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Abstract

In this thesis, the application of Evolutionary Computing in the design of high 

throughput digital filters is studied. Evolutionary Computing are a group of problem 

solving methods which are based on biological evolution, such as natural selection 

and genetic inheritance. From these problem-solving techniques, Genetic Algorithm 

(GA) and Immune Programming (IP) are chosen for Digital Filter design application.

We start this research by developing iterative design methodologies for Finite Im­

pulse Response (FIR) and Infinite Impulse Response (HR) 1-D filters and also FIR 

and IIR  Q uadrature Mirror Filter (QMF) banks. The proposed methodologies con­

sider phase linearity as another constraint for the design formulation. Several studies 

on the performance analysis of Genetic Algorithm are performed. The dependence 

of Mean Square Error (MSE) on population size and number of generations were in­

vestigated. The performance of GA over different cross-over techniques and different 

values for probability of cloning (Pc) and probability of m utation (Prn) is analyzed 

too.

Furthermore to  obtain high throughput ra te  digital filters, Common Subexpression 

Elimination (CSE) is applied on the coefficients. In this thesis, the existing algorithm 

for 2 non-zero digits CSE in both  vertical and horizontal position is extended to  3

iv
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A B S T R A C T

non-zero digits for vertical elimination. At the end, a new algorithm for the design of 

high throughput digital filters with CSE constraint, linear phase characteristics and 

Canonical Signed Digit (CSD) coefficients is proposed which leads to  more efficient 

digital filters.
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Chapter 1

Introduction

Interests on discrete time signals have been enormously increased during past three 

decades. In discrete tim e signals, error correction is much easier and higher transmis­

sion rates can be achieved. Digital Signal Processing (DSP) is a field of engineering 

th a t works on the discrete time signals. DSP has a wide range of applications, from 

home devices such as DVD players and TV tuners to  precise biomedical devices (Mag­

netic Resonance Imaging (MRI)) and in security applications such as face and iris 

recognition.

One im portant branch of DSP is Digital Filters [36]. Digital Filters work on 

discrete time da ta  and basically perform digital m athem atical operations on them. 

These data  can be one-dimension (1-D), two-dimensions (2-D) [47] or in general N- 

dimensions (N-D). As an example, 1-D signal can be audio signal, 2-D signal can be 

image of a scene and 3-D signal can be a video.

1
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1. IN TRO D U CTIO N

1.1 D ig ita l F ilters

Digital Filters are an im portant part of Digital Signal Processing. They can be used

signals and for restoring the distorted signals. As an example when we have an audio 

signal which is corrupted w ith the high frequency noise, a low-pass filter with the 

cut-off frequency of 20K H z  can cut the unwanted noise.

Digital Filters may be implemented in software or hardware. Software implemen­

tation can be a software on a general-purpose computer and hardware implementation 

can be a DSP chip or an ASIC processor.

Similar to  discrete tim e data, Digital Filters can be in one-dimension (1-D), two- 

dimensions (2-D) and in general in N-dimensions (N-D) [40]. In this section different 

kinds of (1-D) digital filters are reviewed.

1.1.1 O n e-D im en sio n a l F ilters

1-D digital filter can be in the form of FIR (non-recursive) or HR (recursive) and can 

be characterized by their difference equation. A linear, time-invariant FIR  filter can 

be shown as:

By using the z-transform, a digital filter can be described in z-domain which is 

helpful in frequency dom ain analysis. In theory, the transfer function of a digital 

filter is the z-transform of its impulse response. The transfer function of a linear, 

time-invariant FIR  filter is defined as:

for different applications bu t in general they are utilized for separating the combined

N

(1 .1)
i=0

N

(1.2 )

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1. IN TR O D U C TIO N

The same formulation is also available for HR filters. A linear, tim e-invariant HR 

filter can be shown as:

N  M

y (n ) =  a (i )x (n - ^ - ^ 2  b(*)y(n -  *) (i-3)
i= 0  i = 1

And its transfer function can be shown as:

H (z ) =  -.f - r  (!-4)

In the digital filter design we are always interested to  have stable filters. FIR  filters 

are always stable therefore there is no need for stability check, but for HR filters 

stability check should be performed. The poles of the transfer function determine 

whether the filter is stable or not. In Equation 1.4, the denominator polynomial D(z)  

must satisfy the following constraint:

D(z)  ^  0 \/\z\ > 1 (1.5)

By this constraint all poles of the D(z)  are located inside the unit circle of z  plane, 

therefore the filter is stable. For stability check we have used the Jury-M arsden [40] 

method which does not require finding any polynomial roots and only requires the 

calculation of the determ inant of a series of 2 by 2 matrices.

1.1.2 Q uadrature M irror F ilter  B anks

Quadrature Mirror Filter (QMF) banks have been subject of research for many 

years [48]. They are applied for the situation where a discrete-time signal x[n] is 

needed to  be split into a number of sub-band signals Xj[n] so th a t each can be pro­

cessed separately. Typical processing comprises down-sampling, coding for trans­

mission and storage. Subsequently at some point, these signals are needed to  be 

recombined together to  have the original signal reconstructed. The most common

3
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1. IN TR O D U C TIO N

\ [ n ]  -

x i f n j y,[n]

Figure 1.1: The two-channel QMF Bank.

applications are frequency dom ain speech samplers, sub-band coders for speech sig­

nals and digital trans-m ultiplexers used in Frequency Division Multiplexing (FDM) 

/  Time Division M ultiplexing (TDM) conversion.

Based on the type of synthesis and analysis filter (FIR or HR) and number of 

channels, there are different kinds of filter banks. In this research we have focused 

on 2-channel QMF bank for bo th  FIR  and IIR. Fig. 1.1 shows the basic two-channel 

QMF bank. The analysis filter bank is composed of a low-pass filter H 0 ( z ) and a high 

pass filter H\(z) .  These two filters split the incoming signal to  two frequency bands. 

The sub-band signals are then  down-sampled by a factor of two. Each down-sampled 

sub-band signal is encoded by exploiting the special spectral properties of the signal, 

such as energy level and perceptual importance. At the receiving end these signals 

are up-sampled by a factor of two and fed into the two-band synthesis filter bank 

G q(z ) and G'i (z). and at the  end the output is created by adding these two signals.

Up-sampling of xo[n\ and x\[n] result in images, which have to  be eliminated by 

G 0 (z) and Gi(z).  The output of G 0 (z) and G\{z)  are a good approximation of x 0 [n] 

and Xi [n], and the reconstructed signal y [«] closely resembles x[n). In Q uadrature 

Mirror Filter banks the response of H 0 (z) is the mirror image of the response of H\ (z).

In Fig. 1.1 the relation between the input and output signal is [40]:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1. IN T R O D U C TIO N

Y(z )  = ±G0(z)H0(z) +  Gi{z)Hi (z)  +  ± G0(z)H0( - z )  + G l {z)Hl { - z ) x { - z )  (1.6)

In order to have an alias-free QMF bank , we should set these two filters in a such 

way tha t aliasing effect be canceled; this will lead to  Linear Time Invariant (LTI) 

system. Following is the condition of alias-free QMF bank [40]:

G0 (z) = H 1( - z ) (1.7)

—Go(—z) = Gi(z)  (1-8)

H 1 (z) = H 0 ( - z )  (1.9)

According to  the above equation, by designing H q(z ) only, we will have the whole 

system designed. For FIR QMF bank there is no need for stability check but for 

HR filters, stability check must be carried out for the designed filters. We have used 

the Jury-Marsden [40] method, which determines the stability by the calculation of a 

series of 2 by 2 determinants and does not require finding any polynomial roots. The 

N th order real coefficient HR H t)(z) is defined as:

E t=0a (b > ^  N (Z)-  -  M--—— ■ -  TT77T (1-10)
E i = o  K v z  1 V G )

The group delay of a filter is a measure of the average delay of the filter as a 

function of frequency and is defined as:

„  r dH( z ) / dz ,  „  r D'(z) N' ( z ) ,  , 111N
t (w)  =  —Re[z 7y (V) ]z= e^ T  = -  z - j ^ \ z=ejwT (1.11)

Where D'[z ) =  dD̂  and N ' ( z ) =  dN̂ .

For the N th order real coefficient FIR filter, H q(z ) is

N

H(z)  =  ( 1. 12)
i= 0
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1. IN TR O D U C TIO N

1.2 CSD C oding

CSD number system is a representation of a number as a sum and difference of power 

of two.

M

x  = ^ 2 s k2~Pk (1.13)
k=1

Where sk are ternary digits, sk € 1, 0,1, and I is defined as -1.

M  is a pre-specified word length, and p k G 0 .1 ...., M.

and with the constraint:

sk x Sk+i = 0, for all the k 6 0 ,1 ,..., M . (1-14)

As an example, we want to  represent 0.8743 in CSD number system. There is 

limit of 4 non-zero digits and the word length is 8. The CSD representation of 0.8743 

is:

0.8743 ~  2° -  2~3 -  2~7 =  1.0010001

CSD number system has advantages over conventional binary system. CSD rep­

resentation contains fewer non-zero digits therefore there are less partial products in 

multiplications of the numbers. As an example 15 in binary representation is (1111)2 

which contains 4 non-zero digits bu t in CSD representation, it is (10001) which has 

two non-zero digits. Fig. 1.2 illustrates the comparison between binary and CSD 

multiplication. It is shown th a t for the multiplication of 14 and 15 in binary system, 

4 additions are needed but in CSD form at only 1 subtraction is needed which is the 

same as addition.

The mathem atical operations in digital filters are in the form of multiplication, ad­

dition and shift. In the implementation of digital filters, addition and shift operations 

are cheap. W hen a digital filter faces a series of input data, multiplication operation 

forms as Multiple Constant M ultiplication (MCM). Multiple Constant Multiplications

6
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14 

x 15

Binary Multiplication 

00001110 
00001111
00001110 add 

00001110 add 
00001110 add

00001110 add

0011010010 = (210)

CSD Multiplication
14 00010010

x l5  00010001

00010010 
00010010

subtract
shift 3 times add

00100110010 = (210)

Figure 1.2: Comparison of CSD and Binary Multiplication

consume most of the power and implementation cost in digital filters.therefore low 

implementation cost MCM is always desired. One popular method for reducing the 

implementation complexity of MCM is to  constrain the coefficients to have canonical 

signed digit (CSD) format w ith limited number of non-zero digits[ 1 ]. jo]. Thereby the 

heavy MCMs can be replaced by fewer shift and add operation.

By Using the Common Subexpression Elimination (CSE) [117]. j:F>], [17], further 

reduction can also be made in the number of addition in Multiple Constant M ulti­

plication. CSE is the process of finding the common patterns (subexpressions) in a 

expression and calculate them  once and use the result where the subexpression oc­

curs within the expression. Since removing one subexpression may destroy another 

subexpression, it is critical to  find the optimum subexpression for elimination. As an 

example, in the following expression, choosing the horizontal subexpression (101) will 

destroy the vertical subexpression (11) and viceversa.

c0 101010101

ci 101000101

7
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1.3 Sum m ary o f P revious W orks

Generally there are two approaches for the design of digital filters, direct [19] method 

and indirect [45] method. In indirect method, first a normalized analog filter using 

classical approximations methods such as B utterw orth, Chebychev, Elliptic, etc [40] 

is designed, then through some discretization process, the desired digital filter is 

digitized. Famous discretization procedures are invariant impulse response method, 

matched z-transformation and bilinear transform ation [40].

In direct m ethod [1], [18], by utilizing iterative optimization methods, the desired 

discrete-time transfer function is calculated. In these methods first a discrete-time 

transfer function is formed through an initial guess. Then the error function which is 

based on the desired m agnitude and phase response is defined. The optimal answer 

is obtained by minimizing the error function with respect to  the coefficients of the 

transfer function.

In all of the above-mentioned design techniques, coefficients are calculated with 

high precision but in actual implementation, either hardware or software, the filter 

coefficients are stored in finite length registers, so quantization must be applied. 

Quantization in digital filters may result in unstable filters and /or different response. 

This has resulted in designs with finite precision coefficients. Four popular iterative 

optimization techniques are branch and bound optimization [11], discretization and 

re-optimization [30], simulated annealing [32] and genetic algorithm [44].

Genetic Algorithm (GA) is a stochastic search m ethod th a t im itates the process 

of natural selection and evolution. GA possesses many features such as parallelism 

and multiple objectivity and filters designed by GA have the potential of obtaining 

near global optimum solution [25]. During the past decade, GA has been successfully 

used to  design digital filters [33], [12], [16]. Also the utilization of CSD coefficients 

has the advantage of minimizing the implementation cost of digital filters.

