296 research outputs found

    Design of quadrature mirror filter banks with canonical signed digit coefficients using genetic algorithms.

    Get PDF
    This thesis is about the use of a genetic algorithm to design QMF bank with canonical signed digit coefficients. A filter bank has applications in areas like video and audio coding, data communication, etc. Filter bank design is a multiobjective optimization problem. The performance depends on the reconstruction error of the overall filter bank and the individual performance of the composing lowpass filter. In this thesis we have used reconstruction error of the overall filter bank as our main objective and passband error, stopband error, stopband and passband ripples and transition width of the individual lowpass filter as constraints. Therefore filter bank design can be formulated as single objective multiple constraint optimization problem. A unique genetic algorithm is developed to optimize filer bank coefficients such that the corresponding system\u27s response matches that of an ideal system with an additional constraint that all coefficients are in canonical signed digit (CSD) format. A special restoration technique is used to restore the CSD format of the coefficients after crossover and mutation operators in Genetic algorithm. The proposed restoration technique maintains the specified word length and the maximum number of nonzero digits in filter banks coefficients. Experimental results are presented at the end. It is demonstrated that the designed genetic algorithm is reliable, and efficient for designing QMF banks.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .U67. Source: Masters Abstracts International, Volume: 43-05, page: 1785. Thesis (M.A.Sc.)--University of Windsor (Canada), 2004

    Application of evolutionary computing in the design of high throughput digital filters.

    Get PDF

    Digital Filters and Signal Processing

    Get PDF
    Digital filters, together with signal processing, are being employed in the new technologies and information systems, and are implemented in different areas and applications. Digital filters and signal processing are used with no costs and they can be adapted to different cases with great flexibility and reliability. This book presents advanced developments in digital filters and signal process methods covering different cases studies. They present the main essence of the subject, with the principal approaches to the most recent mathematical models that are being employed worldwide

    Efficient design of a class of multiplier-less perfect reconstruction two-channel filter banks and wavelets with prescribed output accuracy

    Get PDF
    The 11th IEEE Signal Processing Workshop on Statistical Signal Processing, Singapore, 6-8 August 2001This paper proposes a novel algorithm for the design and hardware reduction of a class of multiplier-less two-channel PR filter banks (FBs) using sum-of-powers-of-two (SOPOT) coefficient. It minimizes a more realistic hardware cost, such as adder cells, subject to a prescribe output accuracy taking into account of the rounding and overflow effects, instead of using just the SOPOT terms as in conventional method. Furthermore, by implementing the filters in the FBs using multiplier-block (MB), significant overall saving in hardware resources can be achieved. An effective random search algorithm is also proposed to solve the design problem, which is also applicable to PR IIR FBs with highly nonlinear objective functions.published_or_final_versio

    On the design and implementation of a class of multiplier-less two-channel 1-D and 2-D nonseparable PR FIR filterbanks

    Get PDF
    This paper proposes a new design and implementation method for a class of multiplierless 2-channel 1D and 2D nonseparable perfect reconstruction (PR) filterbanks (FB). It is based on the structure proposed by S.M. Phoong et al. (see IEEE Trans. Sig. Proc., vol.43, p.649-64, 1995) and the use of multiplier blocks (MB). The latter technique allows one to further reduce the number of adders in implementing these multiplier-less FB by almost 50%, compared to the conventional method using sum of powers of two coefficients (SOPOT) alone. Furthermore, by generalizing the 1D to 2D transformation of Phoong et al., new 2D PR FBs with quincunx, hourglass, and parallelogram spectral support are obtained. These nonseparable FBs can be cascaded to realize new multiplierless PR directional FB for image processing and motion analysis. Design examples are given to demonstrate the usefulness of the proposed method.published_or_final_versio

    Evolutionary design of digital VLSI hardware

    Get PDF

    Low Complexity Multiplier-less Modified FRM Filter Bank using MPGBP Algorithm

    Get PDF
    The design of a low complexity multiplier-less narrow transition band filter bank for the channelizer of multi-standard software-defined radio (SDR) is investigated in this paper. To accomplish this, the modal filter and complementary filter in the upper and lower branches of the conventional Frequency Response Masking (FRM) architecture are replaced with two power-complementary and linear phase filter banks. Secondly, a new masking strategy is proposed to fully exploit the potential of the numerous spectra replicas produced by the interpolation of the modal filter, which was previously ignored in the existing FRM design. In this scheme, the two masking filters are appropriately modulated and alternately masked over the spectra replicas from 0 to 2π\pi, to generate even and odd channels. This Alternate Masking Scheme (AMS) increases the potency of the Modified FRM (ModFRM) architecture for the design of a computationally efficient narrow transition band uniform filter bank (termed as ModFRM-FB). Finally, by combining the adjoining ModFRM-FB channels, Non-Uniform ModFRM-FB (NUModFRM-FB) for extracting different communication standards in the SDR channelizer is created. To reduce the total power consumption of the architecture, the coefficients of the proposed system are made multiplier-less using the Matching Pursuits Generalized Bit-Planes (MPGBP) algorithm. In this method, filter coefficients are successively approximated using a dictionary of vectors to give a sum-of-power-of-two (SOPOT) representation. In comparison to all other general optimization techniques, such as genetic algorithms, the suggested design method stands out for its ease of implementation, requiring no sophisticated optimization or exhaustive search schemes. Another notable feature of the suggested approach is that, in comparison to existing methods, the design time for approximation has been greatly reduced. To further bring down the complexity, adders are reused in recurrent SOPOT terms using the Common Sub-expression Elimination (CSE) technique without compromising the filter performance
    corecore