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Abstract

Human vision is our most important sensory system, allowing us to perceive

our surroundings. It is an extremely complex process that starts with light

entering the eye and ends inside of the brain, with most of its mechanisms

still to be explained. When we observe a scene, the optics of the eye focus

an image on the retina, where light signals are processed and sent all the

way to the visual cortex of the brain, enabling our visual sensation.

The progress of retinal research, especially on the topography of pho-

toreceptors, is often tied to the progress of retinal imaging systems. The

latest adaptive optics techniques have been essential for the study of the

photoreceptors and their spatial characteristics, leading to discoveries that

challenge the existing theories on color sensation. The organization of the

retina is associated with various perceptive phenomena, some of them are

straightforward and strictly related to visual performance like visual acuity

or contrast sensitivity, but some of them are more difficult to analyze and

test and can be related to the submosaics of the three classes of cone pho-

toreceptors, like how the huge interpersonal differences between the ratio

of different cone classes result in negligible differences in color sensation,

suggesting the presence of compensation mechanisms in some stage of the

visual system.

In this dissertation will be discussed and addressed issues regarding the

spatial organization of the photoreceptors in the human retina. A compu-

tational model has been developed, organized into a modular pipeline of

extensible methods each simulating a different stage of visual processing. It

does so by creating a model of spatial distribution of cones inside of a retina,

then applying descriptive statistics for each photoreceptor to contribute to

the creation of a graphical representation, based on a behavioral model that

determines the absorption of photoreceptors. These apparent color stim-
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uli are reconstructed in a representation of the observed scene. The model

allows the testing of different parameters regulating the photoreceptor’s to-

pography, in order to formulate hypothesis on the perceptual differences

arising from variations in spatial organization.
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Chapter 1

Introduction

Color vision is a process that starts with light entering the eye and ends in

the visual cortex of the brain. The most crucial part of this process takes

part in a tiny fraction of the retina, a region with a surface of less than

1 cm2 consisting in the center of our gaze, where we possess the highest

discerning power. The retina is the first real stage of visual processing right

after the optics of the eye, consisting in 4-6 millions of color photorecep-

tors, connected to different processing layers leading to the optic nerve and

outwards to the brain; its function is to discriminate, identify and estimate

light signals, encoding them into signals defining spatial frequency, bright-

ness, spectral composition and every other aspect contributing to our vision.

Photon absorption contributes to the photoreceptor’s output signal, while

the comparison of different signals from cones with different photopigments

is required for a correct color discrimination.

The tridimensional nature of color vision is observable in the three classes

of cone photoreceptors in the retina, spatially distributed in a layer contain-

ing photosensitive cells. The perception of wavelengths in the range of the

visible spectrum of light in an observed scene is mediated by cones, perform-

ing a discrete sampling of different portions of a retinal image. The evolution

and development of our visual system has made this sampling strategy work

successfully in natural scenes, based on the fact that spectral reflectance 1

slowly varies across the cones spatial scale, while for prolonged stimuli at

elevated spatial frequencies some issues may arise due to the grain of the

1In optics, reflectance indicates the proportion of incident light that a given surface
is capable of reflecting. It is represented by the ratio between the intensity of reflected
radiant flux and the intensity of the received radiant flux.
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trichromatic distribution of cones. This is evident for example in the recog-

nition of color speckles inside of high frequency white and black patterns

[1].

Both the perception of natural scenes and the small fluctuations in color

derive from the same topographical layout of those cells, revealing the gran-

ularity of the cones mosaic but also the discrete nature of the color and

spatial vision processing in the many layers of the retina. Moreover, the

structure of cones in the retina is instrumental not only in color sensation,

but also in spatial vision and motion processing. In light of these aspects, it

seems evident that the topography of the photoreceptors in the retina is an

essential factor for the visual processing, and in particular the positioning

of the three wavelenght-sensitive classes of cones.

Most of the data available on the retina and the sensation of color comes

from psychophysical visual experiments used to verify sensory theories. Usu-

ally the test performed involves visual threshold or discrimination of a white

or colored signal, visual acuity, wavelength discrimination, brightness dis-

crimination, hue naming, threshold of visual stimuli in the presence of an

adapting background and a plethora of various phenomena. The most recent

techniques of imaging in vivo, using adaptive optics to compensate for the

ocular aberrations, have allowed capabilities to examine in detail the mosaic

of cones [2, 3] and use previous psychophysical data with the observable

structural variations in the photoreceptors mosaic.

This technology has made possible not only to get more information on

the organization of the photoreceptor’s mosaic in observers with normal color

vision and in observers with deficits in the color or spatial vision, but also

to observe the variations in density and count of photoreceptors in different

age groups and their impact in the perception of color and movement. It is

also possible to observe the correlations between structural changes of the

photoreceptors layer and the changes in visual perception in patients with

congenital or age related retinal anomalies.

1.1 Aims and scope

The aim of this dissertation is to propose a computational model of the

human retina capable of contributing to the knowledge of perceptive phe-

nomena related to the spatial distribution of retinal photoreceptor cells, and
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providing a visual representation of an observed scene, given the fact that the

process of vision happens both at retinal and cortical stages. The topogra-

phy of photoreceptors is correlated to a wide range of perceptive phenomena,

like the vast interpersonal difference in the ratio of M to L cones resulting

in a negligible difference in perception and the filling-in taking place in the

retinotopic region corresponding to the optic disc, issues that are actually

still open. The computational model takes into account the response of pho-

toreceptors to color stimuli and simulates connectivity of retinal neurons,

given the fact that said responses are tied to the synaptic interconnections

between cells. Simulation of the mechanisms of human color vision and spa-

tial sensitivity is a powerful tool for the imaging industry, helping the design

of cameras, sensors and displaying techniques. Understanding the biological

correlation between retinal structure and visual sensitivity is a helpful tool

for the diagnosis of retinal degenerative diseases.

1.2 Starting point

There are a lot of studies concerning the characteristics of the human retina

and how they relate to the sensation of color. The complex structure of

the retina is composed by numerous biological elements with different char-

acteristics, and their behavior is regulated by as many parameters. The

space variance of the cones sampling structure is one of the main concerns.

Log-polar mapping is practically used as an approximation of the retinal

mapping, but the way photoreceptors are spatially arranged in their own

retinal layer is fundamentally different and regulated by other principles.

The basic idea is that differences in the composition of retinal mosaics are

resembling of the differences between fingerprints: there are no equal retina

or fingerprints between individuals, yet they can be regarded as a sample

from the same constrained random process. These characteristics determine

the limits of the sampling properties that are observable across all human

retinas.

The human eye model of Deering [4] proposes a cone synthesizer that

designs cone mosaics from an algorithm that generates cells starting from a

seed and then surrounding them with points defining a polygon, constituting

the cell boundary. This cone synthesizer is validated by calculation of the

neighbor fraction ratio and by matching statistics of density in cones/mm2
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with values in literature.

The most recent works on retinal modeling are focused on the neural

behavior [5, 6, 7]; for example, Virtual Retina by Wohrer and Kornprobst

is a large scale simulation software that transforms a video input into spike

trains, designed with a focus on nonlinearities, implementing a contrast gain

control mechanism. Few works present a quantitative approach at modeling

the visual pipeline. One of the most recent is ISETBIO [8], a framework

designed for exploring the properties of the earliest stages of biological vi-

sual systems, estimating the effects of human optics, eye movements, cone

absorptions and photocurrent, and retinal cell properties.

The color reconstruction simulation has been inspired by demosaicing

techniques. Akin to the photodiodes in a camera sensors, human photore-

ceptors are considered to be able to capture only the informations related

to their spectral sensitivity, and for this reason they can not provide exact

punctual data of color in that location. A demosaicing process is used to

address this limitation, interpolating between different responses spatially

distributed, to generate the correct color information. Many algorithms ex-

ist to reconstruct the missing color information of the pixels. Some of them

interpolate the value according to a fixed scheme (no-adaptive algorithms),

while others, more complex, are able to interpolate according to the spatial

features of the neighboring elements (adaptive algorithms).

1.3 Methods

In this thesis a quantitative approach has been taken in order to model

the functioning of the cone photoreceptors of the retina and the underly-

ing layers, comprising the connections with bipolar and horizontal cells up

to the ganglion cells. While the bipolar cells act as a direct pathway from

the photoreceptors to a ganglion cell, the cell responsible for sending visual

information directly to the brain, the function of the horizontal cells is to

horizontally share information to influence the closest bipolar and photore-

ceptor cells. Every ganglion cell receives synapses directly from a group of

photoreceptors, varying from one in the center of the fovea to thousands in

the retinal periphery. The color sensation obtained from a single cone is

therefore incorporated into a receptive field that has to take into account

both the sensation from that single cone and all the cones in a determined
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radius from it. The first step of this simulation, which starts from a strictly

biologically plausible standpoint, is the creation of a model of spatial distri-

bution of cones inside of a retina, that preserves the spatial characteristics

of the cells mosaic present in the literature, and validating it through com-

parison with real retinas. Subsequently, inside of the model the spatial

descriptive statistics are created for each photoreceptor, to contribute to

the creation of a graphical representation. This representation is based on

a behavioral model that determines how light is sampled and processed in

the retina, relating to the absorption of photoreceptors, and how these ap-

parent color stimuli result in a visual representation of a scene that we are

observing, also taking into account the connections of the retinal circuitry

and the retinal layers underlying the photoreceptors. These latter stages of

the model, while starting from a biologically plausible spatial distribution of

cone cells, have to simulate the behavior of such complex biological systems

that a black box simulative approach had to be considered.

The proposed model is organized into a modular pipeline of extensible

methods each simulating a different stage of visual processing, from a vi-

sual scene through the cone mosaic and to the reconstruction of the color

information inside of a visual representation.

1.4 Thesis organization

The organization of the dissertation is as follows:

In chapter 2, after a brief description of the theory of light, an overview

of the human visual system is proposed, with details of how visual signals are

neurally encoded in the process of vision and examples of visual perceptive

phenomena and anomalies.

In chapter 3 is presented the state of the art on the modeling of the hu-

man visual system, with attention to biologically-inspired foveated imaging

systems, studies concerning the spatial distribution of the cones sampling

structure and an overview of models of the retina with their goals and meth-

ods, and lastly an introduction to techniques of spatial color reconstruction.

Chapter 4 explores the details of the retinal topography and how the

spatial distribution of photoreceptor classes in the retina may affect the

sampling of color signals.

In chapter 5 different cone array sampling strategies have been tested
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to reproduce the spectral and density characteristics of a real photoreceptor

distribution. A method for generating space-variant cone arrays is proposed.

In chapter 6 the proposed cone sampling model is described, going into

detail of its computational pipeline. Its objective is to simulate the ab-

sorption of light into artificially-generated retinal distribution of the cone’s

trichromatic mosaic.

Lastly, chapter 7 proposes a tool for reconstruction of the color signals

into a space-variant image. It also presents some tests performed with the

model to determine how the proposed color reconstruction method behaves

with different ratios of L to M cones or visual illusions.
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Chapter 2

Color Vision

Human vision is an extremely complex process that starts with light entering

the eye and ends inside of the brain. In this chapter, after a brief presenta-

tion of the theory of light, the early stages of the human visual system are

discussed, from the anatomy and structure of the human eye towards the

retina and how light is neurally encoded to allow us to sense colors. Also

some aspects of visual perceptive phenomena related to color vision are here

discussed with some examples and anomalies.

2.1 Theory of Light

The nature of light is a complex concept that has been debated since an-

cient times, arguably starting with Euclid in 300BC. In the 17th century,

the corpuscolar theory of light hypothesized by Pierre Gassendi and devel-

oped by Sir Isaac Newton depicted light as a flux of tiny particles called

corpuscles, having negligible mass, traveling at high velocities and carrying

kinetic energy. The different colors of light were due to the different size of

the corpuscles.

Meanwhile in the same years, Christiaan Hughens was developing a

mathematical wave theory of light, based on the findings of Robert Hooke.

His theory described light as a series of waves departing from a source and

that could interfere with each other like sound waves. James Clerk Maxwell,

in 1862 found out that light is a particular form of electromagnetic radiation

akin to radio waves, propagating with the same speed of 299,792,458 m/s

and exhibiting the same properties, with wavelength approximately between
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380 and 730 nanometers of wavelength, as displayed in Figure2.1.

Figure 2.1: Visible light is an electromagnetic radiation in the range of about
380 to 730 nanometers of wavelength. Image taken from https://commons.

wikimedia.org/wiki/File:Visible_and_invisible_light.jpg

The current theory of light was advanced by Albert Einstein in 1905

according to the quantum hypothesis of Max Planck, winning him the Nobel

Prize in 1921. The quantum theory depicted light as composed of discrete

quantum particles, later called photons. This theory confirms that light can

behave both as a particle as well as a wave.

For the measurement of color it is sufficient to only consider light as an

electromagnetic radiation propagating as a wave, physically described by its

spectral composition in the form of a spectral power distribution (SPD) of

the amount of energy in function of its wavelengths. However, in the human

eye both wave and particle phenomena are important for the sensation of

light and color.

2.2 The Eye

The ocular bulb (Figure 2.2) is an asimmetrical sphere, with front to back

diameter of 24-25 mm in adults and an approximate volume of 6.5 cc. It

is situated in the orbit of the skull, which contains and protects it. The

eye is covered in three concentric coats or layers, from the outermost to the

innermost:

• Fibrous tunic, comprising the sclera and the cornea
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• Vascular tunic, consisting of the iris, ciliar body and choroid

• The retina

It is also possible to distinguish three cavities: the anterior and posterior

chamber, separated by the iris, filled with watery aqueous humor, and a

posterior cavity filled with gel-like vitreous humor. The intraocular pressure

exerted by the fluids inside of the eye support the shape of the cavities.

Figure 2.2: Structure of the human eye. Image courtesy of Betts et al. [9]

From an optical point of view, the eye can be considered as a spheroidal

camera obscura composed by an external convex lens, the cornea, and an

internal crystalline lens of biconvex shape, interspersed with fluids. On the

anterior surface of the lens lies the iris which, by contracting or relaxing,

regulates the quantity of light entering the eye through a circular hole acting

as a diaphragm, the pupil. The pupil opening is regulated by an involuntary

mechanism that causes its change in size, from a minimum of 2 mm to a

maximum of 8 mm, inversely based on the quantity of light. The surfaces

of the cornea and lens compose an approximately centered system and their

center of curvature define the optical axis of the eye.

Images of objects processed by the optical system of the eye are pro-

jected, shrunken and inverted upside down, on the inner surface of the ocular

bulb, coated by a thin membrane of neural tissue, the retina. The crystalline

lens, by changing its shape according to involuntary contractions of the cil-
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iary muscle which supports it, focuses the image so that it is projected in a

small central region of the retina, about 6 mm in diameter, called macula.

At the center of the macula lies a small depression with a diameter of less

than 2 mm called fovea centralis, the region with the highest the highest

density of cones corresponding with the region of highest visual acuity in

the retina. When the eye fixates on something, every point of space which is

projected on the surface of the retina is visible, constituting the visual field.

Properties of vision are not uniform in the visual field, but rapidly change

by straying from the visual axis (different from the optical axis, defined as

the line passing from the eye’s rotation center to the center of the fovea)

towards the periphery of the visual field, both for optical properties and for

non-uniformity of the retina.

2.3 Structure of the Retina

The retina is a thin membrane of neural tissue that covers the inner part of

the ocular bulb, and is regarded as an extension of the brain since they are

linked by the optic nerve that directly extends from it. The retina is the

only tissue containing the photoreceptors, particular neural cells of elongated

shape capable of a process called phototransduction, wherein a protein called

opsin hit by a photon undergoes photoisomerization changing the cell mem-

brane’s potential and therefore converting a light stimulus into an electric

signal [10]. The photoreceptor cells extend across several anatomic layers

of the retina: the Bacillary layer contains their outer segments and inner

segments, in the second closest layer to the choroid, right after the retinal

pigment epithelium, a layer of highly pigmented cells directly faced by pho-

toreceptors, away from incidental light. This latter layer has the function

of both sustaining the photoreceptors health and integrity and absorbing

scattered light. Figure 2.3 illustrates the structure of the retina, with the

light coming from the outside of the eye on the left side.

Photoreceptor cells are of two kinds: rods and cones. The cones are

overall less numerous in the retina and have a wider inner segment diameter

than the rods, which are longer and thinner, with the exception of the

fovea where their diameter becomes similar. Rods and cones serve different

purposes in the process of vision. The cones are responsible for the photopic

vision, occurring in conditions of daylight illumination, and are the only cells
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Figure 2.3: Photoreceptor and nerve layers in the retina, image courtesy of
M. Friedlander [11]

capable of the perception of chromatic signals. Meanwhile, rods are able to

detect even the smallest amount of radiant energy, generating responses even

to a single photon event, but they can only yield achromatic or grey levels

of color sensation. Rods are characteristic of the human scotopic vision,

which happens in conditions of low illumination or at dusk, characterized

by the inability to detect colors and fine details [12]. Photoreceptors will be

discussed in more detail in section 2.4.

Going further into the retinal layers after the bacillary layer, the Outer

Nuclear Layer is comprised of bodies of the photoreceptors, then the Henle’s

Fiber Layer, only present in para- and perifovea, contains bundles of un-

myelinated cone and rod photoreceptor axons terminating in the pedicles

and spherules [13] that synapse in the retinal Outer Plexiform Layer, con-

taining a synaptic network between the terminals of the photoreceptors and

the dendrites of horizontal and bipolar cells. The Inner Nuclear Layer fol-

lows with the bodies of horizontal, bipolar, amacrine and Müller cells, fol-

lowed by the Inner Plexiform Layer, with its name given from the synaptic

plexus composed by axon terminals of the aforementioned cells and ganglion

cells dendrites. The next layer is the Ganglion Cell Layer, containing the

bodies of ganglion cells and displaced amacrine cells, ending in the Nerve

Fiber Layer that, as implied by the name, is constituted by the nerve fibers
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of these cells, extending all over the retina until converging into the fibers

of the optic nerve.

Retinal regions are also concentrically organized based on their eccen-

tricity from the visual axis in the fovea and were first defined by Polyak in

1941 [14]. Inside of the macula, starting from the center it is possible to

distinguish the foveola (175 µm radius), the foveal floor (200 µm radius),

the parafovea (µm 1250 µm radius), and the perifovea (2750 µm radius).

Outside of the macula, Polyak defined regions of the peripheral retina as

the near periphery (4250 µm radius), the far periphery (10000 µm temporal

and 16000 µm nasal radius), and the extreme periphery, going all the end

to the ora serrata.

3 to 5 mm from the center towards the nasal retina lies the optic disc, a

retinal region devoid of photoreceptors where the process of vision is absent,

hence corresponding to the so called blind spot of the eye. This exact region

corresponds to the exit point of the eye for the optic nerve, where all the

axons of the ganglion cells converge, and an enter point for the central

retinal artery and vein that supply blood to the retinal tissue. The estimate

distribution of cones and rods across a horizontal section of the retina can be

observed in Figure 2.4, it is possible to see a gap from approximately 16 to

20 degrees of visual angle in which photoreceptors are absent, corresponding

to the optic disc.

We are usually unaware of the region corresponding to the physiological

blind spot since in our everyday vision it is perceptually filled-in, but there

is no universally agreed explanation behind this phenomena.

2.4 Photoreceptors

There are approximately 130 million photoreceptors in the retina carrying

on the phototransduction of light signals. Their outer segment acts like an

optic fiber channeling incident photons inside of them. The head of an outer

segment consists of a membrane folded into floating stacks of disks, and just

by looking at their size and shape one can easily identify whether a photore-

ceptor is a cone or rod. In fact, with the sole exception of the fovea where

photoreceptors are tightly packed together, cones are overall less numerous

on the retina and appear to be shorter, with larger section and possessing

a characteristic conic shape, while the rods have a longer and thinner form
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Figure 2.4: Density of photoreceptors across a horizontal section of the
retina, image based on B. Wandell [15]

factor. The disks in their outer segment are filled with photopigment, consti-

tuted by the union of an organic compound called retinaldehyde, or vitamin

A, with the heptahelical protein opsin. When struck by photons, the pho-

topigment in the disks undergoes a pysiochemical transformation generating

a difference in the electric potential of the cell, transmitted to cells in the

subsequent layers of the retina via synaptic transmission, perpetrating the

process of vision.