In literature there are several proposed techniques for the design of digital filter

8
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using genetic algorithm [27], [26], [18], [1], [23] bu t none of them  has the Common 

subexpression Elimination as a factor in the fitness function. In this thesis we propose 

a new algorithm, which include characteristics such as Magnitude Response, Phase 

Linearity and Common Subexpression Elimination in its objective function. We also 

have extended the existing algorithm for common subexpression elimination to  3 

non-zero digits in vertical position.

1.4 T hesis O bjectives

The work presented in this thesis conforms to  the following objectives:

1. Study the application of the evolutionary computing such as GA and IP in the 

design of digital filters.

2. Perform a thorough study on performance of Genetic Algorithm for digital filter 

design.

3. Develop a new algorithm for the design of high throughput Digital Filter.

4. Extend the Common Subexpression Elimination to 3 non-zero digits.

1.5 T hesis O rganization

This thesis is organized as follows: Chapter 2 covers the Genetic Algorithm and 

Immune Programming. Chapter 3 presents the Common Subexpression Elimination 

and its extension to  3 non-zero digits for vertical subexpressions. Chapter 4 is the 

formulation for Digital Filter design using Evolutionary Computing and the proposed 

algorithm and lastly, Chapter 5 provides concluding remarks.
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Chapter 2 

Evolutionary Computing

2.1 Introduction

Evolutionary Computing [6] is a group of problem solving m ethods which are based 

on biological evolution, such as natural selection and genetic inheritance. Prom these 

methods Artificial Neural Networks [39], Genetic Algorithm [50] and Artificial Im­

mune Systems [7] can be named. Each of these methods is inspired from a biological 

process of human body i.e. Artificial Neural Networks are inspired from the neural 

system of the body, Genetic Algorithm is inspired from the mechanism of natural 

evolutionary genetics and Artificial Immune System is inspired from the Immune 

System of human body. In this chapter two of these paradigms, Genetic Algorithm 

and Artificial Immune Systems, are discussed.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. E V O LU TIO N A R Y COM PUTING

2.2 G en etic  A lgorithm

Genetic Algorithm (GA) is a search and optimization algorithm which is based on 

mechanism of natu ral evolutionary genetics. It was developed by John Holland [20] 

in 1975 in his ’’A daptation in N atural and Artificial Systems” and was further im­

proved by Goldberg [14], [15] and others [22]. This method works on a population 

of candidate solutions and tries to  find the optimal answer.

GA is based on the mechanism of natural selection and the principal of survival of 

the fittest. In th is algorithm, individuals in a population compete for survival. After 

each generation the  most successful individuals are more likely to  survive and the less 

successful individuals are gradually eliminated.

For solving real-world problems with Genetic Algorithm, the solution to  the prob­

lem must be expressed as a character string called chromosomes. Also there should 

be a fitness function to  determine the fitness of individuals. In the process of GA, it 

tries to  obtain a be tte r solution from the existing solutions.

As it was mentioned GA is a search-based optimization technique. Search tech­

niques can be divided into three groups, random search, enumerative and calculus 

based. Fig. 2.1 shows different search techniques.

2.2.1 G en e tic  A lgorith m  C ycle

Genetic Algorithm cycle by Goldberg [15] is shown in Fig. 2.2. This algorithm consists 

of three operations: Reproduction, Crossover and Mutation.

Chromosomes of each population which are the candidate solutions are fed into 

this cycle. There must be a fitness function defined for each problem to  determine 

the fitness of each solution. Reproduction selects the fitter chromosomes from each 

population for crossover and mutation. New population is created by each cycle and 

this process is repeated until the minimum error or maximum number of generations

11
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Search
Techniques

i i-
C alcu lus

B a sed E n u m e ra tiv e )R an d o m

Sim ulated
AnealingD irect Indirect ) R andom  W alk

N ew ton 's M ethod Zero Gradiant Evolutionary
Algorithm

Evolutionary
S trateg ies

Genetic
Algorithms

A
S equentional

Figure 2.1: Search Techniques.

Population

ReproductionMutation

Cross-Over

Figure 2.2: GA Cycle.

is achieved. The chromosome th a t has the highest fitness is the solution to  the target 

problem.

A Genetic Algorithm in its simplest form operates as the following steps:

1. Generating the random initial population.

2. Evaluating the fitness of each chromosome.

3. Selecting a group of chromosomes as parents.

12
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4. Creating new population by crossover and mutation.

5. Replacing the new population according to its fitness.

6. Repeating the loop to  reach the target.

In the following sections, each of these steps is discussed in detail.

2.2.1.1 Problem  C oding

Encoding scheme [2] is the link between real-world problem and the Genetic Algo­

rithm. The solution of the  problem must be encoded to form the chromosomes and 

each chromosome is a possible solution for the problem. Chromosome consists of 

string of a characters which can be in binary, integer or any other format.

Encoding of the problem is a crucial issue. Inappropriate coding can intensively 

limit the searching space which may lead to non-optimal results. The length of the 

chromosome is also a m ajor factor in Genetic Algorithm. According to  the problem 

in hand, long or short chromosomes may lead to better results [34].

2.2.1.2 F itness Function

The fitness function is another link of Genetic Algorithm to the real-world problem. 

Every problem must have an objective function to  evaluate the chromosomes. The 

higher fitness means the be tte r result.

At the start of the GA, after creating the initial random population, the fitness 

of each chromosome is evaluated and then fed into the GA loop for reproduction.

2.2.1.3 R eproduction

Reproduction is the process of randomly selecting chromosomes w ith respect to their 

fitness. Regardless of reproduction mechanism, a chromosome with a higher fitness 

will have a higher probability of being chosen. This is the simulation of survival-of-the

13
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fittest in natural selection process in which any organism which is more fit will have 

a better chance to  survive in nature.

There are many approaches [49], [51] for reproduction operation such as rank 

selection, fitness proportionate selection (FPS) and tournam ent selection. All of these 

approaches try  to give more chances to  fitter chromosomes to  be selected as parents. 

A common FPS m ethod is Roulette Wheel Selection. The idea of R oulette Wheel 

Selection is to  divide the wheel to non-uniform slots with respect to chromosomes’ 

fitness. A chromosome with higher fitness will have a bigger slot. W hen the  wheel 

is spun, the chromosome with the highest fitness has the great est chance of being 

chosen. The wheel is spun till the whole population is created. In this m ethod some 

chromosomes maybe taken more than  once. Roulette Wheel executes the following 

steps:

1. Sum the fitness of all Chromosomes.

2. Generating random number between 0 and to tal fitness.

3. Choose the chromosome whose fitness added to  the fitness of the proceeding 

chromosomes is less or equal to  random number.

4. Repeat the steps till the population size is reached.

Fig. 2.3 is an example of Roulette Wheel Selection. Assume that there are three 

chromosomes: 01010, 11110 and 11001 with the fitness value of 40(Z.  35% and 19% 

of the to tal fitness. For creating the population, Roulette Wheel is spun three times 

and in each spin one of the chromosomes is selected. Chromosome 01010 has the 

46% of the to ta l fitness, therefore it has the greatest chance of being selected. In the 

Roulette Wheel Selection, one chromosome can be selected more than  once.
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Chromosome 3 
I 19%

Chromosome 1 
46% Chromosome 2 

35%

Figure 2.3: Roulette Wheel Selection.

2.2.1.4 Crossover

The selected individuals from the reproduction will be used as parents for crossover. 

Crossover is the main operator for exploring the searching area. In this operation, 

according to  a probability ra te  which is Probability of Crossover (Pc), two new chro­

mosomes are generated. As the probability increases, GA can explore more diversity 

of the solution space but if the Pc is too high, the high fitness chromosomes may 

destroy [29].

There are variety of crossover operators [21], [43], [38] such as one-point, 2-point 

and n-point crossover operator. In the following sections, these three approaches will 

be discussed.

1. 1-point Crossover

In single point cross-over [10], a cross-over point is chosen at a random position 

between 1 and the (string length —1). Two new chromosome strings are created 

by dividing the initial chromosome strings into two sections each at the cross­

over point and appending the  first half of the first chromosome string to  the 

second half of the second chromosome string and vice versa.

15
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Figure 2.4: 1-point Crossover.

2 . 2-point Crossover

2-point cross-over [4] has chromosomes arranged in loops by joining their ends 

together. Two cuts are made in the loop and the resulting segments are ex­

changed. From this it can be seen th a t 1-point is just a special case of the more 

general 2 -point cross-over where one of the cut points is fixed as falling between 

the last and first position.

Figure 2.5: 2-point Crossover.

3. N-point Crossover

Another form of crossover is the n-point crossover [42] where the number of 

points n  varies dynamically with each mating. In this method, a randomly 

generated crossover mask is used to determine which genes of an offspring come 

from which parent. Each gene in the first offspring is created by copying the 

corresponding gene from one or the other parent according to the crossover 

mask. Where there is a 1 in the mask, the gene is copied from the first parent, 

and where there is a 0  in the mask, the gene is copied from the second parent. 

The process is repeated with the parents exchanged to  produce the second 

offspring. A new crossover mask is randomly generated for each pair of parents.

16
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0 1 0 1 1 0 0

Figure 2.6: Uniform Crossover.

2.2.1.5 M utation

Normally, m utation [41] occurs with low probability and functions as a background 

operator. Assume th a t A  = 101010101 is the chromosome and 1  is the chosen bit 

for m utation according to  the  probability of m utation Pm. As there are totaly  three 

possibilities for strings (1 ,1 ,0), 1  must be changed randomly with I or 0. If it is 

changed with 0, the new chromosome will be A  =  101000101.

2.2.1.6 R eplacem ent

Elitist strategy [24] is applied for the replacement of old generation. After the fitness 

evaluation, if the maximum fitness of old population is less or equal to  the maximum 

fitness of new population, it is replaced by the new population.

2.2.2 E xam p le

Having introduced the Genetic Algorithm and its operators, now there is an example 

to  demonstrate the GA. In this problem we want to  find the maximum of f { x )  =  x ‘2—x  

where 1 <  x  <  5.

Stepl. Variable Coding:

In this problem, variable x  is coded as a 5 bit binary number, so a random guess

17
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can be x  =  1 0 1 1 0  which is x  =  2 2 .

Step2. Initialization:

In this step, a population size of chromosomes are randomly generated to  initialize 

the  population. Here we have used 6  as the population size, so the initial population 

can be:

ax =  [10110] =  22 

g2  =  [00011] =  3 

a 3  =  [11011] =  27 

a 4  =  [00101] =  5 

a 5  =  [11110] =  30 

a6 =  [01000] =  8

Step3. Fitness Evaluation:

In this problem we want to  find the maximum of f ( x )  = x 2 — x  when 1 <  x  < 5.

The function value f ( x )  is a good candidate for the fitness function, f i t n e s s  =  f ( x )  =
2X  — X.

f i t n e s s ( a 1) = /(22) =  462 

f itness(a,2 ) = /(3 ) =  6 

f i t n e s s  (as) =  /(27) =  702 

f i tness (a f )  =  /(5 ) =  20 

f i tn e s s (a 5 ) =  /(30) =  870 

f i tn e s s (a 6) =  / ( 8 ) =  56

Step4. Reproduction:

1 8
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Roulette Wheel Selection is our approach for reproduction operation. Here is the 

steps:

1. Calculate the to ta l fitness.

6

F  — f i tness(a j)  — 2116.
i=i

2 . Generate a random  number in the range of [0, 2116]. As an example one can 

choose the generated number as 2103.

3. Select a chromosome based on the subtotal of chromosomes’ fitness and random 

generated number.

Table 2.1 shows the subtotal of chromosomes’ fitness in this problem.

Table 2.1: Subtotal of Chromosomes’ Fitness

Chromosomes Sum of the Proceeding Fitness

f i tness (a i )  =  462 462

f i t n e s s ^ )  =  6 468

f i t n e s s (a 3 ) =  702 1170

fitness{a±) — 2 0 1190

f i tness(a,5) =  870 2060

f i tness(ae)  =  56 2116

According to  the Table 2.1 and the number 2103, Chromosome a 5  is selected.

4. Repeat steps 2  and 3 to  select the other chromosomes as parents. We assume 

th a t the five selected chromosomes are as follow:

o' =  a 5  =  [11110] =  30

1 9
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a2 =  a 5  =  [11110] =  30 

a '3 =  a i  =  [10110] =  22 

a '4 = a3 =  [11011] =  27 

a'5 = a5 = [11110] =  30

ag =  a6 =  [01000] =  8

Step5. Crossover:

Creating new population starts by crossover. In this example one point crossover is 

used and the probability of crossover is 85%. Following is the procedure for crossover:

1. Select two chromosomes randomly. Chromosomes a2 and a '4 are selected.

2 . Generate a random number between [0 , 1 ]. Random generated number is 0.543.

