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Abstract

Intersymbol intérferénce (ISI) _and co-channel ih'.terference (CCI) la_re two m#-
;ior :ol)sta.cles to high speed data tl'ansmis'sioh-iﬁ wireless cellular communi-
caﬁoné systems. Unlike thermal noise, their effects cannot be removed by
increasing the signal power and are time-va.rying due to the relative motion
between the ti‘alisxnittel's and receivers. Space-time processing offers a signal
processing framework to optimally integrate the spatial and temporal proper-
ties of the signal for maximal signal reception and at the same time, mitigate

the IST and CCI impairments. In this thesis, we focus on the development of

this emerging technology to combat the undesirable effects of ISI and CCL

We first develop a convenient mathematical model to parameterize the

space-time. multipath channel based on signal path power, directions and

times of arrival. Starting from the continuous time-domain, we derive com-
pact expressions of the vector space-time channel model that lead to the

. notion of block space-time manifold. Under certain ident ifiability 0011&itions,

the noiseless vector-channel outputs will lie on a subspace constructed from
~ a set of basis belonging to the block space-time manifold. This is an impor-

tant observation as many high resolution array processing aigorithms can be

- applied directly to estimate the multipath channel parameters.
Next we focus on the development of semi-blind channel identification
- and equalization algorithms for fast time-varying multipath channels. Specif-

.icall}'. we develop épace-time processing algorithms for wireless TDMA net-



works that use short burst data formats with extremely short training data

sequences. Due to the la.ttei‘ the estimated cha,nnel pa,ra,meﬁers"a,re.extremely
unreliable for equallzation with conventlonal adaptive methods We approach
1h<= channel acqu:sltlon tracking and equallzatxon p1oblems Jomtlv, and ex-

- ploit the richness of the inherent structural 1elat10nsh1p between the channel

parameters and the data sequence by repeated use of available data through

a [orward-backward optimization procedure. This enables the fuller exploita-
_ jt.ion of the available data. Our simulation studies show that significant per-
' folrmance gains are achieved over conventional methods.
In the final part of this tﬁesis, we address the problem identifying and
éqﬁalizing multipath communication channels in the presence of strong CCI.

By conside'ri.ng CCI as stochasic processes, we find that temporal diversity

can be gained by observing the channel outputs from a tapped delay line. To-

gether with the assertion that the finite alphabet property of the info'l‘mation
sequences can offer additional information about the channel parameters and

the noise-plus-covariance matrix, we develop a spatial temporal algorithm,

iferative reweighting alternating mintmization, to estimate the channel pa- -

rameters and information sequence in a weighted least squares framework.
- The proposed algorithm is robust as it does not require knowledge of the

number of CCI nor their structural information. Simulation studies demon-

strate its efficacy over many reported methods.
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Chapter 1 -
| Introduction

- Wireless communications methods and services have been actively pursued
and adopted by people throﬁghéut the world. In the past ten years, wire-
less mobile communications have experienced phenomenal growth fueled by
a combination of novel communications concepts and advances in signal pro-
cessing; RF circuits fabrication and  VLSI technologiés. Coupled with the
liberalization of the wireless markets in many countries, wireless commu-
nications systems are curréntly witnessing rapid growth in the number of
users and proliferation in the range of services. Based on current trends and
market forecast. the number of users is expected to be more then 590 mil-
lions by 2001 offering a wider variety of services such as wireless computing,
multimedia, Internet. etc, '

- The radio spectrum allocation has recently been incréased. However, it
remains a limited resource. With the increasing demand for higher data rates,

many wireless communications systems with their present spectral efficiencies




ale expected.to be conjested to their capacities in the near future. This
poses a major cha.llengé for 1‘es§a.rchers and developers in wireless technology
to cle\’.elop novel system concepts and techniques aimed to improve spectral
efficiency and achieve high capacity within a limited spectrum. -
The cellular concept is a major breakthrough in improving the spectral
. efficiency within a limited spectrum allocation. It is ;;. sys.tem level concept
.whereby the geographical covel_;age area is split into cells. Instead of using
a high power transmitter to service the whole ébverage area, the coverage
in each cell is provided by a low power tr a.nsmltter Each cell uses a subset
of available channel frequencies that is different f10m the nelghbouung cells.
- The channel frequencies are carefully allocated to minimize co-channel and
- adjacent channel interference. Cells that are spati.a.lly far apart “can reuse
the channel frequenéies. This notion of frequency reuse plays a key role
“that significantly improves the spectral efficiency of wireless communications
svstems. Recent advances such as cell splitting, sectoring and coverage zone,
have been made in cellular design techniques to improve the capacity in the
cellular systems. Together with multiple access techniques such as FDMA,
- TDMA and CDMA, wireless mobile networks provide users with the ability
~ to communicate \i-'iﬁh other users connected to both fixed and mobile users.
©In mahy wireless mobile comrhunications svstems, the ra.dio'propa.ga-
tion cliannels are extremely hostile. The signal fra.vels from the transmitter
to the receiver throucrh a multipath channel, whereby the signal undergoes
multi-reflections arriving at the receiver as a supe1p031t10n of scaled and de-
lay ed versions of the transmitted waveforms. The relative motlon between .

the transmitter, receiver and reflectors 1esults in doppler shifts in the signal

9




Compoﬁents, hence 1'e1i(1e1'ii;1g the mobile propagation channel to be time-
varying. Depending on the transmission rates and the channel dynamics,
 the eflects of multipath can result in flat or frequency sele_étive fading. The
“former results in loss of SNR while the latter results in delay spread that
manifests as intersymbol interfe'renf;e (ISI).

Intersymbol interferenéé (IST) and co-channel interferences (CCI) are two
major ohstacles to high speed data transmission in wireless TDMA networks.
Geometricé]]y, the .presén.cé of ISI aﬁd CCI recittées-thé noise margin. Un-

~ der extreme con'ditions'( e.g. non-minimum phase ch'a,nnels),. the tra)ns‘mitted.
syml)ols become indistinguis]iable leading to extremely poor error perfor-
mance. Unlike thermal noise, these effects cannot be removed by increasing
the signal power. Particularly, in an interfefence limited signal environrﬁént,
increésing the signal power in one cell will increase the level of co-channel and
~adjacent channel interferences. These effects can be mitigated and controlled
somewhat by careful frequency planning and allocation. However, they usu-

ally lead to poorer cell reuse factor resulting in poorer spectral efficiency.

1.1 Space-Time Processing for Wireless Com-
munications

A promising approach to achieve substantial capacity gain in wireless cellular
networks is the use of a multi-antenna array in the space-time processing
{ramework. By processing the received signals in the space-time framework,

both the spatial and temporal signal properties can be optimally integrated

10




to maximize signal reception as well as to mitigate the channel impairmeﬁts
such as ISI and CCI.

Spatial processing can offer two 1eve.ra.ges. Array signal processing a.lgo- ,
rithms such as digitial beamforming achieve directivity towards the signal of -
interest. This results in signal to noise ratio{SNR) improvement from the
ant_emiém gaih. In addition, the spatial diversity of the antenna arrays can
be used to discriminate and s'ulﬁpress. multipath and co-channel interferences

by forming nulls towards their directions of ar.ri\.ral. The usefulness of array
signal processing in communication applications was 1‘ecei1tly der.nonstrated'
“in many independent field trials {4] [5] [6] [7]. -
' ' The inherent temporal structure of digital communication signals can be
exploited to mitigate the effects of ISI and CCL In general, digital commu--
| nications signals exhibit temporal signal properties such as cyclostationarity,
ﬁnité alpabet, consta.nt modﬁlﬁs and higher order statistics. These teinporal
signal properties can provide deterministic and stochastic structures to iden-r
tify the channel parameters and recover the transmitted waveforms as shown
in {3] [20] [19] [22]. - . ' _ )
' Processing the recei_\_‘ed signals in the space-time framework can optimally
exploit both the spatial and temporal signal properties to maximize signal
‘reception as well as to 111itigate channel impairments. Recently, éigniﬁcant
re_'searlch effort has been focused on the déveldpme_nt of space-time processing
- for wireless communications. In [22], spati.a,l.‘ diversity and cyclostation;irity
. of the oversampled received signals are used in blind identification of the
channel parameters. Space-time constant modulus and space-time l;.igher or-

der statistic approaches were stidied and proposed in {19] [3]. Algorithms for

11




blind identification of multiple FIR channels were proposed in [39] [59]. These
algorithmic 'eipprozichés have been developed based on different assumptions
and assertions on the signal and ihterféi‘er_ice em.ril.'onment,'tem'pora.,l struc-
tures and channel dynamics. o | o _ |
In most engineering practices, it is not likely to develop a genel'ic solu-
tion that sblve_s all the air-interface problems. A thorough understanding of
.t¢11é_éig11al environment and critical analysis of the r_equiremérits of the air-.
interface are né.cessa.ry ‘for the deveiopment of useful space;tim'e procéssing
é.lgorithms. The focus of this thesis is to develop space-time processing al-
gorithms for high speed data transmissrion m wireless TDMA networks. The .-
main requirements of such algorithms are discussed next.

~

1.1.1 Analysis of Requirenient_s of Space-Time Pro-

cessing Algorithms for TDMA Networks

The applications of space-time algorithms to cellular mobile TDMA commu-
nication systems are often complicated by the fact that they need to operate
n uncertain channel en\'ironme.nts. The sources of uncertainties are due to
the lack of precise knowledge of the channel and interfm‘ence parameters and
_their variability with time. Broadly speaking, operating in uncertain chan-
nel environments involves acquisition and tracking. Acquisition is a transient
j)l'ocess, where the channel parameters are estimated. Tracking is a steady
state process wherein the statistical variations of the channel parameters are
tracked from an accurate initial éstinl@ﬁe of the time—varyirig channel param-

eters.




Tlle des1gn of space—tnne a,lgouthms for hlghly slaectrum -efficient wireless
' TDMA networks is faced with a numl)el of competzng 1equuements Good
initial estimates of the channel palametens are spectmlly e‘{penswe to ac-
_ quire. It entails reserving a portion of the data sequence for non—_bhnd chan-
nel estimation. Due to the presence of noise, 1'e'duci-ng' the training length
will result in noisier initial éstimatés.' This can induce detection errors due
to poor tracking, particularly at the initial tracking phase. In GSM and
© IS-34 standards for wireless TDMA networks, more than 15% of their time-
slots are reserved for training the channel equalizer. Clearly, the spectral
efficiency of these networks can be sign-iﬁcantly impfoved if the trzixinihg.se-
quence can be completely or signiﬁcaﬁtly shortened while achieving reliable
data transmission. - .

_If time-invariance is assumed for on time-varying channels; modelling -
er_rors-will be introduced. This can lead to poor sequence detection, particu-
larly for rapidly time-varying channels. One way to deal with time-variance |
_ is to approximate the channel by contiguous segments of a quasi-statioﬁary
channel. wherein each data sub-block is independéntly processed. This is
suboptimal as the full information residing within the data block is not ex-
ploited Moreover, Lesolvmg the competmg 1equ1rements of havmg lalge
sub-block size and contmnlng modellmg errors remained open.

