the channel being modeUed (Fig. 2.6) [28, 

29]. The delay elements (TI etc.) in the chaimel F I R filter correspond to the relative delay 

between the paths of the channel in question and thus the channel should be simulated 

at a rate dependent on an integer multiple of the symbol rate. For, general time-varying 

channel models the delays have been set equal to the transmitted symbol period for reasons 

of increased simulation speeds. These types of channels are easier to equalise and thus 

the method allows suitable equalisation techniques to be identified prior to more realistic 

simulations. 

As the Doppler spread of most channels is much lower than the symbol rate, simulation 

efficiency can be improved by generating the channel filter taps at a slow rate and interpolating 

up to the symbol rate using a polyphase filter. The time domain Doppler filter is obtained by 

sampling the frequency response of the channel's Doppler characteristics, taking the inverse 

D F T and windowing the resulting time-domain filter taps. Note that this technique broadens 

the 'true' frequency response but, since this response is only an approximation to the general 

behaviour of the channel, the effect is not considered problematic as long as the level crossing 

rate (the rate at which the power attenuation of the path rises above a certain level) is not 

distorted significantly. In a real situation it is quite possible that the maximum Doppler shift 
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is greater than that due to the relative velocity between transmitter and receiver as there 
may well be moving reflectors (vehicles, for example). 

2.4 Summary 

The fundamental components of a digital radio commimications system have been described 

together with some of the factors affecting system configuration and simulation. The char­

acteristics of general and specific radio channels have been discussed, in particular the delay 

spread and time-varying properties, and the effects of the channel on the transmitted signal 

have been described. The multipath nature of many radio channels causes ISI if the delay 

spread of the chaimel is a significant fraction of the transmitted symbol period or greater. In 

the receiver an equaliser is employed in the demodulator to remove the ISI effects introduced 

by the channel in order to facihtate the symbol classification of the received signal samples. In 

the next chapter, the process of equalisation and the structure of equaliser implementations, 

both conventional and novel, are described. 
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Chapter 3 

Equalisation 

This chapter details the functions of the equaliser and describes both conventional structures 

and more recently developed structures based on neural networks. Adaptive equaUsation 

schemes are discussed and adaptation algorithms such as LMS and RLS are examined in the 

context of equaUser parameter adjustment. The application of adaptive equalisers for time-

varying / fading communication channels is summarised — detailed explanations of specific 

structures relevant to particular applications are given in later chapters. 

3.1 Principles of Equalisation 

The function of an equaliser is to process the received signals in order to aid their subsequent 

classification by a decision device / detector in the receiver demodulator (Fig. 3.1). The 

mechanism of classifying the processed received signals is highly dependent to the equalisa­

tion process or vica versa and so the combination of equaliser and detector structures are 

considered together. The equaliser is primarily designed to counter the adverse effects of 

nonideal channel characteristics — intersymbol interference (ISI), but may be designed to 

correct for distortions generated by transmitter and receiver circuitry in addition. Typical 

communication systems employ different compensators to minimise the effects of differing 

distortion mechanisms. This thesis concentrates upon channel equalisation as the channel is 

often the most significant source of distortion. 

The basic structure of an equaliser is shown in Figure 3.2. Equalisers / detectors may be 

categorised by whether they operate on a symbol-by-symbol basis or classify a sequence of 

symbols [30]. For symbol-by-symbol based equalisers, the received signal classification pro­

cess estimates the transmitted symbol one at a time rather than a sequence of transmitted 

symbols en masse. Both forms use a sequence of sampled received signals in order to produce 

their estimate. Some equalisers attempt to remove the ISI introduced by the channel by 
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Figure 3.1: Schematic of a general receiver structure. 

producing an approximation of the transmitted waveform from the received signal which is 

then fed to the detector. These equalisers are independent of the modulation scheme used 

and the design is based on the consideration of the channel in isolation from the modulator. 

However, the form of the detector is dependent on the modulator / transmitted waveforms 

and may involve correlating the processed waveform with rephcas of the possible transmitted 

waveforms. Other equalisers include a correlating / comparison function within their struc­

ture and output a metric for each member of the transmitted symbol alphabet which is then 

fed to the detector to select the best metric. These forms of equalisers are dependent on the 

modulation scheme employed and may base their metric formulation on probabiUty theory. 

The received signal is commonly sampled prior to the equaliser either at the symbol rate or 

at an integer multiple of this rate. The received signal should be passed through a receive filter 

to Hmit out-of-band noise prior to sampUng and in PAM systems the filter is ideally a whitened 

matched filter — the filter being matched to the combined filter obtained from the convolution 

of the transmit pulse shaping filter and the chaimel model filter. Whitening ensures that noise 

is decorrelated between successive samples (assuming symbol rate samphng). However, if the 

channel is not known a priori then the receive filter is typically a root raised cosine filter (as 

is the transmit, pulse shaping filter) to hmit out-of-band noise and ensure no ISI in an ideal 

channel situation — root raised cosine filters do result in ISI at the symbol rate samphng 

instants as the frequency response is not skew-symmetric about the cut-off frequncy but the 

convolution of two such filters does satisfy Nyquist's criterion [3]. 

For symbol-rate sampling, the combined baseband transfer function of the transmit, chan­

nel and receive filters is given by: 

h{T,k)=hi{k) T = iT, (3.1) 

and the symbol-rate received signal samples are given by: 

r{k) = Y,hi{k)x{k-i)+n{k) 
i=0 

(3.2) 
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Figure 3.2: Schematic of a general equaUser structure. 

where r is the delay variable, is the symbol period and LTg is the length of the combined 

impulse response giving a symbol-rate sampled impulse response of (L-M) components. hi{k) 

are the components of the sampled impulse response, x{k) are the transmitted symbols and 

n{k) is the additive noise term. In general, all these terms are complex valued. 

The ISI introduced by the channel causes the received signal samples to differ from the 

corresponding sampled transmitted signal but, in the absence of noise, samples of the received 

signal take on distinct values or states. For a system employing an M-ary PAM scheme, the 

equaliser attempts to transform the received signals into one of the M bands for classification 

by the detector, typically an M-level quantiser. The equaliser and detector / decision device 

form sets of decision boundaries in which all states lying within the bounds of a particular 

set of boundaries are classified as being caused by one symbol. Noise in the received signal 

will corrupt the states and may move them into erroneous decision regions. The dimension 

of the decision boundaries depends upon the number of received states and previously clas­

sified symbols used in their calculation. In general, increasing the dimension of the decision 

boundary increases the minimum distance between the boundaries and received signal states, 

therefore reducing the probability of incorrect classification. The decision boundary may be 

linear or nonlinear depending on the structure of the equaliser. 

Table 3.1 shows an example of the received signal states {r'{k),r'{k — 1)) for a channel 

with a transfer function (sampled at the symbol rate) H{z) = 0.348 - 0.8702;"^ +0.3482:~2, a 

transmitter using a bipolar PAM scheme and no additive receiver / channel noise. Figure 3.3 

shows them plotted with a decision delay of one sample period and a typical, linear decision 

boundary separating the two sets of states. As the channel may be represented as an F I R 

filter, the received signal states occur in a defined order due to the sequential natiure of 
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xik) x{k - 1) x{k - 2) x{k - 3) r'{k) r'{k - 1) 
1 1 1 1 1.566 1.566 
1 1 1 -1 1.566 0.870 
1 1 -1 1 0.870 -0.174 
1 1 -1 -1 0.870 -0.870 
1 -1 1 1 -0.174 0.870 
1 -1 1 -1 -0.174 • 0.174 
1 -1 -1 1 -0.870 -0.870 
1 -1 -1 -1 -0.870 -1.566 

-1 1 1 1 0.870 1.566 
-1 1 1 -1 0.870 0.870 
-1 1 -1 1 0.174 -0.174 
-1 1 -1 -1 0.174 -0.870 
-1 -1 1 1 -0.870 0.870 
-1 -1 1 -1 -0.870 0.174 
-1 -1 -1 1 -1.566 -0.870 
-1 -1 -1 -1 -1.566 -1.566 

Table 3.1: Received signal states for a channel with transfer function H{z) = 0.348 -
0.870z-^ +0.348Z-2. 
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Figure 3.3: Plot of received signal states and Unear decision boimdary. 
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the delay line. The combination of m sequential received signal samples form m-dimensional 
received signal state vectors. This example demonstrates that more than one received sample 
is often required to separate the received states with a hnear decision boundary. The decision 
delay can also help separate the states by altering the mapping of states to symbols. In the 
example, the received signal state, r'(fc), with no additive noise is given by: 

2 

r'{k) = Y.hi{k)x{k-i) (3.3) 

The received signal state maps onto the symbol x{k — 1) rather than x{k) — which would 

correspond to a decision delay = 0. 

3.2 Adaptation Algorithms 

In many communication systems, the channel characteristics change over time and thus the 

equaUser must be able to adapt to these changes for optimal results. This is particularly 

so in mobile communication systems where channels vary rapidly but also occurs in HF 

radio systems, systems employing frequency hopping and multi-hnk telephone systems. In 

order to adapt to changing channels, the equahser miist have some a priori knowledge of 

the signals being transmitted. Adaptation of the equaliser occurs by minimising an error 

function formed from characteristics of the received signals and the a priori knowledge of the 

transmitted signals. 

Two broad classes of adaptive algotithms exist: algorithms that require a defined training 

signal to be transmitted so that the error function may be formed by comparing the received 

signal with the known transmitted signal, and algorithms that form an error function by 

comparing the statistics of the received signal with those of the transmitted signal. This 

latter technique is known as blind equalisation but is not considered in this thesis due to 

the lengthy training times and reliabihty of the measurements of the statistics. However, 

for fading communication channels where both the channel and transmitted symbols are 

unknown to varying degrees, the problem is essentially one of bhnd equalisation and some 

techniques discussed in later chapters have similarities with bUnd equalisation techniques [31]. 

The conventional adaptive algorithms may be apphed to many of the different structures of 

equalisers or associated processing elements. 

Another technique, called decision-directed adaptation, may be apphed to equalisers em­

ploying the conventional training signal method of adaptation. After the training signal has 

been sent, the equahser parameters are updated using the error between the equaliser and 

decision device outputs and attempts to track variations in the channel. This method makes 

the assumption that the classified symbols are correct and updates the parameters to more 

optimum values accordingly. The technique is suitable for relatively slow channel variations 
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compared to the symbol rate but begins to fail as the changes become more rapid. This is 
due to the increasingly incorrect assumption that the symbols have been classified correctly. 

Common adaptive algorithms are the Least Mean Square (LMS) and Reciursive Least 

Squares (RLS) algorithms which are designed to adjust the parameters of Unear filters (e.g. 

F I R filters or Unear equaUsers). The basis of both these algorithms is to adjust the filter 

paxameters in such a way to minimise an error function. The definition of different error 

functions leads to variants of a theme. Appendix B gives a mathematical overview of the 

complex signal versions of these algorithms — the real versions being easily obtained from 

the complex versions. 

3.3 Conventional Symbol-by-symbol Equalisers 

This section describes the two most common conventional symbol-by-symbol equalisers — 

the linear transversal equaUser (LTE) and the decision feedback equaUser (DFE), together 

with the application of common adaptation algorithms to adapt the structures to unknown 

or time-varying channels. 

3.3.1 Linear Transversal Equaliser 

The linear transversal equaUser (LTE) is the simplest equaUser structure and consists of an 

F I R filter, a decision device and adaptation algorithm (Fig. 3.4). Due to the sampled nature 

of this structure the analogue received signal, after passing through a whitened matched filter, 

is sampled prior to the F I R filter. The sampUng may occur at either the symbol rate or at 

an integer multiple of the symbol rate. The latter, known as a fractionally spaced equaliser 

(FSE) , must include a symbol-rate sampler between the FIR filter and decision device. The 

analogue version in which the filter is a tapped analogue delay Une with sampling occuring 

between filter and decision device is caUed a zero-forcing equaUser. 

The output of the symbol-rate sampled version is given by: 

m - l 
y{k)=Y,bi{k)r{k-i) (3.4) 

t=0 

where bi{k) are the filter coefficients and m is the order of the filter. 

The L T E may be viewed as the inverse filter of the combined channel, transmit and 

receive filters. Usually this combination of filters is modelled as an F I R filter and thus the 

ideal inverse filter structure is an IIR. An F I R filter of finite length can only approximate the 

impulse response of this ideal inverse filter. The zero-forcing equaUser attempts to produce a 

combined impulse response which is zero at all but one of the sampUng times and effectively 
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Figure 3.4: Linear transversal equaliser. The filter coefficients are shown as bi but are, in 
general, time varying. 

operates as an inverse filter only at these times. 

The performance of the L T E is degraded when the chaimel has deep spectral nulls. The 

equaUser must provide a high gain at these frequencies but this increases the noise power and 

hence the probability of a symbol being incorrectly classified. If the channel is nonminimum 

phase (i.e. its z-transform has one or more zeros outside the unit circle) then the inverse 

causal filter is not stable. However a truncated form of the stable, noncausal inverse filter 

may be used by allowing a decision delay between receiving a symbol and classifying it. The 

delay permits a causal filter to be created from the noncausal inverse filter. 

The F S E achieves a higher performance especiaUy when operating in sytems utihsing 

forms of quadrature ampUtude modulation (QAM). Due to nonsymmetric channel frequency 

responses, the baseband response is, in general, nonsymmetric about the half symbol-samphng 

frequency and this may lead to large changes in the spectrum around the band edges (integer 

multiples of the symbol sampUng frequency). The F S E can adjust the frequency response 

independently at the two band edges creating a flatter frequency response prior to symbol-rate 

sampling. 

An alternative view of the mechanism by which the L T E aids the classification of symbols 

in the presence of noise is obtained by considering how the decision boimdaries are formed with 

respect to the received signal states (i.e. received signal samples in the absence of noise). The 

L T E calculates a Unear combination of a finite number of the received samples and classifies a 

symbol by comparing the magnitude of this scalar combination with a set of thresholds. For 
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a bipolar PAM scheme the decision device is simply a binary quantiser with a zero input-level 

threshold. The decision boundary for the case of no additive noise is given by: 

bor'ik) + bir'ik - 1) - f - . . . + bm-ir'{k -m + l ) = 0 (3.5) 

where r'{k — i) are the received states, 

L 
r'(fc) = ^ / i i ( f c ) i (A; - i ) (3.6) 

1=0 

The decision boundary divides the received signal states into two subsets — each subset 

corresponding to the set of signal states caused by the transmission of a particular symbol. 

The tap weights are chosen to maximise the minimum distance between the two subsets of 

nominal received signal states and the decision boundary. Symbols are classified incorrectly 

when receiver / chaimel noise cause the received states to cross the decision boimdary. 

The adaptation algorithm usuaUy used is either an LMS type or an RLS type used in 

conjunction with a training signal. The RLS algorithm is generally faster and produces a 

lower mean square error but is more computationally expensive. The LMS algorithm performs 

gradient descent of the mean square error surface, 

. J = E[\d{k)-y{k)\^] (3.7) 

where d{k) = x{k — d) — the transmitted symbol with a decision delay of d symbol periods, 

by using the instantaneous square error as an approximation to the mean. The algorithm 

does not perform a true gradient descent but converges in the mean to the minimum value of 

the error surface. The filter coefficients, bi(k), are updated after receiving each state of the 

training sequence according to the equation: 

bi{k + l ) = bi{k)+nT{k-iye{k) i = 0 , . . . , m - l (3.8) 

where jx is the stepsize, r*{k — i) are the conjugate of the received signal states and the error 

signal, e{k), is given by: 

e{k) = d{k)-y{k) (3.9) 

= x{k-d)-y{k). (3.10) 

See Appendix B for further details on the adaptation process. 
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3.3.2 Decision Feedback Equzdiser 

The decision feedback equaUser (DFE) uses previously classified symbols to modify the de­

cision boundaries formed by the equaliser. The D F E structure is shown in Figure 3.5 and 

consists of feedforward filtering of the sampled received signal, feedback filtering of classified 

symbols and a memoryless decision device. Variants using a fractionally spaced feedforward 

filter exist but the feedback filter always has a symbol-period spaced delay fine. The combina­

tion of decision device and feedback filter forms a nonhnear I IR filter and creates a nonUnear 

equaliser structure. The IIR-type structure provides a more suitable inverse filter for the 

equalisation of channels modeUed as F I R filters. 

The output of the D F E (symbol-rate feedforward delay Une variant) is given by: 

m-l n 
yik) = J2 bi{k)r{k - i) + ^ aj{k)x{k - d - j ) (3.11) 

i=0 j=l 

where m is the order of the filter, bi{k) are the feedforward filter coefficients, n is the order of 

the feedback filter, aj{k) are the feedback filter coefficients and x{k-d—j) are the previously 

classified symbols with decision delay, d. 

The method by which the D F E structure aids classification may be highhghted by con­

sidering how the equahser achieves the inverse filtering requirement. In the absence of a 

feedforward filter, (i.e. m = 1), the feedback filter is required to cancel out all terms of the 

sampled channel impulse response other than the 0*'' term (assuming zero channel propa­

gation delay). Thus the ideal coefficients, at(A;), of the feedback filter are related to the 

symbol-rate sampled channel impulse response, hi{k), by: 

ai{k) = -hi{k) i = l,...,n (3.12) 

For a sampled channel impulse response of length {L + 1), then n = L for optimum 

cancellation. Under the condition of correct symbol classification and perfect knowledge of 

the CIR, 

yik) = rik)-f2aiik)S{k-i) (3.13) 
i=l 

L L 
= Y^hi{k)x{k-i)-J2hi{k)xik-i)+n{k) (3.14) 

t=0 i=l 
= ho{k)x{k)+nik) (3.15) 

The addition of a feedforward filter allows increased flexibiUty in the choice of filter 

coefficients as the feedback filter must now cancel traihng terms of the convolved channel 

and feedforward filter impulse responses. The duration of the combined impulse response 
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Figure 3.5: Decision feedback equaUser. 

increases to (L -I- m). Thus n = (L -I- m — 1) for canceUation of all ISI terms in the m received 

signal samples. By permitting a decision delay, the feedforward filter effectively cancels the 

leading terms of the sampled channel impulse response and the feedback filter cancels the 

traiUng terms. A decision delay of d symbol periods reduces the order of the feedback filter 

to n = (L -I- m — 1 — d). 

Viewing the equaUsation process as classification of the received signal samples, the feed­

back filter reduces the number of received signal states which the decision boundaries must 

separate. For a given set of n classified symbols in the feedback delay Une (the feedback 

vector), the number of possible signal states that the next signal state can be is reduced by 

a factor, M", to 
jufL+m 

= n = L + m - l - d ) (3.16) 

for M-ary modulation schemes. This simplifies the decision boundaries and can increase 

the distance between the boundaries and the reduced set of nominal received signal states 

considerably. For any given feedback vector the decision boundaries axe linear as they are 

formed by the Unear feedforward filter coefficients. The nonlinearity of the equaliser is due 

to the variation of the position of the botmdaries as the feedback vector changes state. 

Adaptation of the D F E to an unknown channel uses standard gradient descent techniques 

as outUned in Section 3.2 and Appendix B. The feedforward filter coefficients bi are adjusted 
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using the equation (LMS version): 

bi{k-\-l) = bi{k)+(ir*{k-i)eik) i = 0,...,m-l. (3.17) 

The feedback filter coefficients, ai, are adjusted by: 

ai{k + l)=aiik)+iix*{k-d-i)e{k) i = l,...,n (3.18) 

where is the stepsize, r{k — j) are the received signal samples, x{k — d — i) axe the training 

(transmitted) symbols, m is the order of the feedforward filter, n the order of the feedback 

filter and the error, e(fc), is given by 

e{k) = d{k)-y{k) (3.19) 

= x{k-d)-y{k) (3.20) 

where d is the decision delay. N.B. During training the actual transmitted symbols should 

be fed into the feedback delay Une instead of the estimated symbols to aid training. 

Decision-directed adaptation used to track time-varying channels replaces the training 

symbols (equal to the transmitted symbols) by the output of the decision device. This assumes 

that the detector is correctly classifying the received signal and thus the approximation 

x{k - rf) a x{k - d) (3.21) 

is valid. 

3.4 Conventional Symbol-sequence Equalisers 

This section explains the operation of symbol-sequence equalisers — primaiily the optimum 

Maximum LikeUhood Sequence Estimator, and varicints. A hybrid version is also discussed 

which uses Bayes' theory to compute the most probable symbol or symbol sequence. 

3.4.1 Maximum Likelihood Sequence Estimator 

The maximum likelihood sequence estimator (MLSE) technique differs firom the other conven­

tional equaUsation techniques by forming the best estimate of a sequence of symbols rather 

than on a symbol-by-symbol basis. Instead of performing an inverse filtering function, the 

M L S E calculates the parameters for a model of the channel and uses them to estimate the 

received signal states. These received signal states are required by a Viterbi detector in order 

to predict the most probable sequence of transmitted symbols given a sequence of received 
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Figure 3.6: Maximum likelihood sequence estimator. 

signal samples. The Viterbi detector is a recursive processor which calculates the maximum 

likelihood estimate efficiently [32]. 

The general structure of the MLSE is shown in Figure 3.6. The whitened matched filter 

required prior to symbol rate sampling is not shown. Strictly this matched filter should be 

altered to account for channel variations but practical results have shown that faihng to do 

so results in only a sUght degradation in equahser performance. 

The channel estimator typically consists of an adaptive F I R filter, sampled at the symbol 

rate, and an associated adaptation algorithm. Adaptation algorithms requiring a conventional 

training sequence are the most common and typically involve an LMS gradient descent of 

the error surface. The training signal, d{k) is fed through the channel estimator to produce 

an estimate of the received signal, f(fc). The error signal, e{k), is formed from the estimated 

and actual received signal 

e(A;) = r{k) - r{k) (3.22) 

and is used to update the estimate of the sampled channel impulse response (CIR). The 

training signal d{k) is equal to the transmitted symbols, x{k), during the training period or, 

in the case of decision-directed tracking, the output of the Viterbi detector x{k — d) may 

be used to track the channel. This requires some slight modifications which are detailed in 

Chapter 5. 

Once channel estimation has taken place, the estimated CIR, h(A;), is transferred to the 

Viterbi detector which calculates estimates of the received signal states, 

r'iik) i = 0 , . . . , ( M ^ + ^ - l ) . (3.23) 

The number of received signal states is M^'^^ for a channel with a symbol-period sampled 

C I R of {L + 1) components and an M-ary modulation scheme — corresponding to all the 
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Figure 3.7: Viterbi trellis example. The modulation scheme is binary, represented by the 
symbols {0,1}. 

possible combinations of the transmitted symbol sequence, 

[x{k),x{k-l),...,xik-L)] 

which forms the received signal state (i.e. the received signal in the absence of noise). The 

Viterbi algorithm can be viewed as a treUis search algorithm where the states in the trellis. 

Si [k), correspond to distinct combinations of the transmitted symbol subsequence, 

[xik-l),...,x{k-L)] 

and the transition between states is governed by the transmitted symbol, x{k). Clearly, there 

are M transitions to or from each state in the trellis, one for each of the M values x{k) can 

take (Fig. 3.7). The mapping from state transitions to symbol sequences is one-to-one [33]: 

Siik)^[xi{k-l),...,Xi{k-L)] 

Whilst operating on the received signal samples, the Viterbi detector calculates the value 

of the log-likelihood ratio for each valid transition between the trellis states using a knowledge 

of the probability density function of the additive noise process, Pn{-), the probability distri­

bution function of the transmitted symbols, P(-), the received signal, r(A:) and the estimated 

received signal states, r'i{k). The log-likelihood ratio. A, is known as the transition metric 
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and is given by: 

mjik)) = -H P{sjik + l)\si{k)) )-HPn{r{kmj{k)) ) (3.24) 

where ^ij(k) is the transition firom state Si(k) to state Sj{k + 1) at time t = k. For a trellis 
of states there are a total of M "̂*"̂  transitions between one stage of the treUis and the 
next. 

If the noise process is Gaussian then 

in( Pnirikmrn ) cc \r{k) - ?i(k)\' (3.25) 

The probability distribution of the transmitted symbols, P(-), is usually constant and may 

be omitted in order to simphfy computational load. 

Each trellis state, Sj{k + 1), may be reached firom M previous states and so, for each 

trelHs state, the Viterbi detector selects the transition to the state with the minimiun total 

path length. These transitions are known as the survivors. For each transition the total path 

length is formed by accumulating the values of the log-likeUhood ratios of all prior transitions 

leading to the previous survivor and the value for the particular transition (the transition 

metric). The total path length is related to the probability of receiving that particular symbol 

sequence or path. 

Strictly, the symbol sequence should start and end with known subsequences in order to 

initialise and terminate the algorithm — the transmitted sequence starts and ends at known 

trellis states. However, this is often impractical in many communication applications where 

there is not a frame structure to the transmitted data as the overhead of transmitting 'control' 

symbol sequences is unacceptable. An alternative is to use a fixed decision delay, d, whereby, 

at each sample period, the algorithm selects the survivor with the minimmn total path length 

and traces the survivor's path back an appropriate, fixed number of states and outputs the 

corresponding symbol estimate, x{k — d). The magnitude of this decision delay affects the 

performance of the equaliser and is examined for the case of fading channels in Chapter 5. 

Even without known start and end symbol subsequences the equaUser performance is 

better than the L T E or D F E structures with similar decision delays. The variation in sur­

vivor path lengths is such that survivors starting from erroneous states are soon ehminated 

given sufficient decision delay. As the SNR decreases the variations in path metrics become 

smaller and an erroneous sequence estimate becomes increasingly likely. The computational 

complexity of the algorithm is significantly greater than the L T E or D F E . 

Given a data sequence starting and ending with known symbol subsequences then the 

M L S E is an optimum sequence detector. However, whilst operating on nonstationary or 

fading channels, the tracking capabiUties of the channel estimator become a limiting factor. 
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These tracking errors maybe reduced by using decision-directed adaptation of the channel 

estimator. The estimated symbol sequence used as the training signal can either be taken 

from the main output of the Viterbi detector or from a lower decision delay output. This latter 

case can improve the symbol error rate for some time-varying, channels where the advantage 

in delaying the sequence decision to improve the decision accuracy is ofiiset by poor channel 

estimation which results in the Viterbi detector using erroneous values of the received signal 

states, r'^{k), in the sequence estimation. 

3.4.2 Reduced State Sequence Equaliser 

When the memory of the channel, L, increases the number of states in each stage of the 

Viterbi trellis becomes large and the MLSE equaliser has a huge computational burden. For 

high symbol rate communication systems, the practical implementation is not feasable for 

economic or processor capability reasons. Reduced state techniques reduce the number of 

states in the trellis at the expense of bit error rate performance [34, 35]. 

The Delayed Decision-Feedback Sequence Estimator (DDFSE) reduces the number of 

states in each stage of the trellis by only providing a separate, reduced state for each com­

bination of a subsequence of the transmitted ssonbol sequence. The conventional MLSE's 

states, Si{k) correspond to a distinct combination of the transmitted symbol sequence, 

[x{k-l),...,xik-L)] 

whereas the DDFSE's reduced states, Si{k), correspond to distinct combinations of 

[x{k — I),... ,x{k - u)] 

where u < L. Thus the number of reduced states is for an M-ary modulation scheme 

compared to for the conventional MLSE. 

In order to provide information on the full symbol sequence, each reduced state has an 

associated 'past decision' sequence, Xi{k), 

Xiik) = [Uk -u-1),.. .,Xi{k - L)]. (3.26) 

Note that each reduced state can have completely different 'past decision' sequences — indi­

cated by the subscript i (i = 0, . . . , - 1). Figure 3.8 shows an example of a reduced state 

trellis. 

The D D F S E calculates the received signal states and the transition metrics for each of 

the M transitions from each reduced state, Si{k), using the relevant reduced state's symbol 

subsequence and 'past decsion' sequence, Xi{k) and the channel estimate, h(A;). As in the 
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Figure 3.8: D D F S E trellis example. Here M = 2, L = 3 and u = 2 giving a treUis of 4 states 
and a single element 'past decision' sequence. 

conventional MLSE, the total path lengths of the M transitions arriving at each reduced 

state, Sj{k + 1), are compared and the most probable is selected as the survivor to that 

destination reduced state. 

The destination reduced state's 'past decision' sequence, Xj{k + 1), is formed from the 

'past decision' sequence, Xi{k), and symbol sequence of the sm"vivor's departing reduced 

state, Si{k). The 'past decision' sequence acts like a shift register of previous decisions and 

the oldest symbol in the 'past decision' sequence is shifted out and the oldest symbol in the 

sequence corresponding to the departing state becomes the newest symbol in the destination 

state's 'past decision' sequence. If, at time t=k, departing state Si{k) has a symbol sequence 

and 'past decision' sequence: 

[ x i { k - l ) , . . . , X i { k -u)] , [ x i { k - u - l ) , . . . , X i { k - L ) ] 

then the destination state, Sj{k + 1), will have the corresponding sequences: 

[xj{k),Xjik - 1), . . .,Xjik - u + 1)] , [xi{k - u ) , X i { k - u - l ) , . . . , X i { k - L + 1)] 

N.B. The symbols {xj{k — l ) , . . . , X j { k — u +1)} are exactly the same as the symbols {xi{k -

l ) , . . . , X i { k - U + l ) } . 

For example, if a departing state's symbol sequence is [010] and 'past decision' sequence 

[1011], then a transition to a destination state [xOl] would result in state [x01]'s 'past decision' 

sequence to be [0101] at the next stage of the trellis. 

The remainder of the algorithm is the same as the MLSE algorithm in regard to producing 

a symbol estimate, x{k — d), with a fixed decision delay and the use of these estimates to aid 

channel tracking. 
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3.4,3 Block Decision Feedback Equaliser 

The block decision feedback equaliser (Block D F E ) can act as either a symbol-by-symbol 

decision equaliser or as a symbol sequence estimator. Indeed the structure may be expanded 

to give a performance equal to that of the MLSE [36]. The structiure uses a nonlinear decision 

device that implements a maximum a posteriori (MAP) detector [37] instead of an M-level 

quantiser. This relatively new hybrid equaliser is discussed as it has significant similarities 

with the Radial Basis Function (RBF) equaliser which also uses Bayes' theory to develop a 

MAP detecor and employs decision feedback to aid classification (see Section 3.5.2 for details 

of the R B F / Bayesian equaliser). 

Figure 3.9 shows the structure of the Block D F E which uses two received signal samples to 

estimate a sequence of two transmitted symbols in this example. As the niunber of received 

signal samples and symbol decision sequence length increases, the Block D F E performance 

approaches that of the MLSE. The structure does not employ a front-end FIR filter but does 

require a received sample delay line. The decision device gives p symbol estimates which 

are derived from m received signal samples. These m samples should contain energy from at 

least one of the p symbols to be estimated. However, in addition, they contain ISI terms from 

other symbols and these may be removed by utilising previous symbol estimates (assuming 

correct decisions) and a knowledge of the sampled CIR as per the D F E . Each received signal 

sample is affected by (L + l) symbols with the received signal sample given by: 

L 
r{k) = hix{k - i) + n{k) (3.27) 

where L is the channel memory and hi are the coefficients of the sampled combined CIR. The 

'cancelled'received signal samples, y-'(A;) axe given by: 

y'ik) = "Y^hixik - 3 - i) + n{k - i ) (3.28) 

where j = 0 , . . . , (m — 1) and p < L and assuming that correct past symbol decisions have 

been made. Thus the inputs to the decision device, y^k), are the received signal samples 

with all known past symbol interference effects removed from them. This simplifies the MAP 

decision procediure. 

For the symbol-decision case, a single symbol decision, x{k), is made and is fed back into 

all delay lines which are modified slightly to provide correct cancellation of previous symbol 

interference effects. 

The MAP detector is derived using a knowledge of the probabihty density function of the 

additive receiver / channel noise. For each possible symbol or symbol sequence, the detector 

calculates the conditional probability of receiving that sequence given the set of received signal 
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Figure 3.9: Block decision feedback equahser example. Here m = 2, p = 2 and the detector 
operates without decision delay. 

states and a set of correct past decisions. The symbol/sequence with the highest conditional 

probability is selected for the symbol / symbol sequence decision. A decision delay, d, may 

be introduced into the MAP detector but the coefficients of the feedback delay Hnes must be 

modified to take this into accoimt. 

The description given assumes a time-invariant channel but the coefficients of the feedback 

filter may easily be adjusted to take into account time variations. 

Although [36] does not consider an adaptive version of the Block D F E , the structure is 

suitable for adaptation using standard gradient descent techniques. However, if the structure 

employed is large, the number of feedback filter coefficients that need to be adapted may 

lead to large processing requirements. An alternative is to use a channel estimator as in the 

M L S E and use these coefficients in the feedback filters whose coefficients are directly related 

to the sampled channel impulse response. 