3. Since 0.543 <  Pc, crossover operation is performed. Select a crossover point 

randomly between [1,5]. 3 is selected as crossover point, so a2 and a3 exchange 

genes after the crossover point.

4. Repeat steps 1-3 until the population size is complete. In this case 6  chromo­

somes are created.

a’[ =  [11111] =  31

a" =  [1 1 0 1 0 ] =  26

a" =  [1 0 1 1 0 ] =  2 2

a!{ =  [11011] =  27

a’l  = [01111] =  15

a" =  [11000] =  24

20
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Step6 . M utation:

M utation performs on bits w ith the probability of 0.05. Each bit of each chromo­

some is examined with the Pm and if the random generated number is less than Pm, 

m utation is applied. After m utation the new chromosomes are as follows:

Cl =

c2  =

C3 =  

c4  =  

C5 =  

C6 =

[10111] =  23 

[1 1 0 1 0 ] =  26 

[1 0 0 1 0 ] =  18 

[11011] =  27 

[11111] =  31 

[11000] =  24

Step7. Fitness Evaluation and Replacement:

f i tness(ci)  =  506 

f i tness (c 2 ) = 650 

f i tness(c3) =  306 

f i tness(ci)  =  702 

f i tness(c5) =  930 

f i tness(c6) =  552

After step7, first generation of genetic algorithm is completed. For next generation 

we continue step 4 to  step 7 till reach the maximum number of generations. The 

best chromosome of the final generation is the optimal answer. In this example 

chromosome {11111} =  31 is the maximum of /(:/;) when 1 <  :r < 5.

21
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2.2 .3  G A  A n a ly sis

In this section we want to  analyze the effect of Genetic Algorithm operators such as 

Reproduction, Crossover and M utation. For this purpose the notion of schemata [14] 

has to be introduced. Schemata is a string composed of the letters of the chromosomes

(1, 0 for binary) and * for the don’t  care position. A schema represents all strings

which match all the positions except *. For example for a binary string of length 5, 

the schemata *0 1 1 * matches chromosomes 1 0 1 1 0 , 0 0 1 1 0  and 0 0 1 1 1 .

2.2.3.1 Effect o f R eproduction

Assume th a t the average fitness of the schema h is m(h, t ) and £(h, t ) be the number 

of matched chromosomes by the schema h in the current generation. If Roulette 

Wheel Selection is used as the reproduction operator, the number of chromosomes 

th a t m atch schema h can be estim ated in the next generation [46]:

C ( M  + 1) =  C ( M )  x (2 . i )

which M  (t ) is the average fitness in the current generation. Let

_  m(h, t) — M(t )  .
M( t )  1 ‘ ’

if e >  0 , it means th a t in the current generation, the schema has an above-average 

fitness. Substituting Equation 2.2 in Equation 2.1, we will have

C (M  +  l) =  C ( M ) x ( l  +  e) (2.3)

Starting from t  =  0, we will obtain the equation

£(h, t  + 1) =  £(h, 0) x (1 +  e f  (2.4)

22
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Equation 2.4 shows th a t after reproduction operation, the above-average schema 

will receive an exponentially increasing number of chromosome in the  next generation 

and the below-average schema will die.

2.2.3.2 Effect o f Crossover

In the crossover operation, schema survives only if the crossover point falls outside 

of the schema i.e if the length of the chromosome is L, and 5(h) is the order of the 

schema h, h survives only if the point is outside of its defining length 6 (h).

For the one-point crossover, the probability of distortion of string h is [46]:

Pd(h)  = (2.5)

therefore the probability of the survival of schema h is [46]:

ps(h) = 1 -  (2 .6 )

Assuming th a t Pc is the probability of crossover, then the probability of schema 

survival is:

P8C(h) > 1 -  Pc (2.7)

Equation 2.7 shows th a t as the order of the schema increases, the probability of 

the survival of the schema decreases.

2.2.3.3 Effect o f M utation

M utation works in bit level w ith a low probability which is called probability of

m utation (Pm). The probability of a single bit to survive is 1 — Pm. A schema

survives from distortion only if all the positions in the schema remains unchanged. 

The formulation for the probability of a schema h surviving the m utation operation 

is [46]:

2 3
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Ps ( h)  =  (1 ~ P m )m (2 .8 )

In genetic algorithm Pm <C 1, so Equation 2.8 can be approximated as

(2.9)

Equation 2.9 shows th a t for high order schema, distortion is more probable.

2.2.3.4 Schem a G rowth Equation

If we combine the effect of reproduction, crossover and mutation, we will obtain the 

following schema growth equation [46]:

Equation 2.10 shows th a t schemata with short, above-average and low-order prop­

erties receive exponentially increasing number of representatives in the subsequent 

generations of a GA, therefore the encoding scheme of the problem must be chosen 

in a way th a t these kind of schem ata be produced.

2 .2 .4  E ffect o f  C rossover and  M u ta tion  on C SD  num ber

Crossover and M utation operations may violate the CSD format. These two opera­

tions can create invalid coefficients by breaking the two constraints of CSD number 

system. They can violate the  non-zero adjacency constraint by putting two non-zero 

digits besides each other or increase the number of non-zero digits to  more than  pre­

specified limit. Fig. 2.7 shows the effect of crossover on CSD number and Fig. 2.8 

shows the effect of m utation on CSD format chromosomes. In chapter 4 we present 

two different techniques to  overcome this problem.

(2 .10)
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l
Dt (CSD Parent) 1 o !l 0 0 1 0 1

ii
D2 (CSD Parent) 0 1 jO 0 1 0 0 1

lf j Crossover point 

D*i (Invalid offspring) Q 1 0 1

D* 2  (CSD offspring) 1 0 0 01 0 01 

Figure 2.7: Effect of Crossover on CSD coefficients.

D, (CSD Parent) 1 0 1 0  0 1 0  1

Bit Mutation

D*i (Invalid offspring) fi 1 1K) 0 1 0 1
i ____I

Figure 2.8: Effect of M utation on CSD coefficients.
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2.3 Im m une Program m ing

Artificial Immune System (AIS) [7] is a search and optimization technique which 

is inspired by the immune system of the body and its principles and mechanisms. 

Immune programming (IP) [31] is a novel paradigm combining the program-like rep­

resentation of solutions to  problems w ith the principles and theories of the immune 

system. Basically, IP  is the extension of the Clonal Selection Algorithm in Artificial 

Immune Systems. IP is not dependent to  any domain and it can be applied on a wide 

variety of problems.

2.3.1 Im m une S y stem

The immune system [9] of the body is a natural, rapid and effective defence mechanism 

for our body to  work against infections. Knowing th a t artificial neural networks are 

inspired from the nervous system of the body, similar to  that, the immune system 

has led to  the emergence of artificial immune systems as a computational intelligence 

(Cl) paradigm.

The immune system consists of two stages of defence which are the innate immune 

system and the adaptive immune system. The innate immune system works through 

the cells th a t are always available. They defend against the wide range of bacteria 

and they don’t  need any pre-knowledge of them. The adaptive immune system pro­

duces the antibodies only in response to  specific infections. These cells have memory 

therefore they are capable to  recognize the same infection when it is presented to  the 

organism again.

2.3.1.1 P attern  R ecognition

Lymphocytes which are the components of the white blood cells, are the tools for the 

pattern  recognition in Immune System. Lymphocytes are in two types, B-cells and

26
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T-cells. Both of these two elements have receptors for identifying the antigens but 

B-cells can recognize the isolated antigen from the outside and T-cells can recognize 

the antigenic cell complex. Fig. 2.9 shows the difference of these two elements.

The process of pattern  recognition is based on matched shapes. W hen a T-cell 

or B-cell receptor compliments the antigen, the recognition is performed. There is a 

concept affinity which is the degree of binding between the receptors and the cell.

B-celi receptor T-cell receptor

Figure 2.9: Pattern  Recognition with B-cells and T-cells.

2.3.1.2 Clonal Selection A lgorithm

The Clonal Selection Algorithm (CSA) [8 ] is the base of Immune Programming. It 

is the theory th a t describes the operation of adaptive immune system. According to 

this theory, only the cells which have the capability of recognizing the antigen can 

proliferate and the rest are discarded. It works on both B-cells and T-cells w ith some 

difference. In CSA B-cells suffer somatic m utation [8 ] during reproduction bu t T-cells 

don’t suffer m utation during reproduction.

Fig. 2.10 shows the principle of Clonal Selection Algorithm. In this figure darker 

circles have the higher fitness and the inner circles in step 3 represent the level of
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. EVO LU TIO N A R Y COM PUTING

mutation.

Fig. 2.10 illustrates th a t after initialization, cells with successful binding are 

cloned. This will lead to  a new population. The new population will be m utated 

with respect to their fitness to  make a new cell with a slight difference. Due to  the 

high m utation rates, this process is usually called hypermutation. This whole process 

of selection and hyperm utation is called clonal selection.

n candidate solutions are generated 
and their fitness is evaluated

©
Candidates with high fitness is selected for cloning 

(rate is proportional to their fitness )

©
N ew ly Generates Clones are subjected for mutation 

(rate is inversely proportional to their fitness )

Figure 2.10: Clonal Selection Algorithm.

In summary, the main properties of the clonal selection algorithm are:

•  Antibody generation

•  Reproduction for high affinity antibodies

•  M utation with respect to affinity

2 8
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2 .3 .2  Im m une P rogram m ing

The IP algorithm is the development of Clonal Selection Algorithm and the replace­

ment of low affinity antibodies. IP consists of the following steps:

1. Initialization

2. Evaluation

3. Replacement

4. Cloning

5. Hypermutation

6 . Iteration-repertoire

7. Iteration-algorithm 

S tep l. Initialization:

In this step, the initial repertoire of antibodies are randomly generated. In IP 

antibodies can be instruction sets for the problem. Table 2.2 is a sample instruction 

set which is taken from the [31]. Each instruction is coded and the greatest code 

number has the value of r  — 1 , where r is the number of instructions in the instruction 

set.

Next step is choosing the length of the program. The length of the program can 

be variable or fixed. For variable length programs, nop instruction can be used as 

padding. For the program length hardware constraints should be taken into account 

as well. As an example according to  the Table 2 .2 , the a ttribute string of m  = <  1 ,4  > 

represents: dup add
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Table 2.2: Instruction Set [31]

Instruction Code Description

nop 0 No operation

dup 1 Duplicate the top of the stack (x —» x  x )

swap 2 Swap the top two elements of the stack (x y -- +yx )

mult 3 Multiply the top two elements of the stack (2 4 —> 8 )

add 4 Add the top two elements of the stack ( 2  4 ■- 6 )

over 6 Duplicate the second item on the stack (x y  —> y x y )

The program length L  and the size of instruction size r  state the available anti­

bodies for the problem. Here we start with one example to  show the different steps 

of the algorithm.

In this example the length of the program is 5 and the size of the repertoire 

n — 100. Let us consider the following antibodies from the whole repertoire. These 

antibodies are the possible solution for the problem. The notation A B  is reserved 

for the whole repertoire and the notation Abi is reserved for each antibody in the 

repertoire.

Abx =<  2 ,4 ,5 ,1 ,0  >;

Ab2 = <  1 ,3 ,0 ,5 ,0  >;

Abs —< 5,1, 5, 2,4 >;

Ab4 =<  4 ,3 ,2 ,1 ,0  >.

Step2. Evaluation:

Antibodies are the possible solution for the problem and the antigen is the prob­

lem. Antigen can be represented in different formats. In this example the antigen is 

an arithm etic expression [31].
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Ag = x 2 + x  + xy

Next all of the antibodies are decoded and the corresponding programs are taken 

out. Then the whole repertoire is compared with the antigen and the affinity is 

calculated.

Pgi =  swap add over dup mult;

P 9 2  =  dup mult nop add nop;

Pg 3  =  over nop over swap add;

P ( / 4  =  over mult swap dup nop.

To evaluate the affinity of the antibodies numerical argument values must be 

generated and put into the stack to get the value. These argument can be generated 

randomly w ithin a prescribed range. In this example argument are restricted to  1-byte 

integer [0,..., 255]. 4 sets of random arguments are generated as x  =  [123, 58, 241, 22] 

and y = [7,36,124,263],

The results of executing the antibodies Abi are

Psi=[130, 94, 365, 285];

P g 2=[15136, 3400, 58205, 747];

P p 3= [130, 94, 365, 285];

P # 4=[105903, 121104, 7202044, 127292],

Symbol N /A  is reserved for the programs th a t failed to  return  a result. The 

antigen A g yields the values [16113, 5510, 88206, 6292].

