426 research outputs found

    Optimization and improvements in spatial sound reproduction systems through perceptual considerations

    Full text link
    [ES] La reproducción de las propiedades espaciales del sonido es una cuestión cada vez más importante en muchas aplicaciones inmersivas emergentes. Ya sea en la reproducción de contenido audiovisual en entornos domésticos o en cines, en sistemas de videoconferencia inmersiva o en sistemas de realidad virtual o aumentada, el sonido espacial es crucial para una sensación de inmersión realista. La audición, más allá de la física del sonido, es un fenómeno perceptual influenciado por procesos cognitivos. El objetivo de esta tesis es contribuir con nuevos métodos y conocimiento a la optimización y simplificación de los sistemas de sonido espacial, desde un enfoque perceptual de la experiencia auditiva. Este trabajo trata en una primera parte algunos aspectos particulares relacionados con la reproducción espacial binaural del sonido, como son la escucha con auriculares y la personalización de la Función de Transferencia Relacionada con la Cabeza (Head Related Transfer Function - HRTF). Se ha realizado un estudio sobre la influencia de los auriculares en la percepción de la impresión espacial y la calidad, con especial atención a los efectos de la ecualización y la consiguiente distorsión no lineal. Con respecto a la individualización de la HRTF se presenta una implementación completa de un sistema de medida de HRTF y se introduce un nuevo método para la medida de HRTF en salas no anecoicas. Además, se han realizado dos experimentos diferentes y complementarios que han dado como resultado dos herramientas que pueden ser utilizadas en procesos de individualización de la HRTF, un modelo paramétrico del módulo de la HRTF y un ajuste por escalado de la Diferencia de Tiempo Interaural (Interaural Time Difference - ITD). En una segunda parte sobre reproducción con altavoces, se han evaluado distintas técnicas como la Síntesis de Campo de Ondas (Wave-Field Synthesis - WFS) o la panoramización por amplitud. Con experimentos perceptuales se han estudiado la capacidad de estos sistemas para producir sensación de distancia y la agudeza espacial con la que podemos percibir las fuentes sonoras si se dividen espectralmente y se reproducen en diferentes posiciones. Las aportaciones de esta investigación pretenden hacer más accesibles estas tecnologías al público en general, dada la demanda de experiencias y dispositivos audiovisuales que proporcionen mayor inmersión.[CA] La reproducció de les propietats espacials del so és una qüestió cada vegada més important en moltes aplicacions immersives emergents. Ja siga en la reproducció de contingut audiovisual en entorns domèstics o en cines, en sistemes de videoconferència immersius o en sistemes de realitat virtual o augmentada, el so espacial és crucial per a una sensació d'immersió realista. L'audició, més enllà de la física del so, és un fenomen perceptual influenciat per processos cognitius. L'objectiu d'aquesta tesi és contribuir a l'optimització i simplificació dels sistemes de so espacial amb nous mètodes i coneixement, des d'un criteri perceptual de l'experiència auditiva. Aquest treball tracta, en una primera part, alguns aspectes particulars relacionats amb la reproducció espacial binaural del so, com són l'audició amb auriculars i la personalització de la Funció de Transferència Relacionada amb el Cap (Head Related Transfer Function - HRTF). S'ha realitzat un estudi relacionat amb la influència dels auriculars en la percepció de la impressió espacial i la qualitat, dedicant especial atenció als efectes de l'equalització i la consegüent distorsió no lineal. Respecte a la individualització de la HRTF, es presenta una implementació completa d'un sistema de mesura de HRTF i s'inclou un nou mètode per a la mesura de HRTF en sales no anecoiques. A mès, s'han realitzat dos experiments diferents i complementaris que han donat com a resultat dues eines que poden ser utilitzades en processos d'individualització de la HRTF, un model paramètric del mòdul de la HRTF i un ajustament per escala de la Diferencià del Temps Interaural (Interaural Time Difference - ITD). En una segona part relacionada amb la reproducció amb altaveus, s'han avaluat distintes tècniques com la Síntesi de Camp d'Ones (Wave-Field Synthesis - WFS) o la panoramització per amplitud. Amb experiments perceptuals, s'ha estudiat la capacitat d'aquests sistemes per a produir una sensació de distància i l'agudesa espacial amb que podem percebre les fonts sonores, si es divideixen espectralment i es reprodueixen en diferents posicions. Les aportacions d'aquesta investigació volen fer més accessibles aquestes tecnologies al públic en general, degut a la demanda d'experiències i dispositius audiovisuals que proporcionen major immersió.[EN] The reproduction of the spatial properties of sound is an increasingly important concern in many emerging immersive applications. Whether it is the reproduction of audiovisual content in home environments or in cinemas, immersive video conferencing systems or virtual or augmented reality systems, spatial sound is crucial for a realistic sense of immersion. Hearing, beyond the physics of sound, is a perceptual phenomenon influenced by cognitive processes. The objective of this thesis is to contribute with new methods and knowledge to the optimization and simplification of spatial sound systems, from a perceptual approach to the hearing experience. This dissertation deals in a first part with some particular aspects related to the binaural spatial reproduction of sound, such as listening with headphones and the customization of the Head Related Transfer Function (HRTF). A study has been carried out on the influence of headphones on the perception of spatial impression and quality, with particular attention to the effects of equalization and subsequent non-linear distortion. With regard to the individualization of the HRTF a complete implementation of a HRTF measurement system is presented, and a new method for the measurement of HRTF in non-anechoic conditions is introduced. In addition, two different and complementary experiments have been carried out resulting in two tools that can be used in HRTF individualization processes, a parametric model of the HRTF magnitude and an Interaural Time Difference (ITD) scaling adjustment. In a second part concerning loudspeaker reproduction, different techniques such as Wave-Field Synthesis (WFS) or amplitude panning have been evaluated. With perceptual experiments it has been studied the capacity of these systems to produce a sensation of distance, and the spatial acuity with which we can perceive the sound sources if they are spectrally split and reproduced in different positions. The contributions of this research are intended to make these technologies more accessible to the general public, given the demand for audiovisual experiences and devices with increasing immersion.Gutiérrez Parera, P. (2020). Optimization and improvements in spatial sound reproduction systems through perceptual considerations [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/142696TESI

