532 research outputs found

    Real-Time, Multiple Pan/Tilt/Zoom Computer Vision Tracking and 3D Positioning System for Unmanned Aerial System Metrology

    Get PDF
    The study of structural characteristics of Unmanned Aerial Systems (UASs) continues to be an important field of research for developing state of the art nano/micro systems. Development of a metrology system using computer vision (CV) tracking and 3D point extraction would provide an avenue for making these theoretical developments. This work provides a portable, scalable system capable of real-time tracking, zooming, and 3D position estimation of a UAS using multiple cameras. Current state-of-the-art photogrammetry systems use retro-reflective markers or single point lasers to obtain object poses and/or positions over time. Using a CV pan/tilt/zoom (PTZ) system has the potential to circumvent their limitations. The system developed in this paper exploits parallel-processing and the GPU for CV-tracking, using optical flow and known camera motion, in order to capture a moving object using two PTU cameras. The parallel-processing technique developed in this work is versatile, allowing the ability to test other CV methods with a PTZ system using known camera motion. Utilizing known camera poses, the object\u27s 3D position is estimated and focal lengths are estimated for filling the image to a desired amount. This system is tested against truth data obtained using an industrial system

    Hierarchies of Coupled Inverse and Forward Models for Abstraction in Robot Action Planning, Recognition and Imitation

    No full text
    Coupling internal inverse and forward models gives rise to on-line simulation processes that may be used as a common computational substrate for action execution, planning, recognition, imitation and learning. In this paper, multiple coupled internal inverse and forward models are arranged in a hierarchical fashion, with each level of the hierarchy interacting with other levels through top-down and bottom-up processes. Through experiments involving imitation of a human demonstrator performing object manipulation tasks, this architecture is shown to equip a robot with a multi-level motor abstraction capability. This is then used to solve the correspondence problem in action recognition. The architecture is inspired by biological evidence

    Wide-Area Surveillance System using a UAV Helicopter Interceptor and Sensor Placement Planning Techniques

    Get PDF
    This project proposes and describes the implementation of a wide-area surveillance system comprised of a sensor/interceptor placement planning and an interceptor unmanned aerial vehicle (UAV) helicopter. Given the 2-D layout of an area, the planning system optimally places perimeter cameras based on maximum coverage and minimal cost. Part of this planning system includes the MATLAB implementation of Erdem and Sclaroff’s Radial Sweep algorithm for visibility polygon generation. Additionally, 2-D camera modeling is proposed for both fixed and PTZ cases. Finally, the interceptor is also placed to minimize shortest-path flight time to any point on the perimeter during a detection event. Secondly, a basic flight control system for the UAV helicopter is designed and implemented. The flight control system’s primary goal is to hover the helicopter in place when a human operator holds an automatic-flight switch. This system represents the first step in a complete waypoint-navigation flight control system. The flight control system is based on an inertial measurement unit (IMU) and a proportional-integral-derivative (PID) controller. This system is implemented using a general-purpose personal computer (GPPC) running Windows XP and other commercial off-the-shelf (COTS) hardware. This setup differs from other helicopter control systems which typically use custom embedded solutions or micro-controllers. Experiments demonstrate the sensor placement planning achieving \u3e90% coverage at optimized-cost for several typical areas given multiple camera types and parameters. Furthermore, the helicopter flight control system experiments achieve hovering success over short flight periods. However, the final conclusion is that the COTS IMU is insufficient for high-speed, high-frequency applications such as a helicopter control system

    Highly efficient low-level feature extraction for video representation and retrieval.

    Get PDF
    PhDWitnessing the omnipresence of digital video media, the research community has raised the question of its meaningful use and management. Stored in immense multimedia databases, digital videos need to be retrieved and structured in an intelligent way, relying on the content and the rich semantics involved. Current Content Based Video Indexing and Retrieval systems face the problem of the semantic gap between the simplicity of the available visual features and the richness of user semantics. This work focuses on the issues of efficiency and scalability in video indexing and retrieval to facilitate a video representation model capable of semantic annotation. A highly efficient algorithm for temporal analysis and key-frame extraction is developed. It is based on the prediction information extracted directly from the compressed domain features and the robust scalable analysis in the temporal domain. Furthermore, a hierarchical quantisation of the colour features in the descriptor space is presented. Derived from the extracted set of low-level features, a video representation model that enables semantic annotation and contextual genre classification is designed. Results demonstrate the efficiency and robustness of the temporal analysis algorithm that runs in real time maintaining the high precision and recall of the detection task. Adaptive key-frame extraction and summarisation achieve a good overview of the visual content, while the colour quantisation algorithm efficiently creates hierarchical set of descriptors. Finally, the video representation model, supported by the genre classification algorithm, achieves excellent results in an automatic annotation system by linking the video clips with a limited lexicon of related keywords