Affinity is calculated using the distance between the generated program Pgi and 

the antigen A g, then  the three-tiered measure is added. The three tired-measure are:

Excitability. If there is no error after program running, it is assigned a score Tf.
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Com pleteness. If a program execution returns only a single value, score T2 is added. 

Correctness. If the result obtained by the antigen and antibody are identical, score 

T3 is added.

The tier scores are defined such th a t T\ < T2 < T3.

This states th a t correctness is more im portant than  program completeness, which 

is in tu rn  more im portant than  its executability. The scores can be defined as:

Ti = 1;

T2 =  c(Ti +  2);

T3 =  c(Ti +  T2 +  2);

For c =  5 the scores will be Ti =  1, T2 = 15 and T3 =  90. The overall affinity of 

each antibody can be expressed as

C

fi  = Y l  T^ P 9 t  ar9j) +  T2 (Pg» argj) + T3 (Pgi , argj) (2.11)
3= 1

where argj is the j th set of arguments used for program evaluation. In order to  

normalize the affinities for a given number of independent evaluations f m is calculated 

as follows.

=  c(T! +  T2 +  T3) =  530 (2.12)

Returning to  the running example, the affinities / j  and normalized affinities / /Y

of the generated programs have values f  = [/i, f 2, / 3, /j]  =  [80, 80, 80, 80] and f N =

[0.15, 0.15, 0.15, 0.15],

Step3. Replacement:

After evaluating the affinity of the whole repertoire, the algorithm proceeds to 

create the new repertoire. This process consists of three steps: replacement, cloning
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and hyperm utation. Cloning and hypermutation is applied to high affinity antibodies 

and replacement is simply creating new random antibodies. The replaced antibodies 

will not participate in hyperm utation and cloning.

The process of replacement is as follows. First a random number R A N D  G [0,1] is 

generated and is compared to  probability replacement Pr. If the randomly generated 

number is less th an  Pr , a new antibody is generated and placed in the new repertoire 

and the algorithm proceeds to  iteration-repertoire process, but if R A N D  > Pr no 

new antibodies will be generated and the algorithm proceeds to the next step.

As an example, let us consider the new empty repertoire \ A B ^  \ =  0, the probabil­

ity of replacement is Pr =  0 .65  and the generated random number is R A N D  =  0.235. 

Because the random  number is less than  Pr , a new antibody is generated and placed 

in the repertoire. After the replacement =  1 and A b ^  = <  1, 3 ,0 , 5, 2 >. The

algorithm now proceeds to  step 6 (iteration-repertoire).

Step4. Cloning:

While creating a new repertoire, if a new antibody is not generated by replacement, 

it is cloned from the  current repertoire AB .  Selecting antibodies for cloning is done 

sequentially starting  from the beginning of the repertoire.

In the cloning step we try  to  clone the high affinity antibodies rather than  low 

affinity ones. This is accomplished by selecting the high affinity antibodies by a 

random process. In this process a random number R A N D  G [0,1] is generated and 

is compared w ith the  relative affinity. If the random  number is less than  relative 

affinity R A N D  < /A , the antibody will go for cloning or hyperm utation according to 

the Pc and Pm. If the algorithm undergoes the cloning the iteration is done and the 

algorithm proceeds to  step 3, if not, hypermutation is performed. If R A N D  >  /A , 

the algorithm retu rn  to  step 3.
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This process is reviewed with an example. Assume the random ly generated num­

ber is less than  Pr so the algorithm proceeds to  cloning. In order to  figure out tha t 

this antibody is a good candidate for cloning, its relative affinity is compared with a 

random number. The relative affinity for the selected antibody is f i ^ N = 0.63 and 

the generated random number is R A N D  =  0.235. In this example R A N D  < f [ l)N, 

so Ab^f* is chosen for cloning or hypermutation. Now another random  number is 

generated R A N D  =  0.654 and the Pc = 0.7, because the random  num ber is less than 

probability of cloning, the A b ^  is cloned and put into the new repertoire.

Step5. Hypermutation:

As it was mentioned in the cloning section, if the antibody is not cloned due to  Pc, 

it is subm itted to  the hyperm utation process. This process works inside the antibody 

to  expand the searching area. Each member of string m  =< mi,  m 2 , ■■■, m l  >£  S l  is 

examined with the probability of hyperm utation Pm and a portion of it is replaced 

with a new randomly-generated value mj  € m.

In the hyperm utation process, we try  to  make less changes on the high affinity anti­

bodies and more changes on the low affinity antibodies, so the probability of m utation 

must be inversely proportional to  affinity. The resulting probability min[(Pm/ f N ) ,  1] 

is used to  replace a particular a ttribu te ,mj,  of the antibody Abi.

Step6. Iteration-Repertoire:

Steps 3 to  5 (replacement, cloning and hypermutation) are repeated until a com­

plete new repertoire, \ A B ^ \  =  n, is created. According to  the algorithm, there is 

a pointer in the system to  mark which antibodies from the current repertoire are 

used for cloning or m utation. After all of the repertoire is considered for cloning and
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m utation, the pointer is set to  0 again. By this process, high affinity antibodies can 

be cloned or m utated more th an  once.

Step7. Iteration-Algorithm:

After the new repertoire is created, the generation counter G is incremented, 

G =  G +  1. The algorithm proceeds the iteration steps (evaluation, replacement, 

cloning, hyperm utation, iteration repertoire) until the stop criteria is met. The stop 

criteria can be a minimum error, constraint on the number of generat ions or no fitness 

improvement.

The algorithm is summarized in a block diagram depicted in Fig. 2.11.
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S tart

Initialize reperto ire  
|AB| = n

E v a lu a te \T e rm in a t io n  C riteria 
Affinity /

E nd

C lo n e  oi\  No 
.M u ta te ?  /

R e s e t  i = 0

Y e s

Replace?
C lo n e ?

P c
No

No

Y e s
Y e s

/ '  M utate 
V P m  & fitn e ss

C lo n eR e p la c e

N °  j 4ew Repertoii 
N . C om plete?

Y e s

Figure 2.11: Flow chart of the IP algorithm [31].
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2.3 .3  E xam p le

The same example which was solved by GA is now used to dem onstrate the process of 

IP. The goal of this example is to  find the maximum of f ( x )  = x 2 — x  when 1 <  x  < 5. 

The IP algorithm introduced in previous section is modified for this specific problem.

Before starting the algorithm, the variables should be coded to form the antibod­

ies. In this problem, variable x  is coded as a 5 bit binary number, therefore a random 

antibody can be Ab =  10110 =  22.

Stepl. Initialization:

The algorithm starts by random ly generating the the initial repertoire A B ^ .  In 

this example the size of repertoire is 6. A randomly generated initial population can 

be:

ab^ = [10110] =  22 

a b ^  =  [00011] =  3 

a b ^  =  [11011] =  27  

abi 1} =  [00101] =  5 

a b ^  =  [11110] =  30

a6g1} =  [01000] =  8

Step2. Evaluation:

In this problem we want to  find the maximum of f ( x )  — x 2 — x  when 1 <  x  < 5. 

The proposed affinity function in Equation 2.11 is modified for this problem. In this 

example, antibodies will always yield to an answer, therefore the three-tiered measure 

is not needed and the affinity function can be the function value f ( x ) ,  affinity =
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1
CNII

a ffin ity(a& ^ =  / ( 2 2 )  =  462

affinity(a&2^ =  /(3 )  =  6

affinity(a& 3̂ =  / ( 2 7 )  =  702

affinity(a& 4̂ =  f (5)  =  20

affinity (a b ^ =  / ( 3 0 )  =  870

affinity(a6g^ =  / ( 8 )  =  56

Step3. Replacement:

After evaluating the affinity of the whole repertoire, the algorithm  proceeds to 

create the new repertoire. This process starts by replacement.

let us consider the new empty repertoire is =  0, the probability of replace­

ment is Pr =  0.65 and the generated random  number is R A N D  =  0.105. Because 

the random number is less than  Pr, a new antibody is generated and placed in the 

repertoire. After the replacement \ A B ^ \  = 1 and A b ^  =  [10001] =  17. The algo­

rithm  now proceeds to  step 6 (iteration-repertoire).

Step4. Cloning:

While creating a new repertoire, if a new antibody is not generated by replacement, 

it is cloned from the current repertoire AB ^l\

Assume th a t the randomly generated number was less than  Pr and the algorithm 

was proceeded to cloning. In order to  figure out th a t this antibody is a good candi­

date for cloning, its relative affinity is compared with a random number. The relative 

affinity for the selected antibody is =  0.63 and the generated random  number 

is R A N D  — 0.462. In this example R A N D  < f [ ^ N , so A b ^  is chosen for cloning or
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hypermutation. Now another random  num ber is generated R A N D  — 0.574 and the 

Pc = 0.7, because the random number is less than  probability of cloning, the Ab\r> is 

cloned and put to the new repertoire.

Step5. Hypermutation:

As it was mentioned in the cloning section, if the antibody is not cloned due to 

Pc, it is subm itted to  the hyperm utation process.

Let us further assume th a t in the current iteration, replacement does not take 

place and antibody Ab\1'1 is again considered for cloning due to  its high affinity. This 

time the random number, e.g., RAND =  0.5161, is greater than  the probability of 

cloning, Pc =  0.1, and cloning is not performed. Subsequently, the antibody Alrp  

is subm itted for hyperm utation. Ab\l) =  [10110] and 1 is chosen for hypermutation. 

The new generated antibody would be Ab^  =  [10010].

Step6. Iteration-Repertoire:

Steps 3 to  5 (replacement, cloning and hyperm utation) are repeated until a com­

plete new repertoire, \ A B ^ \  — 6, is created.

ab f ] = [10001] =  17 

ab f ] =  [10110] =  22 

a 4 2) =  [10011] =  19 

a b f  =  [00101] =  5 

a b f  = [11111] =  31 

ab f ] = [10101] =  21
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Step7. Iteration-Algorithm:

After the new repertoire is created, the generation counter G is incremented, 

G = G +  1 and the stop criteria is checked. In this example, the stop criteria is the 

num ber of generations G — 50. After 50 generations, the antibody {11111} =  31 is 

selected as the maximum of f ( x )  when 1 <  x  <  5.

2.4 C onclusion

In th is section Genetic Algorithm and Immune Programming were introduced and 

their process were reviewed with an example, also, the effect of their operators, 

crossover and m utation (hypermutation), on CSD number were discussed. In chapter 

4, designing different kinds of digital filters with CSD coefficients using GA and IP  is 

presented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40



Chapter 3 

Common Subexpression 

Elimination

3.1 Introduction

High throughput, low power and low implementation cost digital filters are required 

in DSP applications. Since multipliers in digital filters consume most of the power and 

implementation cost, high speed and low cost multipliers are required in the imple­

mentation of digital filters. As mentioned before, one popular m ethod for reducing 

the implementation complexity is to  constrain the filters to  have canonical signed 

digit (CSD) coefficients w ith lim ited number of non-zero digits. Thereby complex 

multipliers can be replaced by fewer shift and add operations.

By Using the Common Subexpression Elimination (CSE), further reduction can 

also be made in the number of additions in CSD m ultiplication [46], [37], [35], [17]. 

CSE is the process of finding the common patterns (subexpressions) in the expression
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and calculate them  once and use the results where the subexpression occurs within 

the expression. In this chapter we have used a graphical m ethod for finding both 

vertical and horizontal subexpressions for 2 non-zero digits and have extended it to 

3 non-zero digits in vertical position.

3.2 D ifferent Subexpressions

Common Subexpressions can be found in horizontal (horizontal subexpression) and 

vertical (vertical subexpression) position. It can be any bit pattern like 1001, 101, 

10101. In these patterns we have two or three non-zero digits and some other digits 

in between.

3.2 .1  H orizon ta l S ub exp ression  E lim ination

W ithin a CSD coefficient, sub-expressions can be found and eliminated horizontally. 

As an example, we want to calculate Equation 3.1.

y =  (01010101)* (3.1)

If we express this equation by sh ift/add  method, it changes to Equation 3.2 which

needs three additions. The notation is the shift to left operator.

t/ =  i  +  x < 2  +  i < 4  +  x < 6  (3.2)

The subexpression 101 has occurred three times in this expression and two of them  

can be eliminated. If we rearrange the Equation 3.2, we will have

t/ =  i  +  i « 2  +  ( i  +  i « 2 )  < 4  (3.3)

if we take s = x  + x  •C  2 (101) and rewrite the Equation 3.2, it will be
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(3,4)

Equation 3.4 needs one addition and s needs one addition, therefore there is need 

for 2 additions to  calculate y instead of 3 which is needed in Equation 3.2. This 

represents 33% saving in the number of required additions.