    Proceedings of the EAA Spatial Audio Signal Processing symposium: SASP 2019

    Get PDF
    International audienc

    Single- and multi-microphone speech dereverberation using spectral enhancement

    Get PDF
    In speech communication systems, such as voice-controlled systems, hands-free mobile telephones, and hearing aids, the received microphone signals are degraded by room reverberation, background noise, and other interferences. This signal degradation may lead to total unintelligibility of the speech and decreases the performance of automatic speech recognition systems. In the context of this work reverberation is the process of multi-path propagation of an acoustic sound from its source to one or more microphones. The received microphone signal generally consists of a direct sound, reflections that arrive shortly after the direct sound (commonly called early reverberation), and reflections that arrive after the early reverberation (commonly called late reverberation). Reverberant speech can be described as sounding distant with noticeable echo and colouration. These detrimental perceptual effects are primarily caused by late reverberation, and generally increase with increasing distance between the source and microphone. Conversely, early reverberations tend to improve the intelligibility of speech. In combination with the direct sound it is sometimes referred to as the early speech component. Reduction of the detrimental effects of reflections is evidently of considerable practical importance, and is the focus of this dissertation. More specifically the dissertation deals with dereverberation techniques, i.e., signal processing techniques to reduce the detrimental effects of reflections. In the dissertation, novel single- and multimicrophone speech dereverberation algorithms are developed that aim at the suppression of late reverberation, i.e., at estimation of the early speech component. This is done via so-called spectral enhancement techniques that require a specific measure of the late reverberant signal. This measure, called spectral variance, can be estimated directly from the received (possibly noisy) reverberant signal(s) using a statistical reverberation model and a limited amount of a priori knowledge about the acoustic channel(s) between the source and the microphone(s). In our work an existing single-channel statistical reverberation model serves as a starting point. The model is characterized by one parameter that depends on the acoustic characteristics of the environment. We show that the spectral variance estimator that is based on this model, can only be used when the source-microphone distance is larger than the so-called critical distance. This is, crudely speaking, the distance where the direct sound power is equal to the total reflective power. A generalization of the statistical reverberation model in which the direct sound is incorporated is developed. This model requires one additional parameter that is related to the ratio between the direct sound energy and the sound energy of all reflections. The generalized model is used to derive a novel spectral variance estimator. When the novel estimator is used for dereverberation rather than the existing estimator, and the source-microphone distance is smaller than the critical distance, the dereverberation performance is significantly increased. Single-microphone systems only exploit the temporal and spectral diversity of the received signal. Reverberation, of course, also induces spatial diversity. To additionally exploit this diversity, multiple microphones must be used, and their outputs must be combined by a suitable spatial processor such as the so-called delay and sum beamformer. It is not a priori evident whether spectral enhancement is best done before or after the spatial processor. For this reason we investigate both possibilities, as well as a merge of the spatial processor and the spectral enhancement technique. An advantage of the latter option is that the spectral variance estimator can be further improved. Our experiments show that the use of multiple microphones affords a significant improvement of the perceptual speech quality. The applicability of the theory developed in this dissertation is demonstrated using a hands-free communication system. Since hands-free systems are often used in a noisy and reverberant environment, the received microphone signal does not only contain the desired signal but also interferences such as room reverberation that is caused by the desired source, background noise, and a far-end echo signal that results from a sound that is produced by the loudspeaker. Usually an acoustic echo canceller is used to cancel the far-end echo. Additionally a post-processor is used to suppress background noise and residual echo, i.e., echo which could not be cancelled by the echo canceller. In this work a novel structure and post-processor for an acoustic echo canceller are developed. The post-processor suppresses late reverberation caused by the desired source, residual echo, and background noise. The late reverberation and late residual echo are estimated using the generalized statistical reverberation model. Experimental results convincingly demonstrate the benefits of the proposed system for suppressing late reverberation, residual echo and background noise. The proposed structure and post-processor have a low computational complexity, a highly modular structure, can be seamlessly integrated into existing hands-free communication systems, and affords a significant increase of the listening comfort and speech intelligibility