The human photoreceptors contain four types of opsins:

• A class extremely sensitive to light (Rh1), only found in rods, called

rhodopsin and used in night (scotopic) vision

• Three cone opsins, called photopsins, used in photopic vision, respec-

tively:

– A short-wavelength sensitive class (SWS1), found in S cones

– A medium-wavelength sensitive class (MWS), found in M cones

– A long-wavelength sensitive class (LWS), found in L cones
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It is also worth noting that a fifth class of opsins exists, but they do not

participate in the process of vision. Discovered in 1997 by Provencio et al.

[16], the melanopsin is found in ganglion cells labeled as intrinsically pho-

tosensitive retinal ganglion cells (ipRGCs), and their function is regulating

circadian rythms.

Cones and rods are both active in conditions of intermediate illumina-

tion, defined as mesopic vision. With a progressive decrease in illumination,

long-wavelength sensible cones tend to have their response lowered quicker

than short-wavelength cones, causing a shift in our color perception towards

shorter wavelengths. The photoreceptor luminosity functions are visibile in

Figure 2.5 left, and represent the average spectral sensitivity of the per-

ception of brightness at every wavelength, obtained by comparison ot the

brightness of a 555 nm monochromatic light, where the eye is most sensitive,

with the brightness of another monochromatic source of differing wavelength.

Figure 2.5: Left: Scotopic (blue) and photopic (red) luminosity functions.
The horizontal axis is wavelength in nm, the vertical axis is relative sen-
sitivity, image taken from https://commons.wikimedia.org/wiki/File:

LuminosityCurve1.svg. Right: Adaptation of the human eye in darkness,
public domain image courtesy of https://wtamu.edu/~cbaird/

The photopic luminosity function, also called V(λ) was standardized by

the CIE (Commission Internationale de l’Éclairage) in 1924, and is used for

the conversion of radiant energy into luminous energy, while the scotopic

luminosity function V’(λ), adopted later in 1951, shifts towards the blue

wavelenghts. This change in spectral sensitivity from mesopic to scotopic

manifests itself in different conditions of illumination with a variation of con-

trast, making red tones appear brighter in daylight and blue-greenish tones
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brighter at dusk, this effect’s name is Purkinje shift and is rendered in Figure

2.6.

Figure 2.6: Purkinje shift.
Red appears brighter in
daylight, while the green
foliage appears brighter
at dusk. Derivative image
taken from https://commons.

wikimedia.org/wiki/File:

Red_geranium_photoic_

mesopic_scotopic.jpg

The duality of mechanisms of scotopic

and photopic vision can be visualized in

the dark adaptation curve in Figure 2.5

right. After 10 minutes of exposure to

darkness, the cones stop working and our

vision is mediated by rods only, since

their threshold of sensitivity to light is

much lower. The cause of this curve is in

the different speeds of photopigment re-

generation in cones and rods, in dailyght

vision the rods are bleached by the inten-

sity of the light and they take approxi-

mately 30 minutes to regenerate to their

normal sensitivity, while for the cones

this time is 7 minutes only.

The photoreceptors organization varies

widely from the fovea to the periphery,

as will be discussed in detail in chapter

4. In general, outside of the fovea it is

possible to find more rods than cones,

and a higher ratio between photorecep-

tors and ganglion cells. The combined

effect of this organization manifest itself

in the higher sensitivity to light within a

few visual degrees from the center of fix-

ation including the majority of the mac-

ula surface, since rods are specialized for

lower levels of light intensity and each

ganglion cell receives information from a

larger photoreceptor pool, in a process defined retinal summation. We can

personally notice the consequences of this organization during a starry night,

when our vision is adapted to darkness. By fixating a bright star, we can find

in our peripheral vision another dimmer star: by shifting our gaze towards

it can be observed that it will disappear when projected towards the central
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region of the retina, but it will appear again when projected a few degrees

of visual angle from the center. Moreover, signal from rods is enhanced by

retinal convergence, which is the sharing of a single nerve fiber in the retina

by several rods.

2.5 Visual Acuity

The ability of our vision to resolve details is known as visual acuity. Visual

acuity is limited in the few central degrees of vision by the photoreceptor’s

spacing [17], while outwards after the macula by the spacing of ganglion

cells [18], gathering signals of the photoreceptors in their receptive field.

An emmetropic human eye can distinguish patterns of alternating black

and white lines with features as small as one minute of arc (1/60 degree

or π/(60*180) = 0.000291 radians), while at higher spatial frequencies the

pattern will result in a neutral grey, as well as lower contrast patterns at

maximum spatial frequency. Considering a pattern being viewed at distance

d from the eye, the length of a distinguishable line is calculated with: length

= angle (in radians) * d = 0.000291 * d. For instance, when observing an

object at a distance of 25cm, the human eye can resolve lines of 0.0727 mm,

corresponding to a spatial frequency of 6.88 line pairs per mm.

To specify the resolution and perceived sharpness the Modulation trans-

fer function (MTF) is used, defined as the spatial frequency response of an

imaging system or a component, or the contrast at a given spatial frequency

relative to low frequencies, and is measured in lines per mm (lp/mm), with

higher spatial frequencies corresponding to finer details. The proposition at

the basis of this function is that a sinusoidal grating is always imaged in

an optical system as a sinusoidal grating, but with lowered contrast [19].

Since in our eyes, before arriving on the retina, light passes through an op-

tical system composed of lenses and fluids in the same way it would in a

camera system, the response is lowered at higher spatial frequencies; this

means that optical systems can be considered as low-pass filters. The spec-

ification of this imaging property can be expressed in a graph showing the

demodulation of sinusoidal gratings as a function of their spatial frequency.

For example, when observing a pure tone sine wave pattern, at frequencies

where the MTF is 100% the pattern is unattenuated, retaining full contrast,

at 50% the contrast is half the original value, and so forth.
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The psychophisical equivalent of the MTF is the Contrast Sensitivity

Function (CSF), first proposed by Mannos and Sakrison [20] and calculated

with the formula

A(fr) = 2.6 · (0.0192 + 0.114 · fr) · e−(0.114·fr)
1.1

where fr is the given spatial frequency of the sinusoidal pattern in cy-

cles/degree. The function, visible in Figure 2.7, assumes a peak value of 1.0

for fr = 8.0 cycles/degree and declines up until 60 cycles/degree, coherent

with the spacing of photoreceptors.

Figure 2.7: Contrast Sensitivity Function as calculated by [20]

2.5.1 Vernier Acuity

Among visual acuity test, there is one in particular called the Vernier acuity

test. It consists in showing two vertical misaligned parellel lines to an ob-

server which has to decide whether the top line is aligned to the left or right

of the bottom one. For each iteration of the test, the top line is randomly

misaligned towards a side and every time the observer picks the correct side,

a new arrangement where the lines are closer is presented. This separation
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can reach distances inferior to a millimeter, even inferior to the resolving

limit of the photoreceptors, but still our visual system is capable of detect-

ing misalignments with accuracies of one second of arc [21]: this phenomena

is known as the Vernier alignment acuity.

The Verner acuity is a fine example of hyperacuity, defined as a discrim-

ination ability that surpasses the acuity limit. In the case of the human eye,

the visual acuity at the fovea defined by the spacing of individual photore-

ceptor cells allows to resolve two separated lines with a distance of at least

1 arcminute, nonetheless we are able to detect a misalignment of two lines

of a tenth of this value.

Different explanations to this phenomenon have been proposed, involving

eye movements and temporal integration of the visual signal. The theories

concerning eye movements, and more specifically fixational eye movements

(described in detail in the next section), state that these movements are

known to cause a blur on the image projected on the retina, but this blur

might in turn help to fill the empty spaces between the cones [22]. Findings

from Ko et al. [23] seem to indicate an enhancement in fine spatial dis-

crimination in presence of microsaccades. However, cones and rods require

a certain interval of time to adapt to any given visual condition, exhibiting

an hysteresis behavior: the time required for this excitation-relaxation cy-

cle seems to invalidate the idea of the contribution of small movements to

enhancing the acuity of the eye by combination of visual images [24].

This enhancement mechanism exists inside of the HVS, but it has to take

into account also the information theory: information is either captured or

not captured, but it cannot be figured out from data which does not exist.

Still, the consensus is that the enhancement of the resolving power in the

human eye is dependent exclusively from neural post-processing.

2.6 Eye movements

Eye movements are mechanisms specialized for stabilizing an image on the

fovea, compensating for moving objects in our visual world, head move-

ments, or both. They are actuated by three pairs of extraocular muscles

which move the eyeball in the eye’s orbit and can be classified into:

• Pursuit: is an involuntary movement that compensates for drifts of a

visual target, by moving the eyes in a direction that reduces the drift.
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• Vergence: the eyes move in opposite directions to direct the point

of sight, to track in three dimensions and compensate for changes of

depth.

• Optokinetic reflex: in conjunction with the vestibular reflex, compen-

sates for movements of the head and body that affect the entire visual

field, e.g. locomotion, head rotation.

• Saccades: are binocular movements that suppress reflexes to rapidly

move to a new fixation point. These movements are so quick that no

visual information can be correctly processed, so our visual system

performs an active suppression of vision during saccades.

Our gaze focuses on a visual target for periods of time called fixations,

usually lasting 200 to 300 ms, separated by saccadic movements. Eye move-

ments are the most frequent kind of movement that humans make, during

our life we generate more saccades than heartbeats. In the real world we

are seldom presented with just a single potential target: we must choose

between many, and some will have more significance than others.

Figure 2.8: An example of a scan path over an image. Light blue circles
indicate fixations with diameter proportional to duration of the fixation,
yellow arrow indicate the saccades and the blue path is the actual movement
of the gaze point. Image obtained with SR Research Data Viewer https:

//www.sr-research.com/data-viewer/
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When we see a visual scene, our gaze usually shifts to the region with

the highest information density, then quickly to other locations determined

subjectively, without a proper awareness of the decision process. This series

of fixations generates a scanpath, defined as a pattern of exploratory eye

movements, an example of which is visible in figure 2.8.

During fixations our eyes are never perfectly still, but perturbed by small

undetectable ocular motions called ”fixational eye movements”. Their role

is to contrast the effects of neural adaptation during unvarying stimuli, pre-

venting the effect of perceptual fading, like in the Troxler’s effect optical

illusion in Figure 2.9. Three types of eye motion can be distinguished dur-

Figure 2.9: Troxler’s effect. When fixating the center point for enough time,
the surrounding circle starts to fade and eventually disappear until our gaze
shifts from that point. Image courtesy of https://www.illusionsindex.
org/i/troxler-effect

ing a fixation: tremor, drift and microsaccades. Tremor is defined as an

aperiodic, wave-like motion of the eyes with frequency of 30 to 100 Hz and

angular extent of 10-20 seconds of arc, about the diameter of one cone in

the fovea [25]. Visual tremor is also reported to be generally independent

in both eyes, generating a physical limit to the ability of matching corre-

sponding visual points in the retina during steroscopical vision. Drifts are

a movement that happens in conjuction with tremor, resulting in a slow

motion of the eye causing the image to move across an extent of 5 minutes

of arc. Microsaccades are tiny and unnoticeable jerking movements of the

eye occurring during voluntary fixation, usually moving the retinal image
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across 2 to 25 minutes of arc and happening in about 25 ms [26]. These

movements have been theorized to be functional during fixations the same

way that saccadic movements are during the exploration of a scene.

2.7 Trichromatic Vision

The theory of trichromatic vision was first explored by Young in 1802 and

later developed by Helmholtz 50 years later, also referred to as the Young-

Helmholtz theory. It states that there are three independent variables in

color vision, like in the three colors of additive synthesis red, green and

blue, or the three colors of subtractive synthesis, cyan, yellow and magenta.

The tristimulus theory was later confirmed in the experiments of Wright

and Guild in the early 20’s, with the goal of generating the data necessary

for constructing a formal, quantitative, rigorous system for characterizing

colors. Subjects with normal color vision were shown a circular hole divided

in two: on one side it was projected a sample of monochromatic light of

known wavelength, on the other side were projected three linearly indepen-

dent monochromatic lights (rλ = 650nm, gλ = 530nm and bλ = 460nm)

with the possibility of regulating their intensity. By manually adjusting the

intensities of the three monochromatic lights, the observers had to repro-

duce the color shown in the other side of the circle, containing the reference

sample wavelength. Their results have shown that by mixing three primary

lights, it is possible to obtain almost all of the fundamental colors of the

chromatic spectrum. The Wright and Guild experiments were conducted

separately, and since their results agreed well with each other, they were

later combined by the CIE to produce the RGB color matching functions,

namely r̄(λ), ḡ(λ) and b̄(λ), presented in Figure 2.10. Each of these func-

tions defines the amount of three primary lights (rλ = 645nm, gλ = 526nm

and bλ = 444nm) required to match monochromatic targets of equal energy.

For some particular wavelengths, however, the equivalent color could

not be obtained, this was solved by adding small quantities of primary light

to the reference light in order to obtain perceptive equivalence, explaining

the values below zero of the color matching functions. The RGB func-

tions are, however, only estimates derived from psychophysical experiments.

Trichromacy in humans is attributed to the physiological characteristic of

the photoreceptors in the eye, namely the three types of cones in the retina
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Figure 2.10: The CIE RGB color matching functions r̄(λ), ḡ(λ) and b̄(λ).
Horizontal axis is wavelength in nm, the vertical axis is tristimulus value.
Public domain image taken from https://commons.wikimedia.org/wiki/

File:CIE1931_RGBCMF.png

(L, M and S) and their fundamental spectral sensitivities, l̄(λ), m̄(λ) and

s̄(λ). The three cone submosaics with their different sensitivities perform

a sampling of the retinal image and perform the first step in the neural

coding of color starting from spectral information. Stockman and Sharpe in

2000 [27] derived spectral sensitivities of L and M cones from photoreceptor

excitation trying to establish the three primary lights that would uniquely

excite each class of cones to produce physiological photoreceptor spectral

sensitivities. In Figure 2.11 are reported the normalized LMS spectral sen-

sitivities functions, with peaks of maximum absorption in the 440, 545 and

565 nm frequency of the visible spectrum for respectively the S, M and L

cones.

Using these sensitivity functions, every spectral power distribution (SPD)

can be reconducted to a set of three tristimulus values, and every perceived

color can be identified by said values. Since the operation to obtain these

values is an integration on the frequencies of the spectrum, it might happen

that different SPDs match into the same set of tristimulus values. Physio-

logically, this is explained by the cone opsins responding only to the rate of
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Figure 2.11: The relative spectral sensitivity functions for the (red) L,
(green) M, and (blue) S retinal cone cells. The horizontal axis is wavelength
in nm, the vertical axis is relative sensitivity. Image courtesy of Stockman
et al. [28].

captured photons rather than the actual wavelength, so that different lights

with different SPD appear identical if they produce the same absorption in

photoreceptors. This occurence is called metamerism and evidences that

there is no biunivocal correspondence between SPD and tristimulus values,

meaning that while it is possible to get tristimulus values from and SPD,

it’s impossible to reconstruct the spectral distribution from the values.

In Figure 2.11 a strong overlap of the M and L functions is immediatly

noticeable. This translates to a very low maximum M to L signal ratio, and

it is possible to observe in Figure 2.12 how sampling an image directly with

the three functions results in a set of colors with poor saturation. Image

courtesy of [29].

Trichromatic color vision is based on the comparison of the photopigment

absorptions in cone photoreceptors, with each class of cones contributing to

a particular hue of a visual stimulus through two opponency mechanisms,

as explained in the quantitative model of Hurvich and Jameson [30], based

on Hering’s theory of color vision [31]. The color-opponent process theory

states that there are certain combinations of colors that our visual system
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Figure 2.12: The same image acquired with camera film (top) and sampled
with the three sensitivity functions of Figure 2.11. Image courtesy of [29].

is unable to perceive together, modeled into three opponent channels: red

and green, blue and yellow, black and white. This process happens when

signals from cones are combined in the subsequent layers of the retina in the

bipolar and ganglion cells. One example of this theory is the phenomena of

complementary-color afterimage, happening when photoreceptors adapt to

an overstimulation and start to lose sensitivity due to opsin bleaching: when

staring at a red patch for a period of time and then immediately shifting

our gaze to a white surface, an equally shaped green patch can be observed

on that surface.

2.7.1 Color matching functions

In 1931, the CIE and his members decided to render unique the color match-

ing functions previously introduced in Figure 2.11, in order to create a light-

ing standard that could have been used to univocate every description of

color. Those color matching functions (CMF), in fact, define a coordinate

system for tristimuls value that can describe color starting from its spectral

power distribution.

This coordinate system is called XY Z and is based on the three CMFs

x̄(λ), ȳ(λ) and z̄(λ), visible in Figure 2.13 and inspired by color matching
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Figure 2.13: The XYZ standard color-matching functions. Horizon-
tal axis is wavelength in nm, vertical axis is tristimulis value. Im-
age taken from https://it.m.wikipedia.org/wiki/File:CIE_1931_XYZ_

Color_Matching_Functions.svg

experiments but chosen with some particular constraints in mind:

• ȳ(λ) is an approximation of the scotopic luminosity function V ′(λ),

corresponding to the perceived brightness of monochromatic stimuli

of the same size and duration.

• All the three CMFs have the same area bounded by their graph, and

it equals to 1.

• The CMFs do not have any negative value.

• z̄(λ) has value equal to zero for most of the visible spectrum of light.

This standardized CIE CMFs are not without issues. The lack of neg-

ative values is in order to simplify the design of instruments for measuring

measuring tristimulus coordinates, but this also constitutes a disadvantage

because there is actually no combination of primary lights that yield the

CMFs with direct measurement, as they would have to possess negative en-

ergy value in some wavelengths. In 1951, Judd [32] improved upon the V ′(λ)

function by increasing the sensitivity at shorter wavelengths, creating the

Judd modified CIE V ′(λ). This adjustment still retains a flaw of assuming

a macular pigment density too high for a 2◦ visual angle. The Judd mod-

ified function was subsequently improved by Vos in 1978 [33] to produce
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the Judd-Vos modified CIE V ′(λ), but even if said function is supposed to

be more accurate than the standard CIE function, they have never been

officially adopted and are only used in scientific fields.

The three CMFs are used to compute the XYZ tristimulus values for any

given spectral power distribution P (λ), in the case of an emissive source, by

calculating their integrals over the visible spectrum:

X =

∫
λ
P (λ) x̄ (λ) dλ (2.1)

Y =

∫
λ
P (λ) ȳ (λ) dλ (2.2)

Z =

∫
λ
P (λ) z̄ (λ) dλ (2.3)

In the case of a reflective or transmissive sample, where the sample does

not emit light, instead of an SPD there will be a spectral reflectance S(λ)

that must be multiplied by the SPD of a reference illuminant I(λ), since

the appearance of the color sample is influenced by how it is illuminated.

There are infinitely possible illuminants and it is impossible to separate the

illuminant from the illuminated surface, hence a reference illuminant is used.