_ .\Iost wueless TDMA networks use short burst data formats. ‘For ex-
_ ainple. GSM and IS-54 time-slots are equivalent to 148 and 15_0‘syfnbols,
respéc'ti.vely. In addition to achieving multiple acéess, transmitting in ti'ine-
slots of appropriate length can increase the possibility of facing felwer deep

' fades.” As the time-slots are extremely short, the space-time processing al-
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gorithms must be daﬁa efficient and fast Converging in order to colmbat..the
channel impairments within a very short period. .

- As remarked earlier, the price paid for frequeucy reuse is the introduction
of co- and adjacent channel 1nte1fe1ences Inc1ea5mg the signal power does
not help as the increase of 31gna.1 power in one cell will increase the level of co-

| channel and adja.cent channel 1nt¢1‘ferences. Hence, the space-time processing '
algorithms are expected tb be roBust to CCI/ACI while achieving reliable
data transmissions at relatively léw SNR. | | |

~In this development, we aim to develop the space-time processing algo-

rithms for -TDMA networks that:

.¢ achieve good channel identification and equalization with minimal num-
ber of training %amples (=2L—1, where L is the channel length), and
able to rapidly converge and achieve reliable channel identification and

equalization with burst data format (< 100 symbols).

o able to track and equalize low SNR (< 104B) time-varying channels

with large doppler spread (> 300Hz).

~# achieve reliable channel identification and equalization at low signal to .

interference ratio (< 7dB).

1.2 : About this _Thesis‘

This thesis is divided into three pa.lts The first part, Chapters and 3, for- |

mulates the space-tnne multlpath propagation model a,ncl deuves a.lgorxthms




- for estimating the multipath channel parameters. The second part, Chap-

ter 4, addresses the problem of identifying time-.tfal'ying muitipath channels

with extremely short training sequences. Finally, the third part in Chapter 5

-~ addresses the problems of _identiﬁca,tion of multipath channéls and sequence

detection in the presence of strong interferers.

1.3 Thesis Contributions

The main contributions made in this thesis are as follows:

1.

]

Introduction of a space-time channel model that reveals the underlying
structure of the multipath propagation channel in terms of signal pat-h
power, directions and times of arrival. This model facilitates computer
simulations to examine the performance and characteristics of \the pro-

posed algorithms under different propagation conditions.

. Introduction of the notion of space-time manifold and formulation of

the framework for the estimation of directions and times of arrival of

~ multipath signals.

Derivation of Maximum Likelihood, MUSIC and Weighted Subspace

- Fitting algorithms for estimation of directions and times of arrival of

multipath signals.

- Introduction to the concept of time-reversal and formulation of a com-

- putationally and. data efficient block-based semi-blind adaptive ap-

proach to least squares channel identification and sequence detection

15




of time-varying multipath propagation channels.

5. Formulation of a new approach to channel identification and equaliza-

. tion in the presence of strong co-channel interference..

Parts of the ougmal WOII\ presented in this thesis have also been pubhshed

" or cunently under review at various 1nte1nat10nal joumals and confelences

1.

SR

. C.M.S. See and CFN . Cowan, “Methods for Fast Blind Ideﬁtiﬁcation

and Equalization of Communication Channels”, IEEE International

Conference on Acoustics, Speech and Signal Processing, Munich, April

1997.

C.M.S. See. "Fé,st and Data Efficient Approach to Blind Channel Iden-
tification and Equalization”, IEEE International Conference on Infor-

mation, Communications and Signal Processing, Singapore, Nov., 1997.

C.M.S. See and C.F.N. Cowan, “A Forward Backward Approach to

Adaptive Space-Time Identiﬁcation and Equalization of Time—Varying‘

(hannels AEFE Intematmnal Conference on Acoustzcs "Speech and

Srgnal Pmce-smg, Seattle May 1998.

C.P. Chua. C AMLS. See and A. Nehorai, “Vector-Sensor Array Process-
ing for Estimating Angles and Times of Arrival of Multipath Communi-
cations Channel”, [EEE International Conference on Acoustics, Speech

and Signal Processing, Seattle, May 1998..

- CALS. See aud A. Nehorai, “Estlmatlon-of Directions and Tlmes of

Arrival of \Iultlpath S1gnals Using a Calibrated Space—Tlme Antenna
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| Array”, 9% IEEE Signal Processing Society Workshop on Statistical

-1

o .

Array and Signal Processing, Oregan, Sep. 1998.

C.M.S. See, A. Nehorai and C.F.N. Cowan, “Spatial Temporal Chan-

nel Identification and Equalization in the presence of Strong CCI”
(Invited Paper), 34”f Asilomar Conference on .S’ign'a,ls,' Systems and

Compulers, Nov. 1998.

. C.M.S. See and C.F.N. Cowan, “Adaptive Algorithms for Identifica-

tion and Equalization of Time-Varying Channels”, IEEE International

Conference on Communications, Singapore, Nov. 19983,

C.M.S. See and C.F.N. Cowan, “Adaptive Algorithms for Identification
and Equalization of Time-Varying Cha,nnels”,. to appear in Proc. IEE

Communications.

. C.M.5. See and C.F.N. Cowan, “Spatio-Temporal Channel Identifica-

tion and Equalization in the Presence of Strong Co-Channel Interfer-

ence” to appear Eur. Signal Processing, Vol. 78.
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C ha’pt\er 2
Vectorlzed Space-—Tlme

Channel Model for Moblle

Communications

The objective of this chapter is to formulate a convenient space time model
for time-varying multipath channel in wireless mobile commumca,tlons

The original work in this chapter is threefold:

1. formulation of a space-time channel model that is paxa.metnzed by the

signal path powe1 directions and times of arrival,

2, dériva‘tiqn of compact expressions for the space-time channel model and

introducing the notion of space-time array manifold.

3. relating the derived épabe—time channel models to conventional space-

time models. ,




2.1 .Spac'e-Tir'h,e Chahpel 'Models

‘The complex representation of a linear modulated signal is given by

w(t)= Y siglt—iTh)

{=—n0

(2.1)

where 3; € 2, g(¢) is the signal pulse shape and T} is the symbol duration..

2.1.1 Discrete-'Si).urce‘Mddel_
In this chapter, we develop a digital time-varying communications channel
model by starting from the physical model. In the mobile communications
environment, the signals eméné.ting from the transmitting antenna undefgo
transforl‘na.tion due to reflection, diffraction and scattering. The received
signal in the continuous domain (CT) can be modelled mathematically by
I | ‘
a(t) = ZO ai{t)u(t — 7i(t)) exp(—s(wri(t) + 0:(t))) + n(t) (2.2)
i= _ : o
where «;(¢) and 7;(f) are the path gain and delay of the i** path. w is
the carrier frequency (in radians) and #;(¢) is a random phase with uniform
distribution over (0.2=]. g(¢) is the combined transmitter and receiver filter
impulse response. I is the number of sources observable by the recéiving
system. | 7 |
Extending the C T model (2.2)to a m sensors receiving 'éysteml, we have
-

X(t) = 3" a(6:)B:(t) Y- gt — 1Ty — nil(t))s: + (1) (23)
o =0 B : : . .

i=0

I The narrowband requirement of 4"—“;5-“5 << 1 is assumed; where d is the aperture of

the antenna array, waw is the signal bandwidth and ¢ is the speed of light.
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where

e
—
LY
Nt
Il

l\J

[ll(i lm( )] o ‘ (
T(2)  = [nl(t)...n,_,l(t)].' R (2

lv
i.."l

a(d;) is the antenna array response of signal impinging the array from #4;,
!3;( t) is the cdmplek gain of the it * path. L deﬁnes the ﬁmte suppont of the
* channel and i is dependent on choice of g(t) and the path delays.
B Assummg the receiver samples x(t) at timest = kT4 VE € Z, we have

“the following dlsc1ete-t1me(DT) model

|

|

|

|

o . o | 1

X(KTh) = 3 a(0:)8:(kTy) g™ (0, 7:(kT3))sk + H(kT3) (2.6). ‘
i=0 :

' |
where ‘
__ r |

glt,7) = [gt =) g(t-Ts—7)-- gt — (L -1 =)  (2.7) -

Sk = [sk Spor- Spcpga] ' ' (2.8) |
\

From (2.6), and assume fadmg to remain constant over the symbol peuod

the oversampled multichannel data model can be expressed as

)
X(KTy) = Y~ 8:(kT) (a(6) @ GT(:)) st + n(kT3) (2.9)

=0

where

M —
M

M-1_17 .
"'-Tm(ka_)”"’vm((l‘!—l_ \ )Tb)] -

3;(;-1*,,) = [.1:1(ka)- ((k+ 20T (210)




G(r) = [g(o,r)---g(w o ew

T,
- n(kTy) = [nl.(k_Tb) fe nl((L + £J%dr—-—)T,u,) : (213)
.- nm(ka) nm((l\ + - M-1 )Tb)] :

and M € Z is the tempoxal ovelsa,mplmg factor. The operatm & denotes
the ]\lOHCCl\Cl ploduct

Explessed in compact matrix form

x(kTp) = U(0,7) (B(kTy) O L) + n(kTy) (2.14)
where |
| U(G,T).=. .[u(él,vl'l)--.u(él,n)].- @) |
i, ) = af)®GT(xn) (2.16).
Bt) = [Bu(t)- Br(0)]", (2.17)
6=1{6 --- 0;]" and 7=[r, --- 7/]". In this thesis, we shall term u(6;. ;) as

the Block Space-Time Manifold.