    Prediction of perceptual audio reproduction characteristics

    Get PDF

    High Frequency Reproduction in Binaural Ambisonic Rendering

    Get PDF
    Humans can localise sounds in all directions using three main auditory cues: the differences in time and level between signals arriving at the left and right eardrums (interaural time difference and interaural level difference, respectively), and the spectral characteristics of the signals due to reflections and diffractions off the body and ears. These auditory cues can be recorded for a position in space using the head-related transfer function (HRTF), and binaural synthesis at this position can then be achieved through convolution of a sound signal with the measured HRTF. However, reproducing soundfields with multiple sources, or at multiple locations, requires a highly dense set of HRTFs. Ambisonics is a spatial audio technology that decomposes a soundfield into a weighted set of directional functions, which can be utilised binaurally in order to spatialise audio at any direction using far fewer HRTFs. A limitation of low-order Ambisonic rendering is poor high frequency reproduction, which reduces the accuracy of the resulting binaural synthesis. This thesis presents novel HRTF pre-processing techniques, such that when using the augmented HRTFs in the binaural Ambisonic rendering stage, the high frequency reproduction is a closer approximation of direct HRTF rendering. These techniques include Ambisonic Diffuse-Field Equalisation, to improve spectral reproduction over all directions; Ambisonic Directional Bias Equalisation, to further improve spectral reproduction toward a specific direction; and Ambisonic Interaural Level Difference Optimisation, to improve lateralisation and interaural level difference reproduction. Evaluation of the presented techniques compares binaural Ambisonic rendering to direct HRTF rendering numerically, using perceptually motivated spectral difference calculations, auditory cue estimations and localisation prediction models, and perceptually, using listening tests assessing similarity and plausibility. Results conclude that the individual pre-processing techniques produce modest improvements to the high frequency reproduction of binaural Ambisonic rendering, and that using multiple pre-processing techniques can produce cumulative, and statistically significant, improvements

