148 research outputs found

    A Model of Local Adaptation

    Get PDF
    The visual system constantly adapts to different luminance levels when viewing natural scenes. The state of visual adaptation is the key parameter in many visual models. While the time-course of such adaptation is well understood, there is little known about the spatial pooling that drives the adaptation signal. In this work we propose a new empirical model of local adaptation, that predicts how the adaptation signal is integrated in the retina. The model is based on psychophysical measurements on a high dynamic range (HDR) display. We employ a novel approach to model discovery, in which the experimental stimuli are optimized to find the most predictive model. The model can be used to predict the steady state of adaptation, but also conservative estimates of the visibility(detection) thresholds in complex images.We demonstrate the utility of the model in several applications, such as perceptual error bounds for physically based rendering, determining the backlight resolution for HDR displays, measuring the maximum visible dynamic range in natural scenes, simulation of afterimages, and gaze-dependent tone mapping

    Simulation of color afterimages: An approach to computing virtual color perception

    Get PDF
    Afterimages are a common and frequent perceptual phenomenon of everyday life. When looking into a high-intensity light source and suddenly turning away from it, a temporary “ghost” of the light source remains visible, for a while. The computer-graphics simulation of afterimages is based on biophysical and mathematical models as published in the literature. A subordinate of afterimages defined in our research is virtual color perception, that is in our interpretation an unusual and intense temporary color perception provoked by a rapid change in the color of the incident light. In research, the modelling of virtual color perception is a field that is by and large untouched. Our publication presents a kinetic model established to characterize the intensity and duration of virtual color perception as a function of rapid changes in the color of the incident light

    Computed fingertip touch for the instrumental control of musical sound with an excursion on the computed retinal afterimage

    Get PDF
    In this thesis, we present an articulated, empirical view on what human music making is, and on how this fundamentally relates to computation. The experimental evidence which we obtained seems to indicate that this view can be used as a tool, to systematically generate models, hypotheses and new technologies that enable an ever more complete answer to the fundamental question as to what forms of instrumental control of musical sound are possible to implement. This also entails the development of two novel transducer technologies for computed fingertip touch: The cyclotactor (CT) system, which provides fingerpad-orthogonal force output while tracking surface-orthogonal fingertip movement; and the kinetic surface friction transducer (KSFT) system, which provides fingerpad-parallel force output while tracking surface-parallel fingertip movement. In addition to the main research, the thesis also contains two research excursions, which are due to the nature of the Ph.D. position. The first excursion shows how repeated and varying pressing movements on the already held-down key of a computer keyboard can be used both to simplify existing user interactions and to implement new ones, that allow the rapid yet detailed navigation of multiple possible interaction outcomes. The second excursion shows that automated computational techniques can display shape specifically in the retinal afterimage, a well-known effect in the human visual system.Computer Systems, Imagery and Medi

    Art and reflexivity in post-1960 European Cinema

    Get PDF

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    TOWARDS A COMPUTATIONAL MODEL OF RETINAL STRUCTURE AND BEHAVIOR

    Get PDF
    Human vision is our most important sensory system, allowing us to perceive our surroundings. It is an extremely complex process that starts with light entering the eye and ends inside of the brain, with most of its mechanisms still to be explained. When we observe a scene, the optics of the eye focus an image on the retina, where light signals are processed and sent all the way to the visual cortex of the brain, enabling our visual sensation. The progress of retinal research, especially on the topography of photoreceptors, is often tied to the progress of retinal imaging systems. The latest adaptive optics techniques have been essential for the study of the photoreceptors and their spatial characteristics, leading to discoveries that challenge the existing theories on color sensation. The organization of the retina is associated with various perceptive phenomena, some of them are straightforward and strictly related to visual performance like visual acuity or contrast sensitivity, but some of them are more difficult to analyze and test and can be related to the submosaics of the three classes of cone photoreceptors, like how the huge interpersonal differences between the ratio of different cone classes result in negligible differences in color sensation, suggesting the presence of compensation mechanisms in some stage of the visual system. In this dissertation will be discussed and addressed issues regarding the spatial organization of the photoreceptors in the human retina. A computational model has been developed, organized into a modular pipeline of extensible methods each simulating a different stage of visual processing. It does so by creating a model of spatial distribution of cones inside of a retina, then applying descriptive statistics for each photoreceptor to contribute to the creation of a graphical representation, based on a behavioral model that determines the absorption of photoreceptors. These apparent color stimuli are reconstructed in a representation of the observed scene. The model allows the testing of different parameters regulating the photoreceptor's topography, in order to formulate hypothesis on the perceptual differences arising from variations in spatial organization

    Afterimages - Strands of modern art in Singapore

    Get PDF
    Master'sMASTER OF ART

    A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture

    Get PDF
    The Emergic Cognitive Model (ECM) is a unified computational model of visual filling-in based on the Emergic Network architecture. The Emergic Network was designed to help realize systems undergoing continuous change. In this thesis, eight different filling-in phenomena are demonstrated under a regime of continuous eye movement (and under static eye conditions as well). ECM indirectly demonstrates the power of unification inherent with Emergic Networks when cognition is decomposed according to finer-grained functions supporting change. These can interact to raise additional emergent behaviours via cognitive re-use, hence the Emergic prefix throughout. Nevertheless, the model is robust and parameter free. Differential re-use occurs in the nature of model interaction with a particular testing paradigm. ECM has a novel decomposition due to the requirements of handling motion and of supporting unified modelling via finer functional grains. The breadth of phenomenal behaviour covered is largely to lend credence to our novel decomposition. The Emergic Network architecture is a hybrid between classical connectionism and classical computationalism that facilitates the construction of unified cognitive models. It helps cutting up of functionalism into finer-grains distributed over space (by harnessing massive recurrence) and over time (by harnessing continuous change), yet simplifies by using standard computer code to focus on the interaction of information flows. Thus while the structure of the network looks neurocentric, the dynamics are best understood in flowcentric terms. Surprisingly, dynamic system analysis (as usually understood) is not involved. An Emergic Network is engineered much like straightforward software or hardware systems that deal with continuously varying inputs. Ultimately, this thesis addresses the problem of reduction and induction over complex systems, and the Emergic Network architecture is merely a tool to assist in this epistemic endeavour. ECM is strictly a sensory model and apart from perception, yet it is informed by phenomenology. It addresses the attribution problem of how much of a phenomenon is best explained at a sensory level of analysis, rather than at a perceptual one. As the causal information flows are stable under eye movement, we hypothesize that they are the locus of consciousness, howsoever it is ultimately realized
    corecore