X =
1

N

∫
λ
S (λ) I (λ) x̄ (λ) dλ (2.4)

Y =
1

N

∫
λ
S (λ) I (λ) ȳ (λ) dλ (2.5)

Z =
1

N

∫
λ
S (λ) I (λ) z̄ (λ) dλ (2.6)

N =

∫
λ
I (λ) ȳ (λ) dλ (2.7)

Since the functions that are supposed to be in these integrals come from

measurements or empirical tests, they are never represented as mathematical

equations, but by discrete samples with constant spacing, ranging from 1 to

20 nm usually. In order to calculate the tristimulus with discrete samples,

instead of integrals are used summations:
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X =
1

N

∑
SiIix̄i∆λ (2.8)

Y =
1

N

∑
SiIiȳi∆λ (2.9)

Z =
1

N

∑
SiIiz̄i∆λ (2.10)

N =
∑

Iiȳi∆λ (2.11)

Both spacings of the discrete samples and the standard observer func-

tions must match in order to perform the summations. The three tristimulus

values are then used to obtain a chromaticity value defined as the intersec-

tion between the three XY Z coordinates and the plane X + Y + Z = 1.

The chromaticity is in fact described by the parameters x and y, while Y is

the luminance of a color:

x =
X

X + Y + Z
(2.12)

y =
Y

X + Y + Z
(2.13)

Y = Y (2.14)

The x,y coordinates are then used to find the chromaticity on the CIE

1931 color space chromaticity diagram, as shown in Figure 2.14, representing

how the human eye perceives light of a given spectrum. On the curved

boundary of the diagram lie the colors obtained from a single wavelength,

also defined as spectral locus.

2.7.2 RGB color space

The RGB color space is an additive color model based on the three base

components Red, Green and Blue. In an additive color space, each compo-

nent constitutes a source of light energy and the final perception of color

is determined by the sum of the three components. This is the principle

at the basis of the emission of a display monitor or a projector, where the

final value of each pixel is determined by the amount of the three red, green

and blue emissions in the pixel region. The opposite principle is instead

applied to subtractive color spaces, like the CYMK (Cyan, Magenta, Yel-
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Figure 2.14: The CIE 1931 color space chromaticity diagram, on the x,y
subspace. The diagram is the representation of the plane obtained at
tristimulus values X + Y + Z = 1. Public domain image taken from
https://commons.wikimedia.org/wiki/File:CIE1931xy_blank.svg.

low, Black) which is used in printing and where each component subtracts

reflective energy from the surface where it is applied.

Colorimetrically, an RGB color space can be defined as all colors obtain-

able from the combination of three primary colors with different intensities.

On the CIE diagram, this is equal to defining three chromaticity coordinates

and, thanks to the second Grassman’s law stating that a point correspond-

ing to an obtainable color from the mixture of two other colors of adequate

intensities in a diagram lies on the line between these two colors [34], every

combination of obtainable colors can be found inside a triangle with the

three primary colors as vertexes.

For example, Figure 2.15 shows the triangular sRGB color space with the

three vertexes corresponding to the three primaries Red, Green and Blue. It
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Figure 2.15: The triangular sRGB color space displayed as a subset of
the CIE chromaticity diagram. Image taken from https://commons.

wikimedia.org/wiki/File:CIExy1931_sRGB.svg.

is apparent that every RGB color space is a subset of the full chromaticity

diagram. In order to convert an XYZ color into the appropriate RGB values,

it must be multiplied by the reverse of the transformation matrix [M ]:

rg
b

 = [M ]−1

XY
Z

 (2.15)

where [M ] is standardized for each desired RGB standard and is depen-

dent by the reference white of the color space. For example, the reference

matrix for sRGB is
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M =

0.4124564 0.3575761 0.1804375

0.2126729 0.7151522 0.0721750

0.0193339 0.1191920 0.9503041

 (2.16)

The obtained v ∈ [r, g, b] values are not the final result since they are

linear. To obtain the final nonlinear V ∈ [R,G,B] values they must in fact

be subjected to gamma correction with the following formula

V = v
1
γ =

{
12.92v if v ≤ 0.0031308

1.055v
1
2.4 − 0.055 otherwise

(2.17)

2.8 Color Vision Deficiency

Color vision deficiency (CVD), also referred to as color blindness or dalton-

ism, is a condition of altered color perception, or inability to discriminate

color [35]. While CVD can be acquired after brain or retinal damage or

due to diseases that affect the eye, the leading cause of CVD is genetic

inheritance, due to an alteration in the X chromosome that regulates the

encoding of information on the opsin molecules of the photoreceptors, lead-

ing to anomalous trichromacy, dichromacy or monochromacy.

Anomalous trichromacy is associated to a deviation or abnormality in

the peak sensitivity in one of the three classes of cones photopigments.

Whether (L) long, (M) medium or (S) short-wavelength sensitive cones are

affected, the three types of anomalous trichromacy are called respectively

protanomaly, deuteranomaly and tritanomaly, and are characterized by a

shifted maximum absorption of wavelenght, so that M and L absorption

curves of an anomalous dichromat are more similar than in normal vision.

Dichromacy is characterized by the total absence of one of the three classes

of cones, namely protanopia for missing L cones, deuteranopia for M and

tritanopia for S. Dichromats are unable to discriminate hues that appear

different to a normal-vision individual, like a green from a red from a yel-

low, given that they only perceive the entirety of color from only two cone

classes. Tritan phenotypes are also associated with a progressive S-cone

dystrophy and accompanied by a disruption in the regularity of the cone

mosaic, caused by the loss of S cones [36]. Monochromacy is a more severe
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form of CVD resulting in a loss of two or all three cone pigments and is by

far the rarest form of CVD. In the case of a loss of function of all the three

classes of cones we refer to it as achromatopsia.

Figure 2.16: Confusion lines in the CIE diagram for protanope (P), deutera-
nope (D) and tritanope (T). All points from the same confusion line appear
the same to a dichromat. P, D and T points are the confusion points for the
three dichromacies, according to x, y coordinates. Image courtesy of [37].

Chromatic equivalent stimuli for a dichromat can be identified on the

CIE chromaticity diagram as per Figure 2.16. Given a stimulus, the non

discriminable colors are all the points of a line passing through the point

corresponding to the stimulus. These lines are called confusion lines and

they meet at a point termed confusion point, different for the three kinds of

dichromacy. The approximate coordinates of the three confusion points on

the CIE diagram are

(xp = 0.747, yp = 0.253), (xd = 1.080, yd = 0.080), (xt = 0.171, yt = 0)

but these positions are not fixed, since they are subject to a high variability

for each color deficient person.

2.8.1 Clinical tests

In order to have a diagnosis on the type and severity of color vision deficien-

cies, several clinical tests have been developed. They are usually classified

under four sub-types [38]:

1. Confusion chart tests, commonly referred to as pseudoisochromatic

(PIC) plates. The first PIC test in commercial production was Dr.
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Shinobu Ishihara’s Test [39], published in 1917. It consists of 38 plates

containing a circle of dots of variable size and colors, which form a

number or a shape that is clearly visible for normal vision subjects,

and invisible or difficult to see for subjects with forms of CVD. The

PIC test actually used for screening and diagnosis in aviation and

military is the American-Optical Hardy-Rand-Ritter (AO-HRR), first

published in 1954 [40], and currently published by Richmond Products

[41]. A PIC test especially designed for diagnosis and evaluation of

blue-yellow dyschromatopsia is the Lanthony’s Tritan Album (1987),

consisting of 6 plates with squares of arranged grey dots, with the dots

of one of the four corners are colored to form a smaller square. Of the

many other PIC tests, some examples worth of mentioning are the

Dvorine [42] (1944) test, the Boström-Kugelberg [43] (1944) and the

Böstrom [44] (1950).

2. Arrangement tests, where the subject has to sort colors based on hue

or into groups. In the Farnsworth Munsell 100 Hue test [45] (FM100),

the subject has to arrange 85 colored caps with increasing hue in the

correct chromatic order. The test results are obtained by inserting

into a graph the numbers on the bottom side of the caps, revealing the

type of CVD and its severity. Since the FM100 takes a long time to

be performed, a shorter version of the test has been developed, called

FD15, and it is composed by only 15 colored caps. Other notewor-

thy arrangement tests are the Lanthony desaturated d15 and Adams

desaturated d15, which use different chromas than FD15.

3. Matching tests, where the subject has to adjust two colors until they

match. The most famous example is the Nagel Anomaloscope [46], a

device invented by ophthalmologist Willibald Nagel used to identify

red-green color blindness. The subject sees a disc divided in half with

one side showing a yellow light (589nm) which can vary in brightness

while the other side shows a mix of red (671nm) and green (546nm)

light, with a variable ratio, the subject must then change the brightness

of the yellow side to match the color showing on the other side of

the circle. A normal vision subject can only get a match only in a

determined red/green ratio, but when this ratio changes, only color

blind subjects can match the yellow by changing its brightness.
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4. Naming tests, where the subject has to identify one or more colors,

are mostly used in occupational fields where color naming is needed,

like textile or paint industries, aviation, railways, maritime. The

Farnsworth Lantern was developed for use in the US Navy, it is a

lantern with two vertically aligned lights showing desaturated red and

green and a yellowish white, close to the protan and deutan confusion

lines. The subject is asked to identify 9 pairs of these colors shown for

2 seconds each. Since this test is no longer commercially available, it

has been replaced by the Stereo Optical OPTEC 900.

2.8.2 Computer tests

With the widespread diffusion of Personal Computers, computerized color

vision testing was investigated [47] and it has now become commonly used

in clinical practice. The main problem in computerized color vision testing

is that computer displays use additive color system, each pixel composed

of the sum of Red, Green and Blue lights, instead of the subtractive color

system used in inks, paints and filters. Moreover, each display has its own

different color gamut, brightness and contrast characteristics, so that they

have to be calibrated to be used in color vision testing.

There are numerous available programs that can test for color vision

defects and assess their severity, some noteworthy examples are the Rabin

Cone Test [48] used by the US Air Force, the ColorDx Color Vision Test,

also used in pediatry, the Colour Assessment & Diagnosis (CAD) test, used

in the UK civil aviation.

2.8.3 Daltonization methods

In 1996 Atkinson [49] filed a US Patent in which a computer system can test

a user for CVD and applies a compensatory color palette to the computer

display. Image processing techniques used to improve images for people

with CVD are called Daltonization methods, they consist in a series of color

correction algorithms that modify content in order to make it accessible for

CVD observers. Since then, a multitude of approaches have been taken

to help color blind people, either via algorithms, applications or physical

commercial products.

Daltonize [50] is a user-assisted recoloring technique for protanopes and

38



deuteranopes. It is based on the algorithm proposed by Brettel et al. [51],

users have to provide three parameters that specify the stretching of the

red-green channel and its projection into the luminance channel and the

yellow-blue channel. In [52], a daltonization algorithm for protanopes is

proposed, featuring an iteration technique for the selection of adaptation

parameters and a color clustering method to avoid color matching between

the original and daltonized image.

In the same year, Huang et al. [53] developed a recoloring method for

red-green color blindness that, contrary to other previous works, aims to

preserve the original colors of the base image as much as possible, produc-

ing images that appear to have a more natural look to the color blind users.

This approach was also taken by Kuhn et al., [54] which presented a de-

terministic image-recoloring technique for dichromats based on mass-spring

optimization.

In 2010 Machado and Oliveira [55] developed a real-time contrast en-

hancement technique for dichromats that uses Gaussian pairing and pre-

dominant component analysis. Their approach is based on the observation

that whenever dichromats experience some significant loss of color contrast,

most of this contrast can be recovered by working on a perceptually uniform

color space, and orthographically projecting the original colors onto a plane

aligned with the direction that maximizes contrast loss.

Their transformation is performed in the CIE L*a*b* color space in two

steps: the direction that maximizes the loss of contrast is estimated using

Gaussian pairing and the recoloring is realized by determining and correcting

any sudden variation of the direction of the vector estimated to maximize

the loss of contrast.

In 2012 Kotera [56] proposed a spectral-based image Daltonization al-

gorithm for the dichromats. It extracts the visible and invisible spectra to

dichromatic vision, and shifts invisible spectra to a visible spectral region,

reintegrating it into the fundamental spectra of source image.

In a recent paper, Joschua Simon-Liedtke et al. [57] compiled a checklist

of guidelines that should be considered when designing and evaluating a

recoloring tool, hereby reported:

“Recolouring should (i) preserve the naturalness of the image in general,

(ii) keep individual colour characteristics as much as possible, and (iii) sus-

tain colour communicability consistently across the workflow. (iv) It should
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state the colour tasks it intends to improve, and (v) the target images it uses.

(vi) It should be customizable for individual CVD types and severities, and

(vii) account for colour management across different media devices. (viii)

Finally, it must be tested on different types of images (ix) by real observers

with CVDs.”

A novel approach is also taken by [58], proposing a strategy of dal-

tonization that enhances chromatic edges and contrast to highlight areas

and objects colored in confusion colors, rather than shifting the color of

objects and areas altogether. This is achieved by computing an edge map

obtained from the gradient of the error image between the original and its

simulation.

Due to their nature, mobile phone apps can be used to help people

with CVDs in various ways. There are countless apps, designed with color

blind people in mind, which offer various tools to help with daily tasks,

some of them also implementing Daltonization algorithms. The tools usually

implemented by mobile phone apps have different purposes, they can help

identify a color from an image or a live picture from the camera, adjust or

shift colors to make them easily recognizable by people with color blindness,

find colors on a picture that match a chosen color and highlight them, or

help in finding harmonizing colors.

In the last few years, wearable devices have started to be developed in

order to assist people with abnormal color vision. The EnChroma glasses,

for example, use a series of optical filters in their lenses to modify chromatic

and luminous aspects of the color appearance of light to human vision [59].

By acting like a multi-band filter that cuts out specific wavelengths of light,

they increase red-green color discrimination for protanomalous and deutera-

nomalous observers. In 2014 Tanuwidjaja et al. [60] developed Chroma, an

augmented-reality wearable support for color blindness implemented on the

Google Glass device. It can operate on four distinct modes: highlighting

a range of colors, comparing and contrasting two different colors, apply-

ing a Daltonization algorithm and outlining areas strongly affected by the

person’s color blindness.
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Chapter 3

State of the art

3.1 Foveated Imaging Systems with Space-variant

Resolution

Space-variant images, defined as images whose resolution changes across

the image, have been studied for about three decades and have surpassed

conventional approaches in robotics applications to lower the amount of pro-

cessing required, especially when real-time constraints make it necessary to

utilize resource-economic image representations and processing methodolo-

gies. They are especially used in studying visual attention, target tracking,

motion estimation of camera systems, and 3D perception.

The reasoning beyond the use of space-variant images is that in most

cases, execution time and computer memory space must be spent in the

first place to eliminate the redundant information in acquired images, in

order to extract the features required by the execution of an assigned task.

If this reduction in information was to be performed at the lowest level of

a visual process, that is, at the sensor level, the efficiency of the system in

terms of execution time and later computation, would be greatly improved.

On the other hand, the information filtered out at the sensor level is no

longer available for further computation.

This approach has both biologic and computational complexity evidence.

Biologically, we see evidence of the processing in the human visual system.

Each region in the retina can be directly mapped to a specific portion of

visual cortex where it is processed. The fovea is the region of highest visual

acuity, and even though it only covers only a 1% region of the retina, it
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maps to over 50% of the visual cortex [10]. Therefore, our brain would have

to be significantly larger if our retina was covered with photoreceptors at

the same density as it is in the fovea.

Computational complexity analyzes for foveal vision systems has been

performed by Bandera [61], presenting a first order analysis where he uses

a complexity measure of the amount of data captured multiplied by the

computation time. Using this metric, a Cartesian array of NxN pixels has

an O(n4) complexity while an exponential foveal array has a complexity of

O((log2 n)3).

The most common space-variant image structures is Log-Polar mapping:

Log-polar mapping is a geometrical image transformation that attempts

to emulate the topological reorganization of visual information from the

retina to the visual cortex of primates. It defines a pixel to be an arc slice

between two radii while the spacing of radii distances follows a logarithmic

relationship. The log-polar mapping creates high resolution pixels at the

center of the frame and low-resolution pixels on the periphery.

Figure 3.1: Log-polar transformation. The retinal plane (left) is mapped
onto the cortical plane (right) by ω = log (z), where concentric circumfer-
ences and radial lines become straight. In the rectangular grid, each position
corresponds to a section of a concentric annulus in the retinal plane. Image
courtesy of [62].

It can also be found in the literature under different names, such as
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log-polar transformation or the log(z) model. The reason for this last de-

nomination comes from the fact that the mapping can be mathematically

modeled by the complex logarithmic function log(z), where z is the complex

variable representing points on the image plane.

Considering the complex retinal and cortical (log-polar) planes, repre-

sented by the variables z = x + jy and ω = ξ + jη, respectively (j is the

complex imaginary unit). The complex log-polar mapping is:

ω = log (z)

and the log-polar coordinates ξ (eccentricity) and η (angle) are given by:

ξ = log (z) = log
(√

x2+y2
)

η = arg (z) = atan2 (x, y)

where atan2(y, x) denotes the two-argument arctangent function that

considers the sign of x and y in order to determine the quadrant of the

resulting angle. This mapping transforms concentric circumferences and

radial lines in the retinal plane into straight lines along the ξ and η directions

in the cortical plane, respectively (Figure3.1).

Properties and practical implication of this mapping are:

• Conformal mapping: the space-variant image preserves oriented angles

between curves and neighborhood relationships. While this theory

predicts that Cartesian image processing operations can be applied

to log-polar images, in practical applications specific algorithms are

required in most cases.

• An elegant trade-off solution, between the criteria of wide field of view,

high visual resolution and amount of data. Especially in robotics, the

lesser size of log-polar images facilitates visual data processing, and the

highest resolution at the center (foveal predominance) implies that

targets can be tracked without segmentation from the background,

while incidentally providing an easier segmentation process.

• Biological plausibility: since it approximates the receptive field distri-

bution and retinal-cortical mapping in the visual system of mammals,

it can be seen as a support tool to neurophysiology, or an inspiration
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from the natural world for engineering strategies.

• Rotation and scaling invariance: when rotated or scaled, patterns in

the log-polar image only undergo translations, preserving their shape.

This is helpful for rotation- and scale-invariant pattern recognition and

motion estimation in active tracking scenarios. Still, in contrast to

traditional square arrays, this representation is not location-invariant.

There are different ways to obtain log-polar images either from conventional

images or directly from a scene, using software and/or hardware-based solu-

tions. One of the visual processes where log-polar imaging is most suitable

is probably active target tracking, some advantages have also been found

in estimating the observer’s motion using log-polar images, due to its polar

geometric nature which fits particularly well with time-to-collision computa-

tion and other navigation tasks in mobile robots. Binocular depth estimation

has also been considered with a joint usage of log-polar imaging and active

vergence movements.

A different approach adopted by Geisler and Perry [63] is the use of a

space variant pyramid, by which an image is decomposed into a pyramid of

2D arrays of coefficients representing different spatial frequency bands. The

first level of the pyramid contains the greatest number of coefficients and the

highest spatial frequency band. Each successive level of the pyramid contains

one fourth the number of coefficients of the previous level, and encodes

the band of spatial frequencies centered at one half of the center spatial

frequency of the previous level. Geisler’s approach was used by Alonso et

al. [64] for a real-time foveation technique by eliminating the perceived

image intelligibility for image obfuscation purposes, while simultaneously

preserving privacy in face deidentification.

3.1.1 Case Studies

The first mathematical descriptions and computational implementations of

space variant sampling are due to Sandini and Tagliasco [65], which created

a model based on a discrete distribution of elements whose radii increase

linearly with eccentricity in the visual field, that was supposed to be imple-

mented in chip fabrication. In their paper, they described a special type of

mapping, called “retino-cortical”, characterizing the human representation
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of visual stimuli in the visual cortex and they proved that a logarithmic-

polar law applied to retinal coordinates can be used to mimic this biological

transformation. They modeled two distinct regions: the fovea and the pe-

riphery. The fovea uses a high-resolution, uniformly sampled rectangle in

the center of the field of view, while the periphery uses the log-polar map-

ping to cover the visual field with circular elements with low overlapping,

simulating the density of retinal cells. To minimize the overlapping, they

made it so that the intersections of the circular elements’ contours counted

as vertices of hexagons. The linear relationship between radius R and ec-

centricity E was expressed, in terms of number N of equal size elements at

a given eccentricity, by the following relation:

R =
2π

3N
E

This structure obtained (example in Figure 3.2) is algorithm-independent,

so that any local computation can be applied, like spatial filtering or edge

detection, without compromising the spatial compression of visual infor-

mation. From a computational point of view, this process is equivalent to

removing an increasing amount of high-frequency components from the cen-

ter to the periphery, but introducing noise artifacts represented by the sharp

discontinuities between the circles.

