495 research outputs found

    A content based method for perceptually driven joint color/depth compression

    Get PDF
    International audienceMulti-view Video plus Depth (MVD) data refer to a set of conventional color video sequences and an associated set of depth video sequences, all acquired at slightly different viewpoints. This huge amount of data necessitates a reliable compression method. However, there is no standardized compression method for MVD sequences. H.264/MVC compression method, which was standardized for Multi-View-Video representation (MVV), has been the subject of many adaptations to MVD. However, it has been shown that MVC is not well adapted to encode multi-view depth data. We propose a novel option as for compression of MVD data. Its main purpose is to preserve joint color/depth consistency. The originality of the proposed method relies on the use of the decoded color data as a prior for the associated depth compression. This is meant to ensure consistency in both types of data after decoding. Our strategy is motivated by previous studies of artifacts occurring in synthesized views: most annoying distortions are located around strong depth discontinuities and these distortions are due to misalignment of depth and color edges in decoded images. Thus the method is meant to preserve edges and to ensure consistent localization of color edges and depth edges. To ensure compatibility, colored sequences are encoded with H.264. Depth maps compression is based on a 2D still image codec, namely LAR (Locally adapted Resolution). It consists in a quad-tree representation of the images. The quad-tree representation contributes in the preservation of edges in both color and depth data. The adopted strategy is meant to be more perceptually driven than state-of-the-art methods. The proposed approach is compared to H.264 encoding of depth images. Objective metrics scores are similar with H.264 and with the proposed method, and visual quality of synthesized views is improved with the proposed approach

    Low-complexity motion-based saliency map estimation for perceptual video coding

    Get PDF
    Proceeding of: 2nd National Conference on Telecommunications (CONATEL), Arequipa, 17-20 May 2011In this paper, a low-complexity motion-based saliency map estimation method for perceptual video coding is proposed. The method employs a camera motion compensated vector map computed by means of a hierarchical motion estimation (HME) procedure and a Restricted Affine Transformation (RAT)-based modeling of the camera motion. To allow for a computationally efficient solution, the number of layers of the HME has been restricted and the potential unreliable motion vectors due to homogeneous regions have been detected and specially managed by means of a smooth block detector. Special care has been taken of the smoothness of the resulting compensated camera motion vector map to avoid unpleasant artifacts in the perceptually-coded sequence, by including a final post-processing based on morphological filtering. The proposed saliency map has been both visually and subjectively assessed showing quality improvements when used as a part of the H.264/AVC standard codec at medium-to-low bitrates.Regional project CCG10-UC3M/TIC-5570 from Comunidad Autónoma de Madrid / University Carlos III MadridPublicad

    Uniform Color Space-Based High Dynamic Range Video Compression

    Get PDF
    © 1991-2012 IEEE. Recently, there has been a significant progress in the research and development of the high dynamic range (HDR) video technology and the state-of-the-art video pipelines are able to offer a higher bit depth support to capture, store, encode, and display HDR video content. In this paper, we introduce a novel HDR video compression algorithm, which uses a perceptually uniform color opponent space, a novel perceptual transfer function to encode the dynamic range of the scene, and a novel error minimization scheme for accurate chroma reproduction. The proposed algorithm was objectively and subjectively evaluated against four state-of-the-art algorithms. The objective evaluation was conducted across a set of 39 HDR video sequences, using the latest x265 10-bit video codec along with several perceptual and structural quality assessment metrics at 11 different quality levels. Furthermore, a rating-based subjective evaluation ( n=40n=40 ) was conducted with six sequences at two different output bitrates. Results suggest that the proposed algorithm exhibits the lowest coding error amongst the five algorithms evaluated. Additionally, the rate-distortion characteristics suggest that the proposed algorithm outperforms the existing state-of-the-art at bitrates ≥ 0.4 bits/pixel

    Low complexity in-loop perceptual video coding

    Get PDF
    The tradition of broadcast video is today complemented with user generated content, as portable devices support video coding. Similarly, computing is becoming ubiquitous, where Internet of Things (IoT) incorporate heterogeneous networks to communicate with personal and/or infrastructure devices. Irrespective, the emphasises is on bandwidth and processor efficiencies, meaning increasing the signalling options in video encoding. Consequently, assessment for pixel differences applies uniform cost to be processor efficient, in contrast the Human Visual System (HVS) has non-uniform sensitivity based upon lighting, edges and textures. Existing perceptual assessments, are natively incompatible and processor demanding, making perceptual video coding (PVC) unsuitable for these environments. This research allows existing perceptual assessment at the native level using low complexity techniques, before producing new pixel-base image quality assessments (IQAs). To manage these IQAs a framework was developed and implemented in the high efficiency video coding (HEVC) encoder. This resulted in bit-redistribution, where greater bits and smaller partitioning were allocated to perceptually significant regions. Using a HEVC optimised processor the timing increase was < +4% and < +6% for video streaming and recording applications respectively, 1/3 of an existing low complexity PVC solution. Future work should be directed towards perceptual quantisation which offers the potential for perceptual coding gain

    High dynamic range video compression exploiting luminance masking

    Get PDF

    Livrable D4.2 of the PERSEE project : Représentation et codage 3D - Rapport intermédiaire - Définitions des softs et architecture

    Get PDF
    51Livrable D4.2 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D4.2 du projet. Son titre : Représentation et codage 3D - Rapport intermédiaire - Définitions des softs et architectur

    Video Packet Priority Assignment Based On Spatio-Temporal Perceptual Importance

    Get PDF
    A novel perceptually motivated two-stage algorithm for assigning priority to video packet data to be transmitted over the internet is proposed. Priority assignment is based on temporal and spatial features that are derived from low-level vision concepts. The motivation for a two-stage design is to be able to handle different application settings. The first stage of the algorithm is computationally very efficient and can be directly used in low-delay applications with limited computational resources. The two-stage method performs exceedingly well across a variety of content and can be used in less restrictive operating settings. The efficacy of the proposed algorithm (both stages) is demonstrated using an intelligent packet drop application where it is compared with cumulative mean squared error (cMSE) based priority assignment and random packet dropping. The proposed prioritization algorithm allows for packet drops that result in significantly lower perceptual annoyance at the receiver relative to the other methods considered

    Quality-Oriented Perceptual HEVC Based on the Spatiotemporal Saliency Detection Model

    Get PDF
    Perceptual video coding (PVC) can provide a lower bitrate with the same visual quality compared with traditional H.265/high efficiency video coding (HEVC). In this work, a novel H.265/HEVC-compliant PVC framework is proposed based on the video saliency model. Firstly, both an effective and efficient spatiotemporal saliency model is used to generate a video saliency map. Secondly, a perceptual coding scheme is developed based on the saliency map. A saliency-based quantization control algorithm is proposed to reduce the bitrate. Finally, the simulation results demonstrate that the proposed perceptual coding scheme shows its superiority in objective and subjective tests, achieving up to a 9.46% bitrate reduction with negligible subjective and objective quality loss. The advantage of the proposed method is the high quality adapted for a high-definition video application
    corecore