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Advances in robotic technologies and artificial intelligence are allowing robots to emerge from 

research laboratories into our lives. Experiences with field applications show that we have 

underestimated the importance of human-robot interaction (HRI) and that new problems arise in 

HRI as robotic technologies expand. This thesis classifies HRI along four dimensions – human, 

robot, task, and world and illustrates that previous HRI classifications can be successfully 

interpreted as either about one of these elements or about the relationship between two or more 

of these elements. Current HRI studies of single-operator single-robot (SOSR) control and 

single-operator multiple-robots (SOMR) control are reviewed using this approach.  

Human control of multiple robots has been suggested as a way to improve effectiveness in 

robot control. Unlike previous studies that investigated human interaction either in low-fidelity 

simulations or based on simple tasks, this thesis investigates human interaction with cooperating 

robot teams within a realistically complex environment. USARSim, a high-fidelity game-engine-

based robot simulator, and MrCS, a distributed multirobot control system, were developed for 

this purpose. In the pilot experiment, we studied the impact of autonomy level. Mixed initiative 

control yielded performance superior to fully autonomous and manual control.  

To avoid limitation to particular application fields, the present thesis focuses on common 

HRI evaluations that enable us to analyze HRI effectiveness and guide HRI design independently 

of the robotic system or application domain. We introduce the interaction episode (IEP), which 

was inspired by our pilot human-multirobot control experiment, to extend the Neglect Tolerance 
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model to support general multiple robots control for complex tasks. Cooperation Effort (CE), 

Cooperation Demand (CD), and Team Attention Demand (TAD) are defined to measure the 

cooperation in SOMR control. Two validation experiments were conducted to validate the CD 

measurement under tight and weak cooperation conditions in a high-fidelity virtual environment. 

The results show that CD, as a generic HRI metric, is able to account for the various factors that 

affect HRI and can be used in HRI evaluation and analysis.  
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1.0  INTRODUCTION 

The advances in robotic technologies and artificial intelligence allow robots to emerge from 

research laboratories into our lives. Roomba is available in Home Depot to clean our floor 

automatically. Kids play with Robosapien, the humanoid toy robot, to entertain themselves at 

home. Talon is being used in Afghanistan to explore bombs. Field robots were deployed at the 

World Trade Center site (2001) and in New Orleans (2005) to search for victims. These and 

other uses of robots in recent years show that we have underestimated the importance of human-

robot interaction (HRI) and that new problems arise in HRI as robotic technologies expand. For 

example, in the Roomba and Robosapien applications, in which the robot and the human share 

the same space, building social interaction became a new problem for the field. When robots 

were used at the World Trade Center site (2001) to explore the rough terrain for victims, 

situation awareness was found to be more critical than previously thought [14]. Other field 

studies have shown that robot autonomy is not always helpful if the human operator does not 

trust the robot [56, 86]. Although a robot team may improve task performance, it will require the 

operator to maintain a more complex situation awareness to shift between an individual robot 

and the robot team [37, 47, 78, 85].  

The interaction between a human and a robot is usually rich, complex, and concrete because 

the robot is a situated agent that lives in and interacts with a dynamic environment in imperfect 

and unreliable ways. The noisy sensors and effectors, narrow communication bandwidth, limited 
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data processing capabilities, and other characteristics are obstacles to the goal of building an 

efficient robotic system [65, 88]. The frontier of HRI study is to extend the single-operator-

single-robot (SOSR) interaction to single-operator-multi-robot (SOMR) control. Cooperating 

robot teams have emerged in recent years because of the advances in multi-agent technologies. 

In this paper, we are interested in studying the new HRI problems that arise in human 

interactions with cooperating robot teams. 

In the remainder of the introduction, we describe the scope of our study and then compare 

HRI with human-computer interaction (HCI) to further clarify the study that we present in this 

proposal. Finally, we give the overview of the paper.  

1.1 THE FOUR ELEMENTS OF HRI STUDY 

The content of HRI is very broad because of the complex interactions that exist between the 

robot, the human, and the working environment. Classifying HRI will help us to identify the 

scope and to better understand the content of HRI. [91] attempts to identify and classify the 

content of HRI in terms of its five application domains, and the numeric, spatial, and authority 

relationships between the human and the robot. [119, 120] propose 11 taxonomy categories in 

order to include all possible classifications of HRI. We believe that there are four essential 

elements in HRI: human, robot(s), world, and task. Along these four dimensions1, we are able to 

systematically identify the HRI categories. All of the above classifications can be interpreted as 

                                                 

1 Time is the fifth dimension. Because of its obviousness, we ignore it here.  
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either about one of these elements or about the relationship between two or more of these 

elements.  

1.1.1 Human 

The human in a human-robot team can be an operator who controls the robotic system or a 

person who implicitly affects the robotic system as a decision-maker, investigator, or 

communicator. In terms of personal skill, background knowledge, and experience, the human in 

an HRI system can be a novice, trained person, or expert. Defining these characteristics of the 

human element in HRI is critical because these characteristics can significantly impact the 

human-robot system. For example, [1] shows that many HRI systems have failed because the 

human element of these systems’ designs was based on the roboticist instead of the potentially 

novice end user. Furthermore, when more than one person is involved in a system, the humans 

become a human group. If the human group cooperates among themselves, they compose a 

human team that shares the same team goal. For example, in the army, a team of soldiers 

typically control one unmanned aerial vehicle (UAV). 

1.1.2 Robot 

There are many definitions of a robot. It can be software that responses to a user, a vehicle that is 

controlled remotely by the operator, a mechanical device that performs manufacturing tasks, or 

any other program or object that has some degree of autonomy. In this thesis, without special 

declaration, we restrict the definition of a robot to a mechanical device that directly interacts with 

the workspace.  
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In terms of locomotive features, we further define a robot as in a fixed position or possessing 

the ability to move around. From the perspective of robot morphology, a robot can have an 

anthropomorphic (human-like) or zoomorphic (animal-like) appearance or simply a functional 

appearance [120]. The desired workspace of the robot can be ground, aerial, space, or nautical. In 

describing the autonomy level that specifies the desired level of human intervention with the 

robot(s), we follow Sheridan and Verplank’s (1978) autonomy level spectra. [72] lists ten 

autonomy levels that range from teleoperation (fully manual control performed by a human) to 

mixed or shared control to full autonomy of the robot(s). These ten autonomy levels appear 

below. 

1. The human has full control. 
2. The computer suggests all possible alternatives. 
3. The computer selects from all possible alternatives to suggest only a few. 
4. The computer suggests one recommended alternative. 
5. The computer executes the alternative if the human approves. 
6. The computer executes the alternative, which the human can veto. 
7. The computer executes the alternative and informs the human of the execution. 
8. The computer executes a selected alternative and informs the human only if 

asked. 
9. The computer executes a selected alternative and informs the human only if it 

decides to. 
10. The computer acts entirely autonomously. 

One or more robots can be involved in a human-robot team. Similarly to humans, robots can 

be formed in groups or teams. If all the individuals are the same type, then they construct a 

homogeneous team. Otherwise, they construct a heterogeneous team that usually has a higher 

cooperation requirement. The size of the team has a significant impact on team cooperation and 

control as well. Approximate ranges of team size include small (four or fewer robots), medium 

(four to 20 or 30 robots), and large (20 to 30, or more, robots). When a huge robot team is 

constructed of homogeneous robots with simple functions, it is a robot swarm that possesses 

superior capabilities as well as a special requirement in cooperation and control. Robot teaming 
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is currently a hot topic that is related to multi-agent technologies. From the view of multi-agent 

systems, other classifications of robot teams exist, for which the criteria can be types of 

communication, cooperation, and organization, are listed in [26, 27, 34].  

1.1.3 Task and world 

Robots and human organize and function together to achieve a task. [91] summarizes five task 

domains, which include search and rescue, personal assistance, museum docent, robot fleets, and 

physical therapy. [105] enumerates five task domains as navigation, perception, management, 

manipulation, and social. According to the information processing and functional framework of a 

robotic system [3, 87], an HRI task is comprised of four essential sub-task components: mobility,  

perception, planning, and social. These components vary from a low abstraction level to a high 

abstraction level. The mobility sub-task involves mechanical motions, such as the locomotion of 

the robot or the manipulation of a robot’s arm or a target object. The perception sub-task 

involves information acquisition with the goal of understanding the current situation; for 

example, a robot or robot team can help to map an unknown environment or to find targets in a 

building. The planning sub-task involves making decisions for the future, such as planning a path 

for the robot or coordinating two robots to solve a conflict. The social sub-task is the highest-

level sub-task and involves maintaining a social relationship. Entertaining the human player or 

helping the human operator to trust the robotic system is example of social sub-task. This higher-

level sub-task is usually based on a lower task. For example, trust is based on the robot’s 

predictable behaviors, planning is based on perception, and perception is based on the robot’s 

locomotion during which sensory data is collected. Although each sub-task can be distributed 

between the human and the robot, from a low to a high level of abstraction, the human tends to 
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take more responsibility. Figure 1 illustrates the sub-task types listed in [91] and [105]. For 

example, an urban search and rescue (USAR) task should require more human involvement than 

a navigation task because the former involves higher requests in the perception and planning sub-

tasks. Moreover, in practice, identifying a victim relies heavily on a human’s input because of 

current limitations in pattern recognition. Therefore, the overall effect of the sub-tasks’ 

allocations between a human and a robot makes USAR a typical HRI task because of the 

human’s necessarily deep involvement. 

In addition, based on extrinsic task characteristics, we can classify tasks according to their 

significance, urgency, frequency, risk, and reward. For instance, the classification of a task 

according to its frequency yields the categories of unique, periodical, and routine. The 

classification of a task according to its urgency yields high, medium, and low critical task levels 

[120].  

Mobility Perception Planning Social Mobility Perception Planning Social

Navigation Manipulation Perception Management
Social USAR Assistance Docent
Fleets Therapy  

Figure 1. The tasks among the four basic sub-tasks. 
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Although the workspace usually reflects the task, we cannot simply combine them. For 

instance, a navigation task in an office-like environment, over rough terrain, or in a forest-like 

environment will present different challenges to the human-robot team and therefore require 

different robotic systems and human-robot interactions. [19] estimates world complexity from 

the branch factor and the clutter of the workspace. [73] measures rough terrain in terms of 

traversability with respect to the robot’s coverability and crossability. [101] characterizes the 

debris field in disaster environments. In addition to these terrain features, the world can be open 

or closed and static or dynamic. Features of the ambient environment can characterize the world 

as light or dark, cold or hot, and clear or dusty, among other variables. For example, during the 

rescue activities at the World Trade Center, [14] reports that the type of weather (i.e., high 

temperatures and rain) and noise had a significant impact on the robot-assisted search and rescue. 

1.1.4 The relationships 

The relationships among the human, the robot, the task, and the world constitute the interactions 

in HRI. In this Section, we describe three main relationships of human-robot, human-robot-task, 

and human-robot-world. 
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Human-Robot 

 

Figure 2. The level of shared interaction among teams (reprinted from [120]). 

Ignoring the task and the world, the relationship between the human and the robot includes 

the numeric relationship, called human-robot ratios, that describes the number of people 

involved in controlling a certain number of robots. The ratio is the number of people to the 

number of robots. Possible ratios include one-one, one-many, many-one, and teams-teams, 

according to [91]. It can also be a range when the number of people or the number of robots 

varies in the control process. [120] further classifies the human-robot relationship as a level of 

shared interaction among teams to describe the interaction between humans and robots at both 

the team and the individual levels. Figure 2 is an example taken from [120] that lists all possible 

relationships when the human and robot team sizes are less than two. Cases A through H 

represent the one-one, one-team, one-many, team-one, many-one, team-team, team-many, and 

many-team relationships, respectively.  

In addition to classifying human-robot relationship in terms of the existing interactions 

between human and robot, they can be classified according to the type of interaction. Interaction 

scheme refers to the particular combination of autonomy and interface that characterizes how the 
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human operator affects the robotic system, i.e., the interaction style [19]. The types of interaction 

include teleoperation [44, 59], point-point (waypoint) [14, 35], scripted [19], region of interest 

[79], and delegation [85]. [120] identifies the interactions in terms of the information flow via 

decision support for operators, which classifies the available sensors, provided sensors, sensor 

fusion, and pre-processing of the sensors. 

Human-Robot-Task 

Humans can play different roles in the possible relationships among the human, the robot, 

and the task. [96] defines a set of five roles:  

Supervisory: The human or human team monitors the robot or robot team and changes the 

plan when necessary. 

Operator: The human or human team directly interacts with the robot or robot team to 

change its behaviors. 

Mechanic/programmer: The human or human team physically intervenes with the robot or 

robot team to change its capabilities through modifying hardware or software. 

Peer: The human or human team works with the robot or robot team to perform a task. 

Usually a peer interaction between human and robot occurs at a high level of behavior. 

Bystander: The human or human team is not directly involved in controlling the robot or 

robot team, but affect how the robot or robot team accomplishes the task. For example, humans 

in the same building can affect how a robot navigates the environment by blocking the robot or 

opening or closing a door. 
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Figure 3. The human-robot-task relationships. 

Figure 3 lists the possible combinations of relationships. The relationships represented by (a) 

through (e) correspond to the above five roles. In this figure, cases (a) and (b) can be merged 

together to represent a human or human team who works as a controller. In case (d), a human or 

human team and a robot or robot team work together to perform a task; however, no direct 

human-robot interaction occurs. In case (h), a human or human team, a robot or robot team, and 

the task are in direct interaction with each other. In case (f), a human or human team perform a 

task and a robot or robot team provides assistance; for example, an expert robotic system can 

help a doctor diagnose a patient. Case (g) involves a robot or robot team that exists as a 

bystander and that may implicitly affect a human or human team.  
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Figure 4. The human-robot-world relationships. 

There are three fundamental, direct relationships between the human, the robot, and the 

world: human-robot, robot-world, and human-world. Figure 4 lists four meaningful combinations 

of these relationships. Case (a), or physically collocated, represents the situation in which the 

human and the robot exist in the same world. Both the human and the robot directly affect the 

world and can interfere with the other’s actions to the extent that a social relationship between 

the robot and the human exists. For example, the robotic museum docent will interfere with the 

visitors such that both the robot and the visitors change the environment. Case (b), or remote 

control, describes the situation in which the human and the robot exist in different worlds. The 

human perceives the world through the robot’s sensors and interacts with the workspace via the 

robot. For example, a robot can be deployed in a disaster environment where a human is not 

allowed to enter but can control the robot’s search in the environment. Case (c) represents the 

situation in which both the human and the robot can directly change the world but cannot directly 

interact with the other. For example, a human can play chess with a robot where the human and 

the robot affect each other only implicitly through the world of the chessboard. Case (d) 

represents the situation in which the robot does not exist in the workspace. The robot affects the 

world via a human’s interaction with the workspace. The decision support robot is an example of 

this type of situation.  
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1.1.5 The scope of the present study 

In this thesis, we will focus on one person who remotely controls multiple mobile ground robots. 

The person can be a supervisor or an operator. The robots are cooperating ground robots that 

construct either a homogeneous or a heterogeneous robot team. Navigation and perception are 

the primary tasks that the human and robot team will perform; we will ignore management, 

manipulation, and social tasks at present. We are particularly interested in urban search tasks 

because the disaster environment presents many rich and complex challenges to HRI in which 

the human is heavily involved in robot control. The world will be an indoor disaster environment 

with even or rough terrain. In our study, human and robots exist in different worlds. The operator 

must rely on the robots’ feedback to perceive the workspace and to control the robots. 

1.2 HRI VS. HCI 

HRI can be treated as a subset of human-computer interaction (HCI) and computer-supported 

cooperative work (CSCW) [25, 119]. Many research results in HCI can be applied to HRI 

research. However, according to [96], “Human-robot interaction is fundamentally different from 

typical human-computer interaction.” [37] notes that the complex and dynamic features in both 

the control system and the real world, as well as the autonomy and cognition model embedded in 

a robotic system, distinguish HRI from HCI. [96] lists six ways that HRI is different from HCI. 

First, the object that the human is interacting with is different. As mentioned above, a robot is a 

situated agent that makes an interaction more complex. A robot dynamically interacts with a 
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world according to its own “world model”2. This “world model” must be represented clearly to 

any human who will interact with the robot. The differences between the real world, the robot’s 

world model, and the human’s world model, as well as the difference between the robot’s world 

model and the human’s understanding of the robot’s world model, pose significant failures in 

and challenges to HRI. These differences cause, for example, situation awareness problems and 

social interaction problems, including issues of emotion and trust, that are new to the typical 

HCI. The robot platform interacts with the environment in imperfect ways, introducing into 

interactions an uncertainty that is rare in HCI. Examples of this uncertainty in HRI include an 

incorrect moving distance, a broken robot arm, and a degraded sensor. Humans must live with 

such errors to interact with robots. On the other hand, in HRI, the workspace is the real-time 

world of physics, which may change from time to time. Unlike the typical HCI, the results of 

HRI are not constant. The real world does not pause, yielding time-related problems in HRI like 

delay and synchronization. Moreover, damages may occur that force the operator to respond to 

the incident and that introduce stress into the interaction. The HRI operator may face a range of 

working conditions, such as a dark, dusty, or underwater environment.  

In addition to the dynamic and uncertain features of the robot platform and the world, the 

degree of robot autonomy in HRI and HCI differ. The degree of robot autonomy changes the role 

that a human or human team will play in the interaction as well as how deeply a human or human 

team will be involved in robot control. The ten autonomy levels and five possible roles described 

in previous Sections require different types of information (abstract or concrete data), control 

styles, intervention frequencies, and workloads in HRI. Furthermore, the roles played by humans 

                                                 

2 For example, the robot uses its own map to move around or uses range data to navigate in a building. 
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and a robot’s degree of autonomy may change. These present both advantages and challenges to 

HRI.   

Finally, in HRI, it is possible for a human to control multiple robots simultaneously. During 

such interactions, the human must handle issues such as cooperation, conflict, interference, and 

competition among the robots. When the robots work as a team, the operator must maintain team 

awareness and possibly individual awareness as well. In typical HCI, however, one user usually 

interacts with only one computer. Furthermore, in HRI, humans may work as a team to control 

one or more robots. For example, in the World Trade Center (2001) rescue activity, two people 

controlled one robot [10]. The U.S. Army plans to have multiple soldiers control multiple UAVs 

and UGVs in the battlefield of the future.  

1.3 OVERVIEW 

The remainder of the dissertation begins with a background chapter that introduces the current 

HRI field’s interest in a single operator controlling a single robot. We then explore the current 

effort in extending HRI to a single operator controlling multiple robots. A summary and the 

potential questions in human multi-robot control will be discussed. We next introduce our efforts 

in the study of multiple robots. At the outset, we built an original high-fidelity HRI-oriented 

robot simulator to provide a cheap and realistic HRI testing bed. Then, based on a multi-agent 

architecture, a flexible and scalable multi-robot control system was developed to support the 

control of cooperating robots. With the simulator and robotic system, we conducted a pilot 

experiment to study the impact of autonomy in human-controlled cooperating robots. Finally, we 
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propose the interaction episode methodology, which allows us to study the interaction between 

humans and cooperating robots as well as the related validation and study experiments.  
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2.0  BACKGROUND 

Single-operator-single-robot interaction has been studied extensively in recent years. This 

research falls into three main areas: how user interface improves effectiveness in HRI, how the 

robotic system’s capability benefits HRI, and the metrics that can be used to evaluate and guide 

HRI design. The field studies [10, 11, 14, 97], the controlled experiments [18, 44, 64], and the 

robot competition activities [24, 99, 121] demonstrate that most of the problems in HRI connect 

with situation awareness (SA), which emphasizes the robot as a situated agent. This study in SA 

plays an important role in HRI, so we begin with SA and then proceed to discuss three other 

areas in HRI. Finally, we discuss the challenges that we will face when we shift from single-

robot control to multi-robot control. 

2.1 SITUATION AWARENESS 

2.1.1 Definition 

Situation awareness is generally defined as “the perception of the elements in the environment 

within a volume of time and space, the comprehension of their meaning and the projection of 

their status in the near future” [28]. 
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This definition implies three levels of SA. At the level of perception (Level 1 SA), people 

are aware of the elements in the environment. For example, in robot driving, we may see the 

range data, a hallway from the video feedback, and a speed meter on the interface. At the level of 

comprehension (Level 2 SA), we synthesize these data to form an overall understanding of the 

environment in terms of what is happening at the current time. For example, we can understand 

that the robot is moving down the hallway at a high speed and not quite pointing at the center of 

the hallway. At the level of projection (Level 3 SA), we apply our knowledge and 

comprehension of the current situation to predict the future status of the environment. Continuing 

the previous example, we can predict that, even though the robot points only slightly off-center, 

its high speed will cause it to bump into the wall in the near future. Through situation awareness, 

we are able to decide either to slow down the robot so that we can finish another task before 

intervening with it or to adjust the robot’s direction immediately. 

2.1.2 The SA errors 

[29] discusses the potential errors that can result from incomplete or incorrect SA. For Level 1 

SA, incomplete SA may occur when we lack data about an element or when we provide data 

about an element but fail to represent it in a noticeable or distinguishable way. For example, in 

the RoboCup 2003 USAR competition, [99] reports that one of the final teams with two DOF 

cameras was able to view the robot’s front wheel and thereby explored wider areas because of 

the better SA of location and surroundings. In contrast, the teams with fixed front cameras had 

more difficulty in exploration because of the comparative lack of SA. Another team used a 360-

degree omni-camera to aid navigation, but the distorted image made the obstacle very difficult to 

distinguish; the omni-camera ultimately provided no help in local navigation, although it showed 
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better performance in one run. In addition to reasons of the lack or improper presentation of 

information, incomplete SA can arise from human limitation in sampling data, paying attention, 

and sharing attention among tasks. This significantly impacts SA when several people control 

multiple robots. Incorrect SA occurs when people misinterpret data. For example, robots rolled 

over in the attitude experiment [59] and field study in Sandia [69] when crossing desert-like 

terrain because operators underestimated the robots’ attitudes from video and meters.  

For Level 2 SA, failures in understanding the current situation mainly arise from lacking a 

mental model, having an incorrect mental model, or using the mental model improperly. In the 

field study of the Fire Chief controlling robot, [121] reports that when the Chief controlled a 

robot, which was working under safe mode, he continuously drove the robot forward when the 

robot stopped because of the self-protection function. In this example, lacking the mental model 

of the robot control mode caused a misunderstanding of the situation. Another example is 

reported in [44] in which users were allowed to pan and tilt the camera while driving the robot. 