2.1.2 Continu_ous'-So_urce' Model |

The model based on (2.2) is derived based on discrete sources. Alte1 natively,
the combined effect of multipath, local scattering and dlffractlon can be seen
as a continuum in time and space. Based on this assertion, the received

signal in the CT domain can be expressed as

() = /0 " tpe(t)ult — 7) exp(—j(wr + 0,0 (8)))dr. (2.18)
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. The 1‘elatioﬁship be;;weeﬁ {2.18) _a.nri_ (2.2) can be easily'established. f.l‘onl [1}
SRR «,n(t)ea:p(lj(w +0,,(1)) = Py st exp(=i(or +048). (219 -
V. | Allematlvel\ we can write (7 18) as | o | | |
R - x(t) = C(t)OJ zb,é(t - sz) + n(t) (2.20) - .
- , . = > h(t—iTy)si + n(t) S - (221) | |
S pard o |
' 1. - where ¢ is the convolution operétbr, h(t) = c(t) ¢ g(t) and ‘ s |
. . c(t) = fow apr exp (—j(wr + 6,,(2))) dr. o 7 (2.22) o
; \. .Sa.mpling at times ¢ = I.;Tb, we have | | | |
) | - 2(kT) = hT(0)sg + n(kT) | (2.23) .
where. h(A) = [h(Q) [(A+Tb)--- (A +(L - l)Tb)]T and A is the sampling
‘ phase: ‘_With temporal oversampling‘factor of M. wé ha\'e '
' (KT3) = Esp + 1(t) | (224) -

(k4 2 )| (225)
(2.26)

%(kTy) =
M —

\ﬁt:ll y
[0 2(Ck 4+ 3ym)
T
—-—-~—~T;,)] }

z [h(O) h(-MT;,) - B(

The vectorized channel inodel in (2.24) leads to the same matrix form as

derived by ']ono et.al.. For multlchannel receiving system, the channel model
(2.27)

can he easdy extended to
x(RTb) = Es + n{kT,
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|
i

)
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Clomparing (2.27) and 2.14),the equivalence is obvious.
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Chapter 3

Parameter Estlmatlon for

Multlpath Channel

In many wireless communication networks, the signals received by the hase-
station suffer impairments due to multipaths and additive noise. Under cer-
tain condition_s.. the multipaih channels can be approximated and modelled
parametrically by a finite humber of path gains. direction of arrival (DOA) |
and time of arrival (TOA) Such parmmomous parametrization of the multi-
path channels can potentlally offer improved accuracy gains in the estlmatlon
of the multipath channel, This can result in better sequence detection per-
formance. Additionally, the estunatecl DOA and TOA can provide relevant
information in the formulation of optlmum tra.nsmlt beamformmg stlategy

as well as mobile localization.

Joint estimation of DOA and TOA of multipath signals can be achieved

with prior knowledge of the array manifold and transmit-receive filter re-







sponse. The transmit-receive filter response can be easily obtained since

the transmit and receive filter specifications can be enforced during man-

uf&cturing In pmctwe the auay manifold needs to be accurately ca,h-
brated. This can be achwved by a.pplymg array calibration algonthms such
~as [27][29][31][32].

In [10] van der \feen proposed to estimate the DOA and TOA duectly

from previously est1111ated channel parameter matrix using subspace fitting

methods. This approach is later extended to SPa.ce-timé-polariza,tioh domain

© using vector sensor array processing[36]. These approaches however assume
channel to remain stationary over the time-slot and require the channel to be
estimated beforehand. In {37], Leshman and Wax assume the multipath to be
fully coherent and propose a maximum‘ likelihood approach that jointly esti-
| mates the DOA, TOA and path gains of multipath channels in the frequency
~ domain. While this approach estimates the multipath parameters directly
from the channel outputs (in frequency domain), it implicitly assumes the
channel remained stationary over the observation period. The formulation
in {37] can be cumbersome as it requires the DOA, TOA and path gains of
the multipath channels to be estimated directly.
The main contribution of this chapter is the development of 2 new ap-

proach to estimate DOA and TOA of mulitpath channels. Unlike [10)[37],

- the new approach does not assume channel stationarity over the time-slot

nor does it require a start-up sequence in ea.ch time-slot to obta,in estimates

of the channel. The proposed approach accomplishes the estuna.twn of DOA

ancl TOA oi multlpath channels dnectly from an array of ov e1sampled chan-

- nel out.puts. In this ‘chapter, we derive the Cramer-Rao lower bound and
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formulate the maximum likelihood, weighted subspace fitting and MUSIC
estill'la.tdl's. |

In this development, we assume the data are transmitted in data packets |
over a time-division multiple accesé (TDMAj network. We also assume the
DOA and TOA of the multipath channel remain constant over a small number
of time-slots while the fa.cling. gaiﬁs are time-varying within each time-siot.
This assumption is reaﬁonable W]ﬁen the ba,se—statio.n and fast moving mobiles

are far from each otler.

3.0.3 Data Model

The data model of the received channel outputs is given by

x(kDh) = U(8,7) (B(KTy) @ I) s + n(kT:) (3.1)
where |
U8, r) = [u(dy,7) --uldnm)] (3.2)
(b)) = alf)®GT(x) (3.3)
B = BB (3.4)
0 = [0 - 6" (3.5)
T o= [0 | (3.6) |

and & denotes the kronecker product operator. The parameter estimation
can be formulated as follows: -

Given N observations of the received vectors, estimate the parameter vector
w L . . .
. T
T = 0% 57 vecT(Re(Z)) vecT(Im(Z))] . - (3.7)
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where

Z = [z1--2n] (3.8)
z = (BGT)QI)s: - (3.9)

and 7 = [ 6T 7|7

3.1 Estimation Methods

Based on the model given in (3.1), the space-time covariance matrix is given

as follows : R .
R(n) = U(n )PUA (7 ) + o Tnnr (3.10)

where P = E ((ﬁ(kT;,) ® I)ssH{(B(kT) ® IL)H), ol is the noise power and

A denotes the éonjugate transi)ose of A. In this chapter, we assume the

parametrization in (3.10) to be parameter identifiable. We also assume

nd > mL and U(n,T)PUH(n,d') has rank m'L where m' < m. From (3.1),
we note that the multipath signals lie on the span of the block space-time

manifolcl. Clearly from (3.10), we can apply many existing high resolution

array processing algorithms to estimate 8 and 7.

- The space-time covariance matrix can be estimated from N time slots of

data packets of length J _symb'olé by
= 1 o o |

where X;, 1 =1 -+ is the data matrix constructed from the channel vectors

of the i* time-slbt.
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3.1.1 Maximum Likelihood Method

The'ML estimation of 77 can be casted as follows:
{#,2} = argmin |X — U()Z|%. . - . (3.12)
. 1.7 2 : S

Applying the technique of separation of variables [12], we have

2(n) = (Um)"U(m) ™ U)X B

and the concentrated ML estimator of 7 is given by
~ L. | 1 fand _
7} = arg mﬁnT; (PUm)R) (3.14)

\\'llere‘
Py =I-Um) (Um*U(m) U@’ (3.15)

is the orthogonal projection matrix onto the subspace span by U(n), and
R= 72" (3.16)
=7 .

1s the sample space-time covariance matrix.

3.1.2 Subspace Fitting Method

The spectral dec.ompositioﬁ of R(n) takes the form

R(n) =EAE+ o E.E] (3.17)

A, € C™E*¥m L5 a diagonal matrix of signal eigenvalues. The range space of .

E; € €M L and E, € C"M*M-mL) 516 the signal and noise subspaces,
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respectively. Since U('n) is full column rank and (3.10) is assumed to be

pa.u‘.ameter identifiable, we have the following relationships

E7U(n)|,=0and E,=UMm)T - (3.18)

ifandonly if g =75. Te C™ExmL g an unitary matrix.: Many subspace

 based algorithms can be applied directly here to the solution of (3.18)[15].

Mﬁla’.iple Signal Classification Algorithm _

Multiple Signal Classiﬁ.catz'on Algorithm (MUSIC) is one of the most pop-
ular array processing algorithn.'l developed for direction finding[13]. Following
{3.18) and with P being full-rank, the directions and times of arrival, {9,-, 7}
of the multipath signal can be obtained from the MUSIC DOA-TOA cost:

function -

.
fvusio(d,7) = WII_;L;:;(U(’;—)J_')“ (3.19)

Unlike conventional MUSIC algorithm, the space-time manifold, u(9,7), is
not described by a vector. As defined in (2.17). u(8,7) describes the space
and time variation of the oversampled array response of a known signal,

g(f — 1), impinging the antenna array from 4.

Weighted Subspace Fitting
From the relationships of (3.18), the directions and times of arrival can
be estimated by optimizing the foliowing measure
A = agmnlE - UmU@ERy 0 (G20)

— areminTe (PL. B WEH :
= argminTe (IPU(mEsWES) (3.21)_
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where NAllq = Tr(AQA™) and A' denotes [)séudo-in;rel‘se of A; W ¢
-Cm‘L"’”‘L is a pdsitive definite weighting matrix. The cost function in (3.21)

is known as Weighted Subspabe Fittilig (WSF). The results in [14] su.gges.t
| an appropriate choice of W to be

_ A
W= (A, - o) A]' L (3.22)
‘where A, and °I are, respectively, the eigenvalues associated with the signal

and noise eigenvectors.

3.2 Numerical Examples

Computer simulations were conducted to evaluate the ability to estimate the
- DOA and TOA of mult-ip&th signals by the proposed algorithms. We consider
‘a six-element éntenna arfay with four times temporal oversampling of the
symbol rate. The carrier frequency used is 1800MHz. The data symbols
are drawn from binary phase shift keying constellation and transmitted in
packets of 150 symbols at GSM data rate. The modulation waveform is a
raised cosine pulse with 35% roll-off. The multipath channel is parametrized
by paths afriving from 6, = 20° and 8, = 30° with corresponding path
delavs of 7 = 2usec and 7 = 3usec. In this study, the effecti‘ve channel
lengt.h 1s approximately 6T}. The fast time-varying fading ampiitudes are
_due to the mobile travelling at 300kph (doppler frequency of 500Hz) and
asétuned to be Rayleigh distributed. For each trial, we compute the sample
space-time covartance matrix {rom 40 time-slots and the fading amplitudes

are independently generated for each time-slot. The statistics computed in
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this study are averaged directly from 100 iﬁdependent trials.

In Figuré 3.1, we examine the performance of the proposed algorithms
| _over a._i-ange of SNR.J.AS_ eXpectéﬂ, the ML and ;hé WSF method outperform
the MUSIC estimator. Next, we study the effects of mobile speed on the
p.ropo..secl algorithms. In Figure 3.2, the MSE of the estimated DOA a,nd TOA
are plbtted as a function of mobile speed. We note that in this experimental
, setup.'_ the speed of the mobile has little impact on the'p‘erfo'rmance. It suffices

to note that when the mobile is travelling at very high speed, the assumption

of DOA-TOA invariance can only hold for a short period of time. We examine

the performance of the proposed estimators as a function of the number of
snapshots in Figure 3.3. The results show that the ML and WST estimator

achieve good performance with short integration time.

3.3 Conclusions

This chapter considers the parameter estimation problem for di1‘ections and
times of arrival of multipath signals in mobile communications environment.
This is an important problem in mobile communications particularly for mo-
bile localization services, survellience and in the formulation of optimum
transmit beamforming. |
Starting from the continuous-time domain, we model the space-time mul-
.tipath channel as-a colleétio11 of basis functions. These basis f\ih(:_i;iOlls lie
on a block space-time manifold. The significance of this formulation is that
- the resulting ma_thenmt‘ica.l structure is very similar to the ones used in high

resolution direction finding algorithms, thereby enabling many previously
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cleveldpéd airra,y processing algorithms to be applied here with minimal mod- -
ification. We present a maximum likelihood é_stima,tor and derived subspace
fitting algorithms such as 'weigh:ted subspace ﬁttihg and MUSIC estimators:
Lo estimate the m'u.ltipath. dii‘ectioi_:s é,nd_ times of arrival. The MUSIC es-
timator offers significant computational simplicity over the WSF and ML

estimators but compromises in estimation performance. The usefulness of

the proposed épproach is demonstrated with numerical examnples.