3.5 Neural Network Equalisers 

The D F E and MLSE improve the estimate of a symbol or sequence of symbols by employ­

ing various nonlinearities in the classification process; the D F E is a nonlinear IIR filter and 

the M L S E algorithm is inherently nonlinear in its metric formulation and decision process. 

Nemral networks have been applied to equaUsation problems in an attempt to enhance clas­

sification performance by utilising the nonlinearities inherent in the networks. In addition. 
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the performance gap between D F E and M L S E techniques is sigmficant but the MLSE has 

a much larger computational biurden. Neural networks may provide a compromise between 

performance and computational complexity. 

At any given decision time both the L T E and D F E form linear decision boundaries to 

separate the received signal state space and all states appearing in a given region are classified 

as a particular symbol. However, the division of the state space by linear boimdaries is, in 

general, not optimal particularly when the boimdaries separate many received signal states. 

The optimal decision boundaries for such symbol-decision equalisers are nonlinear and may 

be derived by the application of Bayes' decision theory which gives the maximum a posteri­

ori (MAP) detector [37]. The nordinearities of the neural networks can generate nonlinear 

decision boundaries and be used to equalise ISI and other channel / receiver nonhnearities. 

Neural networks have proven classffication capabilities and have been used successfully in 

pattern recognition problems [38]. Many different network structiures exist with variations in 

the topology of connections between the elemental nodes of the network and the nonhnearities 

associated with each node. This section considers 3 structures of networks which have been 

used to implement symbol-by-symbol decision equaUser functions: the multilayer perceptron 

(MLP) network, the radial basis function (RBF) network and the recurrent neural network 

(RNN). 

3.5.1 Multilayer Perceptron Equaliser 

A multilayer perceptron network consists of a number of nodes arranged in layers with the 

output of each node in a layer being connected to the inputs of all nodes in the following 

layer [39]. There are no connections between nodes in the same layer or to nodes in previous 

layers and thus this is a strictly feedforward network (Fig. 3.10). Each node calculates the 

sum of its weighted inputs (the activation) together with a constant value (the threshold) and 

outputs a nonlinear function of the activation. The nonlinear fimction is usually a sigmoid, 

hyperboUc tangent fimction or hard-limiter. The node output, yi{k) may be expressed as: 

m - l 
yi{k) = f{Ywij{k)y:lik)+ti) (3.29) 

where /(•) is the nonlinear function, yj{k) are the node inputs, Wij{k) are the input weights 

and ti is the threshold. The summation term represents the node activation. 

The inputs to the equalise form the input layer and consist of delayed samples of the 

received signal and, in the case of a decision feedback scheme, previously classified symbols [40, 

41]. The received signal is nominally sampled at the symbol rate, l /T^. Each received 

sample of the input layer is connected to all nodes in the next layer, termed the hidden layer. 

The input layer is anomalous in that it only provides connections to the network and does 
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Figure 3.10: Structure of the feedforward Multilayer Perceptron equahser. 

not incorporate any of the nonhnear nodes. The layered network is sequential rather than 

synchronous in the sense that, for a given input, all first layer nodes calculate their outputs 

which the second layer nodes use as inputs, i.e. the nodes do not incorporate symbol-rate 

delay elements. The outputs of the final layer nodes are classified by a decision device which 

outputs one of the M symbols for an M-ary modulation scheme. 

The MLP equalises the channel by classification rather than inverse filtering. The received 

signal state space is divided into regions by decision boundaries with each region being asso­

ciated with a transmitted symbol. The MLP forms the decision boundaries and transforms 

the received signal samples into values which can be classified by the memoryless decision 

device. 

In order to form curved decision boundaries, the network must have at least one hidden 

layer. As the input layer is intrinsically hnear, the output layer will only form nonhnear 

decision boundaries from the inputs if they have been processed by an intermediate layer 

[42]. Without a hidden layer and in the case of symbol feedback, the decision boundaries 

will be a nonUnear function of previous received signal samples but still form Unear decision 

boundaries to separate the current received signal samples. This situation is analogous to 

the nonUnear effects on the decision boundaries produced by the conventional D F E . As the 

number of hidden layers and nodes increase, complex decision boundaries can be formed 

including boundaries isolating distinct regions of the state space. 

Adaptation (or training) of the network is achieved by adjusting the weights, Wij{k), of 

the network using the back-propagation algorithm [39]. The threshold levels are normally 
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adjusted by implementing the threshold as the output of a node with a single, constant 

input and incorporating these additional nodes in the back-propagation algorithm. The 

algorithm requires a conventional training signal to be transmitted and an error function 

is formed from the nodes in the output layer of the equaliser and the desired output (s). 

The technique performs a gradient descent of the instantaneous square error siuface as in 

the LMS algorithm. The major difference between the two algorithms lies in the inclusion 

of additional calculations in order to form error gradients for the hidden layer nodes for 

which no explicit desired output exists. The back-propagation algorithm requires that the 

node transfer function be differentiable and thus cannot be applied to networks with hard-

limiting / quantising node nonlinearities. 

In general, the MLP suffers from the problem of a multimodal error surface due to the 

node nonlinearities. This can cause the back-propagation algorithm to converge to local 

minima of the error surface producing a suboptimal equaliser. A number of techniques for 

reducing the probability of the algorithm becoming trapped in local minima exist including 

'momentum' terms in the weight update equations and the use of adaptive learning rates. 

However, these methods do not guarantee convergence to the global minimum and their 

effectiveness is application dependent. 

As the channel to be equalised becomes more complex, the decision boundaries required 

become increasingly nonlinear and require larger numbers of nodes and layers to achieve 

sufficient performance. The adaptation of the network takes considerably longer due to the 

increasing complexity of the error surface and the computational overhead of the trained net­

work increases substantially. The relatively long training times tend to make MLP equaUsers 

unsuitable for channels with rapid fading. 

3.5.2 Radial Basis Function Equaliser 

The R B F network has a simpler structure than the MLP network, consisting of a single 

hidden layer of nodes and a final layer implementing a set of M linear combiners (Fig. 3.11) 

39]. As with the MLP, the network is a classifier rather than an inverse filter. 

The input layer is similar to that of the MLP, and forms an input vector from a sequence 

of delayed samples of the received signal (the received signal vector) and, in the case of a 

decision feedback structure, previously classified symbols. The received signal is nominally 

sampled at the symbol rate, l /T^. There are no connections between nodes of the hidden 

layer resulting in a feedforward network. The nodes operate in a distinctly different manner 

than the nodes in an MLP network. Each node has an associated 'centre' — a vector equal 

to the received signal state vector that the node 'recognises', and the output of the nodes are 

Gaussian functions of the Euclidean distance between the current received signal vector and 
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Figure 3.11: Structure of the Radial Basis Function equaliser. 

the node centre. Thus a node output, yj (k) is given by: 

f-\\r{k)-T!^{k)f\ 
yj{k) = aexp — — (3.30) 

where 

T{k) = [rik),r{k-l),...,r{k-m + l)] 

is the current received signal vector of dimension m, 

r!j{k) = [r'iik)yi{k--^),---yi{k-m + l)] 

is the node centre, p is the 'width' of the Gaussian function and a is a constant. 

In the absence of decision feedback, each node has a centre of dimension equal to the 

number of received signal samples forming the received signal vector. The nmnber of nodes 

is equal to the number of received signal state vectors — given by M^̂ "'"'") for an M-ary 

modulation scheme, where L is the channel memory. 

The nodes may be divided into subsets whose corresponding received signal state vectors 

(centres) are classified as one of the M symbols. The output layer forms M separate sums 

for all nodes in each of the M subsets and passes these to a decision device which selects the 

symbol corresponding to the maximum sum as its output. Each of the M sums represent how 

probable a given received signal vector is to the set of received signal state vectors classified 

as a particular symbol. 

In Chen et al [43] decision feedback is used not to form additional components of the input 
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vector but to allow the number of nodes in each subset to be reduced when calculating the 

Euclidean distances. For a sequence of n previous symbols that have been correctly classified, 

the sequential nature of the F I R channel model impUes that the ciurrent received signal vector 

can only be one of a reduced number of received signal state vectors. The reduction factor, 

M", is the same as that acheived with a conventional D F E as given in Section 3.3.2. 

The R B F network implements a symbol-by-symbol decision Bayesian equaUser for chan­

nels corrupted by Gaussian noise [43]. The Bayesian equaliser requires the calculation of the 

conditional probability of choosing a particular symbol given a sequence of received signal 

samples and assuming a correct sequence of previously classified symbols. If the M symbols 

are transmitted with equal probability then the expression for the conditional probabiUty 

reduces to a function of the form of the noise probabiUty density function. Given that the 

channel noise distribution is Gaussian, the R B F network calculates a value proportional to 

this conditional probability. The decision device in the symbol-decision Bayesian equaliser 

selects the symbol for which the conditional probabiUty is largest. Hence this implementation 

of R B F equalisers are also termed Bayesian equaUsers. 

Adaptation of the R B F network to unknown channels foUow variations of one of 2 meth­

ods, both of which require a training signal to be transmitted. The first method uses a 

channel estimator as in the M L S E equaliser. Estimates of the received signal states and vec­

tors are calculated using the channel model and a node centre is set to each of these vectors. 

Nodes are assigned to the estimated received signal state vectors according to which symbol 

the vectors should be classified. AU vectors corresponding to a particular transmitted symbol 

are assigned to nodes in the same symbol-decision subset which eUminates the need to train 

the output layer of Unear combiners. 

The second method uses a clustering algorithm, such as the K-means algorithm, in parallel 

with an LMS or R L S algorithm to adapt the weights of the Unear combiners. This method 

requires a training signal only for the LMS / RLS half of the algorithm. The imsupervised 

K-means algorithm initialises the nodes' centres to smaU random values and, for each received 

signal vector, the node with the closest centre is moved a fraction of the distance closer to the 

received signal vector. This leads to the nodes becoming centred on the received signal state 

vectors. The LMS / RLS algorithm adjusts the weights of the Unear combiners so that they 

sum the outputs of the nodes of the same symbol-decision subsets. The error signal is formed 

using the known training signal and the outputs of the M Unear combiners. A combiner has 

its weights updated if it corresponds to the training symbol transmitted. 

The first adaptation method is model based and thus limited to the type of channel model. 

For many channels the type and length of impulse response is known to an adequate degree 

and thus channel modelling does not pose a severe Umitation. The second adaptation method 

is model free and thus can adapt to a larger number of channel types given a sufficient number 

of nodes. Note that the output layer structiu-e for this method is sUghtly different in that 
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each linear combiner forms a weighted sum of the inputs from all nodes due to the fact that 

the symbol associated with each node is not known at the start of the clustering algorithm. 

The 'width', p, of the nodes' Gaussian transfer fimction are set to an estimate of the square 

root of the receiver noise power. The network is relatively insensitive to this parameter and 

so errors in the noise power estimation do not affect the equahser performance significantly. 

Further details of the R B F / Bayesian equaliser may be foimd in Chapter 6 which examines 

the similarities between Bayesian and MLSE equaUsation techniques. 

3.5.3 Recurrent Neiwal Network Equ£diser 

The RNN is the most general form of neural network with each node being connected to 

all other nodes in the network. Figure 3.12 shows the general structure of a discrete time 

RNN. Each node outputs a nonlinear function of the simi of its weighted inputs, as in the 

MLP network — the nonlinear fimction typically being a sigmoid, hj^erbohc tangent or 

hard-limiter. The fully interconnected structure of the network means that, in general, there 

are no layers apart from the input layer. A layered structure may be obtained if some of the 

feedback paths have zero weighting. The inputs to the network are delayed samples of the 

received signal; the signal being sampled at the symbol rate, l/Tg. The network passes one 

of the nodes' output to a decision device which forms an estimate of the transmitted symbol, 

x{k — d), with a decision delay, d>0. 

The feedback in the network creates a nonhnear dynamical system and the network may 

exhibit various oscillatory or convergent behaviours. The dynamics of a node in the contin­

uous time network may be described by [39]: 

^ = -yi{t) + f{si{t)) (3.31) 

where yi{t) is the node output, Si{t) is the node activation (the sum of the weighted node 

inputs) and /(•) is the nonlinear function. For simulation purposes time must be discretised 

requiring an approximation of the derivative. This leads to discrete time node dynamics 

defined by: 

yiikr) ^ fisiikr)) k = 0,l,... (3.32) 

where r is the time step. The RNNs dealt with in this thesis are only concerned with the 

discrete time case and r is set to the symbol period, Ts, unless stated otherwise. With this 

assumption, r may be removed from the notation. 

The discretisation of the continuous time RNN nodes introduces a single delay element 

in the feedback paths of the discrete time RNN as shown in Figure 3.12. Some definitions 

of the node dynamics introduce a delay element to all node inputs so that the node outputs 
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Figure 3.12: Structure of the Recurrent Neural Network equaliser. 

yi{k) for an activation of Si{k — 1). The dynamics defined by Eqn. 3.32 are used so that the 

nodes have zero delay. Thus the activation of node i is given by: 

m—1 n-1 
Si{k) = 5̂  Wij{k)r{k + Wi,j+mik)yjik - 1) i = 0, . . . , (n - 1) (3.33) 

j=o j=o 

where m is the number of input received signal samples, n is the number of nodes and Wij{k) 

are the node weights. 

One method of adapting the RNN weights is obtained by the real-time recurrent learning 

(RTRL) algorithm [44] which requires a conventional training sequence. The R T R L per­

forms a gradient descent of the instantaneous square error surface — the error signal being 

formed between the output of the equaliser, y^{k), and the desired output, d{k). As with the 

MLP network the nodes must have a differentiable nonlinearity for gradient descent adapta­

tion methods. Similarily local minima may exist due to the network nonlinearities and the 

algorithm cannot be guaranteed to converge to the global minimum. 

The R T R L algorithm updates the weights, Wij{k), at each sample instant rather than 

applying a set of m recieved signal samples on the network inputs and adjusting the weights 

until a minimum of the error surface is reached before presenting a new set of received 

signal samples to the network input. This second method is known as the back-propagation-

through-time algorithm and is an extension of the MLP back-propagation algorithm [39 . 

Kechriotis et al. [45] have shown that an RNN can perform equaUsation of an F I R 

channel model with small memory using a small number of nodes, typically two or three. 

This is significantly smaller than the number of nodes used in a feedforward MLP structure 
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[40] which results in far lower computational requirements. The methods by which RNNs 
achieve equalisation are not fuUy understood and the precise design criteria for the number 
and type of nodes and the weight settings in relation to the channel model parameters were 
not examined. 

3.6 Summary 

This chapter has given an overview of the mechanisms by which equalisers compensate for 

intersymbol interference introduced by the channel. A number of conventional equaliser 

structures have been described, both symbol-by-symbol and symbol sequence based. 

These conventional techniques have a wide variation in performance and computational 

complexity with the L T E having low performance and complexity and the MLSE having high 

performance and complexity. Whilst operating on fading channels, MLSE techniques perform 

less than ideally (see Chapter 5) and neural network based equalisers may prove to be more 

robust than the MLSE on fading channels or provide a compromise between the performance 

of the MLSE and the D F E or DDFSE. 

The following chapter examines RNN equalisers in detail with both a theoretical treatment 

of the mechanisms used to achieve equaUsation and simulation of their relative performance 

compared to other equalisation techniques. 
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Chapter 4 

Recurrent Neural Network 
Equalisers 

The work reported on recurrent neural network (RNN) equalisers in [45] considered only the 

performance aspects of the structtires and compared them against the conventional LTE. This 

chapter tests the validity of these results, compares the performance against the DFE and 

RBF structures and examines the mechanisms through which RNNs achieve equalisation. 

4.1 Initial Simulations 

Init ial simulations were performed to confirm some of the results obtained in [45] and, in 

addition, to compare the RNN equaliser's symbol error rate (SER) against LTE, DFE and 

RBF equaliser structures. The channel model 

Hiiz) = 1 + 0.7^-^ 

was used to assess the performance of an RNN equaliser against an LTE and a 2°*̂  model, 

H2{z) = -0.2052 - 0.5131z-^ + 0.7183z-2 + 0.3695^-^ + 0.2052z-^ 

for comparison with the RBF equaliser and DFE. Both channels are time invariant / non-

fading but do introduce ISI and thus are aimed at testing the equaUsing capabiUties of the 

RNN under less severe conditions. 

The radio system simulated had no channel coding / decoding and the modulator con­

verted random data bits to binary PAM symbols, x{k) € { - 1 , - f - l } , without any pulse shaping 

(Fig. 4.1). The radio channel was simulated with one sample/symbol resulting in relative path 

delays equal to an integer number of symbol periods. Al l signals are real valued for simpUcity 
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Figure 4.1: Radio system model for initial RNN simulations. 

of the initial simulations. 

The first channel's power gain is unnormalised (i.e. the power gain ^ 1) so that direct 

comparisons with results obtained by Kechriotis et al [45] may be made. The signal power is 

increased by such channels and so the receiver additive noise power must be increased to a 

obtain a consistent SNR. The SNR is defined as: 

SNR = ^ (4.1) 

where Gc is the power gain of the channel, a] is the transmitted signal power and is the 

noise power. 

The RNN used to equalise channel Hi{z) consisted of a single input node (i.e. a single 

received signal sample delay line), two nodes with hyperbolic tangent nonlinearities and a 

zero-crossing threshold detector operating with zero decision delay. This is the same structure 

as used by Kechriotis et al [45]. The LTE was a 5*̂  order filter and with a zero decision delay 

detector. Symbol error rates and mean square error performance were calculated using an 

ensemble of 100 or 1000 trials depending upon the error rate. 

Each tr ial was composed of a training sequence of 1000 symbols followed by 1000 sym­

bols for which the number of classified symbols in error was counted. The error count is 

accumulated over the ensembles to reduce statistical variations especially at low error rates. 

The SER is defined as the number of symbol errors divided by the total number of symbols 

transmitted during the measurement period. The RTRL training algorithm [44] was used to 

train the RNN and an LMS algorithm for the LTE during the initial training sequence of 

each trial . Whilst data was being transmitted, the equalisers' coefficients were held constant 

— i.e. no decision directed adaptation was used. The training rates / stepsizes were adjusted 

so that both algorithms adapted the equalisers reliably and a comparitively large number of 

training symbols ensured that the equalisers adapted to a 'best' solution prior to error rate 

calculation. An ensemble of trials was used in order to average out variations in equaUser co­

efficients between trials. This method was adopted as the RNN equaliser had been observed 

to train unreliably during some training sequences. 

Figure 4.2 shows the ensembled-averaged (mean) square error for the two node RNN and 

5^^ order LTE for channel Hi{z) with an SNR = 15dB and ensemble of 100 trials. The 

49 



CHAPTER 4. RECURRENT NEURAL NETWORK EQUALISERS 

m 

S? 
as 

T3 

o> 
(0 

i 

E <u 
V) 

200 400 600 800 
Time (symbol periods) 

1000 

Figure 4.2: Ensembled averaged square error for the channel H\{z). 

error is formed from the desired response and input to the decision device in both cases. 

This treats both equalisers as inverse filters rather than classifiers. The RNN MSE is lower 

than that of the LTE MSE due the partial 'quantising' nature of the RNN nonUnearity. The 

results are comparable to those obtained in [45] — the 5*̂  order LTE simulated gave a final 

MSE similar to that of the 20*^ order LTE reported. As the LTE filter impulse response is 

the truncated inverse CIR filter impulse response (IIR), the extra taps have small values if 

the inverse filter response decays rapidly and thus has little affect on equahser performance. 

The RNN MSE curve reaches approximately the same final levels as reported but with a 

stepsize, / i = 0.15. The rate of convergence is faster than the rates obtained in [45] which 

uses relatively large stepsizes for gradient descent techniques. Figure 4.3 shows the symbol 

error rate of the RNN and LTE which shows that the RNN has better performance at larger 

SNRs but has a comparable performance as the noise power increases for this particular 

channel. These results are consistent with [45] which show the relative improvement of the 

RNN over the LTE. 

The second channel, H2{z), was taken from Chen et al [43] in order to compare RBF, 

DFE and RNN equalisers. The symbol error rates obtained by simulations of a DFE and 

RBF / Bayesian equaliser may be compared with those in [43]. The structure of the RNN 

used for this 5*̂  order channel was four input nodes, two nonlinear nodes and a detector with 

a decision delay of 2. This structure was obtained by trial and error, as the one that trained 

most reliably. The DFE structure used m = 5 taps in the feedforward filter, n = 4 symbol 

estimates fed back and a decision delay of d = 4 as in [43]. Similarly, the RBF structure used 

m = 5, n = 4 and d = A. Figure 4.4 shows the SER performance of the three equalisers. The 

DFE and RBF results obtained were identical to those obtained in [43]. The RNN structure 

considered performs considerably worse than the DFE or RBF structures. 
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Figure 4.4: SER performance of RNN, DFE and RBF for the channel H2{z). 
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4.2 Analysis of Single Node RNN Dynamics 

For two path channel models, H{z) = ho + hiz~^, the RTRL adaptation algorithm creates an 

RNN structure that uses a single node (i.e. all weights, other than those connecting the input 

layer to node 0 and the feedback from node 0 to itself, are very small). This is the simplest 

RNN structure and a convenient starting point for the analysis of the dynamics of RNNs 

and the mechanisms by which they achieve equalisation. Figure 4.5 shows the structure of 

a single node RNN equaliser. The weights Wa, Wb may be adjusted to produce a variety of 

dynamics. 

A simple graphical representation of the dynamics may be obtained by plotting the node's 

transfer function, y{k) = tanh(s(A;)), and lines corresponding to the current input conditions. 

The equations of these RNN 'state' lines are obtained by rearranging the equation for the 

activation of the node: 

s{k) = wayik-l) + wbr{k) (4.2) 

^ y ( f c _ l ) = £ W _ W W (43) 
Wa Wa 

where y{k — 1) is the node output state at time t = (A; — 1), r{k) is the received signal sample 

and s{k) is the node activation. 

A family of RNN state fines is created by the multitude of possible received signal samples 

due to receiver noise. In the absence of noise the number of state lines is equal to the number 

of received signal states — equal to M^^"*" )̂ for a channel with (L -I-1) paths. The current 

RNN output state is obtained graphically by selecting the state line corresponding to the 

ciurrent received signal sample and, with a knowledge of the old output state, using i t to give 

the new activation level and corresponding output state (Fig. 4.6). The intersection of a state 

line wi th the node transfer function indicates an equiUbrium point under the particular input 

conditions. Note that only a subset of the received signal states can exist as stable received 

signal states — corresponding to the repeated transmission of a single symbol. These stable 

signal states and corresponding RNN state fines govern the step response of the RNN. 

From Eqn. 4.3, the gradient of the state fine is affected by the feedback weight, Wa, and 

the intersection with the s = 0 fine is affected by weights Wa, W), and the received signal 

sample, r{k). The transient natmre of the node's step response is primarily dependent on the 

weight Wa-

1. Transient response for 0 < tOa < 1 

Under this condition the node has a single equifibrium point and the output converges 

to this point independently of the initial output state. The rate of convergence is not 

constant and is dependent upon the transfer function gradient and the gradient of the 

state fine. As weight Wa decreases, the rate of convergence increases. Note that this rate 
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Figure 4.5: Structure of a single node RNN. 
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Figure 4.6: Example of the dynamics of a single node RNN. 

varies over the period of transient response due to the varying transfer function gradient 

wi th the convergence rate decreasing as the output state approaches the equiUbrium 

point. The equilibrium point is affected by Wa, Wb and r{k) with an increase in either 

Wb or r{k) increasing the equilibrium point. Receiver noise causes the received signal 

samples to deviate fi:om the received signal states and thus gives rise to a variation 

in the node output 'equiUbrium' point. Since the noise is constantly varying, these 

'equilibrium' points are hypothetical as the output wi l l not converge to any one point. 

The variation in output state may be reduced by designing the equilibrium point to be 

in the flatter regions of the node's transfer function. 

2. Transient response for —1 < Wa < 0 

The node has a single equihbrium point as in the case above but the transient response 

is now oscillatory. The convergence rates and equilibrium points are subjected to similcir 

effects by altering Wa, Wb or r{k). 

3. Transient response for Wa>l 

The gradient of the state line wi l l now be less than or equal to the gradient of the 
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Figure 4.7: Step response for Wa>l. 

transfer function at some levels of activation. In a system with a linear transfer function 

this would lead to a single, unstable equihbrium point at y = 0 and otherwise have 

an unbounded output. In a practical implementation of such a system the transfer 

function would only be linear up to a saturation point. For small values of Wb and 

r{k) the nonlinear nature of the transfer function causes the node to have two stable 

equilibrium points (one positive and one negative) and one unstable equiUbrium point. 

Output states greater than the unstable point converge to the positive stable point 

and those less than the unstable point to the negative stable point. As Wb or r{k) is 

increased the stable equiUbrium points increase and the imstable point moves towards 

the negative stable point. Note that equilibrium points with small magnitudes are 

highly sensitive to changes in Wa, Wb and r{k). A critical point is reached when the 

unstable equiUbrium point merges wi th either the positive or negative stable points. I f 

Wb or r{k) is changed causing this critical point to be passed then the node has a single 

stable equiUbrium point. The step response of a node with weights set just beyond 

the critical point is shown in Figure 4.7. The critical point occurs when the gradient 

of the RNN state Une is equal to the gradient of the transfer function at the merged 

equilibrium point. 

4. Transient response for Wa<—1 

The node has an oscillatory transient response with two stable 'equiUbrium' points (one 

positive and one negative) and one unstable equilibriimi point. The node wiU converge 

to oscillate between the two stable points rather than remaining at a single stable point. 

I n effect the node is operating in a Umit cycle. As Wb or r{k) is increased both stable 

equilibrium points and the unstable point increase. When Wb or r{k) is increased such 

that the gradient of the transfer function at the negative stable point is greater than 
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the modulus of the gradient of the state fine, then the positive stable point starts to 
decrease whilst the other points continue to increase. Further increases in Wb or r{k) 
cause all three points to converge towards each other resulting in a stable positive 
equilibrium point. Under these conditions the node ceases to operate in a limit cycle 
and the output converges to a single point. These conditions are met when the gradient 
of the transfer function at the imstable point equals the modulus of the gradient of the 
state line. The stable point increases with further increases in Wb or r{k). Negative 
values of Wb or r{k) result in similar characteristics except that the equifibrium points 
move to a single negative, stable point. 

4.3 Design of a Single Node RNN Equaliser 

In order to act as an equafiser the RNN must have a single stable equiUbrimn point corre­

sponding to each received signal state generated by the repeated transmission of one of the 

alphabet of M symbols. Thus Wa and Wb must be set so that the state fines of the relevant 

received signal states intersect the transfer function at the required M RNN output states. I f 

the gradient of the state fines is set such that fimit cycles or two distinct equifibrium points 

exist then the probabifity of erroneous decisions is increased. The size of the limit cycles is 

sensitive to the position of the intersect point and the gradient of the state fine. In addition 

to the state fines creating stable output states, there must exist another set of state fines 

which result in transitions between the output states. Ideally these should be set so that the 

output changes to the desired state in a single iteration of the RNN. A minimum condition 

is that a nonideal transition should not cause classification errors. 

I n order to highlight the fimitations of the single node RNN and to give a lower bound on 

the probability of symbol error under noisy conditions, an example of a simple equalisation 

problem is studied. 

Consider a bipolax PAM scheme with symbols transmitted through a time invariant chan­

nel of the form: 

Hiz) = ho + hiz-^ 

where Hq and h\ are the (real) gains of the two paths and — is the zero of the transform. The 

delays are equal to the symbol period, T j . The channel gain, Gc = 1, so that (/iq + h\ = 1). 

The transmitted symbols, x{k) e {-1-1,-1}. The received signal states, r'{k), (received 

samples with no additive noise) are shown in Table 4.1. The first two entries give the received 

signal states for which the state lines should give a transition to an output state, y{k) = +yeq 

— the first from yik-1) = +yeg and the second firom y{k-l) = -y^q- The y{k) = +yeq state 

is classified as symbol x{k) = + 1 and the y{k) = —yeq state as x{k) = —1 by the decision 
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x{k) 
1 
1 

-1 
-1 

x { k - l ) 
1 

-1 
1 

-1 

r'ik) 
+ho + hi 
+ho — hi 
-ho + hi 
-ho - hi 

Table 4.1: Symbols and received signal states for the channel H{z) = ho + hiz '•. 

device. Equation 4.2 gives a pair of simultaneous equations: 

S{k) = +Wayeg + Wb{ho + hi) 

s{k) = -WaVeg + Wb{ho - hi) (4.4) 

Solving for Wa and wy-

Wa = 
—his 
hoVeq 
s 

Wb = — 
no 

(4.5) 

(4.6) 

where s = tanh ^{yeq) — a constant. 

Solving for Wa and Wb using the second pair of received signal states for transitions to 

the y{k) = -y^q state gives the same results. These equations define the weights for a zero 

decision delay equaliser. 

The weight Wa is proportional to the position of the channel zero and the state Unes have 

positive gradients when ^ < 0. For a minimum phase channel ( ^ < 1) the equaliser wiU 

have a single equilibrium point. For a single equiUbrium point: 

Wn 
> — tanh(s). 

OS 
(4.7) 

Substituting for Wa with Eqn. 4.5 and using the fact that yeg = tanh(5). 

ho tanh(5) 
-his 

ho tanh(s) 

> tanh(s) 
as 

—his > 
4e' 2s 

as ^ tanh(s) > 0. Therefore 

e2*-l-l 
ho 

his 

hi 
ho 

> 

< 

(e2- +1)2 

4e2̂  

(4.8) 

(e2. +1)2 

4se2* 
(4.9) 
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Thus the fimit on is always greater than 1 and increases as the equifibrimn point is made 

larger. For output states of yeq = ±0.8 then ^ < 2.02. The RNN operates with multiple 

equifibrium points i f the magnitude of the channel zero increases beyond this point. Either 

case causes an increased probability of symbol classification error under noisy conditions. 

4.3.1 Effects of Noise on R N N Equal i ser Performance 

A lower bound on the probability of symbol error may be obtained by considering the pri­

mary error mechanism of the single node RNN. Consider a sequence of symbols x{k) = -1-1 

transmitted through a channel corrupted by zero-mean noise either in the channel or receiver. 

The noise causes variations in the intersections of the state fines with the s{k) = 0 fine and 

classification errors occur when this results in a shift in output state to one with opposite 

sign. The RNN output is nominaUy at the positive equifibriinn point but oscillates about 

this point due to the noise. The intersection of state lines with the s{k) = 0 fine is given by 

substituting Eqns. 4.5 and 4.6 into Eqn. 4.3 and setting s{k) = 0 as required: 

yik-1) = 

where r{k) = r'{k) + n{k) = hQ + hi+ n{k). 

-Wbr{k) 

Wa 
+yeq r{k) (4.10) 

For state fines with negative gradients an error wi l l result i f the noise sample, n{k), causes 

the intersection to fall below the cm-rent output state. The classification decision boundary 

is formed by equating the intersection point with the current output state — equivalent to 

setting s{k) = 0 in Eqn. 4.2 and substituting for Wa and Wb- I f the output is at the positive 

equilibrium point, y{k - 1) = +yeq (i-e. the stable point corresponding to r'{k) — ho + hi), 

the magnitude of the additive noise sample causing an error is given by: 

::^{r'{k)+nik))<+yeq. (4.11) 
Wa 

Substituting for Wao, Wb and r{k): 

^{ho + hi+nik)) < +yeq 

=> n{k) < -ho. (4.12) 

For a zero-mean white Gaussian noise process the probabifity of error is given by: 

Peinik) < -ho) = / -——e^dnik) (4.13) 
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Figure 4.8: Symbol error rate performance of a single node RNN. 

where is the variance of the noise power. Expressions for the magnitude of noise required 

for the remaining 3 state lines to give errors result in |n(A;)| > ho and thus each has the same 

probability of error. 
' ' ho \ = -erfc (4.14) 

mcreases. For a given output state the equaliser is less immune to noise as 

Actual probabiUties of error wiU be higher i f the output state is not equal to the nominal 

output state when the particular noise sample occurs. This is especially true when the 

equaliser is changing between classification states. Therefore the effects of noise on one 

symbol affect the performance of the equaliser on subsequent symbols even though noise on 

the first sample may not have resulted in an error. Figure 4.8 shows the plot of SER vs. SNR 

for the analytical lower bound and results firom simulations. The channel model is H{z) = 

0.8192 - I - 0.57342r~^ and the RNN output nodes were designed to have stable equiUbrimn 

points, p = ±0 .8 , which result in designed weights of Wa = —0.961 and Wb = 1.341. This 

channel is the power normaUzed version of channel Hi{z) in Section 4.1. No training was 

used as the weights have been determined theoretically. As expected the simulated results 

give higher symbol error rates than the analytic lower bound. I t was also noted that the 

relevant weight settings obtained for the two node RNN trained using the RTRL algorithm 

on channel Hi{z) (Section 4.1) were very similar to the designed settings (taking into account 

the effect of the unnormaUzed channel and variations inherent in the adaptation algorithm). 