The simulation was carried out by computing the average of the light

intensity distribution over the single areas. One of their main findings is

that cross correlation procedures applied to space variant descriptors present

clear and deep peaks, simplifying the research of corresponding points in

different images.

In their work, Robert-Inacio and Yushchenko [66] use an hexagonal cell

model to achieve eye saccade mimicking because of the similarities in shape

between hexagonal cells and retinal cells. Such a sampling leads to setting

up foveated image processing with good results in terms of data preservation,

utilizing 15 times less data and performing in a really fast way. The foveated

images are used to compute a sequence of points of interest: by following

this sequence, a system of vision can mimick eye saccades when focusing

successively at each point of interest. This process is used for modeling

visual attention, as it takes into account detection of points of interest.

Tistarelli and Grosso [67] investigated the use of space-variant sensing
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Figure 3.2: Structure of the model proposed by Sandini and Tagliasco. Ex-
ample with 7000 elements obtained with parameter N = 64. Image courtesy
of [65].

in face recognition. In particular, they developed a hybrid approach, coding

each face image by few space-variant descriptors and then applying princi-

pal component analysis for data reduction. A framework for practical use

of space variant descriptors on large-scale applications is proposed. The

reported experimental results show that the prior extraction and match of

salient points allows to boost correlation procedures commonly used to com-

pare space variant descriptors.

Rojer and Schwartz [68] use the continuous log-polar transformation for

a space-variant sensor design based on the conformal mapping of the half

disk, ω = log (z+a), with a > 0 to displace the singularity at the center of

the field of view, which characterizes the anatomical structure of the non-

human primate and human visual systems. This model allows the designer
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to select the desired field of view and the number of pixels in the outermost

periphery. Using this model, they show how to duplicate the field of view

and resolution found in the human visual system.

Yamamoto [69] presented an implementation for a foveated robot vision

system called Fovia (FOVeated Image Application). They used log-polar

mapping to simulate both the photoreceptor sampling and their receptive

fields. The sampling function defines two distinct regions: a foveal, uni-

formly sampled region and a peripheral region where receptive field size in-

creases as a linear function of eccentricity. They demonstrate the modularity

of the system and its potential as a testbed for active vision by incorporat-

ing two different attentional mechanisms and quantitatively evaluating their

performance on artificial and natural images, as shown in Figure 3.3.

Figure 3.3: Simulation of a gaze movement pattern with an active foveated
vision system, exploring a grayscale image of Einstein. Image courtesy of
[69].

Jurie [70] improved log-polar mapping by specifying the range of the

logarithmic function used for the mapping and by introducing algorithms

to perform basic operations on the space-variant images, allowing real-time

applications like face tracking with low-cost hardware. The grey level values

of log-polar pixels are computed using the log-map and rectangular pixels

gray level values; the originality of the encoding is that log-polar pixels are

not obtained by aggregating rectangular pixels, but are a fractional part of

rectangular pixels, producing more regular images.

Concluding, over the last few decades, fundamental properties of space-

variant image representation have been studied and exploited in appropri-

ate algorithms. Log-polar sampling provides interesting benefits in several

scenarios. One criticism that can be posed is that, while it is clear that
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space variant descriptors can characterize important cognitive processes like

recognition, the practical adoption of space variant approaches suffers from

computational problems and turns out to be much less appealing than meth-

ods based on regular image sampling. A good reason why foveated vision

deserves study and investigation lies in its biological inspiration: it can be

used to broaden our still limited understanding of human vision and the

related brain processes. It is worth noting that despite the biological ap-

proach, the works here discussed that adopt log-polar mapping do not take

into account the displacement of post-receptoral cells, mainly the ganglion

cells, when mapping the visual world onto the brain.

3.2 Modeling space variance in the retina

Log-polar mapping is practically used as an approximation of the retinal

mapping, but the way photoreceptors are spatially arranged in their own

retinal layer is fundamentally different and regulated by other principles.

The basic idea is that differences in the composition of retinal mosaics are

resembling of the differences between fingerprints: there are no retina or

fingerprint equal between individuals, yet they can be regarded as a sample

from the same constrained random process. These characteristics determine

the limits of the sampling properties that are observable across all human

retinas. This section reports known studies concerning the space variance

of the cones sampling structure.

Watson [71], in modeling human spatial vision, made a first approxi-

mation by observing that spatial processing is identical across the visual

field but changes according to a bi-dimensional scaling factor s given by the

function

s = 1 + ke

where k is a constant estimated at 0.4 and e is eccentricity in degrees.

This function determines that a sensor at the center of the visual field, the

fovea, has frequency f, width w and density d ; while as the eccentricity e

increases, density and frequency rapidly drop becoming d/s and f/s and

width increases by ws, as illustrated in Figure 3.4.

In order to produce a cone sampling array, Ahumada [72] started from

non-human primate data to create a model that generates a list of coor-
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Figure 3.4: Sampling structure for a base frequency of 1 cycle/degree. Axes
are in visual degrees from the fovea. Image courtesy of [71]

dinates corresponding to the center of cones. Each point is considered as

the center of a disk region of variable radius selected from a uniform ran-

dom distribution of radii, the circular regions are then distributed starting

from a seed of two adjacent discs, with the restriction that discs can’t over-

lap. Then, iteratively, discs are added to the array until the packing is

complete, and ultimately a small normally distributed jitter is computed on

the coordinates of the central points, to allow the distribution to become a

jittered-lattice model. The authors attempted at generating a space-varying

parametric model to extend the modeling capabilities beyond the foveola, by

variation of the mean and standard deviation of the radius of the cone disc

and standard deviation of the postpacking jitter in function of the distance
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from the center of the retina, but they found out that past the central fovea

the model did not account for additional disorder processes.

Curcio and Sloan continued to explore the possibilities of modeling the

human photoreceptor topography by proposing a model of cones distribution

based on a regular array of points subjected to spatial compression and

a jitter, validating them by fitting with actual cone mosaics [73]. Their

performed analysis was based on the distribution of distance and angles of

neighboring cones, with a comparison of real cone mosaics with artificially

generated ones, demonstrating the existence of local anisotropies in cone

cells spacing.

Wang’s attempt to model the sampling properties of the cone mosaic

[74] consisted in a polar arranged array of cones subjected to a jitter ac-

cording to the standard deviation of a Gaussian normal distribution, with

the additional constraint of a minimal spacing rule, visible in Figure 3.5.

By comparing the power spectrum of distributions of human foveal cones

and the generated sampling arrays, similarities are presented, as well as

exhibiting basic features of real foveal cone mosaics.

Figure 3.5: Sampling arrays generated by the polar-arranged, jittered-lattice
model of Wang et al. Image courtesy of [74]

In the human eye model of Deering [4], the cone mosaic is modeled from

an algorithm that generates cells starting from a seed and then surrounding

them with points defining a polygon, constituting the cell boundary, as

observable in Figure 3.6. With each iteration, new cells are added adjacent

to the seed or previously generated cells and are subjected to both attractive
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and repulsing forces to adjust their position, modifying their boundaries.

This cone synthesizer is validated by calculation of the neighbor fraction

ratio and by matching statistics of density in cones/mm2 with values in

literature.

Figure 3.6: Structure of first 1.3 visual degrees of synthesized retinal cones
by Deering. Image courtesy of [4].

Another method to generate space variant cone mosaics has been pro-

posed by Bradley et al. in 2014 [75], using heuristics to position cones along

isodensity contours around the fovea, making sure that cones are no closer

than the spacing implied by a density model.

ISETBIO [8] is an image-computable method combined with an infer-

ence engine designed for exploring the properties of the earliest stages of

biological visual systems, estimating the effects of human optics, eye move-

ments, cone absorptions and photocurrent, and retinal cell properties. The

proposed method for generating cone mosaics aims at retaining the quasi-

hexagonal cone packing of the fovea while decresing the mosaic density with

eccentricity, subjecting each cone and its neighbors to mutually repulsive

forces.

3.3 Models of the Retina

The complex organization of the retina is constituted by numerous biological

components with different characteristics, and their behavior is regulated by

as many parameters. There are several studies concerning the characteris-

tics of the human retina and how they relate to the sensation of color, so

modeling the retina and its properties is a task undertook by a large number

of vision scientists. This section does not intend to be an exhaustive survey

but a starting point to consider some of the models developed in this domain

and their different fields and purposes.

Models of the retina have the goal to pre-process an input signal into an

accurate representation of a natural scene. Therefore, the majority of them

are based on the concept of ecological vision [76], since the pre-processing of
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the retina acts like an optimization of the information representation derived

from a visual scene. Alleysson and Guyader [77] propose a distinction of

retinal models based on their modeled elements and application. Biological

models are based on Hodgkin and Huxley model of neural transmission [78],

in which the transmission of synapses between neurons is modeled. A more

general system approach of neural modeling is based on geometric spaces of

neural activities, where the behavior of the neural model is determined using

geometric rules. Such models are also known as Neurogeometry models, after

the work of Petitot [79]. Lastly, there are information theory models, that

consider the retina as an information transmission system. In table 3.1 a

summary of the considered models is presented.

Paper Goal Modeled ele-

ment

Results

1993,

Beaudot

et al. [80]

To provide an

efficient imple-

mentation on a

conventional com-

puter architecture

of some early

visual processing

that occurs in the

eye.

Non-homogeneous

filtering by the

crystalline lens,

photoreceptor

coupling, chro-

matic sampling

and digital fil-

tering with an

irregular spatial

sampling.

Provides the

fundamental

equations of the

retina functions to

model the retina

circuitry through

a spatio-temporal

filter.

2005,

Hans van

Hateren

[81]

To develop a

model of the vi-

sual system that

could function

well in natural,

outdoor-lighting

conditions, using

horizontal cell

measurements.

A model for the

sensitivity reg-

ulation in outer

retina, consists

of a nonlinearity

cascaded with

three feedback

control loops

Cone responses

are the major

factor regulating

sensitivity in the

retina.
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2006,

Hans van

Hateren

[82]

A model that

provides range

compression, as

well as luminance-

dependent noise

suppression and a

global tone map-

ping algorithm for

rendering HDR

images.

A dynamical

model of response

characteristics of

the human cones.

A cone model

that describes the

fast adaptation

performed by the

enzymatic am-

plifier inside the

cone that trans-

duces light into

electrical signals,

well-suited for

rendering HDR

videos.

2007,

Hateren

and

Snippe

[83]

To establish a

tractable compu-

tational scheme

that can be used

as a preprocessing

module for study-

ing and modeling

visual informa-

tion processing

in downstream

parts of the hu-

man retina and

beyond.

Include the pig-

ment bleaching

at the cone outer

segment to better

simulate cone

response.

A model for hu-

man L- and M-

cones that pro-

duces credible re-

sponses at intensi-

ties ranging from

mid-mesopic levels

(1 td) up to high-

photopic levels.
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2007,

Hérault

and

Durette

[84]

To create a model

of the retina with

respect to sam-

pling, spatiotem-

poral filtering,

color-coding and

non-linearity.

Spatiotemporal

filtering, Color

multiplexing,

Color decod-

ing, Irregular

sampling, Space-

variant sampling,

Photoreceptors

compression,

Ganglion cells

compression.

A model of reti-

nal characteristics

including proper-

ties and their con-

sequences on the

processing of vi-

sual information.

2009,

Wohrer

and Ko-

rnprobst

[5]

A large scale sim-

ulation software

that transforms a

video input into

spike trains, al-

lowing large scale

simulations in rea-

sonable processing

times and keeping

a strong biological

plausibility.

A linear model

of filtering in the

Outer Plexiform

Layer, a shunting

feedback at the

level of bipolar

cells accounting

for rapid contrast

gain control, and

a spike generation

process modeling

ganglion cells.

A software tool

that transforms

realistic large-

scale video input

into spike trains.

2010,

Benoit et

al. [85]

Showing the ad-

vantages of using

a model in or-

der to develop effi-

cient and fast bio-

inspired modules

for low-level image

processing.

Spatio-temporal

filtering, fre-

quency and

orientation based

analysis.

A software tool

with image pro-

cessing mod-

ules for contour

enhancement,

moving contour

extraction, mo-

tion analysis and

motion event

detection.
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2019,

Cottaris

et al. [8]

To provide a

computational-

observer model

of the human

spatial contrast-

sensitivity func-

tion.

Human optics,

eye movements,

cone absorptions

and photocur-

rent, retinal cell

properties.

Derived contrast-

sensitivity func-

tions agree well

with ones derived

using traditional

ideal-observer

approaches, when

the mosaic, optics,

and inference en-

gine are matched.

Table 3.1: Summary of considered models of the retina.

3.4 Spatial color reconstruction

In digital imaging, demosaicing is the procedure used to reconstruct a color

image starting from the monochromatic RAW image. Similarly to the hu-

man eye, when light entering in the lens of a camera reaches the sensor, it is

converted into electrical pulses and then into digital values, to be stored in

a RAW file. This file holds the original monochrome image data captured

by the camera, referred only to the luminance image. In order to obtain a

full-color image, a conversion is performed from the raw data using a Color

Filter Array (CFA). The most widespread scheme among the Color Filter

Arrays is the Bayer pattern (Figure 3.7), a 2x2 matrix, where 50% of the

photodiodes capture the green (G), 25% are used for red (R) and the re-

maining 25% for blue (B). The additive mixture of these three components

allows the reproduction of images. Each photodiode is able to capture the

information related to only one color and can not provide the data for the

formation of whole (intended as RGB component) pixel. To address this

limitation, a demosaicing process is used, which interpolates between the

pixels of the image, to generate the missing color information. In this way

an RGB image can be generated to be displayed on the monitor.

The most used CFA mounted on current digital cameras is the Bayer

Pattern. However, many others have been developed with the purpose of

overcoming the Bayer Pattern limits. In fact, according to the characteristics
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Figure 3.7: Example of CFA using the Bayer pattern.

of the input image, different pattern could reduce some artifacts. In [86] a

set of different pattern are presented. We show them in figure 3.8.

Figure 3.8: a) Bayer CFA. b) Lukac and Plataniotis CFA [87], c) Yamanaka
CFA [88]. d) Diagonal stripe CFA [87] e) Vertical stripe CFA [87], f) Modi-
fied Bayer CFA [87], g) HVS-based CFA [89]

The patterns showed in Figure 3.8 are all RGB, with the same pixel size.

Other solutions have been proposed in the past, or are actually subject of

research. According to [90], Fujifilm designed a new pattern where the sub-

components of the sensor pixels have varying size: the green is larger than

the red and blue, and a white filter is added.

There are many algorithms to reconstruct the missing color information

of the pixels. Some of them reconstruct the missing value interpolating

according to a fixed scheme (no-adaptive algorithms), while others, more

complex, interpolate according to the spatial features of the neighbor pixels

(adaptive algorithms). Bilinear interpolation [91] is one of the simplest

interpolation methods. It obtains the value of the missing pixel simply

calculating the average of the adjacent pixels. It works separately on the

three channels, without taking in account the possible correlation among
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the RGB values. This method works well on regions of the same color, but

it generates artifacts near the edges.

Brainard [92] proposed an approach based on Bayesian methods, starting

from the responses from an interleaved array of trichromatic sensors and

a model of statistical distribution in natural images, which minimizes the

expected reconstruction error.

Alleysson [93] developed a model for spatial multiplexing of color, based

the assumption that the human visual system has some solution to the

problem of color reconstruction, since its subsampling does not affect the

spatial resolution and color accuracy of the reconstructed image. He did

this by separating luminance and chrominance in the Fourier domain, coding

luminance entirely and subsampling chromatic information.
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Chapter 4

Spatial distribution of

photoreceptors

The regularity and development of the retinal cone cells mosaic have been

the subject of different theories. Wassle and Riemann [94] proposed two

models of mosaic generation based on mechanisms of self-regulation of an

original random pattern. The first contemplated repulsive forces acting be-

tween cells to determine their final arrangement, the second was based on

competition for territory for each cell with its neighbors, the same as for the

treetops competing for a surface area to get sunlight from. In analyzing the

retinal mosaic from a non-human primate, Yellott [95] postulated that the

distribution of photoreceptors in conforms to a Poisson disc distribution. He

treated cones as an array of sampling points in a two-dimensional space and

performed spectral analysis on it, and observed that the spectral properties

of the cones mosaic is representative of a Poisson disc point process, with

the only difference of an additional minimum distance ruling between the

center of a cell and its nearest neighbors, due to the cell possessing a body

size, unlike a point distribution in space. Galli-Resta et al. performed fur-

ther investigation in this direction, analyzing the spatial features of ground

squirrel retinal mosaics [96]. Their findings suggest that the array of rods

and S cones can be adequately descripted by a dmin minimal-spacing rule

in conjunction with a desired density of photoreceptors. Poisson disc distri-

butions are now regarded as one of the best sampling methods, by virtue of

their blue-noise spectral characteristics [97].
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4.1 Topography of the retina

The number of photoreceptors in the retina is highly variable, for the purpose

of this work data from Curcio et al. [98] will be used, reporting to have an

average of 92 millions of rods and 4.6 millions of cones. The fovea centralis is

a 2 mm wide pit located in the center of the retina and is the region with the

peak density of cones, amounting at 199,000 cones/mm2. In the center of

the fovea the rods are missing, in an area corresponding to roughly 1.5 to 2

visual degrees, visible in Figure 4.1. Another peculiarity of this region is that

bipolar and ganglion cells are not directly in front of photoreceptors but are

displaced towards the outskirts of the fovea, so that light radiation focalized

by the eye’s optical system is delivered directly without passing through the

other retinal layers. Moreover, in the macular region of the retina, midget

ganglion cells are known to form a private-line circuit in which ON and

OFF midget bipolar cells contact a single L or M cone and in turn provide

synaptic output to only a single ON or OFF midget ganglion cell partner,

establishing a clear anatomical basis for an L or M cone pure receptive

field center [99], so that each limb of each cone signal has a single reserved

bipolar-ganglion pathway to the brain in a way that they are individually

processed, effectively explaining why the fovea is the region with the highest

visual acuity in the retina.

By moving only of 120 to 150 µm from the center, the density of cones

halves and keeps on declining, unevenly across the eye’s meridians. This

decline is faster in the vertical meridian than in the horizontal, but eventu-

ally it slows down in the periphery. Since the temporal region of each eye

overlaps in human stereoscopic vision, it is possible to notice that at the

same eccentricities, cone density in nasal retina is 40-45% higher than in the

corresponding temporal region. Toward the far periphery of the retina, cone

densities levels off or slightly increases by 13 to 17% more than the corre-

sponding lowest density along the same meridian. The graphs in Figure 4.2

report the mean cone density in function of eccentricity along meridians.

As for the rods, their density rapidly increases right after the foveal rod-

free zone, with densities up to 100,000 rods/mm2. This region, called rod

ring, possess an horizontally oriented elliptic shape and is situated at 4.5 mm

or 18 degrees from the foveal pit, roughly the same eccentricity of the optic

disc. Along the rod ring in the superior retina lies the region with highest
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Figure 4.1: Sections of the cone mosaic inner segments. A-C are foveal
centers containing only cones, to be analyzed in Chapter 5. D is the edge of
the rod-free zone, with arrow pointing to a single rod, E is the point of equal
rod and cone density, F is the foveal slope, where rods outnumber cones by
4:1. Image courtesy of [98].

rod density, called the hot spot, with an average of 176,000 rods/mm2. At

higher eccentricities, rod density steadily declines towards the far periphery,

reaching minimum values of 30,000 rods/mm2.