Chapter 4
Adaptive Algorithms for
Channels with ISI

Impairments

4.1 Introduction

The main technical challenges and requirements of developing channel identi-
fication and equalization algorithms for wireless mobile time-division multiple
access (TDMA) networks using short burst data formats can be succinctly

summarized as follows:
1. Ability to track time-varying channels.

2. Require an extremely short or no training sequence for initial channel

estimation.




.3 Data efficient and rabidly convergeﬁt for use with short burst data

. format.
4. Perform adequately at relatively low signal to notse ratio (SNR).

Several families of blind channel identification and equalization algo-
rithms have been proposed. Hou}ever, many of the current approaches may
not be adequate for such inobile cbmmunig:ations applications. For instance,
e_l.lgori'thms based on exploiting higher order statistical information in the
channel outputs [18] [19] find limited applications in wireless mobile com-
_.munications. This is because these algorithn‘w generally exhibit slow conver-
gence and require a large number of channel outputs to obtain good estimates
of the h.igher order statistics for reiiable channel equalizafion.

The pioneering works of Tc;ng et. af. [22] and Moulines et. al [23] have led
to the developménts of several blind channel identification algorithms .based
on the second-order cyclostationary properties of the channel outputs. In
general. these methods achieve blind charinel equalization by solving a sys-
tem of linear equations derived from the covariance matrix of the vectorized
channel outputs. These algorithms are block-based and offer the potential
of fast and data efficient blind channel identification. However, their ex-

plicit assumption of channel stationarity renders them unsuitable for radio

propagation channels that are rapidly time-varying!.

'These algorithms can still find useful applications in fast time-varying channels when

the data packet is very short such that the time-variation within the time-slot can be

approximated to be stationary -




A conventional adaptive channel equalizer treats the acquisition and track-
ing problem separately whereby tracking and equalization will commence
when the tracking algorithm has achieved steady. state. The drawback of
this approach is that the tréining.sequence‘ will have to be sufficiently long
‘to ensure the channel estimator reaches its stea.ciy state before the channel is
traéked and equalized realiably. When short traiﬁing sequence can only be
made available due to bandwidth conservation, the detected symbols at the
start of the equalization process will have higher probability of error due to
the noisier channel estitﬁates_. _ |
" Inmost digital communication systems, the transmitted symbols are con-
strained to a finite alphabet (FA) set £2. This will in turn limit the noiseless
“channel outputs to a finite set.- The trellis relatiénship of channel outputs
_is determined by the state transitions of the transmitted data and the mul-
tipath 151'opagati011 channel. This trellis relationship not only provides a
useful constraint. it also shows that channel identification and equalization
of unknown channels can be achieved optimally (in least-squares sense) by
joint channel estimation and sequence detection. .In practice, joint channel
estiniation and sequence detection is difficult to implement and suboptimal
solutions have heen proposed. For exdmple, Seshadri [20] proposed a fast
blind trellis search algorithm based on Generalized Viterbi Algorithm (GVA)
where data detection and ch.annel. estimqtion are performed rec.ursively but
separately. If GVA is applied directly, a preamble is required in the time-slot
for the channel e§timafor to acquire the channel parameters and reach steady
state before reliable tracking and equalization can commence. Simiiar to the

conventional adaptive channel equalization techniques, a short preamble can
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lead to poor sequence cletectlon perfmmance due to noisy channel estlmates

In this chaptel we consider the problem of semi- blmd ldentxﬁcatlon and
equalization of time-varying channels where only a short‘ training sequence
is available. We recognize that the finite-alphabet properfies of the data se-
quence offer additional information to the estimation of the channel parame-
ters. By exploiting this information .together with the richness of the inherent
struftufal relationship between channel parameters, data sequence and chan-
nel ouputs, bettér channel identiﬁcaﬁibn and sequence detection performance
can he expécted. We use a forward-backward optimization procedure to ex-
ploit the said structural information and constraints of the received signals.
In the following sectibns. we describe the data model and propose algorithms,

present simulation results and analyse their computational complexity.

4.2 Data Model and Problem Formulation

Consider an m elements antenna array where each array channel output is
oversampled by )/ times the symbol period T;. The channel output vector

can be compactly written as [22]

x(KT}) = Z(ETy)se + n(kT)) | (4.1)
where N o
x(m) _ [xl(ka_).....:rl((lc—i- M_‘;l)n)...
|  2n(ET3) - 2m((h + M\; L )T,,j]T L (42)
n(kTy) = [n.l(kT,,') (b + M hTy.
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M-1

(BT (R
M (RT3) - . i (A + i

T ) . o .
)| - (4.3)

ri{(kTy) and n;(kT,) ave the channel outbut and ohservation noise of the it
array chzirinel at time ka. st € 2 is the transmitted symbol at &7} and LT,
is the effective length of the time varying channel impulse response Z(kT,).

The symbol vector is given by
: T \
8, = [Sk‘. . Sk—L+1] . : (4.-1)

Suppose the noise n(k7T}) is a zero-mean Gaussian random process and P
number of charnnel output vectors are received, the least squares estimation
of the channel parameter and detection of the data sequence can be obtained
by solving the mixed continuous-FA parameter optimization problem:

= P |
{{B0)},.8} = argmin ;,Zl x(ET3) — E(kTy)se[%. (4.5)
{E(kT3)}{_; are the continuous parameter and S = [sy,...,sp] is a Toeplitz
~matrix parametrized by _
§=la.r,....ep]". _ (1.6)
The elements in S are constrained to the FA set Q.
We write an equivalent time-reversed version of (4.5) as
{{é,;(ka)}f=l_, §,,} = arg min;1 | % (kT3 — Er(ka)s,.kﬁ. (4.7}
where x,.(ka) = x(IT) and s, = [81_~L+1, st The time-reversed chan-
nel matrix E,_A(ka) is constructed by “flipping over” the rows of E'.(lTb) They -
are related by o o _ - - |

[E‘"(ka)]i,k': [E(ITb)]i,L-k+1 {4.8)
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and [ = P — k + 1. [A];; denotes the matrix element located at the i row

Jih

and j* column of A. Similarly, the symbol matrix

S, = [Sr1...5.p) | BN

is a Toeplitz matrix p.a.ra,metrized by
5, =[sp...s_)T. (4.10)

Under the ideal conditions of perfect initial estimates and perfect tracking,
the é.claptIVte Maximum Likelihood Sequence Detection (MLSD) a.lgorifhms .
such as [20] [21] can achieve optimal channel identification and equalization.
However, in practical radio environment whére short burst data formats are
used and multipath propagation channels are time-varying, the following

issues need to be addressed: -

1. Good initial estimates of the channel are spectrally expensive to achieve
as this entails reserving portion of the data sequence for non-blind
channel estimation. Due to the presence of noise, reducing the training
length will result in noisier initial estimates and induce errors in the

sequence detection.

2. When E(kT3) = E(:T3) for all {7, k} is imposed on time-varying chan-
nels, modelling errors wiil app.ea,r resillt.ing in poorer sequence detec-
tion. One can argue that the time-varying channel be approxima,tedr
by contiguous 'segménts of tiiﬁe—_im{ariant channel where éach data sub-
'l)loqlc_js. independently processed. This is s'uboptima,i as thé full in-

formation residing within the data block is not exploited. Moreover,
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resolving the competing requirements of large sub-block size and con-

taining modeiling errors remain open.

3. J_oin't estimation of tim.e-va.ryin\g channels and sequence detection is dif-
ficult to implement. Suboptimal a.pi)l‘oaclles that estimate the channel
parameters and perform data detection recursively but separately have

_.IJeen proposed [20] [21] In general, the decoupled optimization of the

least squares (LS) cost function will lead to a suboptimal solution.

4.3 Adaptive Algorithms for 'Least-_Squares
Space-Time Channel Identification and
Eiqualization

In this section, we extend f_rorh our prefious work [4‘3]2 and propose é,n ap-
proach that caﬁ potentially resolve the mentioned issues by processing the’
received data in batch mode and optimizing the LS cost functibn‘itera,tively
in a forward-backward manner.
Hereiﬁ the proposed approach begins with a noisy (but of sufficient accu-
-racy to avoid divergence) initial channel estimate. Then it seeks to optimize
the LS cost funct.ion alternately and recursively with respect to the channel

parameters and data sequence. Towards the end of the forward iteration, the

*The forward-backward optimization in [43) is used to alleviate the need for known
symbol sequence to initialize the Viterbi algorithm. A similar optimization procedure was

reported in [55] to improve the data efficiency of modulus restoral based blind equalization -

algorithms.




corres 15011([1'11g dumnel parameters are likely to converge nearér the true esti-
mates, and the symbol vectors will have a lower probability of error. However
the symbol vectors at the start of the data packei; will have higher probability
ol error due to the poorer channel estimation and tracking. The local min-
ima of (4.5) is not likely to be attained due to a combination of errors from
‘channel estimation, tracking and seqixence detection as well é.s 'subgjf):timal
opti.m.ization of (4.5). In the backward iteration, (4.7) (the time reversed

. version Iof (4.5)) is similarly minimized based on the iﬁi‘pial state extracted
from the last symbol vector in S and its corresponding time-reversed channel
estimates. The improved initial estimates can lead to more accurate estima-
tion of S and {E(kT})}_,. Hence, with each forward-backward optimization
iteration, the residual in (4.5) will be further reduced with the improved esti-
mates of S and {Z( kTy)}E-,. The cyclic refinement of the channel estimates
and sequénce detection will monotonically decrease the LS cost function and
finally converge to local minimum.

The decoupled clmnnel_eéthngtion and sequence detection process are exe-
cuted recursively but separately in the following manner. The éymbol vector
at time kT} is decided based on the last updated channel estimates. The
channel estimates are then adaptively updated in a decision directed manner
based on the latest detected symbol vectors. In traditional adaptive MLSD
[36]. decision delay is necessary in Viterbi algorithm and decision feedback
equalizer to achieve reliable sequence or symboi detection for dec.ision di-
rected channel update, It is important.td note that sﬁch inherent delay will

-degrade the estimation and tracking of fast time varying channel. |

Next, we present two algorithms for estimating the channel parameters
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niatrix and detecting the data sequence based on the mentioned approach.

Algorithm I
One way to exploit the inherent Toeplitz structure of the symbol matrix S

recursively is by applying the Viterbi algorithm (VA). The cost function in

(4.5) can be rewritten as

(. )= éj|x(m -g ATb)skﬁ. (411
where |
Al =[5ty ..sh] (4.12)

is the I"* possible symbol sequence. In the ideal conditions of noiseless channel

and with perfect channel knowledge, we have
lopt = arg mtin Al(afp) (4.13)

such that
A =3 S (414).