The user interface used a clock-like meter to represent the camera’s pan angle and the robot’s 

heading direction. Although the users were instructed in how to interpret the pose meter, they 

still became confused in robot driving from time to time for one or both of two reasons: (1) the 

user failed to build a mental model of the pan/tilt camera and (2) the user had built a mental 

model for both the fixed camera and the pan/tilt camera, but had selected the wrong model in 

some situations3. [121] reports another type of Level 2 SA error caused by incorrectly using 

mental model in the field study of the Fire Chief controlling robot. In one of the trials, the Chief 

                                                 

3 This was reported as the user becoming confused and then resolving the confusion by centering the camera so that 
he could use the fixed camera mental model or by correctly controlling the robot by shifting to the pan/tilt camera 
mental model. 
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thought that the robot was caught on a cable that did not exist. When this mismatch occurred, the 

Chief had failed to use the mental model correctly. 

Level 3 SA is based on a highly developed model to predict future situations. Similar to the 

Level 2 SA errors, the lack of a mental model, the use of an incorrect mental model, and the 

improper use of a correct mental model will cause failures. For instance, the rollover incidents 

reported in [59, 69] occurred when the operator continued to drive the robot although the robot 

was in a dangerous attitude. Usually Level 3 SA requires more cognitive resources and longer 

response times. When a person is under high stress or must distribute mental resources among 

tasks, the person’s SA will likely suffer. In the simulated experiment [110], the users had no 

difficulty in driving a single robot. However, when they were asked to control two or four robots 

simultaneously, they responded to the robotic system instead of proactively supervising. These 

users’ SA decreased due to the limitations on their cognitive resources.  

2.1.3 Measurement 

Measuring SA is very difficult. Three types of measurements are commonly used [118].  

The subjective measure asks the subject evaluate his own SA by answering a questionnaire. 

This approach is straightforward but, as the name reveals, the result is subjective. SART 

(Situation Awareness Rating Technique) is one of the most accepted examples of the subjective 

measure. SART was originally designed to assess pilots’ SA in terms of the attention demand, 

the supply of attention from the system, and the pilots’ understanding of the situation. One 

experiment shows that SART strongly correlates with the subject’s confidence level as well as 

performance [31].  
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The implicit performance approach measures SA in terms of task performance. It assumes 

that a strong correlation between SA and performance exists and that improved SA always leads 

to better performance. This approach provides objective measurement. However, the assumption 

of correlation may be violated during the measurement test. SA is not the only factor that 

impacts task performance. Decision-making, the complexity of the world, the robotic system’s 

failures, the human operator’s physical fatigue, and other factors can affect task performance as 

well [97]. For example, in the attitude experiment, abnormal performance occurred in a specific 

region although the authors believed the users’ SA should have been higher [59]. In practice, 

subjective and implicit performance approaches are usually used together to compensate for the 

other’s drawbacks.  

The explicit performance approach directly probes SA by temporarily suspending the task 

and asking questions designed to measure SA. SAGAT (Situation Awareness Global Assessment 

Technique) is the most widely used approach that directly measures SA in a simulation scenario. 

During a task into which SAGAT has been integrated, the simulation periodically freezes the 

task and blanks all the visual displays. A series of questions designed to facilitate deep cognitive 

task analysis are provided to the operator to evaluate his three levels of SA, such as another 

robot’s location or whether a robot will block a path [31]. The explicit performance approaches 

are usually conducted in a simulated environment because of the requirement of task freezing. 

Moreover, although the explicit performance approach can objectively measure SA, the process 

of task freezing and answering questions during task implementation can change the task.  
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2.1.4 SA in HRI 

In general, for HRI involving multiple people and multiple robots, SA encompasses human-

robot, human-human, robot-human, robot-robot, and humans’ overall mission awareness [24].  

Human-robot awareness involves the human’s understanding of the situation of the robot 

and its environment, which includes the robot’s states, intentions, actions, local environment, 

global environment, and environmental events. The examples given above to demonstrate SA 

errors are violations of human-robot awareness.  

Human-human awareness is needed when multiple people work together to perform a task 

and involves the understanding of another person’s states, activities, and the surrounding 

environment and events. Sharing SA among operators can significantly improve HRI 

performance. For example, [10] reports that, when two operators controlled one robot, they 

communicated with each other to share SA and therefore to improve SA; these operators were 

able to find nine times as many victims than a single operator in an USAR (Urban Search And 

Rescue) task. In a similar study, the data analysis shows that more communication led to 

improved SA and a greater number of discovered victims [11].  

Robot-human awareness involves the robot’s knowledge about the human or human team 

and allows the robot to adapt itself to the operator or to cooperate more effectively with a team of 

people. For instance, robot-human awareness allows a robot to execute a default command 

instead of wasting time while waiting for a temporarily unavailable operator to intervene. [109] 

proposes a perspective-taking approach that allows the robot to take the human’s perspective in 

order to effectively collaborate on a task. Although the authors did not connect perspective-

taking and SA, this approach implies a robot-human awareness based on robot behavior control. 

The cognitive model described in [109], Polyscheme, in fact generates the three levels of SA.  
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Robot-robot awareness is the robot’s knowledge about another robot and its environment, 

which includes states such as location, speed, actions, and plans as well as the surrounding 

environment. This awareness is useful when the robot interacts or cooperates with other robots. 

The main difference between robot-robot awareness and types of human-involved awareness is 

that a robot can directly receive another robot’s information via data exchange without data loss 

or distortion if we assume a perfect data connection. Any SA exchange involving humans is 

more subtle and usually difficult. To share SA between robots and humans is one of the main 

challenges in HRI.  

The humans’ overall mission awareness involves the understanding of the overall goal of the 

task and the progress in reaching the goal—that is, the joint awareness of human, robot, task, 

world, and time. With overall mission awareness, the operator(s) can change the plan or strategy 

to keep the task in progress.  

In terms of the four elements in HRI, human-world and robot-world awareness necessarily 

involve people’s and robots’ understanding of the environment. However, because the world 

interacts with both the human and the robot, we include world awareness within any given 

robot’s or human’s awareness. Therefore, we omit human-world and robot-world awareness in 

the above list.  

In HRI, when SA evaluation is used as a tool in usability or system design studies, 

researchers usually use implicit performance measures to assess SA in terms of overall 

performance parameters, such as task completion time and the number of collisions [44, 51, 53, 

59, 80]. Subjective measures are also used to support the implicit performance measure [44, 59]. 

However, in the SA analysis, post-data analysis is the main technique that allows us to examine 

the details. By coding the video tap, [25, 98, 99] use short situation reports to measure the match 
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between an operator’s SA and the actual situation. Since incidents usually occur when an SA 

error occurs, critical incident analysis is employed in these studies. Based on the involved sub-

tasks in the incident, researchers have analyzed five categories of incidents in USAR: local 

navigation, global navigation, obstacle encounter, victim identification, and vehicle state. [118] 

uses similar approach to measuring SA but, instead of analyzing incidents, the authors measured 

the time spent on sub-tasks and used the “think-aloud” approach to attain the real-time subjective 

SA assessment. In [97], a SAGAT-based approach was used to measure the SA in ground 

vehicle driving. 

USAR is a typical HRI task in which the human is deeply involved in robot control. The use 

of USAR in the disaster environments of the World Trade Center, Hurricane Charley, La 

Conchita mudslide as well as in RoboCup 2003 and the AAAI competition in USAR provide us 

with rich data to analyze SA in HRI. Based on the their USAR practice and filed exercises, [75] 

finds that the operators spent significantly more time on building or maintaining situation 

awareness than on navigating the robot. SA, not autonomous navigation, is the major bottleneck 

in USAR. The analysis of the operators’ communications shows that more than 60% of 

communications were related to building and maintaining SA and that only 28% were spent in 

using SA. In another study based on the analysis of control behaviors, like robot and camera 

control, [118] shows that on average operators dedicated 30% of their time to SA activities. They 

“had less SA of the space behind the robot than in front or on the sides” as well as more 

difficulty in maintaining SA when the robot worked autonomously. The analysis of the RoboCup 

2003 rescue competition [99] shows that incomplete Level 1 SA is the main cause of critical 

incidents. No team provided the operator with the sufficient information needed to build correct 

SA. The teams with more information on the user interface usually had fewer incidents. 
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Furthermore, the unfamiliar low and narrow view from the robot caused Level 2 SA errors in 

understanding the size of robot and its surrounding objects and the distance between them.  

2.2 USER INTERFACE IN HRI 

Based on the study of SA, we can improve effectiveness in two areas of the human-robot user 

interface (UI): (1) providing the right information required in building SA and (2) properly 

representing the information to enable the attainment of SA with the least amount of effort. 

However, the interface should still allow effective intervention with the robotic system. 

2.2.1 The main modality 

On every user interface, based on the task and interaction style, there is a main human robot 

communication modality that is extensively used by the operator. For instance, in vehicle 

teleoperation, visual feedback is usually the modality on which the operator spends most of his 

time [9, 36, 80]. In contrast, in high-level robot control tasks such as supervised navigation, the 

map is often the main modality for the operator. 

2.2.1.1 The video modality 

Camera configuration 

Visually-based robot control is similar to people’s daily behavior control in the rich and 

detailed image, and different in the low and narrow view, and the unnatural control style [117]. 
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There are many studies of the configuration and representation of video feedback. In summary, 

the camera configuration can be classified according to four aspects: 

The reference describes the movement domain of the camera. When we mount a camera on 

the robot’s body, it will translate and rotate with the robot. However, for a gravity-referenced 

camera, it will not rotate because the robot may pitch and roll. When we drive a robot in a room 

from a camera mounted on the ceiling, the camera is a room-referenced camera that will not 

move with the robot. As the robot works in a spaceship, reference plays a critical role because 

the robot lacks proper frame reference [109]. 

The placement is the camera’s position relative to its reference. A chassis-referenced 

camera, in which a camera is mounted on the robot’s body, yields a front camera, rear camera, 

and overhead camera. 

The control DOF is the degree of freedom to which an operator can control the camera. For 

example, a camera fixed on the robot’s body has zero DOF and a pan/tilt camera has two DOFs. 

If we include a zoom function as the third dimension of camera control, a pan/tilt/zoom camera 

has three DOFs. It is possible for a camera to have more than three DOFs if it is mounted on a 

robot arm with multiple joints. 

The number of cameras specifies how many cameras are used in single robot control. The 

camera can be real and physical or virtual. For instance, if we periodically point the camera in 

two directions to provide two different views on the interface, then we virtually have two 

cameras but physically have one camera. Multiple cameras are usually used in the following 

ways: stereo cameras provide distance information, panorama-style cameras provide a wide field 

of vision, and multi-placed cameras provide different visual perspectives. 
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a) Forward fixed 
camera 

c) Overhead 
camera 

b) Forward pan-tilt 
camera 

e) Front-rear fixed 
cameras 

d) Fixed-controllable 
dual cameras  

Figure 5. Common camera configurations in the literature. 

 

Figure 6. Forward (left) and overhead (right) camera views [53]. 

Figure 5 lists five camera configurations most used in the HRI studies. All of the cameras 

are chassis-referenced cameras. The experiment shows that with type (b) pan/tilt cameras, the 

operators were able to have significantly (p<.05) superior overall performance than those with 

type (a) fixed cameras [44]. However, the pan/tilt camera may lead to confusion of the camera’s 

and the robot’s directions [44, 121]. This type of camera is usually mounted on the front of the 

chassis to provide a first person’s view. The compact mounting allows the robot to freely 

navigate small voids. In contrast, type (c)’s overhead camera configuration mounts the camera 

high over the chassis to provide a partial third person’s view, i.e., showing part of the robot’s 

body and its surroundings. Figure 6 shows the camera views of the same scene using types (b) 

and (c) configurations. The comparison of these two configurations shows that the overhead 

view provided better SA and explains why the operators preferred the overhead camera 
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configuration three times as much in the experiment reported in [53]. The disadvantage of the 

overhead camera configuration is that looking down shortens the view distance. On the other 

hand, occupying more space will limit the travelable environment and cause safety problems. 

The configuration of an overhead camera is ideally mounted at human eye level and behind the 

robot’s body to simulate the view that a person is following the robot. However, in practice this 

is usually infeasible. Instead, researchers are trying to virtually generate the followed third 

person’s view by using previous video images [106]. 

 

Figure 7. Front (left) and Front-rear (right) camera view [53] 

A type (d) configuration utilizes the forward fixed camera and the pan/tilt camera, which 

allows us perform two tasks, such as navigation and inspection, independently. The simulated 

target searching experiment [44] demonstrates that, when compared with the type (a) 

configuration, the pan/tilt camera in the type (d) configuration significantly (p<.05) benefited the 

overall performance and that different control strategies were found in types (d) and (b) 

configurations. However, the two independent camera controls are unfamiliar to us, and no 

significant difference in performance was found between types (d) and (b) configurations. 

Instead, the type (e) configuration utilizes fixed front and rear cameras to simulate the multi-

view situation of the real world. The image at right in Figure 7 is an example of this type of 

interface configuration in which the front and rear views simulate the driver’s view and rear 
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mirror view in vehicle driving. In the real world experiment [53], the results reveal that the front 

and rear camera views caused fewer collisions in robot driving than the type (b) camera 

configuration. When only one camera view was shown and the operator was forced to switch 

between the front and rear cameras to acquire SA, higher-quality performance was found than 

when the type (b) configuration was used. Compared with the front and rear views condition, 

[53] reports that the single view display seems to produce less confusion in multi-camera 

conditions, at least in rear SA. 

 

Figure 8. Fixed (left) and gravity-referenced (right) camera views [59]. 

All of the above configurations are based on chassis-referenced cameras. The flaw of the 

chassis-referenced camera is that, without the reference cues from the environment, we cannot 

use only video feedback to identify the robot’s attitude. For instance, when the operators 

teleoperated vehicles at the desert-like Sandia site, the vehicles rolled over because the operators 

lacked awareness of the robot’s pose [69]. [59] compares the chassis-referenced fixed camera 

with the gravity-referenced camera that holds a constant zero roll angle with respect to absolute 

vertical. Figure 8 illustrates that, with the gravity-referenced camera, it is possible to maintain 

awareness of the terrain surface and the robot’s pose. The experiment conducted under lacking 

reference cues and confused reference cues environments shows that, with the gravity-referenced 

camera, the operators had improved control behaviors (e.g., small accumulated roll and pitch 
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angles and more control correction behaviors) and shortened the task completion time, although 

no significant difference was found in the number of rollovers. However, it is technically 

difficult to build this kind of camera. Virtually generating the gravity-referenced camera view 

(e.g., turning the camera view back) is a potential solution. 

 

Figure 9. The INEEL interface reprinted from [4]. 

In summary, the above experiments show that proper camera configuration can enhance SA. 

However, new requirements, such as configuration awareness, arise as well. As shown above, 

lacking SA about the configuration features like the camera’s orientation and position will 

mitigate the benefit or even cause incidents. The configuration of the camera is the cue that 

allows us to link the camera with the robot and the local environment to build Level 2 SA. 

Conventionally, we represent the camera view as an image window associated with 

configuration indicators (Figure 9). It is the operator’s responsibility to mentally synthesize the 
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information to maintain SA. In the following Section, we discuss current efforts to resolve 

camera SA issues. 

Camera SA 

 

Figure 10. 2D (left) and 3D (right) map and video interfaces [80]. 

The first major problem in camera SA is that a narrowed field of vision and a moving 

camera make it difficult to maintain SA of the environment. Although placing the map next to 

the video (see the left window in Figure 10) significantly improves the environment SA, a novice 

user is more likely to be attracted to the video and to ignore the important information on the 

map [80]. [80] proposes a 3D interface (see the right window of Figure 10) that places the 

camera view in the virtual 3D environment to intuitively combine spatial and visual information. 

With this interface, the operator can take a snapshot and leave it on the map to help remember a 

scene. Both the simulated and real-world experiments show that the 3D interface is superior to 

the 2D side-by-side interface in terms of exploration with the fewest collisions [80]. The 

disadvantages of the 3D embedded camera view are that (1) the camera view is too small and the 

operator may loss detailed information on the video and (2) the distance between the projection 

plane and the robot is unknown such that the guessed value may be misleading. A variation of 

the 3D interface is fixing the camera view above the 3D world. 
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Figure 11. Crosshair (left) and 3D (right) representations of camera poses [81]. 

The second major problem in camera SA is the relationship between the robot’s pose and the 

camera’s orientation. The gravity-referenced camera shows how break the connection between 

robot pose and camera pose can benefit us. However, besides the technical difficulty in 

implementation, when the camera is controllable we still have problems in understanding the 

robot’s pose. Conventionally, we use extra pose indicators to provide the information (see the 

right-hand lower corner in Figure 9). An improved approach is showing a crosshair on the video 

to represent the pan/tilt angles (see the left panel in Figure 11). This approach avoids shifting 

attention between the indicators and the camera view. However, the operator still needs a mental 

model to combine the pan/tilt information with the camera view. Based on the 3D interface, [81] 

proposes a 3D camera view representation (see the right of Figure 11) that skews the image and 

draws a perspective cone to present the view’s projection. To avoid severe distortion (for 

example, the camera pointing to the right or left side), the interface automatically changes the 

operator’s view angle to compensate for the skewed camera view and robot’s heading direction 

display. The user study of searching for targets in a maze-like environment, which was 

conducted within a simulation world, reports that with the 3D interface the operator significantly 
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completed the task more quickly (p<.04), with less collisions (p<.001), and in a safer way 

(farther from the wall) (p<.001) than the crosshair interface [81]. 

       

Figure 12. Orpheus (left) and its user interface (right) [122]. 

Other problems in camera SA include the camera’s position, such as the front and rear 

cameras discussed previously. Awareness of the camera’s height is also critical because it 

impacts size and distance perceptions and, in terms of Level 3 SA, the passable safe space. For 

example, the Orpheus robot shown in Figure 12 gives the user the flexibility to remotely inspect 

the environment through a head-mounted display and a head movement sensor as though the 

operator is present in the remote space [122]. Although both the robot’s and arm’s poses are 

displayed on the upper left-hand corner of the interface, the changed camera position relative to 

the robot might cause SA errors. When the camera has multiple control DOFs or when multiple 

cameras are used, the main problem is how to help the operator build and maintain SA of the 

spatial relationship between camera and robot and the relationship among cameras. Building a 

virtual 3D world might be the intuitive solution. 

 32 



2.2.1.2 Other modalities 

Another commonly used modality in an HRI interface is the map. Unlike video feedback that 

provides rich and concrete information, the map presents high-level abstract information to 

facilitate maintaining an overall understanding of the environment. The robot’s capability, task, 

and world will influence whether video feedback or a map is the major modality because 

different levels of abstract information and local or global SA may be required. For instance, 

when using a high-speed robot with auto-navigation capability, the operator might prefer the 

map-based interface. For a search task, however, video feedback will be the main modality 

because of lacking advanced technology in pattern recognition. When we drive robots on rough 

terrain, the high demand on local SA may require a video-based interface. Given a robotic 

system, task, and world complexity, determining the proper primary modality is an interesting 

problem.  

[80] compares video-based and map-based robot teleoperation in navigation tasks in two 

environments. In the office-like maze environment in which the camera view provided close 

range scenes because the wall blocked it, the operators who used the map interface completed the 

task significantly more quickly and with fewer collisions than the operators who used the video 

interface. However, in the environment in which the maze was constructed with low boxes, the 

camera was able to provide a view beyond the boxes and therefore increased the number of 

navigation cues. With the video-based interface, the operators completed the task in a 

significantly (p<.001) shorter period of time. In the RoboCup rescue competitions, both video-

based and map-based interfaces were used. [98] selected four of the top five teams in RobotCup 

2004 to compare auto-mapping and overhead camera-based techniques. The analysis of the 

critical incidents that occurred in one run shows that the two map-based teams had about the 
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same local SA as the two overhead camera teams. Roughly the same obstacle encounter 

incidents were identified in the post-data analysis. Although this study is based on four entirely 

different robotic systems in one run with many potential confounds, the result reveals the 

necessity of comparing these two modalities. [110] compares map-based and camera-based 

interfaces for the semi-autonomous multi-robot system in a 3D simulated world during a 

navigation task. Again, no significant results were found in terms of the task completion time. 

However, we should note that the simulator in this experiment had low fidelity in that the 

situated events and behaviors were ignored. The simulated robot is indeed a fail-safe vehicle. 

2.2.2 Auxiliary modalities  

There are many possible modalities in HRI because of the diversity of the sensors. Information 

processing plays a very important role if we treat the robot as an active information source [75]. 

When multiple sensors are available, improper data representation will cause heavy mental 

demands or even confounds that will in turn lead to degraded or incorrect SA. In general, there 

are four ways to represent multiple sensors. We explain the four approaches using the frequently 

cited range data sensor as the example.  

The association approach combines the relevant data to produce a chunk of information that 

reduces the mental resource requirement. Figure 13 (a) shows an example of this approach. The 

colored sonar data around the camera view represents the distance between the obstacles and the 

robot. Red indicates a dangerously short distance [4]. This layout facilitates the operator’s 

processing of the image and range data as crucial elements of building local SA.  

The overlay approach overlays multiple sensor data so that the user is forced to pay attention 

to all of the relevant data. For instance, the Orpheus user interface overlays range data on the 
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camera view (see Figure 13 (b)) to allow the operator to see the camera image and the laser data 

at the same time.  

    
                  a) Association                                                b) Overlay 

    
                  c) Fusion                                                   d) Diversion  

Figure 13. The four representations of range and visual data [4, 70, 102, 122]. 

The fusion approach, unlike the previous approaches that simply combine data, synthesizes 

multiple sensor data to generate new data. The association and overlay approaches implicitly 

facilitate information perception by attracting the user’s attention, but the fusion approach 

directly helps the user in processing the data. Figure 13 (c) provides an example of stereo images 

fused with sonar data [70].  

The diversion approach addresses the limitations of the 2D computer screen in representing 

all information as text or image, causing the operator’s visual channel to become tremendously 

occupied such that information is perceived inefficiently. The diversion approach tries to 
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represent sensor data in different channels to allow humans to simultaneously attain and process 

multiple sensor data with a lower cognitive workload. For instance, [102] transfers the range data 

to vibration via the TactaBelt (see Figure 13 (d)) to provide the directional vibrotactile cues. The 

experiment conducted in [60] shows that, compared with the video-based building-clearing 

testing, participants with the extra vibrotactile cues were able to explore significantly more areas 

with fewer exposures to potential enemies (the uncleared areas). The drawback of the diversion 

approach is that extra fatigue may be introduced. Representing the sensor data in ambient format, 

such as ambient light, audio, may be a useful alternative. 

