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Abstract

Alexei A. Makarenko Doctor of Philosophy
The University of Sydney November 2004

A Decentralized Architecture for
Active Sensor Networks

This thesis is concerned with the Distributed Information Gathering (DIG) problem in which
a Sensor Network is tasked with building a common representation of environment. The
problem is motivated by the advantages offered by distributed autonomous sensing systems
and the challenges they present. The focus of this study is on Macro Sensor Networks,
characterized by platform mobility, heterogeneous teams, and long mission duration. The
system under consideration may consist of an arbitrary number of mobile autonomous
robots, stationary sensor platforms, and human operators, all linked in a network.

This work describes a comprehensive framework called Active Sensor Network (ASN) which
addresses the tasks of information fusion, decision making, system configuration, and user
interaction. The main design objectives are scalability with the number of robotic platforms,
maximum flexibility in implementation and deployment, and robustness to component and
communication failure. The framework is described from three complementary points of
view: architecture, algorithms, and implementation.

The main contribution of this thesis is the development of the ASN architecture. Its design
follows three guiding principles: decentralization, modularity, and locality of interactions.
These principles are applied to all aspects of the architecture and the framework in general.
To achieve flexibility, the design approach emphasizes interactions between components
rather than the definition of the components themselves. The architecture specifies a small
set of interfaces sufficient to implement a wide range of information gathering systems.

In the area of algorithms, this thesis builds on the earlier work on Decentralized Data
Fusion (DDF) and its extension to information-theoretic decision making. It presents the
Bayesian Decentralized Data Fusion (BDDF) algorithm formulated for environment features
represented by a general probability density function. Several specific representations are
also considered: Gaussian, discrete, and the Certainty Grid map. Well known algorithms for
these representations are shown to implement various aspects of the Bayesian framework.

As part of the ASN implementation, a practical indoor sensor network has been developed
and tested. Two series of experiments were conducted, utilizing two types of environment
representation: 1) point features with Gaussian position uncertainty and 2) Certainty Grid
maps. The network was operational for several days at a time, with individual platforms
coming on and off-line. On several occasions, the network consisted of 39 software com-
ponents. The lessons learned during the system’s development may be applicable to other
heterogeneous distributed systems with data-intensive algorithms.
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Chapter 1

Introduction

The aim of this thesis is to develop a software framework for scalable, autonomous, and

cooperative information gathering. Figure 1.1 illustrates the vision of a system which this

work tries to bring about. The figure shows a communication network formed by mobile

autonomous robots, stationary sensor platforms, and human operators. The environment

contains a spatially-distributed dynamic phenomenon which has to be measured, located,

mapped, or simply monitored. The system’s objective is to build a common representation of

the phenomenon. This task will be called the problem of Distributed Information Gathering

(DIG).

The term scalable implies that the desired solution must be able to deploy an arbitrary

number of platforms like the ones shown in the figure. The term autonomous here means

that the system should form a network automatically and easily adapt to the changing

environmental conditions. The term cooperative here means that, while able to function

independently, platforms have common objectives and work together to achieve them when

they can.

1.1 Motivation

The DIG vision statement paints a picture of a complicated system. To justify the devel-

opment effort, some of the stated objectives need to be motivated.

Why sense the environment? In many applications, decisions must be made which depend
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Figure 1.1: The vision of interacting autonomous sensing platforms gathering information
about the environment. The image is taken from one of the experiments described later in
the thesis. Although illustrated here with an indoor system, the concept is applicable to
outdoor applications as well.

on the current state of the environment. Environment information can only be obtained by

making observations. This applies to both human and robotic decisions. In many applica-

tions, the success depends on the accurate and timely information about the environment.

These include transportation, experimental science, intelligent spaces, military and secu-

rity, natural disaster management, warehousing and manufacturing, and others. While

humans are still vastly better than autonomous systems at making decisions in complex

domains, collecting information to support the decision making process is a manageable

and well-defined task for a robotic system.

Why active platforms? This thesis will consider platforms which are active, i.e. have ac-

tuators. Means of locomotion is the most common type of actuator. Benefits of using

mobile sensing platforms include improved coverage, adaptiveness to changing and unpre-

dictable environment, the ability to overcome occlusions and inaccessible terrain, and more

opportunities for replenishing energy supplies.

Why distributed systems? There are many situations when the designer has no choice and
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the solution must be distributed, for example if distributed hardware already exists. In other

cases, distributed and monolithic solution options must be compared. At the cost of added

complexity, robotic systems with multiple sensors (and, in a dual argument, actuators) offer

the following advantages [46, 54, 135]:

1. Redundancy: existence of multiple resources suitable for making observations (per-

forming actions).

2. Complementarity in sensing (actuation): multiple sensors (actuators) may perceive

features (perform actions) which are impossible by each individual sensor (actuator)

operating separately.

3. Timeliness: ability to obtain near-simultaneous measurements (perform actions) at

multiple spatially distributed locations.

4. Flexibility: capacity for local adaptation to local changes in the environment.

Modern high-technology systems, including robotic systems, are increasingly driven by soft-

ware.1 With this in mind, it is worth stepping outside the field of robotics and note the

reasons why distributed software architectures are increasingly adopted in the wider com-

puting community. Emmerich [49] lists the following advantages of distributed software:

1. Scalability: can accommodate growing load in the future

2. Openness: can easily be extended and modified

3. Heterogeneity: in programming languages, operating systems, hardware, network pro-

tocols

4. Resource sharing

5. Fault-tolerance.

Why Macro Sensor Networks? Distributed sensing systems are often referred to as Sensor

Networks (SN).2 This thesis introduces the term Macro Sensor Network for a SN in which
1“The only thing you can do with an F-22 that does not require software is to take a picture of it”,

attributed to Lt. Gen. Jim Fain, while F-22 Program Director [134].
2There is a variety of derived terms, from arguably redundant Distributed Sensor Networks to Wireless

Sensor Networks.
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the platforms are not inherently constrained to small physical size. It is the argument of

this thesis, that this constraint has a profound effect on the available solution options and

the SN capabilities, making MSN’s better suited for certain applications.

What is an architecture and why architect? The dictionary defines architecture as “the man-

ner in which the components of a system are organized and integrated” [98]. Before defining

architecture, Clements gives a very pragmatic answer to the question of why architect by

describing a typical design process of a complex system [32]:

Architecting is “divide and conquer”,

followed by “now mind your own business”,

followed by “so how do these things work together?”

He argues that success in the first and the last steps of the design process requires an archi-

tecture.3 One would argue that a separate discussion of the architecture is only warranted

when the system in question is large and complex. According to these criteria, SN’s certainly

qualify as they incorporate a large number of interacting hardware elements, algorithms,

developers, and users.

Why decentralized architecture? A proper definition of decentralization will be given later

in the thesis, but the main idea is that a decentralized system is a network of peers with

no part of the system playing a special commanding role. The decentralized approach is

considered in this context because it leads to properties which are important to SN’s such as

the ability to maintain performance levels as the size of the network grows and robustness

to failure of individual subsystems.

Why modular, component-based architecture? The basic idea of modular design is to take a

large problem and decompose it into subproblems with the hope that the subproblems are

easier to solve than the original problem. In software development, the simplification comes

from the fact that different components can be developed in “mutual ignorance” [224]. The

second reason for adopting component-based design is software reuse. The premise is that

capability of a complex system can be increased incrementally by adding to the system

already in place.
3Szyperski et al. draw attention to the same two features of any architecture by pointing out that it is

“simultaneously the basis for independence and cooperation” [224].
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The application scope for SN’s is very diverse. Some of the specific SN applications reported

in the literature include habitat sensing [28], seismic, traffic and home monitoring [127, 152],

smart home [121, 155], environmental control in office buildings [246], industrial sensing

and diagnostics [78], health monitoring [14], battle-field awareness [36, 45, 90, 151, 221],

fire fighting [41, 87], competitive games [43, 235], surveillance [42, 181, 196, 216], wide

area search [21, 94, 114], planetary exploration [95], widespread weather and environmental

sampling [143, 229].

1.2 Related Fields

Several theoretical and practical research field are closely related to Active Sensor Networks.

An illustration is given in Figure 1.2. The fields are briefly mentioned below and a thorough

review of related work is conducted in Chapter 2.

Bayesian Filtering and Communication. The probabilistic framework is the foun-

dation of the current approach. It is chosen to account for the uncertainty inherent in all

interactions of a robotic system with the real world. Bayesian information fusion techniques

are used to combine sensor observations. In distributed systems, the question of what infor-

mation to communicate becomes important. This is the subject of Bayesian Communication

[67, 68] which gives the answer in terms of common information.

Information Theory. To make sensor management decisions, it is often valuable to

measure the amount of information contained in a given probability distribution [37].4

Specific areas of intersection include quantitative measures of information quality and the

expected information gain associated with different observation options.

Statistical Decision Theory. Statistical decision theory is concerned with making deci-

sions in the presence of uncertainties [16]. The concept of expected utility of actions helps

in making plans.

Team Theory. Several decision makers with the same objective make up a team. Marschak

and Radner originated the study of decentralized decision making in economic systems

[146, 147]. Team theory in the context of optimal control was developed by Ho et al.
4Even the design of Figure 1.2 is patterned after this influential text.
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Figure 1.2: Research areas related to Active Sensor Networks.

[82, 83, 84, 85]. The formulation presented in this work is based on the more recent work

of Pynadath and Tambe [178].

Component-Based Software Engineering. In describing the solution framework, this

thesis uses the methods of software architecture design [13, 88, 185] and documentation

[32]. This research community has produced the Unified Modelling Language (UML) [75],

a graphical notation for describing object-oriented system which is used extensively in this

thesis. Component-Based Software Design [76] is an integral part of the implementation

strategy adopted in this work.

Multi-Robot Systems. In the experimental validation, this work relies on the existing
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algorithms developed by the robotics community. These include algorithms for localization,

mapping, exploration, obstacle avoidance and path planning.

Micro Sensor Networks. Typical sensing platforms used in this field are physically

smaller and have less energy storage compared to those considered in this thesis. Dictated by

fundamental differences in hardware infrastructure, the solution approaches remain largely

orthogonal but there are ample opportunities for cross-fertilization. Some of the routing

algorithms originated in this community are discussed for comparison.

1.3 Thesis Objectives

The objectives of the thesis fall into one of three categories: architectural, algorithmic, and

implementation. In the area of architecture, the goal of this work is:

1. To develop a coherent and practical breakdown of networked components suitable for

a modular implementation.

Algorithms follow the functional breakdown of the system: information fusion and decision

making. In terms of algorithms, the goals of this work are:

2. To extend the existing information fusion and decision making algorithms from Gaussian

to general Bayesian distributions.

In terms of implementation, the goal of this work is:

3. Validate the approach experimentally.

1.4 Thesis Contributions

The contributions of this thesis are:

• Statement of the Distributed Information Gathering problem in descriptive and prob-

abilistic terms
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• Formulation of a fully decentralized and scalable framework for Active Sensor Net-

works, suitable for implementing a wide range of information gathering tasks.

• Extension of the Decentralized Data Fusion (DDF) algorithm to the general Bayesian

case.

• Application of DDF approach to the Certainty Grid algorithm.

• Extension of the Decentralized Decision Making (DDM) algorithms to the general

Bayesian case.

• Development and implementation of the Integrated Exploration algorithm with Cer-

tainty Grids.

• A concrete implementation of the Active Sensor Network (ASN) framework and its

experimental validation on an indoor sensor network.

1.5 Thesis Structure

The thesis starts by defining the DIG problem and proceeds to develop the ASN framework

which solves it. Figure 1.3 shows how the individual chapters contribute to describing the

three aspects of the solution.

Chapter 2 describes the DIG problem. The problem is first defined in a system-theoretic

sense: by listing functional and non-functional requirements. Then a probabilistic reference

model is presented which is general enough to cover a broad spectrum of possible solutions.

The reference model establishes the structure of the problem and solution spaces which

helps to describe and classify related work.

Chapter 3 is central in many ways. It defines the ASN framework and describes its ar-

chitecture. It justifies the high-level decisions which define the solution approach. The

algorithmic and implementation structure of the solution is also described.

Chapters 4 and 5 focus on the algorithms used to implement the information fusion and

decision making tasks respectively. Both chapters first define general Bayesian algorithms

and then specialize them to specific probabilistic representations. A number of existing

algorithms are referenced and shown to be special cases of the general approach.
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Figure 1.3: Thesis breakdown into chapters. The architecture ties together the information
fusion and decision making algorithms. The framework implementation instantiates the
architecture and the algorithms. The figure is drawn using Unified Modelling Language
(UML) notation which is reviewed later in the thesis. A reader not familiar with UML may
view this particular figure as a simple block diagram.

Chapter 6 describes the concrete implementation used in illustrating the operation of the

system throughout the thesis.

Finally, Chapter 7 draws conclusions and proposes a number of future directions for research

in active sensor networks.

Note, that while the thesis includes experimental validation of the ASN framework, there

is no “Results” chapter. The implementation is multi-faceted and largely follows the thesis

structure. For this reason, it is more natural to describe the experimental results immedi-

ately after the theory is presented. Two groups of experiments were conducted, categorized

according to the environment representation: 1) point features with Gaussian position un-
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System Aspect Representation
Gauss Point Features Certainty Grid Map

Architecture Chapter 3
Algorithms Information fusion Section 4.3.3 Section 4.4.5

Decision making Section 5.3.3 Section 5.4.3
Implementation Components Section 6.3.1

Deployment Section 6.3.5

Table 1.1: Locating the description of experimental results.

certainty and 2) Certainty Grid maps.

Table 1.1 shows how to find the description of the two series of experiments. Both exper-

imental systems use the ASN architecture described in Chapter 3. The results related to

the task of information fusion are presented in two sections of Chapter 4 as shown in the

Table 1.1. The results related to the task of decision making are presented in two sections

of Chapter 5. Many individual components are shared between the two systems due to

the modular design of the architecture. Implementation of all components is discussed in

Section 6.3.1. Details of deployment of the two systems are discussed in Section 6.3.5.



Chapter 2

The Problem of Distributed

Information Gathering

2.1 Introduction

This chapter presents the Distributed Information Gathering (DIG) problem. This is a

systems problem and the problem statement must be sufficiently general to describe all of

its aspects. It must also be be sufficiently detailed to identify the desired properties of the

solution and to allow meaningful description and classification of related work.

Section 2.2 defines the problem in a system-theoretic sense: by listing functional and non-

functional requirements. To allow quantitative description of the design space, several

useful metrics are defined. They describe the environment and the sensing infrastructure

independent of the solution approaches.