3.2 .2  V ertica l S u b exp ression  E lim in ation

W ithin a CSD coefficients, sub-expressions can also be found and eliminated vertically. 

As an example, we want to  calculate Equation 3.5 [46].

If we calculate this equation by sh ift/add  method, it changes to  Equation 3.6 

which needs 6 additions.

+ x [—1] < 2  +  x[—1] <C 5 +  x[— 1] <C 7

The subexpression 11 has occurred twice in this expression and can be eliminated. 

If we rearrange Equation 3.6, we will have

y =  (10000101)x[0]

+ (10100101)a;[-l]

(3.5)

y  =  x[0] +  rr[0] « 2  +  ar[0] <C 7 +  x [ - l ] (3.6)

y  =  (x[0] +  x [ - l ] )  +  (x[0] +  x[—1]) <C 7 

+x[0] <  2 +  x [ - l ]  «  2 +  x[—l] <  5

(3.7)

If we take s = x[0] +  ar[—1] and rewrite Equation 3.6, it changes to
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y =  s +  s «  7 +  x[0] <C 2 +  x[—1] < 2  +  o;[—1] <C 5 (3.8)

Equation 3.8 needs 4 addition and s needs one addition, therefore there is need 

for 5 additions to  calculate y instead of 6 which is needed in Equation 3.6.

3.3 D esign  Procedure

Finding and eliminating the optimal subexpressions in the CSD coefficients can make 

a huge im pact on the performance of digital filters. Depending on the problem, 

sometimes vertical subexpression elimination and sometimes horizontal subexpression 

elimination yields better performance [3], therefore with no knowledge of the problem 

it is be tter to  consider both  types and try  to  find the best combination.

There are different approaches for Common Subexpression Elimination in the 

literature [37], [35], [17]. In this thesis we have used a graphical m ethod for identifying 

all of the subexpressions and potential elimination paths which can optimally find 

both vertical and horizontal subexpressions for 2 non-zero digits [46]. It is a two 

step graphical transform ation which transforms the problem to  a simple traveling 

salesman problem [13]. The traveling salesman problem can easily be solved by any 

optimization m ethod such as Genetic Algorithm. Following are the design step for 

finding and eliminating the subexpressions with 2 non-zero digits.

3.3 .1  Id en tifica tion  G raph

The design procedure starts by creating the identification (ID) graph. This graph 

contains the information of all horizontal and vertical subexpressions in the coeffi­

cients.

Gid — (kid; Eid) (3.9)
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For creating the ID graph, first the coefficients are stacked vertically to  facilitate 

the identification of horizontal and vertical subexpressions. Next the graph of vertices 

is created according to:

Vid =  {non-zero digits in all coefficients) (3.10)

Then the partial identification graph G\d — (Vid, E'id) is created by adding E'ld 

which is all of the possible vertical and horizontal subexpressions and defined as 

E'id = E h + E v.

E h =  (Va, Vb) V Va, Vb {within the same coefficient) (3-11)

and

E v — (14, Vh) V Va, Vb {within the same vertical b it location) (3-12)

Thus, E b and E v are the edges for fully connected sub-graphs in both  horizontal 

and vertical dimensions.

For finding the subexpression th a t are good candidates for elimination, first we 

should find the properties of all edges. The properties of edges are type (horizontal 

and vertical), polarity and length. Polarity shows if two non-zero digits have the same 

sign or opposite sign. For example, in 1001 and 1001 the m ultiplication of two non­

zero digits ((1,1) and (1,1)) yields to positive polarity but in 1001 the multiplication 

of non-zero digits yields to  negative polarity. For horizontal edges length is defined 

as the number of digits between two non-zeroes and for vertical edges is the distance 

between the coefficient.

The next step after finding all of the possible edges is to  find the  edges w ithout 

common properties (Unique Edges) and remove them  from the edge list to create the 

final ID graph. The final edges are
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Eid — E'id — E'unique (3.13)

W here E unique= { edges w ith unique properties }. Following is an example for the 

design procedure.

Assume th a t a filter has the CSD coefficients

c0 =  10100101, ci =  10100101 (3.14)

As it was mentioned, the first step is to stack coefficients vertically. Table 3.1 is 

the stacked coefficients.

Table 3.1: Coefficient Stacking

Co 1 0 1 0 0 1 0 1

Cl 1 0 1 0 0 1 0 1

The next step is to  create the graph of vertices. Vid =  {Vi...Vg} represents the all 

non-zero digits of the  coefficients. Fig. 3.1 shows the graph of vertices and table 3.2 

is the vertices and their properties.

Figure 3.1: Graph of Vertices.

To create the partial ID graph G'id, which represents all of the vertical and hori­

zontal subexpressions, edges are added to  the graph of vertices.
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Table 3.2: Coefficient Stacking

Vertex Digit Polarity Coefficients Digit Position

lb +1 0 8

v2 +1 0 6

^3 -1 0 3

V4 +1 0 1

V5 +1 1 8

V6 +1 1 6

V7 +1 1 3

V8 +1 1 1

h .6 .+
h ,4

,h ,1 ,+

V,1j+]

,h ,2 ,

h ,6 ,+

Figure 3.2: Partial Identification Graph G'id.

Table 3.3 shows all the possible edges and their properties. To complete the  design 

and make the completed ID graph G ^, the edges th a t do not share the  common 

properties should be taken out from the partial ID graph. Fig. 3.3 shows the Gici 

which only includes common vertical and horizontal subexpressions.
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Table 3.3: Edge List E'id for 2 non-zero digits {a =  1, 2 , 8 ,  b =  1, 2 , 8 }

Edge (Va, Vb) Type Polarity Length Vertical

1 (1,2) h + 1 —

2 (1,3) h - 4 —

3 (1,4) h + 6 —

4 (2,3) h - 2 —

5 (2,4) h + 4 —

6 (3,4) h - 1 —

7 (1,5) V +  . . 1 (c0,c  i)

8 (2,6) V + 1 (c0, Cl)

9 (3,7) V - 1 (c0,Ci)

10 (4,8) V + 1 (co,Ci)

13 (5,6) h + 1 —

14 (5,7) h + 4 —

15 (5,8) h + 6 —

16 (6,7) h + 2 —

17 (6,8) h + 4 —

18 (7,8) h + 1 —
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h .4 .+

h ,6 ,+

Figure 3.3: Competed Identification Graph 6',,/.
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3.4 C om m on vertical subexpression  for 3 non-zero  

digits

In the previous sections, finding and eliminating common subexpressions for 2 non­

zero digits in both vertical and horizontal positions were presented. In this section, 

we propose common subexpression elimination for 3 non-zero digits in vertical posi­

tion. Since in digital filter application w ith CSD number system there are at most 

3 to 6 non-zero digits in each coefficient, we are not looking for 3 non-zero digits 

subexpressions in horizontal position.

For 3 non-zero digits vertical common subexpression elimination, 2 length proper­

ties and 2 polarity properties for each edge is added to  the edge list. Finding common 

subexpression for both  2 and 3 non-zero digits is described with an example as follow.

Assume th a t a filter has the CSD coefficients Co =  10100101, C\ =  10100101 and 

c2 =  10000001. The first step is to  stack the coefficients vertically (Table 3.4). Then 

the graph of vertices (Fig. 3.4) is created which represents all of the non-zero digits 

in the coefficients. Table 3.5 presents the vertices and their properties.

Table 3.4: Coefficient Stacking

Co 1 0 1 0 0 1 0 1

Cl 1 0 1 0 0 1 0 1

C2 1 0 0 0 1 0 0 1

To create the partial ID graph, E'id which represents all of the vertical and horizon­

tal subexpressions edges, is added to  the graph of vertices. Table 3.6 shows the edges 

and their properties for 2 non-zero digit subexpressions and Table 3.7 presents for 3 

non-zero digit vertical subexpressions. Fig. 3.5 is the partial ID graph and dotted 

lines represent the 3 non-zero digits vertical subexpressions.
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Figure 3.4: Graph of Vertices. 

Table 3.5: Vertices and their properties

Vertex Digit Polarity Coefficients Digit Position

Vi +1 0 8

v2 +1 0 6

V3 -1 0 3

V4 +1 0 1

V5 +1 1 8

V6 +1 1 6

V7 +1 1 3

V8 +1 1 1

v9 +1 2 1

v 10 +1 2 4

Vn +1 2 8
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h .6 .+
h ,4 ,-

h  ,2,-/

kh,2,

h .4 .+
lv ,1 ,+

V , 1 j th ,6 ,+

h ,2 ,+

h ,6 ,+

Figure 3.5: Partial Identification Graph G'id.
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Table 3.6: Edge List E'id for 2 non-zero digits

Edge 0 4 ,  H ) Type Polarity Length Vertical

1 (1.2) h + 1 —

2 (1,3) h - 4 —

3 (1.4) h + 6 —

4 (2,3) h - 2 —

5 (2,4) h + 4 —

6 (3,4) h - 1 —

7 (1,5) V + 1 (c0, Cl )

8 (1,9) V + 2 ( c 0 , C2 )

9 (2,6) V + 1 (Co, C l )

10 (3,7) V - 1 (c0, C l )

11 (4,8) V + 1 (c0,c i)

12 (4,11) V + 2 (c0, C2 )

13 (5,6) h + 1 —

14 (5,7) h + 4 —

15 (5,8) h + 6 —

16 (6,7) h + 2 —

17 (6,8) h + 4 —

18 (7,8) h + 1 —

19 (5,9) V + 0 (ci,c2)

20 (8,11) V + 1 (c i,c2)

21 (9,10) h + 3 —

22 (9,11) h + 6 —

23 (10,11) h + 2 —
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Table 3.7: Edge List E[d for 3 vertical non-zero digits

Edge (Va, v b, v c) Type P o ll Pol.2 Len.i Len.2

1 (1,5,9) V + + 1 1

2 (4,8,11) V + + 1 1

To complete the design and make the completed ID graph the edges th a t 

do not share the common properties should be taken out from the partial ID graph. 

Fig. 3.6 shows the Gid which only includes common vertical and horizontal subex­

pressions.

h ,2 ,y

h .4 .+
|v,1,+

h ,6 ,+

h ,2 ,+

h ,6 ,+

Figure 3.6: Competed Identification G raph Gid-

3.4.1 Search G raph

Now th a t we have the ID graph completed, we can create the  search graph. Each 

edge of the ID graph is a vertex of the search graph Gs =  (14, E s).

Since each vertex in the search graph is a subexpression, a hamiltonian Walk

5 4
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*4,8,11

V ,+,+,0,0 h,+,1

2 3

V1,3

h,-,4
v 1,5,9

V ,+ ,+ ,0 ,0

h,+,6

* 5 ,8

h,+,6

Figure 3.7: Search Graph Gs.

through the vertices can lead to  one elimination scheme. Now with a search and op­

tim ization algorithm, the best possible walk with the highest number of eliminations 

can be found.

This problem is quite similar to  the Traveling Salesman Problem (TSP) where the 

vertices are the cities and the edges are the distance between the cities. The objective 

function is now to  find the hamiltonian walk which leads to  the smallest sum of edge 

distances. The difference here is th a t in the subexpression elimination problem the 

elimination can be done only if two subexpressions with common properties traversed 

and th a t may not be happened all the time.

In the ham iltonian walk an elimination can happen only if the non-zero digits 

of the edges have not been included in previous eliminations, therefore there is a 

possibility of finding some paths with common properties but w ith unavailable edges 

which will not lead to  elimination.

Fig. 3.7 illustrates the search graph Gs.
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3.4 .2  E xam p le W alk T hrough  th e  Search G raph

As an example, a sample Hamiltonian Walk can be S4 , S3, S \5, S 2 3 , S 2. In this 

example walking from S 4 to S 3 will not lead to  elimination because they don’t  possess 

same properties and are not common subexpression. The next path  is S :i to  S i5. S3  

has the properties of (h, + , 6 ) and S 1 5  has the properties of (h, + , 6 ), so they are a 

good candidate for elimination.

As we discussed earlier, to  eliminate the candidate subexpressions, availability 

check should be performed. In this elimination V\ and V4 from .S’:i and V5  and Vg 

from S 1 5  are required. Since the (A3 , S 1 5 ) elimination is the first elimination, all of 

the vertices are available. We can create a table (Availability Table) and mark the 

unavailable vertices after every elimination. By using this table' available vertices for 

the next elimination can be found easily.

Table 3.8 illustrates the availability table for the ID graph. According to  this 

table after elimination of S 3 and S \ 5 . other possible eliminations such as (S 7 . S9) can 

not occur.