    Beiträge zu breitbandigen Freisprechsystemen und ihrer Evaluation

    Get PDF
    This work deals with the advancement of wideband hands-free systems (HFS’s) for mono- and stereophonic cases of application. Furthermore, innovative contributions to the corr. field of quality evaluation are made. The proposed HFS approaches are based on frequency-domain adaptive filtering for system identification, making use of Kalman theory and state-space modeling. Functional enhancement modules are developed in this work, which improve one or more of key quality aspects, aiming at not to harm others. In so doing, these modules can be combined in a flexible way, dependent on the needs at hand. The enhanced monophonic HFS is evaluated according to automotive ITU-T recommendations, to prove its customized efficacy. Furthermore, a novel methodology and techn. framework are introduced in this work to improve the prototyping and evaluation process of automotive HF and in-car-communication (ICC) systems. The monophonic HFS in several configurations hereby acts as device under test (DUT) and is thoroughly investigated, which will show the DUT’s satisfying performance, as well as the advantages of the proposed development process. As current methods for the evaluation of HFS’s in dynamic conditions oftentimes still lack flexibility, reproducibility, and accuracy, this work introduces “Car in a Box” (CiaB) as a novel, improved system for this demanding task. It is able to enhance the development process by performing high-resolution system identification of dynamic electro-acoustical systems. The extracted dyn. impulse response trajectories are then applicable to arbitrary input signals in a synthesis operation. A realistic dynamic automotive auralization of a car cabin interior is available for HFS evaluation. It is shown that this system improves evaluation flexibility at guaranteed reproducibility. In addition, the accuracy of evaluation methods can be increased by having access to exact, realistic imp. resp. trajectories acting as a so-called “ground truth” reference. If CiaB is included into an automotive evaluation setup, there is no need for an acoustical car interior prototype to be present at this stage of development. Hency, CiaB may ease the HFS development process. Dynamic acoustic replicas may be provided including an arbitrary number of acoustic car cabin interiors for multiple developers simultaneously. With CiaB, speech enh. system developers therefore have an evaluation environment at hand, which can adequately replace the real environment.Diese Arbeit beschäftigt sich mit der Weiterentwicklung breitbandiger Freisprechsysteme für mono-/stereophone Anwendungsfälle und liefert innovative Beiträge zu deren Qualitätsmessung. Die vorgestellten Verfahren basieren auf im Frequenzbereich adaptierenden Algorithmen zur Systemidentifikation gemäß Kalman-Theorie in einer Zustandsraumdarstellung. Es werden funktionale Erweiterungsmodule dahingehend entwickelt, dass mindestens eine Qualitätsanforderung verbessert wird, ohne andere eklatant zu verletzen. Diese nach Anforderung flexibel kombinierbaren algorithmischen Erweiterungen werden gemäß Empfehlungen der ITU-T (Rec. P.1110/P.1130) in vorwiegend automotiven Testszenarien getestet und somit deren zielgerichtete Wirksamkeit bestätigt. Es wird eine Methodensammlung und ein technisches System zur verbesserten Prototypentwicklung/Evaluation von automotiven Freisprech- und Innenraumkommunikationssystemen vorgestellt und beispielhaft mit dem monophonen Freisprechsystem in diversen Ausbaustufen zur Anwendung gebracht. Daraus entstehende Vorteile im Entwicklungs- und Testprozess von Sprachverbesserungssystem werden dargelegt und messtechnisch verifiziert. Bestehende Messverfahren zum Verhalten von Freisprechsystemen in zeitvarianten Umgebungen zeigten bisher oft nur ein unzureichendes Maß an Flexibilität, Reproduzierbarkeit und Genauigkeit. Daher wird hier das „Car in a Box“-Verfahren (CiaB) entwickelt und vorgestellt, mit dem zeitvariante elektro-akustische Systeme technisch identifiziert werden können. So gewonnene dynamische Impulsantworten können im Labor in einer Syntheseoperation auf beliebige Eingangsignale angewandt werden, um realistische Testsignale unter dyn. Bedingungen zu erzeugen. Bei diesem Vorgehen wird ein hohes Maß an Flexibilität bei garantierter Reproduzierbarkeit erlangt. Es wird gezeigt, dass die Genauigkeit von darauf basierenden Evaluationsverfahren zudem gesteigert werden kann, da mit dem Vorliegen von exakten, realen Impulsantworten zu jedem Zeitpunkt der Messung eine sogenannte „ground truth“ als Referenz zur Verfügung steht. Bei der Einbindung von CiaB in einen Messaufbau für automotive Freisprechsysteme ist es bedeutsam, dass zu diesem Zeitpunkt das eigentliche Fahrzeug nicht mehr benötigt wird. Es wird gezeigt, dass eine dyn. Fahrzeugakustikumgebung, wie sie im Entwicklungsprozess von automotiven Sprachverbesserungsalgorithmen benötigt wird, in beliebiger Anzahl vollständig und mind. gleichwertig durch CiaB ersetzt werden kann