A probabilistic reference model is defined in Section 2.3. It is general enough to cover a

broad spectrum of possible solutions. Based on this model, the solution space is categorized

by listing a number of options available to the designer including five key design choices:

system architecture, information fusion method, utility evaluation and fusion method, policy

selection method, and system implementation. The extensive notation introduced by the

reference model is also used in the following chapters to describe the algorithms and the

structural breakdown of the proposed architecture.

Related work is described in Section 2.4 starting with a basic taxonomy of the field based on
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several quantitative metrics. As a result, three types of systems are identified: Micro Sensor

Networks, Macro Sensor Networks and Multi-Robot Systems. Typical examples from the

literature are classified into these three categories and reviewed with an emphasis on the five

aspects of the solution listed in Section 2.3. The work related to Macro Sensor Networks

is described in more detail because the framework proposed in this thesis targets this SN

category.

2.2 Problem Description

This section describes the DIG problem from the system-theoretic view point, i.e., what

functionality is required, how should this functionality be achieved, and what is the relative

importance of various aspects of the solution.

environment

Sensor i

Sensor j

Sensor 1

Sensor m

UI 1

Planner 1

Planner j

Planner n

Planner i

UI k

UI 2

Figure 2.1: A conceptual view of the DIG problem shows the environment to be moni-
tored, human operators, and robotic entities: sensors and actuators.The team objective is
to obtain as much information about the environment as possible by forming a network,
exchanging information, and coordinating actions. Sensor Network is formed by software:
User Interfaces (UI) represent people, Sensor and Planner modules represent robotic hard-
ware.

The problem setting is illustrated in Figure 2.1. The environment contains a spatially-

distributed dynamic phenomenon which has to be measured, located, mapped, or simply

monitored. There is a set of heterogeneous robotic platforms equipped with sensors and

actuators. The platforms have means of communication and, together, form a Sensor Net-

work (SN). Platforms with sensors can observe the environment and contribute information
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to the network. Platforms with actuators make decisions on what actions to take and what

observations to make in the future. So far, the term platform has been used in a common

sense of a “vehicle used for a particular activity or purpose” [98]. In this thesis, a platform

is also synonymous with decision maker and agent.1

There is also a set of human operators interacting with the network through User Interfaces

(UI). Operators can request information about the environment from the SN or contribute

information about the environment by observing it directly using human senses.

All entities, human and robotic, are considered to be members of a team working towards

a common goal: maximizing information quality about the environment. This could be a

goal in itself or the collected information may serve as the basis for further actions. Such

domain-specific extensions are not considered to be part of the DIG problem.

This section specifies the DIG problem as a set of requirements — an approach common in

the field of software engineering [13, 139, 140]. Also borrowing from object-oriented software

engineering, the Unified Modelling Language (UML) [75] is used extensively throughout

the thesis. The UML notation is introduced as needed and brief explanations are given in

footnotes specially marked with UML symbol. Note that, for a number of reasons, the UML

models were not used for code generation.

The hierarchical breakdown of requirements is shown in Figure 2.2 using the UML aggre-

gation relationship.2 Functional requirements capture the intended behavior of the system,

expressed as services, tasks, or functions the system is required to perform. Non-functional

(or technical) requirements describe how and how well the functional requirements have to

be fulfilled. Non-functional requirements include constraints and qualities. Qualities cap-

ture required properties of the system, such as performance. Constraints are not subject to

negotiation and, unlike qualities, are off-limits during design trade-off analysis.
1Sensing platforms considered in this thesis are independent, proactive, self-describing, interactive, phys-

ically mobile — qualities typically attributed to agents [69, 206].
2UML An aggregation relationship shows that an element contains or is composed of other elements. Used

in class models to show how more complex elements are built from a collection of simpler elements (for
example a car from wheels, tires, motor, etc.) [223].
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System 

Requirements

Functional

Requirements

Non-Functional

Requirements

ConstraintsQualities

Run-time

Qualities

Build-time 

Qualities

Figure 2.2: System specification using functional and non-functional requirements. Run-
time qualities describe the final product, the executing system. Build-time qualities describe
the work product, for example the code produced as part of the development process.

2.2.1 Functional Requirements

Functional requirements are documented with a UML Use Case diagram.3 Figure 2.3 shows

a use case diagram which specifies functional requirements for a system solving the DIG

problem. The world is partitioned into three subsystems: the sensor network, the part of

the environment which contains the phenomenon, and the rest of the world. The operation

of the SN can be separated into two broad areas (use cases): collection of information

and interaction with the operator. The diagram shows two actors4: the operator and the

phenomenon. Both interact with the SN but are external to it. The operator may receive

information about the environment through channels outside the SN, for example eyewitness

report or the weather forecast. Note that the SN observes the environment but does not

interact with it in any other way. For example, a SN with the task of bushfire tracking has

to know where the fire is but does not have to put it out.
3UML A use case is a UML modelling element that describes how a user of the proposed system interacts

with the system to perform a discrete unit of work. A Use Case diagram captures use cases and actor
interactions. It describes the functional requirements of the system, the manner that outside things (actors)
interact at the system boundary and the response of the system [223].

4UML An actor is anything that interacts with the system from the outside of the system boundary. Actors
are not always human, the stick figure symbol notwithstanding.
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World

Environment

Sensor Network

Operator

Collect   

Information

Interact

Phenomenon

observes

observes

Figure 2.3: High level use case diagram for the DIG problem. The world is partitioned
into the Sensor Network (SN), the environment which contains the phenomenon, and the
rest. From the point of view of the SN, human operators and the environment are external
entities.

A more detailed view of use cases is shown in Figure 2.4. The two large use cases are

broken down into sub-tasks with the UML include connection5. The Interact use case is

an umbrella case describing all operator-accessible functionality of the SN. It includes four

subcases representing types of interactions. The Request and Receive Info use case is the core

function envisioned by virtually all implemented and proposed SN’s. Operators enter their

interests and the network responds with information. The communication pattern is not

specified, but the primary information flow in this case is from the network to the operator.

The information flow is reversed in the Enter Information use case: independently-obtained

information is supplied by the operator and the system combines it with the network’s

belief. On the decision making side, two modes of human-network interaction are specified:

indirect control by specifying relative worth of various aspects of environment information

(Set Team Priorities use case) and direct control by means of teleoperation (Tele-operate

use case).

The Collect Information use case incorporates the core SN functionality. Perception is very

important because, ultimately, all information available to the team is derived from observa-

tions. Fusion refers to the process of combining information obtained from different sources.

Finally, the information must be delivered to consumers, typically to the decision makers,

human or robotic. Robotic platforms make decisions based on the available information
5UML Include connections are used in use case models to show that one use case includes the behavior of

another. [223]
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Figure 2.4: Detailed use case diagram for the DIG problem. The two large use cases are
shown with the included sub-cases. Tasks related to information are shown on top, to
decision making at the bottom.

and, in the team environment, performance can be improved if the actions of individual

platforms are coordinated. Many, particulary large systems, need to be able to configure

themselves on startup and reconfigure at runtime in response to the changing environmental

conditions, changes within the team, etc.

The two use cases and ten subcases define the scope of the problem addressed by this

thesis. Many systems described in the literature partially solve this problem or address

only a particular aspect of the problem. For example, stationary platforms do not make

decisions, while small-scale systems with reliable communications and stable team structure

do not need to self-configure.

2.2.2 Design Constraints

The taxonomic divisions (and the corresponding metrics) discussed in this section are con-

sidered to be part of the problem statement. As such they lie outside the design space

and are, therefore, constraints on the solution. Many of these are associated with the

infrastructure, e.g. size, capability, and the number of individual units.
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Physical unit size. Unit size refers to the dimensions and weight of the sensing device.

The task and the environment usually have a strong influence on the unit size. The drive for

miniaturization can be a byproduct of certain design goals, such as cost, low power consump-

tion, but can be an objective in itself. The most common cited reason is unobtrusiveness

useful for stealthy military operations [45, 91], ubiquitous computing [121, 122, 238], or

natural environment monitoring [28]. Operation in small-scale environment can also im-

pose this constraint, for example to perform data collection inside the human body [38].

Some design concepts rely on the nature of physical interaction with the environment, for

example devices floating on air currents [106, 143].

Small size is a powerful constraint with many consequences [38]. Small unit size leads

to limited energy storage, which in turn constrains the available processing power, favors

passive sensors, limits actuation options (including locomotion), and, especially in the case

of radio links, limits communication range. All these constraints, in turn, have their own

consequences, which makes physical unit size a very influential driver in the overall hardware

and software design.

System size. In distributed systems, size refers to the number of connected elements. In

the DIG problem, platforms are the fundamental unit of deployment, i.e. the size of the

system is increased by deploying additional platforms. Therefore, in this work, network size

will refer to the number of platforms. This metric is easy to measure and is often reported.

Node density. The nature of interactions between the nodes of a SN depends on the

average distance between them. Node density can be defined as the number of platforms

in the world, or per unit area, or within communication reach [220]. In the case of single-

hop broadcast communication, the last metric describes the size of a local “neighborhood”

within which all interactions between nodes occur.

Sensor overlap. The overlap in sensor footprints (static or dynamic) is important because

it provides an opportunity for information fusion. A quantitative metric can be defined as

the ratio of redundant sensor coverage to total sensor coverage. Similarly, feature coverage

overlap is the ratio of the number of features observed by several sensors simultaneously to

the total number of observed features.

Sensor coverage. This metric refers to the fraction of the environment which can be the-

oretically observed by the sensors of the team. Typically, part of the environment is consid-
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ered covered if it falls within the observation range of at least one sensing platform. This is

related to the concept of collective observability [178] with four categories: Collective Partial

Observability, Collective Observability, Individual Observability, and Non-Observability. A

quantitative metric can be defined as the fraction of the environment observed by the team.

If the environment is largely two-dimensional, the space is characterized by the area. For

three-dimensional sampling problems, volumetric measure is more appropriate. Similarly,

feature coverage is the ratio of all features observed by the sensors of the team at any given

time. The coverage metric is important because when this metric is low there may be a

need for platform mobility.

Platform mobility. Physical mobility of platforms is typically measured as platform

speed. From the sensing point of view, it can be characterized as the ratio of dynamic space

coverage to static sensor footprint. Dynamic properties of both platforms and features is

an important aspect of the problem statement. Latencies must be considered in relation to

how fast the environment is changing.

Mission duration. The overall longevity of the system is finite, unless resources are

renewable. Long missions make the requirements for robustness and reconfiguration more

important.

2.2.3 Desired System Qualities

This section lists common SN evaluation criteria [3, 227].

Scalability. In the context of distributed systems, scalability refers to the ability of the

system to retain its functional capacity despite increase in its size. Several aspects of

operation are of particular interest: computational load, communication bandwidth, storage

requirements. The main reason for adopting this objective is to allow the system to grow in

size by adding more resources, potentially, indefinitely. A quantitative metric of scalability

is the theoretical or experimental performance (communication throughput, floating point

operations per second) as a function of the number of platforms.

Information quality. The main output of a SN is information about the environment.

Information quality is an important factor and can be measured using several metrics:

accuracy, coverage, latency.
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Accuracy may be quantified by probability of detection, false positives and negatives, target

position uncertainty [221], distinct-event delivery ratio [100]. Environment coverage refers

to the instantaneous fraction of the environment observed by the team. It is different from

the sensor coverage constraint because it refers to the actual coverage provided by the

system compared to the theoretical possible coverage allowed by the number and type of

sensors. decision making has a strong effect on this metric. Latency refers to the delays in

delivery of information due to data processing and transmission, for example average delay

[100].

Fault tolerance. In large distributed systems, failure of individual components is accepted

as inevitable because of possible physical damage, lack of power, effects of the environment,

enemy actions in military scenarios, etc. The objective is to preserve the operation of

the SN in the face of individual platform failure. Consequences of this requirement lie in

redundancy of system services and resources. The system must also be able to reconfigure

itself as a result of component failure. A common quantitative metric is deterioration in

information quality with the increase of component failure [86].

Energy efficiency. Energy is required for all aspects of SN operation: sensing, processing,

communication, etc. Architecture and algorithms have a direct impact on the energy con-

sumption. Average dissipated energy [100] is an example metric of energy efficiency. For a

system with non-renewable resources, mean run time is an energy-related metric.

Production cost. Cost per unit is readily available and generally scales with size. Other

factors influencing costs are the number and type of sensors and actuators. At the level of

individual units, the cost objective drives the design towards smaller, simpler, less mobile

platforms. In many cases, particularly for large systems, it is more appropriate to consider

the complete system cost [143].

Build-time qualities. Examples include code reusability and composability, i.e. being

able to compose a system from plug-and-play components. Large systems are created by

large teams of designers and build-time qualities become increasingly important.

The desired system qualities described here are not independent and are often conflicting.

For example, a fundamental trade-off exists between frequency of inter-platform informa-

tion exchange (latency) and communication bandwidth (scalability). In order to design a

practical system, a priority of qualities must be established. This will be done in Section 2.4,
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after casting the DIG problem into a probabilistic framework.

2.3 Probabilistic Reference Model

This section describes the DIG problem more formally and in probabilistic terms. This

description will be used as the reference model6 for the DIG problem. The probabilistic

framework is chosen to account for the uncertainty inherent in all interactions of a robotic

system with the real world. Sensing, actuation, and dynamic environments, all contribute

uncertainty which cannot be fully eliminated or accurately predicted. Probabilistic models

provide a powerful and consistent means of describing stochastic properties of systems

and interactions. Compared to other approaches, the probabilistic framework provides an

explicit measure of uncertainty, which leads naturally to the ideas of information fusion and

decision making.

The reference model described in this section is based on the COM-municative Multiagent

Team Decision Problem (COM-MTDP) [178]. It was introduced as a unified framework and

a comparison tool for different team theories. Its scope is very general and much broader

than the DIG problem. Three of its features make it particularly attractive in the current

context: it is probabilistic, with strong ties to Markov decision processes [177]; distributed,

having originated in the multi-agent community; and team-oriented, based on the economic

team theory [147]. The minor changes introduced in this work aim primarily to narrow the

scope and tailor the model to the DIG domain.

2.3.1 Environment

The model partitions the system into three interacting subsystems (as did Figure 2.3): the

SN, the environment to be monitored, and the rest. Only the environment and the SN are

represented explicitly in the model: the former has to be described and the latter has to

be designed. The complete system state s can take on a variety of values all of which are

contained in the set S of possible states. The set of system states can be factored into the

states of the environment X and the states of the sensor network P, so that S = X × P.
6Reference model architecture: “an architecture in which the entire collection of entities, relationships,

and information units involved in interactions between and within subsystems are defined and modeled” [5].
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As a general rule, if some aspect of the system state is important for the operation of the

network but is not part of the monitored environment, it is included in the network state.