The 3'̂ '̂  and 4*** curves are explained in Section 4.3.4. 
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4.3.2 Effects of Decis ion De lay on R N N Equal i ser Performance 

By delaying the classification decision by one symbol period (i.e. the detector ouputs the 

symbol estimate, x{k - 1), after receiving the sample r{k)), nonminimum phase channels 

having a zero with larger magnitude than that given by Eqn. 4.9 may be equalised. Prom 

Table 4.1 the equafiser must now have a positive equilibrium point when r'{k) = +ho + hi or 

r'{k) = —ho + hi. These new conditions result in different equations for Wa and wy. 

Wb = T 

Wa = 

hi 
-hps 
hiy, eq 

where s = tanh ^{yeq)- By a similar analysis to that in Section 4.3, the fimit on 

single equifibrium point becomes: 

hi 
ho > 

4se2* 
- 1 

(4.15) 

(4.16) 

for a 

(4.17) 

For output states of yeq = ±0.8 

mum phase channels without multip! 

> 2.02 and thus the equafiser cannot operate on mini-

e equifibrium points for each state fine. The magnitude 

of noise samples causing errors by the mechanism described in Section 4.3.1 axe given by: 

|n(A;)| > hi 

and for additive white Gaussian noise the probabiUty of error is given by: 

Pe = l e r f c f ^ ) 

(4.18) 

(4.19) 

The improvement in noise immunity as ^ increases is smaller than the improvement for a 

corresponding decrease in a zero decision delay equafiser. 

4.3.3 Equal i sa t ion of Higher Order C h a n n e l Models 

When the order of the channel model increases, the design of the equaliser must allow for 

the increased number of received signal states. An n*^-order model has M " received signal 

states for an M-ary PAM scheme. For binary PAM and a 3'''̂  order model, the equaUser has 

8 state fines of which two should result in a transition from the +p state to the +p state. 

The received signal states corresponding to these two state fines are not, in general, equal 

to each other and, as weights a and b are fixed, the equaliser cannot be designed to give the 

same output, y{k) = +yeq, for both cases. A sub-optimum solution may be designed with the 
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two output states close to the desired output state. The difference between them depends 
upon the coefficients of the FIR channel model and the desired output state. Clearly i f this 
desired output state is in the flatter region of the transfer function then the difference in 
actual output states is much smaUer. 

4.3.4 Comparisons w i t h the Decis ion Feedback Equal i ser 

Many of the Umitations of the single node RNN are removed i f the node's transfer function is 

replaced by a binary quantiser (in the case of a binary PAM equaliser). This allows a greater 

degree of freedom in choosing the weights Wa,Wb as there are no distinct values of activation 

which give the desired output states, y{k) = ±yeq-

Such a node exhibits a transient response which converges to the required output state 

in a single time iteration as long as receiver noise does not cause a classification error. This 

property stiU holds in the presence of sufficiently small magnitudes of receiver noise imlike 

a node with a sigmoid type transfer function. Since the gradient of the quantiser transfer 

function is zero at all points other than at s{k) = 0, Umit cycles or multiple equiUbrium 

points do not exist and the bounds on ^ may be removed. 

Variations of the state Unes due to noise do not affect the output states as long as the 

s{k) = 0 decision boundary is not crossed. The distinct advantage of this is that noise which 

does not cause an error on one symbol has no further effect on the classification of futmre 

symbols. In effect, nodes with sigmoid type transfer functions feed a filtered version of the 

noise back to the node inputs which increases the effective SNR and degrades the equaliser 

performance. The filtering is due to the nonUnear natiure of the transfer fimction. Thus the 

symbol error rate wiU be lower than a node with a sigmoid type transfer function for a given 

SNR. 

This alternative single node RNN is precisely the same as a decision feedback equaUser 

(DFE) without a feedforward filter and having a single feedback tap. Figure 4.8 shows the 

increased performance of this DFE structure. The foiurth curve shows the results of feeding 

the correct symbols, x{k), back rather than the classified symbols, x{k). Theoretically, this 

cmrve should be the same as the curve for the single node RNN lower bound. The degradation 

in performance due to erroneous classifications is apparent. 

The DFE is a conventional nonUnear equaUser structure that uses feedback to increase 

the minimum distance between the received signal states and the decision boimdaries. This 

process may be viewed as using past symbol decisions to reduce the number of received signal 

states which the decision boimdaries must separate. The feedback varies the position of the 

decision boundaries depending on previously classified symbols. The decision boimdaries that 

are formed are a Unear function of the input received signal samples at any given classification 

time. The nonlinearity lies in the fact that the position of the Unear decision boundaries are 
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not fixed. 

By using more than one feedback tap, the DFE can reduce a larger set of received signal 

states when equalising higher order channel models. The minimum distance between the 

reduced set of states and the decision boundaries may be increased by applying a feedforward 

FIR filter on the input of the equafiser to form higher dimensional boundaries. The FIR 

filter forms Unear decision boundaries of dimension equal to the order of the filter. This 

filtering may be incorporated into the general RNN structure by increasing the nimiber of 

input nodes. These nodes form a tapped delay fine for the received signal samples. The 

weighted sum of the outputs of the delay fine formed by the recurrent node while calculating 

the activation is clearly an FIR filtering process. Thus the advantages of pre-filtering the 

received signal samples may be implemented with ease into the RNN structure. However, at 

any given classification time, the decision botmdaries are stiU finear functions of the current 

received signal samples and the ability of neural networks to form nonfinear boundaries is 

not exploited. 

4.3.5 Single node R N N Training Considerations 

An R N N node with a quantising / hard fimiting transfer function produces a system that 

is extremely difficult to train by means of gradient descent of an error function. In the 

RTRL algorithm, the error function is formed by taking the square of the difference between 

the desired and actual output of the node. Differentiating the error function requires the 

derivative of the node output with respect to the weights — which is zero at all but an 

isolated set of points. Thus the use of the instantaneous square error as a error function is 

unsuitable. A short term average may be formed to produce larger variations in the error 

function. 

The adaptive DFE overcomes this problem by forming the error function firom the desired 

output and the signal immediately prior to the quantiser. This method provides a relatively 

smoother function for classical gradient descent techniques, subject to the effects of incorrect 

symbols being fed back during adaptation. 

4.4 Multinode RNN Equaliser Design 

Having noted the similarities in the mechanisms of the single node RNN and the DFE, the 

design of multinode RNNs based on ideas firom DFEs is examined. This approach has been 

adopted due to the following observations: 

1. The structure of the RNN is very similar to that of the DFE and single node RNNs, 

adapted using the RTRL algorithm, mimic the DFE. 

61 



CHAPTER 4. RECURRENT NEURAL NETWORK EQUALISERS 

2. The dynamics of the single node RNN are varied and those of multinode RNNs are 
even more so. Thus design of multinode RNNs with hjrperbolic tangent nonUnearities 
is not straightforward especially as there is no precise output specification for nodes 
other than the output node whose signal is fed to the classification device. 

3. The adaptation of multinode RNNs with hyperbofic tangent nonfinearities is difficult 

and the RTRL algorithm does not guarantee convergence to the global minimum of the 

multimodal error surface. 

The DFE uses feedback to cancel the postcursors of the sampled CIR convolved with 

the DFE's feedforward filter impulse response [46]. For a given decision delay, d symbol 

periods, the feedback cancels out the symbol energy occxuring in the received samples for all 

symbols prior to the c^^ symbol. Feedback creates an error propagating mechanism due to 

incorrectly classified symbols erroneously cancelling symbol energy and increasing intersymbol 

interference. This additional interference may cause further classification errors. Thus i t is 

possible for the effect of an incorrect decision to exist after the erroneous symbol has been 

shifted out of the feedback delay fine. For many channels error propagation is not catastrophic 

and the equaliser is capable of recovering. 

Once the DFE has classified a particular received sample there is no mechanism whereby 

the decision may be updated as more energy firom the original transmitted symbol is received, 

i.e. there is no 'soft'-decision capabifity. I f the decision delay is such that classffication takes 

place after aJl, or nearly all, the transmitted symbol energy has been received, then there 

wi l l be no subsequent information available to faciUtate the decision in a symbol-by-symbol 

decision equaliser. However, i f system constraints are such that a decision must be made 

before all the symbol energy has been received, then a mechanism by which decisions may be 

updated could potentiaUy increase equaliser performance. This reqiiirement is beneficial in 

systems where symbol estimates are used to aid tracking of a time variant chaimel — decision 

directed adaptation (see Chapter 5 for examples). 

The fully recurrent RNN structure may be modified in such a manner so as to provide 

a soft-decision facility. The design requires that the output of each node to be constrained 

to perform a specific function. In the RNN structmres reported previously [45], only one 

node output is specified — the remainder form an arbitrary nonlinear function determined 

by the adaptation algorithm via the network weights so as to minimise an error metric. In 

the foUowing sections, two RNN structures are developed — the second structiure is more 

ful ly recurrent and is closer in structure to the RNN equalisers reported previously [45]. 

A n adaptation algorithm for networks with quantising nodes is formulated using the LMS 

algorithm as a basis. 
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4.4.1 R N N w i t h Symbol Feedback — R N N l 

A bank of DFEs operating in parallel and each with a differing decision delay may be viewed 

as a multinode RNN with a partial set of feedback connections. This structure is shown in 

Figure 4.9. Each node forms the weighted sum of its inputs and passes the result (the node 

activation, Si{k)) through a sheer decision device to give the node output, yi{k) = x{k — i). 

Instead of employing symbol feedback delay lines, each node passes its output to nodes 

requiring that symbol in order to cancel intersymbol interference. The top node has zero 

decision delay and each of the lower nodes has an increasing decision delay of one symbol 

period per node. 

The choice of input connections and feedback connections is explained by considering a 

sampled channel impulse response of the form: 

H{z) = ho + hiz-^ + ••• + hiz-^ (4.20) 

The received sample, r{k), is given by the convolution of the transmitted symbol sequence 

and the channel impulse response: 

r{k) = hox{k) + hix{k - l ) + --- + hixik -L) + n{k) (4.21) 

where x{k) are the transmitted symbols and n{k) is the additive noise term. 

For the node with zero decision delay (i.e. the node estimating x{k)) the only received 

sample containing energy firom x{k) is r{k). Likewise, for the node with decision delay 

d = 1 the received samples containing energy from x{k — 1) are r(A;) and r{k — 1). Thus 

the nodes only have a partial set of input connections from the set of received samples, 

{r{k),... ,r{k - n + 1)}. In general node i has a set of input weights, C y , from the input 

r{k — j) to node i : 

h = 0 , . . . , n - l ^ ^ ^ ^ 

[ 3<i 

where n is the number of nodes in the network. 

Feedback between nodes is restricted so that nodes only receive inputs fed back from 

nodes with greater or equal decision delay than their own. This poUcy is adopted so that 

only the ' ta i l ' of the combined sampled impulse response is cancelled. For example, the node 

wi th a single decision delay (node 1) forms, from the received samples, the sum 

aior-(A;)-I-aii7"(/: - 1) = aio{hQx{k) + hix{k - 1) + • • • + hLx{k - L)) 

.+aii{hox{k - l ) + hixik - 2) + • • • -h hixik -L-1)) (4.23) 

-t-aion(A;) + aiin{k - 1) 
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Figure 4.9: Schematic of multinode UNN equaliser - RNNl. 

The feedback inputs cancel all terms involving x{k — 2),x{k — 3),.. . ,x{k - L - 1) which 
removes the intersymbol interference generated by these symbols. The feedbcick weights, bij, 
connecting the ouput of node j to node i, are given by: 

bn 

bi2 = 

bl,n-2 = 

bi,n-l = 

-{aiohs +anh2) 

-{aiohi + anhi-i) 

•{anhi) 

cancelling terms in a; (A: — 2) 
cancelling terms'm x{k — 3) 

cancelling terms in x{k — L) 
cajicelling terms in x{k - L — 1) 

(4.24) 

In general the feedback weights axe related to the input weights, Oij, and the channel 
coefficients, hi, by: 

0 i > j 

(4.25) 

-S^ ip^O+l -p ) « < 3 
p=0 

where i,j = 0,...,n — l. It is assumed that hi \i>L= 0 as per Eqn. 4.20. 

A design issue arises in the selection of the number of nodes in the network. For the node 
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with zero decision delay a total of L feedback connections are required to fully cancel the 
intersymbol interference. This requires a further {L — 1) nodes as 1 feedback connection is 
provided from the node itself— giving a total network size of L nodes and with decision delays 
of 0 to (L — 1). However for the node with 1 sample decision delay, the input samples r{k) 
and r{k — l) involve terms of {x(A;),..., a;(A: — I- — 1)} and so an extra node with decision delay 
of L is required for complete cancellation of the interfering symbol terms. Thus the network 
will grow without bound if each node accepts all received samples containing energy from the 
transmitted symbol it is estimating. To circumvent this problem either the requirement of 
the complete cancellation of interfering terms must be relaxed or else a node must generate 
the cancelling terms by passing its output through a delay line — as in the DFE. 

Adopting a feedback delay line to provide symbol estimates not generated expUcitly by 
nodes will reduce the level of intersymbol interference given that the symbol estimates are 
correct. To increase the probability of this assumption, the output of the node with the 
highest decision delay should form the input to the delay Une. This node's symbol estimate 
will generally be the best as it has been formed using more received samples containing the 
transmitted symbol energy. If the end samples of the channel impulse response are very smsill 
the extra energy available to improve the symbol estimate may be swamped by the energy 
from symbols transmitted after the symbol being estimated. Under these circumstances the 
adaption algorithm should ideally adjust the weights from such received samples to small 
values so that these samples are, in effect, not used in the estimation process. 

A feedback delay line of length {L - 1) provides estimates of all symbols with terms 
appearing in the set of received samples not directly estimated by nodes. For a network of 
L nodes, all nodes other than that with zero decision delay will use a partial set of these 
feedback symbols to cancel intersymbol interference. The set of weights, Cij, connecting the 
output of the j * ^ element of the delay line to node i are given by: 

0 i < j 

<^j = { 4- . • ^ • (4-26) 

where i = 0,...,n — l and j = 0,... ,{L-2). It is assimied that hi |i>i= 0 as per Eqn. 4.20. 

In a network of L nodes, the last node uses the received samples {r{k),r{k — L + 1)} 
together with feedback connections to form its estimate of —L+1). This estimate is made 
without using all the samples containing energy from the transmitted symbol x{k — L + l) — 
the remaining sample containing energy from this symbol, r(A; + l), has not yet been received. 
In many practical channels the symbol energy contained in this final sample is small and thus 
will not influence the decision significantly. 
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4.4.2 R N N with Symbol Feedback and Symbol Feedforward — R N N 2 

The equahser structure described in Section 4.4.1 may be configiued so that it has a larger set 
of feedback connections between the nodes and therefore begins to resemble the fully recurrent 
structure as described in Kechriotis et al [45]. By permitting nodes with low decision delay 
to feed their decisions forward to nodes with higher decision delay, intersymbol interference 
occuring due to symbols transmitted after the symbol being classified may be cancelled. This 
is equivalent to cancelling part of the precursor of the combined sampled impulse response. 

Figure 4.10 shows the structure of the equaliser with the additional internode connections. 
The network is not fully interconnected with no symbol feedforward occuring between a node 
and the node with one extra symbol period decision delay. The unit delay inherent in the 
symbol feedback/forward process means that the symbol being fed back/forward at time t = k 
is x{k — d—1). This is the symbol that the node with decision delay {d—1) is estimating and 
therefore the estimated symbol x{k — d — l) is of no use in cancelUng intersymbol interference. 

The input connections to each node remain the same as the received samples containing 
a specific symbol's energy has not changed. The input weights, are given by Eqn. 4.22. 

The feedback weights, 6y, are given by: 

bij = < 

0 i=j+l 

i (4-27) 

k p=o 

where n is the number of nodes in the network and i = 0,...,n — l. It is assumed that 
hi \i>L= 0 as per Eqn. 4.20. 

The number of nodes in the network must be limited as explained in Section 4.4.1. By 
applying such a limit, the requirement of an additional delay line to cancel interfering symbol 
terms still exists. This delay line has the same length, L — 1, as in the structure RNNl. The 
weights connecting the delay line to the nodes, Cij are given by Eqn. 4.26. 

If the number of nodes in the network, n<2, then RNN structure 2 will be the same as 
RNN structiure 1. Thus, by adopting a network of L nodes, RNN structure 2 may only be 
applied to channels with sampled impulse responses with L = 3 (4 paths) or greater. 

4.4.3 L M S Adaptation of the Network Weights 

The networks described are very similar to the DFE and so adaptation algorithms suitable 
for the DFE are applicable to the RNN networks given a few modifications. The LMS 
algorithm operating in conjunction with a known training signal is selected for simulations 
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Figure 4.10: Schematic of multinode RNN equaliser - structure 2. 

reported in this chapter due to its simphcity. The speed of adaptation and operation on time 
varying /fading channels is not an issue at this juncture. 

The LMS algorithm attempts to minimise the instantaneous square error between a de­
sired signal and an output signal by adjusting the parameters controlling the output signal. 
In the case of the RNN networks the node output cannot be used to form the error signal due 
to the node's nonlinearity (the quantiser decision device). Thus the node activation, Si{k), 

(the signal prior to the quantiser) is used as the output signal as in the DFE. 

The desired response of each node in the network is specified allowing separate error 
signals to be formed for each node. These error signals may be combined to give a network 
performance measure rather than individual node performance measures. By assuming each 
node has correct symbol feedback at all times, each node may be treated as a separate entity 
and allows the weights on all the node's inputs to be adjusted using the local node error signal. 
This removes the requirement for a network performance measure. If this assumption is not 
made then a node's output is dependent on all other node outputs and thus weights rather 
than just the node's own input weights. The LMS adaptation algorithm is then required to 
operate on a nonlinear system. Under correct opera.tion of the network the assimiption of 
correct symbol feedback is vaUd and is the same assumption as used in the application of the 
LMS algorithm to the DFE [2]. 

The LMS algorithm for the RNN structures reduces to a separate adaptation algorithm 
for each node. At time t = k the error at node i and is given by: 

ei{k) = diik)-Si{k) 
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= x{k — i)— Si{k) (4.28) 

where di{k) is the desired response for the node. The instantaneous square error Ji{k) is use 
as an approximation to the mean square error and the weights Cy, bij and Cij are adjusted 
by gradient descent to minimise this error metric. 

The node error metric is given by 

The error gradient and weight update equation for Uij is 

dJjjk) 
daij{k) 

= eiik) 
deiik) 

daijik) 
-ei{k)r{k-j) 

(4.29) 

(4.30) 

aij{k + l) = aij{k)-n 
dJiik) 
daij{k) 

aij{k) + nei{k)r{k - j ) (4.31) 

The error gradient and weight update equation for bij is 

dJijk) 
dbijik) = eiik) 

deiik) 
dbijik) 

-eiik)yjik-l) 3>i 

Jl^ii - 1 ) -

RNNl 

RNN2 

(4.32) 

bijik + l) = bijik)-n 
dJiik) 
dbijik) 

bijik)+iieiik)yjik-l) (4.33) 

The error gradient and weight update equation for Cij is 

dJiik) ^ , . deijk) 
dcijik) '^'dcijik) 

= -eiik)qjik) 3< (4.34) 

Cijik + l) = Cijik)-n 
dJiik) 
dCijik) 

= Cijik) + neiik)qjik) (4.35) 

where n is the adaptation step size and qj are the contents of the feedback delay line. 

Whilst the training sequence is being received and the network weights are being updated 
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the output from each node is replaced by the desired output after each adaptation step. 
This ensinres that correct symbol feedback to the nodes is maintained during the adaptation 
process in accordance with the adaptation algorithm assumptions. Failmre to do so may 
induce poor equaliser performance. 

4.4.4 Performance Evaluation 

The performance of the multinode RNN equaliser structures was evaluated by simulating 
the SER of the equalisers as a function of SNR whilst operating on the normalised power 
channels: 

Hsiz) = 0.4082 + 0.8164 -̂̂  + 0.4082Z-2 

H4{z) = 0.2041 + 0.4082z-̂  + 0.6124 -̂2 + 0.61242r-3 + 0.2041 -̂̂  

and comparing the results with the SER of a conventional DFE and RBF /Bayesian equalisers. 
In these channels the delays are equal to the symbol period, Tj. The receiver noise was 
AWGN. All simulations used a bipolar PAM scheme for the transmitted symbols without pulse 
shaping as the channel was simulated using one sample/symbol. Prior to SER measurement, 
the equalisers were trained for 2000 symbols using an LMS algorithm with a common stepsize 
of /J, = 0.05 in all adaptation algorithms. A smaller step size will result in a lower MSE and 
therefore produce a lower SER as the weights may be adjusted more accm-ately and are 
subject to smaller variations once in the vicinity of the MSE surface minimum [47]. Since a 
comparative study is being performed, the absolute values of SER are not as significant as 
the relative performance between the various equaliser structures. 

After each adaptation process was completed, 10'* symbols were transmitted and the 
number of errors accumulated. This process was repeated until 10̂  or 10̂  nontraining symbols 
had been transmitted and an ensemble averaged SER calculated. This poUcy was adopted 
so that the variations in the weight settings inherent in the LMS adaptation algorithm are 
averaged. 

Under the assimaption that each symbol error is binomially distributed and independent 
of other symbol errors, the SER measurement will be a Gaussian distributed statistic. For 
90% confidence that the true SER Ues within ±5% of the measured value, the SER must be 
> 0.011 for 10̂  transmitted symbols and > 0.0011 for 10̂  transmitted symbols. These hmits 
are given by (see [48]): 

where N is the number of symbols transmitted. 

The assumption of independent error events is not totally valid (see Section 4.4) but is 
used in order to obtain an approximation to the required number of symbols to be transmitted 
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Figure 4.11: SER performance of RNNl and DFE. 

in order to achieve valid SER measurements. 

The SER measurement was obtained by operating the equalisers on the same data and 
noise sequences for each curve in a given figure. This allows the relative performance of 
the equalisers to be compared. Repeating the measurements with different noise sequences 
showed that the variance of the SER estimates was > ±10%, often being > ±7%. 

The RBF node centres were postitioned using a channel estimator of the same order as 
the CIR and adapted using the LMS algorithm and the same stepsizes and training sequences 
as the RNNs and DFE. 

Channel H3iz) 

The three symbol period spaced path channel, H^iz), is a partial response channel having 
a single deep spectral null. RNN2 is not applicable to this channel and so the simulations 
compare the performance of RNNl against a DFE and RBF equaUser. 

The RNN structure consisted of two nodes using up to two received samples. The last 
node feeds its previous decisions through a delay line of length 1 in order to generate the 
symbol estimate, x(fe - 3) at time t = k. Both the DFE and RBF had a received sample 
delay line, m = 1, a decision delay, d = 0 and used n = 2 past decisions to cancel ISI or select 
a subset of the network nodes in the case of RBF. 

Figure 4.11 shows the SER against SNR for the three equalisers together with the SERs 
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obtained using correct symbol feedback. The difference between the SER curves for estimated 
and correct symbol feedback show that RNNl suffers the least from incorrect sjrmbol feedback. 
The D F E and RBF structures used in this simulation are appropriate only for zero decision 
delay and, as soon as a delay (one or two symbol periods) is used, both equalisers outperform 
RNNl. 

Channel H4{z) 

The five sample channel, H4^{z), is a nonminimima phase channel with most of the energy 
concentrated around the 3^'^ and 4*̂^ samples. The SER performance of both RNN structiures 
may be compared against a DFE and RBF equalisers. 

The RNN structures had four nodes and inputs of up to four received signal samples. 
A feedback delay line of length 3 fed by node 4 was used to generate the symbol estimates 
{x{k — 6),.. .,x{k — 8)} at time t = k. The four comparable DFE and RBF structures had 
m = (d + 1) received sample inputs where the decision delay, d = 0,..., 3 and each used 
n = 4 past decisions to either cancel ISI or select a subset of the RBF network nodes. The 
different DFE and RBF structures were used to compare the performance of the output of 
each of the four nodes in the RNN structures and in addition, the correct sjonbol feedback 
curves are shown to indicate the best theoretical performance of the equaUsers. 

Figure 4.12 shows the performance of the equalisers operating with d = 0 — the 2 RNN 
structiu-es using node 0 {d = 0) as the equaliser output. The lower two curves show the 
performance of the three equaliser structures operating with correct symbol feedback / feed­
forward. This curve is the same for both RNN and DFE equahsers as the input configuration 
of node 0 of the RNNs and of the DFE is identical. The performance improvement of the RNN 
equalisers over the DFE and the RBF equaUser can be seen. The differences between the 2 
RNN structures is noticable indicating that node 0 output is affected by symbol feedforward 
to lower nodes and the subsequent symbol feedback to node 0. 

Figure 4.13 compares the performance with d = 1 — the RNN structiues using node 1 
{d= 1) as their output. RNNl and the DFE have similar SERs indicates that the soft decision 
capabiUty of RNNl does not improve performance in this instance. RNN2 suffers from the 
affects of symbol feedforward even though the node 1 does not use feedforward cancellation 
directly. The difference between RNN2's actual and correct symbol feedback curves indicates 
that the structure is sensitive to symbol feedforward. The RBF equaliser outperforms the 
other equahsers, both theoretically and practically. 

Figure 4.14 indicates that for d = 2 the DFE and RNNl have very similar performance 
and again RNN2 has a larger SER. This plot shows two correct symbol feedback curves for 
the RNN structures — the first for RNNl and second for RNN2. Node 2 of RNN2 uses the 
output of node 0 as a symbol feedforward input and so cancels a greater portion of the ISI 
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occuring in its received sample inputs. Under correct symbol feedback (and feedforward) 
conditions this makes RNN2 more able to classify the recieved samples correctly. It is noted 
that the performance gap between ideal and actual is much greater for RNN2 than RNNl 
and the DFE. 

Finally, Figure 4.15 shows the performance of the structures with d = 3. The RNNl 
and the DFE have the same structure and so their performance is identical. RNN2 has 
a consistently poorer SER compared to RNNl, the DFE and RBF equalizers. Once more 
the deviation between theoretical and actual performance is greater for RNN2. The RBF 
equaliser consistently outperforms the DFE and RNNs. The symbol feedforward of RNN2 
does improve over the RBF in the theoretical case as both the pre- and postcursors of the 
CIR are cancelled. However, the poor symbol estimates used to cancel precursors degrades 
the RNN2 performance severely. 
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Figure 4.12: SER performance of RNNl, RNN2, DFE and RBF with d = 0. 

0) 
to 
DC 

o 
E >. 

CO 

O 

1 

0.5 

0 

-0.5 

-1 

-1.5 

-2 

-2.5 

-3 

— 1 1 
RNN2 - node 1 output 
RNNl - node 1 output 

DFE m=2,n=4,d=1 
RBF m=2,n=4,d=1 
csfb - RNNs/DFE ^ • 

csfb - RBF 

• X " 

Us 

-L - I -
10 15 

SNR (dB) 
20 25 

Figure 4.13: SER performance of RNNl, RNN2, DFE and RBF with d = 1. 
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4.5 Summary 

The initial simulations have confirmed some of the results in Kechriotis et al [45]. For many 
simple channels the RNN equaliser has been observed to be composed of a single node. 
The mechanisms by which this single node acheives equalisation have been examined and 
compared to that of the conventional DFE. The replacement of the hyperbohc tangent non-
linearity by a quantiser is argued in order to improve equaliser performance in the presence 
of noise and to remove limitations on the types of channels capable of being equalised by the 
RNN. 

The DFE structure created with the quantising nonlinearity has prompted the design of 
multinode RNNs which use ideas from the DFE in order to cancel precursor and postcursor 
cancellation of the CIR. The output of each node is specified in order to implement a form 
of soft decision feedback where by symbol estimates may be updated rather than making 
hard decisions as in the DFE. These new RNN structures have been compared with DFE 
and RBF / Bayesian equalisers and are seen to improve over the DFE and DE only when the 
decision delay is minimal. However, as soon as the decision delay increases the RBF equaliser 
outperforms the RNNs. The theoretical performance of the 2°'* RNN structure is shown to 
outperform the RBF but practically its performance is degraded due to erroneous decisions. 

Given the general poor performance of RNNs over conventional techniques and the more 
promising RBF equaliser, the RNN structures developed are not considered to be suitable 
candidates for application to time varying channels. In the next chapter the performance 
of MLSE equalisers operating on such channels are studied to investigate the mechanisms 
causing poor detection. Chapter 6 investigates the properties of Bayesian / RBF equalisers 
and compares them with the MLSE. 
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Chapter 5 

M L S E Techniques for Fading 
Channel Equalisation 

Fading digital communication channels prove to be a harder class of channels to equalise than 
their time-invariant counterparts. This is particularly so when the channels fade more rapidly 
as the ISI mechanism must be tracked with time. For land mobile radio, the rate of fading 
increases with carrier frequency and mobile velocity (see Section 2.2.1) and thus apphcations 
such as high speed train communications experience more rapid fading [49]. Such channels 
are still classified as slow fading channels if the coherence time of the channel is less than the 
transmitted symbol period [4, 5]. 

The characteristics of maximum likelihood sequence estimation (MLSE) equalisation tech­
niques are examined in detail in this chapter and the performance limitations and their causes 
are identified with particular emphasis on the tracking of the time-varying channels. The 
results obtained provide performance benchmarks with which to compare alternative equal­
isation techniques and indicate areas in which design improvements are likely to reduce the 
symbol error rate of the equaUser. 

DFE equalisation techniques can also be applied to time-varying channels. They are 
computationally simpler by the fact that they do not require a channel estimator but their 
performance is limited by the adaptation algorithm's abihty to track the inverse of the channel 
impulse response. The DFE performance is generally lower than that of the conventional 
MLSE, especially for more rapidly fading channels and for this reason the DFE has not been 
chosen as the benchmark algorithm. However, the DFE is still an important equaliser for 
slowly fading channels due to its simphcity and is used in conomerical mobile radio systems. 
Variants using a channel estimator to provide the DFE coefficients have been investigated in 
[50, 51] which show an improved performance compared to the direct adaptation methods 
for the system configxurations considered. 
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5.1 M L S E Equalisation and Channel Estimation 

The MLSE technique, the principles of which are given in Chapter 3, is known to give optimal 
performance in resolving ISI assuming a perfect knowledge of the channel being equalised [2, 
5, 33]. For conununications via a fading channel, the channel is imknown and time-varying 
and so a channel estimator is employed to provide an estimate of the channel impulse response 
which is then used to calculate the transition metrics in the Viterbi algorithm. The optimality 
of the MLSE technique for such channels is questionable as its performance using erroneous 
channel estimates is less well known. 

The fading natmre of the channel requires that regular retraining and/or tracking of the 
chaimel estimator occurs in order to prevent a significant loss in performance [52]. The 
transmitted data is split into firames consisting of a training sequence and a data burst 
(Fig. 5.1) — a mechanism well suited to TDM A systems which have an inherent firame 
structure. For instance, regular retraining occurs in the GSM system with 26 symbols out 
of a normal burst of 148 symbols being dedicated to channel estimation [53]. For slow fade 
rates (relative to the transmitted data burst length) tracking may not be required as the 
channel variations over the duration of the data burst are smcill. If channel tracking is to 
be used then the MLSE technique is implemented using the Viterbi algorithm with constant 
decision delay in order to provide symbol estimates for the channel estimator [54]. Otherwise 
the Viterbi algorithm may be operated 'off-hne' on the whole data biu-st and is not forced to 
make premature symbol decisions as can happen with a fixed decision delay implementation. 
In such circumstances the training sequence may be inserted midway through the data burst 
to reduce the error in the channel estimate at the beginning and end of the data burst. 
The algorithm's performance may be improved by providing 'head' / preamble and 'tail' / 
postamble symbols in order to initiate and terminate the Viterbi algorithm in known states. 
The overhead associated with these additional symbols is generally small for land mobile 
radio channels - being in the order of three or four symbols per pre-/ postamble for channels 
with typical multipath delay spreads and system symbol rates. 

There are two main techniques of channel estimation: correlation methods and minimum 
mean square error (MMSE) / least square error methods. Both algorithms generate CIR 
estimates with Tj-spaced taps representing the energy associated with individual symbols 
rather than estimating the multipath delays with a higher resolution. The Viterbi algorithm 
requires a symbol-period spaced CIR to produce estimates of the received signal states during 
transition metric calculation. 