3.5 E lim ination  using G A

Finding an optimal Hamiltonian Walk th a t leads to the maximum number of elimi­

nations can be done by any search and optimization technique. One possible method 

is Genetic Algorithm (GA). In this problem, chromosomes are the possible walks 

through the search graph.

For the fitness function, we should count the number of eliminat ions in each Hamil­

tonian Walk. At the start of the GA, all of the vertices in the availability table are 

marked as available. This shows th a t all of the non-zero digits are available. Travers­

ing the search graph Gs by Hamiltonian Walk which is defined by the chromosome will 

lead to  the first elimination. After each elimination the availability table is modified
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Table 3.8: ID Graph Vertex Availability Table after (S z ,S  1 5 ) Elimination

1 4 unavailable

r2 Available

R3 Available

unavailable

r5 unavailable

Re Available

r7 Available

r8 unavailable

r9 Available

Rio Available

R11 Available

and those vertices which were included in the elimination are marked as unavailable. 

For each elimination the occurrence count will be incremented.

The fitness value is then  determ ined by summing the n  occurrence count (OC) 

values as shown below:

n

f i tn e s s  =  OCi — 1, if OCi > 1 else 0) (3.15)
i ~  1

After th a t the GA is complete, we will find the fittest chromosome, which shows 

the maximum number of eliminations th a t can be achieved.

3.6 E xperim ental R esu lts

This m ethod is applied to  FIR  filters with the order of 19, 21 and 23 w ith maximum 

number of 3, 4 and 5 allowable non-zero digits in each coefficient. Our simulations 

show th a t for 2 non-zero digit subexpression, we will gain approximately 25% reduc-
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tion in number of additions and by adding 3 non-zero digits in vertical subexpressions, 

we will obtain 32% of reduction.

Filter

Order

Non-zero

Digits

Original

Addition

No. of CSE 

( 2  non-zero)

No. of CSE 

(3 non-zero)

CSE percent 

( 2  non-zero)

CSE percent 

(3 non-zero)

19 3 50 13 17 26.00% 34.00%

19 4 56 13 19 23.21% 33.93%

19 5 56 16 19 28.57% 33.93%

2 1 3 51 13 19 25.49% 37.25%

2 1 4 67 18 2 2 26.87% 32.84%

2 1 5 76 19 26 25.00% 34.21%

23 3 49 1 1 13 22.45% 26.53%

23 4 63 17 18 26.98% 28.57%

23 5 74 2 1 23 28.38% 31.08%

3.7 C onclusion

In this chapter a graphical m ethod for common subexpression elimination was pre­

sented. The original method was for 2 non-zero bits in vertical and horizontal position. 

We expanded this method for 3 non-zero digits in vertical position which led to  more 

efficient multiplication. Simulation results for 3 non-zero digits show a com putational 

saving of up to  31% which is 6 % more than  th a t of a 2 non-zero digits elimination.
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Chapter 4

Formulation of Digital Filter 

Design using Evolutionary 

Computing

4.1 In troduction

In this chapter we utilize two evolutionary computing techniques namely Genetic Al­

gorithm and Immune Programming as optim ization methods to design Digital Filters. 

We start by presenting different techniques for the design of digital filters using GA, 

then we perform a thorough performance analysis of Genetic Algorithm. Further­

more, design of digital filters using Immune Programming is illustrated and at the 

end a new algorithm for the design of digital filters using GA is presented.
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4.2 D esign  o f d igital filters using G A

In this section design of FIR  and IIR digital filters and also FIR and HR QMF banks 

w ith CSD coefficients is presented. Linear phase characteristics in the pass band for 

IIR  filters is also considered. This section starts by the general design flow for digital 

filters followed by two different techniques for CSD coding schemes and comparison 

between them. At the end several performance analysis on GA is conducted.

4.2 .1  G eneral D esig n  F low

Fig. 4.1 shows the proposed GA-based design flow for digital filters. This design 

methodology is for FIR and IIR  digital filters and also FIR  and IIR Q uadrature 

Mirror Filter banks. For the case of QMF banks, as we are interested in linear tim e 

invariant filters with no aliasing effect, the design will be restricted to design of one

of the synthesis or analysis filters as a FIR  or IIR filter (Equation 1.7). Therefore by

designing a simple FIR or IIR filter we can have the QMF bank designed.

4.2.1.1 Initialization

The design starts by generating random numbers in CSD format as the coefficients of 

the  digital filter for initial population. Each chromosome is constructed by concate­

nating all the coefficients in the transfer function, thus for an N th order IIR  or FIR  

filter, chromosome is presented as:

IIR . (a 0 i Oi, ci2 i 0"ni bo-i bh •••) bn)

FIR : (a0 , a i , a 2, ...,a n) (4.1)
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S ta rt

Initialization

F itn e ss  E v a lu a tio n

C ro sso v e r

M utation

C S D  R e sto ra tio nC S D  C hecki

F itn e ss  E valu a tio n

Elitist O pera tio n

Yes

S ta rt

Figure 4.1: GA Design Flow.

4.2.1.2 F itness evaluation

In this step, the desired filter specification is defined, depending on the type of the 

filter, different fitness functions are considered. For the FIR filters only the error of 

the magnitude response is considered which is:
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Emag (jw m) =  |# i(exp (ju ;mT ))| -  \HD(exp(jwmT))\ (4.2)

E f IR =  ^  E m agUWm)  (4.3)
m G lp s

f i tn e s s  =  —-— (4.4)
E f i r

For IIR  filters if linear phase characteristics in the pass-band is desired, the group

delay should be taken into account too. E T(jw m) is the group delay error and usually

Ti is the  filter order [40].

E m a g ( j W m )  = \Hi(exp(jwmT))\ -  \HD(exp(jwmT ))I (4.5)

E T ( j W m )  =  Ti T  -  TD(jw mT)  (4.6)

E i ir  = a  E^gijWrrfj +  ( 1  -  a) E*{jwml) (4.7)
melps melp

f i tn e s s  =  —-— (4.8)
E i ir

In Equation 4.7 and 4.3, Ips is set of frequency points along w axis in the pass- 

band and stop-band and Ip is set of frequency points in the pass-band only, a  is the 

weighting factor to  emphasize the magnitude or group delay characteristics.

For the  IIR filters, stability check is performed and a penalty factor is introduced 

for unstable filters [46]. By incorporating this penalty factor to  the fitness function, 

unstable filters have much less chance to  be chosen as the optimal answer.

f i tn e s s  =  f ltn6SS (4.9)
penalty

The optimum penalty factor was determined empirically through a series of test 

designs over 100 filters and 300 generations for each design[46]. For any unstable filter 

occurring in any generation, its fitness penalized by the penalty factor, and w ith the 

penalty factor 9 no unstable filter were produced.
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4.2.1.3 R eproduction

Roulette Wheel Selection is used as the reproduction operator. The idea behind this 

technique is th a t each individual chromosome is given a chance to  become a parent 

proportional to its fitness.

4.2.1.4 Crossover

Crossover is the first step for exploring the search area and creating the new popula­

tion. 1-point, 2-point and uniform are the most popular technique's for cross-over. A 

comparison among different crossover techniques is given in section 1 .2 .4.2 .

4.2.1.5 M utation

Normally, m utation occurs with low probability and functions as a background oper­

ator. As an example, on each chromosome of population, w ith a low probability, each 

digit of the CSD number is changed w ith a new one. For example, if our chromosome 

is 1 0 0 1 0 1 0 0 1 0 0 1  and 1  is the candidate for m utation, according to the probability of 

mutation, it is changed with 0  or I.

4.2.1.6 CSD Check

Considering the nature of m utation and cross-over operations, they may violate the 

CSD format of the coefficients (Fig. 2.7and 2.8), as a result, CSD restoration should be 

performed in each loop. Two different coding techniques for overcoming this problem 

is presented in section 4.2.2.

4.2.1.7 R eplacem ent Strategy

Elitist strategy is applied for the replacement of old generation. After the fitness 

evaluation, if the maximum fitness of old population is less or equal to the maximum 

fitness of new population, it is replaced by the new population.

6 3
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4.2 .2  D ifferen t C od ing  T echniques

Having introduced the general design flow for the design of digital filters and modifica­

tions for the different kinds of filters, now we present two different coding techniques 

for solving the effect of crossover and m utation on CSD numbers.

4.2.2.1 Technique 1 (Ternary Coding)

This technique [28] starts  by initialization which is creating the chromosomes for 

the first population w ith random CSD numbers. These chromosomes are fed into 

the genetic algorithm. GA selects the higher fitness chromosomes by reproduction 

operation and then  performs crossover and m utation to create the new population. 

As mentioned before, because of the nature of crossover and m utation operations, the 

CSD format of the chromosomes may be violated. Violated chromosome may have 

two adjacent non-zero digits or more non-zero digits than  the specified limit.

By using th is technique if any violated coefficient from the CSD format is found, 

first the coefficient will be converted to  its decimal number and then the decimal 

number will be converted to its nearest CSD number. After the restoration part, the 

fitness of the  new generation is calculated and the replacement is performed.

As an example dec is the decimal representation of the violated coefficient. We 

want to convert it to  a M  =  16 bit CSD number w ith the maximum of L — 4 non­

zero digits, represented by {d0 ,d i ,d 2, ■■■■ di5}. Following is the pseudo-code for this 

restoration technique.

Pseudo C ode of the Restoration Technique

void DecimalToCSD () {

if (dec is out of range AND dec > 0) (do — d2 = = d6  =  1, conversion completed}

elseif (dec is out-of-range AND dec < 0)
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{do =  d2 =  di = d,Q = — 1, conversion completed}

/* start from d0 until d15. find whether a -1, 0 or 1 should be pu t on d * /  

else {

for (let variable % changes from 0 to 15, the step is 1) { 

if (counter > 4) the conversion is completed 

elseif (dec — decd0-di =  0) { dj =  1, conversion completed } 

elseif (dec +  decdo_di =  0) { d, =  — 1, conversion completed } 

elseif (| dec -  decdo_di |<  max dec(di+2_dl5)){dj =  l ,d m  =  0, counter+1} 

elseif (| dec +  decdo- di |<  max dec(di+2_dl5)){dj =  - l , d i+1 =  0, counter+1} 

else{di =  0}

}
}
}

4.2.2.2 Technique 2 (N ew  Coding Scheme)

In this technique [46], CSD numbers are presented through a new coding scheme. This 

scheme generates a string of symbols to  indicate the position and sign of non-zero 

digits in a CSD format.

Table 4.1 shows the proposed coding representation for a 6-bit CSD number. 

Suppose a CSD coefficient is represented by the three digit partia l chromosome 19B. 

Three digits shows th a t the number has 3 non-zero digits. Prom Table 4.1 the 1 would 

signify a +1 in position 2, the 9 would signify a -1 in position 4, and the B would 

signify a -1 in position 6. Therefore the CSD coefficient in question would be 27.

Under this coding scheme, CSD coefficients with two identical symbols, simply 

have two non-zeros occupying the same position, so the second non-zero is just ignored 

since a non-zero already exists at th a t location. The canonical adjacency constraint 

is also addressed using the same conflict resolution method. If a partial chromosome
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digit indicates th a t a non-zero digit should be positioned adjacent to  another one, 

the second one is simply ignored.

Table 4.1: Conversion Table For CSD Lengt 1  =  6

Symbol 0 1 2 3 4 5 6 7 8 9 A B

Digit Sign + + + + + +

Digit Position 1 2 3 4 5 6 1 2 3 4 5 6

4.2 .3  E x p er im en ta l R esu lts  and th e  C om parison  o f  th e  T w o  

C od in g  S ch em e

In this section, examples for the design of digital filters using Genetic Algorithm are 

given. Through these examples different FIR and IIR filters with different coding 

schemes and phase characteristics are designed. Furthermore, comparison of the two 

coding schemes for the  CSD number system is presented. In following examples 

ws = 2 ir.

4.2.3.1 FIR  filters w ith  ternary CSD coding

In this example, a 19th order, low-pass FIR filter with turnery CSD coefficients and 

following specification is designed.