All of the photoreceptor signals ultimately convey into the optic nerve,

considered part of the central nervous system and composed of ganglion cells

axons and glial cells providing sustenance to the tissue. In comparison to

the hundred of millions photoreceptor cells, the average human optic nerve

is composed of a million fibers, so that their ratio is about 100:1. This

indicates a compression in the visual signal, with ganglion cells mediating

signals from a higher number of photoreceptors the higher the eccentricity,
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Figure 4.2: Mean of cone density at different eccentricities in the retina in
the horizontal (A,C) and vertical (B,D) meridian. Image courtesy of [98].

compatible with our visual acuity.

4.2 Color sampling

The three submosaics of retinal cone cells allows to perceive different hues in

a mechanism of opponency inside of the receptive field of the ganglion cells.

However, spatial organization of the three classes of cones is not constant

between individuals and mechanisms that determine their development and

regularity are still object of research.

The S cones mosaic is independent from the L and M mosaics and it has

observed to be distributed in a non-random fashion, taking the semblance of

an almost hexagonal array [100]. The amount of S cones has been measured

to be approximately 7% of the total cone population, and their highest

concentration is found in a ring at 0.1 - 0.3 mm eccentricity. Moreover, S

cones are inherently absent from the center of the fovea, the region of peak

cone density, with a diameter measured to be from 100 µm [101] up to 750

µm according to Hendrickson and Youdelis [102].

Whether the remaining cones end up being M or L during the retinal

development is entirely regulated by the X chromosome gene, which deter-

mines the corresponding cone opsin. While S cone cells are of relatively easy
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characterization, there are not many differences between L and M cones,

given that their pigment is 96% identical. The first to actually examine

their mosaic were Hofer et al. [103] using a combination of adaptive-optics

imaging, manipulating the optical wavefront to avoid aberrations, and reti-

nal densitometry to selectively bleach the photopigments in the cones using

different wavelengths. L and M cones are generally randomly distributed in

the retina, in fact an evident departure from the average ratio of 2:1 L to M

has been observed, both interpersonally and in the same subject in different

retinal locations, as in Figure 4.3, in addition to a tendency towards clump-

ing. Also, a protan color-vision defective retinal mosaic was estimated to

have an average L:M ratio of 0.5:1.

Figure 4.3: False color images of retinal mosaics of five different subjects,
showing the location of L (red), M (green), and S (blue) cones in patches
of retina at approximately 1-deg retinal eccentricity and the correspondent
L:M cone ratio. Image courtesy of [104].

In spite of this high variance in spatial distribution of cones in different

subjects, there has been no notable difference in subjective perception. A

yellow wavelength has been used to evaluate interpersonal differences in

perception, since it is neutral in the red-green opponent mechanism and its

perception is thought to be mainly regulated by differences in the excitation

of L and M cones [105]. Even in subjects with widely different L:M ratios,

the wavelength perceived as yellow remains almost constant, indicating that

this variability is offset by some perception mechanism probably involving

cortical elaboration of L versus M cone opponency in the midget pathway,

but it is however still controversial [99].

Hagstrom et al. [106] analyzed the cone pigment mRNA at different

locations in the eyes of 23 male donors 5 to 96 years old, finding variations

in L to M cone ratios ranging from 0.82 and 3.00 and significant differences

in said ratio in function of the eccentricity, with M cone population dropping

by 15% from the center to the far periphery. In their 1999 article, Roorda
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and Williams [2] describe how to take in vivo images of the cones in two

subjects they used a CCD sensor coupled with a Hartmann-Shack wavefront

sensor to measure the aberrations of the eye’s optics and compensated for

it with a deformable mirror. By taking different pictures with either fully

bleached, selectively bleached and dark adapted photopigments, they were

able to characterize the individual cones, to find average L to M ratios of

1.15 and 3.79.

In order to investigate the perception of small spatial scale stimuli after

elaboration of the cortical circuitry, Hofer et al. [104] characterized the

locations of S, M and L cones in patches of retina at the same eccentricity

in 5 different subjects with normal color vision, as per Figure 4.3. In order

to stimulate an area corresponding to half the diameter of an individual

cone they used adaptive optics to shine brief, tiny flashes of monochromatic

light (500, 550 and 650nm) in selected locations of the characterized retinal

regions, with the subjects reporting the hue appearance of the flash.

In Figure 4.4 are presented the experiment results for a 550 nm flash.

It is possible to observe that contrarily to plausible expectations, a large

number of hue categories were necessary to describe the perception of the

same stimulus, including white, reportedly caused by the excitation of mul-

tiple classes of cones since it contains all colors, but also blue and purple,

even for 550 nm and 600 nm flashes of light set to an intensity threshold

specific for M and L cones, since S cones require a higher intensity of light

to be stimulated. This suggests that contrary to the standard model of

color opponency, M and L cones may have a role in the perception of the

blue sensation. Moreover, two subjects reported an ”indescribable” cate-

gory, meaning that they perceived the flash but had no definite perceptual

response.

Subjects with more L cones in their retina reported a higher number of

red sensations, while subjects whose retina is rich in M cones reported more

green than red sensations. This large number of required hue categories and

the tendency to correlate green and red sensations with the varying L to M

ratio is constant for all of the tested wavelength of light. The interpersonal

difference in the identification of hues is different from previous experiments

performed without the aid of adaptive optics, where statistics of reported

color sensations was constant between individuals. In fact, this dependency

of expected green and red responses from L to M ratio is not present in color

63



Figure 4.4: The color sensation reported by subjects when presented a small
spot of 550 nm light. Image courtesy of [104].

appearance in large scale stimuli.

What can be evidenced from this experiment is that stimulating cones

with the same photopigment can bring to different color sensations, even

without stimulation of other retinal regions or different wavelength-sensitive

cones. This challenges the elementary theory of color opponency and trichro-

matic vision, suggesting that spatial distribution of stimuli, photoreceptor

mosaic and L to M ratio have some kind of role in this change of paradigm.

In [107], it is argued that there are interactions between pattern vision

and color vision since they are both processed in the early stages of visual en-

coding, leading to a trade-off between the acuity of color and pattern vision.

Moreover, when considering our vision as trichromatic, one assumption is

that the spatial structure of the image has no role in the sensing of a scene.

A retinal image is considered to be composed by three different cone mosaics,

each with its own elaboration of the light spectra in the form of spot-like

cone excitations. However, this model of vision does not consider the spatial

variation of the three cone classes submosaics: at each retinal location there

is only one cone, and the sensation of color comes from comparison between

cones of different classes at different spatial locations, meaning that space

and color are mutually dependent in the neural processing of color [105].

Alleysson and Meary, in proposing a Neurogeometry of color vision [108],

find an obstacle in the randomness of the cone mosaic and the implication

that post-receptoral elaboration would need to adapt to the local arrange-

ment of cones in the mosaic. Since the chromatic information is subsampled,

the visual system must perform some sort of demosaicing, so a knowledge
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of the spatial position of each cone is required. The interaction between

the physiology of neurons in the visual system and the phenomenology of

color perception is still not clearly explained, so they suggest that the inter-

laced sampling performed by the cone mosaic could be key to formulate a

neurogeometry of color vision.

Summarizing, many aspects are still not clearly explained by research,

like how spatial distribution and L to M cone ratio affects the sampling of a

retinal image [105, 104]. Further investigative methods to explore these pro-

cesses can be quantitative and modelling approaches, to statistically analyse

how distribution of cones affects visual perception.
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Chapter 5

The model: Blue-noise

sampling for cone

distribution

The process of sampling consists in the reduction of a continuous signal into

a discrete one, or the selection of a subset from a discrete set of signals.

For sampling to be effective two competing goals must be satisfied: samples

should be uniformly distributed in a way that there are no discontinuities;

but at the same time, regular or repeating patterns must be avoided to

prevent aliasing, like moiré patterns in a digital image (Figure 5.1).

In the human retina, the mosaic formed by the cone photoreceptor cells

performs sampling on the retinal optical projection of the scene, achieving

the first neural coding of the spectral information from the light that en-

ters the eye. In order to solve the sampling problem, the human retina has

adopted an elegant solution in the form of an arrangement of photorecep-

tors that is neither perfectly regular nor perfectly random. Local analysis

of mosaics in the foveal region show that cones are arranged in hexagonal

or triangular clusters, but extending this analysis to larger areas or eccen-

tricities shows characteristics such as parallel curving and circular rows of

cones associated with rotated local clusters.

It is still unclear how the spatial distribution and mean density of cones

can affect the sampling of a retinal image [109]. An interesting evidence of

this open issue is the experiment from Hofer [104] which tested the percep-

tion of stimuli of small spatial scale, described in Section 4.2.
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Figure 5.1: Left: a properly sampled image. Right: an undersampled
image presenting moiré patterns. Images taken from https://commons.

wikimedia.org/wiki/File:Moire_pattern_of_bricks.jpg

In this chapter it will be demonstrated that the sampling properties of

the cone photoreceptor mosaic can be modeled by a blue-noise algorithm,

and that they can be used to generate sampling arrays with the same features

of the retinal cone mosaics. More specifically, an algorithm is identified that

is capable of generating sampling arrays with the same range of densities in

the retina, and specific metrics are used to compare the spatial and spectral

properties of the real and generated cones distribution.

5.1 Sampling algorithms

The term blue noise, originating from Ulichney [110], refers to an even,

isotropic, yet unstructured distribution of points. Blue noise was first rec-

ognized as an integral component in image dithering since it manages to

capture the intensity of an image by means of its local point density, with-

out the introduction of artificial structures of its own. It promptly became

widespread in numerous scientific fields, particularly in computer graphics,

where its isotropic properties enable a high-quality sampling of multidimen-

sional signals, while its absence of structure prevents aliasing. Its visual

efficacy, used to some extent in stippling and pointillism, has been argued
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to be linked to the presence of a blue-noise arrangement of photoreceptors

in the retina, according to Yellott [95]. Over the years, both the character-

istics and the generation of blue noise distributions have been the subject

of numerous research efforts in the computer graphics field.

It is argued that the very first approach at algorithmically generating

point distribution that mantain a good balance between spatial irregularity

and density control was obtained through error diffusion [111, 110], which

was particularly well suited for low-level hardware implementation, for ex-

ample in printers.

Meanwhile, uniform and regularity-free distributions started being of in-

terest in the context of anti-aliasing, belonging in the computer rendering

field [112]. In 1986, Cook [113] first proposed a dart-throwing algorithm to

create Poisson disc distributions with a minimal-spacing rule, where points

are never closer than a certain distance threshold. Subsequently, there were

many efforts to provide improvements and modifications from this very al-

gorithm [114, 115, 116, 117, 118]. Current advances in the development of

Poisson disc algorithms led to very efficient and versatile implementations

[119, 120], also running on modern GPUs to improve computational times

[121, 122, 123]

Other than Cook, it is thanks to the founding works of Dippé and Wold

[124], Mitchell [125] and Shirley [126] that in the computer graphics commu-

nity there was awareness of the fact that noise and aliasing are phenomena

tightly related to sampling. Since then, a large number of approaches based

on optimization have been proposed, and the majority of them can be distin-

guished into two main branches: (1) on-line optimization-based approaches

[115, 119, 127, 128, 122, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138],

and (2) off-line optimization [139, 140, 141, 142, 143, 144], where the near-

optimal solution is already prepared in the form of lookup tables, used di-

rectly in runtime.

The idea of using precalculated patterns computed offline in order to

allow a fast and high-quality blue noise generation was first proposed by

Dippé and Wold [124]. One of the major concerns of this technique is

the possibility of aliasing artifacts due to repeated patterns, so Cohen et

al. [145] advised the use of non-periodic Wang tiles, subsequently lead-

ing to an improved hierarchical sampling [140] and many other tile-based

alternatives [139, 146, 141, 147]. In 2014, Wachtel et al. [142] proposed
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a tile-based method that incorporates spectral control over distribution of

samples. More recently, Ahmed et al. [144] introduced a 2-D square tile-

based sampling method with the characteristic of having only one sample

per tile and controllable Fourier spectra.

The present work uses as reference the approach called Blue Noise Through

Optimal Transport (BNOT), developed by de Goes et al. [134], since it allows

to achieve the best Blue Noise distribution known today.

5.2 Methods

The mosaics of cone photoreceptors used for the measurements have been

obtained from images of patches of real human retinas previously published

in the literature, and are visible in Figures 5.2. They were acquired from the

electronic versions of the papers where available, and saved as png images.

The pictures of patches are from different subjects of various ages, and

were obtained with different techniques through their respective works: from

histological tissue prepared for electronic microscopic imaging in [98, 148,

101, 149], to the most recent in vivo imaging techniques, characterized by

the use of adaptive optics like deformable mirrors coupled with a wavefront

sensor to compensate for the ocular aberrations of the eye [2, 150, 3, 151].

The center of the of the cells inner segments were manually plotted

using WebPlotDigitizer [152] and saved as a text file containing the x and y

coordinates of the centers. This work is in fact based on a relatively small

dataset due to the short availability of ample collections of retinal images

with a visible cone mosaic, an issue probably caused by the different imaging

techniques and, where applicable, tissue preparation and hopefully there will

be larger and more accessible datasets in the future. A manual plotting of

the points was chosen because most of the articles had not available cone

coordinates, and the ones who did had insufficient spatial precision. In

the analysis of points distribution, the distance between the cone centers

in space was converted in actual µm on the retina by multiplying them

with the appropriate scale factor of the image, determined by the size of

the sample window’s side. Conversion from visual degrees was performed

according to the model from Drasdo and Fowler [153], with one degree of

visual angle equal to 288 µm on the retina. The obtained cone spacing values

are compatible with Wyszecki and Styles [154], with the exception of data
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Figure 5.2: The pictures of the patches of retina used for the analysis, sorted
by growing eccentricity from the foveal center, scale bars are 20 µm. Retinal
locations: A,B,C,D,E,F,G: Foveal center. H: 1◦ temporal to fixation. I:
1◦ nasal from the foveal center. J: edge of the rod-free zone, about 0.35
mm from the foveal center. K: 0.36 mm eccentricity. L: foveal slope, 0.66
mm temporal to foveal center of A. M: 0.7 mm from the foveal center. N: 1
mm from the foveal center. O: 5◦ temporal to fixation. P: about 2.25 mm
from the foveal center. Q: 10◦ temporal to fixation. R: 3 mm eccentricity
from the foveal center. S: 9.5 mm from the foveal center. Image sources:
H,O,Q: Images from Scoles et al. [3]. I: Image from Roorda & Williams [2].
A,B,C,L: Images from Curcio et al. [98]. M,N,P,S: Images from Jonas et al.
[148]. J,K,R: Images from Curcio et al. [101]. D,E,F,G: Images from Gao
& Hollyfield [149].

from [149] exhibiting lower cone spacing values, probably attributable to

post mortem shrinkage of the tissue. Additionally, retinas J, K and R have
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been cropped during analysis because they didn’t fully cover the sampling

window, and would have included uncharacterized areas.

5.2.1 Analysis of point process

In this section, basic notions from Stochastic Point Processes are briefly

introduced. A point process S consists of a stochastic generation of points

in a given domain Ω (in this case, [0, 1)s). A realization of a point process

with n samples is denoted by Pn := {x(1),x(2), · · · ,x(n)} ⊂ Ω. A point

process S can be defined stationary if it is invariant by translation, and cen

be defined isotropic if it is invariant by rotation. More formally, if we assume

that P is a probability measure, S is stationary if ∀x ∈ Rs

P(S(Ω)) = P(S(Ω− x)) , (5.1)

and isotropic if any rotation or translation of S possess the same statistical

properties. It is also possible to define the density of a point set as the

average number of point samples inside a region B of volume VB around a

sample x.

λ(x) :=
B(x)

VB
. (5.2)

This density has the characteristic of remaining constant for isotropic and

stationary point processes. A sampler which generates sets with a non con-

stant density is usually called a non-uniform sampler. In order to char-

acterize isotropic stationary point processes, the Pair Correlation Function

(PCF) is a widely used tool. Such function is defined as a characterization

of the distribution of pair distances of a point process. Oztireli [136] devised

a simplified estimator for this measure in the particular case of isotropic and

stationary point processes. The PCF of a pointset Pn in the unit domain

[0, 1)s is obtained by

%(r) =
1

n2rs−1

∑
i 6=j

kσ(r − d(x(i),x(j))), (5.3)

where d(x(i),x(j)) is a distance measure between x(i) and x(j). Additionally,

the factor kσ is used to smooth out the function. In his work, Oztireli relies

on this smoothing function to assume ergodicity for all sets. He uses the

Gaussian function as a smoothing kernel, instead of a box or triangle kernel.
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This estimator is used to compute a PCF with 3 parameters, the minimal

r, rmin, the maximal r, rmax and the smoothing value σ, usually chosen

empirically. Moreover, as the number of samples increases, the distances

between samples will be very different for similar distributions. To mitigate

this issue, the distances are normalized during estimations by using the

maximal possible radius for n samples ([118], Eq (5)).

Figure 5.3 shows how the PCF of several point processes characterizes the

spectral content of the point distribution: a pure uniform sampling, Green-

Noise and Pink-Noise samplers obtained using [147], a jittered sampler (for

N samples, subdivision of the domain into regular
√
N ×

√
N square tile

and a uniform random sample is drawn in each tile), a Poisson-Disk sampler

[117] and a Blue-noise sampler (BNOT) [134].

5.3 Results and discussion

Regularity index, or conformity ratio is a quantitative method used for as-

sessing spatial regularity of photoreceptor distributions [94, 155, 156]. A k-d

tree structure has been used to find the nearest neighbor for each point, the

euclidean distance was calculated for each pair found this way and all the

results are classified in histograms. Each distribution of distances to nearest

neighbor can be described by a normal Gaussian distribution described by

the equation

P (x) =
1

σ
√

2π
e−(x−µ)

2/2σ2
. (5.4)

where µ is the mean of the distribution and σ the standard deviation of

the measurements. The regularity index is expressed by the ratio of the

mean µ by the standard deviation σ. This index is reported to be 1.9 for a

full random sampling and the more regular the arrangement, the higher the

value, usually 3-8 for retinal mosaics.

Regularity indexes for retinal data are shown in Table 5.1. In contrast

with previous claims, our calculated indexes range from 8 to 12. In the

lower bound there is data obtained from [101], which instead of a retinal

image shows the marked locations of the inner segments of photoreceptors;

meanwhile in the upper bound, close to 12, most of the data is from foveal

centers in [149], with the sole exception of retina D, where the different sizes

of the photoreceptor profiles reflect different levels of sectioning through the
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Figure 5.3: Pair Correlation Function of various 2-D samplers. Fist row from
left to right: Realizations of 1024 samples from a uniform (a), a Green-Noise
sampler (b), a Pink-Noise sampler (c), a jittered (d), a Poisson-disk (e) and a
Blue-Noise sampler (f). The second row shows the Fourier spectrum (power
spectrum) of each sampler ((g)− (l), spectrum computed on 4096 samples).
The PCFs capture the spectral content of each sampler as shown in (m),
horizontal axis is r, vertical axis is %(r).

inner segments.