Correlation methods [5] are generally used to obtain an estimate of the CIR which is 
assumed to be constant for the duration of the transmit data burst. The training sequence is 
transmitted mid-burst in order to reduce the estimation error at either end of the transmit 
burst. The length of the transmit burst affects the equaliser performance as the CIR estimate 
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TRAINING DATA TRAINING 
S E Q U E N C E BURST S E Q U E N C E 

FRAME k — FRAME k+1 

Figure 5.1: Frame structure of transmitted data. 

degrades the further from the training sequence that the estimate is used. In [55] a technique 
is proposed whereby channel estimators obtained during transmission of training sequences 
are used to generate a succession of CIRs by interpolating over the duration of the data burst. 
The correlation method involves transmitting a training sequence, sxik), and correlating the 
received signal, r{k), with a replica of the conjugate of the training sequence. The received 
signal is the convolution of the equivalent baseband CIR, transmit and receive filters and 
training sequence (corrupted by additive receiver noise and/or co-channel interference, n{k)): 

r{k) = {[sT{k)®fT{k)]®hik)+n{k))0fR{k) 

= ST{k)®[fT{k)<^h{k)<^fR{k)]+n{k)(B>fRik) (5.1) 

where frik) and fR{k) are the transmit and receive filter impulse responses and (g) denotes 
the convolution operator. The output of the receiver correlator contains the combined CIR 
convolved with the autocorrelation function of the training sequence and a noise term: 

r{k) 0 4(LT - k ) ^ STik) (g) 4(LT - k) ^ [frik) 0 h{k) ® /it(fc)] 

+4(Lr - k ) ^ [n{k) 0 fR{k)] (5.2) 

where LT is the length of the training sequence. The combined CIR is the filter impulse re­
sponse resulting from the cascade of the transmit, channel and receive filters. As the length of 
the training sequence increases, the noise / interference term is reduced under the assumption 
that it is uncorrelated with the training sequence. The training sequence is chosen to have 
an autocorrelation function as close to a unit impulse function as possible, resulting in the 
output of the correlator being approximately the combined CIR. The training sequence auto­
correlation function is called the ambiguity function and sequences with ideal charcteristics 
are termed CAZAC (Constant Amplitude Zero Autocorrelation) codes or Barker sequences 
[56]. 

Minimum MSE channel estimation techniques operate on gradient descent or recursive 
identification principles [57]. A channel model is assumed (a symbol-period spaced FIR 
model) and the parameters are updated under the operation of an adaptation algorithm such 
as the LMS or RLS algorithms (see Appendix B). These techniques have been investigated 
for a variety of channels [50, 58]. A training sequence is periodically inserted into the data 
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Figm-e 5.2: MLSE and channel estimator operating in a decision-directed tracking mode. 

stream as per the correlation method and the channel estimate is updated by passing a 
replica of the training sequence through the channel model and using the error between the 
actual and estimated received signal samples to update the CIR estimate. These estimators 
may be operated in a decision-directed mode in between the training sequences to allow 
tracking of the channel. In this configuration, the output of the equaliser is fed back into 
the channel estimator instead of the transmitted data (Fig. 5.2) — the tracking algorithm 
normally assumes that these estimated symbols are correct. Under these conditions the 
channel estimator produces an approximation to an old chaimel rather than the current 
channel due to the decision delay of the equaUser. The received signal is delayed prior 
to being used to form the estimator's error signal due to the fact that, during tracking, 
delayed symbol estimates are fed into the channel estimator which uses an old combined CIR 
estimate to form an estimate of an old received signal. The delay of the channel estimate 
vector, hik — d), by a period of Tg prior to being fed into the Viterbi processor is required 
dinring decision-directed tracking to ensme a non-zero delay feedback loop. The sequence of 
processing operations at time t = k becomes: 

1. The Viterbi processor uses rik) and h(A; - d - 1) to generate the symbol estimate 
xik - d). 

2. The channel estimator uses xik — d) together with previous symbol estimates and 
h(fc — d — 1) to give an estimate of the delayed received signal, rik — d). 

3. The error signal between actual and estimated received signal is used to update the 
channel estimate, generating h(A; - d) which is fed back to the Viterbi processor for use 
at the following sample period. 

The use of delayed CIR estimates adversely affects the symbol error rate of the equaliser 
as shown experimentally later in the chapter. A scheme whereby old symbol estimates are 
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used to predict the current received signal and the current combined CIR could be envisaged 
but this is highly dependent on the channel's multipath delay spread, power profile and the 
equaUser decision delay. For time-invariant channels, the equaUser decision delay is in the 
order of three to five times the multipath delay spread and so the delayed symbol estimates 
have no impact on the ciurrent received signal and therefore caimot be used in a prediction of 
the received signal. For fading chaimels the decision delay is smaller, as will be shown later in 
the chapter, and the ciurrent received signal may contain energy from the old symbols. The 
quality of the prediction is then dependent on the amoimt of energy from the old symbols that 
is present in the current received signal. With a tapered power-delay profile, this energy will 
be small, on average, leading to poor predictions. This predictive scheme is not considered 
fiurther due to these problems. Further details of alternative prediction techniques, which 
extrapolate a sequence of old channel estimates to give a current chaimel estimate, may be 
found in [27, 58]. 

The choice of LMS or RLS algorithms or one of their variants to adapt the channel 

estimator is dependent on the rate of convergence required and their error propagation char­

acteristics [59, 60, 61]. Short training sequences are desirable to increase the system data 

rate which prompts the use of fast-convergening RLS algorithms [62]. However, RLS algo­

rithms are not necessarily better than LMS algorithms for channel tracking purposes and 

have been reported to suffer when applied to decision-directed traxiing where incorrect sym­

bol feedback causes error propagation [2, 63]. Least square channel estimation techniques [47, 

64] are similar to the MMSE technique being derived by minimising a suitable error function. 

However they do not employ recursive adaptation algorithms. 

The relative advantages of each estimation technique depend upon the channel being 

equalised. For 'slowly' fading channels the correlation based method is sufficient given 

a suitably long training sequence whilst for faster fading channels the abiUty to operate 

the channel estimator in a decision-directed mode is often desirable. A combination of 

the techniques is possible but increases system complexity. The difference between slower 

and faster fading channels is measured as the average nimiber of symbols transmitted be­

tween fades although this not universally adopted. This average is a function of the trans­

mitted symbol rate and the fade rate / Doppler spread of the channel. However, the 

channels dealt with are all slow fading rather than fast fading as the coherence time of 

the channel is much less than the symbol period (Tc •C Tg) — see Section 2.2.1 and [4, 

5]-

Variants on the standard M L S E technique include a version having two decision delays. A 

short decision delay is used to derive symbol estimates for decision-directed channel estimation 

and a second, longer, decision delay is used to give final symbol estimates for channel decoding. 

Other techniques use an adaptive D F E prior to the MLSE block in order to partially remove 

ISI [65]. This allows a reduction in the number of states in the Viterbi trellis and provides a 
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mechanism for symbol decisions in the DFE's feedbeick delay line to be updated. 

5.2 System and Channel Models 

The details of the system and channel models used to derive the simulation results character­

ising the MLSE equaUser are explained in this section. There axe a large number of variables 

which may be adjusted to maximise the absolute performance of the equaliser and a number 

of them axe held constant throughout in order to limit the simulation process. The choice 

of which variables to hold constant is made so that the results are not necessarily Umited 

to any one application system. The relative effects of changes in parameters are considered 

to be of greater importance than the absolute performance as the latter is dependent on 

many system factors outside the scope of this thesis. For instance, coherent demodulation is 

assumed throughout and the effects of imperfect carrier and symbol timing synchronisation 

are not considered in detail. However, the sensitivity of the results to a number of other 

system variables on the equalisation process are discussed in a qualitative manner. 

5.2.1 System model 

The digital radio communication system as outlined in Figiure 2.1 is simplified in the sim­

ulations presented in this chapter. No source or channel coding is assumed and instead, a 

sequence of statistically independent bits is passed into the modulator. Appropriately, no 

source or channel decoding is required in the radio receiver and the error rates axe measiured 

at the output of the equaliser and detector. 

The modulator is one of the system variables that is held constant and all simulations 

in this and the remaining chapters (except for a few isolated cases) use a baseband QPSK / 

QAM modulator with a simulated symbol rate of lOOkBaud. The mutually independent input 

bits are formed into complex symbols using Gray coding: 

a{2k) a{2k - 1) x{k) 

0 0 -f-l+i 
0 1 

1 1 

1 0 

where a{k) are the input bits and x{k) the modulated symbols. The most common error at the 

receiver detector output is between adjacent symbols and Gray coding ensm-es that adjacent 

symbols only differ by a single bit thereby reducing the bit error rate. After the modulation, 

which uses one sample per symbol, the symbols axe passed through a root-raised cosine filter 

with a roll-off factor a = 0.5, sampled at a higher rate, to band Hmit the modulated signal 
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Figure 5.3: System simulation configuration. 

prior to transmission through the channel (Fig. 5.3). The filter is implemented as an F I R 

filter with the impulse response truncated to 64 samples and separated in time by ^ , where 

q is the upsampling factor. The upsampling factor is used to simulate the continuous time 

domain and is necessary to allow channnels having path delays with non-integer multiples of 

the symbol period, T j , to be simulated. The upsampling factor used in the simulations varies 

firom either q = l oi q = 4 depending upon the channel being simulated. 

The receiver is modelled by adding complex white Gaussian noise to the received signal 

and filtering the resulting signal to remove out-of-band noise. Ideally this receive filter is 

matched to the cascade of the transmit filter and channel impulse response and the output 

downsampled to the symbol rate. The sampled signal should then pass through a noise 

whitening filter to remove the correlations in the additive noise caused by the receive filtering 

operation [2, 33]. However, as the channel is unknown and potentially rapidly time varying, 

the matched filter technique is not easy to implement, if at all, and the receive filter has been 

fixed as a root-raised cosine with a roll-off factor a = 0.5, matching the transmit filter. In the 

absence of channel induced ISI the transmit and receive filter cascade form a raised cosine 

filter which satisfies Nyquist's criterion for zero ISI pulse shaping. After filtering the signal is 

downsampled to the symbol rate (assuming perfect sampler timing) and fed to the equaUser 

without passing through a noise whitening filter. 

The channel estimator has been implemented as an F I R filter adapted using the LMS al­

gorithm. Since the inputs of the channel estimator, x{k — d) or x{k — d), have constant magni­

tude, the standard LMS algorithm is equivalent to the normalised version (see Appendix B). 

The LMS algorithm was chosen as a fixed parameter due to its ease of implementation and 

performance qualities for decision-directed tracking. Since the simulations are concerned, in 

part, with faster fading channels, the correlation type estimation techniques have not been 
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considered as tracking is required in order to obtain reasonable bit error rates (see the simu­
lation results for confirmation). The qualatative speed of fading is relative to the data burst 
duration rather than the symbol period. The estimator is operated in a decision-directed 
tracking mode as shown in Figure 5.2. 

The frame structure of the data has been varied in the simulations to investigate the 

perfomance changes for increases in data burst length and for variations in the ratio of data 

symbols to training symbols. Typical data burst lengths are in the order of 100 sjmibols 

and training sequences in the order of 20 symbols giving a ratio of 5:1. Prior to symbol 

error rate measurement, the chaimel estimator is trained using 500 symbols in order to 

acquire a reasonable estimate of the channel. Subsequently the estimator is either operated 

in a decision-directed mode or uses the training sequence for C I R estimation. The channel 

estimator is not reset at the beginning of each training sequence but is adapted from the 

C I R estimate at the end of the previous data biurst. This method allows the LMS algorithm 

to form a resonable CIR estimate by the end of the training sequence. It is noted that this 

scheme is at odds with a mobile radio application employing a TDMA format. The base 

station receiver will not receive signals from the same transmitter in consecutive frames and 

thus the C I R between frames will be significantly different due to the transmitters being 

located in different geopraphical positions. In the case of a mobile unit, the C I R wiU have 

changed radically from that during the previous transmit slot due to mobile motion. These 

factors require that the chaimel estimate acquires a completely new CIR estimate for each 

frame / time slot. However, the aim of the simulations is to investigate the characteristics 

of the M L S E equaliser rather than the acquisition properties of specific channel estimation 

techniques. Results confirming that the performance hmitations observed aie not due to 

acquisition problems during training sequence transmission are presented. 

The training sequence used to adapt the channel estimator is not unique. Different se­

quences have been generated from the the output of the modulator rather than using CAZAC 

sequences. Thus it is possible for isolated frames to have training sequences that are not par­

ticularly suited to the LMS algorithm (i.e. sequences with a large eigenvalue spread [47]), but 

experimental results show that this does not have a significant effect. The pseudo-random 

symbol sequence from the output of the transmitter modulator is partioned into data and 

training sequences. The training sequences are fed to the channel estimator in the receiver 

during training phases after being delayed a period of time conditional on the propagation 

delay of the channel, transmit and receive filter delay and the decision delay of the equahser. 

A separate MLSE equaliser has been implemented using the Viterbi algorithm in response 

to limitations of the Viterbi block provided in the SPW library. The equaliser permits 

flexibility in system parameters such as the number of states in each stage of the treUis and the 

decision delay and number of stages in the trimcated trelhs. At each iteration of the algorithm 

the path metrics are limited in size by subtracting the minimum metric of the whole trellis 
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at the previous iteration from each survivor's transition metric. Paths with large metrics 
will gradually be replaced by those with smaller metrics and thereby path metric growth 
does not affect the simulations. This point is more appropriate to practical implementations 
with limited precision / word size but can be problematic in simulations rmming over laxge 
numbers of symbols. The Viterbi processor is left running during channel estimator training 
sequences and is not reset at the beginning of each frame. Pre / postamble symbols have 
not been incorporated into the frame structure and MLSE implementation (which would 
otherwise affect transition metric calculations) as they do not significantly affect the relative 
performance between the MLSE and variants presented. However, it is noted that their use 
can significantly reduce the absolute symbol error rates especially at lower error rates. 

Throughout the simulations, symbol errors axe measured rather than bit errors. Thus the 

benefits of Gray coding the bit to symbol mapping axe not seen directly in the results. At low 

symbol error rates the errors can be assumed to be between adjacent symbols and thus the bit 

error rate will be half than that of the symbol error rate. The symbol error rate is defined as 

the total number of errors measured divided by the total number of data symbols transmitted. 

Error measurement begins at the start and finishes at the end of each data biu:st and so the 

error rate is averaged over a nimiber of frames. The frame structxire of the transmitted 

symbols requires that the equaliser, channel estimator and error rate measuring block to be 

synchronised. For equaliser decision delays, d> 0, commencing the error rate measurement 

at the beginning of the data burst means that the first d symbol estimates will (nominaly) be 

the end of the training sequence. Similaxily at the end of the data burst, suspending error rate 

measurement at the end of the data bmrst means the last d data symbol estimates will 'not' 

be tested for veracity. However, the partioning between training and data symbols is only 

nominal due to the fact that the MLSE block does not use the training sequence as preamble 

and postamble symbols. The switch controUing the flow of training symbols or equaliser 

symbol estimates into the charmel estimator for decision-directed tracking is operated at the 

nominal training / data boundary but as both are delayed in time by d symbol periods the 

effect is to shift the boundary back in time by dTg. Thus varying the decision delay does not 

affect the error measurement timing or synchronisation of the Viterbi algorithm and channel 

estimator — the positioning of the boimdary between training and data symbols is merely 

interpreted in a slightly different manner. 

In order to be confident in the error rate measurements, the nimiber of data symbols 

transmitted needs to be large. Precise confidence limits on the error rates is difficult as the 

error mechanism is not statistical independent of previous errors, especially during decision-

directed tracking where erroneous symbol estimates can cause the channel estimate to diverge 

from the true CIR. Many of the error rates measinred have been checked for variations by 

simulating identical systems and varying the seed in the psuedo-random number generator. 

Gross variations have not been observed when the number of symbols transmitted is in the 
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region of 150000. An additional consideration affecting the reUabiUty of the results is the 
fade rate of the channel. For slowly varying channels more symbols need to be transmitted 
for similar confidence levels as it takes a longer period for the characterisitics of the channel 
to average out (e.g. the instaneous gain of the channel and maximum / minimimi phase 
properties). 

The SPW package does not guarantee that the same noise or channel tap sequences 

(generated from the 'master' psuedo-random source) axe used in each simulation despite 

the same random seed. Due to the many time-coincident noise sources used, the sequence in 

which they are called cannot be dictated in advance and is affected by the number and type of 

blocks used in the simulation. Given precisely the same simulation model, the noise sequences 

are identical but changing elements in the receiver, for instance, where random sources are 

not used can affect the noise sequence and results obtained. Thus results obtained from 

different simulation runs must be compared with care. The majority of results presented 

on the same graphs have been obtained by simply varying parameters of a simulation which 

do not affect the sequencing of the noise sources and thus give reUable comparative results. 

Compaxison of results between simulations are only significant if their confidence limits do 

not overlap but, as the definition and calculation of the limits are subject to interpretation, 

caution must be excercised when comparing results lying close to each other. To isolate this 

problem the transmitter, channel and receiver AWGN could be simulated in isolation and the 

results stored and used to drive the remaining receiver circuitry but this has a large memory / 

storage overhead which has prevented its use. 

The signal-to-noise ratio (SNR) is defined as the average signal power divided by the 

average noise power measured immediately prior to the equaliser. The transmitted data has 

a power of 2 (real and complex paths each have unity power) and the transmit and receiver 

filters each have a power gain of where q is the upsampling / downsampUng factor and 

the channel is designed to have an average power gain of Gc = 1. Due to variations in the 

channel power gain as the channel fades, the average received signal plus noise power, PS+N 

is measured prior to the equaliser over the duration of the simulation. The SNR is derived 

from this measure given the known receiver AWGN noise power, 2CT̂  and receive filter power 

gain: 

Ps+N = PS + PN 
2Gc^2al 
g2 q 2- + ^ (5-3) 

PN qal 
^qPs+N 
V 2^2 

± ^ - l ) (5.4) 
n / 
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5.2.2 Channel models 

The channels are modelled with zero propagation delay for simpUcity and with delays equal to 

an integer number of sample periods, ^ — thus the upsampling factor q affects the resolution 

of the channel's multipath delays. The basic charmel model is shown in Figmre 2.6 with 

complex Gaussian white noise being passed through a Doppler spread filter producing the 

path's gain and phase shift in complex format. The Doppler spread filters have real impulse 

responses leading to symmetrical sidebands. An additional block is used in the simulations 

between the Doppler spread filters and the multipUers for simulation speed improvements. 

As the fade rate, fd, is significantly smaller than the sample rate of the channel — fd'^ 

lOOHz and ^ « 400kHz, generating the taps at the chaimel sample rate requires a Doppler 

spread filter with an extremely narrow passband and results in huge ntunbers of filter taps. 

To avoid this problem, the noise block and Doppler spread filter block axe sampled at IkHz 

and upsampled by a factor of w 400 to the channel sample rate by means of an interpolator. 

The interpolator is implemented as a polyphase filter with w 400 branches, each having a 

lowpass F I R filter of 25 taps (efficiently implementing a 10000 tap filter) and with a cut off 

frequency of 500Hz [66]. The power of the noise block is set so that the sum of the noise 

powers over all paths is 0.5 (the Doppler spread filters have unity power gain). As the paths 

have complex taps, this gives a channel power gain of unity. 

5.3 M L S E Characterisation 

The effects of varying a number of the M L S E equaliser's parameters axe shown in the sim­

ulations results presented in this section. The primary results show the effects of chaimel 

estimation errors on the symbol error rate (SER), especially when the equaliser is operated 

in a decision-directed tracking mode where an approximation to an old C I R is formed. The 

affects of incorrect symbol decisions on the tracking algorithm axe shown together with the 

impact of vaiying the decision delay, the LMS algorithm's update paxamter and the length 

and ratio of the training sequences and data bursts. A number of different channels axe 

simulated with various fade rates, multipath delay spreads, power-delay profiles and Doppler 

spread characteristics. 

5.3.1 Channel Estimation Effects 

A three equipower path channel {L = 2) with path delays equal to the symbol period, Tj , has 

been simulated in order to observe the general nature of the MLSE equaliser whilst operating 

with a number of channel estimator configurations. A Ts-spaced channel was chosen as it 

provides a relatively easy situation for the channel estimator which generates a Tj-spaced 

model. As perfect symbol-sampling synchronisation is assumed, the additional ISI caused by 
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the transmit and receive root-raised cosine filters at the sampling instant is deemed small and 
so the transmit / receive filters are not included in the simulation. This provides an idealised 
situation in which the additive noise is uncorrelated but enables the characteristics of the 
equalisation algorithm to be examined in favourable conditions and allows shorter simulation 
run times. The frame structure was chosen as 100:20 (data burst length : training sequence 
length). The channel paths had real and imaginary powers { 0.16667, 0.16667, 0.16667 } 
giving a channel power gain, Gc = 1.0 and had a classical Doppler spectrum with meiximum 
Doppler spread of ± 200Hz. The channel estimator used a perfect estimate of the number of 
paths (i.e. a model of three Tj-spaced taps) and was updated by the LMS algorithm with a 
stepsize, fj, = 0.1 (see Section 5.3.4). The MLSE equaliser had a decision delay of five symbol 
periods. These parameters are summarised as follows: 

Channel parameters 

L Path delay Doppler spread 

2 Ts Classical, fa = ±200Hz 

System parameters 

Tx . /Rx. filters Frame structure Decision delay Channel estimator 

taps 

none 100:20 5 3 0.1 

The channel estimator configxurations are: 

1. No tracking. The channel estimate is held constant after the training phase for the 

whole duration of the subsequent data burst to observe the effects of not tracking the 

channel. 

2. Decision-directed tracking. The channel is tracked during the data burst in the standard 

configuration. 

3. True data tracking. The channel estimator uses a perfect knowledge of the transmitted 

data diiring tracking in the data burst. This simulates the effects of erroneous symbol 

decisions produced by the equaliser / detector on the tracking algorithm. 

4. Undelayed true data tracking. Perfect undelayed symbol estimates are used during data 

burst tracking to observe the effects of generating out-of-date channel estimates. 

5. Delayed true CIR. A delayed version of the true CIR is fed to the MLSE equaUser to 

demonstrate the effects of imperfect channel estimation. 

6. True CIR. The true C I R is used by the equaliser to show the performance limit of the 

MLSE algorithm. 
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Figure 5.4: MLSE performance with varying channel estimator modes. L = 2, T^-spaced 
equipower paths, fd = ±200Hz. 

Figure 5.4 shows the SER vs. SNR for these chaimel estimator configurations. The error 

rates were measured over 158760 transmitted data symbols. The benefits of tracking the 

channel through the data burst are clear and the S E R degradation due to incorrect symbol 

estimates is significant. Relatively small performance improvements are obtained due to the 

channel estimator delay for the fade rate used but, as the Doppler spread increases, this delay 

becomes more significant (see Section 5.3.5). 

Figure 5.5 shows the normalised mean tap error (MTE) increase during the data burst 

for the no tracking, decision-directed tracking and true data tracking configurations with an 

SNR=15dB. The normalised M T E is defined as: 

(5.5) 

averaged over 1587 data bursts. This definition is similar to that in [67, 68]. The true data 

tracking curve shows that the M T E remains constant for the duration of the burst indicating 

that poor acquisition during the training sequence is not the cause of the higher symbol error 

rates in other channel estimator configurations. This is confirmed in Figure 5.6 which shows 

the mean number of errors as a function of symbol position within the data burst. As most 

errors occur midway onwards in the frame, the use of preamble and postamble sequences will 

not dramatically affect the error rates. 
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5.3.2 Fractionally Spaced Multipath Delay Effects 

The performance of the MLSE equaliser on a fractionally spaced channel axe examined by 

simulating a 4 ^-period spaced equipower path channel. Each path had real and imaginary 

path powers of 0.125 giving a channel power gain of, Gc = 1.0 and the paths faded with 

a classical Doppler spectrum and maximum Doppler spread of ± 200Hz. The chaimel was 

simulated at g = 4 times the symbol rate (lOOkBaud) and the transmit / receive filters were 

root-raised cosines (RRC) with a = 0.5. A 3 Tj-spaced tap channel estimator was used with 

an LMS stepsize of n = 0.1 and the MLSE operated with a decision delay of 5 Tj and the 

simulation used a frame structure of 100:20 as in Section 5.3.1. 

Channel parameters 

L Path delay Doppler spread 

3 Ts/2 Classical, fd = ±200Hz 

System parameters 

Tx. /Rx. filters Frame structure Decision delay Channel estimator 

taps 

R R C a = 0.5 100:20 3 3 0.1 

Figme 5.7 shows the results obtained with the estimator operating in the various configura­

tions as explained in Section 5.3.1. The calculation of the true T^-spaced channel impulse 

response is derived in Appendix C. A straightforward convolution of the transmit, channel 

and receive filter impulse responses is not possible as the channel is time varying. The calcu­

lation generates the components of the received signal (prior to the addition of the receiver 

noise) in terms of the gain and phase shift (in complex format) of each transmitted symbol 

affecting the received signal. The sequence of coefficients was truncated to three adjacent 

terms corresponding to a 3 Tj-spaced tap channel estimate with the first term being the offset 

from the start of the sequence by a period equal to the sum of the transmit and receive filter 

delay in order to provide a CIR length consistent with the other simulation configvurations. 

This method of truncation does not provide the optimum performance of the MLSE as the 

received signal is affected by energy from additional symbols — the effect of non symbol-

spaced channels and receive filters is to spread the energy of the effective CIR, increasing the 

delay spread. However the simulation result is included as it provides an indication of the 

performance obtained with a better channel estimate. 

The results show that the limitations in the standard configuration still exist in this 

more reaUstic system and charmel model. The cause of the Umitations is independent of the 

presence of transimit and receive filters. 
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5 .3 .3 Multipath Diversity EflFects 

The results from Sections 5.3.1 and 5.3.2 indicate that similar limitations in the MLSE 

equaUser due to channel estimation occur in both fractionaUy and symbol-period delayed 

paths. The effect of varying multipath delay spread is simulated by comparing results from 

1, 2, 3, 4 and 5 Tj-spaced equipower path channels. The channel path powers were normalised 

to unity power gain. 

Chaimel parameters 

L Path delay Doppler spread 

0,1,2,3,4 Ts Classical, fd = ±200Hz 

System parameters 

Tx. /Rx. filters Frame structure Decision delay Channel estimator 

taps 

none 100:20 0,2,5,5,5 1,2,3,4,5 0.1 

The equaliser decision delays were chosen to give the best symbol error rates and the channel 

estimators were operated in a decison-dfrected tracking mode using correct estimates of the 

number of paths. 

Figure 5.8 demonstrates the effects of multipath diversity with the S E R for SNRs in the 

range 5—20dB improving and then decreasing with the number of paths. It is noted that 

these results were obtained from different simulation runs and so statistical variations must 

be taken into account when comparing the relative performance. The single path channel 

{L = 0) performs poorly due to the fact that when a fade occurs there are no other paths 

providing signal power. Given that the estimator can estimate the gain and phase shift of 

each path to a certain degree, the problems of a loss in signal power (i.e. the instantaneous 

SNR drops) outweigh any degradation due to ISI. This balance depends on how weU the 

channel estimator can approximate the true CIR — see Section 5.3.5 for results with lower 

quality channel estimates. Fades in the received signal power become less probable as the 

number of paths increase but further inceases do not reduce this probabiUty significantly and 

the degradations due to ISI and channel estimation predominate. 

For SNRs above 20dB, the SERs of channels with more than one path are significantly 

smaller. The results have not been plotted as the SERs where too low to be have confidence 

in them. 
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5.3.4 L M S Stepsize Parameter EflFects 

The absolute performance of the equaUsers has been shown to be dependent on the channel 

estimator tracking performance. The effects of the LMS stepsize parameter, fi, on the symbol 

error rate are marked and, in the simulations results given above, the value of n giving the 

most consistent results was found prior to the start of the simulations. This results presented 

in this section (Fig. 5.9) demonstrate the relative effects of varying /i on the symbol error 

rate vs. SNR for a 2 Tj-spaced equipower path channel. The channel estimator was operated 

in the decision-directed mode. 

Channel parameters 

L Path delay Doppler spread 

1 Ts Classical, fd = ±200Hz 

System parameters 

Tx. /Rx. filters Frame structure Decision delay Chaimel estimator 

taps 

none 100:20 2 2 variable 

It is noted that a single value of fi does not give the best results for aU SNR values — higher 

values of fj, improve the symbol error rate in high SNR conditions but lower values of fi are 

better in the range of 10 — 15dB. The results are similar for channels with longer multipath 

delay spreads and tend to have an optimum value oi fj, — higher values lead to noisier chainnel 

estimates and lower values to channel estimator lag [47], both of which give rise to higher 

symbol error rates. Channels with faster fade rates generally perform better with sUghtly 

higher values of ^ — see Section 5.3.5. 
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5.3.5 Fade R a t e Eflfects 

The effect of fade rate on the symbol error rate is significant. The fade 'rate' is given here 

as the maximum Doppler shift, fd of the classical Doppler spectrmn. The level crossing rate, 

LCR, (i.e. the rate at which a path's amplitude drops below a specfic level [4]) could be used 

but, for fading paths with Rayleigh ampUtude distributions, fd a LCR [4]. The simulation 

configurations are shown below for the equipower path channels tracked with estimators op­

erating in the decision-directed mode. 

Channel parameters 

L Path delay Doppler spread 

2,3 Ts Classical, fa = ilOOHz 

= ±200Hz 

= ±400Hz 

System parameters 

Tx. /Rx. filters Frame structiure Decision delay Channel estimator 

taps 
A* 

none 100:20 see figures 3,4 0.1 

Figures 5.10 and 5.11 show the results for the 3 and 4 equipower path channels respectively 

and indicate the decision delays used for each ciu-ve. These delays were found to produce 

better results — see Section 5.3.6. For both channels the effects of faster fading is to de­

grade the symbol error rates. This is due to deteriation in the tracking capabihties of the 

channel estimator as can be seen in Figure 5.12 which shows the symbol error rates for the 

various channel estimator configmations. This last result was obtained firom the 3 Ts-spaced 

equipower path channel with maximum Doppler spread of ±400Hz. 
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5.3.6 Decis ion Delay Effects 

Many simulations in the preceeding sections have used a specific value of decision delay in 

the Viterbi algorithm. This section examines the effect of varying this parameter on the 

symbol error rates for a number of equipower path chaimels and fade rates. Additionally, the 

performance of a dual decision delay MLSE (DDD-MLSE) is simulated. This MLSE variant 

has a shorter decison delay for the symbol estimates used for decision directed tracking and a 

longer delay for final symbol estimates which are used for symbol error rate calculation. The 

algorithm operates in a very similar manner to the standard MLSE except that two symbol 

estimates are generated from the survivor with the minimum path metric. The simulation 

configurations are given in the following table. 

Channel parameters 

L Path delay Doppler spread 

1,2,3 Ts Classical, fd = ilOOHz 

= ±200Hz 

= ±400Hz 

System parameters 

Tx. /Rx. filters Frame structiure Decision delay Channel estimator 

taps 
M 

none 100:20 variable 2,3,4 0.1 

Figures 5.13, 5.14 and 5.15 show results for L = 1, 2 and 3 respectively for an SNR=15dB. 

The optimum decision delay for the decision-directed tracking is seen to depend on the fade 

rate and the CIR length parameter, L. Figure 5.16 shows the effects of the DDD-MLSE 

algorithm on the L = 2 channel with fa = ilOOHz, ±200Hz and ±400Hz. The channel 

estimator decision delays are taken firom the previous results as those which gave the lowest 

symbol error rate (i.e. 5, 5 and 3 for the three fade rates respectively). The additional 

performance improvement is seen to be very small indeed. 
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5.3.7 F r a m e Struc ture Effects 

In this section the frame structure is varied to provide additional confirmation that the 100:20 

frame structure used in the previous simulations is not the cause of the symbol error rate 

degradation. Increasing the length of the training sequence is shown not to affect the results 

significantly, indicating that channel acquisition during the 20 symbol training sequence is 

adequate. Increasing the data bxurst length is shown to degrade the symbol error rate. Fig­

ures 5.17, 5.18 and 5.19 show the results for fd = ilOOHz, ±200Hz and dr400Hz respectively 

at an SNRwlOdB for the lOOHz and 200Hz case and an SNR«15dB for the 400Hz case. The 

simulations used system and channel parameters as follows: 

Channel parameters 

L Path delay Doppler spread 

1 Ts Classical, fd = ilOOHz 

= ±200Hz 

= ±400Hz 

System parameters 

Tx. /Rx. filters Frame structure Decision delay Channel estimator 

taps 
M 

none variable 4,2,2 2 0.1 
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5.3.8 C h a n n e l Power-Delay Profi le Effects 

The simulations in the sections above have all used equipower path channel models. The 

MLSE's SER performance for a 4 T^-spaced path channel wi th a tapered power-delay profile is 

simulated in this section. The four paths have relative powers [1.0,0.5,0.25,0.125] (normalised 

to give a channel power gain, Gc = 1-0). The channel estimator is operated in the 6 modes 

as given in Section 5.3.1. Other simulation parameters are given in the table below. 