    Communication of Digital Material Appearance Based on Human Perception

    Get PDF
    Im alltägliche Leben begegnen wir digitalen Materialien in einer Vielzahl von Situationen wie beispielsweise bei Computerspielen, Filmen, Reklamewänden in zB U-Bahn Stationen oder beim Online-Kauf von Kleidungen. Während einige dieser Materialien durch digitale Modelle repräsentiert werden, welche das Aussehen einer bestimmten Oberfläche in Abhängigkeit des Materials der Fläche sowie den Beleuchtungsbedingungen beschreiben, basieren andere digitale Darstellungen auf der simplen Verwendung von Fotos der realen Materialien, was zB bei Online-Shopping häufig verwendet wird. Die Verwendung von computer-generierten Materialien ist im Vergleich zu einzelnen Fotos besonders vorteilhaft, da diese realistische Erfahrungen im Rahmen von virtuellen Szenarien, kooperativem Produkt-Design, Marketing während der prototypischen Entwicklungsphase oder der Ausstellung von Möbeln oder Accesoires in spezifischen Umgebungen erlauben. Während mittels aktueller Digitalisierungsmethoden bereits eine beeindruckende Reproduktionsqualität erzielt wird, wird eine hochpräzise photorealistische digitale Reproduktion von Materialien für die große Vielfalt von Materialtypen nicht erreicht. Daher verwenden viele Materialkataloge immer noch Fotos oder sogar physikalische Materialproben um ihre Kollektionen zu repräsentieren. Ein wichtiger Grund für diese Lücke in der Genauigkeit des Aussehens von digitalen zu echten Materialien liegt darin, dass die Zusammenhänge zwischen physikalischen Materialeigenschaften und der vom Menschen wahrgenommenen visuellen Qualität noch weitgehend unbekannt sind. Die im Rahmen dieser Arbeit durchgeführten Untersuchungen adressieren diesen Aspekt. Zu diesem Zweck werden etablierte digitalie Materialmodellen bezüglich ihrer Eignung zur Kommunikation von physikalischen und sujektiven Materialeigenschaften untersucht, wobei Beobachtungen darauf hinweisen, dass ein Teil der fühlbaren/haptischen Informationen wie z.B. Materialstärke oder Härtegrad aufgrund der dem Modell anhaftenden geometrische Abstraktion verloren gehen. Folglich wird im Rahmen der Arbeit das Zusammenspiel der verschiedenen Sinneswahrnehmungen (mit Fokus auf die visuellen und akustischen Modalitäten) untersucht um festzustellen, welche Informationen während des Digitalisierungsprozesses verloren gehen. Es zeigt sich, dass insbesondere akustische Informationen in Kombination mit der visuellen Wahrnehmung die Einschätzung fühlbarer Materialeigenschaften erleichtert. Eines der Defizite bei der Analyse des Aussehens von Materialien ist der Mangel bezüglich sich an der Wahnehmung richtenden Metriken die eine Beantwortung von Fragen wie z.B. "Sind die Materialien A und B sich ähnlicher als die Materialien C und D?" erlauben, wie sie in vielen Anwendungen der Computergrafik auftreten. Daher widmen sich die im Rahmen dieser Arbeit durchgeführten Studien auch dem Vergleich von unterschiedlichen Materialrepräsentationen im Hinblick auf. Zu diesem Zweck wird eine Methodik zur Berechnung der wahrgenommenen paarweisen Ähnlichkeit von Material-Texturen eingeführt, welche auf der Verwendung von Textursyntheseverfahren beruht und sich an der Idee/dem Begriff der geradenoch-wahrnehmbaren Unterschiede orientiert. Der vorgeschlagene Ansatz erlaubt das Überwinden einiger Probleme zuvor veröffentlichter Methoden zur Bestimmung der Änhlichkeit von Texturen und führt zu sinnvollen/plausiblen Distanzen von Materialprobem. Zusammenfassend führen die im Rahmen dieser Dissertation dargestellten Inhalte/Verfahren zu einem tieferen Verständnis bezüglich