We can write the accumulated metric of (4.11) at time & recursively as

(4.'15)

: s \
A (ai) =A (ai_l) + lx(ka) - .:.(ka)sHF
where the symbol vectors, s and s!_,, are related by
T
so= b s] |
] T . '
Sjep = [Si'—l. 35:-,5] ; ' . (4.16)
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hence imposing the Toeplitz structure on the detected symbol matrix. The
Viterbi algorithm (VA) uses the recursion relation of (4.15) and solves (4.5)
efficiently based on the notion that the globally best path I,y must also be
locally best as the symbol vectors (states) transverse from kr= 1to k=P

The VA is applied assuming perfect knowledge of the channel parameter
matrix which is not the case as the channel parameters-in the problem consid-
: eled helem are txme-\awmg In addltlon the channel palameters are lxl\ely
to be n01sy if they are estimated from a sholt tlammg sequence To track
_ the variation of the channel parameters, they need to be updated separately
' at each time kT, based on the tentative decisions of si. In [20], Seshadri as-
serts that such tentative decisions may not be reliable initially, therefore the
paths entering each state should not be discarded. He suggests a Generalized
Viterbi algorithm (GVA) that retains a number of “locally best” survivors
entering each state and updates the channel estimates associated with each -
survivor independently, A simpliﬁed version of GVA was reported in [21]
where only one locally best survivior entenng each state is retained.

The computanonal complexity of employing GVA in the proposed: ap-
proach can become prohibitive. In this develoPment we adopt a s1mple1
adaptive VA mlplementatlon We propose that only one survivor associated

with the p** state at time &, si(p) € QL+, is retained
Il =argmin A (ai ) + ’x(kai — é’(kﬂ!‘],)sk(p)l2 (4.17)
) k Oteei -1 . . F ;

where ©2 denotes the indices of the pa,ths entering state si(p) and = (KT%)
is the estimated channel parameter matrix associated with the {** path To

reduce the storage and computational load further, we use a common channel
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parameters matux for metric computatwn It is adaptlvely updated bascd

on the survivor with the lowest accumulated metric by the computationally

efficient Least Mean Squares (LMS) algorithm [65]

[EGn))], = [Bk-11)], + png (T - [BUT)) &) - (418)
_ Exl;"ressed (4.18)-c011_11)actly in matrix fprm, we have
2(T3) = B((% - D) + (1 057 © (1) 1) (e19)

where

n(kTy) = x(t) — B((k ~ 1)Ty)8s. o (20)

8¢ is the tentative estimate of the k™ symbol vector of path with the lowest

accumulated metric at time & is defined by
K= a,rg rr%)in l. _ (4.21)

The symbol 1k is a K'-dimensional vector of 1 and it is the adaptation step-
size. T and © are the Kronecker and Hadamard matrix products, respec-
tively. The time-reversed version of (4.19) can be similarly derived.

The algorithm proposed herein is summarized as follows.

¢ Compute the initial estimates of "(Tb)(o)-and derive the initial state

st0(0) from the start-up sequence. Set [ = 0.
e Repeat

— Optimize (4.5) by joint channel matrix estimation usiﬁg (4.19)

and sequence detection using VA.
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- Perform Time-reversal to obtain {.'g'.,,(k'l’],)(’)},{_’=1 and §1(j) from
{é(ka)([)}le and §“), respectively.

- Set

S;... |
s(0) = SLRs (4.22)
. A
where [A]i...; denotes a vector consisting of the i** to k% row
elements in the {** column of the matrix A and & is any element

in FA set.

- — Optimize (4.7) by joint channel matrix estimation using the time-
“reversed version of (4.19) and sequence detection by VA.
— Perform time-reversal to obtain {é(ka)(”}f:l and 8O from {&,( kDO,
and §f.’), respectively. |

- Setli=1+41

* Repeat until convergence, if possible.

Algorithm IT

To reduce the computational load and memory 1equ11eme11ts further, we
1eplace the VA-based sequence detector with a symbol by symbol detection
approach that partially exploits the Toephtz structure of S [43] [44]. We
can write the spatio-temporal cha,nnel output vectors observed through a

tempm al window ot order v as

y(kTy) = C(ERT,)) qu + w{kTy) O (4.23)




where

y(kT)) = [x(kT,,)T...‘>'<'((A.-'_'-L‘+1)Tb)T]T a2y
w(kT}) = [n(m) cn((k— v+ 1)T) ]T (4.25)
Q= [ske - snenoupa)” - (4.26)

and C(A) is'a block Toeplitz matr'ix of A. It suffices to note that (4.23)
assumes the variations of channel parameters in the temporal window to be
insignificant. This is a reasonable assumptlon even in rapidly tlme-vmymg
channels if the selected v is not too large.

The least-squares estimation of the channel parameters and data sequence

Dbecomes
(BTN Q) = min Y. Iy (D) - CERT) ez (4.27)
k=1
where Q is the Toeplitz symbol matrix
s s2 o+ sp |
s
Q= S0 ! (4.28)

| S~L-v42 “*" 't SP-L-ut2 |

Similarly, the time-reversed version of (4.27) is given by
{{& (xT)},. Q,} mmz ly+(kT3) — C(E.(kT3))qri|> (4.20)
‘where

VAT = [l —v+ DI x(TFE (30)

- Qrk . [Sg_[,;v+2 . S[]T ) i . (431)
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and =P —-Lk+1.
The symbol-by-symbol detection can be conducted in the following man-

ner. Given the tentative detection of the k* symbol vector
R .’? .. ’2‘. . T . . 4 -3.)
G =[5k~ -b;.--L-u+2] (4.32)

and estimated channel madtrix ._.(LTb), the tentatlve detection of the (k + 1)th

symbol vector is given by

-~

. ¢
G =| 7 (4.33)
b
where ° .
e - 2
q?); = Iﬁil}l y((k + U)T, — C(E(KT})) jbf (4.34)
& s ' o F
and
;ﬁjb = [gk]k—ﬂ;_f-l-l"-k——ll—v-l-&l- (435)

The LMS channel parameters matrix update is .computed as follows:
_AT i v | i ) |
& =&y 1 (Ch.- vamMF) (Y(kT3) — C(E((k - 1)Ts)) &) - (4.36)

where .

& = vec(E(KT})) T a
and vec(A) stacks the column vectors of A into a single column vector. The
matrix I is a selection matrix such that I‘vec(A) = vec(C(A)).

The algouthm based on symbol by- symbol detectlon approach of (4 34) is
%ummarlzed as follows:

~Given a stalt-up sequence, compute the initial estimates of =(T})® and de-

rive the initial state q'*}(0). Set ! = 0.
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l. For k = 1--- P, optimize (4.5) by.joint symbol vector detectlon and

channel matu\ estlmatlon usmg (4.34) and (4 19), respectively.

v

Pe1f01 'm time- reversal to obtain = Lﬂ)ﬁ')}fﬂ'and Q" from {.'E'.(Ich,)(”}f:l

and Q( ), respectively.
| 3. Set . _
C 0y ' T
O =[QVF. ., s]" (439)

where & is any element in Q.

4 Fork=1...p optimize (4.7) by joint symbol vector detection and

channel matrix estimation using (4.34) and (4.36), respectively.

and Q » respectively.

6. Set /=141

7. Repeat (1)-(6) until convergence, if possible.

&

Choose Q) oy Q(” based on their corresponding residuals and force it

to be Toeplitz based on majority rule.

- 5. Perform time-reversal to obtain {= (LTb)(”}L ; and QW from {é,.(kT;,.)m}f:l
\

4.4 Simulation Results

In thls section, we descube some smmlatlon results fzom the proposed algo-

rithms. We consider a two. element, antenna array with tempmal ovérsam-

pling 2 times the svmbol rate. The carrier fxequencv used is 900MHz. The
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data symbols are drawn from 23{—1,1} and transmitted at GSM data rate
of 277kps in packets of 100 symbols each. The combined transmit and receive
filter frequency response is a raised cosine with roll-off factor of 35%. We
simulate the Rayleigh mxiltipﬁth enviroiuﬁent based on the TU channel from
the ETSI recommendations[24] with paths arriving with a uniform spatial
distribution. The local spread of each path is 30 degrees. In this study, we
restrict the channel length to L = 3 and fix v =3 and ngy =3.
- Figure 4.1 shows the bi.t error rates for tlllé' prol.)osed Algorithms I and
II and GVA as a function of SNR. The step-sizes used for LMS channel
Lil)clat.e in Al@rithm I and II are 0.0025 and 0.01, respectively. The initial
channel estimates are obtained from an extremely short training sequence
_of 5 symbols using direct matrix inversion. Herein, the GVA retains K = 4
locally best survivors entéring each state. The results are averaged directly
from 3000 iﬁdependent trials. The relative speed between the transmitter
and receiver is 300km/hr. This will induce in a doppler frequency of 250Hz.
It s intere'sting.to note that both Algdrithm I and II have similar BER
performance. But it suffices to note that Algorithm IT has a relatively smaller
computational and memory requirement. We also note that at error rate of
1073, the proposed algorithms suffer a loss of 3dB against the known channel
bound. On the other hand, GVA suffers 9dB. In other words, the proposed
algorithms achieve a 6dB gain over GVA in this numerical example.
Figure 4.2 coinpz_tres fhe proposed algorithms against GVA with estimated
‘and exact initial channel estimates. It is iinportant to higlﬂight that t\he BER
performance of the proposed algorithm is oljtépiiled from noisy initiajl chan-

nel parameters estimated with training sequence of 5 symbols. We note in
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Figure 4.2 thai, even with exact initial channel estimates, GVA has BER
floors around 1074, Such flooring is likely to result from tracking crrors.
- The proposed algorithms do not seem to exhibit error flooring upto SNR
of 10dB. In fact, the proposed algorithms achieve one order 1nagnituae BER
performance improvement over GVA. This suggests We observe that the BER
performance curve of the proposed algorithms and GVA with exact initial
estimates crosses at 5dB. This is likely due to the fact that the sequence
detection errors are mainly contributed by thé channel noise and the noisier
initial channel estimates. But when SNR> 5dB, tracking errors become the
dorminant source ol error. The performance loss at SNR< 5dB is howéver
less than 3dB. The results signify the importance of channel estimatbrs that
are highly robust to high level of noise. One way to achieve this 1s to pa-
- rameterize the channel parsimoniously. For example, using the knowledge of
the transmit and receive filter response, the “structured” channel parameter
matrix can be formulated. Such approach was first reported in [57] and later
in [63] and [64].