. 1, 0 <  w < 1.0
\H{e3 )\ =   ̂ -  “  (4.10)

0, 2.0 <  w < ws / 2
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0.8

CDT5DCCJ)
CO
2

0.6

0.4

0.2

2.5 3.50.5
F re q u en c y  (ra d /se c )

Figure 4.2: 19th order, low-pass FIR  filter with 16 bit CSD coefficients and maximum 

4 non-zero digits (Ternary Coding)
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Table 4.2: CSD Coefficients of the 19th order low-pass FIR filter w ith ternary coding

Coefficients Binary Coefficients

ao 2-4 _  2-7 +  2- 10

Ct i 2-7 _  2 - 9  _  2- n  _  2-13

a 2 2 _8 +  2-io +  2 - 1 2  +  2 - 1 4

—2-5 -  2~7 +  2'~10 -  2-13

CI4 2-2 _  2 - 7  _  2- i i  +  2 ~ 14

a5 2-e +  2-s  +  2-i5

a6 2-4 +  2-6 -  2“ 12 -  2“ 14

a7 - 2 “7 -  2 ~ g -  2-11 -  2“ 13

a$ 2_6 +  2-9 _  2-i2 _  2- i4

ag 2-2 +  2 -6 -  2 ~ 8 -  2 ~ 15

OlO 2 ~ i  -  2~3 -  2 ~ g -  2 ~ n

a n 2-e _  2-8 +  2- i i  _  2 ~ 15

0-12 2 _8 _  2-io +  2- i 2  _  2-i5

^13 2-5 +  2-s  _  2-io

a i4 2-2 _  2-4 _  2-io _  2 - 1 4

Ol5 2-7 _  2-9 _  2 - 1 1  _  2-13

^16 2-3 +  2-6 +  2~9 — 2 ~ u

0 1 7 2-4 _  2-7 +  2 -11

aig —2~8 +  2~n  +  2-12 — 2-14

a 19 2 - 3  +  2-5 _  2  1 1  -  2~15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4. FORM ULATION OF DIGITAL FILTER DESIGN USING E V O L U TIO N A R Y C O M PU TIN G

4.2.3.2 IIR filters w ith ternary CSD coding

In this example, a 5th order, low-pass IIR  filter with ternary CSD coefficients and 

following specification is designed.

\H(ejwT)\ =
1, 0 < u? < 1.0 
0, 2.0 <  w <  ws / 2

(4.11)

<0

§. 0.8 - (/)

0.4

0.2

0.5 2 5 3.5
F re q u n e c y  (ra d /se c )

Figure 4.3: 5th order, low-pass IIR  filter with 16 bit CSD coefficients and maximum 

4 non-zero digits (Ternary Coding)
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Table 4.3: Binary Coefficients of the 5th order low-pass IIR filter with ternary coding

Coefficients CSD Coefficients

0-0
2 - s  +  2 - i 5

a i 2  3 -  2 ~ 6 +  2 “ 10 -  2 ~ 13

2 - 2  +  2 - 7  _  2 - i o  _  2 - 1 2

a3 2-2 +  2 - 4  +  2 - 6  +  2 - 1 5

0 4 2 - 2 +  2 - 5  +  2 ~ 7

0 5 2 - 3  +  2-e _  2 - i o  _  2 - n

bo 2 - o  _  2 ~ 7 -  2 ~g +  2 - 1 3

bi _ 2 - 3  +  2-e _ 2 - 9 + 2 ~ n

b2 2~4 +  2 “ 8 +  2 - 1 0  +  2 - 1 2

h 2 - i  _  2 ~ 3 -  2 - 7 +  2 - 9

b4
2 - 5  +  2 - 7  _  2 - io

b§ —2 - 3  +  2 ~ 5 -  2 ~ 7 -  2 “ 13

4.2.3.3 FIR  filters w ith  new CSD coding scheme

In this example, a 19th order, low-pass FIR  filter with the new coding scheme of CSD 

coefficients and following specification is designed.

. 1, 0 <  w  <  1.0 
\H(e3 )\ = { ~  ~  (4.12)

0, 2.0 <  w < w s / 2
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Q)
T33
CO)
to2

0.4

0.2

2.5 3.50.5
F re q u en c y  (ra d /se c )

Figure 4.4: 19th order, low-pass FIR filter with 16 bit CSD coefficients and maximum 

4 non-zero digits (new coding scheme)
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Table 4.4: Binary Coefficients of the 19th order low-pass FIR  filter with new coding 

scheme _______________________________________
Coefficients CSD Coefficients

do 2-9 _  2-12 +  2-15

a i 2-9 +  2~n  +  2“ 1 4

0,2
_ 2-7 _  2-9 _  2-13

^3 —2 ~ 6  +  2 - 8  +  2 - 1 0  +  2 ~ 1 2

CI4 2-e -  2 ~ 8  +  2 “ 1 0  +  2 “ 1 3

a 5 2 - 5  +  2-io +  2 - 1 3  +  2 “ 1 5

_ 2 - 6  -  2 - 8  -  2 - 1 0  -  2 - 1 2

<27 —2 ~ 3  +  2 - 5  +  2 ~ 7 + 2 ~ 9

ag 2-5 _  2-7 _  2 - 1 3  +  2- 1 5

a9 2 - 2  +  2 - 4  -  2 - 9 -  2 ~ 1 2

<Ro 2 _ !  _  2-5 +  2- 9 -  2 - 1 1

a n 2 - 2  +  2-4 _  2-9 _  2 - 1 2

^ 1 2
2-5 _  2-7 _  2 -i3 +  2 -i5

0-13 —2 - 3  +  2 ~ 5  +  2 ~ 7 +  2 - 9

a u —2 ~ 6  -  2 - 8  +  2 - 1 0  -  2 - 1 2

a 15 2 - 6  2 - n  4 . 2 - 1 3  +  2 “ 1 5

&16 2-e _  2-s  +  2 - i°  +  2 ~ 1 3

O1 7 —2 - 6  +  2 - 8  +  2 ~ 1 0  -  2 - 1 2

&18 - 2 ~ 7  +  2 - 9  -  2 “ 1 3

aig 2- i i  +  2 - 1 1  +  2 “ 1 4
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4.2.3.4 IIR  filters w ith new CSD coding scheme

In this example, a 5th order, low-pass IIR  filter with the new coding scheme of CSD 

coefficients and following specification is designed.

\H{ejwT)\ = <
1, 0 <  w <  1.0 

0 , 2.0 <  w < ws/ 2
(4.13)

CO)(02
0.4

0.2

0.5 2.5 3.5
F re q u e n c y  (ra d /se c )

Figure 4.5: 5th order, low-pass IIR filter with 16 bit CSD coefficients and maximum 

4 non-zero digits (new coding scheme)
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Table 4.5: Binary Coefficients of the 5th order low-pass IIR filter with the new coding 

scheme _______________________________________
Coefficients CSD Coefficients

ao 2 “ 4  +  2 - 6  +  2 ~ 8

di bO i to 1 to 1 + to 1 1 to 1 o

a 2
2- i  +  2-5 _  2-9

2- i  +  2-4 +  2-7

a4 2-7 +  2- 1 2  +  2 - 1 4

—2 ~ 2  +  2 ~ 5  +  2 ~ 1 3

b0 2-o _  2 - 2  _  2-5 +  2 - 8

bi 2-o _  2 - 7  _  2-9 _  2 ~ 1 3

bi —2 ” 3  -  2 ~ ~ 5  -  2 ~ 8  -  2 ~ 1 0

bz 2 “ ° +  (—2 ) ~ 5  -  2 ~ 8  -  2~10

&4 2 - 2  _  2 - i 2  +  2 -i5

b$ 2-5 _  2- t +  2- i i

4.2.3.5 FIR  filters w ith linear phase characteristic and new CSD coding  

scheme

In this example, a 19th order, low-pass FIR  filter w ith the new coding scheme of CSD 

coefficients and linear pass-band phase characteristics is designed, following is the 

specification.

. 1, 0 <  w <  1.0 
\H(eJwT) \ = { ~  ~  (4.14)

0, 2.0 <  w < ws/2

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4. FO RM U LATIO N  OF DIGITAL FILTER DESIGN USING E V O LU TIO N A R Y COM PUTING

0.8

1  0.6

0.4

0.2

0.5 3.52.5
F re q u en c y  (ra d /se c )

Figure 4.6: 19th order, low-pass FIR  filter with 16 bit CSD coefficients and maximum 

4 non-zero digits (Linear Phase and new coding scheme)
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-15

-20

-25
0.3 0.4 0.5

N o rm alized  F re q u e n c y  ( x j i  rad /sa m p le )
0.6 

rad /sa m p le )
0.70.2 0.8

Figure 4.7: Phase Characteristic of 19th order, low-pass FIR  filter with 16 bit CSD 

coefficients and maximum 4 non-zero digits (Linear Phase and new coding scheme)
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4.2.3.6 IIR  filters w ith  linear phase characteristic and new CSD coding  

schem e

In this example, a 5th order, low-pass IIR  filter with the new coding scheme of CSD 

coefficients and linear pass-band phase characteristics is designed, following is the 

specification.

\H(ejwT)\ =
1, 0 <  w <  1.0 

0, 2.0 <  w < ws/2
(4.15)

0.4

0.2

0.5 3.52.5

Figure 4.8: bth order, low-pass IIR filter with 16 bit CSD coefficients and maximum 

4 non-zero digits (Linear Phase and new coding scheme)
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-10

E -20

o . -30

-40

-50

-60
0.2 0 .3 0 .4  0 .5

N orm alized  F re q u en c y  ( x t t  rad /sa m p le )
0.6 

rad /sa m p le )
0 .7 0 .9

Figure 4.9: Phase Characteristic of 5th order, low-pass IIR  filter w ith 16 bit CSD 

coefficients and maximum 4 non-zero digits (Linear Phase and new coding scheme)
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4.2.3.7 Com parison o f Two Coding Schemes

The two coding schemes are used to  design IIR  and FIR QMF banks. For both coding 

schemes, the word-length of CSD number is 16.

We start this comparison w ith IIR  QMF bank with the order of 5 for H 0(z) . 

Fig. 4.10(a) shows the filter designed by scheme 1 (ternary coding) and Fig. 4.10(b) 

shows the filter designed by scheme 2 (new coding scheme), both have the limit 

of 4 non-zero digits. The experiment is repeated for N  = 3,4, 5 maximum non-zero 

digits and comparison is done w ith respect to  time and mean square error. Simulation 

results are shown in Table 4.6. According to  this table, scheme 2 (new coding scheme) 

has much better performance th an  scheme 1 (ternary coding) for IIR QMF filters.

We continued this experiment for FIR  QMF banks. Similar to  the previous exam­

ple, experiments were conducted for different number of allowable non-zero digits in 

CSD format. Fig. 4.11(a) shows the filter designed by scheme 1 (ternary coding) and 

Fig. 4.11(b) shows the filter designed by scheme 2 (new coding scheme), both have 4 

non-zero digits.

The results are indicated in table 4.7. According to  table 4.7, for FIR  filters 

which usually have higher orders, scheme 2 (new coding scheme) has much better 

performance than  scheme 1 (ternary coding).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79



4. FORM ULATION OF DIGITAL FILTER D ESIGN USING E V O L U TIO N A R Y C O M PU TIN G

Table 4.6: Comparison for IIR  QMF Bank Order 5

N Technique 1 (ternary coding) Technique 2 (new coding scheme)

Error Time (sec) Error Time (sec)

3 9.89E-04 121 7.93E-04 117

4 7.20E-04 117 6.66E-04 120

5 2.53E-04 117 1.74E-04 110

Table 4.7: Comparison for FIR  QMF Bank Order 19

N Technique 1 (ternary coding) Technique 2 (new coding scheme)

Error Time (sec) Error Time (sec)

3 7.34E-04 550 1.64E-04 459

4 6.10E-04 564 1.42E-04 447

5 3.00E-04 580 1.06E-04 451
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3  0.6

0.4

0.2

0.5 1.5 2
F re q u e n c y  ( ra d /se c )

2.5 3.5

(a) IIR QMF bank designed with ternary coding

*  0.6

0.4

0.2

2.50.5 3.5
F re q u e n c y  ( ra d /se c )

(b) IIR QMF bank designed with new coding scheme 

Figure 4.10: Comparison of two techniques for IIR filters
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1.2 -

0 .4

0.2

0 .5 2 .5 3 .5
F re q u en c y  ( ra d /se c )

(a) FIR QMF bank designed with ternary coding

©
2  0.6 
cO)(05

0.4

0.2

2 .5 3 .50 .5
F re q u en c y  (ra d /se c )

(b) FIR QMF bank designed with new coding scheme 

Figure 4.11: Comparison of two techniques for FIR  filters
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4 .2 .4  P erform an ce A n alysis o f  G A

In the previous section, design of following filters were reviewed.

•  FIR  filters with ternary CSD coding

•  IIR filters with ternary CSD coding

•  FIR  filters with new CSD coding

•  IIR  filters with new CSD coding

•  FIR filters with linear phase characteristic and new CSD coding

•  IIR  filters with linear phase characteristic and new CSD coding

In this section we perform various performance analysis on GA. First the effect 

of population size and the number of generations on Mean Square Error (MSE) are 

analyzed. Next, design of digital filters w ith different crossover techniques is compared 

and at the end, the effect of Pc and Pm on MSE is examined.