The indexes for data generated with Green noise, Pink noise and BNOT

samplers are presented in the same table. As expected, the indexes for Green

and Pink noise are assimilable to those of a full random sampling, in fact
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Data µ σ RI
A 2.15 0.20 10.50
B 1.97 0.20 9.87
C 1.46 0.13 11.36
D 1.50 0.16 9.51
E 1.63 0.13 12.03
F 1.63 0.14 11.95
G 1.85 0.15 12.26
H 3.93 0.35 11.04
I 5.06 0.43 11.65
J 4.60 0.42 10.87
K 4.03 0.51 7.97
L 5.06 0.51 9.88
M 3.83 0.42 9.20
N 6.01 0.61 9.76
O 6.83 0.62 10.98
P 7.22 0.79 9.09
Q 8.58 0.89 9.66
R 9.04 1.07 8.47
S 12.73 1.45 8.79
GreenNoise 512 0.02 0.01 1.31
GreenNoise 1024 0.01 0.01 1.38
PinkNoise 512 0.02 0.01 1.42
PinkNoise 1024 0.01 0.01 1.44
BNOT 1050 0.03 0.01 21.45
BNOT 2050 0.02 0.01 22.92
BNOT 4050 0.01 0.01 23.31

Table 5.1: µ, σ and regularity indexes of retinal mosaics

they are even lower, averaging 1.3 and 1.4 respectively; meanwhile, for the

BNOT data, the indexes values are much higher, more than the double of

the highest values for retinal RIs. It is not very surprising that, thanks to

the the uniformity optimization of BNOT, the indexes are this high; but still

very far from the infinite RI of regular lattices. Given the fact that fully

regular hexagonal or square patterns are proven to possess poor sampling

properties and therefore not suitable for simulating cones distribution, in

the scope of this work a higher RI indicates that BNOT performs better at

generating point processes than the other analyzed methods.

A more recent and reliable method for assessing the goodness of these

point processes is the previously mentioned Pair Correlation Function. In
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Table 5.2 are reported the l∞ distances between the generated point sets

and the measured PCF, also plotted in Figure 5.4 . From two PCFs % and

%2, their l∞ distance is denoted as the maximal distance between the two

functions

l∞(%, %2) = maxr|%(r)− %2(r)| , (5.5)

where r is a given radius. The l∞ distance has been adopted since Oztireli

used this measure to compare PCFs [136], two distributions can be consid-

ered the same if this distance is under 0.1.

Data Jitter 1024 DT 1024 BNOT 1024
A 1.14 0.85 0.41
B 0.89 0.52 0.55
C 0.95 0.60 0.48
D 0.64 0.33 0.83
E 1.13 0.77 0.30
F 1.15 0.80 0.30
G 1.11 0.74 0.33
H 0.94 0.52 0.51
I 1.13 0.76 0.30
J 1.17 0.81 0.26
K 0.76 0.25 0.78
L 0.63 0.48 0.86
M 0.96 0.60 0.47
N 0.60 0.26 0.92
O 0.91 0.57 0.52
P 0.81 0.52 0.64
Q 0.66 0.31 0.78
R 0.69 0.24 0.80
S 0.58 0.38 0.92

Table 5.2: l∞ distances between pairs of PCFs. If this difference is under
0.1, the two distribution can be considered to be the same. It is possible to
observe that the Dart Throwing and BNOT samplers are the closest from
the measured distribution.

The closest results are from comparison with BNOT and Dart Throwing

samplers, moreover, the higher the measured RI for the retinal distribution

of photoreceptors, the lower the distance from BNOT PCF. The opposite

happens when comparing with Dart throwing algorithm, the closer to the

reported RI of 8, the lower the l∞ distance. This evidences that not only

the indexes are actually higher than the ones previously measured, but also
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that the most effective method to simulate these distributions comes from

Blue-noise samplers. Figures 5.5 through 5.8report the results of the Nearest

neighbor analysis and the PCFs of analyzed retinas.

Figure 5.4: l∞ distances between pairs of PCFs. Horizontal axis are the
retinal locations, top axis is l∞ distance between the location and the sam-
pling algorithm. If this difference is under 0.1, the two distributions can be
considered to be the same. It is possible to observe that the Dart Throwing
and BNOT samplers are the closest from the measured distribution.

This study, however, has some limitations in the source material for

the retinal images that should be noted. Jonas et al. [148] used a tissue

preparation that left the fovea unusable and reduced cell counts by half.

Gao and Hollyfield [149] sampled only the foveal and equatorial retina and

thus missed the import of macular rod loss. Additionally, an important work

that was not included is the one from Curcio et al. [157], which established

rod loss in central macula as a defining feature of human retinal aging. This

study used retinal flat mounts with preserved foveas and unbiased sampling,

and computer-assisted counts of inner segments for accuracy. Data for cone

counts in this study were also replicated in vivo, but rods are generally not

visible in current adaptive optics systems.
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A: Foveal center. Original image from Curcio et al. [98].
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B: Foveal center. Original image from Curcio et al. [98].
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C: Foveal center. Original image from Curcio et al. [98].
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D: Foveal center. Original image from Gao & Hollyfield [149].
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E: Foveal center. Original image from Gao & Hollyfield [149].

Figure 5.5: From left to right: The point samples extracted from the retinal
locations of Figure 5.2, Nearest neighbor analysis with mean and standard
deviation values, Pair Correlation Function.
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F: Foveal center. Original image from Gao & Hollyfield [149].
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G: Foveal center. Original image from Gao & Hollyfield [149].
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H: 1◦ temporal to fixation. Original image from Scoles et al. [3].
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I: 1◦ from foveal center. Original image from Roorda & Williams [2].
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J: 0.35 mm from the foveal center. Original image from Curcio et al. [101].

Figure 5.6: From left to right: The point samples extracted from the retinal
locations of Figure 5.2, Nearest neighbor analysis with mean and standard
deviation values, Pair Correlation Function.
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K: 0.36 mm eccentricity. Original image from Curcio et al. [101].
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L: 0.66 mm from foveal center of A. Original image from Curcio et al. [98].
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M: 0.7 mm from the foveal center. Original image from Jonas et al. [148].

5.5 6.0 6.5 7.0 7.5 8.0 8.5
Distance to the nearest neighbor in µm

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

= 6.82704837678, = 0.621732801311

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2  2.5

Uniform
Jittered

Poisson-Disk
Blue-noise

1-F

N: 1 mm from the foveal center. Original image from Jonas et al. [148].
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O: 5◦ temporal to fixation. Original image from Scoles et al. [3].

Figure 5.7: From left to right: The point samples extracted from the retinal
locations of Figure 5.2, Nearest neighbor analysis with mean and standard
deviation values, Pair Correlation Function.
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P: About 2.25 mm from the foveal center. Original image from Jonas et al.

[148].
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Q: 10◦ temporal to fixation. Original image from Scoles et al. [3].
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R: 3 mm from the foveal center. Original image from Curcio et al. [101].
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S: 9.5 mm from the foveal center. Original image from Jonas et al. [148].

Figure 5.8: From left to right: The point samples extracted from the retinal
locations of Figure 5.2, Nearest neighbor analysis with mean and standard
deviation values, Pair Correlation Function.
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5.4 Generation of cone mosaic

In order to generate cone sampling mosaics in the retina, Curcio’s data

[98] on photoreceptor density was used to generate retinal patches with the

BNOT [134] blue noise sampling algorithm. The first step in this process

is to create a gradient to be used as reference ramp for the algorithm. One

characteristic of blue-noise sampling algorithms is that they can be applied

adaptively over a grayscale image to produce a sampling with the same

density properties of the input image.

Figure 5.9: Blue noise sampling of a quadratic density function with 1000
points. The percentages in each quarter indicate RGB density in the image,
and point density in the example. Image courtesy of [134].

The values used to create the grayscale gradient were acquired starting

from the number of cones per square millimeter along the temporal meridian,

and are reported in Table 5.3. In order to convert the cones per square mm

values into the grayscale RGB values, the point of highest density at the

center of the fovea with 196890 cones per square mm, reported in the table

as 0.00 visual degree, was considered to be the region of maximum density

of the gradient and so it was used as the starting RGB value of (0,0,0).

From there, RGB values were defined at every reported eccentricity with

the formula

255− (d · 255)/dmax

where d is the density at any given eccentricity and dmax is the maximum

density. The obtained RGB values were used to create a gradient with the

software GIMP (GNU Image Manipulation Program) for the first 4 degrees

of visual angle of the retina, while keeping the proportions of the spacing of

the degrees data, that is not uniformly sampled but at intervals that become
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Eccentricity Density RGB
0 196890 0

0.18 162414 44
0.36 121619 97
0.54 98424 127
0.71 80004 151
1.07 57712 180
1.43 45420 196
1.79 38380 205
2.14 34223 210
2.50 29027 217
2.86 24144 223
3.21 21165 227
3.57 19699 229
4.00 18736 230

Table 5.3: RGB grayscale values of the gradient of cone densities. Eccen-
tricity is expressed in degrees of visual angle, Density in cones/mm2.

larger with increasing eccentricities.

Once the gradient has been generated, it has been applied radially across

an image to produce the reference ramp. A 2000x1000 pixels resolution

image has been created containing the equivalent of 4 degrees of visual angle,

going from -1 to 3 degrees horizontally, as visibile in Figure 5.10.

In order to obtain the synthesized retinal patches, the image gradient is

used as reference ramp for the application of the BNOT algorithm. The im-

age is divided in square regions of 1000x1000 pixels due to the requirements

of the algorithm. The region with the fovea is used as reference in setting

the parameters for the sampling, to obtain a photoreceptor count according

to retinal data from [158], in this case it was observed that a maximum

rank parameter K=15 yields the closest numbers. The generated patches

are described as a list of x,y coordinates in the interval [0,1], corresponding

to the center of the inner segments of cone photoreceptors, and are plotted

in Figure 5.11.

A visual comparison between random sampling, blue-noise sampling and

real cone retinal sampling, obtained by foveal cone data from Wang et al.

[158], is presented in Figure 5.12. A 1000x1000 pixel test image has been

processed by the proposed retinal model, to be discussed in detail in the

following chapters. Comparison between outputs can be obtained in terms of
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Figure 5.10: The reference ramp for the densities of the cone photoreceptors
in 4 degrees of visual angle. The dark spot on the left part of the image
corresponds to the fovea, with the highest density.

Figure 5.11: The plots of the center of the photoreceptor cells in two syn-
thesized patches of retina, each spanning 2 degrees of visual angle, with
one degree of visual angle equal to 288 µm on the retina according to the
model from [153]. The plots correspond to the foveal region (left) and the
parafoveal region towards the temporal meridian (right).

peak signal-to-noise ratio (PSNR), since Guerrero-Colón et al. [159] adopted

this measure to compare performance of different Space-variant sampling
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(a) Original Image

MSE = 0.0

PSNR = 361.20

(b) Random Sampling

MSE = 158.43

PSNR = 26.13

(c) Real retinal cone locations

MSE = 176.59

PSNR = 25.66

(d) Blue-noise Sampling

MSE = 151.30

PSNR = 26.33

Figure 5.12: Comparison between different sampling strategies with MSE
and PSNR computed from the original image. (a) Original test image.
(b) Test image sampled with 21085 random samples. (c) Test image sam-
pled with 21085 retinal cone locations obtained from data from Wang et al.
[158]. (d) Test image sampled with blue-noise distribution (21085 samples)
obtained with the proposed method.

methods.

PSNR computes the peak signal-to-noise ratio, in decibels, between two

images. This ratio is used as a quality measurement between the original
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and a compressed image: the higher the PSNR, the better the quality of the

compressed, or reconstructed image. PSNR is calculated as 10log10(2552σ2e),

where σ2e) is the Mean Square Error (MSE). The MSE represents the cumu-

lative squared error between the compressed and the original image, whereas

PSNR represents a measure of the peak error. The lower the value of MSE,

the lower the error, meaning that two identical images will have MSE = 0.

It is worth noting that PSNR and MSE metrics are not used to establish

a perceptive difference, but it is only used to compare different sampling

methods.

Summarizing, in this chapter it was demonstrated how point processes

generated by blue noise sampling algorithms can be used to simulate features

of a human retinal cone distribution with a certain degree of similarity with

data found in existing literature, and how they can be used to accurately

model local patches of retina. The analogies between this modeling tech-

nique and the unique distribution of neuron cells in the photoreceptor layer

can be a starting point to determine the mechanisms underlying the devel-

opment of retinal tissue, or to figure out how this spatial distribution affects

the sampling of a retinal image, and its implications on human vision. Given

the possibility of blue noise algorithms to generate adaptive sampling, it is

theoretically possible to develop a space-variant model describing the place-

ment of photoreceptors in the whole retina. However, such sampling would

be difficult to validate, since imaging of a whole retina is difficult to obtain

and analyze; the only way way would be through analysis of local patches

and their relative density, or with isodensity maps. Recent advancements

in sampling algorithms offer the possibility of applying a smooth sampling

across local patches in the retina to obtain an adaptive sampling. Given the

PCF and spectra of local patches, a point process with the same properties

can be reproduced [160] and correlated by means of a heat map or gradient

representing their interpolation in space [161]. The retinal imaging data

available is limited, so for a more accurate modeling of the cone sampling,

large datasets would be beneficial. Moreover the available data is often not

consistent, due to different imaging techniques and tissue preparation.
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Chapter 6

The model: Cone classes and

absorption

Human vision is a complex biological system. In this chapter the focus is

on the spatial and chromatic structure of the initial stage of vision: the first

layers of the human retina. The human retina is not simply a sensor, but it

consists of a complex structure that beside sensing the external world, has

the task of preparing the sensed information to be sent over the optic nerve

to subsequent elaborations in the visual cortex.

The model here presented has the goal of being an operative tool for

further investigations on retinal functional mechanisms. The focus of the

model is mainly on the variable structure of the first layers of the retina:

variability is found not only on the different spatial concentrations of cones

in function of their eccentricity, but also on the high inter-subjective variance

in the L:M ratio of the actual cones population.

The first step of this simulation, which starts from a strictly biologically

plausible standpoint, was the creation of a model of spatial distribution of

cones inside of a retina, that preserves the spatial characteristics of the cells

mosaic present in the literature, and validating it through comparison with

real retinas (see previous chapter). Subsequently, inside of the model the

spatial descriptive statistics will be created for each photoreceptor, to con-

tribute to the creation of a graphical representation using a reconstruction

tool, to be discussed in Chapter 7. These latter stages of the model have to

simulate the behavior of biological systems of such complexity that a black

box approach had to be considered.

86



The image reconstruction tool allows to simulate the effect of varying

L:M ratios, visualizing its consequences on the sensed image. The output

of the model is in fact an image realized by interpolation of the spatial

sampling of the cones: it is not to be intended as the final perceived image,

since the model does not account for any visual cortical stage, but it has the

purpose of visualizing the immediate effect of L:M ratio variation in relation

to the uneven foveal/peripheral cone distribution. The output generated by

the model’s simulation can be used as input for more complex explanatory

models, i.e. accounting for contrast sensitivity function, spatial chromatic

acuity, or many other biological characteristics.

6.1 The model pipeline

The pipeline of the proposed model is presented in Figure 6.1. An RGB

image in PNG format is used as input for a representation of a visual stimu-

lus, and the desired output is a space-variant representation of an observed

scene. The model is constituted by separate methods each corresponding

to a different stage of color vision. The first step is simulation of the spa-

tial sampling performed by the cones on the retina. This is performed with

a blue-noise sampling algorithm, due to shared sampling properties with

the cone mosaic [162], allowing to generate the locations of the center of the

cones inner segment over a square region representing a patch of retina. The

synthetic retina and the input image are then used as input to our proposed

algorithms. In the model, Cone classes are determined for every sampling

point in the synthetic retina patch, and a Voronoi diagram is used to simu-

late the polygonal aperture of the cone inner segment. Absorption of light

is simulated inside of their area of influence as the average of all the [0,255]

values in the corresponding RGB channel, assuming L = red, M = green

and S = blue. This generates an intermediate image with an ”interleaved”

sampling, since in our vision each cone class does not sample every location

of the retinal image [107].

A tool was also developed to propose an interpolation approach in recon-

structing the correct sensed color information from the neighborhood of each

cone, mimicking the horizontal connections in the outer and inner plexiform

layers of the retina. At the end, the final space-variant image displays the

”demosaiced” result, produced by the simulated color-pattern interaction
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bound to happen in color vision. The tool is described in detail in Chapter

7.

Figure 6.1: The proposed model pipeline.

6.1.1 Projection Geometry

Since the image used as input in the model is considered as directly projected

onto the retinal surface, a conversion is needed that takes into account the

viewing geometry given a specific viewing distance, given that the model

works directly on pixels in a digital image. Suppose that there is an image

with a black and white pattern to be observed, and the stripes of this pat-

tern possess a measurable size, for example 1 cm. If the image is observed

at a close distance, there is no doubt that the stripes will be clearly dis-

tinguishable and defined in an emmetropic eye. However, as the distance

increases, there will be a point where the stripes become blurred and instead

of a grating, only a medium gray will be perceived. When this happens is

because the visual angle of the projected grating becomes smaller than the
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visual angle of a single foveal photoreceptor, and their resolving power is

not enough.

The visual angle can be easily predicted and calculated given the distance

between the object and the observer and the object’s size. The visual angle

is inversely proportional to the viewing distance, and directly proportional

to the object’s size: a distant object will appear smaller than a closer object

and a bigger object will appear larger than a smaller object. The formula

to calculate the visual angle knowing the object size and distance is

V = 2 · atan

(
S
2

D

)
where V is the visual angle, S and D are the object’s size and distance

in the same units. The synthesized fovea in section 5.4 corresponds to 2

degrees of visual angle, hence supposing that the input image to the model

is 2x2 cm the correct viewing distance is 57.29 cm.

6.2 Distribution of the three cone classes

Once generated (see Chapter 4), the spatial distribution of cones is applied

over an input image of X × Y resolution. Starting from the input image,

a given number of points called seeds are created. Each point P is defined

by the pair (x, y) such that x ∈ [0, X) and y ∈ [0, Y ) and they represent

the coordinates of the center of the inner segment of cones, the coordinates

are represented as a set of pairs to easily remove any possible cone collision.

Two options to generate such pair are given, the first option has been im-

plemented to take an input file with the normalized coordinates of points

such that those coordinates are included between zero and one, like the one

created with the method described in section 5.4, while the second option

is used to create an uniform distributed set of pairs using the Mersenne

Twister engine [163]. When coordinates are given as an input file, they are

stretched over the image resolution. Once the seeds are created, they can be

used to define a Voronoi diagram. The Voronoi diagram is a spatial struc-

ture in which the space is partitioned into regions [164]. Voronoi regions are

defined by a seed s and all the points belonging to the region of s that are

closest to s. More formally, given a space X which admits a metric, like an

Euclidean vector space with its Euclidean distance, a subset of X of points
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P = {p1, ..., pn} with n > 2, the region R of a given point pi is defined by:

V (pi) = {x ∈ X | ‖ x− xi ‖≤‖ x− xj ‖ ∀ j 6= i, j ∈ In, i ∈ In} (6.1)

where In is a set of indices of length n. The Voronoi seeds are used to

represent the cone mosaic. An example containing five computation can be

seen in Figure 6.2.

Figure 6.2: On the top row, the retinal mosaics from the same retinal loca-
tion in five different subjects, courtesy of Hofer et al. [104]. On the bottom
row, the computed Voronoi mosaic simulating the same L:M ratios.

Inside of the computational model, a Voronoi diagram is represented

by the class Voronoi, which includes as attributes a vector of points called

seeds to represent the seeds location and their associated cone type, the

image resolution, the L : M cone ratio, a counter for each cone type and a

flag that tells the model if the inspected image is projected into the center

of the fovea. This last flag is used only to let the model know that there will

be a S-cones free zone in the center of the image, to simulate the presence

of foveal tritanopia [165].

6.3 Photoreceptor absorption

The three submosaics of retinal cone cells allows to perceive different hues in

a mechanism of opponency inside of the receptive field of the ganglion cells.

However, spatial organization of the three classes of cones is not constant

between individuals and mechanisms that determine their development and

regularity are still object of research. The S cones mosaic is independent
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from the L and M mosaics and it has observed to be distributed in a non-

random fashion, taking the semblance of an almost hexagonal array [100].

Whether the remaining cones end up being M or L during the retinal devel-

opment is entirely regulated by the X chromosome gene, which determines

the corresponding cone opsin. L and M cones are generally randomly dis-

tributed in the retina, in fact an evident departure from the average ratio

of 2:1 L to M has been observed, both interpersonally and in the same sub-

ject in different retinal locations, as illustrated in the top row of Figure 6.2,

in addition to a tendency towards clumping. In spite of this high variance

in spatial distribution of cones in different subjects, there has been no no-

table difference in subjective perception, but this compensation mechanism

seems to not be consistent when small-scale spatial stimuli were involved,

as previously evidenced in [104].