Figure 4.3 plots the BER performance of the proposed algorithms as a
function of doppler frequency at signal to noise ratio of 7dB. Both GVA and
the proposed algorithms are similarly initialized by a training sequence of 5
symbols. It suffice to note that the step-sizes used to update the channel pa-
rameters remain unchange. Interestingly the proposed approach using noisy
initial cha,nnel. parameters outperform the GVA with exact initial channel
parameters over the range of doppler frequency. In particular, significant
performance gain over GVA is observed at lower doppler frequency. However

the gain diminishes as the doppler frequency increases to 400Hz. The poorer
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performance is probably due to the manifestation of the larger residual chan-
‘nel estimation and tracking errors from suboptimal choice of update step-size.

Nevertheless, the proposed algorithms demonstrate encouraging results and

it will be interesting to iﬁcorporate more sophisticated adaptive algorithms

[65] and dynamic channel modeling, such as [35] and [66], to improve their -

: seQuence detection performance in very fast time-varying channels.

Figure 4.4 and 4.5 plot a typical example of the convergence trajectory
of proposed algorithms and their corresponding number of erroneous sym-
“bol detection as a function of forward-backward iterations. It suffices to

'lhighlight that the cost function of Algorithm I and its corresponding num-
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ber of symbol detection errors reduces monotonically with iteration number.
Furthermore, the cost function after cach forward(backward) ‘loptimiza,tion
is always lower than the preceeding backward(forward) 6pt.imi%ation. The
monotonic reduction may not be the case for Algorithm II as the Toeplitz
structure of the symboi matrix is not fully exploited. As illustrated in Fig-
ure 4.5a, the forward iteration has a slightly higher residual compaued to the
bachaud 1tc1 ation. Neveltheless we observe flom our computa,tlona.l experi-
ence that this has negligible impact on the sequence e estimation performance. -

Typically, both Algorithm I and II converge within 3 iterations.

4.5 Analysis of Computational Complexity

We analyze the relative computational complexity of GVA and proposed al- -
gorilthm based on the number of complex multiplications and additions and
is denoted by (mul, @udd). The number of computations involved for each
LMS channel update based on (4.19) is (2mML,2mML) and (mM(L +
1) = 1,mM(L + 1)) is required for VA metric computation. The number
of computations involved for each LMS channel update based on (4.36) is:.
(2vmML,2vmML). The number of metric computations at each time in-.
stant by GVA and the proposed Algorithm I are K x 2L+1 and 2141 re-
spectively. The number of channel updates required fof GVA is K x A
(v(mM(L+1) 1+2ms(mM(L+1)~-1), v(mM(L+1))+2“u(mM(L+1)))'
rcomputatmns are required for metric update in Algorithm II. Algorithm I and

IT require only 1 channel update at each time instant.

The total number of computations involved in GVA and the proposed




Algorithm I and II per symbol vector are (K x 2541 (mM(2L + 1) — 1), K X
2L (mM(2L + 1)), (2P (mM(L +1) — 1) + 2mML, 24 (mM(L + 1)) +
2mML) and (v(mM(3L+1)-1)+ r”"J'J’(ml\/f(L +1) = 1), v(mM3L+ 1))+
2ns (mM (L + 1))), respectively. p is the number of forward-backward iter-
ations to achieve convergence. In thls study, the number of computatlons
per symbol for GVA and the Algouthm I and II (p = 3) are (1728 1792),
(1584,1680) and (1422,1488), respectively®.

4.6 Conclusions

In this chapter, we have presented a semi-blind adaptive channel identifi-
cation and eciﬁa.lization algotithm that jointly estifnates the time-varying
channel and performs sequence detection in a least squares framework. The
simulation results are encoura,ging. T11ey have demonstrated the propdéed
algorithms to be data-efficient, fast converging and capable of achieving good
BER performance in a time-varying channel environment at relatively low
SNR and with an exfremely short training sequence. In addition, the pro-
posed algorithms are computationally efficient. These features render the
proposed algorithms to be potentially suitable for short burst data format
communications where only extremely short training sequence can be made

available in order to conserve bandwidth.

3n addmon to the numbet of computa’clons, 1mplementatlon issues like the level of
. achievable plpehmng and number of non-computational operations (e.g. memory fetch,

conditional branching) will also have to be considered for real-time applications on DSP.




Chaptei' 5

Channel Equalization in the

Presence of Strohg o7¢) N .

5.1 Intro duction

The radio propagation channels in wireless mobile communications are ex-
“tremely harsh. Under the constraints of limited signal bandwidth and high
signaling rate, signals propagating through the multipath radio channels will -
suffer impairments due to intersymbol interference (ISI). In TDMA cellular
systems like GSM, the multipath induced I5Ineeds to be mitigated to achieve
reliable sequence detection. | | |
The notion of frequency reuse plays a key role in the improvement of
the spectral efficiency in many cellular systems. The extent of the spectral
efficiency improvement is however limited By the frequency reuse distance

which is determined by the tolerable radio fréquency interference such as

60



co-channel interference (CCI). In édditioﬁ, the choice of frequencies in the
adjacent cells is also aflected by the level of tolerable adjacent channel in-
tel'feljenées (ACI) due to the limitation of the receiver’s front end filtering.
Unlike thermal noise, the effects of CCI as well as ACI cannot be removed
by increasing the signal power. Increasing the signal transnﬁséion power in
one cell will result .in the correspondingly incréase of thé CCI/ ACI level in
the neighbouring cells. Current cellular systems mitigate and control these
effects through careful frequency planning and allocation.

The spectral efficiencies of currenﬁ cellular systems need to be improved in
orcer to meet future demands driven by the increasing number of subscribers
and the continual need to enhance the wireless services. But with limited
- bandwidth resource, increasing the signalling rate will worsen the channel
“impairments due to multipath induced ISI and the reduction of frequency
reuse distance will increase the level of CCI/ACI. In order to achieve tlie
desired spectral efficiency, it is important to develop effective algorithms to
curtail the signal iinpairménts due to ISI and CCI.

This chapter addresses the problem of channel identification and equaliza-
tion of TDMA based digital celluiar mobile communications in the presence
of signal impairments due to ISI and CCI/ACI. In the past few years, a
number of algorithms-have been suggested. For example in [33] [34], the
. problem is approached from a cla.ssiﬁcaﬁon perspective by ekploiting the fi-
nite alphabet property of the information sequence. While the assumptions -
made in their formulations are very general, these algorithms typically re-
quiré long training sequenéq. This may render them unsuitable for mobile-

communications applications where short burst. formats are used. Optimum
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diversity Combining algorithms that mitigate the effects of 1SI and CCI using

minimum mean square criterion were suggested in {41] [42] [49).

With the assumption of prior knowledge of CCl parameters, Wales uses

a supelstate trelhs apploach to jointly estimate the data sequences of the
signal of interest (SOI) and co-channel interference (38]. In [39] [40], space-
time algorithms are proposed for the case of unknown channels. Thereiu,

- the SOI and CCI channels and their associated data sequences are jointly

identified and detected. Although these algorithms prov1des optlmal solution

(in bit error rate sense), they require the SOI and CCl to be b;t—synchlonous.

Also, their recetver structures can become prohibitively complex when the

. channels are highly dispersive or when the number of dominant CCI is large. -

In [46], Bottomley and Jamal proposed a space-only maximum likelihood

sequence detection algorithm that uses the second order statistics of the,
n

radio frequency interference and noise. The significance of this approach is

that the CCI and SOI need not be synchronous nor does it require prior
| knowledge §f the number of CCI and their modulation waveforms. However
it réquires the base-stations of the SOI and CCI to be time-slot synchronized.
As pointed out in [47], this assumption can easily be met in pico- and micro
. celluiar’applic&tions. Under the_ ideal condition of Gaussian interference, this
approach achjeves optimal sequence detection [48].

In most applications of [46], the channel matrix and the interference+noise

covariance matrix need to be estimated. In [47], the channel matrix is least _

square estimated from the training data without assuming the presence of
CCI. This is followed by the estimation of interference+noise covariance ma-

trix based on the least squares estimated channel parameters. Under mild
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c611ditions, these estimates are asymptotically unbiased. Such asymptotical
results are not'very useful practically as most TDMA cellular systems use
short data formats. When short training sequences are available in qi'del‘ to
conserve bandwith, the estim#ted channel parameters and interference+noise
covariance matrix (as in [47]) hecome highly biased in the presence of strong
CGI.-This can degrade the sequence detection performance.

In this chapter, we propose a spatial-temporal algorithm in the spirit
of [46] [47] [48] whereby the radio frequency ‘interferences are considered
as stochastic processes. Central to our approach is the recognition of the

lollowing basic ideas.

¢ Temporal diversity can be gained by observing the channel outputs |
from a tapped delay line. Geometriéally, the temporal diversity can be

interpreted as the widening of the noiseless channel outputs.

¢ The FA properties or discreteness of the information sequence and the
inherent algebraic(Toeplitz) structures of the channel output vectors
and data sequence can offer additional information to the estimation

of the channel parameters and the noise+covariance matrix.

The chapter is organized as follows. We first present the data model,
assumptions and the problem statement. In the next section, we describe
the proposed algorithm based on the ideas described earlier. Simulation
results are presented in section III. In section IV,'ive analyze the complexity

of the proposed algorithm. Finally, section V summarizes the chapter.
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5.2 Data Model and Problem Formulation

- The sigual received at the i** antenna of a N-element antenna array is given

by

m;(t) = Eh,(t — kT‘b)Sk + n,-(t). | (51)
ok .

where h;(t) is the combined impulée response (having ﬁ.nite support of length
| LT;,) which includes the transmit pulse shaping, multipath radio channel and
receiver filter. sk is the information syrhbol belonging to a ﬁnité alphabet set
2 and T; is the symbol duration. Assuming the received signal is oversampled
+ M times of the baud rate and the received samples are collected from N-
antenna, the channel output vector in presence of co-channel interference can

_ be written as

X(kT}) = B8 + 1(KTy) + R(KT) (5.2)
where
. M-1
X(T) = [m(HB), ok + ST,
- M—1 T
ey on(kTL), - aw((k o+ ) )| (53)
& = [Sk,"'$3k—L+l]T a (54)
. M-1
BT = [m(iT3),- o m((k+ —)T), |
. M-1..7F
o AN (T, (( + )Tb)] L (55)
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E is the channel matrix given by

MO - h(~-(L=1T) ]
M(HT) o (=D + )T

(LH
I

. i h,',\.(f‘"l"JITb) hJ\l((—(L"‘l)"i‘%}l)Tb)

The term ‘iJ(t) is due to the radio frequency intetference term. In cellular

communications where CCI is the dorminating RFI, we can write

Neer

() =5 Gbi(t)
: i=1

—
e
=1

—

where G; and b;(t) are the channel matrix and symbol vector associated with
the :t* CCI.

In this chapter, we shall assume the following:

o Al: The desired and interference channel responses remain stationary
over the time-slot. This assumption is valid in most GSM radio chaau-
nels and indoor applications. The extension to time-varying channels

is beyond the scope of this chapter.

o A2: The desired and interferring signals are time-slot sychnronized.
This is a reasonable assumption, particularly in micro and picocells
Wireléss applications where time-slot (not symbol) synchronized base-

stations can be easily maintained.
o A3: The signal of interest and the CCI are uncorrelated.