Chaimel parameters 

L Path delay Doppler spread 

3 r . Classical, fd = ±200Hz 

System parameters 

Tx. /Rx. filters Frame structure Decision delay Channel estimator 

taps 
M 

none 100:20 6 4 0.1 

Figure 5.20 demonstrates that similar chaimel estimation problems exist in this tapered 

power-delay profile channel. Channel estimator tracking is highly beneficial and incorrect 

symbol estimates cause degradations in the channel estimator tracking capability, affecting 

the SER significantly. 
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5.3.9 Doppler Spread Effects 

The effects of a non-classical Doppler spread power spectrum on the MLSE's SER perfor­

mance are simulated. The Doppler characteristics of the path gains affect the time-varying 

nature of the channel and the level crossing rates of eacii path. In the simulation the Doppler 

spread power spectnma of each path gain is a Gaussian function with a (one sided) 3dB 

bandwidth of 200Hz. 

Channel parameters 

L Path delay Doppler spread 

2 Ts Gaussian, 3dB = ±200Hz 

System parameters 

Tx. /Rx. filters Frame structure Decision delay Channel estimator 

taps 

none 100:20 4 3 0.1 

Figure 5.21 demonstrates the SER performance for the different channel estimator modes and 

indicates the performance gains obtained with increasingly more accurate channel estimation. 

The degradation obtained in decision-directed tracking is still present. 
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Figure 5.21: MLSE performance for a Gaussian Doppler spread channel. L = 2, Tj-spaced 
paths, 3dB= ±200Hz. 
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5.4 Summary 

This chapter has demonstrated the characteristics of MLSE equalisers, operating in conjunc­

tion wi th an LMS adapted channel estimator, for a mmiber of system and channel configu­

rations. The symbol error rate is seen to deteriorate significantly when no tracking of the 

channel occurs during the data burst and this effect becomes more pronoimced as the channel 

fades more rapidly. The performance of the conventional decision-directed tracking technique 

is seen to be degraded fi-om the ideal tracking situation due to incorrect symbol feedback and 

equaliser decision delay. The former causes the channel estimator to be adjusted away from 

the true CIR as demonstrated by a rise in the mean tap error coinciding with the rise in 

the mean number of errors dmring the data burst. A n error propagation mechanism exists 

as poor channel estimates increase the probabihty of a symbol estimate error which subse­

quently causes a larger chaimel estimation error. The decision delay effect is seen to be more 

critical for channels wi th higher fade rates; a fixed decision delay results in channel estimates 

that are increasingly out-of-date with the actual CIR as the channel varies more rapidly. 

The presence of transmit and receive filters does not affect the qualitative results allowing 

them to be omitted and T^-spaced channel models to be used during investigations into 

techniques that can overcome the shortcomings of the standard MLSE techniques. Once 

candidate solutions have been found for this idealised case, the effects of filters and more 

realistic channels may be simulated in order to increase confidence in the solution techniques. 

The following chapter investigates the performance of Bayesian equalisers on fading chan­

nels in order to determine whether this alternative statistical detection technique is more 

robust to errors in the channel estimate than the MLSE. 
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Chapter 6 

Bayesian Equalisers 

A study of Bayesian decision feedback equaliser (BDFE) techniques was performed by Chen 

et al. [63] for use in fading and frequency selective radio channels. This paper showed similar 

and, under certain conditions, significantly improved symbol error rate performances over 

the standard MLSE techniques. One reason given for the improved performance was the 

ability of the Bayesian equaliser to produce similar quality symbol estimates as the MLSE 

but wi th much shorter decision delays. Low decision delays have advantages in decision-

directed tracking of the chaanel estimator due to the problems associated with estimating an 

old CIR, especially at higher fade rates — see Chapter 5. 

This chapter describes the operation of the BDFE in terms of a treUis perspective rather 

than a geometrical perspective [43, 69] in order to draw similarities with the Viterbi algo­

ri thm. The performance of the Bayesian equaliser is compared with that of the conventional 

MLSE under conditions of perfect CIR estimation and an analysis of the symbol error rate 

performance of the Bayesian equaliser using erroneous channel estimates is undertaken both 

analytically and numerically. The objective is to ratify whether the Bayesian equaliser is less 

prone to the effects of channel estimation errors than the conventional MLSE. I f this is found 

to be the case, then i t provides a greater confidence in the results given in [63]. These results 

are examined for validity in slightly different system and channel models by simulation and 

comparison of the SER performance of the Bayesian and MLSE equalisers. Positive results 

would prompt the development of a hybrid version of the MLSE and Bayesian equaliser; the 

Bayesian equaliser may be used to produce improved quality symbol estimates with a low 

decision delay for channel estimator tracking followed by an MLSE style trellis to provide 

final symbol estimates. 
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6.1 Bayesian Equaliser Techniques 

The operation of the BDFE firom a geometrical / Radial Basis Function (RBF) viewpoint 

is detailed in Chen et al [43] — see Section 3.5.2. The equaliser and detector form symbol 

estimates by choosing the most probable symbol given m received samples — the received 

signal vector, r(A;). The combined CIR and the transmitted symbol alphabet are used to 

calculate the received signal states, 

r'^k) ( i = 0 , . . . , ( M ^ + i - l ) ) 

i.e. the set of received signal samples in the absence of noise. M is the size of the transmitted 

symbol alphabet and L the channel memory (assuming a T^-spaced CIR model). Sequences 

of m received signal states are grouped together forming m-dimensional received signal state 

vectors, (A;), (or 'centres' in RBF terminology), with each one corresponding to a particular 

sequence of the transmitted symbols, 

[x{k), x{k-l),---,x{k-L-m + 1)] 

resulting in a total of M^"*""* received signal state vectors. Each vector is associated with 

an individual symbol in the sequence so as to give a fixed equaliser decision delay, d, corre­

sponding to a distinct mapping 

r!j{k){x{k - d) = xi) (/ = 1 , . . . , M ) . 

The received signal vector, r(A;), corrupted by noise, is used to form a metric for each of the 

M symbols in the transmitted alphabet by calculating the probability that the symbol was 

transmitted given the received signal vector, 

P{x{k - d) = xi\T{k)) l = l,...,M. 

This probabihty is formed by calculating the probabihty of receiving the received signal vector 

given each 'centre' and summing the values for all centres mapping to the particular symbol, 

{x{k — d) = xi); individual probabilities are formed using a knowledge of the noise mechanism 

(usually an additive white Gaussian process), 

P{x{k-d)=xi\T{k)) « X^p(r;(A;) |r(A;)) (6.1) 
j 

oc Y.Pn{m-r!j{k)) (6.2) 

/ | | r ( f c ) - r ; ( f c ) f \ 
°^ L ^ ^ p ^ — (^-3) 
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Here pn (•) is the noise probability density function and 

where n{k) is the vector of noise samples and CT^ is the noise variance. The summation is 

performed for all values of j such that r!j{k) {x{k — d) = xi). This metric generating 

process forms the a posteriori estimate of the transmitted symbol, x{k- d). 

The number of terms in the summation (Eqn. 6.3) may be reduced by the use of decision 

feedback. Previous symbol estimates are formed into an n-dimensional vector, 

[x{k-d-l),...,x{k-d-n)] 

and only the received signal state vectors which have a corresponding subsequence in their 

asscociated symbol sequences, [x{k),x{k — l), - • • ,x{k—L—m+l)], are used in the summation 

in Eqn. 6.3. n is chosen such that the oldest symbol estimate in the feedback vector matches 

the oldest symbol in the received signal state vector's symbol sequence. Thus 

d + n = L + m — I 

=> n = L + m - d - 1 (6.4) 

The detector finally selects the largest metric, indicating the highest a posteriori proba­

bility, and outputs the corresponding symbol estimate, x{k - d). 

6.1.1 Tre l l i s Interpretat ion of the Bayes ian Equal i ser 

The trellis perspective of the BDFE splits the m-dimensional received signal state vectors 

into paths through an m-stage trellis. Figure 6.1 shows the treUis of received signal states 

for the case M = 2, L = 1 and m = 4, resulting in a total of ^m.M^"''^^ states with each 

stage of the trellis having M^"*"^ states. A set of m states, one from each stage, constitutes 

the received signal state vector indicated as a path through the trellis. The sequential nature 

of the transmitted symbols results in restrictions in the transitions between states in one 

stage and the next with each state having M arrival paths and M exit paths. Thus there 

are M ^ + ' " valid paths through the treUis corresponding to the M^"*' '" received signal state 

vectors. 

At time t = (A; —m +1) there are received signal states which map to the same symbol 

estimate, x{k — d). Each of these states have M ' " ~ ^ paths emmanating from them resulting 

in a total of M^"^"*"^ paths / received signal state vectors corresponding to a distinct symbol 

estimate. The o posteriori symbol decision metric is formed firom metrics associated with 

each of these paths. The dotted lines in Figure 6.1 indicate the M^~^ valid paths firom a 
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r" k-m+1) 

V 
m stages 

> M*-"̂ ^ states/stage 

Figure 6.1: Trellis representation of the BDFE. In this example M = 2, L = 1 and m = 4. 
The dotted lines represent paths leading firom a single received signal state. 

single received signal state at time t = (k - m + 1). The path metric for path j is formed 

firom the m received signal samples and the m received signal states corresponding to the 

received signal state vector, i^j{k), 

m - l 

Xjik) = Y:\r{k-p)-r',{k-p)\^ 

= ||r(A;)-r;(A;)||2 

(6.5) 

(6.6) 

which corresponds to the square Euclidean distance between the two vectors in the geomet­

rical interpretation of the BDFE. The path metrics are then combined as in Eqn. 6.3 to give 

the symbol decision metric. 

Setting m = (L -I-1) ensures that the received signal samples used in the decision metric 

calculation (r( /c) , . . . ,r{k — m -t-1)) contain all the energy firom the symbol x{k — L). The 

decision delay d = (m — 1) is adopted so that when m = {L + \) & decision is made on 

x{k — d) = x{k — m + 1) = x[k — L). The choice of m = [L + l) is not imperative; indeed the 

channel memory is not usually known a priori. The selection of d = (m — 1) results in the 

decision metric selecting the first symbol in the associated sequence of state r'(A; — m -I-1) — 

the state firom which the paths start. 

Decision feedback in the BDFE reduces the number of path metrics used in the decision 

metric calculation. The feedback vector of length n = {L + m — d — \) contains symbol 

estimates, 

[x{k-d-l),...,x{k-d-n)] 

which, substituting for n, d = (m - 1) and m = (L - f 1) is equal to, 

x{k-m),...,x{k-2L)]. 
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Only one received signal state for each symbol estimate has, at t = (A; - m -I-1), an associated 

symbol sequence containing this subsequence. Thus the decision metrics for each symbol 

estimate are formed from the metrics of paths starting at a single received signal state. 

This treUis interpretation of the BDFE has similarities to the Viterbi implementation 

of MLSE equalisers. The BDFE has M^"*"^ states per trellis stage as opposed to in 

the Viterbi algorithm but the transition metrics are calculated in the same manner in both 

algorithms. The path metrics differ in that the BDFE sums the m most recent transition 

metrics whereas the Viterbi path metrics are the sum of all the transition metrics on the 

path since a reset. The concept of siurvivor paths does not exist in the treUis interpretation 

of BDFE and the decision metrics are formed fi-om a function of a number of path metrics. 

6.2 Analysis of Channel Estimation Errors on B D F E Per­
formance 

The MLSE was shown to have a better performance than the BDFE for non-fading channels 

in Chen et al [43] but the relative performance between the two for fading channels is less 

certain. One possible reason for a potential increased performance of the BDFE is that i t may 

be more robust to channel estimation errors. The BDFE's decision metric, formed from a set 

of path metrics rather than a single path metric, may be able to compensate for inaccurate 

channel models. 

An estimated CIR, h{k) is used in both equaUsers to form estimates of the received signal 

states, 
f'i{k) = h^{k)x{k) (6.7) 

where x(A;) = [x{k), x{k — 1), • • •, x{k — L)]. The channel estimate is constantly changing as i t 

tries to track the fading channel and so the set of ideal received samples varies from sample 

to sample. The errors in r^(A;) wil l be mutually correlated even for mutually imcorrelated 

errors in the channel tap estimates and are almost certainly correlated in time [59]. Any 

errors in the channel estimate wiU produce errors in the path metrics and the BDFE may be 

less susceptible than the MLSE to such errors. 

The impact of channel estimation errors on the MLSE equaliser performance whilst op­

erating on a slowly fading channel was investigated by Dzimg [70] but did not consider the 

effects of decision-directed tracking. The following sections analyse the error mechanisms in 

the BDFE and compare the performance with the MLSE. 
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6.2.1 Performance with no Channel Estimation Errors 

The performance of the MLSE and B D F E for varying decision delays and equaliser structures 

whilst using perfect channel estimates are compared. The simulations were run to investigate 

the effects of low decision delays on the symbol error rate performance. Such low decision 

delays may be used to advantage for the purposes of decision-directed tracking in the channel 

estimator. 

In addition to the standard MLSE and B D F E , a variant of the MLSE, the 'windowed'-

M L S E , (W-MLSE), has been designed and simulated to demonstrate the effects of using more 

than one path metic to form the decision metric when the path metrics are formed using a 

limited number of received signal samples. The structure of the W-MLSE is the same as the 

M L S E except that the path metrics are formed using only the last m received signal samples 

instead of all samples since a reset. Each received signal state still has only one smrvivor path 

and the mapping from received signal state to transmitted symbol remains the same. This 

mechanism may be viewed as a sUding-windowing of the path metric. Both the B D F E and 

W - M L S E form their respective decision metrics using only m received signal samples. As the 

window length of the W-MLSE is increased the S E R performance will approach that of the 

MLSE. 

The fading channel has the same characteristics as that used in Section 5.3.1 with three 

Ts-spaced equipower Rayleigh fading paths. The paths fade with a classical Doppler power 

spectrum with fd = ±100Hz. The data is QPSK modulated at lOOkBaud and no transmit / 

receive filters have been used. As the three Tj-spaced true CIR is being used as the channel 

estimate, no frame structure in the data needs to be employed. Complex white Gaussian 

noise corrupts the received signal as normal. The simulation parameters are summarised in 

the tables below. 

Channel parameters 

L Path delay Doppler spread 

2 Ts Classical, fd = ±100Hz 

System parameters 

Tx. /Rx. filters Frame structure Decision delay Chaimel estimator 

taps 

none n/a 0,1,2 3 n/a 

The single decision delay version of the MLSE is used and the B D F E is configured such that 

m = (d+l) and n = ( L - | - m - ( i - l ) = 2 o r n = 0to simulate the performance with and 

without decision feedback. In the case of decision feedback the actual symbol estimates were 

used in the feedback delay line rather than the idealised situation of using perfect symbol 

estimates. The B D F E uses a perfect knowledge of the receiver noise power to form its decision 
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metrics (Eqn. 6.3) — the degradation due to incorrect power estimates is small for errors in 

the range ±5dB. The W-MLSE has a metric window of length WL = m and has a decision 

delay, d = (m - 1). 

The simulations compare the S E R vs. SNR for MLSE, W-MLSE and B D F E equalisers 

whilst using an undelayed perfect knowledge of the CIR. Figures 6.2, 6.3 and 6.4 show the 

results for decision delays of 0, 1 and 2 symbol periods respectively. Prom these curves it cem 

be seen that the MLSE consistently outperforms the B D F E and W-MLSE even with very 

small decision delays. The MLSE's symbol estimate is based on many more received samples 

than the B D F E or W-MLSE even though the path is not traversed to a great depth whilst 

determining the symbol estimate. In these cases the paths will not have converged as the 

truncation path length is so small. The B D F E curves show that decision feedback improves 

performance which indicates that the process of forming a decision metric from a laxge set of 

paths is not nessecarily advantageous. In Chen et al [43] this effect was given the geometrical 

interpretation that the minimimi square Euclidean distance between sets of received signal 

states is increased using decision feedback. The B D F E with decision feedback has an improved 

SER compared to that of the W-MLSE demonstrating the benefit of using more than one 

path through the trellis to form a decision metric based on a small number of received 

signal samples. However, the absence of decision feedback causes a significant performance 

degradation in the B D F E and this effect increases as more received signal samples are used 

to form the symbol estimates. The quahty of the BDFE's symbol estimates becomes worse 

than that of the W-MLSE. 
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Figmre 6.2: M L S E / B D F E performance using true channel estimates. Decision delay = 0. 
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Figure 6.3: M L S E / B D F E performance using true chaimel estimates. Decision delay = 1. 
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Figure 6.4: M L S E / B D F E performance using true chaimel estimates. Decision delay = 2. 
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6.2.2 Analysis of Channel Estimation Error Effects 

This section examines the effect of channel estimation errors on the probabihty of error of 

the B D F E . The nonUnear nature of the equaliser makes an analytical solution difficult, at 

least, and will depend on the cross-correlation and auto-correlation of the channel estimation 

errors. After an initial analytical derivation for the simplest case, numerical techniques are 

explored leading to Monte-Carlo methods for approximating the symbol error rate. 

The simplest case for analysis purposes is to consider a binary PAM data source being 

transmitted through an ideal channiel of known phase but with unknown gain and corrupted 

by additive white Gaussian noise (Fig. 6.5). A channel estimator provides an estimate of 

the impulse response (a single impulse) and feeds it to the B D F E which, together with the 

received signal sample, estimates the transmitted symbol. The B D F E is configured to use 

a single received sample (m = 1) and a decision delay of d = 0. Decision feedback is not 

relevant in this case as the C I R is a single impulse (L = 0) and so n = 0. Errors in the 

channel estimate cause errors in the B D F E decision metrics which may subsequently cause 

symbol estimation errors. 

The transmitted symbol, {x{k) 6 {-f-1,—1}), is passed through the channel, H{z) = ho, 

giving a received signal state, r'{k) = hQ{k)x{k), which is corrupted by noise to form the 

received signal sample, r{k) = ho{k)x{k) + n{k). The time indicies may be dropped for 

convenience. The B D F E forms two decision metrics, /+i and / _ i corresponding to the 

transmitted symbols +1 and -1 respectively: 

(6.8) 

(6.9) 

where a is a positive constant, <̂  are the square EucUdean distances between the 

received signal sample and received signal states and p is an estimate of 2a^. Figure 6.6 

shows the notation used in the derivation. The points marked ' x ' are the received signal 

states and the point marked ' Q ' is the actual received signal sample. The additive noise 

is either no, given a +1 was transmitted, or ni, given a —1. The estimate of the channel 

gain, ho, has an associated error, e, which results in the B D F E assiuning a channel gain of 

(ho + e). The estimated received signal states are marked ' • '. Thus the Euclidean distances, 

as measmred by the B D F E , have an error q̂ e. 

The B D F E will produce a symbol estimation error if 

(/+: < / _ i AND / = ho) OR (/i < / _ i AND r' = -ho). (6.10) 
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x(k) {+1,-1} 

• 

Figure 6.5: System and channel model {L = 0) used for the theoretical analysis. 

• X 

no 

X • O 
r(k) 

Figure 6.6: Definitions of signals for L = 0. 

Therefore the probability of a symbol error is 

Pe = P(/+i < / - i , r ' = ho) + P ( / - i < Uur' = -ho) (6.11) 

as the events (r' = ho) and (r' = —ho) are mutually exclusive. 

The characteristic of the exp(-) function allows substitution of /+i and / _ i as, if /+i < / _ i 

then > rff and if / - i < /+i then <ff > c :̂ 

=»Pe = P{4>dlr'= ho)+P{dl>dlr'= -ho) (6.12) 

= P{dl > dl\r' = ho)P{r' = ho) + P{dl > dl\r' = -ho)P{r' = -ho) (6.13) 

= ^Pidl>dl\r' = ho) + \pidl>dl\r' = ~ho) (6.14) 

as P(r' = ho) = P{r' = —ho) = ^ for independent, identically distributed transmitted 

symbols. The first term of Eqn. 6.14 may be expanded thus: 

Given r' = ho, then r = ho + no and 

di = r -{ho + e) 

= no - e 

d2 = r - {-ho - e) 

= no + 2ho + e 

(6.15) 

(6.16) 
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<= 0 

Figure 6.7: Classification regions for a single path channel with gain ho = 1.0. The darker 
shaded areas result in errors and the probability of error is obtained by integrating the pdf 
over these regions, n is the noise variable and e the channel estimation error variable. 

Therefore 

do = riQ + e^ - 2noe 

d\ = nl + 4/io + + 2noe + 4/iono + Ahoe 

(6.17) 

(6.18) 

and 

P{dl > dly = ho) = P(/io + noe + hom + ho<0) (6.19) 

This inequality may be split into two parts (Figure 6.7 shows these regions graphically): 

P{d^ > dly = ho) = P(e < -ho,no > -ho) OR P(no < -ho,e > -ho) (6.20) 

These two events are mutually exclusive and, assuming the noise and channel estimator error 

are independent: 

P{dl > d j y = ho) = P(e < -ho)P{no > -ho) + P(no < -ho)P{e > -ho). (6.21) 

Assuming e and no have Gaussian distributions with means /Xg = = 0 and variances o-g 
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Figure 6.8: Comparison of theoretical and nmnerical solutions for the SER. 

and al respectively, Eqn. 6.21 may be written: 

.<.S>^,. = M = < | ) . o ( ^ ) - 2 a ( | ) « ( ^ ) (6.22) 

The second term of Eqn. 6.14 may be expanded in a similar manner leading to the same 

expression for P(di > c^|r' = -ho) as Eqn. 6.22. The two expressions may be combined into 

Eqn. 6.14 to give a final expression of the probability of error: 

(6.23) 

Figure 6.8 confirms this expression by comparing the crnrve with results from a Monte-Carlo 

based simulation. The upper curve shows the SER for = 0.316228 (-5dB relative to the 

received signal power) and the lower curve for o\ = a^. The simulated points are in close 

agreement with those predicted by Eqn. 6.23. 

In reality the assumption that e and n are mutually independent is invalid as the chaimel 

estimation error will be dependent on the receiver noise. However, the method by which Pg 

is derived may still be used provided that a description of the joint probability, P{e,n) is 

available. 

The values of channel estimate errors and noise samples for which classification errors 

occur become more complex as the number of channel paths increase and have real and 

imaginary components. An increase in the size of the transmitted symbol set and the nimiber 
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Figure 6.9: Definitions of signals for L = 1. 

of received signal samples (m) used by the B D F E further complicates the analytical solution, 

if any. To demonstrate this, the next most simple case of a 2 real path channel (L = 1), 

H{z) = ho + hiz~'^, and BPSK data {x{k) E {-1-1,-1}) is considered. The received signal 

states rd = {ho + hi) and r[ = {ho - hi) map to the symbol a; = +1 and = {-ho + hi) and 

r'^ = {—ho — hi) map to the symbol x = - 1 . The B D F E is configured with m = 1, d = 0 and 

n = 0 and uses a 2 tap chaimel estimator to provide estimates of the path gains: ho = ho + CQ 

and hi = hi + ei. The decision metrics are given by: 

/ + i = « 

/ - I = « 

exp — ^ + exp — i 
V ^ / \ P . 

exp — - -Fexp — -
\ P \ P , 

The signal terminology is shown in Figure 6.9. 

The probabiUty of error is given by, 

Pe = P{Ui<S-i,T' = r'o) 

+P{Ui<U,r' = r[) 

+P{f.i<Ui,r' = r'2) 

+P{f.i<Ui,r' = r',) 

(6.24) 

(6.25) 

(6.26) 

since the received signal states are mutually exclusive. The mapping of the inequaUties in 

Eqn. 6.26 to the corresponding inequalities in terms of do, di, da and d^ is not straightforward 

due to the exp(-) function. A graphical representation of the problem is shown in Figure 6.10 

which shows the regions in which the B D F E gives a symbol estimation error for the first term 

in Eqn. 6.26, i.e. when r' = r'o and n = no. 
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Figure 6.10: Classification regions for a 2 path channel with gains ho = 1.0 and hi = 0.5. The 
darker shaded areas result in errors and the probability of error is obtained by integrating 
the pdf over these regions, eo and ei are the channel estimation error variables and n the 
noise variable. 

In light of these assumptions and problems, developing further analytical solutions was 

deemed to be of limited practical use. Numerical solutions to the problem were viewed 

to be able to provide a more efficient way to understand the effects of erroneous channel 

estimates. By determining and quantising the regions which result in classification errors, 

the probability density functions for the variables may be integrated numerically over these 

regions to give an estimation of the probability of error. Joint probability density functions 

may be included with less difficulty than in the analytical method. The accuracy of this 

method depends on the degree of quantisation of the regions and for typical examples with 

three complex channel paths and a noise variable, the integration over a 7-dimensional space 

has a large computational burden. Alternatively, standard Monte-Carlo techniques may 

be used to estimate the error probability by averaging the number of classification errors 

measured over the duration of a simulation. 

The three methods (analytical, numerical integration and Monte-Carlo) were compared 

for a single path channel as in Section 6.2.2 and each gave consistent results given sufficiently 

fine quantisation in the numerical integration technique and simulation duration in the Monte-

Caxlo technique. In view of the difficulty of the analytical method and of the computational 

burden of numerical integration, Monte-Carlo techniques have been used in the subsequent 

simulations to find an approximation to the probability of symbol error. 
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6.2.3 S E R for Time-invariant Minimum and Non-minimum Phase Chan­
nels 

The results from Section 6.2.1 indicate that the Bayesian equaliser has a poorer performance 

than the M L S E whilst using a perfect knowledge of the ISI mechanism. The channel simulated 

was time-varying and so will have had an ensemble of instantaneous minimum and non-

minimum phase channels. Such instantaneous channels have different mappings from the 

received signal states, r'{k), to transmitted symbols, x{k). For instance, the channels Hi(^) = 

0.447 + 0.894z~^ and H2{z) = 0.894 -I- 0.447z~^ have the same veJues of received signal 

states but an opposite mapping to transmitted symbols. Thus channel Hi{z) results in 

r'{k) = —0.447 for a transmitted symbol sequence [x{k)x{k — 1)] = [-1-1 - 1] whereas channel 

H2{z) has the same value of the received signal state for a transmitted sequence [—1-1-1]. 

The Bayesian equaliser, maintaining the logical transitions between received signal states 

from one stage in the treUis to the next, produces different transition, path and decision 

metrics for the two channels despite the same set of values of the received signal states. This 

section investigates whether the phase characteristics of the channel influences the Bayesian 

equahser's S E R significantly whilst operating with an estimate of the CIR. 

Simulations were performed on a number of 2 real, symbol-spaced path channels with path 

gains of ho and hi respectively. The values of these gains were restricted such that {hi + hi = 

1) to ensure a constant channel power gain. QPSK data was passed through the channel and 

corrupted by complex additive white Gaussian noise with component powers cr̂  = 0.1 to give 

an SNR of lOdB. The channel estimates were derived using the true channel taps corrupted 

by real additive white Gaussian noise with a power of lOdB relative to the received signal 

power prior to the addition of receiver noise. The system and chaimel characteristics are 

summarised as follows: 

Channel parameters 

L Path delay Doppler spread 

1 Ts time-invariant 

System parameters 

Tx. /Rx. filters Frame structure Decision delay Channel estimator 

taps 

none n/a 0,1 2 n/a 

Figure 6.11 shows the results for an MLSE equaliser with no decision delay, a B D F E with 

m = l , d = 0, n = l and n = 0 and a W-MLSE with d = 0 and a window length, WL = 1. 

The curves show that there is very little difference between the MLSE and B D F E with decision 

feedback but the W-MLSE and B D F E (n = 0) have poorer performance for minimum phase 

channels. 
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Figure 6.12 shows the performance for the equalisers with decision delays corresponding 

to one symbol period. The M L S E has the lowest symbol error rate for both minimum and 

non-minimum phase chaimels. The B D F E with decision feedback (n = 1) has an inferior 

performance for non-minimum phase channels and is outperformed by both the W-MLSE 

and B D F E n = 0. For minimum phase channels the relative performances are reversed and 

the B D F E n = 0 has a higher error rate than the W-MLSE. 

Further simulations were carried out on a fading channel with three complex, symbol-

spaced equipower paths and the symbol error rates were plotted as a function of SNR. The 

system and channel configurations were the same as used in Section 6.2.1 except that the 

maximiun Doppler shift of the paths was fd = ±200Hz. The fading channel produces various 

minimum and non-minimum channels allowing the symbol error rate to be estimated over 

an ensemble of channel types. The Doppler spread of the channel paths does not affect the 

results significantly as long as the simulation averages over a significant number of fades. 

The channel estimates were produced by adding complex white Gaussian noise (with power 

equal to the receiver noise power) to the true channel taps. The equalisers had decision 

delays of two symbol periods and the BDFEs and W-MLSE made their decisions based on 

three received signal samples. Figiure 6.13 shows the SER curves which demonstrate that 

the B D F E n = 2 slightly outperforms the W-MLSE at higher SNRs but both are marginally 

inferior to the MLSE. The B D F E n = 0 error rate is again the highest for all four equalisers 

compared. 

The cmrves in Figure 6.13 may be compared to those in Figiure 6.14 which show the results 

of the three equalisers operating on the same channel but using individual, 3 Tj-spaced tap 

channel estimators. The estimators were adapted using the LMS algorithm with = 0.1 and 

operated in a decision-directed tracking mode with a 100:20 frame structiure. The relative 

performance of the equalisers is similar with the B D F E n = 2 performing sUghtly worse than 

the MLSE. Both the W-MLSE and B D F E without decision feedback have significantly higher 

SERs especially at larger SNRs with the B D F E n = 0 having the highest SER. 
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6.2.4 S E R for Fading Channels 

The results of the preceeding sections have indicated that the Bayesian equaliser does not 

outperform the MLSE either when accurate CIR information is available or when the C I R 

estimate is derived from the actual CIR corrupted by AWGN. The process of forming a 

decision metric from a set of path metrics rather than from a single path metric is beneficial 

when restrictions are placed on the number of received signal samples from which the metrics 

are derived but only when decision feedback is employed in the B D F E structmre. This section 

presents results of simulations of the SER performance of Bayesian equalisers operating with 

a channel estimator configmred in the modes described in Section 5.3.1. The system and 

channel model configurations are as follows: 

Channel parameters 

L Path delay Doppler spread 

2 Ts Classical, fd = ±200Hz 
±400Hz 

System parameters 

Tx. /Rx. filters Frame structure Decision delay Channel estimator 

taps 
A* 

none 100:20 2 3 0.1 

The B D F E was operated both with and without decision feedback (n = 2 and n = 0) and 

with m = 3 and d = 2. 

Figures 6.15 and 6.16 show the S E R vs. SNR for the B D F E with n = 2 and n = 0 

respectively whilst equalising the channel with fd — ±200Hz. The channel estimator affects 

the S E R in a similar manner to the MLSE (see Chapter 5). Channel tracking sigmficantly 

improves the quality of the symbol estimates for both equalisers and incorrect estimates 

have a pronounced adverse effect on the tracking and SER. The effects of decision delay are 

marginal at best as a result of the low decision delay employed by the equaliser {d = 2) — 

one of the beneficial properties of the B D F E [43]. The absolute performance of the B D F E 

with n = 0 is signfficantly worse than the B D F E with decision feedback. Comparing the 

decision-directed tracking curves between figures, decision feedback improves the SER by 

around a factor of 2 at an SNR = 15dB (logio(A SER) = 0.3). 

Figiues 6.17 and 6.18 show the results for the two equalisers equalising the fd = ±400Hz 

channel. Again the equalisers show similar characteristics with both being sensitive to errors 

in the C I R estimate caused by incorrect symbol estimates being used during channel tracking. 

The effect of decision delay is more noticable as the channel has faster time variations causing 

the channel to have changed more within the d = 2Ts decision delay period. The B D F E 

n = 0 again performs worse than the B D F E with decision feedback but the degradation 
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is less maxked with the BDFE n = 2 having an SER « 1.6 times lower than the n = 0 

configuration at an SNR = 15dB. 

6.3 Summary 

This chapter has highlighted the operation of the Bayesian decision feedback equaliser from a 

trellis perspective. The process of forming the decision metric is shown to involve a function 

of a set of path metrics through the trellis. Each path metric is formed in a similar manner to 

path metrics in the Viterbi algorithm except that the metrics are formed from a much smaller 

set of received signal samples. The combination of the path metrics to form the decision metric 

is based on maximum a priori methods but is an approximation as the received signal states 

and the noise power are not fuUy known. The BDFE algorithm is relatively insensitive to 

the estimate of the noise power compared to the estimates of the received signal states. 