In the experiment of Brainard et al. [105], a yellow wavelength has been

used to evaluate interpersonal differences in perception, since it is neutral

in the red-green opponent mechanism and its perception is thought to be

mainly regulated by differences in the excitation of L and M cones. Even in

subjects with widely different L:M ratios, the wavelength perceived as yellow

remains almost constant, indicating that this variability is offset by some

perception mechanism probably involving cortical elaboration of L versus M

cone opponency in the midget pathway, but it is however still controversial

[99].

In the model, a variable L:M cone ratio distribution has been imple-

mented to study how different ratios of cones family can change our sensa-

tion of color. The cone type assignment is executed after the Voronoi seeds

distribution is generated. After a spatial distribution is created, a procedure

to assign the cone type to each cone is launched. Such procedure takes in

input the set of cones and generate the seeds in the Voronoi diagram used to

visually represent the spatial structure of cone mosaic. Then, the proportion

of cones type assignment is created over an auxiliary queue, which contains

the indexes of shuffled seeds, again with the Mersenne Twister engine. The

ratio of short waveband has been chosen to be 8% of the population, accord-

ing to experimental data of Curcio et. al[101]. There is an exclusion zone

in the center of the fovea in which S-cones are not present. The auxiliary

queue provides indices for the Voronoi seeds vector. When inspecting the

queue starting from any index, if the inspected cone is in the exclusion zone
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it is discarded and appended to the back of the queue, otherwise it’s chosen

to be an S-cone, and the seed with that index is promoted to a short wave-

band cone and it is not appended to the back of the queue. This function

is repeated until 8% of the population of cones has been chosen to be a

S-cone. The ratio between L-cones and M-cones is defined by the user when

invoking the reconstruction method or is standardized to 2 : 1. In that case,

first two third of the remaining population of seeds in the queue is selected

and assigned to become long waveband cones, while the remaining cones

are chosen to be medium waveband cones. Note that seeds is an attribute

Algorithm 1 Cone Assignment

procedure Assign Cone Type
Queue Q← shuffled indices of seeds
for 0.8 · seeds.size() do

i← Q.pop()
if seeds[i]is not in the exclusion zone then

seeds[random index].type← SHORT
else

Q.push(i)

for Number of M-cones do
i← Q.pop()
seeds[i].type←MEDIUM

for Number of L-cones do
i← Q.pop()
seeds[i].type← LONG

of the Voronoi diagram: a vector of objects of class Point which is used to

represent the cones among with their location and type.

Since the model works on digital images it operates in RGB color space,

and there is an association between each seed and the RGB channel associ-

ated with the cone class, respectively red for L cones, green for M cones and

blue for S cones. When calculating the absorption, for each Voronoi cell the

average color of the surface is calculated and the value of the channel asso-

ciated to the cone class is stored in the data structure. An image example

of the tessellation of an image into photoreceptor cells with associated cone

classes and their relative RGB channel average is presented in Figure 6.3
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Original Image L:M = 4:1

L:M = 2:1 L:M = 1:1

L:M = 1:2 L:M = 1:4

Figure 6.3: Tessellation of an image into photoreceptors cells with associated
cone classes and their relative RGB channel average for five different L to
M cone ratio. Original image courtesy of Bill Ebbesen https://commons.

wikimedia.org/wiki/File:Culinary_fruits_front_view.jpg
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6.4 Conclusion

In this chapter was presented a modeling approach organized into a modu-

lar pipeline of extensible methods, each simulating a different stage of visual

processing, mainly focused on the spatial sampling of a visual scene per-

formed by the cone photoreceptor mosaic, and the reconstruction of color

information inside of a space-variant image, obtained from the undersam-

pled encoding performed by the three submosaics corresponding to the three

different cone classes.

The method proposed is based on cone distributions created with a blue-

noise sampling algorithm, since a direct comparison of mosaics generated

with this method shows that they possess the closest sampling properties to

real retinal cone mosaics [162]. Moreover, the model can be used with sets of

coordinates obtained from real retinal cone locations, making it possible to

use automatic identification of photoreceptors locations from retinal images

[166]. The model allows the testing of different parameters that regulate

the photoreceptor’s topography including L to M cone ratio, to formulate

hypothesis on perceptual differences arising from variations in spatial orga-

nization. Color sampling performed by the cone classes has been evaluated

inside the cone apertures in the corresponding region of the Voronoi diagram,

due to similarities in shape with foveal and parafoveal cones. Moreover, the

Voronoi structure is used as the basis for the image reconstruction tool,

since perceptually we are unable to distinguish our own cone spacing. The

image reconstruction tool, while only providing only a straightforward rep-

resentation of the mosaicked image with basic interpolation, will allow to

visualize the effect of the parameter changes in the model with an output

image representation.
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Chapter 7

The model: Image

reconstruction tool

The image reconstruction tool has been designed to provide a representable

output of the sampling performed by the model. It does not mean to pro-

vide a cortical representation of a sampled scene but only to provide a space-

variant image of the sampled regions in the visual field. Color reconstruction

from photoreceptor signal is a biological process of such complexity that a

black box approach has been considered. The image reconstruction tool al-

lows to simulate the effect of varying L:M ratios, visualizing its consequences

on the sensed image. The output of the model is in fact an image realized

by interpolation of the spatial sampling of the cones: it is not to be intended

as the final perceived image, since the model does not account for any visual

cortical stage, but it has the purpose of visualizing the immediate effect of

L:M ratio variation in relation to the uneven cone distribution. More com-

plex visualization methods can take its place in order to simulate higher

level mechanisms that in the actual vision system contribute to the final

color sensation.

7.1 k-NN Reconstruction

There are three main functions for the color reconstruction tool: a function

to display the image by showing in each Voronoi region the color based on

what type of cone is associated to a certain region, a function that recon-

struct color by simply summing the color information of the two closest seeds
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of different type and a more advanced function that works like the second

but searches for the closest 2k L-cones or M-cones and the closest k S-cones,

as represented in Figure 7.1, and then reconstruct the final displayed color

simply by taking an average of the color information of all the seeds of the

same class.

Figure 7.1: The schema for k-search color reconstruction: the red triangles
represent the L-cones, the green triangles represent the M-cones and the
blue triangles represents the S-cones (top row). The search is performed
spatially, with each cone looking for the k closest S cones and the 2k closest
M or L cones, according to the class of the corresponding cone (middle and
bottom row).

The model stores for each type of cone only the corresponding RGB

channel value. The red channel is associated to the L-cones, the green

channel is associated with M-cones and the blue channel is associated to the

S-cones. This way, the function that reconstructs the input image without

sharing color information, the rgb cone color function, will represent the

average color per region based on the channel associated to the cone type.

The other two functions work almost in the same way, the difference is that

one will perform an Euclidean Nearest neighbor search, and the other will

perform an Euclidean k-Nearest neighbor search: the algorithm has in input
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an image img and an integer k and it starts by initializing three lists of

indices of cones, one for each cone type. The indices are gathered from the

seeds vector which contains all the seeds used to generate the Voronoi regions

and so the cone mosaic. Then, a list of pixels for storing color information

is created which contains the color of all the cones sampled from the image.

At this point the algorithm isolates the RGB channels not correlated to the

cone class: it will save only the red information for long cones, the green

information for medium cones and the blue information for short cones.

Now the color reconstruction will start and it will save all the information

in the data structure, including the color list. For each cone, it will search

for the other different k or 2k cones, according to Figure 7.1, averaging the

associated channel and adding them to the query cone color in the color list.

At the end, all the positions in the color list will be filled and the resulting

image can be returned. The search algorithm is analyzed in detail in the

Appendix 8.

In this section we present some image results obtained from the color

reconstruction tool. We remind that this does not intend to be a cortical

representation, since the reconstruction phase is only to have a representable

output from the retinal sampling performed by the model at the variation

of parameters. It can be considered a simulation and not an explanation of

biological processes, since the image reconstruction can only test the predic-

tive capabilities of the visualized output in relation to the photoreceptors’

absorption of a visual signal and their spatial distribution. In the following

subsections we will present results at the variation of the L to M cone ratio

and k parameter in subection 7.2, present a test to investigate issues related

to space variance and gaze movements in subection 7.4, perform a test to

check the effect of L to M ratio on edges and neutral yellow in subsection

7.3 and perform more tests on visual illusions in subsection 7.5. The input

image of every test performed in this section is to be considered as colori-

metrically calibrated, since the image result from the tool only is qualitative

rather than quantitative.

7.2 Testing L to M cone ratio

The proposed model pipeline was applied to two different test images, a nat-

ural one and an image with four big square regions colored in red, green, blue
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and yellow. For the spatial sampling we used the same foveal distribution

of cones for every image, and every image has its own spatial configuration

of cone classes. The test image used with resolution 960 x 631 is presented

in Figure 7.2.

Figure 7.2: The test image used, resolution 960 x
631. Image taken from https://pixabay.com/photos/

zinnia-flower-meadow-flowers-4060396/

Figures 7.3 and 7.4 show the original images and the output represen-

tations with varying L to M cones ratio. The output images appear mostly

similar, so a qualitative analysis of image data has been performed in the

test in subsection 7.3 to determine the impact of the L to M cone ratio on

result images.

The images in Figure 7.5 demonstrate the results at the variation of the

cone cross-talking parameter k. The natural image has been reconstructed

with the same cone seeds with different k values, showing a progressive

gradual enhancement of the high frequency components of the image, at

the cost of an increased spatial scattering of luminance informations of the

image, making it more blurred.
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Original Image L:M = 8:1

L:M = 4:1 L:M = 2:1

L:M = 1:1 L:M = 1:2

L:M = 1:4 L:M = 1:8

Figure 7.3: Output examples of the original image (top left) with same
parameters and varying L:M cone ratio.
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Original Image L:M = 16:1 L:M = 8:1 L:M = 4:1

L:M = 1:1 L:M = 1:4 L:M = 1:8 L:M = 1:16

Figure 7.4: Output examples of the original image (top left) with same
parameters and varying L:M cone ratio.

Original Image k = 1 k = 2

k = 4 k = 8 k = 16

Figure 7.5: Output examples of the original image (top left) with same
parameters and varying k.
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7.3 Effect of L to M cone ratio on edges

This test is inspired by the work of Brainard et al. [105]. In their experiment,

a 0.52 deg circular spot of light was presented to observers with previously

characterized L to M cone ratio at the eccentricity of 1 degree of visual

angle. The observer had to adjust the wavelength of the test light so that it

would be neither green nor red, and subsequently five wavelengths equally

spaced around the previously determined test wavelength were presented in

100 trials in random order.

In this test an image of a yellow (RGB 255, 255, 0) spot over a black

background is given as the input image to the model. The spot starts at

the same size of the experiment in [105], then it decreases by 75%, 50% and

25% (Top row of Figure 7.6. For each of those four images, there will be

thirty trials and for each trial the generated cone mosaic will be different,

while retaining the same L to M cone ratio. The test is repeated for seven

different L to M ratios, from 4:1 to 1:4. For each output image, a dot product

normalized with the norm of each image’s channel to the original image is

performed to understand how similar is the computed image to the original

one. With this technique, the result is between 0 and 1. The more it tends

to 0, the more the output image and the original image will be dissimilar.

On the other side, the more the dot product tends to be 1, the more the two

images will be similar.

Figure 7.6: The four input images (top row) and four output examples with
a distribution L:M of 2 : 1 and the same random seed (bottom row).

The results in the bottom row of Figure 7.6 show splotches of red and

green localized in the regions sampled around the edges of the circle, caused
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by the spatial distribution of the cone mosaic and classes.

L:M 4:1 3:1 2:1 1:1 1:2 1:3 1:4 S.D.

128px 0,9005 0,9024 0,9088 0,9112 0,9070 0,9013 0,8874 0,0078
256px 0,9429 0,9482 0,9522 0,9553 0,9530 0,9485 0,9462 0,0043
384px 0,9635 0,9663 0,9685 0,9703 0,9692 0,9658 0,9631 0,0028
512px 0,9735 0,9758 0,9781 0,9794 0,9783 0,9758 0,9738 0,0023

Table 7.1: Averages of the dot for each L to M ratio and circle size. Last
column is the standard deviation for the averages of each circle size.

Table 7.1 shows the averages of the dot product for each L to M ratio and

circle size, visualized in the graph in Figure 7.7. It is possible to observe that

as the circle becomes bigger, the dot product tends to be higher, meaning

that as the circle is sampled by a higher number of cones, the image infor-

mation comprising the average amount of yellow tends to be more similar

to the original image. This is consistent with our visual acuity, the more an

object appears bigger in our retinal image, the more details and color infor-

mation we are able to sense. For each circle size, the best result comes from

the more balanced 1:1 ratio, then as the ratios become more unbalanced the

resulting dot product tends to gradually decrease. This decrease appears

to be faster for the smallest circles, as evidenced by the higher standard

deviation in the last column of Table 7.1.

0,84

0,86

0,88

0,90

0,92

0,94

0,96

0,98

1,00

4:1 3:1 2:1 1:1 1:2 1:3 1:4

128 px 256 px 384 px 512 px

Figure 7.7: Averages of the dot product. Horizontal axis is L:M ratio,
vertical axis is the average of dot products.
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7.4 Ocular movements

The color reconstruction tool enables to reproduce an image as sensed by the

retina. This image has space-variant properties, meaning that the resolution

of the image changes across the image itself, biologically represented by

the fact that while the distance from the center of the fovea increases, the

image is more and more blurred, fitting well with the topography of cones

in the retina. Figure 7.8 presents an example of a space-variant sampling

performed by the model compared with a uniform sampling with the same

number of elements. Color sampling with Voronoi cells is used to obtain this

representation as this model is most suitable in terms of spatial description,

being very close in shape to cones. Furthermore, each sampling region does

not have the full color information over that area.

Figure 7.8: Space-variant color sampling performed by the model (left) and
the same number of sampling elements with uniform density (right).

While the amount of data required to produce this space-variant image

is lower than the original image, a customized algorithm has been neces-

sary to reduce computational time, given the nature of the data structure.

This approach is highly valued in foveated imaging systems, where real time

computation is a desirable outcome, but in most of the cases the undelying

data structure is stored in a regular array, visualized in a log-polar projec-

tion or equivalent. In our everyday vision, we are usually not aware of this

phenomena since the cortical representation of a scene we are observing is

stable even when our eyes or head moves, instead of perceiving the world

moving around us. There are two interesting issues related to space variance

and gaze:

1. When we shift our gaze in a different direction, we are examining

a different region of space with the foveal visual acuity. In the cortical
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representation of the scene, the information from the gaze starting point

”fades”, while the information from the gaze end point starts building up.

This is more of a large-scale issue and involves a saccadic movement lasting

20-200 ms depending on the amplitude.

2. During fixations our eyes are never perfectly still, but perturbed by

small undetectable ocular motions called fixational eye movements. Their

role is to contrast the effects of neural adaptation during unvarying stimuli,

preventing the effect of perceptual fading, like in the Troxler’s effect optical

illusion. Tremor is defined as an aperiodic, wave-like motion of the eyes with

frequency of 30 to 100 Hz and angular extent of 10-20 seconds of arc, about

the diameter of one cone in the fovea [25]. Visual tremor is also reported

to be generally independent in both eyes, generating a physical limit to

the ability of matching corresponding visual points in the retina during

steroscopical vision. Drifts are a movement that happens in conjuction with

tremor, resulting in a slow motion of the eye causing the image to move

across an extent of 5 minutes of arc. Microsaccades are tiny and unnoticeable

jerking movements of the eye occurring during voluntary fixation, usually

moving the retinal image across 2 to 25 minutes of arc and happening in

about 25 ms [26].

104



(a) (b)

(c) (d)

Figure 7.9: (a) The original test image. (b) Test image sampled with a fovea
with 23417 cones. (c) average image of the five images obtained with the
shifted center of fixation. (d) Oversampled image with the center fixation
and four different fixations around the center, 110313 cones.

These movements have been theorized to be functional during fixations

the same way that saccadic movements are during the exploration of a scene.

To test this theory, it is possible to use the same image in the model

with different foveal center coordinates. A shift in our gaze produces a

resampling of the image in different points, leading to a more accurate visual

information. Two approaches are proposed:

1. Producing different output images with different shifted centers of

fixation and averaging the results.

2. Multiplying the number of sampling points within the same sampling

window: this leads to an oversampled image, since the amount of information

is multiplied accordingly and is spatially more pervasive.

Figure 7.9 shows the simulated images obtained with the two different

discussed approaches. Figure 7.9(a) presents the original test image used for

the simulation. Figure 7.9(b) shows the simulated image using a foveal region

with 23417 cones. Figure 7.9(c) is the average image produced using five
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different images obtained with the same foveal sampling of (B) translated

orthogonally around the original sampling. The last Figure 7.9(d) is the

oversampled image (110313 unique sampling points) using the five fixations

at the same time, producing an image with the most natural appearance

compared to Figure 7.9(c). This simulation seems to point in the direction

that a mechanism involving fixational eye movements and spatial summation

could be held accountable for a better perception of a scene [167].

7.5 Testing color reconstruction with visual illu-

sions

Young- Helmholtz’s theory of trichromatic vision, introduced in section 2.7,

while able to explain phenomena of additive mixture of light, is unable to

correctly give an explanation of some visual effects, like the complementary-

color afterimage. In 1872, Hering [31] gave an explanation to these effects

by proposing his opponent color theory, based on the fact that certain hues

are never perceived to appear together, like red and green, or yellow and

blue. In the opponent color theory, in fact, information coming from the

eyes is divided into three different opponent channels, namely red-green,

blue-yellow and black-white, with the last one relative to brightness. Even

if this theory can seem to be in contrast with the trichromacy theory, and

Helmholtz and Hering were openly in disagreement with each other, they

were later combined in order to have a better understanding of how our

visual system works, since they are both correct yet they refer to different

stages of vision.

The majority of theories on visual illusions usually deal only with as-

similation or contrast effects. Left side of Figure 7.10 shows an example of

the simultaneous contrast effect, where two identical grey patches presented

on different backgrounds appear to be different, in particular the patch on

the white background appears slightly darker than the patch on the black

background, which appears slightly brighter. Following the opponent the-

ory of color vision, this effect also takes place in a chromatic version (Figure

7.10, right side), where a green background causes the grey patch do have a

reddish component, a blue background causes the patch to have a yellowish

component, and vice versa.

Opposite to simultaneous contrast is the assimilation effect, first de-
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Figure 7.10: Examples of simultaneous contrast. Left: the grey patch on the
left side is identical to the corresponding patch on the right, but it appears
brighter. Right: simultaneous contrast on chromatic background

Figure 7.11: Example of color assimilation effect. (A) The spheres appear to
be yellowish, reddish, and purpleish (B) but in in reality they have exactly
the same light-brown color.

scribed by Van Bezold in 1876 and illustrated by the example in Figure

7.11. Basically the color of the spheres becomes similar to the grid of lines

covering it. While color contrast appears when a color is surrounded by a

different color and the differences between colors appear exaggerated, color

assimilation happens when two colors are perceptually grouped, and their

apparent color difference is reduced [168]. In this section we test the color

reconstruction tool with visual illusions concerning color assimilation, color
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contrast and fine spatial gratings.

7.5.1 Sphere assimilation illusion

The image in Figure 7.11 shows an example of color assimilation effect. In

this subsection the 1000x1000 pixel resolution image will be tested on the

model with the variation of L to M cone ratio to determine the impact on

result images, the test is performed on seven different L to M ratios, from

8:1 to 1:8.

Figure 7.12: Output image obtained from Figure 7.11, with L:M cone ratio
of 1:1.