¢ A4: The interference is a zero mean process.
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With the model of (5.2) in hand, the problem considered in this chapte
can be succinctly stated as follows:
‘C‘wm Hve sampled channel output vectors co’lected over t’ze time-slot, dete:-

mine the channel pammeters and the information sequence

- 5.3 Proposed Channel Identification and Equal-
ization Method

The spatial-temporal measurements can be written as

X(ka) = C(E)Sk -+ I(AT{,) + n(LTb)

= C(E)s + w(kTy) - ERCON
where | ',
x(kTy) = [X7(t)-- A—m+1)T,,)] (5.9)
sp = Mﬂuﬂ@—L—m+ﬂF (5.10)
(k) = [i7(1)- (( _m+1m)] | (5.11)
n(kT) = [H7(kT)-- BT ((k —m + T3] (5.12)
w(kTy) = I(kTy) + n(kT). | (5.13)

Note the C(®) is a matrix operator that generates a block Toeplitz matrix
ff_om ®. The advantage of utilizing spatial temporal measurements will be
explained later in this chapter. By A1, the N-snapshots collected over the

time-slot can be written as

X=CES+W (5.14)

66




where

X = [x(ET) x((k+ 1T - x((k+ N — 1)T3)] (5.15)
S = [s& SA:+1"'Sk+.&—1] _ . : " (5.16)

W = [w(kT3) w((k+ DT) - w((k+ N = )T)]. (5.17)

We begin by assuming the interference+noise to be zero mean Gaussian pro-
cess of unknown covariance Ry,,. The maximum likelihood (ML) estimation
of the channel parameter matrix 2 and the symbol matrix S can be achieved

by optimizing the following likelihood functional:

=
bt oy L ai

where

V(Z,S, Ryy) = TH((C(2)S - X)RIL(C(E)S — X)) 4+ N log [Ruel. (5.19)

W

As one may have noticed. the matrix structure and FA properties of the
unknown symbol matrix offer an useful structural constraint to the prob-
lem addressed here.  The FA property of the transmitted data limits the

 noiseless channel outputs to a discrete set and related to the symbol ma-

trix through the channel parameter matrix. The Toeplitz FA symbol ma-

trix limits the transition of the symbol vectors from one time instant to
another, hence, the transition to another noiseléss channel output vector
will also be limited to an'even srﬁalIer sét. The interferences may not fol-
low the Gaussian statistics and the true likelihood fuﬁction_ is not likely to
be available m practice. Hence, the likelihood function dérivéd in (5.18)

can only be perceived as an approximation to the true likelihood function.
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Geometrically, the interference and noise can b.e approximated to be ellip-
soidally distributed around the noiseless channel outputs. This approxima-
tion has demostrated to be useful in similar applications such as [45] [33]
[34] [60]. In tlii_s case, the joint identification of the channel parameters and

the detection of the data sequence can be perceived geometrically as follows:

'Find a “valid” sequence of noiseless channel outputs (generated from the hy-
_ pothesz'zéd channel parameter and symbol matrices) and interference+noise
covariance'l matriz that minimize the Mahalanbolis distance from the sequence

of observed channel outputs vectors,

Mathematically speaking, we have

~

{L%, S,a} = argmin Tt ((X - C(E)ﬁ)Ha(X - C(E)S)) +Nlog |‘Q“| (5.20)

.where Q is an appropriate weighting matrix describing the ellipsoidal dis-
tribution of the interference and noise. The second term in (5.20) can be
percei\-/ed as the “regularizing” term since choosing Q = 0 results in a trivé,l
solution., Naturall;}, the optimal choice of Q .for Gaussian interference is
Q=Rgl. |

‘The motivation of utilizing the spatial temporal measurements is to ex-
ploit the temporal diversity gain from observing the channel outputs through
a tapped delay line. We shall illustrate this by the following example. The
channel impulse responses of the signal of interest,2g0;, and the co-channel

interference, Ecer; are given by
ESOI(Z) = [03 08 03] (521)
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Ecc[(z) = {02 0.9 0.5] 5 (522)

respectively. We assume the transmitted symbols are limited to the FA set

2 € {~1,1}. The Mahalanbolis distance between two channel oufputs is

defined as

dij = (ci—ci)"R3L(ci— c;) (5.23)
¢ = C(Ecor)s". | (5.24)
Ruw = ace1C(Ecor)CEqer) ol + ol (5.25)

st) 6. Qmtl-1 écm is the level of co-channel interference. o? and o2 are
the signal and noise power, respectively. Due to the Toeplitz structure of the
symbol matrix, the channel outputs at the next time instant, say from x(£7})
to x((k+1)T}), will be limited by the valid transitions of the symbol vectors,
8¢ to Spyq. For example, the transition of s = |1 111 l]T to spyq will be
limited to (11111)7 and [=1111 1], Figure 5.1 illustrates the temporal
diversity gain as a function of m with ager = 1. The normalized temporal
diversity gain is defined as the ratio of distance of temporal window m with
the distance with m = 1. We note from F igure 5.1 that with increasing m,
the distance between the noiseless channel outputs Becomes larger. However
this is a di.mini_shing gain. In this example, the temporal diversity gain | |
diminishes after m > 4. Figure 5.2 plots the temporal diversity gain as a
'fun_ction of the agoy with t'e.rnpoi'a,l window fixed at m = 3. It shows the
- advantage of tem'pora,l. diversity in the prese.nce of strong CCI. Note that
, t.he gain diminishes as accr — 0. This indicates that in the absence of

CCI, observing the channel output from a tapped delay line will not offer

69



P

receiver.

property of the u_nk

recognition that

e RI: Temporéul

1.6
1.5k X X x 4
c
K]

Q
o
ﬁ1.4'
2
2
[
213
5
-
o
]
w12
§
z
1.1
1

|
|
x
s 1 S
1 2 3 4 5 6 7
. . Temporal Window Order, m

- Figure 5.1: Temporal Diversity Gain versus Temporal Window Length

\

any advantage but further complicate the computational structure of the

In summary, we approach the problem of joint channel identification and
sequence detection by op'timiziﬁg the likelihod function in (5.20) with the

exploitation of temporal diversity, the inherent matrix structure and the FA

nown symbol matrix. Central to our approach is the

diversity can be gained from observing the channel out-

puts vectorally from a tapped delay line.

o R2: The FA property of the unknown data sequence and its inherent

aIgebraic structure and relationships with the noiseless channel outputs
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- provide a powerful constraint. . ' ' ‘

It is important to note that many TDMA based wireless cellular communica- ‘

tions systems utilize short data format. For example, GSM and IS-54 trans- ‘

mits with time-slots approximately equivalent to 150 symbols. With short

training sequence length, the employment of asymptotics may no longer be ‘

useful. The approach proposed herein can alleviate this problem by iltilizirig

R1 and exploiting R2 to jointly identify the unknown channel parameter,

nel parameter and interference+noise covariance matrix are estimated with

interference+4noise covariance and symbol matrix. In particular, the chan- ‘
data not limited to the training sequence but from the intrinstic information ‘

embedded entire data packet. -




5.3.1 An Estimation Algorithm

The likelihood func;tion (518) is a h.ighly nonlinear function of continuous
and FA constrained parameters. Such an optimization problem can be solved
by al)plying the alternating minimization (AM) procedure. Basically, AM
minimizes the cost function by optimizing it with respect to (w.r.f) a subset
of the parameters while the remaining parameters, previousij estimated, are
held fixed. By chically minimizing"w.r.t each parameter subsets, the cost
function will monotonically decrease to a local minimum. In general, global
convergence will depend on the choice of initial estimates. This is a widely
used ap]ﬁ‘oa(‘h for optimizing highly nonlinear multi-value cost functions in -
‘many applicationé such as [52](53][54][59).

In this chapter, we adapt the AM concept and derive an iterative reweight-
ing alternating minization (IRAM) algorithm to solve the problem repre- -
sented in (5.18). TRAM comprises of the following basic steps to estimate E, S
and R.,,. Beginning with a suitable initia;l estimates of 2 and R, the sym-
bol matrix S is computed by optimizing
Step 1 |

5= algsemml - Tr ((C(B)S ~ X)HR-I (CE)S-X))  (5.26)

whele S is constr alned as a Toeplitz matrix of ﬁmte alphabet entries.
Step 2 Next (5 18) is updated with the estlma,ted symbol matrlx and by min-

imizing & w.r.t (5.18), we have

vec(8B) = ®1(S)vec(RLX) (5.27)



where

3@)=(@"oR1)P (529

()t and @ denote pseudo-inverse and kronecker product, respectively..vec(A)
vectorizes A by stacking its columns into a vector and P is a full rank selec-
fion ma.trix-suéh that vec(C(E)) = Pvec(E). |

Step 3 The interference—knoise"covdfian'(.:e_ma;trix can be updated from the

- error residual based on the latest estimates of Z and S by |

.

A\

X - C(E)S

|,-..,,_”

ﬁl},w‘ = S WW (5.29)

After .S'tép fand 2, & and 8§ will converge towards, but not necessary to
the final converged values. In Step 3, Ruw is refined thereby conditioning
Vthe cost functional towards hetter estimation of = and S. Thué, by alter-
natingly minimizing (5.1.8) with Step I and 2, and refining the cost function’
by reweighting with the interference+noise covariance matrix computed in
Step 3, & and § will indhotonically converge to a local minimum solution.
A detailed discussion on the convergence is deferred to the appendix at the

end of this chapter.

Sequence Detection

Symbol detection by exploiting the Toeplitz structure of 8 can be achieved
with the application of the Viterbi algorithm. This can be computation-
ally expensive to implement, particularly with the spatial-temporal channel

matrix. For example with_ m =3, L = 3 and K = 2 level signalling, the
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number of states in the treilis will amount to K™+L-1 = 32, In this chap-
ter, the Toeplitz structure of the symbol matrix is élightly relaxed. We use
a symbol by symbol de.tectiori approach that constrains S to be partially
Toeplitz[43] {44) in the following manner: | |

Given the tentative detection of the &** symbol #éc_tor
~ e -~ T . .
Sk =[Sk -+ SkeL-m+2) (5.30)

and estimated channel matrix E, the tentative detection of the (k + 1)t

~ symbol vector is given by -

A é | |
Sky1 = Af . (531)
Db
where _
T . (PHG-1 |
¢ = ,mig T (T"R;LT) | (5.32)
T = x((k+1)Ty) - & ¢
@b
3;:, = [gk]k—n”+1-~k-L—m+3,1 (5.33)

with [A];.;; denoting a vector whose elements are extracted from the [**

column and it* to kt* row of the matrix A.