The BDFE is shown to produce poorer symbol estimates than the MLSE whilst using 

the true channel impulse response to generate perfect estimates of the received signal states, 

confirming results in papers by Chen et al [43, 63]. Decision feedback reduces the nmnber 

of path metrics used to form the BDFE's decision metric and this improves the SER perfor­

mance rather than reducing i t . The feedback restricts the paths used in the decision metric 

calculation to those paths emanating from a single state. This SER characteristic extends to 

situations where the equaliser uses channel estimates rather than the true CIR to generate 

the received signal states. Thus increasing the number of paths does not neccessarily increase 

the robustness to channel estimation errors. However the use of more than one path does 

increase the performance when the path metrics are formed from a small nimiber of received 

signal samples. A 'windowed' version of the MLSE which forms its decision metric from a 

reduced number of received signal samples has been developed to demonstrate these benefits. 

An analytical approach to calculating the probability of error of the equaliser whilst using 

erroneous channel estimates has been attempted resulting in the derivation of an expression 

for the most simple case of a single path channel. The results obtained have been confirmed 

through simulation. The extension of this technique to more realistic scenarios has not been 

undertaken due to the difficulties in describing the decision regions of the BDFE which are 

formed from a sum of exponential fvmctions. Additionally there are difficulties in describ­

ing the noise and channel estimation error probability distributions as these depend on the 

precise channel estimation technique and the noise and estimation error variables are not 

independent. 

As a result of the problems associated with the analytical approach, simulation of the 

BDFE has been used to ratify whether or not the BDFE is less sensitive to channel estimation 

errors. The effects of minimum and non-minimum phase channels on the SER of the equalisers 
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has been investigated with results indicating that the BDFE does not improve over the MLSE. 

Fading channels have been simulated to generate results for an ensemble of minimum and 

non-minimum phase channels using CIR estimates derived from noisy versions of the true 

CIR and from LMS adapted, decision-directed channel estimation. These simulations have 

produced similar results. 

Finally the BDFE and MLSE have been compared for channels similar to those in Chen 

et al [63]. The BDFE does not outperform the MLSE and suffers from similar problems 

in regard to the quality of the channel estimates affecting the SER. This is in contrast to 

the final results presented by Chen [63] which showed dramatic improvements obtained by 

the BDFE wi th decision feedback. The benefit of using more than one path metric to form 

symbol estimates is evident only when a small number of received signal samples are available 

but increasing the number further (BDFE without decision feedback) causes a deteriation in 

the SER. 

The development of a hybrid version of the BDFE and MLSE has been not been continued 

due to the lack of performance improvement of the BDFE over the MLSE, especially with 

low decision delays. Thus any potential benefits of using a BDFE section to provide symbol 

decisions for the channel estimator and an MLSE section for the final symbol decisions wil l 

be neutralised by the insufficient performance of the BDFE section. 

The next chapter examines the use of multiple channel estimators applied specifically to 

the MLSE. Channel estimation is at the heart of the reasons for poor equaliser performEince 

in both the MLSE and BDFE operating on fading and frequency selective channels. A 

method of improving the channel estimation, particularly in tracking the channel during a 

data bin-st, is likely to have a beneficial effect on the SER. Schemes which are more robust 

to symbol estimation errors are of particular interest given the performance improvements 

of the equalisers operating with accmrate transmitted symbol information, as shown, in this 

chapter and Chapter 5. 
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Chapter 7 

Multiple Channel Estimator 
Techniques 

The application of multiple channel estimators to MLSE algorithms is considered in this 

chapter. The concepts of this technique together with novel simplifications are explained and 

an evaluation of the relative complexity of the algorithms is undertaken. The algorithms' 

performances are compared for a number of channels from a generic fading and firequency-

selective test channel to HF channels and land mobile radio channels. 

A feature of the multiple channel estimator (MCE) algorithm is that i t makes symbol 

estimates wi th zero decision delay for the purposes of channel estimation and, rather than 

making hard decisions on individual symbols, the technique allows previous symbol estimates 

produced for the channel estimators to be updated. The result is that the problem of estimat­

ing the current channel impulse response from old symbol estimates is lessened. The 'soft' 

decision feature reduces the detrimental effects of incorrect symbol decisions on the tracking 

capabilities of the LMS adaptation algorithm. 

The use of a set of channel estimators provides an element of 'diversity' in the estimates 

and only the better estimates are used to produce symbol decisions. The effect is that poor 

channel estimates, perhaps resulting firom incorrect symbol estimates, are superseded by those 

which result in a higher 'performance index'. 

The following section explains the operation of the MCE algorithm and Section 7.2 exam­

ines novel methods of simplifying the algorithm with the aim of reducing the computational 

complexity. Section 7.3 examines the computational complexity of the MCE, MLSE and 

DDFSE algorithms and Section 7.4 presents the results of simulations of the performance of 

the MCE algorithm together with the new variants developed. 
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7.1 Multiple Channel Estimator Algorithm 

A method of improving the performance of the MLSE via the use of multiple channel estima­

tors was given by Kubo et al [71] and Raheli et al [72]. These techniques employ a separate 

channel estimator for each state in the Viterbi trellis and update the channel estimators using 

zero decision delay symbol estimates. 

The multiple chaimel estimator (MCE) technique differs from the conventional MLSE in 

that the transition metrics linking states in one stage of the treUis to the next are formed 

conditional on distinct symbol sequences and channel estimates. In the standard Viterbi 

trellis implementation of the MLSE, each state in the trellis corresponds to a distinct symbol 

sequence, 
[x{k-l),---,x{k-L)] 

where x{k — i) are the transmitted symbols and L is the channel memory. Given an M 

transmitted symbol alphabet, transition metrics are formed for each of the M paths arriving 

at a given state, one from each state with the same symbol sub-sequence, [x{k — l),---,x{k — 

L + 1 ) ] and wi th the same value of x{k). The transition metrics are formed from the squared 

Euclidean distance between the received signal sample, r{k), and the estimated received signal 

states, r'{k): 

X = \r{k)-r'{k)\\ (7.1) 

The estimated received signal states are given by: 
L 

f'{k) = Y,hiil^-d-l)x{k-i) (7.2) 
1=0 

where x{k — i) are given by the symbol sequence corresponding to the transition and hi{k -

d — 1) are the channel tap estimates from the single, common channel estimator with a delay 

of d symbol periods. The channel tap estimates are used as an approximation to the current 

channel taps, hi{k). 

The MCE technique replaces hi{k - d - I) in Eqn. 7.2 by hi{k - 1) where 0 < j < 

( M ^ - 1). Thus the algorithm has a separate channel estimate for each of the states in 

the trellis and the channel estimates are formed without a delay. A l l transitions departing 

from state j use channel estimate ^^(A; — 1), state f s corresponding symbol sub-sequence 

[ x{k — 1),• • • ,x{k — L) ] and the symbol x{k) to form the transition metrics. 

The path metrics of the M transitions arriving at each state (formed from the addition 

of the transition metric and the departing state's metric) are compared and the smallest is 

selected as the survivor transition as per the Viterbi algorithm. The survivor's path metric 

becomes the state's metric at the next iteration of the algorithm and the charmel estimate 

from the survivor's departing state replaces the contents of the state's channel estimator. 
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Thus the more probable symbol sequences and channel estimates are propagated to the next 
stage of the trellis. The state's channel estimate is then updated by applying the LMS 
or RLS adaptation algorithm. I n the case of the LMS algorithm the transition metric of 
the survivor (i.e. the error signal) is tised together with the transition's symbol sequence, 
[ x{k), • • • ,x{k - L) ] and a stepsize parameter to update the channel estimate. The 'soft' 
decision feature of the MCE algorithm comes firom the feedback of the smrvivor's symbol 
sequence to the state's channel estimator rather than a single symbol. Thus the symbol 
estimates used to update a particular channel estimate at one iteration do not necessarily 
correspond to the time shifted symbol estimates at the next iteration. However, i t is noted 
that the symbol sequence used to update the channel estimator corresponding to a particular 
Viterbi state wi l l be the same, except for the symbol x{k — L), but the channel estimate 
of this estimator wi l l have been replaced by the estimate from the chaimel estimator of the 
survivor's departing state prior to being updated. 

The symbol sequence feedback mechanism allows a simplification in the adaptation of 

the channel estimators. In order to form the channel estimator's error signal, ej{k), the 

estimated received signal sample, Fj(A;), must be calculated and subtracted from the received 

signal sample, r(A;). This error signal is precisely the same as that used to form the survivor's 

transition metric in Eqn. 7.1, i.e. 

ej{k) = r{k)-r'(k) 

= r{k)-rj{k) (7.3) 

as the estimated received signal state, f i k ) , is the same as the estimate of the received signal 

sample produced by channel estimator j. 

The MCE algorithm leads to the combined most probable symbol sequences and channel 

estimates being propagated to the next stage of the Viterbi algorithm as the metrics are 

formed conditional on both a symbol sequence and a chaimel estimate. 

The application of reduced state techniques (eg. DDFSE [34]) with multiple channel 

estimators is straightforward — each reduced state has its own channel estimator and the 

transition metrics are formed using this estimator together with the state's symbol sub­

sequence and decision feedback sequence. The number of reduced states in the trelUs is given 

by M " , where 1 < u < L. The channel estimates and symbol sequences are propagated 

through the trellis in a similar manner to the MCE. Additionally, adaptation of the chaimel 

estimators is performed by the same method as the MCE. 
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7.2 Simplification of the M C E Algorithm 

This section describes a novel simplification of the MCE algorithm. For practical channels 

wi th impulse responses spanning several symbol periods and with multi-state modulation 

schemes such as QPSK, the number of channel estimators becomes laxge and the computa­

tional burden in updating these estimators via LMS or RLS adaptation algorithms is severe. 

The use of delayed decision-feedback sequence estimation (DDFSE) [34] or reduced state 

sequence estimation (RSSE) [35] techniques have been suggested to reduce the MCE algo­

rithm's complexity [71, 72]. This complexity reduction method reduces the number of states 

in each stage of the trellis and thus has a corresponding reduction in the number of channel 

estimators as each state still has its own channel estimator. 

The new MCE variant proposed, the reduced-multiple channel estimator (R-MCE) algo­

r i thm, simplifies the MCE algorithm by reducing the number of channel estimators whilst 

keeping the number of states in the trellis unchanged. Thus the complexity reduction is not as 

great as with the application of the DDFSE with multiple channel estimators (DDFSE^MCE) 

but, as wil l be demonstrated in Section 7.4, the performance loss is reduced. 

I n the R-MCE algorithm the trellis states are partitioned in a precise manner and each 

partition has its own separate channel estimator. A l l transitions departing from states within 

a given partition use the same channel estimate during calculation of the transition metrics 

of the Viterbi algorithm. The remainder of the algorithm, other than the survivor charmel 

estimate propagation and the channel estimator adaptation is the same as the MCE algorithm. 

Given an M-ary alphabet and a channel with an L symbol period memory, a trellis 

consisting of M^ states in each stage is formed as usual. The proposed R-MCE algorithm 

can use M " {0 < u < L) channel estimators depending on the computation / performance 

reduction that is acceptable: the choice of u = L results in the same algorithm as described 

in Kubo et al and RaheU et al [71, 72]. The states are partitioned such that all paths 

leading to states i n a channel estimator's partition have a common symbol sub-sequence 

[ x{k), •••, x{k—u+l) ] — thus each partition has a distinct symbol sub-sequence associated to 

i t . A t each iteration of the algorithm the M " channel estimators require individual estimates 

of the symbol sequence [ x{k), • • •, x{k - L) ] in order to update their channel estimates. A 

given channel estimator's symbol sequence is derived from the most probable path to any 

one of the states in the domain of chaimel estimator. A l l candidate paths have a common 

symbol sub-sequence [ x(A;),-- • ,x{k — u + 1) ] and the selection determines the sequence 

[ x{k - u),• • • ,x{k — L) ] . In the case n = 0, the single chaimel estimator uses the most 

probable path in the whole trellis to form its symbol sequence for the channel estimate 

update. 

A n example is given for the case M = 2, Z- = 3 in Figure 7.1 which shows the mapping of 

states to symbol sequences and the partitioning of states to channel estimators for the cases 
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state symbol sequence 
number x(k-1)x(k-2)x(k-3) 

0 0 0 0 

1 0 0 1 

2 0 1 ' 0 

3 0 1 1 

4 1 0 0 

5 1 0 1 

6 1 1 0 

7 1 1 1 

state number to channel 
estimator number partitioning 

x(k) u=3 u=2 u=1 u=0 

• • 0 0 0 0 

• • 1 0 0 0 

• • 2 1 0 0 

• • 3 1 0 0 

• 4 2 1 0 

• 5 2 1 0 

6 3 1 0 

D- 7 3 1 0 

t=k 
I 

t=k+1 

trellis stages 

Figure 7.1: Example of state to channel estimator partitioning for a binary data alphabet 
and a three symbol-period memory channel. 

u = 3, u = 2, u = l and ?i = 0. For the transitions shown and given u = 2, the incremental 

path metrics for paths (state 4-)-state 6) and (state 5^state 6) are calculated using channel 

estimator 2 and the symbol sequences [ 1,1,0,0 ] and [ 1,1,0,1 ] respectively. The incremental 

metrics for the paths (state 6-)^state 7) and (state 7->state 7) use channel estimator 3 and 

symbol sequences [ 1,1,1,0 ] and [ 1,1,1,1 ] respectively. The most probable of these four paths 

is selected and the channel estimate corresponding to this path's departing state replaces 

channel estimate 3 prior to being updated using the path's symbol sequence, error signal and 

associated adaptation algorithm (eg. LMS). For example, i f the path (state 5->state 6) is 

the most probable then channel estimate 3 at time {t = k + 1) is given by channel estimate 2 

at time (t = k) after being updated using the symbol sequence [ 1,1,0,1 ] and associated 

error / incremental path metric, \r{k) — r'(A;)p. This procediure is repeated for all channel 

estimators. 

The method of partitioning the states to channel estimators varies from the technique in 

Raheh et al [73] which selects channel estimates from the n most probable transitions and 

propagates these to the next stage of the treUis. The proposed method is computationally 

more simple as the partitioning of states to channel estimators is fixed and searching for the 

most probable transitions is not required. However, the technique in Raheli et al [73] allows 

more flexibility in the number of channel estimators employed. 
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7.3 Complexity Comparisons 

In this section, the relative computational complexity of the MCE and R-MCE algorithms 

together wi th the DDFSEl-MCE algorithm is examined in order to ascertain the additional 

load of the MCE algorithms. The calculation of the precise computational load depends 

upon the hardware used to implement the algorithm. For systems employing higher symbol 

rates the processing may be implemented using dedicated hardware (e.g. ASICs) in order to 

achieve the necessary speed. Such hardware wil l be optimised such that the word lengths wiU 

be reduced to the minimum necessary and parameters adjusted for ease of implementation. 

For instance, the LMS stepsize, fi could be restricted to ^ (n > 0) so that multiplication by fx 

can be implemented as an n-bit shift right. I f the symbol rate is lower then the algorithms may 

be implemented using software rimning on DSPs where the number and type of instructions 

have a significant influence. Most DSPs have a pipelined architectmre providing savings 

in computation times by reducing the program fetch and decode cycle times. Considering 

these implementation factors, the complexity calculations have been expressed as the number 

of additions / subtractions and multiplications required to implement the core elements of 

the algorithms. Memory management tasks, pointer updating procedures and associated 

overheads have not been included as they are implementation dependent and can often be 

performed to some extent in parallel wi th the core processing functions. Exact comparisons 

are dependent on the device's architectmre but the calculations presented should broadly 

reflect the relative complexity of the algorithms. 

There are three main areas of the MLSE / MCE equaliser algorithms in which the core 

computations reside: 

1. The computation of the M^"*"^ received signal states. This requires an (L -I-1) symbol 

sequence to be convolved with the CIR estimate, h{k), for each received signal state. 

2. The calculation of the Viterbi error metrics and the survivor selection. 

3. The adaptation of the channel estimator (s), the complexity of which depends on the 

adaptation algorithm. 

The calculations which follow assume the use of the LMS algorithm. 

The reduction of the number of channel estimators in the R-MCE algorithm decreases 

the computational load by the fact that fewer estimators need updating. Further savings 

may be made in the calculation of the transition metrics as more paths use the same channel 

estimator allowing a more efficient computation of the estimated received signal states. The 

use of reduced state techniques further reduces the computational load. 
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7.3.1 Received Signal State Computations 

The received signal state computation is a significant factor in each algorithm. I f a single 

channel estimate is to be used then efficient methods of calculating the M^"*"^ convolution 

sums exist (Eqn. 7.2). 

MLSE 

Rather than calculating each state separately, which requires (L -I-1) complex multiphcations 

and L complex additions, an M-hy-{L + 1) array may be formed with the elements of the 

array consisting of unique combinations of the product of the M-ary symbol alphabet and 

the {L + 1) components of the CIR estimate as shown in the table below. In this example a 

4 symbol alphabet and a 4 path channel is assumed. 

hoxo hixo h2Xo hsxo 

hoxi hixi h2X\ h^xi 

hoX2 hiX2 h2X2 hzX2 

hoxz hiX3 h2Xz hzxz 

Each term in the product is, in general, complex valued which requires fom: real multipli­

cations and two real additions. Thus the calculation of the matrix requires the following 

number of real multipUcations and additions: 

X : 4 M ( L + 1) 

+ : 2M{L + l) 

I f the real and imaginary components of the transmitted symbol alphabet consist of equal 

absolute valued terms (e.g. QPSK) then further savings in the calculation of the product 

terms may be made. Under these conditions no multiplications are necessary (terms with 

non-unity absolute valued terms may be scaled appropriately as the final stage of received 

signal state calculation). I f the real and imaginary components of the transmitted symbol 

alphabet are symmetrical about 0 (e.g. QPSK) then the nmnber of additions may be halved 

as the product terms of half the transmitted alphabet are the negative of the other half. I f 

the symbols are pm-ely real or imaginary valued then the number of additions required is zero 

and the number of multiplications is halved. 

Specific combinations of the product terms in the matrix are then summed to give the 

received signal states. Savings may be made in these summations by adopting a 'block' or 

a 'tree' approach to the calculations. The 'block' method is more efficient than the 'tree' 

method but is not as amenable to the R-MCE algorithm requirements and does not produce 

large savings for relatively small values of L (L < 4). Both methods improve the efficiency 

by reducing the repetition of calculation of sub-terms of the received signal states. 
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The basis of the 'block' method is to spHt the {L + 1) terms into 2-component blocks 

resulting in blocks for odd values of L or ^ blocks plus one single component block 

for even values of L. Each 2-component block requires complex additions to form the 

values of all possible combinations of the M symbols. The blocks are then formed into 

progressively larger groups by combining blocks together. This is illustrated in Figure 7.2(a) 

for M = 2 and L = 5 which shows a partial set of the symbol sequences for the received 

signal states partitioned into blocks and groups. The number of complex additions required 

for this procedure is given by: 

L+l 

M^+^ + y:I=2M^' 

Thus the total number of real additions is given by: 

M^{L + l)+2 M^' - odd L 

- oddL 

— even L 

+ : 
M^L + 2 M ^ + i + 2 Zi=2 - even L 

These totals may be halved for symbols with symmetrical components. 

The tree approach forms the received signal approach by calculating and storing common 

components in a tree fashion. The received signal states are calculated in a sequential order 

wi th common components being formed at each node in the tree starting from the 'root'. 

Figure 7.2(b) shows this structure for M = 2 and L = 5. The additions for a given received 

state are reduced by using the common component of the current and previous state as a 

starting point for the additions. Thus the computation of the received signal state corre­

sponding to the symbol sequence [000110] uses the common component of the previous state 

(with symbol sequence [000101]) which corresponds to the partial sirni resulting from the 

sub-sequence [0001]. The number of real additions required for this approach is given by: 

+ : 2Y!(i^M' 

This figure may be halved for symbols with symmetrical components. 

The following table compares the number of real multipUcations and additions for the 

two approaches (inclusive of matrix calculations) assuming M = 4 and no savings due to the 

symbol alphabet special cases. 

L Block Tree 

X -1- X + 
1 32 48 32 48 

2 48 184 48 184 

3 64 608 64 704 

4 80 2664 80 2760 

5 96 8848 96 10960 
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symbol sequence , / \ . 
Block 2 \ / Block 1 

o -0 
• -1 

received 
signal 
state 

0 00 00 00 
1 00 00 0 1 
2 00 00 1 0 
3 00 00 11 
4 00 01 00 
5 00 01 01 
6 00 01 1 0 
7 00 01 11 
8 00 1 0 00 
9 00 1 0 01 
10 00 1 0 1 0 
11 00 1 0 11 
12 00 11 00 
13 00 11 01 
14 00 T 1 1 0 
15 00 11 11 

63 11 11 11 

Block 0 Or 

Group 0 

OrOrOrOrO 

X 
•rOrO 

O 

• r O r O r O 

•rOrO 

(a) (b) 

Figure 7.2: Representations of (a) block and (b) tree methods of calculating the received 
signal states. 
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MCE / R-MCE 

In the MCE / R-MCE algorithm, many channel estimators are used resulting in variations in 

the components hiXi. This prevents the matrix approach together with block or tree addition 

being used. The complexity of calculating the received signal states can still be reduced but 

to a progressively lesser degree as the number of channel estimators increases. 

The use of M " channel estimators results in M^"*"^"" received signal states using the same 

channel estimator — see Figure 7.1. The partitioning of the trellis states to channel estimators 

results in a common term of u components corresponding to the symbol subsequence 

[x{k — 1),... ,x{k — u)] for each channel estimator. These common terms require a total 

number of real computations: 

X : 4 u M " 

+ : ( 4 u - 2 ) M " 

The number of multiplications can be halved for purely real or imaginary symbols and is zero 

for symbols wi th real / imaginary terms of the same absolute value. 

The calculation of the received signal states requires a further (L -I-1 - it) components 

which can be simplffied by forming an M-by-(L + l - u ) matrix of components per channel 

estimator. This requires a total niunber of real computations: 

X : 4 M " + i ( i + l - w ) 
+ : 2 M " + i ( L - l - l - u ) 

The number of multiplications can be halved for purely real or imaginary symbols, halved for 

symmetrical symbol terms and is zero for symbols with real / imaginary terms of the same 

absolute value. The niunber of additions can be halved for symmetrical symbol terms. 

The final stage of adding up the common component and the 'matrix' components in a 

'tree' fashion results in the following number of real additions: 

+ : 2M"i:ttY""^' " > 0 
2M''Zf=2"^M' i i = 0 

The following table demonstrates the complexity for L = 3,4 and M = 4: 

L u = 0 u = 1 u = 2 u = 3 u = 4 

X + X -1- X + X -1- X + 
3 64 704 256 376 640 992 1792 1664 n/a n/a 

4 80 2760 272 2856 896 3168 2816 4224 8192 7680 

DDFSE-MCE 

The DDFSE has a reduced niunber of states at each stage in the trelHs and a separate feed­

back vector for each reduced state containing estimates of the remainder of the transmitted 
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symbol sequence (see Section 3.4.2). The application of multiple channel estimators leads 
to one channel estimator per reduced state with the number of reduced states (and channel 
estimators) being given by M " where I < u < L, resulting in the feedback vectors having 
(L — u) components. The contents of the feedback vectors are, in general, different and so 
the simplifications used in the calculation of the received signal states cannot be apphed. A 
separate convolution sum is required for each trellis state plus the additions of the component 
due to the symbol x{k). This leads to the following real computations: 

X : 4 M " ( L - h M ) 

+ : M " ( 4 i : - | - 4 M - 2 ) 

The number of multiplications is zero for symbols with real / imaginary terms of the same 

absolute value and is halved for symbols with purely real or imaginary components. The 

number of additions becomes M " ( 3 L -I- 3 M — 2) for the latter condition. 

7.3.2 Viterbi Algorithm Computation 

The Viterbi algorithm computations are identical for the MLSE and R-MCE algorithms but 

are less for the DDFSE-MCE. The transition and path metrics are formed the received sig­

nal and the received signal states and the survivors to each state decided by comparing the 

candidate path metrics. For the MLSE and R-MCE the number of real computations are: 

X : M^{2M) 

+ : M ^ ( 5 M - | - 1 ) 

and for the DDFSE-MCE: 

X : M " ( 2 M ) 

- I - : M " ( 5 M + 1) 

These calculations assume the compare functions can be implemented by a subtraction (equiv­

alent to an addition). 

The final stage of finding the minimum path metric requires M^ compares (real additions) 

for the MLSE and R-MCE and M " for the DDFSE-MCE. 

7.3.3 Channel Estimator Adaptation Computation 

The channel estimator(s) are assumed to be adapted by the LMS algorithm. The estimated 

received signal needs to be calculated, the error signal formed and the channel estimate 

updated. I n the case of the R-MCE and DDFSE-MCE the error signal is the same as the 

transition metric of the survivor symbol sequence and thus the signal need not be recalculated. 

The MCE techniques require additional compares to find the minimum path metric of all 

states in the domain of the channel estimator. 
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The MLSE computational load is given by (real computations): 

X : l O ( L - l - l ) 

+ : 8 (X-Hl ) + 2 

The number of multiplication is reduced to 2 (L -I-1) for symbols wi th real / imaginary terms 

of the same absolute value. 

The R-MCE and DDFSE-MCE require the following real computations: 

X : M " ( 6 L + 6) 

-I- : M " ( 4 i : - f 4 ) - l - u M ^ - " 

The niunber of multiplication is reduced to M " ( 2 I , - I - 2) for symbols with real / imaginary 

terms of the same absolute value. 

7.3.4 Examples of Total Computational Complexity 

The total complexity of the three algorithms are compared for I - = 3 and 4, M = 4 and 

for the cases of a general transmitted symbol alphabet and for QPSK in the tables below. 

In addition to the number of real computations required the relative complexity compared 

to the MLSE is given below the number of computations for each algorithm. This relative 

complexity is expressed simply as a multiplicative factor. 

The following table lists the load of the MLSE: 

L symbol MLSE 

alphabet X -f 
3 general 616 2050 

1.00 1.00 

QPSK 520 1746 

1.00 1.00 

4 general 2178 8338 

1.00 1.00 

QPSK 2058 7006 

1.00 1.00 
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The R-MCE loads are: 

L symbol 

alphabet 

R-MCE L symbol 

alphabet u = 0 
X + 

u = l 
X + 

u = 2 

X -1-

u = 3 
X -1-

u = 4 

X -t-

3 general 600 2124 816 2264 1536 2540 3840 4099 n/a n/a 3 general 

0.97 1.04 1.32 1.10 2.50 1.24 6.23 2.00 n/a n/a 
3 

QPSK 520 2112 544 2216 640 2412 1024 3843 n/a n/a 

3 

QPSK 

1.00 1.21 1.05 1.27 1.23 1.38 1.97 2.20 n/a n/a 

4 general 2158 8412 2440 8632 3424 9152 5760 11148 17920 18438 4 general 

0.99 1.01 1.12 1.04 1.57 1.10 2.64 1.34 8.23 2.21 
4 

QPSK 2058 8392 2088 8568 2208 8960 2688 10636 4608 17414 

4 

QPSK 

1.00 1.20 1.01 1.22 1.07 1.28 1.31 1.52 2.24 2.49 

Finally the DDFSE-MCE computations are: 

L symbol 

alphabet 

DDFSE-MCE L symbol 

alphabet u = l 

X + 

u = 2 

X + 

u = 3 

X + 

u = 4 

X + 

3 general 240 272 960 1032 3840 4099 n/a n/a 3 general 

0.39 0.13 1.56 0.50 6.23 2.00 n/a n/a 
3 

QPSK 64 244 256 920 1024 3651 n/a n/a 

3 

QPSK 

0.12 0.14 0.49 0.53 1.97 2.09 n/a n/a 

4 general 280 352 1120 1184 2480 4620 17920 18436 4 general 

0.13 0.04 0.51 0.14 1.14 0.55 8.23 2.21 
4 

QPSK 72 320 288 1056 1152 4108 4608 16388 

4 

QPSK 

0.03 0.05 0.14 0.15 0.56 0.59 2.24 2.34 

Prom these tables i t can be seen that the complexity of the R-MCE is considerably reduced 

compared to that of the MLSE when QPSK data is transmitted due to the simpUfications 

possible when calculating the received signal states. Wi th u = L (giving the largest number 

of channel estimators) the complexity increases by a factor of aroimd 2 for L = 3 and by a 

factor of around 2.4 for L = 4. The DDFSE-MCE has a significant decrease in complexity 

compared to the R-MCE except when u = L (i.e. no reduction in complexity). This decrease 

is due to the smaller number of states within the treUis. 

The scale of the complexity increases for the R-MCE is not huge and thus the implemen­

tation of the algorithm is feasible for moderate symbol rate systems. 
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7.4 Simulation of M C E Performance 

Comparisons of the symbol error rates obtained for the MLSE, R-MLSE and DDFSE-MCE 

algorithms have been simulated for a number of different channel memory lengths, power-

delay profiles and fade rates. The following sections detail the simulated systems and channels 

and present the results of the simulations. 

7.4.1 Equipower / Tapered Power-Delay Profile Channels 

The systems and channels simulated in this section are similar to those simulated in Chapter 5. 

The data was QPSK modulated at a symbol rate ( l / T j ) of lOOkBaud and transmitted with 

a frames structure 100:20 (data burst length : training sequence length) after an initial 500 

symbol 'training sequence. The channel was simulated using one sample/symbol and thus 

assumes ideal Nyquist transmit and receive filters. The channels simulated had 3, 4 or 5 

independent, complex, Tj-spaced paths with either equipower paths or with a tapered power-

delay profile. Each path imderwent Rayleigh fading, varying with a classical Doppler power 

spectrum and maximum Doppler spread of fd = ±400Hz. This Doppler spread corresponds to 

a mobile velocity of 480km/h or 240km/h for RF carrier frequencies of 900MHz and 1800MHz 

respectively giving a product fdTs = 0.004. 

Figure 7.3 plots the symbol error rate versus SNR for the standard MLSE and the R-MCE 

algorithm with estimator reduction using 16, 4 and 1 channel estimators corresponding to 

{u = 2, • • • ,0) . The curve u = 2 corresponds to the MCE algorithm, i.e. no reduction in 

the number of channel estimators. The chaimel had three equipower paths and the chaimel 

estimator used three T^-spaced taps and was trained and tracked using the LMS algorithm 

wi th a stepsize o f = 0.1. A l l equalisers had a decision delay of two symbol periods which was 

found to give the best performance for the MLSE algorithm operating in the decision-directed 

tracking mode. 

Figures 7.4 and 7.5 show the results for the channels wi th 4 and 5 equipower paths 

respectively. The channel estimators used 4 and 5 taps respectively and were adapted with 

the LMS algorithm with a stepsize of 0.1. For both these examples the equaliser decision delay 

was set to three symbol periods which gave the best performance for the MLSE algorithm 

(decision-directed tracking). 

These curves show that the R-MCE algorithm can outperform the MLSE operating in a 

decision-directed tracking mode and the benefits of employing a number of channel estimators 

tracked using zero decision delay together wi th a 'soft' decision capability are apparent. 

Reducing the number of channel estimators in the R-MCE algorithm degrades the symbol 

error rate of the R-MCE and the performance drops below the conventional MLSE i f the 

number of channel estimators drops below four. The R-MCE {u > 1) technique provides an 
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Figure 7.3: Symbol error rate vs. SNR for the MLSE and R-MCE for a 3 equipower path 
channel (L = 2). 
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Figure 7.4: Symbol error rate vs. SNR for the MLSE and R-MCE for a 4 equipower path 
channel (L = 3). 
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Figure 7.5: Symbol error rate vs. SNR for the MLSE and R-MCE for a 5 equipower path 
channel (L = 4). 

improvement in the symbol error rates particularly for SNRs greater than 15dB. The R-MCE 

u = 0 uses a single channel estimator as does the MLSE but its SER is higher. The two 

algorithms are not equivalent as the R-MCE produces its decisions with zero decision delay 

and is capable of updating previous decisions since it feeds a symbol sequence estimate back 

to its channel estimator rather than a single symbol estimate. 

Figures 7.6 and 7.7 show the results for channels with tapered power-delay profiles and 

with 4 and 5 paths respectively. The relative powers of the paths are [ 1, 5, 5, | ] and 

All paths are complex, symbol-period spaced and fade independently with 

a classical Doppler spectnmi and maximmn Doppler spread of fd = ±200Hz. The channel 

estimators used 4 and 5 taps respectively and were adapted using the LMS algorithm with a 

stepsize of 0.1. The decision delay is 6 symbol periods which optimises the standard MLSE 

algorithm. The curves again show that the R-MCE technique can outperform the MLSE and 

provides a reasonable perfomance / complexity trade-off for u> 2. 