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    A Decentralized Architecture for Active Sensor Networks

    Get PDF
    This thesis is concerned with the Distributed Information Gathering (DIG) problem in which a Sensor Network is tasked with building a common representation of environment. The problem is motivated by the advantages offered by distributed autonomous sensing systems and the challenges they present. The focus of this study is on Macro Sensor Networks, characterized by platform mobility, heterogeneous teams, and long mission duration. The system under consideration may consist of an arbitrary number of mobile autonomous robots, stationary sensor platforms, and human operators, all linked in a network. This work describes a comprehensive framework called Active Sensor Network (ASN) which addresses the tasks of information fusion, decistion making, system configuration, and user interaction. The main design objectives are scalability with the number of robotic platforms, maximum flexibility in implementation and deployment, and robustness to component and communication failure. The framework is described from three complementary points of view: architecture, algorithms, and implementation. The main contribution of this thesis is the development of the ASN architecture. Its design follows three guiding principles: decentralization, modularity, and locality of interactions. These principles are applied to all aspects of the architecture and the framework in general. To achieve flexibility, the design approach emphasizes interactions between components rather than the definition of the components themselves. The architecture specifies a small set of interfaces sufficient to implement a wide range of information gathering systems. In the area of algorithms, this thesis builds on the earlier work on Decentralized Data Fusion (DDF) and its extension to information-theoretic decistion making. It presents the Bayesian Decentralized Data Fusion (BDDF) algorithm formulated for environment features represented by a general probability density function. Several specific representations are also considered: Gaussian, discrete, and the Certainty Grid map. Well known algorithms for these representations are shown to implement various aspects of the Bayesian framework. As part of the ASN implementation, a practical indoor sensor network has been developed and tested. Two series of experiments were conducted, utilizing two types of environment representation: 1) point features with Gaussian position uncertainty and 2) Certainty Grid maps. The network was operational for several days at a time, with individual platforms coming on and off-line. On several occasions, the network consisted of 39 software components. The lessons learned during the system's development may be applicable to other heterogeneous distributed systems with data-intensive algorithms

    Augmented Reality

    Get PDF
    Augmented Reality (AR) is a natural development from virtual reality (VR), which was developed several decades earlier. AR complements VR in many ways. Due to the advantages of the user being able to see both the real and virtual objects simultaneously, AR is far more intuitive, but it's not completely detached from human factors and other restrictions. AR doesn't consume as much time and effort in the applications because it's not required to construct the entire virtual scene and the environment. In this book, several new and emerging application areas of AR are presented and divided into three sections. The first section contains applications in outdoor and mobile AR, such as construction, restoration, security and surveillance. The second section deals with AR in medical, biological, and human bodies. The third and final section contains a number of new and useful applications in daily living and learning

    HUMAN CONTROL OF COOPERATING ROBOTS

    Get PDF
    Advances in robotic technologies and artificial intelligence are allowing robots to emerge fromresearch laboratories into our lives. Experiences with field applications show that we haveunderestimated the importance of human-robot interaction (HRI) and that new problems arise inHRI as robotic technologies expand. This thesis classifies HRI along four dimensions - human,robot, task, and world and illustrates that previous HRI classifications can be successfullyinterpreted as either about one of these elements or about the relationship between two or moreof these elements. Current HRI studies of single-operator single-robot (SOSR) control andsingle-operator multiple-robots (SOMR) control are reviewed using this approach.Human control of multiple robots has been suggested as a way to improve effectiveness inrobot control. Unlike previous studies that investigated human interaction either in low-fidelitysimulations or based on simple tasks, this thesis investigates human interaction with cooperatingrobot teams within a realistically complex environment. USARSim, a high-fidelity game-enginebasedrobot simulator, and MrCS, a distributed multirobot control system, were developed forthis purpose. In the pilot experiment, we studied the impact of autonomy level. Mixed initiativecontrol yielded performance superior to fully autonomous and manual control.To avoid limitation to particular application fields, the present thesis focuses on commonHRI evaluations that enable us to analyze HRI effectiveness and guide HRI design independentlyof the robotic system or application domain. We introduce the interaction episode (IEP), whichwas inspired by our pilot human-multirobot control experiment, to extend the Neglect ToleranceHUMAN CONTROL OF COOPERATING ROBOTSJijun Wang, Ph.D.University of Pittsburgh, 2007vmodel to support general multiple robots control for complex tasks. Cooperation Effort (CE),Cooperation Demand (CD), and Team Attention Demand (TAD) are defined to measure thecooperation in SOMR control. Two validation experiments were conducted to validate the CDmeasurement under tight and weak cooperation conditions in a high-fidelity virtual environment.The results show that CD, as a generic HRI metric, is able to account for the various factors thataffect HRI and can be used in HRI evaluation and analysis