Proposed Algorithm

The proposed method is summarized as follows:

1. The received channel output matrix and the corresponding symbol ma-

trix consist of the information (of length P) and training sequence (of

length NT7), and are given by X = [Xr, Xpata] and S =[S, Sparal. .
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2. Based on previously estimaled R, and Ewrs, estimate Sy, with

constraints C2 and 3 from

Spaa = arg min Tr (AH’R\;LA)
N .2 Data . .
A = C("%”’LS)SDa.m - XDa.ta, (534)
by

e Fork=0---P—-1

o  Estimate §p4; = [q’;}" {5}",)]7' from (5.33) with 2 = ést and

-
Ru'w = wa .

e End

3. Estimate Ewrs from X by

l vec(éwLS) = @T(g)vec(ﬁ;LX) (533)
4. Compute .
| W =X~ C(Ewis)S | (5.36)
and update
Ry = -fi—rv’ifﬁvf’. - (5.37)

5. Repeat step 3-5 until convergence, if possible.

- The channel parameters Ewrs and the interference+noise covariance can be
_initialized with its least square estimates from the training data that assumes

the absence of CCI:

- vec(Bwis) = ((Srr @ DP) vec(Xry) (5.39)
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where X7, are the channel output vectors due to the training preamble Sr.

The interference+noise covariance, R, is then computed as in (5.36) and -

(5.37).

A similar procedure is used in [47] to estimate the channel parameters and

the interference+noise covariance from the training datal. The estimates of

E and R, are asymptotically unbiased. When N Tr — o0, we have
E(Ers) = E(Xs')
= E((@s+W)sf)
= 2+E(wsh) == (5.39)

The.e'qua.lity results from A3 and 4 where

E(WSh) =E(W)E (sf) =0. (5.40)

Hence the estimated interference-+noise covariance, Ry, is also asymptoti-

cally unbiased. As remarked earlier, such asymptotical results are not useful

in many mobile applications as the time-slots of the data packets are very

short. Hence, incorporating a long training sequence will severely limit the
system’s spectral efficiency. On the other hand, if 2 and R, are not deter-

mined accurately, the estimation errors can result in poor sequence detection.

5.4 Simulation Examples

We present the results of simulations in this section. We use the TU channel

profile described in [24] and assume a two element antenna array. To illus-

The approach used in [47] did not exploit texﬁporal diversity
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trate the core ideas, we shall assume t.llé data to be BPSK, Q € {-1,1},
transmitting at bit rate of 277kbs. The fading parameters are assumed Lo be

independent between paths but are held constant over each burst. However,

they are independently generated from burst to burst. The following param-

eters are fixed unless otherwise stated. We set training and data sequence
length to be N77 = 15 and P = 150, respectively. We assume the SOI and
a CCI impinge the antenna array. from mean direction of arrival of 0 and 60
degrees. The multipath angles are randomly generated. We also a,ssume. that

each signal path (angle) is angularly spread with distribution of N(0,30) due

to local scatterers. The channel parameter matrix is generated based on the

structured channel model described in chapter 2. The signal to noise ratio is
10dB.

.In.Figure ::33 we show the BER achieved by IRAM with CIR ranging
from —15dB to 7dB. Algorithms based on MMSE criterion[61], interfer-

ence ratio combining (IRC)[46] and hybrid 2-Stage approach[62] are used to

benchmark the proposed algorithm. The results are averaged directly over

5000 independent trials. The performance gains of the proposed algorithm
are encouraging. For example, at 2% raw BER, IRAM achieved 5dB gain
over IRC. Figure 5.3 also displays the BER performance of the conventional

Viterbi based sequence detector. It clearly demonstrates the significant per-

- formance loss due to the presence of CCI. Note that the MMSE linear equal- -

izer outperforms the conventional Viterbi sequence detector over the range
of CIR. This is due to the dominance of the CCI over ISI.
< The convergence propertie's of the proposed algorithm are examined next.

In Figure 5.4, we 'plot a typical example of the cost function, channel estima-
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tion error and the number of erronsous detectibns as a function of itcrations.
Notice the incremental improvement of the channel estimates and sequence
detection with the number of ilerations. ‘
In 'Figure 5.5, we examine the BER performance of IRAM and IRC with
‘exact and estimated initialization over a range of CIR. It is interesting to note
that IRAM with estimated channel parameter métrix and interference+noise
covariance has similar pérfoi‘rna.hce compared to IRC with exact initializa-
tion. It also suffices to note that significant performance can be gained
(= 5dB) with better estimation of the channel parameters and the interfer-.
ence4noise covariance matrix. » | |
Figuré 5.6 displays the BER performance of the IRAM and IRC as a
function of training length overhead, NT". This graph demonstrates the
mmportance of g?od initial estimates of the channel parameter matrix and
interference+noise covariance. We observe an order of magnitude of gain is
achieved in IRAM when the training length is 50 as compared to 13, This
result shows that better initial estimates lead to better BER. performance
suggesting the need for more data efficient approaches of estimating these
parameters. One approach to achieve this is to exploit possible priors like
the modulation waveforms first proposed in [63] and later in [64]. Another ap-
proach is to apply the parametric channel estimator suggested in [35][36][10].
If permitted at system level, the training waveforms of SOI and CCI may be
“ made as orthogohal as possible to allow for better estimation of the channel
parameter matrix and the interference+noise covariance matrix.
- Figure 5.7 shows the BER performance of the IRAM iinproves with the

length of the information sequence, P. The result indicates that little im-
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provement in performzince can be achieved, perhaps only when the informa-
tion sequence is extremely long. In Figure 5.8, we investigate the effects of
direction of arrival of the CCL The results show that the performance of the
IRAM and IRC remained somewhat constant over principal quadrant. This

may not be the case for DF-beamformer approaches.

In this chapter, we consider the problem of channel identification and equal-
ization in the presence of strong CCI. We propose an algorithm that iden-
tifies and equalizes ISI channels in the presence of strong multipath based

on a least squares framework. The proposed algorithm does not require

\
|
5.5 Concluding Remarks | ,
\
|
\
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Figure 5.7: BER versus Information Sequence Length
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knowledge of the number of interferers nor their structural information but

requires time-slot synchronization. This requirement however can be easily

achieved in cellular systems using small cells such as micro- and pico-cells.

The potential performance gains suggested by the simulation results have -

been encouraging.

5.6 -Appéhdix: Convergence Analysis

Let S. and =, be the solution of a local minima. Also, let S, =2 and

QW denote, respectively, the estimated symbol matrix, channel matrix and

interference+noise covariance after the ** iteration. In the next iteration,




S+ = min Tr ((C(EY)S - X)PQV(C(EWS - X)) - (5.41)
“and followgd by | |
jEH”=mn%UcEmM”;XW@%cmﬁw“am) (542)
~ We have

[&;smﬂ 5|&—sw|' (5.43)

B —20] < |m - =v). (5.44)

The matrix QU+ is updated by

' -1
QUi+ = (%(C(§(£+l))s(i+l)_ X‘)(C(é(""'”)sf”” _ X)H) . (5.45)
It follows that . '
Q- QY| <]Q. - Q1. T (546)

From (5.44),(5.44) and (5.46), the estimated S,E and Q by iterative reweighted

alternating minimization will approach their corresponding converged values. _

we Lave : . o
|
|
|
|
|
|
|
|
|




Chapter 6
Summary and Conclusions

6.1 Summar)f

The radio sbectrum is a limited méburce. With the increasing demand for
higher data rates, many wireless communications systems, with their present
spectral efficiencies, are expected to be conjested to their capacities in the
near fufure. This presents a major challenge for researchers and developers in
wireless technology to develop novel system concepts and techniques aiméd at
improving spéctral efficiency and achieving higher capacity within a limited
spectrum. _

The radio propagation channels in wi.relelss mobile communications are
extremely harsh. The signal that travels from the transmitter to the re-
ceiver through a multipath channeis suffers impairrﬁents due to intersymbol
interference and co-channel interference. Intersymbol interference (ISI) and

co-channel interferences (CCI) are two major obstacles to high speed data
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transmission in wireless TDMA networks. Unlike the.rmal noise, these effects
cannot be removed by increasing the signal power. As a result of relative
motion between the transmitters and receivers, ISI and CCI become non
statioria.ry. |

This thesis is divided into three parts. The first part formulates a con-
venient model for the sﬁace-time multipath channel. Starting from the con-
tinuous time domain, a vector space-time channel model parameterically de-
scribed by signal path power, directions and times of arrival was developed.

Compact expressions relating the array manifold of the antenna array and

ttine manifold of the modulation waveformn were derived. This development

leads to the notion of block space-time manifold. When certain identifia-

bility conditions are sa.tisified the noiseless vector channel outputs lie on a

subspace constructed from a set of basis belongmg to the block space- tlme
manifold. This is an important obselva.mon as many high resolution auay
~processing algorithms can be applied (with mlmmal modifications) to esti-
‘mate the multipath channel parameters, in particularly directions and times
of arrival. These are useful parameters in formulating optimum transmit
beamforming strategy as well as mobile localization serviées. This parame-
ter estimation problem was treated in Chapter 3. We presented a maximum
likelihood estimator and derived subspace fitting algorithms such as weighted
subspace fitting and MUSIC estimators to estimate the multipath directions
and times of arrival. The MUSIC estimator offers significant computational
.sin.lplicity over the WSF and ML estimator, but‘ comprormises in estimation

performance. The usefulness of the proposed a,pproach is demonstrated with

numerical examples.




The second part of this thesis deals with the problem cof identification

and equalization of time varying channels. The main technical challenges

addressed in this chapter are the development of channel identification and

equahzatmn algorithms for wireless mobile TDMA networks using ShOlt burst

data formats. These technical challenges are:
1. Ability to track the time-vafying channel.

2. Only require an extremely short or no training sequence for initial chan-

_nel estimation.
3. Data efficient and fast converging due to short burst data format.
4. Perform adequately at relatively low SNR.

The problem considered here i.s one of semi-blind identification and equaliza-
tion of time-varying channels where a short training sequence is used to
.o.bta.in the initilal ‘channel estimates. Unlike conventional .adaptive chan-
nel equaliéé,tion methods, we addressed the problem of channel acquisition,
1‘.1-a.c.king and ei:lua.lization joihtly. We approached the problem by exploit-
ing the richness of the inherent structural relationship between channel pa-
rameters and data sequence by repeated use of available data through a
f01wa1d backward optimization procedure. Numerical results showed that
the pxoposed app1oach has 51gn1ﬁcant pe1f01mance gains ovel‘ conventlonal
methods. o _

The final part of this thesis addressed the problem of identification and

equalization of communications channels in the presence of strong co-channel

1nterference In chaptel 5, we proposed a spatial- tempom,l algorithm that

. 88




the ilntérference+noise were used to provide the appropriate weighting. This
is optimal if the interference+noise statistics are Gaussian. But in practice,
this is not likely. It is therefore interesting to examine othier metrics such
as I, norms as alternatives since such norms are expected to be more robust

against non-Gaussianity.
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