2.2.3 Intervention 

Another approach to improve HRI effectiveness is to facilitate human interaction with the 

robotic system. Many research results in HCI, such as the GUI layout, attention attraction, and 

unambiguous options, can be directly used in a human-robot interface. Here we will focus on 

intervention, the special issue that significantly affects the effectiveness of any HRI. 

Traditionally, humans fully control robots in a master-slave style in which all HRI initiations 

come from the operator. Due to the robot’s ability to automatically perform part of the task, the 

human must cooperate with the robot at different levels, and interruptions will occur when the 

operator must stop his current task in order to respond to the robot. Interruption is important in 

HRI for two main reasons. First, the interactions between human, robot, and world inherently 

cause many interruptions, and improper responses to the interruptions significantly impact the 

effectiveness of HRI. Second, the consequence of the response may cause critical incidents, 

including damages.  
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In general, human interruption is defined as “the process of coordinating abrupt changes in 

people’s activities” [67]. In terms of human responses to interruption, four kinds of interruption 

exist [68]. 

An immediate interruption stops the operator in his current task and forces him to respond to 

the robot immediately. This forced task switch usually causes problems in resuming the original 

task because of the difficulty in maintaining SA for the original task. Researchers have proposed 

several approaches to aid the resumption of the original task, such as a warning message before 

the interruption occurs so that the user can rehearse the point of interruption to benefit later 

memory retrieval when resuming the task; providing information about the original task via 

transparency panel, background sounds, or some other means to help the user maintain SA; 

reminding the user of the original task’s information to help the user recover from interruption; 

and temporally freezing the original task to allow the user to rebuild SA after the interruption. 

Negotiated interruption allows the user to select how and when to respond to the robotic 

system. Usually there are four possible responses: (1) immediately respond; (2) acknowledge the 

request for a response but respond later; (3) explicitly refuse to respond; and (4) ignore the 

request for a response, which is an implicit refusal to respond. The representation of this kind of 

interruption should at first attract users’ attention when it arises and then can be ignored after the 

user has noticed it. Therefore, “silent” representation, like a change in color, size, or marking, is 

usually used in interface design.  

Mediated interruption introduces a mediator as a buffer between users and tasks who helps 

the user respond to interruptions with a lower mental workload. The mediator can be based on: 

(1) the prediction of interruptibility that monitors a user’s activities to find the boundaries 

between two tasks or sub-tasks and delivers the interruptions at these boundaries to reduce the 
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disruption to performance; (2) the cognitive workload and dynamic task and function allocation 

that counterbalance the user’s decision-making workload between a human and an autonomous 

system; and (3) a cognitive model so that the mediator is sufficiently intelligent to infer the 

user’s intention and interrupt the user at the best time and in a preferred style. 

A scheduled interruption occurs when the user has prior knowledge of the incoming 

interruptions and therefore can plan his activities to prepare for and to minimize the impact of 

future interruptions. A well-arranged schedule could render some would-be interruptions as 

ordinary planned activities. Explicit agreement and convention are the two scheduling techniques 

that in turn arrange one-time events and periodic events. 

Many factors can affect the selection of the responding approach. For instance, an 

interruption for which response time is critical requires the immediate interruption style while 

negotiated interruption is appropriate for the time-insensitive interruption. Moreover, a poorly 

designed mediator may eliminate the benefit of mediated interruption. 

Another trend in dealing with the interruptions is considering the intervention from a social 

cognitive view. The experiments [54, 76] show that, when a human interacts with a non-human, 

the human consciously or unconsciously treats the non-human object as another human and 

creates a mental model to estimate its knowledge. Our robotic system is usually selfish and 

interrupts us rudely without concern about the operator’s current state. If we imagine our system 

as an assistant, following the social rules of daily life, we are able to design the interruption style 

that allows humans to interact naturally with robots with the least mental workload. For example, 

when an assistant needs you to sign a document while you are on the phone, she will place the 

document on your desk with a note and leave your office without any disruption; furthermore, 

she may remind you if you forget to sign the document and the deadline is approaching. When 
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this approach is applied to a robotic system, a robot needing input from a human operator will 

first check to see if the operator is busy. If the operator is busy, the robot will attract the 

operator’s attention and then silently leave a message about the suspend task on the interface. If 

the operator ignores the request for a long time, the robot will remind the operator. In this way, 

human-computer and human-robot etiquette is similar to the cognitive modeling that underlies 

mediated interruption. However, here we concentrate on interruption in terms of the social 

relationship. The experiment in [86] shows that etiquette is able to improve performance and 

trust in the robotic system, and good etiquette can even compensate for low autonomous 

reliability. 

2.2.4 Summary 

Given a robotic system, its task, and its workspace, the user interface has the greatest potential to 

allow us to improve human-robot performance. The user interface has two main functions: (1) 

helping the user to build and maintain SA and (2) providing ways to interact with the robotic 

system. Because of the limitations of human cognitive ability, in user interface design we must 

distinguish the main modality from auxiliary modalities and find the proper way to present them 

in order to achieve effective awareness (i.e., maintaining high-quality SA with the lowest 

cognitive workload). On the other hand, the user interface must support effective human-robot 

interaction by: (1) physically facilitating interaction via a proper interface design that involves, 

for example, layout, components’ color, and size; (2) mentally helping interaction via providing 

assistance in, for example, decision-making and reminding the operator of the task context; and 

(3) socially maintaining or improving cognitive ability via following social convention and 

pursuing engagement. Based on the analysis of robotic competition and SA study, [25] 
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summarizes that a good interface should enhance awareness via providing a map, lower 

cognitive load via using fused sensor information, increase efficiency via supporting multiple 

robots in one window, and provide help in choosing robot modality.  

Finally, the user interface should be user-centered such that the end user, rather than the 

robot or the interface builder, is at the center of the design process. The human-robot interaction 

is a process that lasts for a period of time, and the interface therefore should include time-related 

issues, such as maintaining the user’s vigilance and helping the user avoid both physical and 

mental fatigue [1]. The user interface is not necessarily based on the 2D computer screen. 

Although there is no direct evidence for this in HRI literature, it is possible to extend the 

interface into a 3D world if we consider SA representation as recreating SA in another world. 

For example, the UAV’s 3D orientation is difficult to represent on computer screen. However, if 

we use a gyroscope to physically represent it, the operator will be able to intuitively perceive the 

UAV’s pose and adjust the pose intuitively through the gyroscope representation. 

2.3 ROBOTIC SYSTEMS IN HRI 

In addition to the user interface, the capability of the robotic system significantly impacts 

human-robot performance. Robotic systems differ from each other in many aspects, such as 

sensory capabilities, mobile capability, and control algorithms. In HRI, we are more interested in 

studying how and when human involvement in robot control maximizes effectiveness. How 

people are involved in robot control is a function of the level of autonomy (LOA) that measures 

the static function assignments of the human and the robot. Adaptive autonomy occurs when 
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people are involved in robot control such that human involvement dynamically changes the 

autonomy level, allocating control between the human and the robot [30, 50]. 

Table 1. LOAs in dynamic, multitask scenarios [50]. 

Level of automation Roles 
Monitoring Generating Selecting Implementing 

(1) Manual control Human Human Human Human 

(2) Action support Human 
Computer 

Human Human Human 
Computer 

(3) Batch processing Human 
Computer 

Human Human Computer 

(4) Shared control Human 
Computer 

Human 
Computer 

Human Human 
Computer 

(5) Decision support Human 
Computer 

Human 
Computer 

Human Computer 

(6) Blended decision making Human 
Computer 

Human 
Computer 

Human 
Computer 

Computer 

(7) Rigid system Human 
Computer 

Computer Human Computer 

(8) Automated decision making Human 
Computer 

Human 
Computer 

Computer Computer 

(9) Supervisory control Human 
Computer 

Computer Computer Computer 

(10) Full automation Computer Computer Computer Computer 

2.3.1 Level of autonomy 

Based on Sheridan and Verplank’s (1978) hierarchy of LOAs, [50] proposes ten autonomy levels 

(Table 1) that describe the dynamic and multitask autonomy scenarios that can be directly used 

in robotic systems. The roles in Table 1 represent the four basic functions in a human-computer 

(or human-robot) system. These four functions can be understood in the following terms: (1) 

monitoring is perceiving the system’s state, (2) generating is creating the options or strategies for 

the given task, (3) selecting is deciding to accept or reject an option, and (4) implementing is 

executing the selected option. The level of autonomy that most benefits human-robot 
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performance is affected by many factors that emerge from relationships between the task, the 

world, the human, and the robotic system.  

For example, in human-machine system studies, [74] compares LOAs 5, 8, and 10 in a 

process control simulation. The results suggest that, when the task is time critical, the final 

decision should be allocated to automated processing instead of human processing. [74] states 

that the best LOA is based on the complexity, difficulty, dynamic, and quality requirements of 

the task. In another study, [61] compares three levels of computer support in an automated 

diagnosis system. The computer support showed improved performance under normal 

conditions. However, under automation failure, a medium LOA led to the worst performance, 

which was caused by the different information sampling strategies utilized under the three 

conditions. In the human-robot study, [63, 64] compare the teleoperation (LOA 1), safe mode 

(LOA 2), shared control (LOA 4), and dynamic control (AA) in robot-assisted search and rescue 

for both novice and expert users. The results reveal that the preferred LOA is strongly correlated 

with the user’s experience. The novices with no teleoperation experience were more willing to 

trust automation and utilize the autonomy capabilities, while the experts preferred teleoperation. 

Furthermore, the experiment shows that both novices and experts could have approximately the 

same overall efficiency with the proper LOA. In [85], the comparison of medium LOAs and the 

corresponding lower LOA (in which the human operator has more control over the robotic 

system) shows that, with four robots, the lower LOA tends to lead to superior performance. 

However, when the number of robots increases to eight, the benefit is eliminated because of the 

heavy management workload. 

Although many factors may affect the optimal LOA for achieving efficient HRI, in general, 

a medium LOA is superior to full autonomy or full manual control because an LOA that is too 
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high will cause degradation in manual or mental skill, the loss of SA, decision bias, vigilance 

decrement, and bad response to unexpected conditions. Under full manual control, the high 

mental demand, human decision bias, complacency, boredom, and inconsistent control behavior 

will degrade the performance. In practice, instead of using a uniform LOA, we decompose the 

robot control into sub-tasks under different conditions and utilize different LOAs4. For example, 

based on the previous conclusions about LOA, an adjustable system may switch to autonomous 

control when the sub-task is time-critical. [4] proposes to add autonomy suggestions to the 

human-robot interface in order to help the human operator adjust the LOA of the robotic system.  

2.3.2 Adaptive automation 

In adaptive automation (AA), there are four approaches to changing the autonomy level [50]. 

The critical events approach changes the LOA when critical events occur. Performance-based 

AA adjusts the LOA according to the human monitoring performance measurement; when this 

measurement is below a certain threshold, the control allocation can be changed to maintain 

system performance. The psychophysiological assessment approach uses physiological measures 

to assess the operator’s workload in real time and then to adjust the LOA accordingly. Finally, 

the behavior modeling approach changes the LOA according to the operator’s model. 

The challenge in AA is that the change between LOAs will require a switch in both the 

context for and the skill of the operator. When the user is exposed to automation for a long time, 

his skill will decay and considerable time may be spent in building SA. In contrast, a very high 

                                                 

4 Within a USAR domain, the task decomposition has been utilized in SA analysis. Unfortunately, the decomposed 
optimal LOA study, which focuses on identifying the LOAs for local andglobal navigation and search in an office-
like environment or on rough terrain, is largely lacking.  
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frequency of control allocation might cause an incomplete or a lacking of SA because of the 

limited processing time for information. Who makes the final decision in control allocation 

affects the effectiveness as well. In general, under time-critical conditions, a robot or a computer 

can make faster decisions than a person and therefore leads to better overall performance.  

As mentioned before, AA and LOA correlate with each other. AA responds when we need 

to change the LOA and how long we will utilize the new LOA. The LOA responds with which 

LOA we will use. [50] studies how the interaction of LOAs and AA impact overall performance. 

The participants switched between manual control and LOA 3, 4, 6, or 9 with different amounts 

of time dedicated to manual and automated control. The results reveal that the LOA and AA 

benefit human-machine performance differently. The LOA is the driving factor that affects 

performance and SA, and the automation allocation cycle time mainly manages the operator’s 

workload. However, the combination of the LOA that leads to best performance and the AA that 

produces superior functioning (in which the operator has the lowest workload under full 

automation) did not produce the best overall performance. In addition, the study shows that 

human’s intervention always benefits the human-machine performance. 

2.4 EVALUATION OF HRI 

In the evaluation of HRI, we are usually interested in assessing the human-robot performance, 

effectiveness, and efficiency. Unfortunately, we currently lack common metrics to evaluate HRI. 

Most of the studies are based on task-specific evaluations that indirectly assess HRI. For 

instance, in the USAR domain, [63, 64] use reported targets and task completion time as their 

main metrics, [9] utilizes joystick control as an auxiliary metric, and [80] uses the number of 
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collisions as an additional metric. While in the RoboCup Rescue competition, map quality, the 

number of found victims, the number of collisions, and the number of operators are used to 

evaluate overall performance [77]. [105] proposes common metrics for HRI based on three 

aspects: system performance, operator performance, and robot performance. 

2.4.1 System performance 

System performance is the human-robot performance that measures how the human and the 

robot effectively and efficiently work together in performing a task. In [105], effectiveness and 

efficiency are defined as “the percentage of the mission that was accomplished with the designed 

autonomy” and “the time required to complete a task…. [or] if time constraints are ignored, … 

all tasks completed,” respectively. In this definition, efficiency is measured in terms of time, 

which is unsuitable for any task that is not time-critical. Instead, similar to Webster’s Online 

Dictionary’s definition5, we can generally define efficiency as the ratio of the completed tasks to 

the cost of completing those tasks. For example, in the RoboCup Rescue competition, the cost is 

the number of operators and the time is ignored because every team has the same operating time 

in the contest. For a tour robot, the cost may be the money spent in building and maintaining it or 

the consumed power. The cost used in efficiency measurement will be decided by the task, i.e., 

which input has the most significant effect on it.  

                                                 

5 Efficiency is defined as “the ratio of the output to the input of any system” in Webster’s Online Dictionary 
(http://www.websters-online-dictionary.org/definition/efficiency). 
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2.4.2 Operator performance  

Operator performance measures the operator’s state and efficiency. The state of an operator 

includes situational awareness of the robotic system and the task, and the workload, all of which 

affect the operator’s robot control capability.  

In Section 2.1.3, we introduced the three ways to measure SA: through subjective 

assessment, a measure of implicit performance, and an explicit measure. Workload can be 

measured in similar ways. A subjective assessment of workload requires the operator to complete 

a carefully designed questionnaire. NASA-TLX (NASA Task Load Index), SWAT (Subjective 

Workload Assessment Technique), and WP (Workload Profile) are the three most common 

multidimensional workload assessment techniques. NASA-TLX measures the mental workload 

according to six dimensions: mental demand, physical demand, temporal demand, performance, 

effort, and frustration level [43]. SWAT measures workload in terms of time load, mental effort 

load, and psychological stress load, which in turn is divided into three levels of low, medium, 

and high [89]. WP assesses the used attentional resources in terms of resource dimensions, which 

include perceptual, central, and response processing, spatial and verbal processing, visual and 

auditory input processing, and manual and speed output [112]. The subject study based on a 

single task or dual tasks shows that there is no difference among the three approaches in terms of 

their intrusiveness and validity, and the WP approach is more sensitive to the task manipulations 

and demonstrates diagnostic power superior to that of NASA-TLX and SWAT [92]. The implicit 

measure of workload introduces the second independent task and uses its performance to 

indirectly assess the workload. High performance in the second task implies a low workload in 

the primary task. This approach is easy to implement. However, the introduced task may impact 

the operator and lead to inaccurate results. Using an explicit measure of operator performance, 
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physiological measurements such as cardiac or respiration rates can be used to assess cognitive 

workload in real time [105].  

Finally, when the user operates a robotic system, the usability of the interface significantly 

impacts the operator’s performance. Operation efficiency refers to how efficiently the user 

operates a device. Usually, matching the interface display and controls to human mental models 

allows us improve the efficiency [105]. 

2.4.3 Robot performance  

The measurement of robot performance includes the robot’s capabilities, such as its autonomy, 

as well as the robot’s awareness of itself and of the operator. Neglect tolerance is the general 

index that allows us to measure a robot’s autonomy. The autonomy enables a robot to work 

effectively and independently without human intervention. However, because of the limitations 

of automation, the effectiveness will decline over time. Therefore, we use the amount of time 

that the robot is able to work independently with satisfied effectiveness as the measurement of 

the robot’s autonomy capability. Noticeably, the satisfied effectiveness during robot control is 

judged by the operator. The sub-task and the complexity of the local workspace affect satisfied 

effectiveness as well. In practice, we usually measure neglect tolerance implicitly from the user’s 

perspective, i.e., the human’s intervention, to take into consideration the subjective judgment 

bias. We also measure the complexity of the local environment and sub-task to help us adjust the 

autonomy assessment [82].  

Awareness plays a very important role in human-robot interactions. The robot’s self-

awareness allows the robot to make proper decisions and therefore requires less human 

intervention. On the other hand, the robot’s awareness of its capability and state will help the 
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operator efficiently interact with it. [105] proposes to measure self-awareness in terms of the 

robot’s knowledge of its physical capabilities, such as mobile and sensory limitations, its current 

state, its ability to detect, isolate, and recover from failures or abnormal states. The awareness of 

the human also will help the robot efficiently interact with the operator. For instance, with the 

perspective-taking technique, the robot is able to solve problems collaboratively with a person 

[109]. The human awareness measurement can include the capability to perceive, monitor, and 

model the human’s capability and state as well as the ability to utilize these awareness to 

improve interactions [105].    

2.5 THE CHALLENGES IN HUMAN MULTI-ROBOT INTERACTION 

In this chapter, most of the studies focus on single-operator single-robot (SOSR) control. 

Obviously, one operator who can simultaneously control multiple robots will greatly improve the 

effectiveness. However, the conflict between increased complexity and limited human 

capabilities brings many new challenges. 

Fist of all, to control multiple robots, the operator must maintain each robot’s SA and switch 

between contexts. This will challenge both the operator’s cognitive capability and the human-

robot interface design. Given that there are multiple robots under the operator’s control, the 

interface should allow the user get the right information about the right robot at right time. 

Simply listing all robots’ information on one interface may overwhelm the user because of a 

human’s limited attention resources and because improper selective information representation 

will cause a loss in SA. On the other hand, the increased number of robots will lead to difficulties 

for the human operator in decision-making, planning, and issuing commands. 
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Clearly, improving the individual robot’s autonomy and the cooperation among the robots 

will mitigate the human operator’s workload. Unfortunately, new problems arise from the view 

of human-robot interaction. The cooperating robot team requires the user to build and maintain 

team SA that is much more complex than single-robot SA. The operator of a cooperating robot 

team will use more cognitive resources and take more time in processing information. As the 

robots cooperate with each other, how the human effectively intervenes with the robot team is 

another new problem. If the user is able to control the robots at the team and the individual level, 

then the cognitive workload will increase when the user switches between the contexts of these 

two levels. On the other hand, a high LOA generally will cause a decline in SA. People may 

have difficulty in understanding the robots’ intentions and lose trust in the robotic system, which 

will significantly impact the effectiveness of the interaction. 

Finally, when a human controls multiple robots, we need to consider the robot team’s effect 

as well as each individual robot’s effect. For example, when we assess a robot’s performance, we 

need to evaluate the robot’s awareness of other robots as well. The structure, organization, and 

cooperation of the robot team and the level of human involvement in this cooperation will impact 

the HRI and should be reflected in the HRI evaluation.  
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3.0  RELATED WORK 

In this chapter, we introduce current studies in human-multi-robot interaction (HMRI). We begin 

with current theory about human control of multiple robots, although such theory has obvious 

limitations. Then we analyze SA in multi-robot control. Because of a lack of literature in this 

area, related work in group awareness will be discussed. Then we describe current efforts that 

examine how the group size, level of autonomy, and the user interface impact HMRI. Finally, we 

summarize the current status of HMRI study. 

3.1 THE FOUNDATION AND EVALUATION  

3.1.1 Neglect Tolerance 

In general, humans work in a serial style [16]. If we need to work on multiple tasks, we complete 

them one by one or temporarily switch to another task. This also happens when we control 

multiple robots. When we interact with a robot, we try to improve or maintain its performance 

via our intervention. If we can temporarily ignore it, then it is possible for us to control another 

robot. The longer that a robot can be ignored, the more robots we are able to control. 

When we ignore a robot, the robot works independently but its performance declines over 

time. The neglect impact curve in Figure 14 shows this neglect effect. The time during which a 
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robot is ignored is called the neglect time (NT)6. In contrast, when we control a robot, its 

performance will increase. However, this increase will not occur immediately because the 

operator needs to do a minimum of four things before a robot can execute a command: (1) select 

the sub-task to perform, (2) build SA for the robot, (3) make decisions in order to form a plan, 

and (4) transfer the plan to control commands and issue them to the robot [82]. In practice, the 

time that the operator spends on these stages may be long and have a significant impact. For 

instance, the operator may not be aware that there is a sub-task or may not have enough SA to 

make a plan [20]. The interaction effect is represented in Figure 14 by the thin line. The time 

spent in interaction is called interaction time (IT).  

 

Figure 14. Neglect Tolerance (NT) and Interaction Time (IT) (reprinted from [19]). 

3.1.2 Evaluation metrics 

For a homogenous independent robot team, we can theoretically predict and evaluate human 

multi-robot control in the following metrics using NT and IT [19, 82]: 

Fan-Out (FO): The maximum robots that one operator is able to control is 

FO = (IT+NT)/IT = 1 + NT/IT, 

                                                 

6 Please note, when we ignore a robot we may control more than one robot, and part of the NT time may be off-task 
time (also called Free Time) during which we don’t pay attention to any robot, for example the time we spent in 
switching from one robot to another. 
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which reveals that to improve the effectiveness, we should enhance the robotic system’s 

autonomy to increase NT and utilize a good interface to decrease IT. However, usually NT and 

IT affect each other. As mentioned in the previous chapter, under a higher LOA, the operator 

will have more difficulty in effectively interacting with the robotic system. Therefore, an 

increase in NT might increase the IT as well. 