A specific environment is described by a state vector x ∈ X. The state of the environment

xk = x(tk) at time tk is generally unknown and needs to be estimated. The environment is

assumed to consist of a finite set of features: trees, walls, roads, people, vehicles, with the

state space factored accordingly X = X1× . . .×Xm. Typical feature states include position,

size, color. A feature may have internal inputs uk
i ∈ Ui. The feature state is assumed to

have the Markov property: the current state xk
i depends only on the previous state xk−1

i

and the input uk−1
i . The feature state transition function describes the state evolution from

one time step to the next: G : Xi ×Ui ×Xi → <.7 If the feature state xk−1
i and input uk−1

i

are known, the state transition function describes the probability of the feature ending up

in state xk
i

G(xk−1
i , uk−1

i , xk
i ) ⇀ P(xk

i | xk−1
i = x, uk−1

i = u). (2.1)

This formulation makes an important assumption that features do not influence each other,

i.e. states of any two features are decoupled xk
i 6= f(xk

j ). In situations where this assumption

is not justified and xk
i = f(xk

j ), a super-feature may be defined with the state vector

combining the original two xk
s = {xk

i , x
k
j }.

Without loss of generality, internal inputs will not be considered in feature models. A

feature, especially mobile, may well have internal inputs but, typically, they are unknown to

the observer. If the inputs are important for solving the problem, they must be estimated.

In this case they become part of the feature state and the state transition function G :

Xi ×Xi → < is simply

G(xk−1
i , xk

i ) ⇀ P(xk
i | xk−1

i = x). (2.2)

2.3.2 Sensor Network

The SN consists of a number of platforms. A specific SN α is described by a state p ∈ Pα

which is factored into states of individual platforms Pα = P1 × . . .× Pn. Typical platform

states are pose, velocity, fuel level. Subsystems of a typical sensing platform are shown in

Figure 2.5. All platforms include a power source, a computer, and means of communication.
7For a discrete representation of a probability density function, an interval [0, 1] ∈ < is sufficient.
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Figure 2.5: Subsystems of a typical sensing platform. Each platform is equipped with a
power source, processor, and means of communication. Sensing and actuation equipment
is optional. All subsystems use power.

Optionally, a platform may also be equipped with sensors and actuators.8 Most platform

properties strongly depend on the physical size and available power [151].

Platforms are an important concept in SN for two reasons. First, the platform is a unit of

deployment and, therefore, the number of platforms is the characteristic size of SN. Second,

the platform is the unit of decision making.

Actuation. If platform i has an actuator, then it can perform an action ak
i from a set of

all possible actions {Ai}i∈α. A history of actions up to time tk may be stored in a sequence

Ak
i = {a1

i , a
2
i . . . ak

i }. A combined set Aα =
∏

i∈αAi defines possible actions of the entire

team. The most common actuators are means of locomotion. Other actuators include

means of pointing sensors such as pan-tilt-zoom cameras. A mode switch (even a simple

on-off) for a sensor can be considered an action.

In general, a platform’s action may have an effect on the states of environment features

and the states of other platforms. The fully-coupled state transition function is in the

form Fα : S × Aα × S → <. For the DIG problem, certain simplifying (and limiting)

assumptions can be made. In the discussion of feature models, it was assumed that a

platform’s actions do not influence the feature states. This assumption precludes direct
8UML The possible number of platform subsystems in indicated in Figure 2.5. In UML, the number of

entities in a set is indicated by multiplicity. For example, each Platform has one or more Power units, shown
as [1..*], but each Power unit must belong to strictly one Platform, shown as [1]. The multiplicity of Physical
Sensors includes zero, which makes it optional equipment.
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manipulation of the environment (e.g. no “couch pushing”) and indirect strategic influence

(e.g. no pursuit-evasion games). The joint team state transition function describes the

probability of transition from one team state to another after a certain team action was

performed F : Pα ×Aα × Pα → <. In other words, it defines the probability of transition

from team state pk−1
α at time tk−1 to state pk

α at time tk after performing a team action

ak−1
α

Fα(pk−1
α , ak−1

α , pk
α) ⇀ P(pk

α | pk−1
α = p, ak−1

α = a). (2.3)

This model allows coupling between actions of individual platforms. For example, two

platforms may be precluded from performing actions which place them in the same physical

location. In many cases the team state transition function can be decoupled into the

functions describing the states and actions of individual platforms

Fi(pk−1
i , ak−1

i , pk
i ) ⇀ P(pk

i | pk−1
i = p, ak−1

i = a). (2.4)

Platform models are used by platforms themselves for planning future actions. The plat-

forms themselves may be very different, and so the models used for describing them are

different too, Fi 6= Fj . Feature models are used by platforms for predicting state changes of

the environment in the absence of observations. Note, that the models of the same feature

used by two different platforms do not need to be the same, Gi 6= Gj . (Gi refers to the

model of a feature used by platform i.)

Sensing. If platform i has a sensor, then it can make an observation zk
i of the environment

drawn from a set of all possible observations {Zi}i∈α. A history of observations up to

time tk may be stored as a sequence Zk
i = {z1

i , z2
i . . . zk

i }. A combined set Zα =
∏

i∈αZi

defines observations of the entire team. Any physical sensor can be used by networked

sensing platforms. The typical ones include acoustic microphones, video and IR cameras,

lasers, and thermocouples. Sensor hardware is listed as optional equipment for reasons

of generality. Although unlikely to have no sensors at all, a platform may choose not

to contribute information from locally obtained observations to the network. It may still

participate in team activities by performing computations, actions, or message routing.

Observations are the only source of original information about the environment. The rela-

tionship between the state of the world and observations is captured in the sensor model.

The joint team observation model probabilistically links the world state, team actions and
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observations, Hα : S × Aα × Zα → <. A sensor model can be used in two ways: as an

observation model to describe the probability of possible observations given a particular

world state and as a likelihood function to describe the likelihood of possible world states

given that a particular observation has been made.

The observation model defines the probability of making a particular team observation zk
α

following a team action ak−1
α when the system is in a state sk

Hα(sk, ak−1
α , zk

α) ⇀ P(zk
i | sk = s, ak−1

α = a). (2.5)

Of particular interest is the case when the joint distribution can be separated into individual

platform observation functions, Hi : X × Pi × Ai × Zi → <, which depend on the state of

the environment and the state and actions of the platform performing the observation

Hi(xk, pk
i , a

k−1
i , zk

i ) ⇀ P(zk
i | xk = x, pk

i = p, ak−1
i = a). (2.6)

The observation model can also be used as a likelihood function after a particular observation

is made. As such, it provides information on how likely the actual observation was as a

function of the true world state

Hi(xk, pk
i , a

k−1
i , zk

i ) ⇀ L(zk
i = z | xk, pk

i = p, ak−1
i = a). (2.7)

The observation likelihood L(zk
i = z | xk) is equivalent to the actual observation zk

i =

z according to the Likelihood Principle [16]: in making inferences or decisions about xk

after zk
i = z is observed, the observation likelihood L(zk

i = z | xk) contains all relevant

experimental information. Critically, the observation likelihood is a function defined on the

world state space X.

The sensor models in Equations 2.5–2.7 do not make any assumptions on the completeness

of environment coverage by individual platforms as well as the team as a whole. Pynadath

and Tambe refer to this as collective partial observability [178]. For an information gathering

system this is important, because information fusion may not be a high priority for a system

with complete individual observability of the environment.
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2.3.3 Communication

Communication allows platforms to exchange information. Set {Mi}i∈α includes all possible

messages that a platform i can send, implicitly defining a set of combined messages Mα =
∏

i∈αMi. The messages are used by platforms to exchange information and influence beliefs

of other team members. Messages have a sender and a receiver, so for example, platform i

sends a message mk
ij to platform j at time tk. A history of communication from platform

i to platform j up to time tk may be stored in a sequence Mk
ij . All messages received by

platform i from the team may be stored in Mk
αi.

No restriction is made on the type of messages: single-cast mk
ij , multi-cast mk

iβ, or broad-

cast mk
i∗. Note, that the model of message transmission is deterministic, a message is

always assumed to be delivered to its destination. A possible extension of the model could

probabilistically represent reliability of the communication channel.

2.3.4 Belief

The true state of the world s is unknown to the platforms. All information available about

the world is compiled into the platforms’ beliefs. Each platform i forms a belief state bk
i ∈ Bi,

based on the information obtained through time tk, where Bi describes the set of possible

belief states. The set of possible combined belief states over all platforms is Bα.

A communicating platform has three sources of information which influence its belief: prior

information, local observations and messages from the rest of the team. The belief function

maps prior beliefs, a history of observations, and a history of received messages to the

current belief

bk
i = D0

i (b
0
i , Z

k
i ,Mk

αi). (2.8)

A recursive belief update function can be used if the state has the Markov property, Di :

Bi × Zi ×Mα → Bi. The updated belief of platform i is based on the current belief and

the observations and messages since the last update

bk+
i = Di(bk

i , z
k
i ,mk

αi). (2.9)

In planning future actions, beliefs on future states of the world may be required. These

are formed based on the present belief and the state transition functions in Equations 2.2
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and 2.4. The belief at time tk+n based on the information available at time tk is written as

bk+n,k
i .

For concreteness, the total belief of the team can be partitioned into beliefs about the state

of the environment, the team states, observations, actions, messages, and possibly other:

bk
α ∈ Bα = Bxα × Bpα × Bzα × Baα × Bmα × . . .. The corresponding beliefs for a particular

platform are designated as Bi = Bxi × Bpi × Bzi × Bai × Bmi × . . .. The list is intentionally

open-ended to allow other types of beliefs. Each of the listed belief types is described in

turn below.

The platform’s belief about the environment describes the probability of each state of the

world according to the currently available information bxi : X → <. The world state

transition function G(xk−1
i , xk

i ) in Equation 2.2 may be combined with the definition of the

world state belief bk
xi into a world belief prediction function G′ : Bxi → Bxi. It predicts the

state of the world at the next time step

bk+1,k
xi = G′(bk

xi). (2.10)

The platform’s current environment belief is based on the prior belief, all local observations,

and all messages received from the team members

bk
xi = P(xk | x0, Zk

i ,Mk
αi). (2.11)

If all information is shared within the team through communication, the team belief about

the environment is

bk
xα = P(xk | x0, Zk

α). (2.12)

A platform’s belief about the states of all platforms in the team (including itself) is as

bpi : Pα → <. It is based on the prior belief, all local observations and actions, and the

messages received from the team members

bk
pi = P(pk

α | p0
α, Zk

i , Ak
i ,M

k
αi). (2.13)

Similar to the case of the world belief, the platform belief prediction function may be defined

as F ′
i : Bpi × Ai → Bpi. It predicts the state of the platform based on the previous belief
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and the known platform action

bk+1,k
pi = F ′

i (b
k
pi, a

k
i ). (2.14)

Beliefs about the combined team observations, actions and messages may also be important

for decision making of an individual platform and are defined similarly

bk
zi = P(zk

α | z0
α, Zk

i , Ak
i ,M

k
αi) (2.15)

bk
ai = P(ak

α | a0
α, Zk

i , Ak
i ,M

k
αi) (2.16)

bk
mi = P(mk

α | m0
α, Zk

i ,Mk
iα,Mk

αi). (2.17)

They represent probability distributions on the sets of possible team observations bzi : Zα →
<, actions bai : Aα → <, and messages bmi : Mα → <.

2.3.5 Policies

The set of possible action policies is defined as mappings from local belief states to actions

πiA : Bi → Ai. It chooses an action based on the current belief9

ak
i = πiA(bk

i ). (2.18)

The action policy may also be used to make decisions about actions in the future. An

action ak+n,k
i ∈ Ai is chosen at time tk to be executed at time tk+n. An action plan is a

sequence of planned actions chosen at the same time Ak+n,k
i = {ak+1,k

i , ak+2,k
i . . . ak+n,k

i }.
Future actions are chosen based on predicted future beliefs

ak+n,k
i = πiA(bk+n,k

i ). (2.19)

9In the field of robotics there are two well established approaches to solving the action problem: reactive
and deliberative. An identical division exists in the multi-agent community where agents are sometimes
classified into tropistic and hysteretic [54]. Despite the different names, the issue is whether or not to
maintain the “state”, or more precisely, an estimate of the state of the world. Reactive systems avoid having
a world model and base their actions solely on the most recent observation, πiA = Zi → Ai. This feature
can even be used as a test for “reactiveness”: reactive systems “always react to the same sensor state with
the same motor action” [166]. A large body of work is based on reactive action selection starting with
pioneering work of Brooks [25], including many applications to multi-robot systems [65, 170, 239]. The
reactive approaches may be fitted into the reference model by noting that an observation can always be
considered a belief about the world when combined with an uninformative prior.
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Planned actions may lead to future observations zk+n,k
i ∈ Zi. An observation plan is a

sequence of observations planned at time tk to occur in the future: Zk+n,k
i = {zk+1,k

i , zk+2,k
i ,

. . . , zk+n,k
i }.

Similar to the action policy, a separate policy for communication is defined10, which deter-

mines what information is exchanged between team members and when, πiM : Bi → Mi.

The current message is based on the current belief

mk
i∗ = πiA(bk

i ). (2.20)

Since different platforms may have different actions and messages available to them, their

policies may also be different πiA 6= πjA, πiM 6= πjM . The joint team policies παA and παM

are the combined policies across all platforms in the team.

2.3.6 Utility

A utility function provides a means of evaluating different actions, allowing for direct com-

parison of alternative policies. A utility function depends on the true state of the system,

both the environment and the platforms. It also reflects the cost of action and communi-

cation. For a team of sensing platforms, the combined team utility is defined as a mapping

from system states, actions, and messages to a scalar: U : X × Pα ×Aα ×Mα → <.

Note that just like in the original economic team theory, this definition of a team assumes

that team members have a common goal (and utility) and that they work selflessly towards

that goal. A more general notion of an organization removes this constraint at the expense of

more complexity [147]. The notion of a team is adequate for the system under consideration

because it has essentially a single task of gathering information. The true team utility at

any time step tk can be calculated as follows

ρk = U(xk, pk
α, ak

α,mk
α), (2.21)

with the interpretation that ρk is the gain obtained at time tk if taking the team action

ak
α exchanging team communication messages mk

α and when the true state of the system

is (xk, pk
α). For a fixed world state, utility function U induces a preferential ordering on Aα

10Somewhat contrary to the arguments of Speech Acts theory [200].
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and Mα, leading to the choice of appropriate ak
α and mk

α.