    Systems and Algorithms for Automated Collaborative Observation using Networked Robotic Cameras

    Get PDF
    The development of telerobotic systems has evolved from Single Operator Single Robot (SOSR) systems to Multiple Operator Multiple Robot (MOMR) systems. The relationship between human operators and robots follows the master-slave control architecture and the requests for controlling robot actuation are completely generated by human operators. Recently, the fast evolving advances in network and computer technologies and decreasing size and cost of sensors and robots enable us to further extend the MOMR system architecture to incorporate heterogeneous components such as humans, robots, sensors, and automated agents. The requests for controlling robot actuation are generated by all the participants. We term it as the MOMR++ system. However, to reach the best potential and performance of the system, there are many technical challenges needing to be addressed. In this dissertation, we address two major challenges in the MOMR++ system development. We first address the robot coordination and planning issue in the application of an autonomous crowd surveillance system. The system consists of multiple robotic pan-tilt-zoom (PTZ) cameras assisted with a fixed wide-angle camera. The wide-angle camera provides an overview of the scene and detects moving objects, which are required for close-up views using the PTZ cameras. When applied to the pedestrian surveillance application and compared to a previous work, the system achieves increasing number of observed objects by over 210% in heavy traffic scenarios. The key issue here is given the limited number (e.g., p (p > 0)) of PTZ cameras and many more (e.g., n (n >> p)) observation requests, how to coordinate the cameras to best satisfy all the requests. We formulate this problem as a new camera resource allocation problem. Given p cameras, n observation requests, and [epsilon] being approximation bound, we develop an approximation algorithm running in O(n/[epsilon]³ + p²/[epsilon]⁶) time, and an exact algorithm, when p = 2, running in O(n³) time. We then address the automatic object content analysis and recognition issue in the application of an autonomous rare bird species detection system. We set up the system in the forest near Brinkley, Arkansas. The camera monitors the sky, detects motions, and preserves video data for only those targeted bird species. During the one-year search, the system reduces the raw video data of 29.41TB to only 146.7MB (reduction rate 99.9995%). The key issue here is to automatically recognize the flying bird species. We verify the bird body axis dynamic information by an extended Kalman filter (EKF) and compare the bird dynamic state with the prior knowledge of the targeted bird species. We quantify the uncertainty in recognition due to the measurement uncertainty and develop a novel Probable Observation Data Set (PODS)-based EKF method. In experiments with real video data, the algorithm achieves 95% area under the receiver operating characteristic (ROC) curve. Through the exploration of the two MOMR++ systems, we conclude that the new MOMR++ system architecture enables much wider range of participants, enhances the collaboration and interaction between participants so that information can be exchanged in between, suppresses the chance of any individual bias or mistakes in the observation process, and further frees humans from the control/observation process by providing automatic control/observation. The new MOMR++ system architecture is a promising direction for future telerobtics advances

    Linking focus and context in three-dimensional multiscale environments

    Get PDF
    The central question behind this dissertation is this: In what ways can 3D multiscale spatial information be presented in an interactive computer graphics environment, such that a human observer can better comprehend it? Toward answering this question, a two-pronged approach is employed that consists of practice within computer user-interface design, and theory grounded in perceptual psychology, bound together by an approach to the question in terms of focus and context as they apply to human attention. The major practical contribution of this dissertation is the development of a novel set of techniques for linking 3D windows to various kinds of reference frames in a virtual scene and to each other---linking one or more focal views with a view that provides context. Central to these techniques is the explicit recognition of the frames of reference inherent in objects, in computer-graphics viewpoint specifications, and in the human perception and cognitive understanding of space. Many of these techniques are incorporated into the GeoZui3D system as major extensions. An empirical evaluation of these techniques confirms the utility of 3D window proxy representations and orientation coupling. The major theoretical contribution is a cognitive systems model that predicts when linked focus and context views should be used over other techniques such as zooming. The predictive power of the model comes from explicit recognition of locations where a user will focus attention, as well as applied interpretations of the limitations of visual working memory. The model\u27s ability to predict performance is empirically validated, while its ability to model user error is empirically founded. Both the model and the results of the related experiments suggest that multiple linked windows can be an effective way of presenting multiscale spatial information, especially in situations involving the comparison of three or more objects. The contributions of the dissertation are discussed in the context of the applications that have motivated them
    corecore