Robot Attention Demand (RAD): In measuring the attention demand from a robot, RAD is 

the ratio of the time that the operator must attend to a robot over the total task time: 

RAD = IT/(IT+NT). 

For robot teleoperation, the NT is very small, and the RAD will approach one when the working 

status is very busy.  

Relative Free Time (RFT): RFT is the fraction of the task time that the operator can relax 

without paying attention to the robot: 

RFT = NT/(IT+NT). 

RFT is related to RAD in that the sum of RFT and RAD should be one (i.e., RFT + RAD = 1). 

RAD is usually difficult to directly measure because it involves measuring the mental actions, 

such as the time that the user spends on context acquisition and planning. The relationship 

between RFT and RAD allows us to implicitly assess RAD by measuring RFT. Since RFT is the 

time that a user can relax, it is possible to ask the operator to spend time on a second independent 

task and use the performance on the second task to measure RFT. The defect of this indirect 

measurement is that the second task may impact the operator’s control behaviors. [19] 

demonstrates another approach to directly measuring robot effectiveness by using the generated 

neglect impact curve and interface efficiency curve to compute the metrics.  
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In summary, the neglect tolerance opens the door to allow us to theoretically analyze human 

multi-robot control. Unfortunately, current theory is based on the assumption of a homogenous 

independent robot team. An extension of neglect tolerance theory is measuring the wait time 

between NT and IT [20]. When an operator moves his attention from a robot, he needs time to 

decide which robot to turn to before beginning a new interaction. The time between NT and IT is 

the wait time, which includes the time spent in being aware of a task in the queue as well as the 

time caused by a loss of SA. The Fan-Out is updated as the following: 

FO =  NT/(IT+WTQ+WTSA) + 1,  

where WTQ is queuing wait time and WTSA is wait time caused by a loss of SA. 

Since only temporal measurements are used in analysis, [22] further extends the wait time 

concept to include a cost-performance model. The number of robots that a single operator can 

control is depicted in Figure 15. 

 

Figure 15. The optimization model (reprinted from [22]). 

3.2 WORKSPACE AWARENESS 

As mentioned before, when a human controls multiple robots, the operator must maintain his 

awareness of the robot team as well as of the individual robots. Unfortunately, studies about this 
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kind of awareness are rare in the literature. Instead, we introduce relevant workspace awareness 

studies in computer-supported cooperative work (CSCW) and apply it to human multi-robot 

control. 

3.2.1 Definition 

When people work together via groupware, each person in this group usually has more difficulty 

in getting to know his coworkers than when the group physically works together in a face-to-face 

environment. Groupware limits the actions that a team member can take. Information can be 

acquired from the workspace, but often only part of the available information is represented to 

each user. Therefore, a group member may lack the awareness of who the other group members 

are, where the other group members are, and what the other group members are doing. Based on 

these characteristics, the awareness of a robot group in HMRI is very similar to group awareness 

in CSCW. The difference is that, in HMRI, the group members are robots and coworkers’ 

“brains” are robotic agents (control software). In CSCW, we refer group awareness as workspace 

awareness (WA), which is defined as the “up-to-moment understanding of another person’s 

interaction with a shared workspace” [40]. WA is a specialization of SA in which the “situation” 

is the other group members’ interactions with the workspace, which implies awareness of both 

the domain and the collaboration [41, 42]. [41, 42] propose a framework to indicate the 

information that makes up WA, how people acquire WA, and how we use WA in collaboration.  
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3.2.2 The framework 

Essentially, WA includes the information that answers the who, what, where, when, and how 

questions. The “who” question asks if there are other members in the workspace, who they are, 

and what authorships exist between the group members and the observed actions. The “what” 

question involves information about a person’s actions and the intention and object of each 

action. The “where” question addresses the location of a group member and the areas with which 

a group member can interact, which include where he is gazing and where he can reach. The 

“when” and “how” questions directly involve time. The answer to the “when” question is the 

moment at which an event happened, and the answer to the “how” question is the history of an 

action or an involved object over time. The “who,” “where,” and “what” questions can be 

associated with time as well, i.e., the awareness of who was there, where he was, and what he 

was doing. In HMRI, this part of the framework can be directly used when coworkers are 

replaced with robots. The awareness of the robot group is the information that answers all five of 

these questions. For example, the “where” question queries the location of a robot, the area the 

robot is sensing, and the direction in which the robot is moving.  

When people work in a shared workspace, they can obtain WA in three ways. The first way 

is the consequential communication that gathers awareness by watching other group members. 

For example, we can look at the body’s movement or gestures to know what someone is doing. 

This communication emphasizes our perceived consequences of other people’s actions because 

no intentional information is retrieved. 

Similarly to watching humans, we can observe artifacts to indirectly obtain awareness about 

coworkers. This is known as a feedthrough mechanism. Like people acting in an environment, 

the artifacts will be impacted and the state change can be interpreted as the feedback of a person 

 55 



performing a task. For example, the changed shape of a ball in a human’s hand can tell us how 

hard the person is squeezing it, and the sound of a bounced ball tells us that another person is 

playing with a ball even if we cannot see the person or the ball. When we see both the artifacts 

and the actor, the feedthrough is usually coupled with consequential communication. 

The final mechanism used in acquiring awareness is intentional communication, which 

allows us to proactively cooperate with partners by telling us what the partners intend to do. 

Verbal communication is the main modality through which a person directly talks to each other 

to learn others’ intentions, listens to other conversations to learn others’ intention, or talks aloud 

to himself to allow other people to learn his intentions. Gesture is another modality that can 

transfer information about intentions. For instance, pointing to the door we are going to enter, 

gazing at the object we intend to pick up, or heading toward the person we want to interact with 

can send our intentions to other people. In HMRI, people use similar mechanisms to build 

awareness of the robot team. However, the major difference may be the intentional 

communication. In CSCW, humans are intelligent enough to communicate with each other in 

order to ensure an understanding of intentions. However, robots usually communicate in simple 

and straightforward ways, such as directly delivering plans to the operator without any 

explanation. Therefore, the human operator may fail to know why the plan was selected and 

what intention lies behind the plan. How to represent both the individual’s and the team’s 

intentions to the human operator is a challenge in HMRI, especially when the robotic system is 

complex. 

When people have gathered information awareness of each other, there are at least five ways 

to use this information in collaboration. First, WA helps a person manage when he needs both to 

work with others and to work independently. Second, WA allows a person to communicate with 
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others more efficiently because it facilitates a common grounding. Third, WA facilitates the use 

of non-verbal communication, such as deictic references, demonstrations, manifesting actions, 

and visual evidence, which simplify communication. Fourth, WA helps a person to predict 

others’ actions on both small and large time scales and therefore helps a person to cooperate with 

coworkers more efficiently and without conflict. Fifth, WA benefits a person through providing a 

better understanding of others’ requests. The use of WA in HMRI is very similar to its use in 

CSCW because the operator is also a human. All of the approaches mentioned above can be 

directly used except the simplification of communication, which is restricted by the limited 

communication capabilities of a robot. 

3.2.3 Awareness metaphor 

One of the main goals of CSCW is providing support to help people build, maintain, and use WA 

in collaborative work. Because people cooperate much more efficiently in a face-to-face 

environment than in a remotely shared workspace, early effort in this area focused on building a 

“rich” media space in which a face-to-face environment can be virtually presented. 

Unfortunately, no expected success has been reported because of the discontinuous nature of 

media space and the fact that facilitating awareness is not simply providing all possible 

information. Later effort has focused on building a computational environment that is based on 

an awareness model that allows people to efficiently collect, dispatch, and integrate information 

involved in collaborative work [95]. Spatial metaphors and reaction-diffusion metaphors are the 

two models used in CSCW. The spatial model measures awareness as the combination of focus 

and nimbus, where focus is the subspace where our attention is allocated and nimbus is the 

subspace that contains the observed objects. The reaction-diffusion model addresses the mutual 
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awareness and interaction between actors. In this model, the reaction means that actors interfere 

with each other and thereby change their states, and diffusion refers to the space where involved 

entities exist and interact. The details of these two models can be found in [90] and [103]. In 

HRI, current studies classify awareness of single robot control in rough grain (see Section 2.1.4) 

and the study of multi-robot control is still rare. We lack a theory that allows us to formally 

analyze awareness and use it in evaluation, the robotic system, and interface design.  

3.3 THE CURRENT EFFORTS 

Although multi-robot control will potentially benefit HRI effectiveness, it challenges the limited 

cognitive capabilities of human operators. Using multi-robot control in future combat settings, 

space discovery, and search and rescue attracts many researchers to study ways to improve 

efficiency in HMRI. How multiple robots impact both human and overall performance is the 

fundamental question that we need to answer. Proceeding from this question, we are able to find 

ways to improve or deeply analyze HMRI either from the robotic system or the user interface. In 

the following Section, we introduce the current efforts in these three fields separately. 

3.3.1 Group size 

As mentioned in Section 1, the human, the robotic system, the task, and the world affect each 

other. Therefore, the impact of multiple robots correlates with many other factors. Fortunately, 

we are able to investigate this impact under different conditions because the comparison studies 

of different numbers of robots are present in several studies.  

 58 



[111] compares the navigation performance of two, four, and eight robots controlled by a 

single operator in a 2D simulated world. Under conditions of waypoint-based independent robot 

control and simple robot simulation, the experiment shows that the operator is able to control up 

to four robots, with the larger number of robots resulting in a higher workload and a stronger 

impact on the operator’s monitoring ability than on the control ability. In a later study [110], the 

authors added autopilot capability to the robots, upgraded the world simulation to a 3D graph 

rendering system, and improved the simulated robot to a virtual fail-safe vehicle. The 

comparison of one, two, and four robots controlled during the exploration task shows that, in 

single robot control, human intervention improved performance but, when participants shifted to 

multi-robot (two or four robots) control, they “tend to reactive instead of proactive supervisory 

control” [110]. Overall performances under this latter condition were worse than those under the 

condition of full autonomy control. Again, increased human workload was found as the group 

size increased. In the most recent study [46], researchers used a dynamic robot and workspace 

simulator (USARSim) to compare the robot control behaviors with six and nine independent 

heterogeneous robots. In this experiment, the high fidelity simulator, which introduces realistic 

SA problems, such as robot collisions in robot control, makes the results potentially more 

realistic than those of previous experiments. The participants controlled the robots via 

teleoperation or prescribed behavior with a scalable interface. The results show that a higher 

number of robots caused a higher workload; however, the increment was less than the ratio of 

1:1, which reveals that a single operator is able to control several robots with the user interface. 

The interesting result reported in the experiment contradicts the traditional belief that more 

robots lead to worse SA, yet the experiment found improved overall SA. Either the limitation of 
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the SA measurement or the specified (e.g., small, simple) testing world may contribute to this 

contradiction. Further study is needed. 

The impact of multi-robot control is studied in multi-agent fields as well. In [85], robots 

with a high level of autonomy work as a team. Participants control a team of four or eight robots 

to play a capture-the-flag game with another fully autonomous robot team. The experiment, 

which was conducted using an abstract 2D simulated world, reveals that players took 

significantly more time to finish the game with significantly less success rate when controlling 

eight robots than when controlling four. However, the introduced flexibilities in robot control 

(controlling an individual robot or a robot team with manual or scripted behavior) allowed the 

player to control four robots with improved overall performance. The requirement of controlling 

eight robots produced a greater management workload for the human user, which countered the 

benefits. In another recent study that examined humans in loop multi-agent control [100], the 

human operator controlled four, six, or ten fire engines to extinguish fires in a simulated 3D 

urban environment via task allocation or strategy selection. Although the experiment is based on 

very small sample size (three subjects), the results reveal that human intervention and additional 

agents do not always benefit team performance. Instead, the dominant team-level strategy 

changes as the team size changes.  

In summary, multi-robot control impacts the human operator’s workload in three ways: (1) 

building and maintaining awareness, (2) making decisions, and (3) controlling the robotic 

system. Increasing the autonomy level in robotic system, whether providing decision support or 

individual robot autonomy, allows us shift the decision-making and robot control workload from 

the human to the robotic system. On the other hand, the increased intelligence may cause an 

increase in perception and decision-making workloads. Thus, there is a trade-off between the 
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autonomy level of the robotic system and the level of human intervention. The user interface is 

another place that allows us to mitigate the workload by facilitating awareness acquisition and 

issuing commands. A good interface can help us to combine different resources to meet the 

1+1<2 equation and therefore to control more robots.  

3.3.2 Robotic system 

To mitigate the human operator’s workload, the robotic system should support or take over the 

human’s work while maintaining the operator’s control over the robotic system. This includes 

constructing the robot group to better support the human operator, improving an individual 

robot’s autonomy to simplify robot control, and introducing cooperation to (partially) replace the 

human operator’s high-level control. 

[15] presents an example of the robotic system that enhances SA via a carefully designed 

robotic system. The 2 UAVs in the robot team are able to provide the overhead view of the 

UGVs on the ground and thereby significantly improve the operator’s robot team awareness. 

Although the design of MRS is beyond the scope of this paper, other studies that focus on 

improving the effectiveness of robotic system design is available in the literature. 

One of the most recent efforts in HMRI is seeking the optimal interaction scheme7 that 

allows us to effectively control multiple robots. [35] demonstrates collaborative robot control 

when human operators control the robots via waypoint assignment and communicate through 

verbal dialog. This interaction scheme makes multi-robot control possible by enabling adaptive 

task allocation and temporally neglecting a robot. [19, 79] compare three interaction schemes—

                                                 

7 Recall that an interaction scheme is the combination of autonomy and the human-robot interface. 
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the teleoprate and landmark (TOL), the point to point and human snapper (PTP), and the region 

of interest of sealing (ROI)—in a 2D simulated world with three independent robots. The results 

reveal that the increase in autonomy decreases both workload and performance and that a greater 

degree of human control increases the workload but also improves performance. More 

specifically, in this experiment, PTP tends to increase workload and performance, ROI causes 

decreased workload and performance, and TOL dramatically imposes a high workload and leads 

to slight performance improvement. In the multiple UAVs study with different levels of decision 

support under low or high replanning demands [21], the successful destruction of targets with 

four UAVs demonstrates similar results in that increasing autonomy reduces both workload and 

awareness. In addition, for this kind of management task, automation bias was found in human 

decision-making. The operators usually failed in appropriately accounting for uncertainty in their 

decisions, and the probabilistic prediction support degraded the performance. 

Unlike the above experiments that utilize independent robots, [85, 104] compare different 

interaction schemes with a cooperating robot team for the capture-the-flag task in a 2D simulated 

world. The results show that the flexibility in switching between autonomy levels (adaptive 

control) slightly increased workload with significantly improved overall performance. In another 

recent study [100] in which a human operator controls a robot team to extinguish fires in a 

virtual 3D city, the comparison among the four conditions—full manual control, a human 

operator with individual-level autonomy, a human operator with team-level autonomy, and full 

autonomy—reveals that human involvement did not always benefit the performance of a 

complex task and that a team-level strategy was not consistently superior in performance to the 

individual-level strategy in the specific task and multi-agent system. However, the experiment 

was conducted on three participants with three tests under each condition. 
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Although the results slightly vary in the above studies because of the differences in the 

nature of the task, the world, and the robotic system, autonomy decreases workload with 

degraded awareness for both teams and groups of robots. Adaptive autonomy (the flexibility of 

switching between different LOAs) tends to increase performance with workload and may be 

associated with better awareness than restricted autonomy is.  

3.3.3 User interface 

When we switch from single robot control to multi-robot control, the user interface becomes 

more complex and new problems arise, such as supporting group awareness and switching 

between the robot group and individual robots. However, many discussions of UI in SOSR 

control still can be used here. For instance, similar to the main modality discussion in Section 

2.2.1, in HMRI we need to decide the suitable main modality or the awareness metaphor. As an 

example, [110] compares map-based and camera-based UI for multi-robot control in a 3D 

simulated world. In this Section, we will focus instead on three new problems in HMRI: the 

problem of selecting and switching between the group and the individual, the problem of group 

awareness, and the problem of complex awareness support. 

[85] compares individual robot selection and whole group selection UIs. The authors 

summarize that, in multi-robot control, we need “flexibility to reallocate robotic resources or to 

compensate for suboptimal robot behavior.” The four-robot control experiment shows that, with 

flexibility in controlling either an individual robot or the entire group, the participant won 

significantly more games without a significant difference in workload. A later study [104] of 

task-switching times reports that the switch time varied from two to seven seconds among 

different interface types, which demonstrates how UI can significantly impact effectiveness.  
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Figure 16. Team representations: (a) individual, (b) semi-transparent, (c) solid (reprinted from [45]). 

 

Figure 17. Task-list-based UI in which the user task list window is docked on the right [32]. 

At the team level, the UI should represent the team appropriately so that the user can 

maintain group awareness with the least mental workload. [45] proposes a team shape-based 

visualization that represents the robot team with various geometric shapes (Figure 16). The user 

study shows that the participants significantly prefer connecting members with semi-transparent 

or solid geometric shapes to the individual robot visualization. Recalling the awareness 

metaphors introduced in Section 3.2, possible enhancements to this representation include 

displaying nimbus and focus or adding interaction visualization to help the user acquire 

workspace awareness. Knowledge of the team-level tasks is another factor that impacts team-

level planning and management. [32] demonstrates a task-list-based user interface (Figure 17) 

that provides the user with the tasks in queue, task descriptions, and task status. The usability 
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study shows that task list can better guide users under ambiguous situations and improve overall 

performance. In addition, it makes users’ control behaviors more predictable and decreases the 

overall workload. 

 

Figure 18. Timeline interface [21] 

As mentioned before, under multi-robot control, situation awareness becomes complex and 

the user requires more time to make a decision. From this complexity the history problem 

emerges: to make a plan, we must know the group members’ histories and predict their futures. 

In general, the larger the team is, the more complex the decision-making is, such that a larger 

time scale of history and prediction is needed. [21] presents an example of a user interface that 

accounts for time issues in the interface design, such as displaying the schedule and the time 

delay as well as associating the predicted workload with specific tasks (Figure 18). Displaying a 

group member’s plan, such as the planned path, and that group member’s current progress is one 

approach to representing a shorter time scale of history and the future. In a multi-robot user 

interface, fusing the individual robots’ information allows us to mitigate the overall workload 

and to improve the overall SA. Figure 19 shows the recent effort to design a scalable interface 
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that enables a single person to control up to nine robots. The user study reveals that, with the 

halo style interface, adding a robot does not linearly increase the demanded workload. Thus, the 

interface is scalable to the number of robots. 

 

Figure 19. The halo scalable interface [46]. 

3.4 DISCUSSION 

Table 2 lists the current studies in human-multi-robot interaction. In the following Sections, we 

summarize them in terms of the four elements in HRI, i.e., the human, the robotic system, the 

task, and the world. 
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3.4.1 Human  

A single person controlling a group of robots is the dominant control style in current studies. 

Multiple operators controlling a single robot such that performance is significantly improved is 

reported in a few studies, including [9, 10]. N operators controlling M robots (where N>1, M>1) 

seems to be the most efficient way to allow multiple people to control a large group of robots. 

Unfortunately, the study of MOMR (multiple-operators multiple-robots control) is rare in HMRI.  

Humans’ limited cognitive capabilities are the main bottleneck in HMRI. To effectively 

control robots, the operator must make decisions, issue commands, and build and maintain 

awareness with the lowest possible mental workload. Shifting the workload to the robotic system 

is one solution. For example, if we control a large group of robots via issuing a region of interest, 

the workload is similar regardless of the number of robots because the operator only needs to 

draw the interest region. However, as the group size increases, the cooperation among the robots 

increases. Another approach to decrease the workload is that we help the operator by providing 

decision support and better presented or organized information. Indicating teams with a 

particular geometric shape and the presence of a task list and timeline are user interface 

enhancements that can mitigate human workload. Unfortunately, these studies are based on ad 

hoc tasks and robotic systems. An awareness study in HMRI is rare. We still lack an awareness 

model, similar to the one used in CSCW, that allows us to formally analyze awareness and use it 

to guide user interface design. 

Social relationships among operators and between humans and robots present interesting 

problems that require further study. A study in social robots [8] shows that engagement can 

enhance a person’s cognitive capabilities to allow him to “think and respond quickly.” With a 
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carefully designed interface, it is possible to achieve engagement in robot control and therefore 

potentially improve efficiency.  

In most of the user studies, the robotic system was tested by novice users rather than by 

experts. This is appropriate for HRI because it is closer to real-life situations. However, a 

novice’s learning curve is usually ignored or underestimated in these studies. 

3.4.2 Robots  

The level of autonomy (LOA) is the feature of the robotic system that most impacts the 

effectiveness of HMRI. The studies show that autonomy can decrease workload and can degrade 

SA and performance and that human involvement will increase the workload, SA, and 

performance. However, when the task or situation is complex, human involvement may instead 

have a negative effect on the overall performance. Many factors, such as the task, the 

environment, and the robots, will influence the optimal level of autonomy. Most of the current 

studies are based on specific tasks and robotic systems, which makes applying the result to 

another application difficult. The alternative approach to improving effectiveness in HMRI is 

utilizing adaptive autonomy. For instance, the studies in delegation-type interfaces show that the 

flexibility (the capability of manually changing the level of autonomy) can improve performance 

with a slightly increased workload and SA. However, we face the same problem in decomposing 

the task into sub-tasks and finding the corresponding optimal autonomy for each sub-task. With a 

decomposition study, we are able to use it to guide the operator, to provide decision support, or 

to invoke it in automation to decide when we should change the level of autonomy.  

A small size and a homogeneous robot group are the main features of the robot organization 

style used in current HMRI studies. Because of the limitations on human cognitive abilities, 
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controlling a mid- or large-sized robot group poses a challenge. To allow a person to control a 

large group of robots, we need a scalable interaction scheme such that both the autonomy 

capability and the user interface are scalable to a large number of robots. In particular, the 

complexity of the robotic system should not significantly increase and the autonomy capability 

should not significantly degrade as the number of robots increases. A distributed cooperation 

system, such as the Machnetta framework [94], is an example of a system that supports various 

sizes of robot groups. In terms of the human operator, the workload should increase only slightly 

as the robot group size increases so that the human operator is able to maintain control of the 

robots. The ideal interface is a task-oriented interface because human input is related to specific 

tasks rather than to a specific robotic system and because the workload remains constant for any 

given task. For instance, with the region of interest or sub-goal specification interface, the size of 

the robot group is irrelevant because the operator controls the robots via drawing a region or 

issuing a sub-goal according to the task and the current SA. This kind of interface requires a very 

high level of autonomy of the robotic system. Given a large robot group, the robotic system 

should be error- and failure-tolerant so that required human intervention in response to failure 

does not linearly increase with the robot group size. Another possible solution is to divide a large 

robot group into several sub-teams so that the human is able to deeply intervene with the robots 

via the robot sub-teams, thereby avoiding a large increase in mental workload. Similar to the 

military organization that allows a general to efficiently control multiple troops, building a robot 

organization, such as the 4D/RCS architecture [3], to control robots at different aggregation and 

abstract levels might be another, more intuitive way to control large robot groups. 