Further assumptions on the structure of the utility function can be made. Pynadath and

Tambe suggest that the costs of communication and actions are independent of each other

[178]. The utility function can then be decomposed into two additive components: a domain-

level utility UA and a communication-level utility UM

ρk = UA(xk, pk
α, ak

α) + UM (xk, pk
α,mk

α). (2.22)

2.3.7 Expected Utility

A utility function in the form of Equation 2.21 is a reward obtained when all states, actions,

and messages are known. In practice, not all information may be available when the utility

is to be evaluated: the true state xk may not be known with certainty, the decisions must

be made about events in the future. For these reasons, the perceived or predicted utility

must be used.

One natural method of predicting utility is using the expected utility, which takes into

account the uncertainty about the world state encapsulated in the belief bk
α [16]

ρk
α = Ebk

α

{
U(xk, pk

α, ak
α,mk

α)
}

. (2.23)

Probabilistic belief definitions in Equations 2.11–2.17 allow the use of the concept of expec-

tation, which is evaluated over the random variables (xk, pk
α, ak

α,mk
α)

ρk
α =

∫
U(xk, pk

α, ak
α,mk

α)P(xk)P(pk
α)P(ak

α)P(mk
α) dx dpα daα dmα. (2.24)

This definition of the expected utility is based on the complete information available to

the team and can be calculated for any time step: past, present, or future. As a shortcut

notation, the expected utility will referred to as a function of beliefs

ρk
α = J(bk

xα, bk
pα, bk

aα, bk
mα). (2.25)
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2.3.8 Expected Value

The expected value of the policies παA and παM is the expected total team utility when these

policies are executed. Over a period of time to a finite planning horizon tK the expected

value is defined as a sum11 of expected utilities

V K(παA, παM ) = Ebk
α

{
K∑

t=0

Uk+t | παA, παM

}
=

K∑

t=0

ρk+t,k
α , (2.26)

where the expected utility is calculated according to Equation 2.24.

Planning horizon tK = 0, 1 . . . N determines how far into the future expected value is

evaluated. A 1-step planning horizon means that the current action is chosen by considering

only the expected utility at the next time step.

2.3.9 Problem Statement

The DIG problem can now be stated in the form of four tuples12

〈X, Gα〉 , 〈Pα,Aα, Fα,Mα,Zα, Hα,Bα, Dα〉 , 〈U, tK〉 , 〈παA, παM 〉 , (2.27)

representing the environment, the platforms, utility function, and the team policies. The

objective of the team as a whole and each of its members individually is the following: given

the problem described by the first three tuples, choose the team action and communication

policies 〈π∗iA, π∗iM 〉 which maximize the expected team value

〈π∗αA, π∗αM 〉 = maxV K(παA, παM ). (2.28)
11In the field of Reinforcement Learning the value is commonly calculated as a discounted sum of expected

utilities, V K =
PK

t=0 γtρk+t
α , where γ(t) is the discount rate, 0 ≤ γ ≤ 1. The discount rate is introduced for

three reasons. It allows infinite time horizon, because the infinite sum in this case has a finite value as long
as the individual utilities are bounded. It reflects the increasing uncertainty of future outcomes of actions.
It can also be used as a design parameter to focus on short-term or long-term utility of action. When γ
is close to one, the expected value takes long-term utility into account. When γ = 0, the expected value
is equal to the immediate expected utility. In this work, discount rates are not used because only a finite
horizon is considered and probabilistic models account for the uncertainty in the system.

12Compared to the original COM-MTDP [178], this formulation is specialized to the information gathering
domain. The states of the world are separated into active platforms and passive features. The actions of
platforms are assumed not to affect the states of the features. The beliefs are defined probabilistically. The
belief update term D is brought into the problem statement. The notation is changed to bring it more in
line with the conventions of the probabilistic filtering problem.
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This formulation does not emphasize the fact that the belief update, decision making and

policy selection is performed at the platform level. To make this more explicit, the model

is reformulated from the point of view of an individual platform.

We start with the expected team utility, which is needed to evaluate alternative actions.

If the platform has access only to its own belief about the world, then the expected team

utility must be approximated by partial utility J̃ [70]

ρ̃k
i = Ebk

i

{
U(xk, pk

α, ak
α,mk

α)
}

= J̃(bk
xi, b

k
pi, b

a
i , b

m
i ), (2.29)

where the agent’s partial utility is calculated based on the local beliefs on the state of

system: the environment bk
xi, all platforms bk

pi, team actions bk
ai, and team messages bk

mi.

Unlike in the case of the team utility, there is no restriction on the differences among the

expected partial utilities, ρ̃k
i 6= ρ̃k

j . The partial utilities could be additive or not depending

on the interaction between the decision makers [147]. In general, the team utility cannot

be found as a sum of partial utilities of individual platforms

ρk
α 6=

∑

i∈α

ρ̃k
i . (2.30)

For example, the plans of two platforms developed in isolation may interfere and the com-

bined utility will be lower than the sum of the individual utilities. Likewise, the interaction

may be beneficial and the combined utility will be higher than the predicted sum. The

problem of utility fusion is a fundamental problem in cooperative action planning: how

to obtain an estimate of team utility based on the information available locally at each

platform.

The expected partial value is calculated based on the individual platform’s policies

Ṽ K
i (πiA, πiM ) = Ebk

i

{
K∑

t=0

Uk+t | πiA, πiM

}
=

K∑

t=0

ρ̃k+t,k
i , (2.31)

where ρ̃k+t,k
i is the local estimate of the team’s expected utility at time tk+t.

The DIG problem can now be restated from the point of view of a team member. Only the
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terms that a team member has control over or has first-hand knowledge of are retained

〈X, Gi〉 , 〈Pi,Ai, Fi,Mαi,Miα,Zi,Hi,Bi, Di〉 , 〈U, tK〉 , 〈πiA, πiM 〉 . (2.32)

The objective for each platform is the following: based on the information available to

the agent and shown in the first three tuples, choose the local action and communication

policies 〈π∗iA, π∗iM 〉 which maximize the expected team value

〈π∗iA, π∗iM 〉 = max Ṽ K
i (πiA, πiM ). (2.33)

Because the agent’s expected value is based on the local belief bk
i , the objective is to make

sure that bk
i is as close as possible to bk

α, in which case ρ̃k
i will be close to ρk

α and V K close

to Ṽ K
i .

2.4 Related Work

The reference model presented in Section 2.3 established the structure of the problem space

of the DIG problem. The literature survey in this section focuses on the solution space.

A brief quantitative analysis demonstrates that a) there are clusters in both the problem

and solution spaces and b) there is a clear correspondence between the clusters. A group

of similar solutions which solve similar problems can be described as a SN type.

Three SN types are identified in Section 2.4.1 and the following three sections focus on each

of the types. Micro Sensor Networks are discussed in Section 2.4.2, Multi-Robot Systems

in Section 2.4.3, and Macro Sensor Networks in Section 2.4.4. Some of the examples from

the literature cannot be easily categorized, while others are designed to cross the category

boundaries. The latter are termed Hybrid Sensor Networks and discussed separately in

Section 2.4.5.

The formulation of Equation 2.32 is intentionally very general. Many choices have to be

made when designing a system described by the reference model. The following list of key

choices will be used as a guide in describing related work.

1. System architecture
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2. Belief update algorithm D

3. Utility function definition U

4. Policy selection algorithm

5. Implementation

Because the DIG problem is very broad in scope, the amount of related work even in the last

few years is immense. A comprehensive review therefore is hardly possible. In particular,

the review of the fields of Micro Sensor Networks and Multi-Robot Systems should be

viewed as mere starting points. The main outcome of this section is in clear statement of

the goals for this thesis. This is done by aligning this work with Macro Sensor Networks

and adopting its objectives and priorities.

2.4.1 Sensor Network Types

Taxonomic studies of SN’s are quite common [50, 53, 71, 220, 227]. This presentation is

different in that it tries to obtain quantifiable metrics and ties them to a probabilistic model

covering the entire problem space. Table 2.1 shows a representative list of projects and ap-

proaches which address either the entire DIG problem or some of its parts. The columns

of the table list three main aspects of any solution approach: architecture, algorithms,

and implementation. The entries are checked for certain solution properties: whether the

architecture is distributed; whether information fusion, cooperative decision making, and

self-configuration is present; and whether the system implementation is component-based.

Because, the approach advocated in this thesis employs all of the above, this table is essen-

tially a distance metric between this thesis and the related work.

The entries are listed in order of broadening scope and increasing overlap with the approach

advocated in this thesis. The bottom (“high-overlap”) part of the table is dominated by re-

cent work. This fact reflects relative maturity of the algorithms and commercial availability

of capable hardware, wireless networks and proper software tools. It seems likely that the

trend will continue towards large-scale multi-faceted distributed applications.

The approach adopted to classify the related work is as follows. From over forty entries in

Table 2.1, seventeen were chosen which have enough reported details concerning experiments
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Project / Architecture Algorithms Implement.
Approach distributed info coop. dec. self- component-

fusion making config. based
Architecture styles [8] X
Nodestar [218, 219] X
Freiburg RoboCup [43] X
FireMapper [87] X
System config [112] X
Orocos framework [169] X
Gala meta OS [189] X
Oxford Strips [184] X X
Oxford process plant [68] X X
29 Palms CSP [45, 151] X X
CMU patrol [42, 196, 216] X X
USC deploy [93] X X
Berkeley [212] X X
µSN [214, 220] X X
Directed diffusion [99] X X
SINA [204] X X
RAP [133] X X
SP, U. of MD [97] X X
UMass tracking [90] X X
CMU millibots [162] X X
CMU explore [211] X X
Bayes programming [120] X X
Multi-sensor OG [236] X X
UMN Scouts [194] X X
GEMS study [143] X X X
Sensor fusion [102] X X X
Multi-layer fusion [6] X X X
Generic fusion arch [18, 27] X X X
ANSER project [221] X X X
Hive project [155] X X X
LIME [158] X X X
µSN [28, 58, 201] X X X
Logical sensor sys. [78, 79] X X X
Xerox µSN [247, 248] X X X X
Info control [70, 71] X X X X
Info search [21] X X X X
MIRO RoboCup [235] X X X X
Em* framework [64] X X X X
TCN system [36] X X X X X
Centibots [94, 113, 114] X X X X X
MiLAN middleware [77] X X X X X
ASN X X X X X

Table 2.1: Summary of related work. The table shows a degree of overlap between ASN
and selected examples from the literature. Horizontal lines divide entries into groups based
on the number of check marks. Projects with detailed information on experiments or sim-
ulations are highlighted. They are used for quantitative characterization of the field.
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or simulation. These selected entries are highlighted in the table. System properties are

described in quantitative terms using the metrics defined in Section 2.2. The raw “data” and

the details of calculating the derived metrics are presented in Appendix A. The solutions

are also classified, however, because of the wide variety of possible approaches, this part of

the analysis is necessarily more qualitative.

Experimental immaturity of the SN field does not allow a clustering analysis which relies

on the data alone. Rather, the clusters are named based partly on the data in Appendix A

and partly on the engineering insight. Three types of SN’s were thus identified:

1. Micro Sensor Networks (µSN),

2. Macro Sensor Networks (MSN), and

3. Multi-Robot Systems (MRS).

SN Constraints and Qualities µSN MSN MRS
Small unit size X
Large team size X X
Heterogenous team X X
Active platforms X X
Information gathering main task X X
Long mission duration X X
Information used within sensor field X X
High information accuracy X X
Low information latency X
Relatively large development effort X

Table 2.2: Importance of performance metrics by sensor network type. Constraints related
to the infrastructure are listed on top. Run-time qualities are listed in the middle. Build-
time properties are listed at the bottom. The highlighted entries can be easily compared
quantitatively.

The distinguishing features of the three SN categories are listed in Table 2.2. The top

part of the table lists constraints related to the infrastructure. The middle part deals with

mission description and the priority assigned to different objectives. The bottom part of

the table lists build-time properties of the system.

Some of the categories are correlated, for example the objective of large scale coverage

usually leads to large team size or the use of active platforms, or both. Without getting
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into the specifics of the individual design process, it is useful to list all features which are

easy to quantify and which help differentiate network types. Classification of the sample

projects into SN types is shown in Table A.5 and is used in Figures 2.6–2.8.

Differences in functional requirements are considered first. Information gathering is the

main objective of systems in the µSN and MSN categories. MRS are engaged in network-

wide information gathering inasmuch as it is beneficial for performing domain-specific tasks.

For example, in the RoboCup domain, robots on the same team are often programmed to

exchange information about the position of the ball. It is a task of information gathering

but the main objective of the system is not to track the ball but to score a goal.
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Figure 2.6: Sensor network examples: unit mass vs. team size. The GEMS study is off
the scale (2.5 mg, 1010 units). Both experimental (filled markers) and simulation (outline
markers) are shown. The numbers next to the markers correspond to the case numbers in
Appendix A.

Infrastructure constraints are considered next. Individual unit mass and team size are most

often cited in the literature and are plotted in Figure 2.6. Approximate design boundaries

for the SN types are shown. µSN is the only type explicitly constrained by the micro-scale
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requirement. Its target region extends towards the region of large teams of small units.

The intended team sizes for µSN systems are often quoted in the thousands [50, 99], tens

of thousands [1], and even billions [143]. The state of the art in actual team sizes across

all SN types is reaching the level of one hundred platforms. This order of magnitude is the

intended design point of most MSN applications. Practical MRS designs have been mostly

for indoor applications with typical mass of 5–10 kg and teams size of 3–6.

Physical size is important because it has very strong influence on energy storage. µSN plat-

forms are battery powered and the design of all subsystems is extremely energy-conscious.

The main energy consumer in stationary micro platforms is the communication subsystem

because the energy required to communicate using radio waves is not reduced with minia-

turization of the device [179]. The relative energy budget is different, however, for mobile

platforms. The power necessary for locomotion of any kind (with a possible exception of

dust-sized motes floating in the air [106, 143]) typically exceeds the power needed for com-

munication. For example, Robotmote, one of the smallest commercially available mobile

robots, spends 72% of its power on locomotion [207]. Even if locomotion is not involved,

significant amount of energy may be required if active sensors are used, such as sonar, laser

range finders, and radars. Narrow field-of-view sensors which require repositioning can also

be large consumers of power, for example cameras with pan-tilt mounts .

These considerations make platform mobility an important factor. Figure 2.7 shows two

related infrastructure metrics: sensor area coverage and sensor mobility. µSN’s are pre-

dominantly static and require sensor and communication overlap in order to guarantee

reasonable performance. In the figure, the µSN systems appear on the zero mobility line

and the sensor coverage metric is greater or equal to one. MSN and MRS have a wide range

of options in this coordinate frame.