der menschlichen Wahnehmung von digitalen bzw. realen Materialien über unterschiedliche Sinne, einem besseren Verständnis bzgl. der Bewertung der Ähnlichkeit von Texturen durch die Entwicklung einer neuen perzeptuellen Metrik und liefern grundlegende Einsichten für zukünftige Untersuchungen im Bereich der Perzeption von digitalen Materialien.In daily life, we encounter digital materials and interact with them in numerous situations, for instance when we play computer games, watch a movie, see billboard in the metro station or buy new clothes online. While some of these virtual materials are given by computational models that describe the appearance of a particular surface based on its material and the illumination conditions, some others are presented as simple digital photographs of real materials, as is usually the case for material samples from online retailing stores. The utilization of computer-generated materials entails significant advantages over plain images as they allow realistic experiences in virtual scenarios, cooperative product design, advertising in prototype phase or exhibition of furniture and wearables in specific environments. However, even though exceptional material reproduction quality has been achieved in the domain of computer graphics, current technology is still far away from highly accurate photo-realistic virtual material reproductions for the wide range of existing categories and, for this reason, many material catalogs still use pictures or even physical material samples to illustrate their collections. An important reason for this gap between digital and real material appearance is that the connections between physical material characteristics and the visual quality perceived by humans are far from well-understood. Our investigations intend to shed some light in this direction. Concretely, we explore the ability of state-of-the-art digital material models in communicating physical and subjective material qualities, observing that part of the tactile/haptic information (eg thickness, hardness) is missing due to the geometric abstractions intrinsic to the model. Consequently, in order to account for the information deteriorated during the digitization process, we investigate the interplay between different sensing modalities (vision and hearing) and discover that particular sound cues, in combination with visual information, facilitate the estimation of such tactile material qualities. One of the shortcomings when studying material appearance is the lack of perceptually-derived metrics able to answer questions like "are materials A and B more similar than C and D?", which arise in many computer graphics applications. In the absence of such metrics, our studies compare different appearance models in terms of how capable are they to depict/transmit a collection of meaningful perceptual qualities. To address this problem, we introduce a methodology to compute the perceived pairwise similarity between textures from material samples that makes use of patch-based texture synthesis algorithms and is inspired on the notion of Just-Noticeable Differences. Our technique is able to overcome some of the issues posed by previous texture similarity collection methods and produces meaningful distances between samples. In summary, with the contents presented in this thesis we are able to delve deeply in how humans perceive digital and real materials through different senses, acquire a better understanding of texture similarity by developing a perceptually-based metric and provide a groundwork for further investigations in the perception of digital materials