Finally, a robot simulator is often used in HMRI studies. Unfortunately, most of the 

simulations are low-fidelity 2D simulations that largely ignore the dynamic and uncertain 

 69 



features in interaction study. Consequently, the SA problem, which is extensively studied in 

SOSR control, is not addressed in many of the current HMRI studies. A high-fidelity, 3D, 

dynamic-level robot simulation is lacking in the HMRI community. 

3.4.3 Task and World 

Table 2 shows that navigation and exploration comprise the predominant task studied in HMRI. 

In these tasks, a human user is usually involved via determining how and where to guide a robot 

to a specific destination. Perception task is another type task that requires a human user’s deep 

involvement because the low-level control is usually based on human input, such as identifying a 

target. Because of the high human intervention demand, perception tasks are also typical HRI 

tasks and have been extensively studied in SOSR. Unfortunately, the study of perception tasks 

like search and rescue are relatively rare in HMRI. Management tasks are a typical task in multi-

robot control domains that have been studied by several current researchers. Switching and 

regaining SA at different levels (i.e., individual, sub-team, team) of management is an interesting 

problem that deserves more attention. 

The effect of the workspace is usually ignored in HMRI studies. However, it is important 

especially when we consider its effectiveness. For instance, the office-like, forest-like, and open-

space environments have different impacts in map-building and path generation for robot 

navigation. Flat and rough terrain cause different SA problems in robot driving and require 

different levels of autonomy. When a robot moves around, some regions may be easier than 

others for the robot to navigate. Therefore, accounting for world complexity in system design 

and evaluation is necessary. In multi-robot control, although the different local world of the 

individual robot will require more cooperation, the different features of the local world might 
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benefit overall performance. One of the trends in multi-robot control is combining UAVs and 

UGVs to improve SA and to benefit the robots’ navigation. Few researchers realize the 

importance of measuring a world’s complexity and features, and only a few approaches to such 

measurement have been proposed (see Section 1.1.3).  

As mentioned before, a low-fidelity simulator is still the dominant simulation used in HMRI 

but we need a high-fidelity simulation of the world as well. Moreover, for interaction studies, 

fidelity in robot-world interaction simulations is required.   



Table 2. Current HMRI studies . 

Study Task World Robots8 Interaction Teaming 
Fong et al. (2001): robotic 
system of collaborative 
control [35] 

Surveillance & 
reconnaissance 

Real world with 
flat terrain. 

2 UGVs 
(PionnerAT & 
Pioner2-AT) 

Dialog + waypoint control Independent 

Trouvain & Wolf (2002): 
user study of the impact of 
robot group size [111] 

Navigation 2D simulated 
office world 

2, 4, 8 UGVs 
(homogeneous) 

Waypoint Independent 

Trouvain et al. (2003): user 
study of map based and 
camera based user interface 
[110] 

Exploration 3D simulated 
outdoor world 
(graph rendering 
system) 

1, 2, 4 UGVs 
(homogeneous) 

Supervisory + waypoint 
control 

Independent 

Nielsen et al. (2003); 
Crandall et a (2005): user 
study of interaction schemes 
[79] 

Exploration 2D simulated 
office like world 

3 UGVs 
(homogeneous) 

Teleoperate and landmark; 
Point to point and human 
snapper; Region of interest 
and sealing.  

Independent 

Olsen et al. (2004): Fan-out 
study [83, 84] 

Exploration 2D simulated 
office like world  

18 UGVs 
(homogeneous)  

Goal specification + 
simple/bounce/plan level 
automation 

Independent 

Exploration Maze like real 
world 

4 real robots 
(homogeneous) 

Direction control + collision 
monitoring;  
Goal specification + auto 
exploration 

Independent 

Cummings & Mitchell 
(2005): Time management 
and scheduling [21] 

Attack target 2D simulated 
world 

4 UAVs 
(homogeneous) 

Manual, passive, active, and 
super active decision support 
in planning 

Independent 

                                                 

8 A UGV is a ground robot, and a UAV is an aerial robot. An agent is the abstractly simulated robot with supernatural powers.  
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Parasuraman et al. (2005): 
delegation-type interface 
[85] 

Capture the 
flag 

2D simulated 
world (RoboFlag) 

4, 8 Agents 
(homogeneous) 

Autonomy, manual 
(waypoint), and mixed control 
in robots behavior and 
selection 

Cooperative 

Envarli & Adams (2005): 
User study of task lists [32] 

Solve robot 
failures, team 
management 

2D simulated 
world 

18 Agents  
(homogeneous) 

Team management and task 
assignment with minor 
decision support (additional 
task management constraints) 

Cooperative 

Schurr et al. (2005): Multi-
agent system with human in 
the loop control [100] 

Fire fighting 3D simulated 
world (DEFACTO) 

4, 6, 10 Agents 
(homogeneous) 

High level task allocation and 
strategy selection 

Cooperative 

Squire et al. (2006): Task 
switching time [104] 

Capture the 
flag 

2D simulated 
world (RoboFlag) 

4, 6, 8 Agents 
(homogeneous) 

Autonomy, manual 
(waypoint), and mixed control 
in robots behavior and 
selection 

Cooperative 

Wang et al. (2006): user 
study of cooperated robot 
team9 [116] 

Search 3D simulated 
indoor world 
(USARSim) 

3 UGV 
(homogeneous) 

Manual, mixed-initiative Cooperative 

Humphrey et al. (2006): 
user study of robot team 
visualization [45] 

Robot selection 
and position 
identification 

2D simulated 
world 

4 x 4 Agents (4 
teams with 4 
robots in each 
team, 
homogeneous) 

None (No robot control) Independent 

Humphrey et al. (2006): 
user study of scalable 
interface10 [46] 

Search 3D simulated 
outdoor world 
(USARSim) 

6, 9 UGVs 
(heterogeneous) 

Teleoperation and scripted 
behaviors 

Independent 

                                                 

9 This is our previous work. For more details, please see Section 4.3.  
10 This experiment is later than our multi-robot control experiment, which was conducted in 2005. 



4.0  THE HMRI TESTBED AND PILOT STUDY 

In this chapter, we describe our testbed for human multi-robot control study and our pilot 

experiment. Based on the literature review, our work focuses on human control of a 

cooperating robot team to pursue a search task, which is a typical HRI task that requires deep 

human involvement. We first introduce our robot simulator, which is intended to provide an 

HRI research platform in a virtual world for HRI researchers. Then we describe our multi-

robot system that was based on an off-the-shelf multi-agent system and previous HRI research 

results. The system was built as a scalable robotic system to allow us to pursue our long-term 

goal of human control over a large robot group. Finally, we describe our primary 

experimental study of human control over a robot team searching for victims in a disaster 

environment.  

4.1 USARSIM – THE ROBOT AND ENVIRONMENT SIMULATOR 

4.1.1 Introduction 

Although many robotic simulators are available, most of them have been built as ancillary 

tools for developing and testing control programs that are run on research robots. Simulators 

built before 2000, including [55] and [57], typically have low-fidelity dynamics for 

approximating the robot’s interaction with its environment. More recent simulators including 
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ÜberSim [7], a soccer simulator, Gazebo [38], and the commercial Webots [23] that use the 

open-source Open Dynamics Engine (ODE) to approximate physics and kinematics more 

precisely. The ODE, however, is not integrated with a graphics library, which forces 

developers to rely on low-level libraries like OpenGL.  This limits the complexity of the 

environments that can practically be developed and effectively precludes the use of many of 

the specialized rendering features of modern GPUs.  Both high-quality graphics and accurate 

physics are needed in HRI research because the operator’s tasks depend strongly on remote 

perception [117], which requires accurate simulation of camera video feedback as well as 

interaction with automation, which in turn requires accurate simulation of sensors, effectors, 

and control logic.   

USARSim is a high-fidelity simulation of urban search and rescue (USAR) robots and 

environments and is intended as a research tool for the study of HRI and multi-robot 

coordination. USARSim supports HRI by accurately rendering user interface elements 

(particularly camera video feedback), accurately representing robot automation and behavior, 

and accurately representing the remote environment that links the operator’s awareness with 

the robot’s behaviors.  

4.1.2 Game-Engine based simulation 

Real-time “out the window” or “through the camera” simulations have classically been 

difficult, time-consuming, and expensive to build because they require specialized hardware 

and personnel. The cost of developing such simulations has grown so much that even in the 

gaming industry developers can no longer rely on recouping their entire investment from a 

single game. This has led to the emergence of game engines, or modular simulation code, that 
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can be used for families of similar games. The separation of game logic and rules from 

simulation dynamics and environmental data allows the core code to be reused for more 

general simulations. In addition to affordability, today’s game engines also offer advanced 

graphical displays, realistic environments, accurate physics, and dramatically reduced 

development times [58].    

USARSim uses Epic Games’ Unreal Engine 2 [33] to provide a high-fidelity simulator at 

low cost. Unreal is one of the leading engines in the “first-person shooter” genre and is widely 

used in the gaming industry. It is also gaining a strong following in the academic community 

as more researchers use it in their work. Recent academic projects included creating VR 

displays [48], studying AI techniques [62], and creating synthetic characters [107]. In addition 

to the egocentric perspective, there are several other features of the Unreal Engine that make 

it particularly appealing for HRI research. These features include graphics, a physics engine, 

an authoring tool, game programming, and networking, each of which is discussed in more 

detail below. 

In terms of graphics, the Unreal Engine provides fast, high-quality, 3D scene rendering 

that supports mesh, texture, lighting, and material (e.g., reflective, transparent, and semi-

transparent surfaces) simulation, which allow us to simulate realistic camera video. This is 

one of the most critical features in current approaches to human control of mobile robots. 

In terms of a physics engine, the Unreal Engine integrates MathEngine’s Karma Engine 

[66] to support high-fidelity rigid body simulation in instances of collision, friction, joint 

simulation and force, and torque modeling. This feature allows the simulation to replicate 

both the physical structure of the robot and its interaction with the environment.  
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In terms of an authoring tool, the Unreal Engine provides a real-time design tool, 

UnrealED, for developers to build their own 3D models and environments from scratch or by 

importing models from other popular modeling tools, such as Maya and 3D Studio Max. 

UnrealED permits HRI researchers to accurately model both robots and their environments.  
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Figure 20. USARSim architecture. 
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In terms of game programming, the Unreal Engine provides an object-oriented scripting 

language, UnrealScript, that allows researchers to control the game logic. This affords the 

ability to customize the interaction with the simulation in order to match the specifics of 

desired robot behaviors. 

Finally, in terms of networking, the Unreal Engine uses efficient client-server 

architecture to support multiple players. This embedded networking capability allows 

USARSim to support human control of multiple robots without modification.  

Figure 20 shows the Unreal Engine’s components and the expandable library of robot-

themed models, environments, and control interfaces to acquire sensor data and issue the 

commands that we have added to create the USARSim simulation.  

 

Figure 21. USARSim sensors. 

More specifically, USARSim provides a generic robot model that simulates a robot at the 

joint level and that enables us to create our own robots via assembling robot parts and 

mounting sensors with minor Unreal programming. The current version, which includes 

contributions from other researchers, provides ten wheeled robots, two legged robots, one 
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submarine, and one helicopter. The sensor simulation in USARSim provides the perception 

from a robot’s view. USARSim uses a hierarchical architecture to build sensors and to enable 

adding new sensors without a deep understanding of the Unreal Engine. Figure 21 shows the 

current available sensors in USARSim. USARSim provides special world simulations, such 

as mirrors, wire grids, and transparent and semi-transparent boards, in addition to supporting 

high-fidelity world simulations. Shown in Figure 22 are the real and simulated NIST 

reference arenas [49]. Finally, USARSim applies a modification of GameBots [52] to 

communicate with the virtual robot via a network, which makes the simulator independent of  

both the programming language and the computer platform. Moreover, USARSim provides 

tool kits to help users control robots via popular software like Player and Pyro. More details 

of USARSim can be found in the user manual [113]. It is currently maintained at SourceForge 

(http://sourceforge.net/projects/usarsim) by NIST with more than 19,000 downloads. It is also 

the official platform of the RoboCup Virtual Robot competition since 2005.   

 

Figure 22. The real (top) and simulated (bottom) NIST reference arenas. 

 79 



4.1.3 Evaluation 

This Section evaluates USARSim according to three aspects: (1) the validation that compares 

the real world with the simulated world, (2) the comparison of USARSim with other 

simulators, and (3) USARSim’s applications in HRI research. Many of the studies on sensor 

data validation and simulator comparison that are introduced here are conducted by the third 

part research groups. 

The validation of USARSim can be conducted from inside or outside. The inside 

validation compares the simulated data with the real-world data. High-quality simulation 

implies a very closed data set between the real and virtual worlds. [13] selects to validate the 

most substantial sensor in HRI, which is the range sensor, because most robot control is based 

on it. The comparison of the world features extracted from the range data shows a high 

correlation between the simulated and real sensor data. The camera is another essential sensor 

in HRI study. [12] applies an approach similar to the previous one, i.e., a comparison of 

sensors via the popular data-processing algorithms in robot control in order to validate the 

camera images. Both edge detection and OCR testing demonstrate that, although the images 

in the virtual world show a lower level of noise than the images in the real world, close results 

were found in the measurement of the extracted features. We validate USARSim from the 

human user’s side by comparing the robot control behaviors [115]. In one experiment, the 

participants drove PER robot on wood, paper, and lava terrains under teleoperation or 

waypoint control modes to pass through clear and obstructed environments in real or virtual 

worlds. Although the sample size was very small (five subjects in each condition), the results 

reveal a similar learning trend, a similar terrain effect, and very close task completion times in 

both types of worlds. However, degraded depth perception was found in the simulation. 
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Clearly, more validations, especially those that involve the robot’s dynamic features, are 

needed. 

[17] summarizes the current available commercial and open-source robot simulators in 

Table 3 according to their physical fidelity, functional fidelity, ease of development, and cost. 

Physical fidelity measures how the physical simulation behaviors (e.g., looks, sounds, and 

feels) are like the real world. Functional fidelity is the degree to which the simulated actor 

acts in the same way as the real equipment would in performing a task. The ease of 

development refers to how easily the simulator can simulate a new environment or robot and 

how easily the developer can extend or customize the simulator. Finally, cost is the 

commercial and time cost for using the simulator. Table 3 shows that USARSim appears at 

the top of the list. However, as the authors point out, all of the simulators model sensors by 

adding random noise and ignoring effects from the environment. In HRI research, this is a 

significant oversight and should guide future development of USARSim. 

Table 3. Mobile robot simulators (reprinted from [17]). 

Simulator Physical 
Fidelity 

Functional 
Fidelity 

Ease of 
Development 

Cost 

USARSim High High Easy Low 
X-Plane High High Easy Low 
FlightGear Medium Medium Medium Free 
MS Flight Simulator Low Medium Medium Low 
Webots Low Medium Easy Low 
Simbad Low Low Medium Free 
Player/Stage/Gazebo Low Low Easy Free 
EyeWyre Low Medium Easy Low 
MS Robotics Studio High High Medium Medium 
MATLAB & Simulink Low Low Easy High 
MissionLab Low Low Easy Free 
SimRobot High Low Medium Free 
SubSim Medium Low Easy Free 
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The applications of USARSim implicitly measure the successfulness of our work. Herein 

lists the main published studies that are based on our simulator. Our lab utilized USARSim to 

simulate the lack of reference and confused reference environments to analyze attitude SA 

[114], and in [44] we used USARSim to study camera-based exploration. The Human-

Centered Machine Intelligence Lab of Brigham Young University used USARSim to compare 

camera-based and map-based navigation [80]. The Human-Machine Teaming Laboratory of 

Vanderbilt University uses USARSim to study human control of multiple robots [46]. 

USARSim is being used in the robot control domain as well. For example, the Knowledge-

Based Systems Research Group of the University of Osnabrück in Germany is using it in 6D 

SLAM research and education [2]. The University of Rome “La Sapienza”, in Italy used 

USARSim in soccer robot simulations [123]. Utilization in these researches shows that 

USARSim is successfully accepted in the HRI community and that it meets our design 

objectives. 

4.2 MRCS – THE MULTIROBOT CONTROL SYSTEM 

4.2.1 Introduction 

The completion of building our testing bed, USARSim, led to the next step of acquiring a 

robot control system that could be used in our series of HRI studies. To suit our experimental 

studies, this system had to be scalable to allow us to control different numbers of robots, 

reconfigurable to enable us to study different human-robot interfaces, and reusable to 

facilitate testing different control algorithms. With these requirements in mind, we selected 

 82 



the distributed proxy-based multi-agent framework Machinetta as our system’s baseline, 

which we will introduce in the next Section. 

In human-robot interaction, how and when the operator intervenes in the robotic system 

are the two predominant issues [30]. How a human works with the system is a function of the 

level of autonomy (LOA), which describes the static function assignments between the human 

and the robot. The LOA can range from full manual control to full autonomy, with 

intermediate levels of LOA generally being superior to full autonomy or full manual control. 

This is because an LOA that is too high leads to degradation in manual or mental skill, loss of 

situation awareness, decision bias, and vigilance decrement and because the low LOA of full 

manual control leads to high mental demand, human decision bias, complacency, boredom, 

and inconsistent control behavior, all of which degrade performance. In systems with adaptive 

autonomy (AA), the allocation of control between the human and the robot can be 

dynamically changed and is usually triggered by a critical event, performance measurement, 

operator’s workload, or the operator model. In the current human-robot control system, we 

utilized a middle LOA and a critical-event-based AA to build a multi-robot control system 

(MrCS) that allows a human to work with the cooperating robot team to construct a mixed-

initiative human-robots team. 

4.2.2 Team work 

The teamwork algorithms used in MrCS are general algorithms that have been shown to be 

effective in a range of domains [108]. To take advantage of this generality, the emerging 

standard approach is to encapsulate the algorithms in a reusable software proxy. Each team 

member has a proxy that he works with closely, and the proxies work together to implement 
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the teamwork. The current version of the proxies utilized in MrCS is Machinetta [94], which 

is implemented in Java and is freely available on the internet. This type of proxy differs from 

many other “multi-agent toolkits” in that it provides the coordination algorithms, e.g., 

algorithms for allocating tasks, as opposed to the infrastructure, e.g., APIs for reliable 

communication. 

The Machinetta software consists of five main modules, three of which are domain-

independent and two of which are tailored for specific domains. The three domain-

independent modules are designed for coordination reasoning, maintaining local beliefs 

(state), and adjustable autonomy. The domain-specific modules are designed for 

communication between proxies and communication between a proxy and a team member. 

These modules interact with each other only via the local state with a blackboard design and 

are designed to be “plug and play.” This means, for examples, that new adjustable autonomy 

algorithms can be used with existing coordination algorithms. 

The coordination reasoning is responsible for reasoning about interactions with other 

proxies, thus implementing the coordination algorithms. The adjustable autonomy algorithms 

reason about the interaction with the team member, providing the possibility for the team 

member rather than the proxy to make any coordination decision. For example, the adjustable 

autonomy module can reason that a decision to accept the role of rescuer for a civilian in a 

burning building should be made by the human who will enter the building rather than the 

proxy. In practice, the overwhelming majority of coordination decisions are made by the 

proxies, and only key decisions are referred to the human operators. Teams of proxies 

implement team-oriented plans (TOPs) which describe joint activities to be performed in 

terms of the individual roles to be performed and any constraints on those roles. Typically, 
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TOPs are instantiated dynamically from TOP templates at run-time when pre-conditions 

associated with the templates are filled. Constraints between these roles specify interactions, 

such as the required execution ordering and whether one role can be performed if another is 

not currently being performed. It is important to note that TOPs do not specify the 

coordination or communication required to execute a plan. Instead, the proxy determines the 

coordination that should be performed. 

Current versions of Machinetta include state-of-the-art algorithms for plan instantiation, 

role allocation, information sharing, task deconfliction, and adjustable autonomy. Many of 

these algorithms utilize a logical associates network that statically connects all team members. 

The associates network is a scale free network which allows the team to balance the 

complexity of needing to know about all the team and maintaining cohesion. The associates 

network’s key algorithms, including role allocation, resource allocation, information sharing, 

and plan instantiation, are based on the use of tokens that are “pushed” onto the network and 

routed to where they are required by the proxies. For example, the role allocation algorithm 

LA-DCOP [93] represents each role to be allocated with a token and pushes the tokens onto 

the network until a sufficiently capable and available team member is found to execute the 

role. The implementation of the coordination algorithms uses the abstraction of a simple 

mobile agent to implement the tokens, leading to robust and efficient software. 
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Figure 23. MrCS architecture. 

4.2.3 MrCS 

The system architecture of MrCS is shown in Figure 23. Each robot connects with Machinetta 

through a robot driver that controls the robot on both low and middle levels of control. For 

low-level control, it serves as a broker that translates robot sensory data into local beliefs and 

that translates the exploration plan into robot control commands (e.g., wheel speed control). 

For middle-level control, the driver analyzes robot sensory data to perceive its states and local 

environment. Then, based on this perception, the driver overrides the control commands when 

it is necessary to ensure safe movement. Possible adjustments include changing the direction 

of motion to avoid obstacles and recovering from becoming immobilized and from a 
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dangerous pose. When the robot is in an idle state, laser data analysis allows the driver to 

generate potential exploration plans (e.g., the destination and the path to the destination). In 

addition, when the robot senses a potential victim11, the driver immediately stops the robot 

and generates a plan to inspect the potential victim. However, instead of executing the plans 

immediately, the driver sends them to the Machinetta proxy to trigger TOPs. With 

Machinetta’s role allocation algorithm, the robots and the human cooperate with each other to 

find the “best” robot to execute a plan. Here the “best” robot is defined as the robot that can 

find a route to the destination with the least cost, i.e., the shortest weighted travel length. 

 

Figure 24. MrCS user interface. 