Mission duration is shown in Figure 2.8. Here again, the hardware state of the art has

not caught up with design targets. Lifespan of future µSN systems is cited from weeks

[143] to years [179] with today’s commonly used devices just breaking the one-week barrier

if any useful measurements are to be performed. MRS tend to be short-mission oriented

compared to MSN. Today’s robotic missions are typically supervised by humans and last

on the order of minutes and hours. Higher levels of autonomy and self-configuration are

needed for missions of longer duration.

Functional requirements and constraints in Table 2.2 lead to technical drivers which di-
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Figure 2.7: Sensor network examples: sensor coverage vs. sensor mobility. Both experimen-
tal (filled markers) and simulation (outline markers) are shown.

rectly shape solution methods. The relationship between the requirements and the drivers

is summarized in Figure 2.9. Energy efficiency is an influential driver prompted by the

requirement of small unit size and long mission duration. This driver has far-reaching con-

sequences because energy is needed for all aspects of system operation: sensing, actuation,

communication, and computation.

Communication and computational scalability is a must for systems requiring large team

size. A larger team has more information sources producing more data which must be

processed and shared. The need to use environment information within the sensor field

exacerbate the issue because the number of information consumers also grows with the size

of the network. The need for higher information accuracy may lead to more computa-

tion. In large systems, this requires computational scalability. The need for lower latency

often demands more communication. In large systems, this translates into the need for

communication scalability.

Large systems operating over long period of times must be fault tolerant. Reliance on small
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Figure 2.8: Sensor network examples: unit mass vs. mission time. Both experimental (filled
markers) and simulation (outline markers) are shown.

and cheap devices may make this issue more pressing. The need for reconfiguration is some-

what related. A system must be able to reconfigure after parts of it fail, but large systems

need to be able to self-configure to start functioning even before any of the components

fail. Another reason to reconfigure is a change in the operating conditions — a common

occurrence in long-lived systems.

Heterogeneous systems impose the requirement for interoperability at the platform level.

In extreme cases, the team makeup is not even known at the time of the system design,

yet cooperative operation of the individual elements is required. Unless created by a single

designer, large systems are more likely to require inter-operation.

Information accuracy is harder to achieve in domains with low signal-to-noise ratio. This

leads to the need for effective use of all available information. When low information

latency is required, communication delays becomes an issue which imposes constraints on

the acceptable network topology.

Lastly, a cautious statement can be made on the build-time properties of the SN types.
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Figure 2.9: System requirements and technical drivers for a broad range of sensor networks.

It seems that, compared to other two types, MSN’s entail an exceptionally high level of

development effort13 and a correspondingly high need for systematic code reuse [197]. The

µSN severe computing constraints do not leave any room for fancy object-oriented abstrac-

tions.14 Also, with very large-scale homogeneous installations, the economy of scale permits

custom, low-level solutions. The MRS teams are heterogenous but small, so the effort to

field a system is correspondingly lower. It is too early to tell if these implementation dif-

ferences persists.

Some general observations about the trends in solution approaches are listed in Table A.3.

Projects in the µSN and MSN categories tend to use decentralized architectures because

they are intended to be eventually used with very large teams. µSN systems have limited, if
13“Never again!” was the comment by one of the lead developers of the Centibot project on the prospects

of continuing this research. The project simultaneously fielded up to 66 indoor robots [114] (Heard by the
author during a conference presentation).

14For example, a very common MICA-2 platform has 128 KB of memory [225].
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any, information fusion, prompted by low available power. MRS approaches are centralized

or hierarchical in both information fusion and decision making. This is explained by small

team sizes and strict latency requirements imposed by the application domains.

The following sections describe related work in each SN category. In addition to describing

representative applications and solutions, some cautious generalization are made.

2.4.2 Micro Sensor Networks

Information gathering is the main task of µSN. Small unit size, long network life, and

large-scale environment coverage are critical performance metrics for this SN type. Typi-

cal applications are environment sampling, feature detection, surveillance, and monitoring.

Other applications have been suggested, such as cooperative navigation aid [79] and coop-

erative aggregation [51].

Numerous indoor and outdoor detection and monitoring applications using wireless µSN are

described in the literature [1, 28, 45, 80, 151]. The size of the individual hardware modules

range from matchbox to shoebox size. An extreme in both miniaturization and the proposed

extent of coverage is described in a study of a global weather observation system [143]. The

network is comprised of billions MEMS-fabricated sensor nodes dispersed at high altitudes

and capable of floating in the air. The system is designed to route observation to a collection

station and does not perform any information fusion itself.

Traditional AI distributed problem solving techniques have been applied to the problem of

vehicle detection and tracking [90, 125]. A hierarchical system passes the target from one

region manager to the next. Self-configuration of nodes into regions is performed on-line.

The information fusion role is “lightweight”, i.e. essentially deterministic.

The Xerox Palo Alto SN group has advocated the use of decentralized algorithms [129,

247, 248]. In dense static networks, decision making is limited to dynamically defining and

forming sensor groups based on task requirements and resource availability. The Information

Driven Sensor Querying (IDSQ) algorithm [30, 247] formulates tracking as a distributed

constrained optimization problem that aims to maximize information gain while minimizing

communication and resource usage. The task is to select an optimal subset of sensors and

an optimal order of incorporating these measurements into a belief. In order to reduce
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communication, this selection is made based upon sensor position, observation model and

predictions of contributions given the current belief.
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Figure 2.10: Information flow in a typical µSN (adapted from [3].)

Figure 2.10 illustrates the typical µSN approach to solving the DIG problem: routing

information from producers to interested consumers. The consumer may be a mobile node

or a “gateway node” capable of extracting information from the SN [214]. It is often

assumed that consumers have relatively high processing capability and are connected with

wired infrastructure [220]. Belief maintenance is typically not performed within the network

and is left up to the information consumer located outside of the sensor field. When in-

network aggregation is performed, it usually amounts to discarding duplicate observations

(see [115] and a survey in [3]). Decision making is limited to node (de)activation and is

usually not cooperative.

The most influential driver in the design of µSN networks is power [2, 103, 173]. This

is emphasized by the abundance of energy-aware routing and topology control algorithms

[51, 179, 201, 205, 228, 241]. Communication is typically multi-hop to exploit the significant

reduction in energy requirements with reduction in range [151]. High node density follows

logically from the fact that the platforms are stationary and both communication and

sensing ranges are short. In typical deployment scenarios a dense network is required to

ensure adequate coverage for both the sensing and routing functionality [179].

Two solutions to the DIG problem in static µSN are described below: Directed Diffusion,
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a routing protocol developed at UCLA, and MiLAN, sensor network middleware under

development at University of Rochester.

Network
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Figure 2.11: Information flow in a system using Network API for Directed Diffusion algo-
rithm.

Directed Diffusion (DD) [99, 100] is a data-centric routing protocol, where sensor nodes

are not addressed by their addresses but by the data they sense. It uses a publish and

subscribe mechanism to match information sources with information sinks. Information

sources advertise the data attributes of observations made while information sinks describe

attributes of the information they are interested in. The information source attributes and

information sink interests are propagated and matched throughout the network. Routing

pathways between the sources and sinks are established as shortest paths in the network

connectivity graph. Limited information fusion (“aggregation”) is possible. In practice this

usually amounts to discarding duplicate observations. Software tools allow easy integration

of sensor platforms into the network. Figure 2.11 shows information flow in a system

implementing Network API [208]. The localized interactions allow the protocol to scale

to large networks. DD scales as a function of the number of active interests present in

the network [227]. Efficiency of the DD algorithm for systems with approximately equal

number of belief sources and sinks (e.g. each platform has a source and a sink) has not been

investigated.

MiLAN [27, 77] is sensor network middleware. Figure 2.12 shows a block diagram of the
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Figure 2.12: Information flow in a system using MiLAN middleware (adapted from [77].)

system. The sensors (service suppliers) and the application (service consumer) are nodes in

the network. The middleware is the software that connects the sensors to the application

through the network. The application has two integrated modules, the data fusion module

and the decision module. The application sends its quality-of-service requirements to the

middleware. The middleware forwards the sensor observations to the application. At the

same time, MiLAN decides how best to configure the network to support the applications.

The implementation of the system is under development.

In summary, typical infrastructure consists of a large number of small homogeneous devices

with limited energy resources and computing power, and no actuators. Architecture is typ-

ically decentralized or hierarchical. Few systems utilize active platforms so there is limited

need for cooperative decision making. All routing and configuration algorithms are decen-

tralized. Some of the systems are built using a set of heterogeneous software components

which self-assemble at run-time [28, 58, 201]. Implementations are not component-based,

constrained primarily by limited on-board computing resources and development tools. The

main performance-limiting factor is the amount of available power.
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2.4.3 Multi-Robot Systems

In Multi-Robot Systems, establishing a SN dedicated to information gathering is not a goal

in itself but a prerequisite for performing a domain task. Table 2.2 lists information accu-

racy and latency as critical performance metrics of this SN type. Typical applications are

short-duration robotic missions, such as small area exploration, RoboCup games, formation

following, and robotic construction.

The RoboCup domain is a good example of a MRS. Robotic soccer players can benefit from

exchanging information about the position of the ball, the team mates, and the opponents.

Mission duration is fixed and relatively short (10 minutes). The team is homogeneous, its

size and make-up is predetermined and static. At the same time, the action is very dynamic,

with strict requirements for low latency and high information accuracy. All of this leads to

centralized or broadcast solutions to information fusion [43].

The task of multi-robot mapping has received substantial attention over the years [34,

132, 243]. Typical in many ways is a three-robot heterogeneous team15 used to explore a

large vacant building [211]. Both information fusion and decision making aspects of the

operation are fully centralized. A typical mission duration is reported to be 8 minutes. The

composition of the team does not change during the mission or from run to run.

Somewhat related is the application of indoor robotic reconnaissance missions [66, 194].

Both information fusion and control architectures are centralized or hierarchical. Forms of

Bayesian information fusion are often used. Teams are typically static, so there is no need

for run-time reconfiguration.

The field of Intelligent Spaces [14, 122, 238] is primarily concerned with micro-sensors but

some of the applications are closer to traditional robotics. For example, an interesting

application of environment sensing to direct navigation and control of indoor mobile robots

is reported in [89]. Tight latency constraints (closing navigation loops around off-board

sensors) lead to a fully centralized solution: all off-board cameras are connected to a single

computer processing all video feeds. A similar application, but without any information

fusion, is described in [121].

In distributed decision making, most efforts in robotics have focused on coordinating actions
15Systems with much higher number of robots have been fielded recently. These are covered in the next

section.
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of individual robots without explicit information fusion, for example in path planning [4].

Tighter coupling is needed in transportation and formation following [7, 65, 96]. In these

domains, control-theoretic approaches are often applied to either sensor-actuator pairs or

to strict platform hierarchies. A conceptual multi-layer architecture for the task of robotic

construction is described in [209, 210]. It combines multi-agent planning and tightly-coupled

motion control in a structure not dissimilar to the popular three-tier single-vehicle archi-

tectures [62].

Central

Processor

operator

Sensor Field

Sensor j

Planner j

Sensor i

Planner i

Figure 2.13: Information flow in a typical MRS. For larger team sizes, the centralized
architecture may be replaced by hierarchical in which case one of the platforms takes on
the role of information fusion and planning coordination.

In summary, a typical MRS infrastructure consists of a small number of mobile heteroge-

neous robots. Organization of a typical system is illustrated in Figure 2.13. The environ-

ment information is used within the sensor field by decision making algorithms which are

executed on the platforms themselves. Low latency is possible with the use of a centralized

architecture. The centralized approach also simplifies operator’s access to the global view

of the state of the system. Both information fusion and decision making algorithms are

probabilistic. Self-configuration is rudimentary because of the small team size. Possibly

for the same reason, software implementation is typically not component-based. Perfor-

mance of the system is usually limited by domain-specific algorithms and not by the task

of information gathering.
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2.4.4 Macro Sensor Networks

Information gathering is the main task of MSN. Table 2.2 lists long mission duration and

high information accuracy as the critical performance metrics for this SN type. Typical

applications are mapping, patrol and surveillance, and search and rescue.

A multi-agent approach to distributed outdoor surveillance is described in [42, 196, 216].

Environment representation is probabilistic but maps are not shared between platforms.

Mission planning is performed individually by each platform and a decentralized plan merg-

ing algorithm is used to detects and resolve possible collisions.

The scale of indoor multi-robot systems has increased significantly in recent years [94, 114].

An unusually high number of robots, at some stages of the operation up to 66, requires so-

lutions typical of Macro Sensor Networks: hierarchical implementation of both information

fusion and decision making, and self-configuration algorithms. Sophisticated probabilis-

tic algorithms for localization, mapping, and exploration were executed in a distributed

environment.

The approach to information fusion described in this thesis is based on the Decentralized

Data Fusion (DDF) algorithm [68, 181, 184, 186]. The original implementations predate off-

the-shelf wireless networking and utilized Transputers for communication (high performance

microprocessors which could be connected into a network with serial links). More recently, a

practical DDF system was developed as part of the ANSER project [163, 221]. A team of up

to three of custom-built Unmanned Aerial Vehicles (UAV) performed localization of ground

features. Environment representation was limited to points with Gaussian uncertainty. The

motion of the platforms was preplanned. The team makeup was static and communication

topology was pre-configured.

The approach to decision making described in this thesis traces back to the information-

theoretic sensor management algorithms implemented on OxNav, an indoor mobile robot

with a fully decentralized architecture [15, 26, 161]. Several fully decentralized algorithms

for assigning sensors to beacons were developed as part of that project [145]. Grocholsky

extended this approach to sparsely connected control architecture and introduced the notion

of negotiation filters [70, 71] which are used for cooperative information-based decision

making. At the same time, the approach was extended to continuous problems like path

control of sensing platforms.



2.4 Related Work 48

A similar approach is taken in [21] where decentralized Bayesian algorithms are applied to

the problem of coordinated search. A simulated system uses a fully connected architecture

whereby all sensing platforms broadcast their observations. Self-configuration is not part

of this work.

The objectives and some of the basic principles of the Tactical Component Network (TCN)

[36] are similar to the approach in this thesis. TCN advocates modular information process-

ing, in-network information fusion, and use of information within the sensor field. Most ar-

chitectural and algorithmic details, however, are unavailable due to the commercial nature

and defence application of the system.

FireMapper [87] is a commercial system developed to provide real-time updates on the

spread of forest fires. The information is gathered by manned aircraft taking high-quality

IR images of the burning forest. The system architecture is centralized, with a single ground

“fusion center”, a human operator visually overlaying the images onto a digital terrain map.

The tasking and control of the sensing platform is manual.

operator

Sensor Field
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Planner j

Sensor i

Planner i

Planner 1

Sensor m

Figure 2.14: Information flow in a typical MSN.