Figure 7.12 shows an example of an output image, obtained with L:M

cone ratio 1:1. For each output image, a layer mask has been applied that

would cover all the non-sphere region of the image and replace it with trans-

parency, in order to exclude white pixels that are not part of the sphere from

the output analysis. The analysis consists in calculating the average RGB

value of the sphere surface, comparing it to the original value, to observe
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Table 7.2: Average RGB value of the surface of the sphere overlapped with a
red line in the assimilation illusion, result images obtained with a variation of
L:M ratio. ∆e is calculated between the base sphere and the corresponding
result image.

Image L:M ratio R G B ∆e

Base image 91 72 51 0

8:1 92 52 37 12.88

4:1 93 57 37 10.33

2:1 94 58 37 10.22

1:1 93 61 37 8.46

1:2 94 62 37 8.53

1:4 92 64 37 7.22

1:8 94 64 37 7.98
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Table 7.3: Average RGB value of the surface of the sphere overlapped with a
green line in the assimilation illusion, result images obtained with a variation
of L:M ratio. ∆e is calculated between the base sphere and the corresponding
result image.

Image L:M ratio R G B ∆e

Base image 91 72 51 0

8:1 82 81 43 12.84

4:1 81 80 43 12.41

2:1 81 78 43 10.93

1:1 79 78 43 11.62

1:2 78 76 43 10.55

1:4 74 76 43 12.14

1:8 67 76 43 15.11
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Table 7.4: Average RGB value of the surface of the sphere overlapped with a
blue line in the assimilation illusion, result images obtained with a variation
of L:M ratio. ∆e is calculated between the base sphere and the corresponding
result image.

Image L:M ratio R G B ∆e

Base image 94 74 51 0

8:1 81 65 62 13.16

4:1 80 60 62 16.28

2:1 79 58 62 17.67

1:1 77 62 62 15.47

1:2 73 63 62 15.70

1:4 64 63 62 17.99

1:8 64 64 62 17.66
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Figure 7.13: CIE 1931 x,y coordinates of the average color for each sphere
and each L:M ratio. Each series start from the central original color and
shifts according to L:M ratio going from 8:1 to 1:8. Right figure shows a
detail of the region of the diagram with the coordinates.

if the assimilation illusion manifests itself in the output image. The

difference in color between original and output image has been quantified

by the color difference formula CIE76 [169], with ∆e value corresponding to

the Euclidean distance between two colors in CIELAB color space. Results

are presented for illusory red, green and blue spheres in tables 7.2 through

7.4. It is possible to observe a consistent behavior in the three different

sphere color computations: for each sphere, the RGB channel corresponding

to the illusory color shows an increase in the average value, while the other

two remaining channels exhibited a decrease in value, thus showing in the

resulting image the appearance of color assimilation. In Figure 7.13 each

average RGB value has been converted and plotted into a CIE diagram, in

order to visualize the shift in color. From the central starting point, it is

possible to observe how for each illusory shift in color the coordinates change

in the direction of the color that overlaps the sphere.

7.5.2 Chromatic simultaneous constrast

The image in Figure 7.10 (right) presents an example of simultaneous color

contrast. In this subsection a the image will be tested on the model with

a variation of L to M cone ratio to determine the impact on result images,
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the test is performed on seven different L to M ratios, from 8:1 to 1:8.

Figure 7.14: Output image obtained from Figure 7.10 (right), with L:M cone
ratio of 1:1.

Figure 7.14 shows an example of an output image, obtained with L:M

cone ratio 1:1. For each output image, the four squares have been cropped

and analyzed separately by the color surrounding the square. The analysis

consists in calculating the average RGB value of the sphere surface, com-

paring it to the original value, to observe if the simultaneous color contrast

illusion manifests itself in the output image. Results are presented for the

squares surrounded by red, green, blue and yellow in tables 7.5 and 7.6.
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Table 7.5: Grey squares in the result images of the color contrast illusion
produced with the color reconstruction tool at the variation of L:M cone
ratio. Each column shows squares with a different color background.

L:M ratio Red Green Blue Yellow

8:1

4:1

2:1

1:1

1:2

1:4

1:8
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Table 7.6: Average RGB values of the result grey squares in Table 7.5 at
the variation of L:M cone ratio.

L:M ratio
Red

background

Green

background

Blue

background

Yellow

background

Original

image

R = 195

G = 195

B = 195

R = 195

G = 195

B = 195

R = 195

G = 195

B = 195

R = 195

G = 195

B = 195

8:1

R = 196

G = 177

B = 183

R = 190

G = 201

B = 180

R = 190

G = 180

B = 199

R = 196

G = 199

B = 177

4:1

R = 196

G = 182

B = 183

R = 190

G = 198

B = 180

R = 189

G = 185

B = 199

R = 196

G = 197

B = 177

2:1

R = 196

G = 186

B = 183

R = 188

G = 196

B = 180

R = 189

G = 187

B = 199

R = 196

G = 197

B = 177

1:1

R = 197

G = 188

B = 183

R = 187

G = 196

B = 180

R = 188

G = 188

B = 199

R = 196

G = 197

B = 177

1:2

R = 197

G = 189

B = 183

R = 185

G = 196

B = 180

R = 188

G = 189

B = 199

R = 196

G = 196

B = 177

1:4

R = 197

G = 189

B = 183

R = 184

G = 196

B = 180

R = 185

G = 190

B = 199

R = 197

G = 196

B = 177

1:8

R = 199

G = 190

B = 183

R = 181

G = 196

B = 180

R = 180

G = 190

B = 199

R = 198

G = 196

B = 177

Unfortunately, as also evidenced in the graphs in Figure 7.15, in neither

square region there has been an increase in the RGB channel value opposite

to the background color (with opponents green-red and yellow-blue), and

the results are concordant to the ones of the assimilation illusion. Since the

model does not account for color opponency, the produced output images

do not show any hint of simultaneous contrast.
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Figure 7.15: Average RGB value for each channel for the four squares with
different colored backgrounds of Table 7.5, with varying L:M cone ratio.

7.5.3 Hamburger image

The image of an hamburger in Figure 7.16 has the characteristic of being

composed only of interleaved red and grayscale pixels, so we expect to only

see red, white and pink colors inside of it.
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Figure 7.16: The hamburger image, with detail on the right. The image is
only composed of red and grayscale pixels. Image courtesy of Chris Taylor
https://t-a-y-l-o-r.com/land/

k = 2 k = 4

k = 8 k = 16

Figure 7.17: Image results of computation of the hamburger image with
different k value.
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However, to an human observer, this image seems to contain other colors

beside red, namely yellow from the cheese, brown from the meat and green

from the lettuce. This effect has been first demonstrated by Edwin Land

in his experiments on color vision [170] by using two projectors, one with a

black and white image and the other with the same image but applying a

red filter in front of it.

k = 2 k = 4

k = 8 k = 16

Figure 7.18: Image difference between the computed and original hamburger
image with different k value.

Figure 7.17 shows the image results for the model processing on the

image. For this computation we used a model fovea of 2 visual degrees with

23417 cone seeds and different k values. It is possible to see that while

the image still tends to have a heavy red color cast, splotches of the correct

colors appear on their respective regions, like yellow on the cheese and green
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Original k = 2 k = 4 k = 8 k = 16

Figure 7.19: Detail of the salad region of the hamburger image computed
with different k values.

on the salad. Further details can be found in image 7.18, showing image

subtraction between the computed and the original image. The difference

has been computed pixel-wise, given a computed and original pixel, each

representing an RGB vector C = [r1, g1, b1] and O = [r2, g2, b2], the pixel

obtained is R = C −O = [r2 − r1, g2 − g1, b2 − b1].
Thanks to the image difference, it is possible to see how colors beside

red are being added to the original image, generating new colors that were

previously illusory, as visible in the details of Figure 7.19 evidencing the

presence of green pixels in the region correspoding to the salad and yellow

pixels in the region corresponding to the bread.

7.5.4 Illusory blue and yellow

The following Figure 7.20 show image results for computations performed on

Akioshi Kitaoka’s visual illusions ”Illusory Yellow Distortion” and ”Illusory

Blue Distortion”. In the yellow image the words appear to be yellowish,

though the image only consists of blue, white and gray pixels, meanwhile on

the blue image the words appear to be bluish, but the pixels are only yellow,

white and gray. Computation by the model show that although the spatial

grating and text become intelligible enough (notice that the parameters used

imply a vision roughly of a 2 cm inch image at 57.29cm, hence the loss in

quality), it is still possible to perceive the illusory text that is composed by

splotches of the illusory color, now correctly revealed in the image.

Tables 7.7 and 7.8 evidence the detail of the same region in the two

different illusions, before and after computation by the model. In Table 7.7

the original and computed image are separated into their RGB channels: it

is possible to observe the different spatial organization and values of pixels

in the blue channel. The same is true in Table 7.8, where the original
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Figure 7.20: Yellow and Blue illusory distortion illusions and their image
results after computation by the model. Image courtesy of Akioshi Kitaoka
http://www.psy.ritsumei.ac.jp/~akitaoka/.

and computed image are separated into their CMYK channels, in order to

evaluate the variation of pixels in the yellow channel. Since the same model

fovea of 2 degrees was used (k = 2), the illusory color splotches are localized

in the same regions in both images. Figure 7.20 presents a fine example of

the aliasing caused by the S cone submosaic. The splotchiness of the text

in both resulting images is mostly caused by the sampling performed by

the highly spatial irregularity of the S cones. Since this sampling process

is discrete, every information between cones is not directly sensed: when

the spatial frequency of a stimulus is higher than the sampling capabilities

of the cone mosaic, it is possible to observe a low-frequency, irregular and
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splotchy pattern [95].

Table 7.7: Detail of the illusory blue distortion. Top row is input image,
bottom row is output image. The images are separated into their RGB
channels.

Detail R G B

Table 7.8: Detail of the illusory yellow distortion. Top row is input image,
bottom row is output image. The images are separated into their CMYK
channels.

Detail C M Y K
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Chapter 8

Conclusions

Color is a fundamental aspect of our visual perception. Luminous visual

signals are first neurally encoded by the sampling performed by photore-

ceptors on the retina, inside our eyes. In chapter 2, an overview is given

of the human visual system and the behavior of the processes that lead to

the sensation of color. Chapter 3 presented the current state of the art on

biologically-inspired foveated imaging systems and how they can be used

to model space-variance in the retina. Chapter 4 describes in detail the

topography of photoreceptors in the retina, and how their spatial distribu-

tion affects the sampling of color signals, with particular attention to the

highly inter-subjective variance in the L to M cone ratio. In chapter 5 an

investigation on different sampling strategies to reproduce spectral and den-

sity characteristics of the cone photoreceptors mosaic has been performed,

demonstrating that spatial distribution of points created with blue-noise

sampling algorithms possess a high degree of similarity to actual photore-

ceptor data, and can therefore be used to model local patches of retina.

Chapter 6 presents the proposed computational model to investigate how

the variable structure of the retina affects the sampling of a scene. The

modeled spatial variability accounts not only for the space-variant distribu-

tion of photoreceptors in function of their distance from the center of the

fovea, but also for the population of the three cone classes according to a

user-defined L to M cone ratio parameter. In order to visualize the effects

of the parameter variation on a sensed scene, an tool has been developed to

perform image reconstruction by means of interpolation of the spatial sam-

pling of cones. This output does not represent the final perceived image,
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since the model does not take into account any later cortical elaboration

performed by the brain, but allows to visualize and evaluate the effects of

variations in photoreceptor distribution. The proposed k-Nearest Neighbor

algorithm for image reconstruction from samples has been optimized to per-

form from a computational time of Θ(qn) dependant on the number of q

samples, to a constant time of Θ(k). The model intends to be a starting

point of a modular framework of retinal modeling on which to simulate dif-

ferent behaviors concerning human spatial vision and the detection of color

information. In chapter 7 several tests have been performed to evaluate

variation of the different model parameters on images and to analyze the

performance on visual illusions, demonstrating the model performance on

the sensation of color assimilation effect.
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Appendix A: k-NN

algorithm analysis

In this appendix, describing joint work with Dario Ostuni, the k-Nearest

neighbor algorithm will be analyzed and discussed.

Concerning the model, the most computational resources intensive task

in the whole process is the k -Nearest Neighbor search for image reconstruc-

tion. The goal of the k-NN algorithm can be describes as: given a point

p ∈ R2 and a finite set of points X ⊂ R2, find a subset Y ⊆ X such that

|Y | = k and ∀x ∈ X \ Y, ∀y ∈ Y : |p− y| ≤ |p− x|.
Solving the problem with a näıve approach, that is sorting the n = |X|

points by their distance to p and then taking the first k as our set Y , it

would take O(n log (n)) time. This method can be improved, since only

the k nearest elements are needed and the order is unimportant, by using

a selection algorithm instead of a sorting algorithm. Since selection can be

executed in O(n) time[171], only the distances between p and the elements

of X should be generated and then by selecting the first k, it will give a

running time of Θ(n).

Supposing that the k-NN problem will be solved for q input points, by

using the improved algorithm it will take Θ(qn) time. Given that for the

image reconstruction tool both q and n are in the order of millions, a single

computation would take time in the order of hours, if not days.

8.1 Algorithm description

In the general case, Θ(n) is the best possible time, but the data structure of

the retinal sampling has a characteristic that can be exploited to make the

algorithm faster: locally, sampling regions possess similar enough density d.
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The updated algorithm works in the following way: first, a regular grid

is created with cells with sides of length l and, for each cell, the information

of which points of X are contained in that cell is stored: this can be done

in Θ(n) time. Since a uniform density of points has been assumed, each cell

Cx,y will have an expected number of points contained in it of E[|Cx,y|] = l2d.

Next, when finding the k nearest points to the query point p, the function

search of algorithm 2 is invoked with arguments p, the query point, and

Cx0,y0 , the cell containing p. The function returns Y , which is the answer

to the query.

Algorithm 2 k-NN search

function search(p, Cx0,y0)
r ← 0
e←∞
Queue Q← ∅
Y ← ∅
while lr < e do

insert into Q all elements of cells Cx,y with |x−x0|+ |y− y0| = r
r ← r + 1
while Q 6= ∅ do

extract the front of Q in q
insert q in Y
if |Y | = k then

e = l(r + 1)
√

2

Y ← SELECT (Y, k)
return Y

8.2 Proof of correctness

In this subsection it is proven that the algorithm is correct. It is possible to

notice that r, during the computation, represents the current lower bound

to the distance on the x and y axes of all points that will go in Q. The

algorithm cannot terminate until k points have been added to Y , so let’s

fast forward to the time where |Y | = k. At this time the algorithm will have

found exactly k points, so f denotes the maximum element in Y . Knowing

that fx < l(r+1) and fy < l(r+1) and that ∀a ∈ Y \{f} |p−f | ≥ |p−a|, at

this time k−1 points which are not farther than f will be found. Since points

are being added to Q not by following an order on the distance but rather by
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following the order of the x and y coordinates, there could be some point t

which is the true k-th nearest point that has not been added yet to Q. How

distant can this point possibly be? Knowing that it must be |p− t| ≤ |p−f |,
but |p−f | <

√
2(l(r + 1))2, meaning that |p− t| < l(r+1)

√
2, but since the

ending condition has been set exactly to that value, if such a t exists, it will

be surely found. Since the k-th nearest point will be found, and since all the

other points in Y are not farther than this point, the algorithm terminates

with Y containing the k closest points to p, since at the end only the first k

points will be selected.

8.3 Expected computational complexity

Let’s recall that ∀x, y E[|Cx,y|] = l2d. A function g(r) can be defined that

will tell how many points have been visited up to the r-th iteration. It’s

possible to see that

E [g(r)] = (2r + 1)2l2d (8.1)

Subsequently, how many iterations are needed before at least k points are

encountered? Or, in other words, which is the smallest r such that

E [g(r)] ≥ k (8.2)

(2r + 1)2l2d ≥ k (8.3)

4r2 + 4r + l2d+ 1− k ≥ 0 (8.4)

r =
−2 +

√
4− (l2d+ 1− k)

4
(8.5)

Since r must be an integer, it becomes

r =

⌈
−2 +

√
4− (l2d+ 1− k)

4

⌉
(8.6)

When r reaches this value, the algorithm will set

e =
⌈
r
√

2
⌉

(8.7)

e =

⌈⌈
−2 +

√
4− (l2d+ 1− k)

4

⌉
√

2

⌉
(8.8)
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By setting

l =
1√
d

(8.9)

This is obtained

e =

⌈⌈
−2 +

√
k − 2

4

⌉√
2

⌉
(8.10)

So, it is possible to say that

e = Θ(
√
k) (8.11)

Now, how many operations are being done in the first r iterations? Adding

only f(r) points to an array (which takes Θ(f(r)) time) and selecting from k

points (which, as previously stated, can be done in Θ(k) time). This means

that the h(r) function, which gives the running time of the algorithm, is

h(r) = Θ(g(r)) + Θ(k) (8.12)

Knowing that at most e iterations will be performed, the expected value

obtained is

E [h(r)] = Θ(E [g(e)]) + Θ(k) (8.13)

E [h(r)] = Θ(E
[
g(Θ(

√
k))
]
) + Θ(k) (8.14)

E [h(r)] = Θ(
(

2Θ(
√
k) + 1

)2
) + Θ(k) (8.15)

E [h(r)] = Θ(k) (8.16)

So it is possible to say that the algorithm has an expected time computa-

tional complexity of Θ(k).
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Appendix B: Visual interface

for the model

In this appendix, a visual interface for the model is proposed, developed

using the Node.js and Express frameworks. The pipeline of the model is

divided into 4 steps, each with its own web page. In the first step (Figure

8.1), the sampling array can be generated: at the top of the page it is possible

to choose the generation method, each one of them has its own parameters,

placed in the square directly on the right side. Note that in every step of

the web application, the methods are modular and can be added or modified

separately. Once the parameters have been set, the full array is visible on

the bottom left square canvas where, using a square selection tool that can

be dragged and resized, it is possible to select a sampling window from the

generated sampling, highlighted in the square on the right that displays a

zoom of the selection. Moreover, on the bottom left it is possible to decide

the size of the sampling window and the location of the foveal center, if

present. Lastly, in the bottom right, under the zoomed sampling window, a

recap of the sampling window attributes is listed.

Figure 8.2 shows the following step where the sampling array becomes a

cone distribution that will be used in the next step to sample an image. It is

possible to use the basic RGB sampling, where cone absorption is calculated

directly from RGB values, or to use a spectral sampling, in which case the

spectral absorption curves will be requested. Each selectable method allows

to choose the L to M cone ratio, then it is possible to generate the cone

distribution that will be visualized on the bottom left, together with a recap

of the parameters.

Next, in the third step presented in Figure 8.3, it is possible to upload

the image to be sampled by the previously generated cone distribution. If
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Figure 8.1: First step of the visual interface, the cone array generation.

a spectral sampling method has been selected, it will only be possible to

upload an hyperspectral image, otherwise any .png image can be uploaded,

better if square in size. Once uploaded, both the original image and the

one sampled by the cone distribution will be displayed, together with their

histograms of the distribution of pixel values in the RGB channels. At the

bottom of the page, the usual recap is displayed, and with the ”Continue”

button it is possible to proceed to the fourth and final step.

Figure 8.4 displays the last step of the model, namely the color recon-

struction. Like the previous steps, it is possible to select a reconstruction

method from a list of possible implemented methods. In the example of

the figure we are selecting the k-NN reconstruction method: once the value
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Figure 8.2: Second step of the visual interface, the generation of a cone
sampling

of k has been confirmed, all of the image data will be displayed, including

the input, the sampled and the reconstructed image, together with their

respective histograms to allow an easy comparison. At the bottom, a recap

of all the parameters used to produce the final reconstructed image will be

displayed, and a button allows to start the web application again.
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Figure 8.3: Third step of the visual interface, where an image is uploaded
and sampled by the cone mosaic.
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Figure 8.4: Final step of the visual interface, where it is possible to select a
color reconstruction method and where final results are reported.
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