                                                 

11 This functionality was added for RoboCup. In the competition, a faked “super” victim sensor was introduced 
to allow a robot automatically sense a potential victim. 
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The operator connects with Machinetta through the user interface agent. This agent 

collects the robot team’s beliefs and visually represents them on the interface. It also transfers 

the operator’s commands in the form of a Machinetta proxy’s beliefs and passes them to the 

proxies network to allow human intervention in the loop cooperation. The operator can 

intervene with the robot team on three levels. On the lowest level, the operator takes over an 

individual robot’s autonomy to teleoperate it. On the middle level, the operator interacts with 

a robot via editing its exploration plan. For example, the operator is allowed to delete a 

robot’s plan to force it to stop and regenerate a plan or issue a new plan (a series of 

waypoints) to change its exploration behavior. On the highest level, the operator intervenes 

with the entire robot team via issuing priority areas. The priority will impact the cost 

calculation in role allocation and therefore affects the regions that the robots will explore. 

In this human-robot team, the human maintains the highest authority to adjust the robot 

team’s behavior. For example, the human can change a plan during plan execution, and this 

plan can be further adjusted by the robot to avoid obstacles or a dangerous pose. When critical 

events, such as sensing a potential victim or being in a dangerous pose, occur, the robot 

adjusts its own behavior and informs the operator. In this case, the robot initiates the 

interaction and the operator can either accept the robot’s adjustment or change the robot’s 

plan. One of the challenges in a mixed-initiative system is that the user may fail to maintain 

situation awareness of the robot team and of the individual robots when control switching and 

may therefore make faulty decisions. Moreover, as the team size increases, the interventions 

from the robots may overwhelm the operator’s cognitive resources [68] and the operator may 

be limited to reacting to the robots instead of proactively controlling the robots [110]. We 

address these issues in the user interface design described below. 

 88 



The user interface of MrCS is shown in Figure 24. The interface is reconfigurable to 

allow the user to resize the components or change the layout. Shown in the figure is a 

configuration that we used in the RoboCup 2006 competition in which a single operator 

controls six robots. On the upper and center portions of the left-hand side are the robot list and 

team map panels, which show the operator an overview of the team. The destination of each 

of robot is displayed on the map to help the user perceive team performance. Using this 

display, the operator is also able to control regional priorities by drawing rectangles on the 

map. On the center and lower portions of the right-hand side are the camera view and mission 

control panels, which allow the operator to maintain situation awareness of an individual 

robot and to edit its exploration plan. On the mission panel, the map and all nearby robots and 

their destinations are represented to provide partial team awareness so that the operator can 

switch between contexts while moving control from one robot to another. The lower portion 

of the left-hand side is a teleoperation panel that allows the operator to teleoperate a robot. On 

the interface, interruptions from the robots are mitigated by using principles of etiquette in 

user interface design [76]. When the robot needs the operator’s attention, such as when 

sensing a victim or being in dangerous pose, the system will not display a pop-up window but 

will instead temporarily change the mission panel’s size and background color or flash the 

robot’s thumbnail picture in the robot list panel to inform the operator that a robot needs to be 

checked. This silent form of alert allows the operator to work at his own pace and respond to 

the robots when able. 

We utilized MrCS in the RoboCup 2006 virtual robot competition. The four days of 

practice showed that, with mixed-initiative control and a simple cooperation algorithm 

(avoiding duplicate exploration effort), a single operator can control six robots. The overall 
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performance during the competition was superior to other human-involved systems, and the 

final score was comparable to other full autonomy systems even our score was dived by four 

because of needing an operator [5].  

4.3 IMPACT OF AUTONOMY – THE PILOT STUDY 

4.3.1 Introduction 

This pilot study investigates human interaction with a cooperating team of robots that 

performs search-and-rescue task. It compares the performance of autonomous teams, 

manually controlled robots, and operators interacting with a cooperating team in order to 

identify the contributions of each to system performance. Table 2 on page 89 organizes details 

of recent MRS studies. All were conducted in simulation and most involve navigation tasks 

rather than search tasks. This is significant because a search task using an onboard camera 

requires greater shifts between contexts than a navigation task, which can more easily be 

performed using a single map display [9, 80]. Our experiment uses USARSim because it 

provides a physics-based simulation of the robot and the environment that accurately 

reproduces mobility problems caused by uneven terrain [115], as well as hazards like rollover 

[114], and provides accurate sensor models for laser range-finders [13] and camera video 

[12]. This level of detail is essential to posing realistic control tasks likely to require 

intervention across levels of abstraction. Previous studies have not addressed the issues that 

arise from human interaction with a cooperating robot team within a realistically complex 

environment. Results from a 2D simulation [85, 104], for example, are unlikely to incorporate 
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tasks requiring low-level assistance to robots, and experiments with non-cooperating robots 

[19, 79, 110, 111] miss the effects of this aspect of autonomy on performance and HRI. 

4.3.2 Method 

4.3.2.1 Participants 

Fourteen paid participants, ranging from 19 to 35 years old, were recruited from the 

University of Pittsburgh community. None had prior experience with robot control, although 

most were frequent computer users. Only two reported playing computer games for more than 

one hour per week. The participants’ demographic information and experience are 

summarized in Table 4. 

Table 4. Sample demographics and experiences. 

 
Age Gender Education 

19 20~35 Male Female Currently 
Undergraduate 

Complete  
Undergraduate

Participants 2 12 5 9 10 4 

 Computer Usage (hours/week) Game Playing (hours/week) 
<1 1-5 5-10 >10 <1 1-5 5-10 >10 

Participants 0 2 7 5 6 7 1 0 

 Mouse Usage for Game Playing 
Frequently Occasionally Never 

Participants 8 6 0 

4.3.2.2 Procedure 

The experiment began with a collection of the participants’ demographic data and computer 

experience. Each participant then read standard instructions on how to control robots via 

MrCS. In the subsequent ten-minute training session, each participant practiced each control 

operation and attempted to find at least one victim in the training arena under the guidance of 

the experimenter. Each participant then began a twenty-minute session in Arena 1, followed 
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by a short break and a twenty-minute session in Arena 2. At the conclusion of the experiment, 

each participant completed a questionnaire. 

4.3.2.3 Experimental Design 

In the experiment, participants were asked to control three P2DX robots (Figure 25) simulated 

in USARSim in order to search for victims in a damaged building. Each robot was equipped 

with a pan/tilt camera with a 45-degree FOV and a front laser scanner with 180-degree FOV 

and resolution of one degree. The participant interacted with the robots through MrCS using 

the fixed user interface shown in Figure 27. When a victim was identified, the participant 

marked its location on the map. The testing worlds were simulated versions of the NIST 

Reference Test Arena, Yellow Arena [49]. Two similar testing arenas (Figure 26) were built 

using the same elements but with different layouts. In each arena, fourteen victims were 

evenly distributed in the world. We added mirrors, blinds, curtains, semi-transparent boards, 

and wire grid to increase the difficulty of situation perception. Bricks, pipes, a ramp, chairs, 

and other debris were placed in the arena to challenge mobility and SA in robot control. 

Figure 25 shows a corner of the testing world. 

 

Figure 25. P2DX robot. 
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a) Arena-1     b) Arena-2 

Figure 26. Simulated testing arenas. 

 

Figure 27. User interface used in the experiment. 
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We used a within-subjects design with counter-balanced presentation to compare mixed-

initiative and manual control conditions. Under the mixed-initiative control condition, the 

robots analyzed their laser range data to find possible exploration paths. They cooperated with 

one another to choose execution paths that did not duplicate efforts. While the robots 

autonomously explored the world, the operator was free to intervene with any individual robot 

by issuing new waypoints, teleoperating, or panning or tilting its camera. When the operator’s 

command was completed or stopped, the robot would return to auto mode. Under the manual 

control condition, robots could not autonomously generate paths and there was no cooperation 

among robots. The operator controlled a robot by giving it a series of waypoints, directly 

teleoperating it, or panning or tilting its camera. As a control for the effects of autonomy on 

performance, we conducted “full autonomy” testing as well. Because MrCS does not support 

victim recognition, based on our observations of participants’ victim identification behaviors, 

we defined detection to have occurred for victims that appeared on camera for at least two 

seconds and occupied at least 1/9 of the thumbnail view. Because of the high fidelity of the 

simulation and the randomness of paths picked through the cooperation algorithms, robots 

explored different regions on every test. Additional variations in performance occurred due to 

mishaps such as a robot becoming stuck in a corner or bumping into an obstacle, which 

caused its camera to point to the ceiling so that no victims could be found. Sixteen trials were 

conducted in each area to collect data comparable to that obtained from human participants. 

4.3.3 Results 

In this experiment, we studied the interaction between a single operator and a robot team in a 

realistic interactive environment where human and robots must work tightly together to 
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accomplish a task. We first compared the impact of different levels of autonomy by 

evaluating the overall performance as revealed by the number of found victims, the explored 

areas, and the participants’ self-assessments. For the small robot team with 3 robots, we 

expected similar results to those reported in [19, 79, 111] that although autonomy would 

decrease workload, it would also decrease performance because of poorer situation awareness 

(SA). How a human distributes attention among the robots is an interesting problem 

especially when the human is deeply involved in the task by performing low level functions, 

such as identifying a victim, which requires balancing between monitoring and control. 

Therefore, in addition to overall performance measures, we examine: 1) the distribution of 

human interactions among the robots and its relationship with the overall performance, and 2) 

the distribution of control behaviors, i.e. teleoperation, waypoint issuing and camera control, 

among the robots and between different autonomy levels, and their impacts in the overall 

human-robot performance. Trust is a special and important problem arising in human-

automation interaction. When the robotic system can’t work as the operator expected, it will 

influence how the operator controls the robots and hereby impact the human-robot 

performance [56, 86]. In addition, because of the complexity of the control interface, we 

anticipated that the ability to use the interface would impact the overall performance as well. 

At the end of this section, we report participants’ self-assessments of trust and capability of 

using the user interface, as well as the relationship among the number of found victims and 

these two factors. 

4.3.3.1 Overall measurement 

All 14 participants found at least five of a possible 14 (36%) victims in each of the arenas. 

The median number of victims found was seven and eight for Arenas 1 and 2, respectively. 
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Two-tailed t-tests found no difference between the arenas both for the number of victims 

found and for the percentage of the arena explored. Figure 28 shows the distribution of 

victims discovered as a function of area explored. These data indicate that participants 

exploring less than 90% of the area consistently discovered five to eight victims while those 

covering greater than 90% of the area discovered between half (seven) and all (14) of the 

victims. 

 

Figure 28. Victims as a function of area explored. 

Within-participant comparisons found that wider regions were explored in mixed-

initiative mode, t(13) = 3.50, p < .004, with a marginal advantage for mixed-initiative mode, 

t(13) = 1.85, p = .088, in the number of victims found. Comparing the full autonomy and 

mixed-initiative conditions, two-tailed t-tests found no difference (p = 0.58) in the explored 

regions. However, under the full autonomy condition, the robots explored significantly, t(44) 

= 4.27, p < .001, more regions than under the manual control condition (Figure 29 left). Using 

two-tailed t-tests, we found that participants found more victims under the mixed-initiative 

and manual control conditions than under the full autonomy condition with t(44) = 6.66, p < 

.001, and t(44) = 4.14, p < .001, respectively (Figure 29 right). The median number of victims 

found under the full autonomy condition was five. 
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Figure 29. Regions explored (left) and victims found (right) by mode. 

In the post-test survey, eight of the 14 (58%) participants reported that they were able to 

control the robots although they had problems in handling some components. The remaining 

participants thought that they used the interface very well. Comparing the mixed-initiative and 

manual control conditions, most participants (79%) rated team autonomy as providing either 

significant or minor help. Only one of the 14 participants (7%) rated team autonomy as 

making no difference, and two of the 14 participants (14%) judged team autonomy to worsen 

performance. 

4.3.3.2 Human interactions 

Participants intervened to control the robots by focusing on an individual robot and then 

issuing commands. Measuring the distribution of attention among the robots as the standard 

deviation of the total time spent on each robot, no difference (p = .232) was found between 

the mixed-initiative and manual control conditions. However, we found that, under the mixed-

initiative condition, the same participant switched robots significantly more often than under 

the manual mode (p = .027). The post-test survey showed that most participants switched 
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robots using the “Robots List” component. Only two of the 14 participants (14%) reported 

switching robot control independently of this component. 

  

Figure 30. Victims vs. switches under mixed-initiative (left) and manual control (right) modes. 

 

Figure 31. Pre- and post-observation time vs. found victims. 

Across participants, the frequency of shifting control among robots explained a 

significant proportion of the variance in the number of victims found for both mixed-

initiative, R2 = .54, F(1, 11) = 12.98, p = .004, and manual, R2 = .37, F(1, 11) = 6.37, p < .03, 

modes (Figure 30). 

An individual robot control episode begins with the pre-observation in which the 

participant collects the robot’s information and then makes a control decision and ends with 
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the post-observation phase in which the operator observes the robot’s execution and decides 

to turn to another robot. Using a two-tailed t-test, no difference was found in either total pre-

observation time or total post-observation time between mixed-initiative and manual control 

conditions. The distribution of found victims among pre- and post-observation times (Figure 

31) shows, however, that the proper combination can lead to higher performance. 

4.3.3.3 Interaction methods 

Three interaction methods, comprised of waypoint control, teleoperation control, and camera 

control, were available to the operator. Using waypoint control, the participant specifies a 

series of waypoints while the robot is paused. Therefore, we use the times of waypoint 

specification to measure the number of interactions. Under teleoperation control, the 

participant manually and continuously drives the robot while monitoring its state. Time spent 

in teleoperation was measured as the duration of a series of active positional control actions 

that were not interrupted by pauses of greater than 30 seconds or any other form of control 

action. Using camera control, the times of camera operation were used because the operator 

controls the camera by issuing a desired pose and then monitoring the camera’s movement. 

Although we did not find differences in overall waypoint control times between mixed-

initiative and manual control modes, mixed-initiative operators had shorter, t(13) = 3.02, p < 

.01, control times during any single control episode, which is the period during which an 

operator switches to a robot, controls it, and then switches to another robot. 

Figure 32 shows the relationship between the number of victims found and total waypoint 

control times. In manual mode, this distribution follows an inverted “U” with too much or too 

little waypoint control leading to poor search performance. In mixed-initiative mode, the 
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distribution is skewed to be less sensitive to control times while holding a better search 

performance. 

 

Figure 32. Number of victims found as a function of waypoint controls. 

Overall teleoperation control times, t(13) = 2.179, p < .05, were reduced in the mixed-

initiative mode, yet teleoperation times within episodes only approached significance, t(13) = 

1.87, p = .08. No differences in camera control times were found between mixed-initiative 

and manual control modes. It is notable that operators made very little use of teleoperation 

(0.6% of mission time) and only infrequently chose to control their cameras. 

4.3.3.4 Trust and Capability of Using Interface 

In the posttest we collected participants’ ratings of their level of trust in the system’s 

automation and their ability to use the interface to control the robots.  43% of the participants 

trusted the autonomy and only changed the robot’s plans when they had spare time. 36% of 

the participants reported changing about half of the robot’s plans while 21% of the 

participants showed less trust and changed the robot’s plans more often. A one tail t-test, 

indicates that the total victims found by participants trusting the autonomy is larger than the 
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number victims found by other participants (p=0.05).  42% of the participants reported being 

able to use the interface well or very well, while 58% of the participants reported having 

difficulty using the full range of features while maintaining control of the robots.  A one tail t 

test shows that participants reporting using the interface well or very well found more victims 

(p<0.001). Participants trusting the autonomy reported significantly higher capability in using 

the user interface (p=0.001) and conversely participants reporting using the interface well also 

had greater trust in the autonomy (p=0.032). 

4.3.4 Conclusion 

In this experiment, the first of a series investigating control of cooperating teams of robots, 

cooperation was limited to the deconfliction of plans so that robots did not re-explore the 

same regions or interfere with one another. The experiment found that even this limited 

degree of autonomous cooperation helped in the control of multiple robots. The results 

showed that cooperative autonomy among robots helped the operator to explore more areas 

and find more victims. The fully autonomous control condition demonstrates that this 

improvement was not due solely to autonomous task performance as found in [100], but rather 

resulted from mixed-initiative cooperation with the robotic team. The superiority of mixed-

initiative control was not a foregone conclusion because earlier studies with comparable 

numbers of individually autonomous robots [19, 79, 110, 111] found poorer performance at 

higher levels of autonomy for similar tasks. We believe that differences between navigation 

and search tasks may help to explain these results. In navigation, moment-to-moment control 

must reside with either the robot or the human. When control is ceded to the robot, the 

human’s workload is reduced but task performance declines due to the loss of human 

 101 



perceptual and decision-making capabilities. A search task, in contrast, can be partitioned into 

navigation and perceptual sub-tasks, which allows the human and the robot to share task 

responsibilities and thereby improve performance. This explanation suggests that increases in 

task complexity should widen the performance gap between cooperative and individually 

autonomous systems. We did not collect workload measures to check for the decreases found 

to accompany increased autonomy in earlier studies [19, 79, 110, 111]. However, 11 of our 14 

subjects reported benefiting from robot cooperation. 

Our most interesting finding involved the relationship between performance and 

switching attention among the robots. In both the manual and mixed-initiative conditions, 

participants divided their attention approximately equally among the robots. However, in the 

mixed-initiative mode, the participants switched among the robots more rapidly. 

Psychologists [71] have found task-switching to impose cognitive costs and switching costs 

have previously been reported [39, 104] for multi-robot control. Higher switching costs might 

be expected to degrade performance; however, in this study, more rapid switching was 

associated with improved performance in both manual and mixed-initiative conditions. We 

believe that the map component at the bottom of the display helped to mitigate losses in 

awareness when switching between robots and that more rapid sampling of the regions 

covered by moving robots gave more detailed information about the areas being explored. 

The frequency of this sampling among robots was strongly correlated with the number of 

victims found. This effect, however, cannot be attributed to a change from a control task to a 

monitoring task because the time devoted to control was approximately equal in the two 

conditions. We believe instead that searching for victims in a building can be divided into a 

series of sub-tasks involving, for example, moving a robot from one point to another and 
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turning a robot from one direction to another with or without panning or tilting the camera. To 

effectively finish the search task, we must interact with these sub-tasks within their neglect 

time [19], which is proportional to the speed of movement. When we control multiple robots 

and every robot is moving, there are many sub-tasks for which the neglect time is usually 

short. Missing a sub-task means that we failed to observe a region that might contain a victim. 

Switching robot control more often gives us more opportunities to find and finish sub-tasks 

and therefore helps us to find more victims. This focus on sub-tasks extends to our results for 

movement control, which suggest that there may be an optimal balance between monitoring 

and control. If this is the case, it may be possible to improve an operator’s performance 

through training or online monitoring and advice. 

We believe the control episode observed in this experiment corresponds to a decomposed 

subtask of the team and the linear relationship between switches and found victims reveals the 

independent or weak relationship among the subtasks. For a multi-robot system, decomposing 

the team goal into independent or weakly related sub goals allowing the human to intervene 

into the sub goals is a potential way to improve and analyze human multi-robot performance. 

From the view of interface design, the interface should fit the sub goal decomposition (or sub 

goal template) and help the operator in attaining SA. Under mixed-initiative control condition, 

the number of found victims is less sensitive to waypoint specification than under manually 

control condition. The relation between found victims and waypoint specification can be 

generalized to the relationship between performance and human intervention. The potential of 

extending the present experiment to a generic HRI sensitivity evaluation methodology 

deserves a further study in the future. Moreover, the control episode can be used as a unit of 

human intervention, rather than the traditional counting of control actions or durations. 
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5.0  INTERACTION EPISODE 

HRI is an active research area that is still in its infancy. The classification of HRI is 

unsystematic and an update is required [119, 120]. SA studies in HRI are still case studies [24, 

25, 44, 59, 96-98], and formal analysis is unavailable. Both the analysis and the evaluation of 

HRI are usually limited to specific tasks, robotic systems, and interface designs [20, 37, 46, 

79, 80, 85, 104, 111, 116]. Clearly, we need to develop the underlying theory of HRI. 

In early HRI research, [19] utilizes neglect tolerance to study how humans are able to 

implement independent tasks. More recently, [20] expands this study in considering the wait 

time effect and [22] improves it in including a cost-performance model. Unfortunately, these 

improvements are limited to independent tasks and individual robots. Extending this theory to 

the control of cooperating robots remains an unsolved problem. Inspired by our observations 

in the pilot experiment (see Section 4.3), in this chapter, we propose the interaction episode 

methodology, which utilizes neglect tolerance to study the human control of a robot team in 

performing complex tasks. Using this methodology, we first investigate neglect tolerance 

from the human operator’s view in which one person proactively controls one or more robots 

to pursue a task. Second, we view this control as a procedure in which a human operator 

perceives the SA, makes decisions, and evaluates the overall performance.   
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5.1 THE INTERACTION EPISODE METHODOLOGY 

5.1.1 Neglect Tolerance in a dependent system 

 

Figure 33. Independent system's effectiveness [19]. 

Figure 33 depicts the robot effectiveness of single-operator single-robot control for an 

independent task [19]. If we assume that a human’s input always improves the overall 

performance, then in this situation the effectiveness constantly increases in IT and decreases 

in NT. For a dependent robotic system, other robots’ actions will directly or indirectly affect 

the currently controlled robot and therefore affect the overall performance. If we assume that 

the human operator always improves task performance and controls robots serially, then in a 

dependent robotic system, the effectiveness can be represented in a series of decrease and 

increase curves in NT (see Figure 34). The increase curve occurs when the operator must 

control another relevant robot12 to maintain task performance above the satisfaction level. For 

instance, when we control two robots to push a box forward, controlling only the left or the 

right robot will not accomplish the task. We must periodically control both robots to move the 

                                                 

12 Continuing control of the current robot will not improve performance. The operator must shift to another robot 
to maintain the performance level because of the constraints imposed by the robots and the task.  
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box forward. The time spent in controlling the relevant robots is called the occupied time 

(OT) required by the dependent task. There are two kinds of free time (FT) in the figure 

below. The first kind is the time spent off-task while establishing team cooperation. The 

second kind is the time spent off-task after team cooperation has been established. For a 

complex multi-robot system with N relevant robots, we can define: 

 
NT IT

OTFT FT

NT: Neglect Time;  IT: Interaction Time;  
FT: Free Time, time off task; OT: Occupied Time  
IT+OT: time on task 

Time 

Effectiveness

 

Figure 34. The effectiveness of a dependent system with two robots. 