In summary, typical MSN infrastructure consists of a large number of mobile heterogeneous

platforms. Figure 2.14 illustrates the information flow in a typical MSN. The environment

information is used within the sensor field by the controllers and the operators. The limiting

factor is often computing power and communication bandwidth.
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2.4.5 Hybrid Sensor Networks

Combining strengths of different SN approaches is an obvious step but the theoretical and

practical aspects remain largely unexplored.

Very heterogeneous teams have been investigated in MRS applications. In an indoor appli-

cation, a 50 kg ATRV-Jr vehicle deploys and supervises a group of 11 custom-made 200 g

micro robots [194]. This design leads naturally to hierarchical information fusion and deci-

sion making architecture. In practice, this means centralized algorithms because the teams

work independently from each other.

There are also examples of heterogenous µSN’s. Em* is a software environment created

at USC for developing and deploying Wireless Sensor Network (WSN) applications [64].

Sensors run on Mica-class micro devices while processing is done on Linux-class hardware

platforms called microservers.

Distinction between energy-rich mobile platforms and energy-poor stationary sensors is

acknowledged in [214]. In this simulation, the network consists primarily of stationary

platforms, with a few mobile platforms randomly distributed through the environment.

The focus is on the routing algorithms. Communication between the stationary and mobile

platforms is optimized to minimize energy usage on the stationary nodes, which is the

limiting factor for the whole system.

The concept of mixed stationary/mobile solution is explored futher in [202]. The system

consists of low-power stationary sensors typical of µSN and mobile platforms with sufficient

power and capable communications called data MULEs. The MULEs roam the environ-

ment and “pick up” the data collected by the sensors, thus saving the energy which would

have been spent on wireless communication. Detailed algorithms are not discussed and no

implementations exist. In particular, the “MULE-to-MULE” communication is listed as

future work. This is the area where information fusion may be particularly beneficial.

2.5 Towards a Systems Approach to Sensor Network Design

Up until now, the infrastructure has been used to categorize the problem and is therefore

considered to be specified a priori. This is not an unreasonable assumption: the “hardware”
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is often chosen before the “software” due to financial, historical, or other non-technical

reasons. The choice of hardware, in turn, dictates the choice of architecture, algorithms,

and software implementation.

From the system-theoretic view point, the infrastructure was specified as a constraint in

Section 2.2.2. More appropriately it should be considered as part of the design space by con-

sidering different architectural alternatives and evaluating them against the requirements.

One approach is what is known as Architecture Trade-off Analysis Method (ATAM) [33].

Selection of the best solution generally involves some compromise, but it is best to make

this explicit.

From the description of the SN types it may appear that a particular problem admits one

of the three approaches. In some applications, however, the appropriate approach depends

on several parameters. The example below concentrates on just two performance metrics:

area coverage and cost. Notably, the issue of information quality supplied by different

platforms, sensors, and algorithms is ignored (but see e.g. [40]). A complete study of this

“system-of-systems” approach remains a topic of future work and it will likely lead to hybrid

solutions.

Example 2.1

Consider the scenario of area surveillance drawn from the flight program of Brumby UAV

as part of the ANSER program [221]. The sensing task is to monitor a rectangular area 1.2

by 1.6 km in size. The objective of this example is to evaluate alternative types of sensing

platforms in terms of overall system cost. We assume that the physical size of the platform

is not a factor in itself. Four types of platforms are under consideration: a 0.5 kg stationary

unattended ground sensor, a 15 kg ground vehicle of Pioneer class, a 500 kg ground vehicles

of Argo class, and the 45 kg Brumby UAV which was actually used to complete this task.

The platforms are likely to carry sensors of different capabilities and modalities which leads

to varying information quality. This factor is not considered in this example.

A simple model of system cost is based on the number of platforms required for full dynamic

coverage

C = Ci
Atot

Adyn
, (2.34)

where Ci is the platform’s unit cost, Atot is the total area to be patrolled, and Adyn is the

area covered by a platform in a certain amount of time (e.g. 6 minutes). The parameters
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Parameter µ-Sensor Pioneer Argo Brumby
Unit cost ($US) 200 14,000 30,000 188,000
Operating cost ($US/hr) 0 20 300 1000
Static sensor footprint (m2) 1256 10,000 10,000 1365
Typical speed (m/s) 0 1 5.5 50
Sensor sweep (m2/s) 0 160 880 8600
Dyn. sensor footprint, 6 min (m2) 1256 67,600 326,800 3,100,000

Table 2.3: Platform performance and cost parameters used in the example. The dynamic
sensor footprint is the area observed by the sensors in a certain amount of time as the mobile
platform is moving. For stationary platforms, the static and dynamic sensor footprints are
the same. For a fast low-flying UAV, the dynamic footprint is several orders of magnitude
larger than the static one. The cost estimates include sensor packages.

used in the cost model are given in table 2.3.
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Figure 2.15: Sensor network cost as a function of infrastructure type and the area to be
patrolled. The number of platforms is driven by the requirement of full area coverage every
6 minutes.

Figure 2.15 shows the estimated system acquisition cost as a function of the area to be

patrolled. The nominal area of 1.92 km2 is marked with a vertical line. For this area, a
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single aircraft is sufficient to observe the entire site every 6 minutes. The cost of the aerial

surveillance system compares well with other solutions, while for areas under 1 km2, it is

the most expensive option.
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Figure 2.16: Sensor network cost as a function of infrastructure type and mission duration.

During long-term mission maintenance costs cannot be ignored. The cost model is modified

to include the operating expenses

C = (Ci + cit)
Atot

Adyn
, (2.35)

where ci is the cost of operating one platform per unit time and t is mission duration. Fig-

ure 2.16 looks at the cost of different infrastructure options in terms of long-term operation.

The cost from Figure 2.15 for the nominal site area are taken as the initial values and

operating costs are used to plot the system cost as a function of the mission duration. Due

to its high maintenance cost, the UAV-based system becomes the most expensive option for

missions longer than 220 hours. This model does not take into account the possible cost of

replacing ground sensors whose failure rate is likely to increase with time.

This example illustrated how the choice of SN infrastructure can be an integral part of the
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design process, dictated by the task and the environment.

2.6 Summary

This chapter stated the problem of Distributed Information Gathering, described and clas-

sified related work, and identified desired solution properties.

A probabilistic reference model established the structure of the following discussion and the

notation used in the rest of the thesis. Based on this reference model, the solution space

was categorized by listing a number of options available to the designer. Five key aspects

of the solution were singled out: system architecture, information fusion method, utility

evaluation method, decision making method, and system implementation.

Based on the survey of related work, three types of systems were identified: Micro Sensor

Networks, Macro Sensor Networks and Multi-Robot Systems. The clustering is explained

by both objective drivers as well as accepted practices. This thesis aims at designing a

system which satisfies the requirements for Macro Sensor Networks.

The following chapter gives an overview of the proposed solution framework and describes

its architectural aspect. The MSN requirements will serve as a starting point to justify the

architectural choices.



Chapter 3

Active Sensor Network

Architecture

3.1 Introduction

The Active Sensor Network (ASN) framework is a system solution to the DIG problem

stated in Chapter 2. Three interrelated aspects of the system are illustrated in Figure 3.1:

architecture, algorithms, and implementation. All three aspects must be tailored to fulfill

the requirements for Macro Sensor Networks. This chapter focuses on the ASN architecture.

It describes and justifies the architectural choices and shows how these choices lead to the

fulfillment of the functional and non-functional requirements.

Large complex systems are difficult to design and, possibly, even more difficult to docu-

ment. While the design methods tend to be domain specific, the approaches to architec-

ture documentation are quite general and a large body of literature on the subject exists

[32, 88, 117, 215]. The basic approach is to describe an architecture as a set of Views —

representations of a whole system from the perspective of a related set of concerns [167].

The breakdown into views according to different methods varies in details but the results

are largely equivalent.1

The architecture description in this Chapter follows the procedure developed by Bredemeyer
1For example, the 4+1 View Model [117] distinguishes between the logical, process, physical, and devel-

opment views. Compare to the Siemens Four View model [215] with a breakdown into conceptual, module
interconnection, execution, and code views.
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Figure 3.1: Three aspects of Active Sensor Network. The importance of meta architecture
is indicated by its central position in the diagram. Note that efficient implementation of
algorithms is an important area but it is not addressed in this thesis.

Consulting [139, 141, 142]. The procedure divides the architecture description into four lay-

ers: Meta, Conceptual, Logical and Execution. For a computationally-intensive application

like information gathering, an additional, Algorithmic, layer is added. The relationship

between the architectural layers and the three aspects of the complete solution are shown in

Figure 3.1. It shows graphically that the Algorithmic and Execution architectures establish

the high-level structure of the algorithms and implementation of the system.

The hierarchy of the five architectural layers, and the associated design concepts, are shown

in Figure 3.2. This figure contains all concepts and UML symbols used in this thesis.

The term component requires some clarification, despite its heavy use in the literature

and a definition within UML. The following definition is adopted in this work: a software

component is “a unit of composition with contractually specified interfaces and explicit

context dependencies only. A software component can be deployed independently” [224].



3.1 Introduction 56

Meta-Architecture

Algorithmic Architecture

Conceptual Architecture

Logical Architecture

Execution Architecture

Node

Component Role

Service

Association

«interface»

Component

Design

Principle

Reference

Model

:Component

iP

iR

breaks up into

1..*

constrains

1..*

influences

1..*

1..*

constrains

1..*

«deploy»

1..*
«use»

1..*
«realize»

1..*

provides and
requires

1..*

1..*

plays

1..*

1

formalizes

1

1fulfills

1..*

2

participate in

1..*

Figure 3.2: Summary of the layered architectural description with associated design con-
cepts. The UML symbols in the diagram are applied consistently through the rest of the
thesis. Starting at the top, general design principles influence and constrain the reference
model, the component roles and the interactions between them. Components occupy a
central position: they play one or more roles in the operation of the system and interact by
exchanging services. Services are formally defined with interfaces. Interfaces are highlighted
as the most versatile method of specifying the architecture. Components may provide (re-
alize) or use interfaces. Finally, components are implemented as runtime software elements
(executables, libraries) and deployed onto physical hardware. Provided interfaces (iP) are
shown as circles, required interfaces (iR) as half-circles.
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In UML it is represented by a component element.2

Note that the description of the architecture in this chapter and the rest of the thesis is

strictly top-down: from guiding principles to implementation. The actual design process

was, of course, not quite so linear. There is some indication, however, that for large frame-

works, the top-down approach is more natural than bottom-up: proceeding from what is

known to what is unknown [224]. That is, the description of the target domain codified in

UML use cases is typically well understood, whereas the structure, interaction rules and

roles of the framework domain are not. Exposing this structure is precisely the goal of this

chapter.

The architecture description begins in Section 3.2 with Meta-architecture: a set of high-

level decisions that strongly influence the structure of the system. The style of the ASN

architecture is established by listing its distinguishing features: decentralization, modular-

ity, and the use of strictly-local interactions. The rationale for these choices is explained

in terms of their contribution to the fulfillment of the MSN requirements, namely large

team size, active heterogenous platforms, and long mission duration. The influence of the

meta-architecture is far-reaching: the communication and structural patterns defined here

are repeatedly applied across the architecture ensuring a consistent approach.

Section 3.3 focuses on Algorithmic architecture which is obtained by applying the Meta-

architecture items to the DIG reference model. This results in a substantial narrowing of

the design space. The main emphasis is on ensuring that the principles of decentralization,

modularity, and locality are adhered to on the algorithmic level. The resulting algorithms

follow the work of Grime [67, 68], Nettleton [163, 164], Manyika and Durrant-Whyte [145]

and Grocholsky [70, 71]. Unlike in the existing work, the system is described in a general

Bayesian form. The details of the two main algorithms, for information fusion and decision

making, are described separately, in Chapters 4 and 5 respectively.

Section 3.4 describes Conceptual architecture which begins the process of structuring the

so far monolithic system into a network of interchangeable collaborating components. The

first step is to determine the granularity appropriate for this problem, i.e. the size of the
2UML Prior to UML version 2.0 [75] there was a considerable ambiguity between the logical and physical

components. The former were usually represented with UML packages stereotyped as ¿subsystemÀ. UML
2.0 offers an improved support for component-based design by extending the use of the proper component
element to all stages of a components life cycle: from conceptual design to deployment. The new notation
is used throughout this thesis.
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atomic elements. The approach taken in this work is to select functional roles to form the

fundamental composition level. Interactions between the roles are constrained by the three

meta-architectural principles. The roles are further assigned to three largely-independent

groups: information fusion, decision making, and system configuration. Algorithmic and

functional structures are matched by mapping the algorithms from Section 3.3 to the func-

tional roles.

Logical architecture described in Section 3.5 is the detailed architecture specification. Six

representative component types, termed canonical, are introduced, each playing one or

several of the previously defined roles. Components interact by providing or requiring

services. A set of interfaces is defined to formalize inter-component services. Interfaces are

contractual obligations between service providers and service consumers and they define the

ASN framework. Component and interface definition completes the process of decomposing

the system into its building blocks. Next, the components and the interfaces are put back

together to demonstrate how the use cases of the DIG problem are realized. The important

question of the degree of decentralization in information fusion and decision making is

revisited and illustrated with canonical components.

Section 3.6 is dedicated to describing canonical components. The mapping of roles to com-

ponents is not unique, but practical experience has shown that the six components are

sufficient for implementing a wide range of systems. All simulation and experiments de-

scribed in this thesis are implemented with these canonical components. The description

of components makes a clear distinction between component specification and realization:

a single component specified by the interfaces it provides and requires may have multiple

realizations. This property combined with interface invariance makes components substi-

tutable: any realization compliant with a component specification may be “plugged” into

the system.

Section 3.7 considers the case when the freedom of realization is insufficient and there is

a need to create custom components. This is done by modifying the existing or creating

entirely different specifications. Three common approaches to creating custom components

are discussed: functional integration of several canonical components, addition of extra

functionality, and grouping of canonical components into super-components. In all three

cases, the list of provided and required interfaces is modified. What remains unchanged are

the interfaces themselves. Among other benefits, it preserves inter-operability between the
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canonical and custom components.

Execution architecture described in Section 3.8 specifies how components are mapped to

execution elements and how the execution elements are mapped to the physical hardware.

The overall code structure is also considered. In all aspects of implementation, the emphasis

is on ensuring that the three design principles are followed. This leads to the choices of

decentralized infrastructure, arbitrary deployment, and a code structure with minimal inter-

dependencies.