4.2.4.1 Effect o f population size and num ber of generations on M SE

The effect of population size and number of generations on Mean Square Error (MSE) 

is an im portant issue in Genetic Algorithm which was overlooked in literature. In 

this section, two performance analyses of GA on dependence of population size and 

number of generations to  Mean Square Error are presented. In the  first one, a mini­

mum value for error is set, and then the number of generations needed to  reach the 

specified error for different sizes of population is measured. As it can be seen from the 

Fig. 4.12(a), with larger population, less number of generations is needed to  reach the 

desired error. In the second analysis, for defined number of generations and different 

population size, the MSE is measured. Fig. 4.12(b) shows tha t, as the population 

size increases, the Mean Square Error decreases.

8 3
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x 1C4
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G eneration  = 500

2 .4

ID
CO2

100 150 200 25 0 30 0 35 0 45 0 50040 0
P o p u la tio n  S iz e

(a) No. of Generation vs. Population size for fixed value of error (1111 filter 

order =  5)

G en e ra tio n  -  50 0

2 .4

2.2

LD
CO2

100 150 200 300 35 0 4 5 0 50 025 0 4 0 0
P op u la tio n  S ize

(b) Mean Square Error vs. Population size for fixed number of Generation 

(HR filter order =  5)

Figure 4.12: Effect of population size and number of generations on MSE
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4.2.4.2 Perform ance of GA on different crossover techniques

To study the performance of GA with respect to  different crossover techniques, digital 

filters with different orders are designed with these three techniques. Experiments 

are done on 16-bit 3rd, 5th and 7th order linear phase HR digital filter with maximum 

4 non-zero digits. For considering the random nature of Genetic Algorithm, for each 

order, 10 filters were designed and the mean error was calculated. As it can be seen 

from the Table 4.8, 2-point cross-over generally yields better result.

Table 4.8: MSE for 3rd, 5th and 7th order IIR  filter with different cross-over techniques

Cross-over

Techniques

Error
3  rd or(jer 5th order 5th order

1-point 1.03E-03 8.21E-04 6.26E-04

2-point 6.95E-04 4.33E-04 3.32E-04

multi-point 1.01E-03 5.76E-04 5.44E-04

4.2.4.3 Effect o f Pc and Pm on M SE

Setting proper values for Probability of Crossover (Pc) and Probability of M utation 

(Pm) can critically improve the performance of Genetic Algorithm. In this section, 

two performance analysis of GA on dependence of Probability of Crossover (Pc) and 

Probability of M utation (Pm) to  Mean Square Error is done. In the first one, with 

the Pm =  0.05, Pc is swept from 65 percent to  100 percent and Mean Square Error 

is measured. To overcome the random nature of Genetic Algorithm, for each step 

ten 5th order linear phase IIR  digital filter are designed and the mean square error 

is measured. According to  our results, setting the Pc around 95 percent yields to 

smaller Mean Square Error.

In the second experiment, Pc is fixed at 95 percent and Pm is swept from 0 to  10 

percent. In each step, a bth order linear phase IIR  digital filter is designed 10 times
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and the MSE is measured. Our experiments show tha t, having Pm 

percent yields to  better results.

2.2

2

1.8

1.6

g

m 1 4o> 1 n
3CTWc 1.2<oo2

1

0.8

0.6

0 .4 1—  
0.65 0.7 0.75 0.8

Probability of Cross-over (Pc)
0.85 0.95 10.9

Figure 4.13: Mean Square Error vs. Pc
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Figure 4.14: Mean Square Error vs. Pm

between 4 to  6
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4.3 D esign  o f D ig ita l F ilter w ith  IP

After studying the Immune Programming and its algorithm for solving different prob­

lems, we tried  to  apply IP for the design of digital filters. Fig. 4.15 is the proposed 

design flow for designing digital filters which is based on IP algorithm. During the 

experiments the param eters of IP, Pr, Pc, Pm were changed and different types of fil­

ters were examined. As it can be seen from Fig. 4.16, a 5th order IIR  with 16 bit 

coefficient and 4 non-zero digits is designed. For the population size of 300 and 500 

generations, the results are not comparable to  GA.

S ta rt

Initialization

E v a lu a te \T e rm in a t io n  C riteria 
f itn e ss  A

E nd

NoNo C lo n e  o r  
M u ta te ? ,

R e p la c e ?

Y esY es

C lo n e ? No

Y e s

f  M utate 
v  P m  & fitness

R e p la c e C lo n e

Y es

Figure 4.15: IP  Design Flow.
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Figure 4.16: 5th order IIR Filter Designed using IP.

We also examined the Immune Programming for finding and eliminating common 

subexpressions. Fig. 4.17 shows the number of eliminations found by IP for a 19th 

order FIR  filter with 16-bit CSD coefficient and 4 non-zero digits. As it can be 

seen from the figure, for the  repertoire size of 300 and 200 generations, there is no 

improvement in the num ber of eliminations.
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Figure 4.17: Common Subexpression Elimination for a 19th order FIR  filter using IP.
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4.4 N ew  A lgorithm  for D igita l F ilter D esign

In this section the proposed algorithm  for the design of digital filters w ith Canonical 

Signed Digit (CSD) coefficients and Common Subexpression Elimination (CSE) is 

presented. In this m ethod CSE is added to  the fitness function, therefore while 

searching for the coefficients w ith the best magnitude and phase characteristics, the 

number of Common Subexpression Eliminations is also considered.

Fig. 4.18 shows the proposed fitness function. In this algorithm, chromosomes are 

first examined for the desired m agnitude and phase characteristics. For FIR  filters 

there is no need for stability check bu t for IIR  filters, stability check is performed. 

Next the coefficients undergo Common Subexpression Elimination. The number of re­

duction in addition for each coefficient is considered as a factor in the fitness function. 

Equation 4.16 illustrated the proposed error function, a, 6  and S are the weighting 

factors to  emphasize the m agnitude characteristics, phase characteristics or common 

subexpression elimination.

E  =  a ^ 2  E m a g U W m ) +  P  E r U W m l )  +  8{C SE) (4.16)
m&Ips melp

f i tn e s s  = -j- (4-17)

The new fitness function is utilized for the design of digital filters. In the new 

design methodology, there are two Genetic Algorithm loops inside each other. The 

first algorithm tries to  find the optim al coefficients for the specified characteristics 

and the second Genetic Algorithm finds the maximum number of addition elimination 

in the coefficients. W ith the new design methodology, in the same time, candidate 

coefficients are examined for bo th  filter characteristics and CSE reduction, thus more 

high throughput filters can be achieved.
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Figure 4.18: The Proposed Fitness Function.
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4.4 .1  E xam p le

Having introduced the new algorithm for the design of high throughput digital filters, 

now we design a 5th order low-pass IIR  filter (Equation 4.15) with canonical signed 

digit coefficients, linear pass-band phase characteristics and common subexpression 

elimination. In this example coefficients are 16 bit and each has a maximum of 4 non­

zero digits. Fig. 4.19(a) shows the m agnitude and phase response and Fig. 4.19(b) 

shows the group delay of the designed filter. Originally this filter had 37 additions but 

with CSE, the number of additions are decreased to  31 which shows 17% efficiency.

Table 4.9: CSD coefficients of 5th order IIR filter
Canonical Signed D igit Coefficients

ao 0 0 0 0 0 -1 0 X 0 0 0 -1 0 0 0 0

ai 1 0 0 0 0 -1 0 0 -1 0 0 0 0 0 0 0

a2 0 -1 0 0 0 1 0 0 0 -1 0 0 0 0 0 0

03 0 0 -1 0 0 -1 0 0 0 0 0 0 0 0 0 0

<24 0 0 -1 0 0 -1 0 0 0 0 0 0 0 0 0 0

05 0 0 0 0 0 -1 0 -1 0 0 0 0 0 0 -1 0

bo 0 0 0 0 0 0 0 1 0 0 0 1 0 -1 0 0

bi 0 0 0 0 0 1 0 0 -1 0 0 1 0 0 0 -1

62 0 0 0 0 0 1 0 0 0 1 0 -1 0 0 0 0

63 1 0 0 -1 0 0 0 -1 0 0 -1 0 0 0 0 0

64 0 0 0 -1 0 -1 0 0 1 0 0 -1 0 0 0 0

ba 0 0 0 1 0 0 1 0 0 0 0 0 0 0 -1 0

Coefficients w ith Subexpression Elimination

no 0 0 0 0 0 + v 0 1 0 0 0 -1 0 0 0 0

ai 1 0 0 0 0 + v 0 0 -1 0 0 0 0 0 0 0

0-2 0 -1 0 0 0 -3H 0 0 0 -3H 0 0 0 0 0 0

a 3 0 0 + v 0 0 + v 0 0 0 0 0 0 0 0 0 0

<24 0 0 + v 0 0 + v 0 0 0 0 0 0 0 0 0 0

as 0 0 0 0 0 -1 0 -1 0 0 0 0 0 0 -1 0

bo 0 0 0 0 0 0 0 1 0 0 0 + -V 0 -1 0 0

6i 0 0 0 0 0 -2H 0 0 -2H 0 0 + -V 0 0 0 -1

b2 0 0 0 0 0 1 0 0 0 1 0 + -V 0 0 0 0

1 0 0 + -V 0 0 0 -1 0 0 -1 0 0 0 0 0

b4 0 0 0 + -V 0 -2H 0 0 1 0 0 -2H 0 0 0 0

65 0 0 0 + -V 0 0 1 0 0 0 0 0 0 0 -1 0
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Figure 4.19: 5th order IIR  filter designed with the new algorithm
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4.5 C onclusion

In this chapter a new algorithm for the design of high throughput digital filters using 

genetic algorithm was proposed. The new algorithm  is a multi objectives optimiza­

tion technique which examines the m agnitude and phase characteristics and also the 

common subexpression elimination within the canonical signed digit coefficients in its 

fitness function.

In this chapter, we also presented a graphical m ethod for finding and eliminating 

2 non-zero digits common subexpressions in vertical and horizontal positions. We 

extended this algorithm to  3 non-zero digits in vertical position which led to 31% of 

reduction in the number of additions.
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Chapter 5

Conclusion

In this thesis, we have proposed a new m ethod for the design of high throughput 

digital filters using Genetic Algorithm.

The proposed design includes FIR and IIR digital filters and also FIR  and IIR 

Q uadrature Mirror Filter bank with canonical signed digit coefficients. Furthermore, 

a new study on performance of Genetic Algorithm with respect to population size, 

number of generations and fitness function was carried out. Simulation results indi­

cate th a t for a fixed error, increasing the population size, will reduce the number of 

generations required.

Also, it was shown that, for a fixed number of generations, by increasing the 

population size, Mean Square Error is decreased. We also compared two different 

coding techniques for design of digital filters with CSD coefficient. In technique one, 

chromosomes are CSD numbers and restoration technique is to  convert the violated 

chromosomes to  decimal format and again convert them back to  CSD format in the 

design process. While in the second technique, chromosomes are presented according
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to  a new format which just indicates the position and sign of non-zero digits. In this 

technique, non-zero digits which cause violation are simply ignored. According to 

our experiments for both  IIR and FIR  filters, technique 2 (new coding scheme) yields 

better performance.

The next study was in two parts. In the first part, we compared the effect of three 

different cross-over techniques on Genetic Algorithm. According to  our experiments, 

2-point cross-over yields to better result for digital filters. In part two, performance 

of Genetic Algorithm with respect to  Probability of Crossover (Pc) and Probability 

of M utation (Pm) was analyzed. Simulations show th a t for linear phase IIR  digital 

filters, having Pc of around 95 percent and Prn of 4 to  6 percent produces the best 

results.

We also utilized Immune Programming algorithm for the design of digital filters 

and common subexpression elimination. After trying different filter types with dif­

ferent variations for IP parameters, results obtained were not comparable to  Genetic 

Algorithm.

A new algorithm for Common Subexpression Elimination for reducing the number 

of addition in Multiple Constant M ultiplication for digital filters were developed for 3 

non-zero digits in vertical position. In th is approach, first common subexpressions in 

CSD coefficient of digital filters are found and then w ith Genetic Algorithm the most 

optimal combination is eliminated. Our simulation results show th a t by choosing 

different type of subexpressions (2 or 3 non-zero digit), a 25% to  32% of reduction in 

number of additions is obtainable.

Finally a new algorithm for the design of high throughput digital filters was pro­

posed. The fitness function of the new algorithm comprises M agnitude Characteris­

tics, Phase Characteristics, Stability check and Common Subexpression Elimination. 

Through the new fitness function, coefficients are not only examined for the desired 

filter characteristics but also for the maximum number of common subexpression
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elimination, as a result, more high throughput filters can be achieved.
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