Number of relevant robots: N = number of OTs in one NT. 

Neglect time respect to robot j:  where FTij is the free time 

(time spent off-task) with respect to the jth robot after it interacted with (i-1)th and before it 

interacts with the ith robot, OTij is the occupation time with respect to the jth robot that comes 

from ith robot, and FTT is the free time after team cooperation has been established.. 

T

N

ji
i

ijijj FTOTFTNT ++= ∑
≠
=1

)(

Cooperation effort: CEj =
j

ij

IT
OT∑ is the extra cooperation effort required for a robot. 

Given a task and a robotic system, a good interface for the robot team should require a low 

CE. In robotic system design, deploying automatic cooperation among the robots will shorten 

the time spent in coordinating the robots and yield a low CE. 
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Cooperation demand: CDj =
jj NT

OT
NT

FT ∑∑ =−1  is the percentage of time spent in 

controlling the relevant robots while the operator neglects the jth robot. When a person is 

required to teleoperate two robots (e.g., a left robot and a right robot) to push a box, the 

operator must repeatedly control one robot and then another to move the box. When the 

operator dedicates his time to control another robot while he neglects one robot (OT=NT), CD 

will equal 1, which means an extremely high cooperation demand. In contrast, an independent 

system will hold OT=0, and therefore gives us CD=0, which means no cooperation demand. 

Robot Attention Demand with respect to jth robot: RADj = 
jj

j

ITNT
IT
+

 

Team Attention Demand: TAD = 
ITNT

ITOT
+

+∑  is the percentage of time consumed in 

interacting with a robot team. Unlike CD, which measures the fraction of time required in 

coordinating relevant robots, a TAD includes the IT to measure the fraction of total time spent 

controlling the entire robot team. It also differs from RAD [82] in including the time occupied 

by coordinating teammates. From the cooperation view, TAD can be treated as the team 

cooperation demand. 

Team interaction time: For a strongly cooperating system, we can define team interaction 

time as ITT = ∑(FT+OT) + IT; NTT= FTT. If we treat the entire team of robots as a single 

robot, we are able to use all of the metrics used in HRI evaluation of independent tasks [19, 

82]. 

Fan-out: FO is the number of robots that a human can control “simultaneously” [82]. 

Finding FO for a dependent system is difficult because (1) the minimum number of robots 

required is determined by the dependent system; (2) a pattern, whether from the task or a 
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system constraint, of added robots may exist (e.g., adding one A-type robot and two B-type 

robots will give us maximum benefits, but adding only one A-type robot will not13); and (3) 

the system may not support extra robots (e.g., a centralized robotic system) and therefore the 

FO is a constant. Ignoring the additional constraints from the specific system, the FO can be 

similarly defined as: 

( )

( ) ITOTFT

FTITOTFT
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+++

=
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=

≠
=

1

1

, 

which implies that, when we have free time to control more robots, we spend our effort in 

controlling a subset of robots rather than an individual robot. This subset of robots is the 

pattern of robots (PR) that a human can control to reach satisfied effectiveness. The pattern is 

a function of interaction scheme π, task T, and world complexity C, i.e., PR = f(π,T,C). 

5.1.2 Interaction episode 

In the previous section, we assumed that the operator focuses on an individual robot. Indeed, 

all of the time-based parameters, which include NT, IT, FT, and OT, are defined with respect 

to an individual robot. For a team of robots, however, it is possible for the operator to acquire 

team awareness and then issue a team command to control several robots at the same time. 

For example, the operator can issue an attack command to a robot team when playing a 

capture-the-flag game with RoboFlag [85]. In these situations, we need to investigate 

                                                 

13 For example, when a robot team of N communicators and M searchers is in a saturated state, adding one 
search robot will be useless because it will have no communication support. However, adding a communicator 
and a searcher at the same time might be helpful. 
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performance from the perspective of the robot team rather than from that of an individual 

member. Thus, we introduce the concept of the interaction episode (IEP).  

An IEP is the period of time during which the operator interacts with the robotic 

system—which may be a team or one or more individual robots—to pursue a sub-task. For a 

simple cooperation situation, IEP is the ITT = ∑(FT+OT) + IT mentioned above. However, 

IEP allows us to address more complex and general situations. Consider the example of two 

robots (e.g., one transporter and one lifter) that must cooperate to move an object. The IEP 

includes moving the transporter to the lifter, loading the object onto the transporter, and 

moving the transporter to the destination. That is, IEP = ITtrans
move1 + FTtrans + ITlift + FTlift + 

ITtrans
move2, which includes two different ITs for the single transporter. When a robot is used in 

a search task to navigate and perceive a local region, the IEP will be IEP = ITmove + FTmove + 

ITcamera + FTcamera.  

In Crandall and Goodrich’s evaluation [19], an IT includes at least four components: sub-

task selection, context acquisition, solution planning, and expression of robot directives. In 

IEP, in addition to these four components, there is an evaluation component in which the 

operator evaluates whether he is able to move to the next interaction episode with a satisfied 

performance level. Once the operator satisfies the performance level, he moves to the next 

interaction episode and ignores (neglects) the current one. Otherwise, the operator adjusts the 

current IEP by applying more ITs and FTs. Hence, IEP can be defined more precisely as the 

period of time in which the operator interacts with the robotic system to achieve the satisfied 

performance level for a sub-task while paying attention to a subset of the system under the 

same context. The final outcome of an IEP is always improved performance if a correct 

evaluation has occurred. However, at some points in the IEP, the performance may be worse 
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because of issues such as conflict and sacrifice. The evaluation component plays a very 

important role in multi-robot control during complex tasks because it requires a high level of 

SA as well as a high mental demand and because it significantly impacts effectiveness. The 

linear relationship between the number of switches and the number of found victims in our 

pilot experiment reflects the impact of evaluation in robot control. Prompt and correct 

evaluation leads to shorter IEPs (more switches) and therefore more found victims. 

There are two main patterns in IEP. The first is the action pattern (PA), which can be 

represented as ∑(w*A), where w is the weight and A is the action. This pattern reveals the 

action scheme for the given task, world, and robotic system. The second is the pattern of 

robots, which can be represented as PR = ∑(w*R), where w is the weight and R is a type of 

robot. Finding PR is important in improving HRI in MRS. Although system and task analysis 

can guide us in deciding PR, we still need to verify it when the human operator intervenes. On 

the other hand, PR can help us to construct the robot team. For example, for a team of N 

communication robots and M search robots, we need to know what the best combination of N 

and M is for a human operator who controls the team. 

 
Figure 35. Reachability and serial problem decomposition (copied from [6]). 

 110 



An IEP is a heuristic decomposition that is very similar to the serial problem 

decomposition14 (Figure 35) described in [6]. Here, however, the decomposition is performed 

from the human’s perspective, which in turn is based on the human’s perception, prediction, 

trust and other related affective issues, and the given interaction scheme. This may be an 

approximate decomposition that has a weak correlation with other components. For instance, 

in the N communicators and M searchers example, an IEP may be a dedicated search that 

ignores all the communicators. 

 
IEP

NT(FTT)

Time 

Effectiveness 

… 

IT FT IT FT

…

 
Figure 36. An example of IEP of a strong cooperative system. 

 
(IEP,NT)*

Time 

Effectiveness 

… 

IEP1 FT1

… 

IEP2 FT2

…

IEPM FTM

 

Figure 37. An example of IEPs of a weak cooperative system. 

For a strong cooperation system, only one type of IEP exists because one IEP includes all 

the required cooperation actions. We can use a similar equation of IT and NT to evaluate HRI 

via using IEP as the count unit (Figure 36). For example, FO = (IEP+NT)/IEP; RAD = 

IEP/(IEP+NT). If we decompose IEP into a series of ITs and FTs, then we are able to 

compute cooperation demand and cooperation effort, which were introduced in the previous 
                                                 

14 For the N people and M robots problem, parallel decomposition will be involved. 
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section. However, this interaction is very general and can be either an individual robot or a 

robot team control. 

For weak cooperation problems, as shown in the previous example, multiple types of IEP 

exist. The distribution of the IEPs, that is, , reveals the weak cooperation. 

The NType is the number of types, and wi is the correlation weight that measures the 

correlation among the sub-teams’ sub-tasks. By treating ∑(w(IEP,NT)) as an (IEP,NT)*, we 

are able to apply the approach used in strong cooperation settings to evaluate HRI (

((∑
=

TypeN

i
iii NTIEPwm

1
, ))

Figure 37). 

Here, however, there is no obvious NT* that allows us to compute the metrics. Because of the 

dependent nature of the task, each NT theoretically will be affected by the previous control 

interactions. In terms of the IEPs, the heuristic task decomposition makes these (IEPi,NTi)s 

weakly dependent on each other such that the order of (IEPi,NTi) has no significant impact to 

the overall performance. Therefore, we can simply treat NT* as the mean of NTs15, i.e. 
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15 The NTs may overlap with each other. They should roughly equal each other within one (IEP,NT)*. 
Therefore, we use the mean value here. 
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where FO is the number of cooperating control systems that one operator can simultaneously 

maintain. If this system involves controlling m robots, then the maximum number of robots an 

operator is able to simultaneously control is mFO.  

Furthermore, for a particular (IEP,NT) that comprises ITs and FTs, we can compute the 

CD with respect to a control action (corresponding to an IT) to measure the cooperation 

demand among the control actions for a type of IEP. 

5.1.3 The measurement 

The same type (IEP,NT) may have different time durations in IT and NT, so we need to 

use the mean in computation. In summary, we define 

( jIEPMeanIEP = ) , where the sample is the population of a type of IEP, 

( jNTMeanNT = ) , where the sample is the population of a type of IEP, and 

( ) (( )∑
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=
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* ,, ) , where NType is the number of types, 

where wi is the weight that can have the following definitions. 
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Assuming the whole control process is , where ni is the number of 

type-i (IEP,NT): 

((∑
=
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i
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, ))

Def1: wi is the integer that makes m*wi=ni with the maximum integer m for types of IEP. 

Def2: 
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Figure 38. Distribution of (IT,FT) 

In the more general case, requirements for cooperation can be relaxed to allow the 

operator to choose which subteams of robots will be operated in a cooperative manner as well 

as which robot will be operated next. To accommodate this case, the Neglect Tolerance model 

must be further extended to measure coordination between different robot types. 

We describe this form of heterogeneous MRS as a MN system with M robots that belong 

to N robot types. For robot type i, there are mi robots, that is, . Thus, we can denote 

a robot in this system as Rij , where i = [1,N], j = [1,mi]. If we assume that the operator serially 

controls the robots for time T and that each robot Rij is interacted with lij times, then we can 

represent each interaction as ITijk, where i = [1,N], j = [1,mi], k = [1,lij], and the following free 

time as FTijk, where i = [1,N], j = [1,mi], k = [1,lij]. The total control time Ti for type i robot 
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should then be ( )∑ +=
kj

ijkijki FTITT
,

. Because robots that are of the same robot type are 

identical, and substitution may cause uneven demand, we are only interested in measuring the 

average coordination demand CDi, i=[1,N]. 

Given identical robots Rij, j=[1,mi], there are OTi
* and NTi

* such that for each robot Rij we 

have *
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If we assume all the other types of robots are dependent with the current type of robots, 

then the numerator is the total interaction time of all the other types of robots, i.e.,  
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For the denominator, it is difficult to directly measure NTi
* because the system 

performance depends on multiple types of robots and because an individual robot may 

cooperate with different team members over time. Because of this dependency, we cannot use 

an individual robot’s active time to approximate NT. On the other hand, the robots may be 

unevenly controlled. For example, a robot might be controlled only once and then ignored 

because there is another identical robot that is available, which means that we cannot simply 

use the time interval between two interactions of an individual robot as NT. Considering all of 

the robots that belong to a robot type, the distribution of (IT,FT)s reveals the NT for a type of 

robot. Figure 38 shows an example of an (IT,FT) distribution. When each robot is evenly 
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controlled, (ITi,NTi)* should be mi * (ITi,FTi) where (ITi,FTi) is the average (IT,FT) for type i 

robot, ( )
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Thus, the denominator in CDi can be calculated as: 
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where is the total interaction time for all the type i robots. ∑
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5.1.4 Maximum effectiveness 
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Intercept 
Slope IEP NT

 
Figure 39. Intercept and slope in the trend line represented as an effectiveness curve. 
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Figure 40. The minimum required HRI effort in multi-robot control. 

As an application of the interaction episode methodology, in this section we discuss 

maximum effectiveness instead of satisfied effectiveness. In Figure 34, we show the 

individual robot’s effectiveness with respect to the task. In Figure 39, we show the sub-team’s 

effectiveness with respect to the task. When multiple individuals or sub-teams work on the 

same task, the team performance will be the “sum” of the individuals’ or sub-teams’ 

performances. The red line in Figure 40 shows the maximum possible effectiveness if the 

operator dedicates attention to one particular sub-team. When the operator sacrifices 

interaction time to control other sub-teams, the benefit from the extra HRI should be greater 

than the lost performance (represented by the red area in Figure 40) and will benefit the task 

overall. Figure 41 shows the four basic effectiveness curves where II/GI indicates an 

immediate/gradual increase in IT and ID/GD indicates an immediate/gradual decrease in NT. 
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A Type A curve gives the same performance in dedicated single-robot control and multi-robot 

control. A Type B curve gives worse performance in multi-robot control. A Type C curve 

always gives better performance in multi-robot control. A Type D curve, when the sacrifice 

(represented by the red area) is smaller than the benefit (represented by the green area), gives 

better performance in multi-robot control. In general, quick performance increments in IT and 

slow performance decrements in NT will benefit us in multi-robot control. From the 

effectiveness curve, we can calculate the critical interaction frequency when multi-robot 

control is better than single-robot control: 

 IT NT IT NT

IT NT IT NT
A) IIID B) GIID

C) IIGD D) GIGD  

Figure 41. Four basic effectiveness curves. 

Js(π,C,ton) > ( Js(π,C,ton+toff) - (Js(π,C,ton)+JN(π,C,toff,ton))) assumes a linear relationship 

in performance overlap, where Js(π,C,t) is the serving performance, where π is the interaction 

scheme, C denotes the world complexity, and t measures the interaction time; JN(π,C,t1,t2) is 

the neglect performance that occurs after previously interaction for t2 and then neglects for t1 

duration; ton is the time spent on-task; and toff is the time spent off-task. 

In general, given (1) the interaction function fI(π,C,t,f0)16, (2) the neglect function 

fN(π,C,t,f0)17, (3) the relaxation level (i.e., the free time occupation rate needed by the 

                                                 

16 f0 is the initial performance before interaction with the robotic system. 
17 f0 is the initial performance before neglect of the robotic system. 

 118 



operator to maintain a level of comfort), and (4) the sequential control style (i.e., no overlap in 

IT), we can compute the number of robots (or sub-teams, if we replace individual robot 

control with IEP) that the operator needs to control in order to maintain maximum 

effectiveness. If we assume that performance increase and decrease is irrelevant to the initial 

performance, and that the relationship in performance operation is linear, the problem can be 

simplified as shown in Figure 42: 
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Figure 42. n robots control. 

( )( ) ( )( )([{ IIDII ttnftnfnMax )]}ααα ++−−+ 111 , where fI(t) is the performance increase 

function, fD(t) is the performance decrease function, α is the relaxation level that stands for 

free time = α* interaction time, and n is the number of robots or sub-teams. When n=1 and 

α=0, we find fI(tI), which means that achieving maximum effectiveness in single-robot control 

requires consistent control (tI=∞). When α=0, fI(t)=fD(t) (the Type A effectiveness curve) and 

fI(a+b)=fI(a)+fI(b), we find n*fI(tI), which means either tI=∞ or n=∞ will yield maximum 

effectiveness. This case corresponds to teleoperating multiple robots: tI=∞ means consistently 

controlling a robot to reach maximum effectiveness, and n=∞ means that, when spending 

limited time on a robot, achieving maximum effectives requires shifting to another robot 

 119 



immediately if we are not able to control the first robot. For the Type A effectiveness curve, 

this is identical to consistently controlling one robot. 

5.2 TIGHT COOPERATION EXPERIMENT 

One of the main potential contributions of the proposed methodology is that we are able to 

use neglect tolerance to study dependent tasks that require cooperating robots. Cooperation 

demand (CD) and team attention demand (TAD) are the metrics that measure how tightly the 

coordination must be for a task, given a robotic system. Since there is no well-defined and 

accepted definition of CD and TAD, this experiment implicitly validates our definitions of 

CD and TAD via comparison (i.e., the change of the measured CDs). TADs should hold the 

correct trend under different conditions.  

5.2.1 Experiment design 

In this experiment, we investigated CD and TAD by comparing performance across three 

conditions selected to differ substantially in their coordination demands. We selected box 

pushing, a typical cooperative task that requires the robots to coordinate. When an operator 

teleoperates the robots one by one to push the box forward, he must continuously interact with 

one of the robots because neglecting both would immediately stop the movement of the box. 

Because the task allows no free time (FT) we expect CD to be 1. However, when the user is 

able to issue waypoints to both robots, the operator may have FT before he must coordinate 

these robots again because the robots can be instructed to move simultaneously.  In this case 
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CD should be less than 1.  Intermediate levels of CD can be found in comparing the control of 

homogeneous robots with that of heterogeneous robots. A higher CD can be found in the 

heterogeneous group since the unbalanced pushes from the robots would require more 

frequent coordination.  

 

Figure 43.  Box pushing task 

Figure 43 shows our experiment setting simulated in USARSim. The controlled robots 

were either two Pioneer P2AT robots or one Pioneer P2AT robot and one Pioneer P2DX 

robot.  Each robot was equipped with a GPS, a laser scanner, and an RFID reader. On the box, 

we mounted two RFID tags to enable the robots to sense the box’s position and orientation. 

When one of the robots pushes the box, both the box’s and the robot’s orientation and speed 

will change. Furthermore, because of irregularities in initial conditions and in the accuracy of 

the physical simulation, the robot and the box are unlikely to move precisely as the operator 

expected. In addition, delays in receiving sensor data and executing commands were modeled, 

presenting participants with a problem very similar to coordinating physical robots. 

We introduced a simple matching task as a secondary task in order to estimate the FT 

available to the operator. Participants were asked to perform this secondary task as often as 

 121 



possible when they were not occupied with controlling a robot.  Every operator action and 

periodic timestamped sample of the box’s moving speed were recorded for computing CD. In 

this experiment, the CD for the left and right robots was calculated as CDL = ITR/(T-ITL); 

CDR = ITL/(T-ITR), respectively, where T is the total control time and ITL, ITR are the total 

interaction times of the left and right robots. 

A within-subject design was used to control for individual differences in operators’ 

control skills and abilities to use the interface.  To avoid biasing the CD comparison because 

of abnormal control behavior, such as a robot bypassing the box, we added safeguards to the 

control system to stop the robot when it tilted the box. 

 

Figure 44. GUI for box pushing 
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The operator controlled the robots using the distributed multi-robot control system 

(MrCS) shown in Figure 44. On the left and right sides are the teleoperation widgets that 

control the left and right robots separately. At the bottom center of the screen is a map-based 

control panel that allows the user to monitor the robots and issue waypoint commands on the 

map. In the bottom right corner is the secondary task window where the participants were 

asked to perform the matching task when possible. 

5.2.2 Participants 

Fourteen paid participants who ranged from 18 to 57 years old were recruited from the 

University of Pittsburgh community. None had prior experience with robot control although 

most were frequent computer users. The participants’ demographic information and 

experience are summarized in Table 5. 

Table 5. Sample demographics and experiences. 

 
Age Gender Education 

18~35 >35 Male Female Currently/Complete 
Undergraduate 

Currently /Complete
Graduate 

Participants 11 3 11 3 2 12 

 Computer Usage (hours/week) Game Playing (hours/week) 
<1 1-5 5-10 >10 <1 1-5 5-10 >10 

Participants 0 1 2 11 8 4 2 0 

 Mouse Usage for Game Playing 
Frequently Occasionally Never 

Participants 9 4 1 

5.2.3 Procedure 

The experiment started with collection of the participant’s demographic data and computer 

experience. The participant then read standard instructions on how to control robots using the 

MrCS. In the following eight-minute training session, the participant practiced each control 
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operation and tried to push the box forward under the guidance of the experimenter. 

Participants then performed three testing sessions in counterbalanced order. In the first two 

sessions, the participants controlled two P2AT robots using teleoperation alone or a mixture 

of teleoperation and waypoint control. In the third session, the participants were asked to 

control heterogeneous robots (one P2AT and one P2DX) using a mixture of teleoperation and 

waypoint control. The participants were allowed eight minutes to push the box to the 

destination in each session. At the conclusion of the experiment participants completed a 

questionnaire about their experiences. 

5.2.4 Results 

 

Figure 45. The time distribution and effectiveness curves for teleoperation (upper) and waypoint control 

(middle) for homogeneous robots and waypoint control (bottom) for heterogeneous robots 

Figure 45 shows a time distribution of robot control commands recorded in the experiment. 

As we expected, no free time was recorded for robots in the teleoperation condition. The 
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longest free times were found in controlling homogeneous robots with waypoints. The box 

speed shown in Figure 45 is the moving speed along the hallway that reflects the interaction 

effectiveness (IE) of the control mode. The IE curves in this picture show the delay effect and 

the frequent bumping that occurred in controlling heterogeneous robots revealing the poorest 

cooperation performance.   
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Figure 46. Team task demand (TAD) and Cooperation demand (CD) 

None of the 14 participants was able to perform the secondary task while teleoperating 

the robots. Hence, we uniformly find TAD=1 and CD=1 for both robots under this condition. 

Within-participant comparison found that under waypoint control the team attention demand 

in heterogeneous robots is significantly higher than the demand in controlling homogeneous 

robots, t(13)=2.213, p=0.045 (Figure 46). No significant differences were found between the 

homogeneous P2AT robots in terms of the individual cooperation demand (P=0.2). Since the 

robots are identical, we compared the average CD of the left and right robots18 with the CDs 

measured under heterogeneous condition. A two-tailed t-test shows that when a participant 

controlled a P2AT robot, a lower CD was required in the homogeneous condition than that in 

                                                 

18 The CD of homogeneous robots refers to the average individual CD of the robot group.  
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the heterogeneous condition, t(13)=-2.365, p=0.034. The CD required in controlling the 

P2DX in the heterogeneous condition is marginally higher than the CD required in controlling 

homogenous P2ATs, t(13)=-1.868, p=0.084 (Figure 46). Surprisingly, no significant 

difference was found in CDs between controlling P2AT and P2DX in the heterogeneous 

condition (p=0.79). This can be explained by three observed robot control strategies: (1) the 

participant always issued new waypoints to both robots when adjusting the box’s movement; 

therefore, similar CDs were found between the robots; (2) the participant tried to give short 

paths to the faster robot (P2DX) to balance the different speeds of the two robots; therefore, 

we found a higher CD in P2AT; and (3) the participant gave the same length paths to both 

robots and the slower robot needed more interactions because it tended to lag behind the faster 

robot; therefore, we found a lower CD for the P2AT. Among the 14 participants, five of them 

(36%) showed a higher CD for the P2DX, contrary to our expectations. 