Figure 7.8 shows the relative performance between MLSE, DDFSE-MCE and the R-MCE 

algorithm for the same channel used in Figure 7.4. The MLSE has 64 states and uses one 

channel estimator, the R-MCE has 64 states and 16 channel estimators and the DDFSE)-

M C E has 16 states and channel estimators. The performance loss due to the reduction in 

the number of states in the DDFSE-MCE algorithm is apparent. This result is characteristic 

of the relative performance of the R-MCE and DDFSE-MCE — for a given reduction in the 
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Figure 7.6: Symbol error rate vs. SNR for the MLSE and R-MCE for a 4 path channel with 
a tapered power-delay profile {L = 3). 
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Figure 7.7: Symbol error rate vs. SNR for the MLSE and R-MCE for a 5 path channel with 
a tapered power-delay profile ( i = 4). 
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Figure 7.8: Symbol error rate vs. SNR for the MLSE, R-MCE and DDFSE-MCE for a 4 
equipower path channel (L = 3). The R-MCE algorithm uses 16 channel estimators and the 
D D F S E - M C E uses 16 channel estimators and states. 

number of channel estimators / states, the R-MCE outperforms the DDESE^-MCE. 

Further results on the R-MCE algorithm show that if the fade rate drops then the per­

formance of the technique does not give any worse performance than the MLSE, but tends 

to maintain an improvement. This result assumes that all other parameters (eg. equaliser 

decision delay and LMS stepsize) remain constant. For a time-invariant channel, reducing the 

stepsize and increasing the equaUser decision delay significantly improves the MLSE perfor­

mance beyond that of the R - M C E techniques which feed symbol estimates with zero decision 

delay into their channel estimators. The reduced decision delay trade-off between enhanced 

tracking and poor symbol estimates is no longer applicable as the channel is time invari­

ant. As the fade rate drops, increasing the decision delay of the MLSE is beneficial and the 

MLSE's S E R improves over that of the R-MCEs. 

Figure 7.9 shows the build-up of the normalised mean tap error over the duration of the 

data burst for a number of equaliser configurations. The system and channel simulated were 

the same as those in Figine 7.4 and the results averaged over 1000 data bursts. The two MLSE 

curves show the increase in M T E for the decision-directed tracking mode and for tracking 

with the delayed true (transmitted) data. The remaining curves show the M T E for the four 

configurations of the R-MCE equaliser. The M T E is derived from the channel estimator 

corresponding to the current state with minimum path metric. Thus the same channel 

estimator is not necessarily compared over the duration of the data brnrst or simulation. The 
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L = 3, Ts-spaced equipower paths, fd = ±400Hz. 

M T E is lower for the R-MCE with u = 2 and 3 which also give lower SERs (Fig. 7.4). The 

reduction in the channel estimtator error is seen to translate into a lower SER. 

7.4.2 HF Channels 

Given the positive results obtained in Section 7.4.1 the performance of the R-MCE algorithms 

operating on an HF channel are investigated. The system transmits QPSK data at 2.4kBaud 

with a firame structure of 40:40 (data burst length : training sequence length). Prior to the 

first data burst a sequence of 500 training symbols are transmitted in order for the channel 

estimator in the receiver to acquire an initial estimate of the channel. The data symbols are 

passed through a root raised cosine filter with roll-off factor of a = 0.5 prior to transmission. 

The channel is simulated at either a factor q = 2oT q = 4 times the sjmabol rate depending on 

the precise channel multipath delays used. In the receiver the signal is corrupted by AWGN 

and filtered through a root raised cosine filter with a = 0.5 and downsampled to the symbol 

rate assuming perfect symbol timing synchronisation. 

The channel is model using the two equipower path model with relative time delays 

of either 0.52ms or 1.042ms. These values were chosen as the closest values to the C C I R 

recommended values of 0.5ms and 1.0ms given the symbol rate and upsamphng factors [14]. 

With a symbol period of « 0.418ms {jjkw^ correspond to a delay of 1.25 and 2.5 

symbol periods respectively. The two paths vary independently with the time variations in 
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the gain and phase shift being modelled by passing complex, white Gaussian noise through 
a filter with Gaussian shaped frequency response with a one sided 3dB bandwidth of either 
0.5Hz, 2Hz or lOHz. The fdTg product for these values of fading are 0.0002, 0.0008 and 0.004. 
These may be compared to those of the simulations in the previous section (0.004 and 0.002) 
to provide a reference for the relative speed of fading of the HF channels. The complex path 
gains were generated at a sample rate of 50Hz and interpolated by a factor of 96 or 192 to 
the channel simulation rates of 4.8kHz (^) and 9.6kHz (^) respectively. 

For the lOHz fading channel and the 40 symbol data burst leads to an approximate 0.17 

fades/bvirst compared to 0.4 fades/burst for the 400Hz, 4 path fading channel used in the 

previous section (lOOkBaud symbol rate and a 100 symbol data burst). Thus, on average, 

there will be fewer individual path fades per data bmrst with the HF channel but, due to the 

presence of only two paths, the received signal is marginally more likely to go through a deep 

fade due to both paths fading simultaneously. 

Figures 7.10, 7.11 and 7.12 show the SER vs. SNR for the MLSE (decision-directed 

tracking) and R - M C E equalisers operating on the channel with 1.042ms path delay and 

lOHz, 2Hz and 0.5Hz fading respectively. The channel estimator used foiu: symbol spaced 

taps (covering a total of 1.667ms of delay) and was adapted using the LMS algorithm with 

/i = 0.1. The receive filter spreads the received energy around the two paths leading to energy 

lying inbetween and outside the nominal path delays. The choice of n gives relatively good 

results and was determined by trial and error. The decision delays of the equalisers were 5, 

9 and 11 symbol periods respectively which gave the best results for the decision-directed 

MLSE. 

The results shown in Figure 7.10 show that the R-MCE outperforms the MLSE for aU 

values of u. The absolute decrease in SER is not as large as the results of the previous 

section but nevertheless the performance improvement is appreciable for u > 1 and for 

an SNR > 15dB. As the fade rate decreases, the relative performance of the R-MCE is 

reduced below that of the M L S E but it is noted that in these simulations the decision delay 

is optimised for the decision-directed MLSE. The increase in decision delay provides a better 

trade-ojff between estimating an old channel and feeding erroneous symbol estimates to the 

channel estimator. As the R-MCE feeds back symbol estimates with zero decision delay 

the benefits are negated by poor symbol estimates and the fact that the channel is fading 

slowly. The benefits of the R-MCE are present only for the more rapidly fading channel 

and if the system is designed to operate optimally (i.e. with low decision delay) for such 

conditions, a drop in the fade rate still leads to the R-MCE having a lower SER than the 

M L S E given that the decision delay is kept constant. However, this system design factor 

depends on the relative Ukelihood and duration of such high fade rates compared to the 

lower rates and whether the system is to be designed so that an increase in S E R can be 

tolerated when the fade rate is high or that the system is operating sub-optimally when 
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Figure 7.10: S E R vs. SNR for a 2 path HF channel with multipath delay spread = 1.042ms 
and lOHz fading. 
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Figure 7.11: S E R vs. SNR for a 2 path HF channel with multipath delay spread = 1.042ms 
and 2Hz fading. 
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Figmre 7.12: S E R vs. SNR for a 2 path HF channel with multipath delay spread = 1.042ms 
and 0.5Hz fading. 

the fade rate is low. For the HF channel the relative frequency of the fade rates is not 

well known and is dependent on the link being used but some results are available in [74, 

75] indicating that Doppler spreads in the order of lOHz do occm-. 

Figure 7.13 shows the S E R for equalisers operating on the 1.042ms, 0.5Hz channel with 

an SNR « 15dB as a function of decision delay. As the decision delay increases the decision-

directed M L S E has a relative increase in performance compared to the R-MCE and outper­

forms the u = 3 equaliser for delays greater than 8 symbol periods. Thus if the system has 

a fixed, low decision delay then the R-MCE outperforms the MLSE even when the fade rate 

drops but not be a significant margin. 

Figure 7.14 shows the results of the final simulation which uses the channel with 0.52ms 

multipath delay spread and lOHz fading correseponding to the C C I R flutter fading model 

[14]. The channel was simulated at foiur times the symbol rate and the receiver channel 

estimator modelled the channel with three T^-spaced paths and the estimator was adapted 

via the LMS algorithm with fx = 0.1. It is seen that the R-MCE outperforms the MLSE for 

ti > 1 but again the absolute S E R improvement is small for an SNR < 15dB. 
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Figure 7.13: S E R vs. decision delay for a two path HF channel with multipath delay spread 
= 1.042ms and 0.5Hz fading. 
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= 0.52ms and lOHz fading. 
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7.4.3 T E T R A QS/EQ Channel 

The Trans Eiuropean Trunked RAdio (TETRA) standard is the European standard for digital 

private mobile radio (PMR) — see Appendix A. The channel simulated in this section is 

defined as either a test channel (EQ) or when the mobile is operating in a quasi-synchronous 

(QS) mode whereby more than one base station transmits the same information to the mobile 

receiver. The synchronisation errors in transmitting the data due to varying propagation 

times between the base stations and the mobile leads to an increased multipath delay spread. 

The simulated system modulates the data via QPSK at a symbol rate of 18kBaud as opposed 

to the T E T R A specification of f -DQPSK as coherent demodulation with perfect sjmibol 

timing synchronisation is assumed. Both transmitter and receiver employ root raised cosine 

filters with a = 0.35. The frame structiu-e is slightly different to that used in the standard [76] 

due to the relatively long data bursts compared to the symbol period and the fact that in the 

'normal continuous downlink' frame structure (used in the QS mode), training sequences are 

provided at each end of the burst in addition to mid-burst. This allows the data sequence to 

be detected both forwards and backwards i.e. by applying the equalisation algorithms to the 

received signal samples both in the received and reversed time sequences. This results in a 

larger delay in the detection process but still occurs in real-time. Thus the data burst can be 

effectively simulated by halving it in duration and only equalising the received signal sequence 

in the forward direction. The affect on the SER if the full length data burst is equalised in the 

forward direction only, giving a high number of fades/burst, is demonstrated. The resulting 

firame structure is 54:11 (data burst length : training sequence length). Prior to the first 

data burst 500 training symbols are transmitted to enable the channel estimator to accquire 

an initial estimate of the channel. 

The channel model has four paths spaced with relative delays of O^s, 11.6/is, 73.2/iS and 

99.3//S respectively. The channel is modelled in these simulations at a rate g = 16 times the 

symbol rate, leading to the relative delays being approximated by Ofis, 10.4/iS, 72.9/xs and 

100.7yus. With a symbol period of jg^iQ^s w 55.6//S the first two paths occur within the first 

symbol period and the second two paths within the second symbol period. 

The mobile velocity is assumed to be 200km/h and, at a carrier frequency of 400MHz, the 

maximum Doppler shift of the signal is « 70Hz. The time variations in the baseband path's 

complex gains are modelled by passing white Gaussian noise, sampled at IkHz, through a 

filter with a classical Doppler frequency spectrum and interpolated by a factor of 288 to the 

channel sample rate (288KHz). The relative power of the four paths are OdB, OdB, -10.2dB 

and -le.OdB 

With 70Hz fading and a data burst length of 54 symbols (3ms duration), the individual 

paths have an average of 0.21 fades/burst (c.f. 0.4 fades/burst for the equipower path channel 

example and 0.17 fades/bmrst for the HF channel example). 
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Figure 7.15: S E R vs. SNR for the T E T R A QS/EQ200 channel model with a 3 T^-spaced 
path channel estimator. 

Figure 7.15 shows the comparative S E R vs. SNR for the MLSE and R - M C E equalisers. 

The channel estimators used three Tj-spaced paths and were adapted using the LMS algo­

rithm with fj, = 0.1. The equalisers had a decision delay of one symbol period which gave 

the best results for the decision-directed MLSE. The results show that the R-MCE gives an 

improvement for u > 1 but at an SNR = 17dB — the designed SNR (= Eb/No) for use in 

the T E T R A standard, the improvement is very marginal. As the MLSE is optimised with 

a very short decision delay, the gains in making the channel estimators decision with zero 

delay for the R-MCE is negUgible and the improvements gained are due to the 'soft' decision 

characteristics. As the majority of the symbol energy arrives within the first symbol period, 

the symbol sequence detection mechanisms are only of limited use as the amount of ISI is 

relatively low. 

Figure 7.16 plots the SERs for 70Hz fading channel but with the channel estimator taps 

covering 167/Lts (4 Tj-spaced path taps) as opposed to lll/xs in the previous figiue. This 

system was simulated to investigate whether the three path chemnel estimator spanned the 

eflfective channel (the channel plus the transmit and receive filter impulse responses) suEB-

ciently. Again the break even point is with u >1 but the absolute improvement in SER is 

negligible indicating that the three path channel model is suflicient. The SERs obtained if 

the channel estimator uses a two Tj-spaced path model are higher as the channel estimtor 

does not cover the span of the multipath delay spread. However the R-MCE u = 1 still 

improves over the MLSE. 
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Figure 7.16: S E R vs. SNR for the T E T R A QS/EQ200 channel model with a 4 T^-spaced 
path channel estimator. 
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Figure 7.17: S E R vs. SNR for the T E T R A QS/EQ200 channel model using a frame structure 
of 104:11. 
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The final simulation demonstrates the effects of increasing the data bmrst length to the 
full 108 symbol diuration whilst maintaining an 11 symbol training sequence. This gives a 
data burst of 6ms and each path has an average of 0.42 fades/burst which is much closer to 
the simulations in Section 7.4.1 with fd = ±400Hz. All other system parameters were held 
constant. Figure 7.17 shows that the relative performance of the R-MCE compared to the 
M L S E remains the same but that the absolute SER increases for all the equalisers. 

7.5 Summary 

The performance gains obtained by using multiple channel estimators, instead of a single es­

timator, to generate the estimated received signals for the MLSE equaliser have been demon­

strated. The algorithm results in the path metrics being calculated conditional on separate 

symbol sequences and channel estimates with the most probable sequences and estimates be­

ing propagated to the next stage of the Viterbi algorithm. In addition the symbol decisions 

fed to the channel estimator can be updated creating a soft decision mechanism. 

The computational complexity of this algorithm is relatively large and so an alternative 

method of reducing the complexity has been developed. This technique reduces the number 

of channel estimators whilst keeping the number of trellis states constant and allocates the 

states to the estimators in a predetermined manner in contrast to alternative complexity 

reduction methods. The new algorithm (the R-MCE) provides a range of trade-offs between 

performance and complexity with greater improvements being obtained with higher fade 

rates and channels with longer multipath delay spreads. These types of channels are more 

common as the carrier firequency and sjmabol rate employed increases. The performance 

decrease as the number of channel estimators is reduced is not as great as that obtained with 

the D D F S E - M C E algorithm which reduces both the nmnber of channel estimators and treUis 

states. For the channels simulated, the number of estimators required before the performance 

drops below that of the MLSE is either 4 or 16 ( i t = 1 or 2). These figures are obtained by 

choosing an equaliser decision delay which results in the best performance of the MLSE. In 

practice the decision delay may well be set to optimise the performance for the highest fade 

rate expected allowing the maximum complexity reduction permitted to be determined. 

The R - M C E achieves its performance improvements partly through the use of zero de­

cision delay for the channel estimator symbol decisions and partly due to the soft decision 

capability. The mean tap error of the channel estimator is reduced by these methods and 

this has a corresponding affect on the symbol error rate. The next chapter investigates the 

feasibility of using alternative soft decision mechanisms in order to aid channel estimation / 

tracking. These techniques use confidence information of the symbol estimates fed back to 

the channel estimator in order to modify the estimator adaptation process. The basis of these 

techniques is to limit the change in the channel estimate when the equaliser is less confident 

156 



C H A P T E R 7. MULTIPLE CHANNEL ESTIMATOR TECHNIQUES • 

in its symbol decision and thereby attempt to reduce the build-up in the mean tap error that 
occinrs due to tracking with erroneous symbols. 
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Chapter 8 

Soft Decision Tracking 

The use of soft decisions / confidence measures of symbol estimates obtained from equalisers 

for the enhancement of channel estimator tracking is examined in this chapter. The motiva­

tion for this technique and previous work on the subject is discussed and results of analysis 

and simulation of the effects on the LMS adaptation algorithm are presented. The advantages 

of the technique are seen to be dependent on the distribution of the equaliser's errors and 

so the statistics of these errors are investigated in order to assess the suitabiHty of the soft 

decision tracking technique. 

8.1 Basis of Soft Decision Tracking 

M L S E and Bayesian equalisers require an estimate of the channel impulse response in order 

to produce estimates of the transmitted symbols. For time-varying channels, symbol esti­

mates from the output of the equaliser may be used by the channel estimator to aid channel 

tracking, i.e. decision-directed tracking. In the ideal case, the equaliser estimates the trans­

mitted symbols perfectly and the channel estimator's tracking performance is dependent on 

the receiver noise and the LMS adaptation stepsize, fj,. In such circmnstances, the channel 

estimation error may be decomposed into two parts [2, 47]: weight-vector noise and weight-

vector lag noise. The former is the error associated with approximating the error surface 

gradient vector and the latter is the error due to a difference in the ensemble mean of the 

weight-vector, h{k), and the true channel impulse response, h{k). The lag noise is due to the 

true channel impulse response varying with time. 

Errors in the equaliser's symbol estimates will add another component to the estimation 

error and will cause an increase in the average channel estimation error. The estimator's 

weights (the complex gains of the estimated CIR) will be adjusted suboptimally and this 

can cause the equaliser to make further symbol errors forming an error propagation mecha-
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Figure 8.1: Schematic of equaliser and channel estimator with soft decisions / confidence 
values, a. 

nism. The detrimental effects of this error mechanism on the MLSE's symbol error rate were 

demonstrated in Chapter 5. Alternatively, soft decisions can be fed into the channel estima­

tor instead of the 'hard' symbol decisions or confidence measures can be used to modulate 

the adaptation algorithm's updating of the estimator's weights (Fig. 8.1). The hypothesis is 

that these new schemes will reduce the estimation error dmring instances of incorrect symbol 

estimates and reduce the chances of error propagation. 

In Morgul et al [77] a soft decision technique was applied to a Kalman filter based cheinnel 

estimator and the estimator's convergence after a step change in the channel impulse response 

was simulated. The method utilises an 'erasure declaring Viterbi detector' which generates 

a binary confidence value in the estimated symbol (indicating an 'erasture' or low-confidence 

decision) together with two parameters which indicate the reliability of the erasure declara­

tion. As the process of declaring an erasure does not give completely accurate results, the 

parameters are the probabilities of false alarm and mistake, i.e. the probabilities of declaring 

an erasure when the decision is correct and of not declaring an erasure when the decision is 

erroneous. These probabilities are assumed to be known a priori and are incorporated into 

the Kalman filter adaptation algorithm. The results of the simulations suggested that the 

erasure declaring process was the most critical component of the technique. 

The soft decisions or confidence measiures may be generated with varying ease by equalis­

ers which base their decisions on a statistical basis e.g. MLSE tjrpe equalisers or Bayesian 

equalisers. Indeed, soft decisions from equalisers axe often used to aid subsequent channel 

decoding in the receiver [2, 4, 5]. A method of generating soft decisions from the MLSE is 

given in Hagenauer et al [78] which forms an estimate of the a posteriori probabiUty for each 

symbol based on the transition metrics of the Viterbi algorithm. 

The smtability of any soft decision mechanism is primarily dependent on whether the 

adaptation algorithm can make use of such information in order to improve the tracking 
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capabilities and thus reduce the channel estimation error. Given positive results in this area 
the problem of generating the soft decisions may be addressed. 

8.2 Analysis of Soft Decisions Applied to the LMS Tracking 
Algorithm 

The effects of either scahng symbol decisions by a confidence value prior to insertion into the 
channel estimator or using the confidence value to modulate the estimate updates are inves­
tigated both from a theoretical basis and by simulation. The channel estimator is assumed 
to be updated by the LMS algorithm in all cases. 

The method of scaling the symbol estimates is to weight the decisions such that the higher 
the confidence, the closer the soft-decisions become to the hard decisions (the transmitted 
symbol alphabet) e.g. x{k) € {±1 ± j} for QPSK modulation. This has the effect that 
erroneous decisions have a lesser impact on the channel estimator's received signal estimate 
and hence on the error signal used to update the channel estimate (given that the confidence 
measure is correct). The BDFE's decision metrics are highly suited to this approach as the 
metrics are an estimate of the a posteriori probability for each symbol in the symbol alphabet. 
The soft decision may be formed in two slightly different ways: 

1. Metric weighted: the soft decision is simply the hard decision weighted by the metric 
for that symbol. This may be expressed as: 

X 

2. Mean symbol: the soft decision is the mean symbol value: 

(8.1) 

1 I I V I — L \ 

z;i=o ' ^w) \i=o / 

In the equations above, x^'^ is the soft decision, \{x) is the estimated probabiUty for the 
symbol x, and x^ is the equaliser's hard decision. The summations of \{x) are to ensure a 
normalised probability. These mechanisms result in the soft decision lying in the range: 

x"^ = {p + jq) - l < p , 9 < + l (8.3) 

for the metric weighted method and 

x"^ = {p + jp) 0.25 < IPI < +1 (8.4) 
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for the mean symbol method. Both these ranges are for QPSK symbols and for the latter 
the minimimi decision metric that the most probable symbol can have is 0.25. Note that the 
metric weighted method results in the symbol decision being weighted by a real nmnber and 
the mean symbol method by a complex number. Thus, in general, the soft decisions produced 
by scaling the hard decisions may be given by: 

x"^ = ax'*. (8.5) 

The method of modulation of the channel estimator's stepsize, n, by confidence values 
is achieved by storing a vector of confidence values, a{k), with each component being the 
respective value for the (hard) symbol estimates used in the channel estimator. 

8.2.1 Derivation of Modified L M S Algorithm 

The modified versions of the LMS algorithm are derived for both soft decision schemes: scaling 
of the hard decisions and modulation of the stepsize. The methods are shown to result in 
different algorithms and the effects of the differences are simulated in the Section 8.2.2. 

Hard Decision Scaling 

Under conditions of scaling of the hard decision by either a real number (metric weighted 
method) or a complex number (mean symbol method), the estimated received signal of the 
channel estimator is given by: 

r{k) = h (̂fc) [a{k).g{k)] (8.6) 

where the decision delay, d, is assumed to be zero without loss of generality and (.) indicates 
component-wise multipUcation and not a scalar product, i.e. [oi, a2]'^.[bi, ^ 2 ] ' ^ = [nibi, 0,2^2]'^• 
See Figure 8.1 for further definitions of the signals. Note that this definition of the estimated 
received signal results in different values the two methods of scaling the hard decisions. 

The error signal, e{k) is given by: 

e{k) = r{k)-r{k) (8.7) 

= h^{k)K{k)+n{k)-r{k) (8.8) 

The error function, J{k) is defined as: 

J(A;) = e(fc)e*(fc) (8.9) 

= (r(A;) - h^{k) [a{k).Kik)]^ (r*{k) - [a{k).g{k)f h*(k)) (8.10) 
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and its gradient is obtained by differentiating w.r.t. h{k): 

VJ(k) = (8.11) 
dh{k) 

= - h{k).m] r*{k) + [a(k).m] [aik).mfh*ik) (8.12) 

= -h{k).m]e*{k) (8.13) 

The weight update is given by: 

h{k + l) = to - ( V J(A;))* (8.14) 

= h{k)+fie{k)[a{k).g{k)]* (8.15) 

This update equation is not the same for the two different methods of scaUng the hard 
decisions as both e{k) and a{k) vary between the two methods. 

Confidence Value Modulation 

Modulating the stepsize, fi, by the confidence values does not alter the formation of the 
channel estimator's received signal estimate compared to the standard hard decision channel 
estimator. Thus the estimated received signal is given by: 

r{k) = h^{k)m (8.16) 

The error signal is given by Eqns. 8.7 and 8.8 and the error function, J(A:) is defined as: 

J{k) = e{k)e*{k) 

= (r{k) - h^{k)g{k)^ (r*{k) - g^{k)h*{k)) (8.17) 

The error gradient is obtained as before by differentiating w.r.t. h{k): 

dJ{k) 
VJ{k) = 

dh{k) 

= -g{k)r*{k) + x{k)g"{k)h*{k) (8.18) 

= -g{k)e*{k) (8.19) 

The weight update is given by: 

h{k + l) = Uk)-[m{k)]-[^J{k)]* (8-20) 

= h{k) + [mik)e{k)].rik) (8.21) 

Again the value of e{k) is different from the two possible corresponding terms in Eqn. 8.15. 
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8.2.2 Simulation of Soft Decision Tracking 

The qualitative effects on the channel estimator's mean tap error (MTE) are simulated for 
the methods of metric weighted decisions (scaling the hard decision by a real number) and 
the confidence value modulation technique. The mean symbol soft decision method has 
not been simulated due to the large number of possible values of a. The equaliser has not 
been simulated in order to isolate the results firom any problems in the generation of the soft 
decisions. The effects of tracking with accurate symbol estimates but with varying confidence 
values is studied together with the effects of both independent and correlated error events. 

The system simulated used QPSK modulation at lOOkBaud without the use of transmit or 
receive filters. After an initial 500 symbol training sequence a firame structure of 100:100 was 
employed. The channel was a three T -̂spaced equipower path channel with the paths fading 
independently with a classical Doppler spectrum and Doppler spread of fa = ±400Hz. The 
channel estimator had three T -̂spaced taps and was udpated by the modified LMS algorithms 
given in Section 8.2.1 with /j, = 0.1. The simulations were run at an SNR = 15dB. 

Figures 8.2 and 8.3 show the build-up of MTE across the data bmrst averaged over 1000 
bursts for the two methods of soft decisions. The data burst index label in the figures indicates 
the symbol position within the data burst. The channel estimator's symbol estimates were 
100% correct but with varying confidence values, a. The lowest curves show that if the 
confidence in the symbol estimates is 100% (a = 1.0) then the MTE remains at a low level 
(determined by the weight-vector noise and weight-vector lag noise). As the confidence drops 
the MTE rises and then levels out at a higher MTE. This additional MTE component is due 
to the suboptimum tracking of either the scaled symbol estimates or the reduced adaptation 
stepsize. As can be seen, the method of modulating the stepsize is much less prone to the 
effects of a 'false alarm', i.e. the equaUser makes the correct decision but with a low confidence. 

Figures 8.4 and 8.5 demonstrate the effect on the MTE of the chaimel estimator driven 
with independent, random symbol errors with a probability 0.1. The confidence value of the 
symbol estimates during the error events is varied and shown in the figiires. Otherwise the 
correct symbol estimates are fed to the channel estimator with a confidence value of 1.0. 
All curves have been averaged over 1000 data biu-sts. Both methods of soft decision show a 
reduced value of MTE as the confidence in the erroneous symbol estimates drops, with the 
metric weighted version having the greatest effect. However, the absolute reduction in MTE 
is small, especially for the confidence value modulation method. 

Further results show that similar decreases in the MTE occur over a range of different 
independent, random error event probabilities. Under these conditions of error events, the 
decrease in MTE is expected to result in a decrease in symbol error rate although the quali­
tative decrease has not been simulated. Such simulations require the development of an 
equaliser which can generate the suitable confidence values. 
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Figure 8.2: Metric weighted soft decision tracking with accurate symbol estimates of varying 
confidence. 
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Figure 8.3: Confidence value modulation tracking with acciurate symbol estimates of varying 
confidence. 
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Figure 8.4: Metric weighted soft decision tracking with independent, random errors in the 
symbol estimates, a corresponds to the confidence value during error events. 
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Figure 8.5: Confidence value modulation tracking with independent, random errors in the 
symbol estimates, a corresponds to the confidence value during error events. 
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The effects of the equaliser not being 100% confident when the correct symbol estimate 
is made are shown for the two soft decision methods in Figures 8.6 and 8.7 respectively. The 
probability of an error event is again 0.1. The metric weighted soft decision technique is seen 
to again suffer when tracking with lower confidence but correct symbol estimates and this 
negates the benefits shown in Figure 8.4. The confidence value modulation technique does 
not suffer greatly from the lower confidence correct decisions but the gains due to the low 
confidence erroneous decisions are small leading to only a small overall improvement. 

Finally the performance of the soft decision techniques are simulated when a bm-st of 
equaliser errors occiu:. Figures 8.8 and 8.9 show the results for the two soft decision methods 
for a range of error biurst lengths. The probabiUty of the initial (independent) error events 
are 0.02 and each of these error events are followed by further errors, creating an error burst 
of a desired length. Dmring error events the equaliser has a confidence value of a = 0.8 whilst 
during periods of correct decisions the equahser is 100% confident. The curves demonstrate 
that the MTE increases rapidly with burst length for both techniques and that the absolute 
difference between the two is negligible. The results for similar simulations but with the 
equaliser's confidence value set at 0.4 during periods of incorrect decisions show a decrease 
in MTE of about 0.25dB for both soft decision methods. 

All the curves above that show results for tracking with error events of some sort have 
been averaged over 1000 data bursts with the error events occuring randomly throughout 
the data bursts. Thus the curves tend to show the average level of MTE due to such error 
characteristics. Figures 8.10 and 8.11 show the average build-up of MTE during a burst of 
50 errors occuring midway through the data burst. The equahser is 100% confident during 
correct decisions and the confidence values during the error biurst are indicated in the figm-es. 
These curves show a characteristic jump in the MTE when the burst occurs, the increase 
being greatest for the confidence value modulation soft decison method. This is due to a 
larger error signal being generated at the output of the channel estimator when the unsealed 
erroneous hard decisions are fed into the estimator. The increase in MTE becomes lower as 
the confidence in the erroneous decisions drops. These curves show that the metric weighted 
method increases the time before the MTE rises above a given threshold and therefore this 
technique is less prone to bursts of errors provided that the equaliser can recognise when it 
is making errors. 

The results of the simulations in this section show that, although the soft decision methods 
can reduce the build-up in MTE dmring erroneous symbol decisions, the techniques are Umited 
by both the equaliser's ability to detect when it is Hkely to be making an error and when 
it is not and also of the statistics of the equaliser's errors. Biursts of errors cause a rapid 
increase in the MTE which has the detrimental effect of causing further symbol errors. In 
the following section the MLSE's error statistics are characterised in order to identify typical 
error burst lengths and frequencies. 
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Figure 8.6: Metric weighted soft decision tracking with independent, random errors and 
reduced confidence in the correct estimates, a corresponds to the confidence value during 
error events and the confidence of correct symbol estimates is 80%. 
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Figure 8.8: Metric weighted soft decision tracking with bursts of errors of varying duration. 
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Figure 8.9: Confidence value modulation tracking with bursts of errors of varying duration. 
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Figure 8.10: Metric weighted soft decision tracking with a burst of 50 errors occuring midway 
through the data burst, a is the confidence value during the error burst. 
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Figure 8.11: Confidence value modulation tracking with a burst of 50 errors occuring midway 
through the data burst, a is the confidence value during the error burst. 
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8.3 Error Statistics of MLSE Equaliser Errors 

Some properties of the MLSE's symbol estimation errors are measxired in order to determine 
the frequency and duration of error bursts. The channel on which the errors are measured are 
the same as in Section 8.2.2, i.e. a three T -̂spaced equipower path channel with a Doppler 
spread of = ±400Hz. The channel estimator used three T -̂spaced taps and updated 
the channel estimate via the LMS algorithm with a stepsize fi = 0.1 using the conventional 
hard symbol decisions diuring decision-directed tracking. The QPSK modulated data was 
transmitted with a frame structure of 100:20, the received SNR = 15dB and the MLSE had 
a decision delay of three symbol periods. 

The first simulation logged the numbers of errors in each data burst over the simulation 
run length of 1587 data bursts. Figure 8.12 shows the distribution of the number of errors 
per data burst for the MLSE and channel estimator operating in a decision-directed mode 
and using true delayed data tracking. The two curves show that dmring decision-directed 
tracking the number of data bursts containing no errors is large and a much smaller number 
of bursts contain large numbers of errors. This is in contrast to the true delayed data tracking 
distribution which shows that a much larger number of bursts contain only a few errors. This 
observation is highhghted in Figure 8.13 which shows the percentage of the total nimaber of 
errors occuring with less than or equal to the number of errors per burst shown. Thus it is 
seen that with decision-directed tracking 5% of the total number of errors are caused by bursts 
with < 10 errors/burst and 11% by bursts with < 20 errors/biurst. In the true delayed data 
tracking case 64% of the total number of errors are caused by bursts with < 10 errors/burst 
and 96% by bursts with < 20 errors/burst. Decision-directed tracking, which creates an error 
propagating mechanism, results in the majority of the errors caused by relatively few biursts 
with large numbers of errors. 

This result is checked for validity by calculating the correlation between the logged nmnber 
of errors per burst. If the correlation shows that blocks with large numbers of errors occur 
consecutively then this would indicate that the channel estimator has lost track of the channel 
impulse response and that the 20 symbol training period is insufficient to reacquire the CIR. 
This condition could occur if all 3 paths went through a deep fade simultaneously leading to 
a deep fade in the received signal power. Figme 8.14 shows the measurements of the imbiased 
correlations for the decision-directed and true delayed data tracking cases. From the shape of 
the cinrves it is seen that the correlation for a small number of shifts is not significantly larger 
than those for larger shifts, indicating that the errors are evenly distributed throughout the 
duration of the simulation rather than being clumped together over a short period. 