3.2 Meta-Architecture

This section establishes the guiding principles of the architecture. The influence of the

meta-architectural items is far-reaching as they are applied to every aspect of the system:

architectural, algorithmic, and implementation. The principles are chosen in response to

the architectural requirements of the MSN version of the DIG problem listed in Table 2.2:

large team size, active heterogenous platforms, and long mission duration. The following

meta-architectural items have been identified

1. Decentralization

2. Modularity

3. Locality of interactions

In general, these principles are quite common.3 The novelty lies in applying them system-

atically to the sensor network domain. Each principle addresses several of the technical

drivers as shown in Figure 3.3. The three principles are discussed in turn below. The ra-

tionale for adoption of a particular principle is explained in terms of its contribution to the

fulfillment of the MSN requirements.
3In software engineering terms, an architectural style consistent with these design constraints is called

Communicating Processes (CP) [8, 203]. This style employs independent processes with asynchronous
control and sporadic data flow. Process independence implies modularity. Arbitrary topology is allowed
including decentralized. On-line configuration can be achieved by specifying run-time bindings between
processes. This style classification predates the modern definition of components but can be easily extended
to accommodate it.
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Figure 3.3: Requirements, drivers, and solution principles for an active sensor network. The
requirements and drivers are a subset of those shown in Figure 2.9 corresponding to the
MSN problem. The solution principles are the ASN meta-architecture items. Different line
thickness is used to enhance readability.

3.2.1 Principle of Decentralization

Compared to centralized and distributed systems, a decentralized system is characterized

by the following constraints [145]:

1. No component is central to the successful operation of the network. In other words,

all components have equal status and the connections between them are peer-to-peer.

2. The infrastructure does not provide or rely on central facilities or services. This must

apply to all aspects of the system: communication, user interaction, name and service

lookup, timing, etc.

The resulting system offers a number of advantages over other architecture types in the

area of scalability, fault tolerance, and reconfiguration.

Decentralization leads to scalability of system resources. In centralized systems, growth is

limited by the capability of the centralized service providers. The server limit is inevitably

reached at a certain system size and further growth is impossible without an upgrade. In

decentralized systems, each incremental increase in size is accompanied by a corresponding
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increase in resources. From the point of view of architecture, this approach is scalable: it

allows the system to retain its functional capacity despite increase in size.

Decentralization leads to fault tolerance. Since no element of the system is mission critical,

the system can survive run-time loss of individual components. In the limit of a large

self-sufficient installation without any centralized infrastructure to rely on, a decentralized

system appears to “live in the network”. When this is achieved, the entire system can exist

without a support center and is virtually impossible to shutdown.4

Building systems which are decentralized in every respect is difficult and compromises must

often be made in practice.5 Different functions of the system may use different topologies.

For example, the information fusion part of a system may be fully decentralized but the

time synchronization service might remain centralized (via GPS) or hierarchical (via NTP

protocol). Different topology may be present at different levels of abstraction. Networks,

for example, are designed in layers [57] and what appears to be a peer-to-peer link at the

session layer, may in fact be (efficiently) implemented using broadcast on the transport

layer.

3.2.2 Principle of Local Interactions

The benefits of sparsely coupled systems are exploited in many domains, from Finite El-

ement Analysis, to Bayesian networks [172] and graphical games [109]. The fundamental

premise is that an element of the system interacts with only a small subset of all elements

of the system, thus simplifying design and analysis. The principle of local interaction ad-

dresses three of the five technical drivers: communication and computational scalability,

and reconfiguration.

Decentralization is not effective if the services are blindly duplicated on each platform but

the interaction pattern with other platforms remains essentially centralized. To guarantee

scalability, direct interactions of each platform must be limited to a subset of the team

in its immediate neighborhood. If the number of communication links a platform must

maintain does not change with the network size, the goal of communication scalability may

be achieved.
4This is a boon to the military, file-swapper, and free-speech activists alike, who seek survivable [157],

“un-suable” [174], and “un-censorable” [31] systems respectively.
5Examples of compromises can be found outside of sensor networks as well: the internet’s Domain Name

Service (DNS) is peer-to-peer in protocol design but, in practice, it uses a strong sense of hierarchy [154].
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In message-oriented interactions an extra step must be taken to ensure communication

scalability. Even if the number of communication links does not change with network

growth, the number of messages will if each platform forwards all incoming messages to its

neighbors. To ensure scalability, messages arriving from one of the platform’s neighbors

must be combined before being passed on to the other neighbors. In this case, the number

of messages and the computations required to process them does not grow with the size of

the network.

Locality has a positive affect on non-decentralized interactions as well. Centralized services

may be acceptable in practice if they are made sufficiently local. Nevertheless, all examples

of (centralized) client-server relationships will be carefully examined, to ensure that they

do not become obstacles to scalability.

Locality of interaction makes the task of reconfiguration easier. Local connections do not

require the knowledge of the global network topology. This has a positive effect on the

naming and routing services, as the bandwidth and storage required to maintain the name

look-up and routing tables remain constant.

3.2.3 Principle of Modularity

The modular design principle is used in all engineering disciplines. The basic idea is to take

a large problem and decompose it into subproblems with only limited interaction. The hope

is that the subproblems are easier to solve than the original problem. In particular, the

modular approach has a long tradition in software design where it offers development time

reduction due to parallel efforts, easier software maintenance due to module independence,

and improved comprehensibility due to imposed structure [171]. When applied to the

solution of the DIG problem, the modular approach addresses three of the five technical

drivers: interoperability, reconfiguration, and fault tolerance.

Modularity leads to interoperability: heterogeneous hardware and software modules can

communicate and interoperate when appropriate protocols are defined. A modular approach

handles heterogeneous teams quite naturally. In fact, heterogeneous modules become in-

terchangeable and even indistinguishable if they use and expose the same interfaces which

hide the physical nature and identity of the individual modules.

Modularity promotes on-line reconfiguration in response to the changing environmental
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conditions. A modular system must be able to configure itself on start-up. A run-time

reconfiguration often becomes an extension of the start-up procedure. Modularity combined

with system description creates an opportunity for system composition — combining and

recombining elements of the system to achieve the desired performance. Only functional

composition is addressed in this thesis. No attempt is made to predict or control the

resulting performance although the required extension seems quite natural.6

Modularity contributes to fault tolerance by confining failures to individual modules. Some

effort is required to avoid module failures from spreading in a “domino effect”. If this is

achieved, the system may retain partial functionality and full recovery is possible if the

system can reconfigure in response to failures.

Furthermore, modularity on the architectural and algorithmic levels allow exceptional mod-

ularity on the implementation level. In this light, there is a good match between the ASN

philosophy and a software development paradigm known as Component-Based Software

Engineering (CBSE) [76, 224] or Component Based Development (CBD) [35, 116]. The

vision of CBSE is one of constructing software from pre-defined building blocks, called com-

ponents. These may be custom-built or off-the-shelf and are “wired together” at run-time

in arrangements unforeseen by the original component developers. The main driver behind

CBSE is the promise of systematic code reuse [197], which addresses an important build-

time system quality: time and cost to implement the system. Code reuse is not directly

addressed in this thesis, other than noting that architectural and algorithmic modularity

may have positive influence on the build-time qualities of the system, such as reusability

and reliability.

Finally, it may appear that there is a contradiction between the roboticist’s desire to modu-

larize and the more holistic approach of AI. The main difference between the fields appears

to be in the approaches to creating an autonomous system. Fully integrated “intelligent”

systems are envisioned to evolve, learn, emerge or otherwise come about with minimum

human intervention. If, on the other hand, a complex autonomous system is to be de-

signed, engineered, programmed or otherwise handcrafted, then there are few alternatives

to modularization.7

6See [40, 78] for related work.
7Another possible resolution of the conflict is in looking at the problem on a different level: while humans

may not be modular, human organizations certainly are (each person is expected to contribute a set of
resources to the team, not the least: a brain).
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3.3 Algorithmic Architecture

This section revisits the DIG problem statement and applies the ASN meta-architecture

items to the DIG reference model of Section 2.3. This process imposes certain constraints

and defines a family of algorithms acceptable within the ASN framework. Methods for three

critical aspects of the reference model remain to be specified: belief fusion, utility fusion,

and policy selection. The ASN “philosophy” for each of the three aspects of the solution

are outlined first.

Belief fusion philosophy. There are at least four approaches to decentralized belief

fusion. An individual platform can

1. communicate all observations or beliefs to all other platforms [21, 182, 183];

2. communicate some (appropriate) observations to some (subscribing) platforms [99,

100];

3. communicate all beliefs to some (neighboring) platforms [67, 68, 163]; or

4. communicate some (appropriate) beliefs to some (querying) platforms [190, 244].

The first approach is not suitable for ASN because the interactions between platforms are

not local. The second approach is not modular. Scalability properties of the fourth approach

have not been fully investigated. Thus in terms of belief fusion this thesis follows the third

approach of Grime and Nettleton called Decentralised Data Fusion [67, 68, 163, 164] because

it is decentralized, modular, and all interactions are local.

Utility fusion philosophy. In terms of utility fusion, this thesis follows the approach of

Grocholsky in separating the platform’s partial utility into the team utility of belief quality

and local utilities of action and communication [70, 71]. The advantage of this approach is

that the expected future beliefs, just like in the current beliefs, are easy to combine through

belief fusion. Thus the difficult problem of utility fusion is circumvented by fusing future

expected beliefs and not the partial utilities themselves.

As a result of this approximation, the main objective is achieved: this approach allows

decentralized, modular, strictly-local cooperative decision making. The downside is that the

potential coupling between individual actions and messages is ignored because the utilities
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of action and communication remain local. Even without this coupling, the approximation

produces suboptimal results in heterogeneous teams because the cost of local action and

communication is not accounted for on the team level.

It is worth emphasizing that inherent in the reference model definition is the notion that

utility coupling is the only source of action coordination. Coupled dynamics and constraints

are two common alternatives. Coupled dynamics give rise to tight cooperation typical for

formation following and manipulation [7, 65, 96, 210] as well as (non-robotic) decentralized

control [168, 195]. Distributed constraint satisfaction techniques [245] have been applied to

modular robots as well [60, 160, 161]. Tightly coupled cooperation is not part of the DIG

problem but some constraints can be incorporated into the utility formulation by means of

penalty functions.

Policy selection philosophy. The communication and action policies are chosen by

maximizing expected values. The field of distributed decision making is very broad and

a complete survey is beyond the scope of this work. Two basic approaches to solving the

value maximization problem are possible:

1. Function maximization of the entire policy mapping at once: from all possible be-

lief states to all possible actions. This approach is typical for some Reinforcement

Learning algorithms [222].

2. Point maximization for one particular state8 [70, 71, 144, 145].

The first option is problematic because of the large state and action spaces typical of DIG

problem. Thus in terms of policy selection, this thesis follows the second approach of

Manyika and Grocholsky [70, 71, 144, 145].

Having stated the three big “philosophical” choices, the elements of the reference model are

considered in turn eliminating the options not compatible with the ASN design principles.

The result is a high level algorithm description, the algorithmic architecture, expressed in

terms of the elements of the reference model.
8In decision theory this is known as decision rule [16].
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3.3.1 Communication

There are three main questions to answer: with whom to communicate, what to communi-

cate, and when to communicate. The first two questions are considered here. The question

of when to communicate is addressed as part of the communication policy. When consider-

ing the question of with whom to communicate, the main concern is about which platforms

to communicate with. This is because in solving the DIG problem, platforms are the units

of deployment and the metric of scalability is defined in terms of the number of platforms.

With whom to communicate. Based on the principle of decentralization, all inter-

platform communication in ASN is restricted to peer-to-peer mode. Based on the principle

of locality, all inter-platform communication is limited to the platform’s local neighborhood

ηi. All messages from platform i must be addressed to a platform j within its neighborhood,

{mk
ij}j∈ηi , where ηi ⊂ α. The definition of neighborhood is application specific. For system

using wireless communication links, distance between platforms is a critical factor, but other

considerations, such as platform type, are possible.

What to communicate. Based on the principle of modularity, the messages exchanged

by the platforms must be understood by all other members of the team without knowing

the specifics of the communicating platform’s state, internal models, etc. The only universal

language understood by all platforms is the world belief. This includes observation likeli-

hoods and current and future world beliefs. These are defined as probability distributions

on the world state space X and can be shared between platforms. Raw observations zk
i ∈ Zi,

on the other hand, cannot be easily shared between platforms because each platform has a

potentially different observation state space.

Combining the two principles together, an ASN platform is limited to transmitting its local

world belief bk
xi to other platforms in its local neighborhood.9 The set of messages sent by

platform i to platform j ∈ ηi consists of local world beliefs, current and future, and a null

message

Mij = {bk
xi, b

k+n,k
xi ,∅}. (3.1)

The null message is included to allow a platform a choice not to communicate at any given

time. The sets of available communication messages are identical between platforms because
9Thereby, communication in ASN is used only for expressive functions (e.g. my state, my beliefs) as

apposed to conative (e.g. do this, answer my question), referential (e.g. third party’s states) or others. [54].
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the messages are defined on the environment state space, so Mij = Mji.

3.3.2 Belief

In terms of belief maintenance, two questions are of importance: what type of beliefs

a platform maintains and which ones are synchronized with the rest of the team. The

second question has already been addressed in Section 3.3.1: only beliefs on the world

state are communicated and, therefore, synchronized. The belief about the platform itself

is maintained locally. Each platform knows with certainty which local actions have been

taken or are planned (not necessarily their results) and which messages have been sent or

are planned (not necessarily received by the intended recipient).

Thus, while the reference model is open-ended in terms of the types of beliefs a platform

may have, only two types of local beliefs are supported in ASN: the state of the world and

the platform’s own state: bk
i ∈ Bi = Bxi × Bpi. And only one of them, the belief about the

world, is synchronized on the team level.

Local world belief. Following the DIG problem statement, the environment states are not

affected by the platforms’ actions. A platform’s belief about the environment is based on

the prior information, the history of local observation, and the history of messages received

from the team members

bk
xi = P(xk | x0, Zk

i ,Mk
αi). (3.2)

When using Equation 3.2, the principle of modularity is not satisfied in the multi-sensor

case because each sensor s on platform i may have a different observation space, zk
is ∈ Zis.

From the point of view of modularity, the sensor model expressed as a likelihood function

in Equation 2.7 is preferred because the distribution on the world state is independent

of the observation space Zi. Observation likelihoods can be considered as sensor beliefs,

bli : X → <, because a likelihood can always be used to obtain a proper belief by combining

it with an uninformative prior. The likelihood function is then a mapping from the state of

the world, platform state and action, to the sensor belief, Li : X × Pi ×Ai → Bli.