    Perception of Reverberation in Domestic and Automotive Environments

    Get PDF
    nrpages: 227status: publishe

    An investigation of the utility of monaural sound source separation via nonnegative matrix factorization applied to acoustic echo and reverberation mitigation for hands-free telephony

    Get PDF
    In this thesis we investigate the applicability and utility of Monaural Sound Source Separation (MSSS) via Nonnegative Matrix Factorization (NMF) for various problems related to audio for hands-free telephony. We first investigate MSSS via NMF as an alternative acoustic echo reduction approach to existing approaches such as Acoustic Echo Cancellation (AEC). To this end, we present the single-channel acoustic echo problem as an MSSS problem, in which the objective is to extract the users signal from a mixture also containing acoustic echo and noise. To perform separation, NMF is used to decompose the near-end microphone signal onto the union of two nonnegative bases in the magnitude Short Time Fourier Transform domain. One of these bases is for the spectral energy of the acoustic echo signal, and is formed from the in- coming far-end user’s speech, while the other basis is for the spectral energy of the near-end speaker, and is trained with speech data a priori. In comparison to AEC, the speaker extraction approach obviates Double-Talk Detection (DTD), and is demonstrated to attain its maximal echo mitigation performance immediately upon initiation and to maintain that performance during and after room changes for similar computational requirements. Speaker extraction is also shown to introduce distortion of the near-end speech signal during double-talk, which is quantified by means of a speech distortion measure and compared to that of AEC. Subsequently, we address Double-Talk Detection (DTD) for block-based AEC algorithms. We propose a novel block-based DTD algorithm that uses the available signals and the estimate of the echo signal that is produced by NMF-based speaker extraction to compute a suitably normalized correlation-based decision variable, which is compared to a fixed threshold to decide on doubletalk. Using a standard evaluation technique, the proposed algorithm is shown to have comparable detection performance to an existing conventional block-based DTD algorithm. It is also demonstrated to inherit the room change insensitivity of speaker extraction, with the proposed DTD algorithm generating minimal false doubletalk indications upon initiation and in response to room changes in comparison to the existing conventional DTD. We also show that this property allows its paired AEC to converge at a rate close to the optimum. Another focus of this thesis is the problem of inverting a single measurement of a non- minimum phase Room Impulse Response (RIR). We describe the process by which percep- tually detrimental all-pass phase distortion arises in reverberant speech filtered by the inverse of the minimum phase component of the RIR; in short, such distortion arises from inverting the magnitude response of the high-Q maximum phase zeros of the RIR. We then propose two novel partial inversion schemes that precisely mitigate this distortion. One of these schemes employs NMF-based MSSS to separate the all-pass phase distortion from the target speech in the magnitude STFT domain, while the other approach modifies the inverse minimum phase filter such that the magnitude response of the maximum phase zeros of the RIR is not fully compensated. Subjective listening tests reveal that the proposed schemes generally produce better quality output speech than a comparable inversion technique

    An investigation of the utility of monaural sound source separation via nonnegative matrix factorization applied to acoustic echo and reverberation mitigation for hands-free telephony

    Get PDF
    In this thesis we investigate the applicability and utility of Monaural Sound Source Separation (MSSS) via Nonnegative Matrix Factorization (NMF) for various problems related to audio for hands-free telephony. We first investigate MSSS via NMF as an alternative acoustic echo reduction approach to existing approaches such as Acoustic Echo Cancellation (AEC). To this end, we present the single-channel acoustic echo problem as an MSSS problem, in which the objective is to extract the users signal from a mixture also containing acoustic echo and noise. To perform separation, NMF is used to decompose the near-end microphone signal onto the union of two nonnegative bases in the magnitude Short Time Fourier Transform domain. One of these bases is for the spectral energy of the acoustic echo signal, and is formed from the in- coming far-end user’s speech, while the other basis is for the spectral energy of the near-end speaker, and is trained with speech data a priori. In comparison to AEC, the speaker extraction approach obviates Double-Talk Detection (DTD), and is demonstrated to attain its maximal echo mitigation performance immediately upon initiation and to maintain that performance during and after room changes for similar computational requirements. Speaker extraction is also shown to introduce distortion of the near-end speech signal during double-talk, which is quantified by means of a speech distortion measure and compared to that of AEC. Subsequently, we address Double-Talk Detection (DTD) for block-based AEC algorithms. We propose a novel block-based DTD algorithm that uses the available signals and the estimate of the echo signal that is produced by NMF-based speaker extraction to compute a suitably normalized correlation-based decision variable, which is compared to a fixed threshold to decide on doubletalk. Using a standard evaluation technique, the proposed algorithm is shown to have comparable detection performance to an existing conventional block-based DTD algorithm. It is also demonstrated to inherit the room change insensitivity of speaker extraction, with the proposed DTD algorithm generating minimal false doubletalk indications upon initiation and in response to room changes in comparison to the existing conventional DTD. We also show that this property allows its paired AEC to converge at a rate close to the optimum. Another focus of this thesis is the problem of inverting a single measurement of a non- minimum phase Room Impulse Response (RIR). We describe the process by which percep- tually detrimental all-pass phase distortion arises in reverberant speech filtered by the inverse of the minimum phase component of the RIR; in short, such distortion arises from inverting the magnitude response of the high-Q maximum phase zeros of the RIR. We then propose two novel partial inversion schemes that precisely mitigate this distortion. One of these schemes employs NMF-based MSSS to separate the all-pass phase distortion from the target speech in the magnitude STFT domain, while the other approach modifies the inverse minimum phase filter such that the magnitude response of the maximum phase zeros of the RIR is not fully compensated. Subjective listening tests reveal that the proposed schemes generally produce better quality output speech than a comparable inversion technique
    corecore