The characteristics of the spread of errors within the data burst are measured by calcu­
lating the unbiased correlation of the error events within a data burst and averaged over the 
duration of the simulation. These results are shown in Figme 8.15 for the decision-directed 
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and true delayed data tracking configurations and demonstrate that the error events are 
much more correlated in the case of decision-directed tracking. This observation indicates 
that the errors have a burst structure within the data burst. The correlation values obtained 
include the effects of error propagation due to (hard) decision-directed tracking. If soft deci­
sion techniques do aid tracking then the error feedback problem will be reduced leading to a 
lower correlation of the error events. However, the results of Section 8.2 show that the soft 
decision techniques do not reduce the MTE down to the level obtained with true delayed data 
tracking and so the error events are still likely to be significantly correlated compared to the 
true delayed data tracking errors. Thus the soft decision methods discussed in Section 8.2.2 
are unlikely to have a major impact on the SER. The true delayed tracking curve shows that 
these errors are far less correlated. Note that the absolute value of correlation will be smaller 
as the number of errors is less than in the decision-directed case but the relative levels for 
small shifts are much lower. 

8.4 Soft Decision Generation 

The methods of generating and the distribution of the soft decision metrics is an important 
part of the soft decision technique as demonstrated in Section 8.2.2. If the equaliser cannot 
detect whether its decisions are correct or erroneous with sufficient accuracy then the soft 
decision technique is seen to be significantly impaired. 

The generation of the soft decisions for the Bayesian equaliser is straightforward as the 
decision metrics are estimates of the o posteriori symbol probability. From Bayes' rule. 

P{xi\r) = 
P{r\xi)P{xi) (8.22) 

for mutually exclusive transmitted symbols Xj. For equally probable Xj then 

P{xi\r) = 
P{r\xi) 

P{Xi) 

P{r\xi) 

Zf=o'Pir\xj) 
X{xi) 

(8.23) 

(8.24) 

(8.25) 

This final equation may be compared to that of the metric weighted soft decision, Eqn. 8.1 
to see that the Bayesian equaliser's decision metrics can be used easily to generate the soft 
decisions. The extension to the mean symbol soft decision or to the confidence value method 
is trivial. 

However, simulations recording the distribution of the confidence values, a, show that in 
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practice the equaUser produces a very narrow spread of values. This occurs both for symbol 
estimates that are correct and incorrect and in effect the equahser is always very confident 
in its decisions. The result indicates that the Bayesian equaliser does not produce suitable 
confidence values for the soft decision tracking methods discussed when operating on fading 
channels. Similar problems were observed in Morgul et al [77] in the erasure declaring part 
of the modified Viterbi algorithm. 

8.5 Summary 

The possibility of using confidence measures in the equahser's symbol estimates to aid tracking 
of a time-varying channel has been investigated. The degradation in the quality of the channel 
estimate due to erroneous data being fed to the estimator diuing decision-directed tracking 
was observed in Chapter 5. The confidence information has been used to modify the LMS 
adaptation algorithm by a number of methods so that the change in the estimate is reduced 
during periods of low confidence. These methods either scale the symbol estimates by a leal 
or complex number or modulate the LMS algorithm's stepsize parameter, /z. 

Simulations of the resulting algorithms have shown that the technique can reduce the 
mean tap error of the channel estimator if the equaliser can generate good quality confidence / 
reUabihty measures. Thus the equaliser must be able to recognise when it is making an error 
and when it is not. Clearly, the actual symbol decision that the equaliser produces is the best 
estimate (based on some performance measure) but, by comparing the decision metrics for 
the other possible symbols, some measure of the confidence in the decision can be formed. 
The Bayesian equaliser's decision metrics are suited to the formation of a confidence value 
based on the a posteriori symbol probabiUty but, since the equaliser operates on estimates 
of parameters such as the noise statistics and channel impulse response, the actual decision 
metrics are only estimates of the symbol probabiUty. In practice these estimates are seen to 
vary significantly from the actual values as observed in the high symbol error rate compared 
to the error rate obtained using the actual channel impulse response and noise statistics. This 
difference produces inaccm-ate confidence information. 

A second area which limits the effectiveness of the soft decision technique is the burst 
nature of the equahser errors. Even if the equaUser produces accurate confidence values, the 
result of updating the channel estimate by small amounts leads to a rise in the mean tap error 
as the channel is time-varying. This situation is aggravated by rapidly changing channels and 
leads to further equaUser symbol errors. 

The presence of burst error characteristics is the major limitation to the appUcation of 
the soft decision technique. In situations where the equaliser forms burst of errors the soft 
decision technique will not have a significant positive effect on the symbol error rate. However, 
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this does not totally exclude the possibility that, in some situations, the technique prevents or 
delays the onset of error bursts. The potential for deriving improved confidence information 
from equalisers exists and, given success in this area and the presence of less dependent 
symbol errors, the soft decision technique will be able to reduce the channel estimation error. 
The result of this decrease will be to reduce the occurence of equalisation / detection errors. 
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Chapter 9 

Conclusions and Further Work 

9.1 Conclusions 

This thesis has investigated the development and design of adaptive equalisers for use in radio 

links with rapidly time-varying and frequency selective channels. Rapid channel variations 

become more common as either the relative speed between mobile transmitters and receivers 

or the speed of reflectors and/or difiractors (which create paths within the chaimel) increases. 

Additionally, the use of higher carrier frequencies causes higher Doppler shifts and spreads for 

a given mobile or channel velocity, creating more rapid time-variations. The frequency selec­

tivity of the channel becomes increasingly significant with higher bandwith signals (resulting 

from higher symbol rate transmissions) due to a larger amoimt of inters5Tnbol interference. 

The use of such radio channels is spurred by the increasing demand for radio communication 

with higher available bandwidths and for use in harsher radio environments. 

The functionahty of the equaliser has been discussed in the context of additional tech­

niques (e.g. channel coding and interleaving) designed to improve the overall robustness of 

the radio fink to nonideal channel eflFects. Conventional equalisation techniques are described 

together with the more recent development of neiural network techniques. These latter tech­

niques have been the subject of significant research eflbrt due to their pattern recognition 

capabilities, which is essentially the function of equalisation and detection. 

A critical analysis of the use of a recurrent neinraJ network to provide improved equali­

sation has been carried out. This work has developed a theoretical analysis of single node 

structures and shows the limitations in the types of nonminimum phase channels that may 

be equalised with the use of the hyperbohc tangent nonlinear node element. The structured 

design of multinode networks has been carried out rather than relying on the adaptation algo­

rithm to form a suitable network. These designs have been based on the cancellation of both 

pre- and postciu'sors of the channel impulse response in a manner similar to the conventional 
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decision feedback equaliser. Such similarities were observed in the structures obtained by the 

appUcation of the original network's adaptation algorithm, the real time recurrent learning 

algorithm. Simulations of the symbol error rate performance have shown that the networks 

offer little improvement over the decision feedback equaliser and are highly sensitive to er­

rors in symbol estimates used to cancel precursors of the channel impulse response. These 

results have been obtained from time-invariant channels and, given the known improvement 

of maximum Ukelihood techniques over decision feedback methods for use with time-varying 

channels, the application of the recurrent neural networks has not been investigated fmrther. 

Simulations have shown the limitations of the maximum likeUhood based equaliser to­

gether with a channel estimator adapted by the LMS algorithm for time-varying channels. 

The results have shown that the equaliser's performance is constrained by the quality of the 

channel estimate used to form the equaliser's decision metrics. The channel estimator's ability 

to track the time-varying channel accurately is shown to be dependent on the quality of the 

symbol estimates used in the estimation of the received signal and the delay with which the 

symbol estimates have been generated. The identification of these limiting mechanisms has 

prompted investigation and development of alternative techniques in an effort to overcome 

the performance restrictions. 

The first technique studied was the Bayesian equaliser which may be implemented as a 

radial basis function nemral network. This equaliser forms its symbol estimates on a different 

statistical basis than the maximima likeUhood technique. Both theoretical studies and sim­

ulations have been carried out to compare the robustness of the two statistical techniques 

in the presence of channel estimation errors. The generation of an analytic solution to the 

probability of symbol error requires a knowledge of the statistics of the channel estimation 

error and for practical channels the derivation of the probabihty of error becomes complex, 

at least, leading to very limited results. The results of simulations show that the Bayesian 

equaliser is no more robust to errors in the channel estimate than the maximum Ukelihood 

equaUser. 

The second method investigated was the use of multiple channel estimators appUed to 

the maximum Ukelihood method. Rather than using a single channel estimator in the pro­

cess of symbol estimation, a number of different estimators are employed and the algorithm 

allows previous symbol estimates used in the channel estimation procedure to be updated. 

Extensions to the existing algorithm have been developed which aUow a trade-off between 

the performance and the algorithm complexity by reducing the number of channel estima­

tors employed by the algorithm. The relative number of computations has been compared 

for different equalisers and configurations and indicates that the complexity increase for the 

multiple channel estimator technique, in order to obtain a performance gain, is in the order 

of 1.25 to 3 times more complex than the conventional maximum likeUhood technique for 

typical channels and transmitted alphabets. The significance of this increase in computation 
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is application dependent but is of such an order that the R-MCE technique is of practical 

interest. The performance of the multiple chaimel estimator techniques show that as the 

number of channel estimators is reduced, the symbol error rate increases and eventually be­

comes worse than the conventional maximum likeUhood algorithm. This threshold occurs 

when the number of estimators falls below 4 or 16, depending on the rapidity of the channel 

variations and is independent of the length of the channel impulse response. Simulations 

have been carried out on a number of difi'erent channels and the results demonstrate that the 

technique performs better when the channel variations are rapid {/dTg > 0.002) and when 

the length of the channel impulse response spans more than two symbol periods. 

The final method investigated was the use of soft decisions or confidence measures of the 

equaliser's symbol estimates to aid decision-directed tracking of the channel estimator. The 

eflFects of two methods of using confidence measures to modify the chaimel estimator's LMS 

adaptation algorithm have been simulated and indicate that, provided accurate confidence 

measures can be produced, the mean tap error of the channel estimate can be reduced which 

should lead to a decrease in the symbol error. However, the use of soft decisions is Umited 

additionally by the occurence of bursts of errors. Dming such events the trEicking of the 

channel becomes diflScult as the estimator has little or no reliable information with which 

to calculate the estimate. Coupled with a rapidly changing channel, the mean tap error 

increases quickly leading to further equaUser / detector errors. 

9.2 Further Work 

The appUcation of neural networks to the equalisation of rapidly time-varying radio channels 

is considered limited unless the network structure is particularly suited to the equalisation 

problem and can be adapted quickly and accurately. Whilst some neural networks (e.g. radial 

basis functions) have the appropriate pattern recognition quahties required to separate the 

components of the received signal arising from intersymbol interference and additive noise, 

the adaptation algorithms used to train the networks must be capable of adapting rapidly 

to changes in the channel parameters. The patterns caused by intersymbol interference are 

relatively simple but the rate of change of the underlying mechanisms causing the interference 

is large and allows conventional equalisation techniques, which can be adapted more easily, 

to be used with increased performance over some neural network techniques (e.g. a general 

recurrent neural network). The development of faster adaptation algorithms for nemral net­

works is a priority before such structures can be realistically used in the equalisation of the 

radio channels discussed. 

The multiple channel estimator algorithms have shown an increased performance over the 

conventional maximum Ukelihood technique by me«ins of providing symbol estimates for the 

channel estimators with zero decision delay and by allowing previous symbol estimates to be 
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updated. The zero decision delay property is more suited to rapidly changing channels and 

as the variations become slower the performance increase is reduced. Studies of the effects 

of introducing a decision delay into the sequence of symbol estimates fed to the chaimel 

estimators would provide an insight into the relative advantages of being able to update the 

symbol estimates versus the degradation due to estimating an old channel impulse response, 

especially for channels which do not vary quite as rapidly. The appUcation of this additional 

method depends upon a knowledge of the rate of variations of the channel which wiU be 

known, in general, to some extent. 

Further investigations into the soft decision techniques are required to ascertain the effects 

on alternative tracking algorithms such as the RLS algorithm. The soft decision methods 

discussed are not exhaustive of the manner in which confidence information could be used 

to modify adaptation algorithms. For instance, the use of a threshold on the confidence 

measure could be used to suspend adaptation of the channel estimator for a given period. 

The generation of reUable confidence information by the equaliser is imperative. Further 

research is required to develop confidence metrics which may be different from the decision 

metrics used to produce the symbol estimates. Such confidence metrics require less polarised 

values than those obtained, for instance, by the decision metrics of the Bayesian equaliser. 

However, the major barrier to the soft decision techniques discussed is the presence of bursts 

of errors. Under such conditions the decision-directed form of tracking is of Umited use even 

when a burst of errors is recognised by the equaUser. There has been a growing interest in 

blind adaptation algorithms [31, 79, 80, 81, 82] and such methods may provide better channel 

tracking capabilities during bmrsts of errors. The soft decision techniques investigated in this 

thesis are not solely appUcable to the conventional maximum likeUhood plus chaimel estimator 

method. Any equalisation algorithm requiring a channel estimate could benefit from advances 

in improved channel estimation via soft decision methods. Such algorithms include versions 

of the decision feedback equaUser which use a channel estimate to derive the equaUser taps 

rather than direct adaptation of the taps, the multiple channel estimator techniques and the 

Bayesian equaliser. 

In summary the problems of equalising radio chaimels in which the mechanisms causing 

intersymbol interference are time-variant are still present and are likely to become even more 

significant as the demand for higher data rates and mobile communications and computing 

increases. The solution to combat the higher bit error rates is likely to include improved 

equaUsation techniques in conjunction with advanced error correcting codes. 
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Appendix A 

Air-Radio Interfaces of Current 
Digital Mobile Radio Systems 

This appendix details a number of fimctions of the air-radio interface aspects of some land 

based digital cellular mobile communication systems either in operation or the process of 

development. These digital cellular systems are called second generation networks, the first 

generation being analogue, and should be distinguished from satellite based systems such 

as INMARSAT-M, Odyssey, Globalstar and Iridium [83]. However, sateUite and land mo­

bile services are planned to be integrated in the third generation systems (Universal Mobile 

Telecommunication System, UMTS, sponsored by E T S I in Europe, and the ITU's Interna­

tional Mobile Telecommimications, IMT-2000, global standardisation). 

The sections cover both 'cellular' systems and 'cordless' systems although there is a con­

vergence in the functionality of the two classes. Cellular systems are designed for use in more 

widespread and diverse environments than cordless systems with the use of latter being nor­

mally constrained to within small 'picocells' such as homes, oflBces and small areas of streets. 

These cordless systems also cover 'telepoint' services. In addition the afr-radio interface of the 

European standard for digital private mobile radio is described. For further details, see [4, 

5, 49, 53, 84, 85, 86, 87, 88, 89, 90, 91, 92]. 

A . l GSM / DCS1800 

The GSM (Global System for Mobile communications) and DCS1800 (Digital Cellular Sys­

tem) are cellular based systems operating in many countries in Europe, Africa and Asia 

and are very similar to each other. The DCS1800 is a PCN (Personal Communication Net­

work) system operating at a higher frequency. In the U K Cellnet and Vodaphone operate 

GSM systems and the Hutchinson 'Orange' and Mercury 'One-To-One' systems operate using 
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DCS1800. In the USA, P C N is refered to as PCS (Personal Communication Services) and 
a variant on GSM operating at 1.9GHz has been adopted as the standard for the licensed 
band. 

The system operates with multiple channels, each using a TDMA format with 8 timeslots 

of 0.5769ms duration and 4.615ms separation. Base and mobile stations transmit / receive on 

separate 200kHz channels (i.e. frequency division duplexing, FDD) with a 45MHz separation 

between the duplex carriers for GSM (95MHz for DCS1800). In GSM, the carrier frequencies 

are in 25MHz bands from 890 - 915MHz (mobile to base / reverse Unk) and 935 - 960MHz 

(base to mobile / forward link). In DCS1800, carrier frequencies are in 75MHz bands from 

1710 - 1785MHz on the reverse Unk and 1805 - 1880MHz on the forward Unk. The system 

provides a total of 124 duplex R F channels for GSM (374 for DCS1800). Speech codecs 

are R P E - L P C with a full-rate of 13kbit/s with a half-rate codec to be specified for future 

systems. Data transmission is supported upto 9.6kbits/s. Channel coding is via a rate ^ 

convolutional coder with interleaving over 8 bursts plus error detection. GMSK modulation 

with a bandwidth-time product of BT = 0.3 is used with a bit rate of 270.833kbits/s (symbol 

period = 3.692Ats). 

The system is capable of operating with a channel multipath delay spread of upto 20yus and 

thus requires an equaUser for such channels. The 200kHz wide channels results in multipath 

delay spread resolution which introduces ISI and diversity in some propagation environments. 

A.2 IS-54 

The IS-54 (or D-AMPS) cellular systems operate mainly in the USA. Multiple channels with 

a TDMA format are used with 6 timeslots, each of 40ms duration, but in current systems 

two timeslots are allocated to each user allowing only three users to use the same channel 

simultaneously. The base and mobile stations transmit / receive on separate 30kHz channels 

(FDD) with 45MHz spacing between the duplex channels and with carrier frequencies in 

bands of 25MHz from 824 - 849MHz for the reverse Unk and 869 - 894MHz for the forward 

Unk. This structure provides 832 duplex R F channels. Speech codecs are V S E L P (Vector Siun 

Excited Linear Prediction) at a full-rate of 7.95kbits/s (13kbits/s with C R C error correction) 

and data transmission upto 9.6kbits/s is provided. Channel coding uses a rate | convolutional 

coder with a constraint length of 6. The system uses 7r/4-DQPSK modulation with a roll-off 

of 0.35 and bit rate of 48.6kbits/s (symbol rate of 24.3kBaud). 

The systems are designed to operate with a channel multipath delay spread of upto 60/is 

but, due to the on-air bit rate of 24.3kBaud, equalisation is not required in most situations. 
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A.3 P D C 

The Japanese Personal Digital Cellular (PDC) is very similar to IS-54. Multiple channels 

using TDMA with three timeslots, each of duration 6.67ms, is used and the base and mo­

bile stations use separate 25kHz channels for the FDD functionality with carrier frequencies 

around 900MHz (810 - 826MHz reverse hnk, 940 - 956MHz forward Unk) and 1.5GHz (1.429 

- 1.453GHz reverse link, 1.477 - 1.50lGHz forward link). The bands provide 640 duplex 

R F channels at the lower frequency and 960 at the higher. Speech codecs are a full-rate, 

6.7kbits/s (11.2kbits/s with error correction) V S E L P and recently a half-rate, 5.6kbits/s 

psi-CELP codec has been specified. Channel coding is via a rate ^ convolutional coder 

(constraint length = 5) plus 2 slot interleaving and CRC error detection. Modulation is 

7r/4-DQPSK with a root Nyquist filter (roll-off of 0.5), at 42kbits/s. 

Channel multipath delay spread is not specified and equaUsation is not required. 

A.4 IS-95 

IS-95 is a USA cellular standard for CDMA systems and the first implementation within the 

USA is presently functioning. 

Base and mobile stations transmit / receive on separate 1250kHz channels with carrier 

frequencies around 900MHz and the band provides 20 duplex R F channels. The forward-

link (base to mobile) and reverse-link operate in different manners. The basic data rate is 

9.6kbits/s which is spread upto a chip rate of 1.2288Mchips/s. On the forward-Unk data 

is coded by a rate ^ convolutional coder, interleaved and spread by 1 of 64 orthogonal 

spreading sequences of length 64 chips (Walsh functions). Prior to QPSK modulation, all 

spread sequences are scrambled by an identical PRBS generator of length 2̂ ^ chips in order 

to achieve a wideband spectrum. On the reverse link (mobile to base) the data is rate ^ 

convolutional coded and each block of 6 encoded bits is mapped to 1 of 64 Walsh functions. 

The signal is then further spread by a factor of 4 by a mobile specific code with period 2̂ ^ - 1 

chips to give a bit rate of 1.2288Mbits/s prior to QPSK modulation. Speech coding is via a 

variable rate C E L P codec and data transmission is provided at 9.6kbits/s. 

Receivers at both base and mobile stations use R A K E systems to combine and resolve 

multipath effects to reduce fading. 
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A.5 CT2 Common Air Interface 

The UK CT2 'cordless' standard offers speech and data services between fixed and portable 

stations. The link operates in a TDD format with frames of 2ms duration. Carrier frequencies 

are from 864 - 868MHz providing 40 FDMA channels with each channel being lOOkHz wide. 

Speech is coded via a 32kbits/s ADPCM codec and, after time compression and the addition 

of control bits, is Gaussian-FSK modulated at 72kbits/s. Data transmission is provided up 

to 2.4kbits/s. The relatively low baud rate results in equaUsation being unnecessary. 

A.6 D E C T 

The European D E C T 'cordless' standard operates cordless telephone Unks in a TDMA and 

T D D format with 12 duplex slots per channel. Carrier frequencies are from 1.880 - 1.900GHz 

providing 10 FDMA channels with 1728kHz spacing and, in addition, a frequency hopped 

multiple access mode is provided. Speech coding is via a 32kbits/s ADPCM codec and 

modulation is Gaussian-FSK at 1152kbits/s in bursts of 5ms. Due to the high on-air symbol 

rate, either antenna diversity (fixed stations) or equaUsation (portable stations) is required 

in more dispersive picocells. 

A.7 PHS 

The Japanese PHS 'cordless' system employs TDMA and TDD with fovir duplex slots per 

channel with each slot spanning 5ms. 77 channels are provided at carrier frequencies from 

1.895 - 1.918GHz with 300kHz channel spacing. Speech coding is via a 32kbits/s ADPCM 

codec and channel coding via C R C detection (no correction). The modulation used is 7r/4-

DQPSK at 384kbits/s. 

A.8 PACS 

The Personal Communications System (PACS) is a third generation system which aims to 

provide voice, video and data services for microceU or indoor use within the U.S.A. The 

air-radio interface uses 8 or 4 timeslot TDMA depending on whether the system uses either 

frequency or time division duplexing. The carriers are in bands from 1.850 - 1.910GHz and 

1.930 - 1.990GHz providing 400 channels with a 300kHz spacing. Speech coding is via a 

16-bit ADPCM codec operating at 32kbits/s with C R C and the modulator uses 7r/4-DQPSK 

at 384kbits/s. 
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A.9 T E T R A — European Digital Private Mobile Radio 

The Trans European Trunked Radio ( T E T R A ) standard aims to provide moderately different 

voice and data services than the GSM system for non-public users such as the emergency 

services. Only the key air-radio interface characteristics are summarised. 

The system operates in a variable TDMA format with a maximum of four timeslots per 

channel. The emergency services in Europe have been allocated the 380 - 400MHz band with 

another 20MHz band to be provided for commercial users. Speech coding is via a 4.56kbits/s 

C E L P codec and with channel coding the rate rises to 7.2kbits/s. The four timeslot structure 

and overheads gives a final bit rate of 36kbits/s. The data is modulated using 7r/4-DQPSK 

with a root raised cosine filter and roll-off factor = 0.35, resulting in a 25kHz channel spacing. 

The multipath delay spreads of typical channels are, in general, much less than the trans­

mitted symbol period (55.5/is) and so in most cases equaUsation is not required. 
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Appendix B 

Mathematical Overview of the 
LMS and R L S Adaptation 
Algorithms 

This appendix describes the mathematical functions required to be calculated in order to 

implement the LMS and RLS adaptation algorithms. Both these algorithms are designed to 

adjust the filter coejBficients or parameters of a Unear combination of the input signal such that 

the output of this filter matches the desired signal in an 'optimum' manner. The definition 

of 'optimum' differs between the algorithms and results in alternative ways of adapting the 

parameters of the same filter structure. The linear combiner / filter is shown in Fig. B . l 

together with the signal notation. 

B . l LMS Algorithm 

The LMS algorithm is designed to adjust the parameters of a Unear combination of samples 

of the received signal. The output of the filter producing the linear combination is given by: 

m - l 
y{k) = Y,bi{k)r{k-i) (B.l) 

1=0 

= h^{k)T{k) (B.2) 

where m is the order of the filter, bi{k) are the parameters and r{k — i) are the received signal 

samples — both terms may be real or complex. Eqn. B.2 gives the vector notation, 

h{k) = [bo{k),...,bm-l{k)f, 
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Figure B . l : Schematic of a general adaptive linear combiner / filter. In general all terms are 
complex valued. 

r{k) = [r{k),...,r{k-m + l ) f 

and [-J^ indicates vector transposition. 

An 'optimum' filter, known as the Weiner filter, minimises the mean square error between 

the desired output and the filter output: 

where 

J^ = \E[\eik)f] = \E[eik)e*ik)] 

e{k)=d{k)-y{k). 

(B.3) 

(B.4) 

d{k) is the desired output of the filter and * indicates complex conjugation. The optimum 

Weiner settings of the filter parameters require a knowledge of the correlation of the received 

signal r{k) and the cross-correlation between the received signal, r{k), and the desired signal, 

d{k) [47]. Since the channel is unknown, the statistics of r{k) are not computable and the 

Weiner parameter settings are unobtainable. 

The LMS algorithm is a gradient descent based technique which replaces the error func­

tion, J^^ in Eqn. B.3 by the instantaneous error e{k) (Eqn. B.4). The gradient of the new 

error surface, Jims-, is then given by: 

dh{k) 
= -r{k)e*{k) (B.5) 

(B.6) = -r{k){d*{k)-h^{k)r*{k)) 

where (•)^ indicates the complex conjugate transposed vector (Hermitian). The filter pa-
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rameters are updated in the direction of the negative of the conjugate of the error gradient: 

b ( . + i ) = m-,{^y (B.7) 

. = h{k)+fir*{k)eik) (B.8) 

where ^ is the stepsize which governs the rate of descent (and final mean square error). 

The algorithm is not a true 'gradient descent' technique due the approximation of the 

mean square error surface by the instantaneous square error surface. This leads to slower 

convergence times and the 'converged' parameters are noisy versions of the Weiner parameters 

[47]. The LMS algorithm's behaviour is well documented and the trade-off between fast 

convergence (large /x) / low mean square error (small fjt,), stabiUty (upper bound on fi) and 

behaviour in time-varying channels is largely understood [47, 59]. 

Variations exist including the normahsed LMS which modulate the stepsize, / i , according 

to the power of the input signal T{k). If this input signal is large the algorithm suffers 

from gradient noise amplification due to the approximation of the mean square error by the 

instantaneous square error. The stepsize, n, is replaced by: 

Block LMS algorithms replace the statistical expectation operator in Eqn. B.3 by a short-term 

time average of the instantaneous square error. 

B.2 RLS Algorithm 

The R L S algorithm is designed to adapt the parameters of an F I R filter but uses a different 

error criterion to the LMS algorithm. The RLS algorithm is a special case of the more general 

Kalman filter and uses input signal information since the algorithm was first initiahsed to 

update its filter parameters [47, 93, 94]. This results in a much faster rate of convergence 

than the LMS algorithm but involves significantly more computation. The least square error 

criterion does not use any statistical measures, as does the Weiner filter (ensemble averages) 

or its LMS approximation, but bases its error function on time averages which, in the case 

of recursive least squares, can be continually updated. 

The output of the filter is again given by (see Section B.l): 

m - l 

y{k) = 5;6i(A;)r(fc-i) (B.IO) 

= h^{k)T{k) (B. l l ) 
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and the error by: 
eik)=dik)-y{k). (B.12) 

The error function, Jris{k), is now: 

k 

Jrisik) = ^mt)\eit)\'' (B.13) 
t=o 

where /3(fc, t) is a weighting factor to allow time-variations in the channel being equaUsed. 

This function is typically an exponentional function defined by: 

I3{k,t) = X''-^ (B.14) 

where A is called the forgetting factor. 

For this error function, the optimum settings (in the least square error sense) of the filter 

parameters, h^ti^), are given (in conjugate form) by: 

^ t i k ) = m - ' m k ) (B.15) 

where the m-by-m correlation matrix, $(/:), and the m-by-1 cross-correlation matrix, &{k), 

are given by: 

m = j:x'-'r{t)T«it) (B.16) 
f=0 

k 

@{k) = ^A'=-*r(t)(f (i). (B.17) 

The correlation and cross-correlation matricies may be updated recursively (to save on 

computation and storage) by using the equations: 

*(fc) = X ^ { k - 1)-\-rik)r^{k) (B.18) 

@{k) = &{k-l)-^r{k)dr{k). (B.19) 

Using the matrix inversion lemma [47] a recursive relation for the inverse correlation 

matrix may be expressed as: 

^-\k) = X - ^ ^ - ^ k - 1) - X - \ { k ) T " { k ) ^ - H k - 1) (B.20) 

where the Kalman gain, k(A;) is given by: 

km _ A-^£-Hfc - l)r(fc) 
l-^X-^vJ{k)±-\k-l)v{k) ^^-^^^ 
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Finally, a reciursive relation for the parameter update may be used which removes the need 
to calculate the cross-correlation matrix, ©(/:). This involves calculating the 'innovation', 
a{k), 

aik) = dik) - h^{k - l)rik). (B.22) 

The second term in this equation is a prediction of the desired signal and the difference 

between the actual and prediction, the innovation, represents new information since it has 

not been predicted. The final expression for the parameter update equation is: 

b(ifc) = h{k - 1) + k*{k)a{k) (B.23) 

Thus the innovation is multiplied by the conjugate Kalman gain to provide a correction 

term for the filter parameters. Equations B.21, B.22, B.23 and B.20 give the final set of 

calculations required at each sample period and are clearly more complex than the LMS 

update equations. 

Variants of this standard form of RLS exist which compute the Kalman gain in by differ­

ent, more rapid, method. Further details may be foimd in [47]. 
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True C I R Model Calculation 

The combined impulse response of transmit filter, time-varying channel and receive filter 

cannot be obtained by a normal convolution of the three impulse responses. The receive 

filter delay line contains energy from symbols arriving with similar propagation delays but 

with varying ampUtudes and phase shifts. This appendix details the calculation of the true 

instantaneous channel impulse response — i.e. the ampUtude and phase of each transmitted 

symbol component of the received signal. 

The transmitted signal, x{k), (sampled at a rate = ^ ) is passed through a transmit 

filter with impulse response frini) (operating at a rate q f s ) to give the transmitted signal 

u{m) (see Fig. C . l ) . The higher sample rate is an approximation to continuous time. The 

transmitted signal passes through the time-varying chaimel filter, hi{m), and filtered by the 

receive filter, fR{m), and downsampled by a factor q to give the received signal, r{k). 

The transmitted signal may be written: 

u{m) = u{qk + p) = ^ friqi + p)x{k - i ) (C.l) 
1=0 

where p is chosen (;> = 0,1, • • •, g - 1) such that {m = qk-\-p). The length of the transmit 

filter impulse response is ni, spaced with delays of ( ^ ) -

The signal passes through the channel filter to give a signal: 

L 
v{m) = ^ hi{m)u{m - i) (C.2) 

1=0 

where (L-1-1) is the length of the channel filter impulse response, spaced with delays of [•^)-

Finally v{m) is filtered by the receive filter and downsampled by a factor q to give the 
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x(k) 

Sample fg 
Rate 

u(m) v(m) 

qfs 

r(k) 

h|(m) 1„(m) h|(m) 1„(m) 

Figiure C . l : Representation of transmit, chaimel and receive filters for combined impulse 
response calculation. 

received signal: 
m - i 

^ i=0 

(C.3) 

ni is the length of the receive filter impulse response, spaced with delays of and an 

integer multiple of q. 

Each received sample contains information from ^^ni+L-i^ transmitted symbols and, 

assuming a causal chaimel model, the combined delay of the transmit filter, channel filter 

and receive filter is (^^^) symbol periods. 

The combined impulse response may be calculated by substituting Eqn. C . l into Eqn. C.2 

and rearranging v{m) in terms of x{k), ••• ,x{k - ^^), 

9 

(C.4) v{m) = Y , hi[m) f r i q j + p - i ) x { k - j ) 
1=0 j=0 

where p is chosen (p = 0,1, • • •,5 - 1) such that {m = qk +p). 

The resulting sequence of coeflBcients of x{k), - • • ,x{k - ^ ' ^ ) are stored and a new coef­

ficient sequence is formed from the stored coefficients corresponding to a particular symbol, 

x{k — d). This sequence is then convolved with the receive filter impulse response, /R, to 

give the value of the combined impulse response value at time k — d. This final convolution 

is repeated for all sequences of coefficients of x{k — d), where d = 0, • • •, ^^"1+^-^ j . 

DownsampUng is achieved by calculating these final set of convolutions once every 9*'* 

sample, taking into account the relative shift of the receive filter impulse response and the 

symbol coefficient sequence. 
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