5.2.5 Discussion 

Although we expected a uniformly higher CD for the P2AT robot in the heterogeneous 

condition, three exceptions were found in the experiment. The first exception occurred for a 

participant who commented on having problems in using the control interface.  This was 

confirmed by the recorded irregular time distribution (Figure 47). The close CDs (0.23 and 

0.22 for the P2AT robot in the homogeneous and heterogeneous conditions, respectively) 

demonstrate that the participant’s lack of operational skill overwhelmed the impact of the task 

and the robotic system. In the second exception, we observed that an abnormally long time 

(41.25 sec) in controlling homogeneous P2ATs was spent in figuring out and recovering from 

a mistake.  Because of the short task completion time (380 sec), this mistake led to a relatively 
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high CD. The last exception occurred when the participant changed his control strategy, 

specifically the satisfying level of performance, between the homogeneous and heterogeneous 

conditions. While controlling the homogeneous robots, she paid more attention to keeping the 

box in the center of the hallway and made many more adjustments to the robots, which led to 

a total lateral offset of 0.28 meters. However, in the following heterogeneous robots trial, she 

lowered her criteria for accuracy and finished this session with a total lateral offset of 0.54 

meter (Figure 48). The higher CD for homogeneous robots (0.17 and 0.11 under 

homogeneous and heterogeneous conditions, respectively) reflects the impact of this change 

in criteria. 

-0.02

0.03

0.08

0.13

0.18

0 100 200 300 400 500 600

IE B1 B2 FT

-0.02
0.03
0.08
0.13
0.18

0 100 200 300 400 500 600

Box Speed Time Occupation of Robot1
Time Occupation of robot2 Free Time

 

Figure 47. Exception I: Homogeneous (upper) and heterogeneous (bottom) robots control 
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Figure 48. Exception III: Different satisfying levels 

This experiment demonstrates that, as a generic HRI metric in a tight cooperation 

situation, CD is able to account for the various factors that affect HRI and can be used in HRI 

evaluation and analysis. Although only 14 participants were involved in this experiment, 

using measured CDs, we were able to quickly identify three aberrant robot control modes. On 

the other hand, the generality of the measure required us to design the experiment carefully to 

control target factors. As demonstrated in this experiment, individual differences can easily 

overwhelm other factors at control tasks of this sort, making within-subject comparisons 

desirable for smaller samples. 

5.3 WEAK COOPERATION EXPERIMENT 

Most MRS research has investigated homogeneous robot teams where additional robots 

provide redundant (independent) capabilities. Differences in capabilities such as mobility or 
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payload, however, may lead to more advantageous opportunities for cooperation among 

heterogeneous robots. These differences in roles and other characteristics affecting IT, NT, 

and OT introduce additional complexity to assessing CD. To test the usefulness of the CD 

measurement for a weakly cooperative MRS, we conducted an experiment to assess CD using 

an USAR task requiring high human involvement [75] and a level of complexity suitable to 

exercise heterogeneous robot control.  In the experiment, participants were asked to control 

explorer robots equipped with a laser range finder but no camera and inspector robots 

equipped with only cameras.  Finding and marking a victim on the map required using the 

inspector’s camera to find a victim that could then be marked on the map generated by the 

explorer.  The capability of the robots and the cooperation autonomy level were used to adjust 

the CD of the task. 

5.3.1 Experiment design 

The experiment was conducted in USARSim with MrCS. Three simulated Pioneer P2AT 

robots and three Zergs [5], a type of small experimental robot, were used. Each P2AT was 

equipped with a front laser scanner with a 180-degree FOV and a resolution of one degree. 

The Zerg was mounted with a pan-tilt camera with a 45-degree FOV. The robots were capable 

of localization and able to communicate with other robots and the control station. The P2AT 

served as an explorer to build the map while the Zerg could be used as an inspector to find 

victims using its camera. To accomplish the task, the participant must coordinate these two 

types of robots to ensure that when an inspector robot finds a victim, it is within a region 

mapped by an explorer robot so the position can be marked. 
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Figure 49. The robots and the environment 

 

Figure 50. The GUI 
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Three conditions were designed to vary the coordination demand on the operator. Under 

the first condition, the explorer had a 20-meter detection range, allowing inspector robots 

considerable latitude in their search.  Under the second condition, the scanner range was 

reduced to five meters requiring closer proximity to keep the inspector within mapped areas. 

Under the third condition, the explorer and inspector robots were paired as sub-teams in 

which the explorer robot with a sensor range of five meters followed its inspector robot to 

map areas being searched.  We hypothesized that CDs for explorer and inspector robots 

would be more evenly distributed under the second condition (short-range sensor) because 

explorers would need to move more frequently in response to inspectors’ searches than in the 

first condition in which the CD should be more asymmetric with explorers exerting greater 

demand on inspectors. We also hypothesized that a lower CD would lead to higher team 

performance. Three equivalent damaged buildings were constructed from the same elements 

using different layouts. Each environment was a maze-like building with obstacles, such as 

chairs, desks, cabinets, and bricks with ten evenly distributed victims.  A fourth environment 

was constructed for training. Figure 49 shows the simulated robots and environment.  

A within-subject design with counter-balanced presentation was used to compare the 

cooperative performance across the three conditions. The same control interface shown in 

Figure 50which allowed participants to control robots through waypoints or teleoperation was 

used in all conditions. 

5.3.2 Participants 

Nineteen paid participants, ranging from 19 to 33 years of age, were recruited from the 

University of Pittsburgh community. None had prior experience with robot control, although 
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most were frequent computer users. Six of the participants (31.5%) reported playing computer 

games for more than one hour per week. The participants’ demographic information and 

experience are summarized in Table 6. 

Table 6. Sample demographics and experiences. 

 
Age Gender Education 

19~29 30~33 Male Female Currently/Complete 
Undergraduate 

Currently /Complete
Graduate 

Participants 18 1 7 12 11 8 

 Computer Usage (hours/week) Game Playing (hours/week) 
<1 1-5 5-10 >10 <1 1-5 5-10 >10 

Participants 0 1 5 13 13 4 1 1 

 Mouse Usage for Game Playing 
Frequently Occasionally Never 

Participants 14 2 3 

5.3.3 Procedure 

After collecting demographic data the participant read standard instructions on how to control 

robots via MrCS. In the following 15- to 20-minute training session, the participant practiced 

each control operation and tried to find at least one victim in the training arena under the 

guidance of the experimenter. Participants then began three testing sessions in counter-

balanced order with each session lasting 15 minutes. At the conclusion of the experiment, 

participants completed a questionnaire about their experiences.  

5.3.4 Results 

Overall performance was measured by the number of victims found, the explored areas, and 

the participants’ self-assessments. To examine cooperative behavior in finer detail, CDs were 

computed from logged data for each type of robot under the three conditions. We compared 

the measured CDs between the first condition (20-meter sensing range) and the second 
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condition (5-meter sensing range) as well as between the second and third conditions (sub-

teams). To further analyze the cooperation behaviors, we evaluated the total attention demand 

in robot control and control action pattern. Finally, we introduce control episodes to show 

how CDs can be used to identify and diagnose abnormal control behaviors. 

5.3.4.1 Overall performance 
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Figure 51. Found victims (left) and explored areas (right) by mode 

Examination of the data showed that two participants failed to perform the task satisfactorily.  

One commented during debriefing that she thought she was supposed to mark inspector robots 

rather than victims.  After removing these participants a paired t-test shows that in the first 

condition (20-meter range scanner) participants explored more regions, t(16) = 3.097, p = 

0.007, as well as found more victims, t(16) = 3.364, p = 0.004, than under the second 

condition (short-range scanner) (Figure 51).  In the third condition (automated subteam) 

participants found marginally more victims, t(16) = 1.944, p = 0.07, than in the second 

condition (controlled cooperation) but no difference was found for the extent of regions 

explored (Figure 51). 

In the posttest survey, 12 of the 19 (63%) participants reported they were able to control 

the robots although they had problems in handling some interface components. Six of the 19 
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(32%) participants thought they used the interface very well. Only one participant reported it 

being hard to handle all the components on the user interface, but still maintained she was 

able to control the robots.  Most participants (74%) thought it was easier to coordinate 

inspectors with explorers with long range scanner. Twelve of the 19 (63%) participants rated 

auto-cooperation between inspector and explorer robots (the sub-team condition) as 

improving their performance, and five (26%) participants thought auto-cooperation made no 

difference. Only two (11%) participants judged team autonomy to make things worse. 

5.3.4.2 Coordination effort 
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Figure 52. Typical (IT,FT) distribution (higher line indicates the interactions of explorers). 

During the experiment we logged all the control operations with time-stamps. From the log 

file CDs were computed for each type robot according to the equation in section 5.1.3. Figure 

52 shows a typical (IT,FT) distribution under the first condition (20-meter sensing range)  in 

the experiment with a calculated CD of 0.185 for the explorer and of 0.06 for the inspector. 

The low CDs reflect that, in trying to control six robots, the participant ignored some robots 

while attending to others. The CD for explorers is roughly twice the CD for inspectors. After 
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the participant controlled an explorer, he needed to control an inspector multiple times or 

multiple inspectors since the explorer has a long detection range and large FOV. In contrast, 

after controlling an inspector, the participant needed less effort to coordinate explorers.  

Figure 53 shows the mean of measured CDs. We predicted that when the explorer has a 

longer detection range, operators need to control the inspectors more frequently to cover the 

mapped area. Therefore a longer detection range should lead to higher CD for explorers. This 

was confirmed by a two-tailed t-test that found a higher CD, t(18) = 2.476, p = 0.023, when 

participants controlled explorers with large (20-meter) sensing range.  
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Figure 53. CDs for each robot type 

We did not find a corresponding difference, t(18)=.149, p=0.884, between long- and 

short-range conditions for the CD for inspectors. This may have occurred because under these 

two conditions the inspectors have exactly the same capabilities and the difference in explorer 

detection range was not large enough to impact inspectors’ CD for explorers. Under the 

subteam condition, the automatic cooperation within a subteam decreased or eliminated the 

coordination requirement when a participant controlled an inspector. Within-participant 

comparisons show that the measured CD of inspectors under this condition is significantly 

lower than the CD under the second condition (independent control with a five-meter 
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detection range), t(18) = 6.957, p < 0.001. Because the explorer always tries to automatically 

follow an inspector, we do not report CD of explorers in this condition.  

As auxiliary parameters, we evaluated the total attention demand, which is the 

occupation rate of total interaction time in the whole control period, and the action pattern, 

which is the ratio of control times between inspector and explorer.  Total attention demand 

measures the team task demand, that is, the difficulty of the task. A paired t-test shows that, 

under long-sensing conditions, participants spent more time controlling robots than under the 

short-sensing condition, t(18)=2.059, p=0.054. This is opposite to our hypothesis that 

searching for victims using a shorter-sensing range should be more difficult because the robot 

would need to be controlled more often.  Noting that the hypothesis was based on the number 

of times a robot was controlled rather than the time spent controlling a robot, we examined the 

number of control episodes.  Under long- and short-sensing range conditions, two-tailed t-

tests found that participants controlled explorers more often with short-sensing explorers, 

t(18)=2.464, p=.024 with no differences found in frequency of inspector control, p=.97.  We 

believe that with longer-sensing explorers, participants tend to issue longer paths in order to 

build larger maps.  Because the sensing range in the first condition is five times longer than 

the range in the second condition, the increased control time under the long-sensing condition 

may overwhelm the increased explorer control times. Thus, we found a higher total attention 

demand under the first condition. This is partially confirmed by a paired t-test that found 

longer average-control-time for explorers and inspectors under the long detection condition, 

t(18)=3.139, p=.006 and t(18)=2.244, p=.038, respectively.  On average participants spent 

1.5s and 1.0s more time in explorer and inspector control in the long-range condition.  The 

mean action patterns under long and short-range scanner conditions were 2.31 and 1.9, 
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respectively. This means that, with 20- and 5-meter scanning ranges, participants controlled 

inspectors 2.31 and 1.9 times, respectively, after an explorer interaction. Within-participant 

comparisons show that the ratio is significantly larger under long-sensing condition than 

under short-range scanner condition, t(18) = 2.193, p = 0.042. 

5.3.4.3 Analyzing Performance 
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Figure 54 Found victims distribution over CDexp and TAD (total attention demand). 

As an example of applying CDs to analyze coordination behavior, Figure 54 shows the 

performance over explorer CD and total attention demand under the 20-meter sensing range 

condition. We use the number of found victims, which is represented as the size of a bubble in 

the figure, to measure the overall performance. Figure 54 shows that when the participants 

ignored a particular explorer robot, most of them spent 13~25% of the neglect time in 

coordinating inspector robots, and the total time spent in controlling all the robots is 35~70% 

of the total task time. Character B and C marked in Figure 54 indicates two abnormal cases in 
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which both the CD of explorer robot and the total attention demand are relatively low (less 

than 10% and 30% respectively), and the participants found only 3 or 4 victims. The total 

attention demand of case A marked in Figure 54 is within the range of 35~70%, however it is 

marginally abnormal because of the low CD of explorer robot and the small number of found 

victims. Although analyzing other cases, such as bad performance cases, may be interesting as 

well, here we only pick up case B, C and A to do the detailed performance analysis.  

Table 7. Map snapshots of abnormal control behaviors 

 5 minutes snapshot 10 minutes snapshot 15 minutes snapshot 

A 

 the robot on the center of
the map was stuck 

B 

 
the two robots on the upper
map were never controlled
since then 

  

C 

 
the two robots on the upper
left corner were totally
ignored 
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Associating these cases with recorded map snapshots, we observed that in case A, one 

robot was entangled by a desk and stuck after five minutes; in case B, two robots were 

controlled in the first five minutes and afterwards ignored; and in case C, the participant 

ignored two inspectors throughout the entire trial (Table 7). Comparing with case B and C, in 

case A only one robot didn’t function properly after five minutes. This explains our 

observation in Figure 54 that A is closer to the normal cases than B and C.  

5.3.5 Discussion 

We proposed an extended Neglect Tolerance model to allow us to evaluate cooperation effort 

in applications where an operator must coordinate multiple robots to perform dependent tasks. 

The previous experiment validated CD measurement for an extended model under tight 

cooperation, such as box pushing.   However, most target applications such as construction or 

search and rescue are likely to require weaker cooperation among heterogeneous platforms.  

The present experiment validated our NT extension under such weak cooperation conditions.   

Upon initial examination, our findings on CD for sensor ranges may seem counter-intuitive 

because inspectors would be expected to exert greater CD on explorers with short sensor 

range.  Our data show, however, that this effect is not substantial and provide an argument for 

focused metrics like this that measure constituents of the human-robot system directly.  

Moreover, this experiment also shows how CD can be used to guide us identify and analyzing 

aberrant control behaviors. 

 We anticipated a correlation between found victims and the measured CDs. However, 

we did not find the expected relationship in this experiment. From observation of participants 

during the experiment we believe that high-level strategies, such as choosing areas to be 
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searched and planning paths, have significant impact on the overall performance. The 

participants had few problems in learning to jointly control explorers and inspectors but they 

needed time to figure out effective strategies for performing the task.  Because CD measures 

control behaviors rather than strategies, these effects were not captured. On the other hand, 

because the NT methodology is domain- and task-independent, our CD measurement could be 

used to characterize any dependent system.  For use in performance analysis, however, it must 

be associated with additional domain- and task-dependent information. As shown in our 

examples, combined with generated maps and traces, CD provides an excellent diagnostic 

tool for examining performance in detail. 

In the present experiment, we examined the action pattern under long- and short-sensing 

range conditions. The results reveal that it can be used as an evaluation parameter and, more 

importantly, it may guide us in the design of multi-robot systems. For instance, the 

observation that one explorer control action was followed on average by two inspector control 

actions may imply that the MRS should be constructed by n explorers and 2n inspectors.  
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6.0  CONCLUSIONS AND FUTURE WORK 

Advances in robotic technologies and artificial intelligence allow robots to emerge from 

research laboratories into our everyday lives. However, experience in field applications such 

as homeland security, search and rescue, health care, personal assistance, and entertainment 

show that we have underestimated the importance of human-robot interaction (HRI) and that 

new problems arise in HRI as robotic technologies expand. This thesis classifies HRI along 

four dimensions—human, robot, task, and world—and illustrates that previous HRI 

classifications can be successfully interpreted as one of these elements or as the relationship 

between two or more of these elements. This perspective was used to review current HRI 

studies of single-operator single-robot (SOSR) control and single-operator multiple-robots 

(SOMR) control. 

Human control of multiple robots has been suggested as a way to improve effectiveness 

in robot control. However, multiple robots substantially increase the complexity of the 

operator’s task because attention must be continually shifted among robots, and human 

supervision will be needed to supply the perhaps changing goals that direct multirobot system 

activity. In addition, humans are likely to be called upon to assist with a variety of low-level 

problems such as sensor failures or obstacles that robots cannot solve on their own. One 

approach to increasing human capacity for control is to allow robots to cooperate, reducing 

the need to control them independently. Unlike the previous studies that investigate human-
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robot interaction either in low-fidelity simulations or for simple tasks, this thesis studies 

human interaction with cooperating robot teams within a realistically complex environment.  

USARSim, a high-fidelity game engine-based robot simulator, and MrCS, a distributed 

multirobot control system, were developed to serve as an HMRI study testing bed. In the pilot 

experiment, we compared the control of small robot teams in which cooperating robots 

explored autonomously and were controlled independently by an operator or through mixed 

initiative as a cooperating team. Mixed-initiative teams found more victims and searched 

wider areas than either fully autonomous or manually controlled teams. Operators who 

switched attention between robots more frequently were found to perform better in both 

manual and mixed-initiative conditions. The control episode observed in this experiment 

reveals that, for a multi-robot system, decomposing the team goal into independent or weakly 

related sub-goals and allowing the human operator to intervene in the sub-goals are potential 

ways to improve and analyze human-multi-robot performance. 

To avoid limitations to particular application fields, the present thesis focuses on 

common HRI evaluations that enable us to analyze HRI effectiveness and guide HRI design 

independently of the robotic system or application domain. Theories based on Neglect 

Tolerance (NT) evaluate HRI in this way. This thesis introduces the interaction episode (IEP), 

which was inspired by our pilot human-multirobot control experiment, to extend NT to 

support general robot or multi-robot control for complex tasks. Cooperation Effort (CE), 

Cooperation Demand (CD), and Team Attention Demand (TAD) are defined to measure the 

cooperation in SOMR control. Other HRI metrics introduced in NT are extended as well. 

Finally, two experiments were conducted to validate the proposed NT model under tight and 

weak cooperation conditions, respectively. The results show that, as a generic HRI metric, CD 
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is able to account for the various factors that affect HRI and could be used in HRI evaluation 

and analysis. With the measured CD, we were able to quickly identify and analyze abnormal 

control behaviors under both experiments.   

6.1 FUTURE RESEARCH WORK 

The thesis proposed an extended Neglect Tolerance model that can be generally used to 

evaluate cooperation effort in applications where an operator must coordinate multiple robots 

to perform dependent tasks. The reported two experiments validated the CD and TAD 

measurements under tight and weak cooperation conditions. Fan-out (FO), which is the 

maximum number of robots that a single operator is capable of controlling, is another 

important index that measures the efficiency of the human-robot system. Previous studies [19, 

20, 22] examined FO for independent tasks. However, in some applications, such as 

construction or search and rescue, humans may be required to coordinate heterogeneous 

robots to perform a task. Finding the maximum number of robot groups an operator is able to 

control is an important yet difficult problem because of the cooperation constraints among the 

robots. With the extended NT model, this thesis proposes the FO measurement for dependent 

tasks. In the future, we could extend the FO measurement to weak cooperation conditions to 

help us find the robot pattern and the maximum number of robot patterns one operator can 

manipulate. A validation experiment, of course, will be needed.  

In the weak cooperation experiment, the time-based assessment showed higher 

coordination demand under a longer sensing condition. The control times evaluation reported 

more control times, which implies a higher coordination demand in the shorter sensing 
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condition. This difference illustrates how the measurement unit, control time, or control times 

may impact the HRI evaluation. Usually, the time-consuming operations such as teleoperation 

are suited to time-based assessment. In contrast, control times may provide more accurate 

evaluation to the one-time style operations such as command issuing. Modifying the NT 

model to suit control time-based evaluation should be an area for future work. 

In the pilot experiment, we found an inverted “U” relationship between performance and 

human interaction. Too much or too little human intervention led to poor human-robot 

performance. Furthermore, the flatness of the curve seems to reflect how sensitive the system 

is to human control. For example, our experiment shows that a mixed-initiative system was 

associated with a flatter curve, and it was indeed less sensitive to human interaction than the 

manually controlled system. Evaluating the performance and human intervention relationship 

can be another domain-independent HRI assessment methodology. It measures how the 

system tolerates variations in human interaction. A good system should be insensitive to 

human intervention, so it has fewer requirements in user training. Proposing and validating 

sensitivity metrics to measure the relationship between performance and human interaction 

can be another area for future research.  

Increasing the autonomy level in robotic systems is supposed to be able to reduce 

cognitive demand when a single operator controls multiple robots. The current work focuses 

on evaluating HRI for a single operator controlling a cooperating robot team. However, in 

terms of improving human-robot performance, previous robot teleoperation studies [9-11] in 

USAR shows that multiple operators can significantly improve the performance as well. For 

example, [10] reports that the performance of two operators is nine times better than one 

operator’s performance. Multiple operators controlling cooperating robot teams seems to be a 
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promising approach that allows us to pursue both effectiveness and efficiency. Our MrCS is a 

distributed system that can be easily extended to support multiple operators (human agents 

with a user interface). Applying our extended NT model to study the cooperation effort in 

multiple-operator multiple-robot control will be very interesting. It deserves more work in the 

future.  
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