When redefined in terms of sensor beliefs, a platform’s belief about the environment is now

based on the prior information, the history of local observation likelihoods, and the history
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of messages received from the team members

bk
xi = P(xk | x0, Bk

li,M
k
αi). (3.3)

The general belief update function Di was defined in Equation 2.9 in terms of the previous

belief, an observation, and a communicated message

bk+
i = Di(bk

i , z
k
i ,mk

αi). (3.4)

Observations are now replaced with observation likelihoods and messages are constrained

to only those containing external world beliefs. For convenience, the belief update function

Di can be separated into two parts: DiL : Bxi × Lxi → Bxi, which combines observation

likelihoods with local beliefs, and DiB : Bxi ×Bxj → Bxi, which combines local beliefs with

beliefs communicated from another platform. When an observation likelihood bk
li arrives,

the local belief bk
xi is updated using an iterative belief update function

bk+
xi = DiL(bk

xi, b
k
li). (3.5)

When a message from another platform arrives containing an external belief bk
xj , the local

belief bk
xi is updated using an iterative belief update function

bk+
xi = DiB(bk

xi, b
k
xj). (3.6)

Team belief on world state. Communication between two platforms leads to fusion

(synchronization) of their beliefs about the state of the world. If all platforms are connected

to the network, then individual pair-wise exchanges lead to synchronization of the entire

team belief. As a result, local beliefs bk
xi are the same as the team belief bk

xα

bk
xα = {bk±δ

xi }i∈α, (3.7)

where δ is the maximum communication delay in the system. The delay depends on many

factors including the network topology. The future expected belief is synchronized in the

same way as the current belief, i.e. the future belief is the same among the platforms to
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within a communication delay δ

bk+n,k
xα = {bk+n,k±δ

xi }i∈α. (3.8)

Belief on platform state. A platform’s belief about its own state is based on prior

information and the history of local observations and actions (messages about platform

states are not exchanged)

bk
pi = P(pk

i | p0
i , Z

k
i , Ak

i ). (3.9)

The actions of platforms are assumed to be decoupled: platform actions affect only its own

states, Fi : Pi ×Ai × Pi → <. As in the case of the world belief, the belief about the state

of the platform is updated by making observations. The corresponding observation model

and the belief update function are not stated explicitly because they are confined to the

individual platforms.

3.3.3 Expected Utility

In Chapter 2 it was assumed that the utilities of action UA and communication UM are

decoupled (Equation 2.22). The utility function proposed by Grocholsky [70, 71] further

distinguishes between the utility UB, which depends only on the state of the environment,

and UA, which assigns a cost to local actions in the context of the current state of the

platforms and the environment

ρk = UB(xk) + UA(xk, pk
α, ak

α) + UM (xk, pk
α,mk

α). (3.10)

The partial expected utility based on local belief bk
i is then

ρ̃k
i = Ebk

i {UB + UA + UM} = J̃B(bk
xi) + J̃A(bk

xi, b
k
pi, a

k
i ) + J̃M (bk

xi, b
k
pi,m

k
ij). (3.11)

For the purposes of planning, the expected utility must be predicted into the future by

basing its evaluation on the predicted future belief, ρ̃k+n,k
i = Ebk+n,k

i {UB + UA + UM}.

The belief utility UB depends only on the quality of the belief about the world and not on

the true world state itself. As the world belief is synchronized network-wide according to
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Passive Active
Isolated bk

xi bk
xi, bk+n,k

xi

Coordinated bk
xα bk

xα, bk+n,k
xi

Cooperative – bk
xα, bk+n,k

xα

Table 3.1: Types of ASN systems classified by synchronization mode. The types are de-
fined based on the environment beliefs they hold. Passive systems do not make plans and,
therefore, do not cooperate.

Equation 3.7, so is the belief utility

ρk
αB = {ρ̃k±δ

iB }i∈α. (3.12)

This utility synchronization provides a mechanism for coupling platforms’ actions. Through

communication, the platforms approximate expected belief utility Ebk
α {UB} with partial

belief utility Ebk
i {UB}. The approach is the same for beliefs about the current and future

state of the system. The advantage is that, just like the actual information, the expected

future information is additive. Partial utilities ρ̃k
iB are not transmitted because, in general,

they cannot be added together [147].

Table 3.1 lists three different types of ASN systems based on their access to the environment

belief according to Grocholsky [70, 71]. Passive systems maintain current belief only, while

active ones plan ahead. Isolated systems maintain local beliefs only. Coordinated systems

access current team beliefs, but the plans remain local. Cooperative systems have access

to both current and future team beliefs. The expression for utility is different for the three

active system types listed in Table 3.1.

Isolated. A platform makes decisions in isolation from the team, relying on local informa-

tion only. The team utility at time tk+n is approximated based only on local observations Zk
i

made up to the current time tk and local observations expected to be made up to time tk+n.

The planned observations are based on planned local actions Ak+n,k
i which are implicitly

included here,

ρ̃k+n,k
iB = J̃B(bk+n,k

xi | Ak+n,k
i ) (3.13)

ρ̃k+n,k
iA = J̃A(bk+n,k

xi , bk+n,k
pi , ak+n,k

i | Ak+n,k
i ). (3.14)

An isolated platform does not communicate so the utility of communication is not defined.
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Coordinated. A platform makes decisions based on the team belief and local plans. The

team utility at time tk+n is approximated based on actual observations of the entire team

Zk
α up to the current (planning) time tk and local observations Zk

i planned to be made up

to time tk+n. The heterogeneous nature of platforms is reflected in the utilities of action

and communication by specific to individual platforms.

ρ̃k+n,k
iB = J̃B(bk+n,k

xi | Ak
α, Ak+n,k

i ) (3.15)

ρ̃k+n,k
iA = J̃A(bk+n,k

xi , bk+n,k
pi , ak+n,k

i | Ak+n,k
i ) (3.16)

ρ̃k+n,k
iM = J̃M (bk+n,k

xi , bk+n,k
pi ,mk+n,k

ij | Ak+n,k
i ,Mk

αi,M
k+n−1,k
ij ) (3.17)

Cooperative. A platform makes decisions based on the team belief and plans. The team

utility at time tk+n is approximated based on the observation of the entire team Zk
α up to

the current (planning) time tk and planned to be made up to time tk+n.

ρ̃k+n,k
iB = J̃B(bk+n,k

xi | Ak+n,k
α ) (3.18)

ρ̃k+n,k
iA = J̃A(bk+n,k

xi , bk+n,k
pi , ak+n,k

i | Ak+n,k
i ) (3.19)

ρ̃k+n,k
iM = J̃M (bk+n,k

xi , bk+n,k
pi ,mk+n,k

ij | Ak+n,k
α ,Mk

αi,M
k+n−1,k
ij ) (3.20)

3.3.4 Expected Value

The expected value of policies πiA and πiM is a sum of partial belief, action, and commu-

nication utilities

Ṽ K
i (πiA, πiM ) =

K∑

t=0

ρ̃k+t,k
iB +

K∑

t=0

ρ̃k+t,k
iA +

K∑

t=0

ρ̃k+t,k
iM . (3.21)

Only the partial belief utility ρ̃k+t,k
iB is synchronized across platforms. This formulation

requires the future belief to be maintained at multiple points from the current time to a

time horizon {bk+1,k
xα , bk+2,k

xα , ..., bk+n,k
xα }. It offers maximum flexibility and allows the decision

maker to give preference to the plans which anticipate better belief quality at an earlier

time. The downside is an increase in complexity and communication requirements. The

evaluation is simplified if the belief value is calculated only at the time horizon and the
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action value remains integral

Ṽ K
i (πiA) ≈ ρ̃k+K,k

iB +
K∑

t=0

ρ̃k+t,k
iA +

K∑

t=0

ρ̃k+t,k
iM . (3.22)

3.3.5 Policies

Following the decision rule approach, the communication and action policies are chosen at

every decision point.

Communication policy. The communication policy has to choose between two available

options: transmit the local belief or not. The decision is confined to the part of the lo-

cal belief which has changed due to local observations or messages from neighbors. The

communication policy is chosen to maximize a single-step expected value

π∗iM = max Ṽ 0
i (πiM ). (3.23)

The communication utility are defined in Equations 3.17 and 3.20 depending on the sys-

tem type. Grocholsky proposes to use the mutual information gain associated with the

communication message for evaluating the utility of transmission [70].

The decision can be made by specifying a minimum threshold ρmin for the utility of trans-

mission, set for example to zero

πiM : mk
ij =





bk+n,k
i if ρ̃k+n,k

iM > ρmin

∅ otherwise.
(3.24)

Another possibility is to specify a threshold for the belief quality on the consumer side

[36]. Only when the estimated belief quality drops below the threshold, the information

provider transmits an update. A simpler approach is to specify the maximum communi-

cation bandwidth allocated to each channel. All transmission temporarily stops when the

allocated bandwidth is exceeded. Note that for all of these possible approaches, the com-

munication policy is the same for all platforms, {πiM}i∈α = πM , even though the expected

communication utility J̃M is platform-specific.

Action Policy. The action policy is chosen to maximize a generally multi-step expected
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value

π∗iA = max Ṽ K
i (πiA). (3.25)

The design space of action policy selection is very large and multi-dimensional. Two aspects

of the solution are discussed briefly here: 1) length of planning horizon and 2) continuity

of the utility function. Chapter 5 focuses entirely on the decision making algorithm.

The 1-step planning horizon problem can be solved by simply enumerating the alternatives,

evaluating the expected value, and choosing the best one. The N-step problem is more

complicated because it requires dynamic programming [17], i.e., the outcome of the first

step determines the options for the second one, and so on. The nature of utility has a

strong influence on the required planning horizon. Domains with terminal rather than

integral utility generally require longer planning horizon.10 RoboCup is an example of a

domain with predominantly terminal utility function, i.e. scoring a goal. A combination

of terminal payoff with a high degree of noise in observations and actions makes this field

particularly challenging.

If the utility function is discontinuous (actions are truly discrete and not discretized), there

is no alternative to evaluating the expected value corresponding to all possible actions and

selecting the best one. Destination-based exploration policy in the multi-platform case

becomes essentially a target assignment problem [156, 211, 243].

If the utility function is assumed to be smooth, optimization can be done numerically or, in

some cases, analytically. An example of solving the DIG problem with twice-differentiable

performance measure using Newton’s method is discussed in [70]. Even in the cases where

the utility function is locally smooth, it is of course still possible to discretize the action

space, evaluate all discretized options and pick the best one [20, 52].

3.3.6 Algorithm Illustration

To illustrate the algorithm, a single cycle of its operation is considered. The operation

is divided into two stages: the execution stage, with communication and action policies
10Different research fields use different terms to describe the same concern. The terminology adopted

here, integral vs. terminal payoff, is used in differential game theory [101]. In machine learning: the utility
function is non-zero for a “large” number of state-action pairs resulting in a sparse reward function [213]. In
the theory of negotiations: application domains are classified as worth-oriented vs. task-oriented [192]. In
multi-agent systems: “a goal is neither black nor white, but rather has a degree of achievement associated
with it” [124].
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already determined, and planning, in which the policies are selected.

Execution stage. Figure 3.4 shows the execution stage of the algorithm. A boundary

separates the platform from the environment (below) and from the rest of the team (above).

The true states of the world and the platform, xk and pk
i , are unknown. Platform’s belief

bk
i is at the center of the diagram. It contains exactly two types of beliefs: belief about the

world bk
xi and belief about the platform’s own states bk

pi. Interaction with the world happens

in two ways: observations zk
i cross the boundary inward and actions ak

i cross the boundary

outward.
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Figure 3.4: Execution stage of platform activity. The policies 〈π∗iA, π∗iM 〉 are already selected.
The asymmetric filled-diamond connector indicates containment, i.e. the belief is divided
into beliefs about the world and platform states. Rectangles designate variables, rounded
rectangles designate mappings.

The platform receives an observation zk
i generated by an unknown function of the true

system states and the previous action ak−1
i . Based on the observation and the known

previous action, the likelihood model Li produces an observation likelihood bk
li. At the same
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time step tk, the platform receives a message mk
ηi from a platform in the local neighborhood

which contains its own world belief bk
xj .

The local world belief needs to be updated. The previous belief bk−1
xi is first predicted

forward using the feature belief prediction function G′
i and then updated using the belief

update function Di. The updated belief bk+
xi is based on the predicted belief bk

xi, the latest

observation likelihood bk
li, and the communicated belief bk

xj . The belief about the platform

itself is predicted forward using the belief prediction function F ′
i and possibly updated with

local observations (outside of the ASN framework). The updated belief bk+
pi is based on the

predicted belief bk
pi, the previous action ak−1

i , and possibly on observations.

The current message mk
iη and action ak

i are chosen based on the current belief bk
i , using

a pair of fixed policies 〈π∗iM , π∗iA〉. The message mk
iη is sent to one or more platforms in

the neighborhood. The action ak
i is executed locally. This completes the description of the

execution stage. It remains to describe how the policies are chosen.

Planning stage. The planning process depends on the nature of the utility function,

the time horizon, and synchronization mode. For concreteness, the procedure is described

for the case of a discrete utility function, zero-step look-ahead (n = 1), and cooperative

synchronization mode. Figures 3.5 and 3.6 illustrate the planning stage of platform activity.

A boundary separates the platform from the rest of the team. The belief in the center of the

planning process is the future expected belief bk+1,k
i . Just like the current belief, it consists

of two parts: the expected world belief bk+1,k
xi and the expected belief about state of the

platform bk+1,k
pi . As the belief under consideration is in the future, the current true state of

the world does not directly influence the planning process, i.e. the boundary between the

world and the platform is not crossed.

In cooperative mode, the solution process is iterative. All stages of negotiation occur before

proceeding to the next execution step tk+1. Figure 3.5 illustrates a single stage l of the

negotiated cooperative solution. The current and future beliefs, bk
i and bk+1,k

i , are fixed and

the platform has to choose its action policy πl
iA. For each feasible action ak+1,k

i , two partial

utilities are evaluated, J̃iB and J̃iA. The solution procedure chooses the action policy πl
iA

which maximizes the expected value over a single step. The chosen action is compared with

the action from the previous stage and an appropriate test for convergence is applied. If

the policy selection process has converged, the system enters execution stage in Figure 3.4.
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If convergence is not achieved, the observation plan corresponding to the latest action

choice is communicated back to the team. Figure 3.6 shows the information flow to and

from the team. The world belief update function Di is the same as in Figure 3.4. Local

future likelihood bk+1,k
li is based on the action al

i chosen in the current negotiation stage.

Messages from the team ml
ηi arrive in the form of external future world beliefs bk+1,k

xj .

The communication policy weighs the partial utility J̃iM of sending a message ml
iη. After

completion, the system enters the next stage of negotiation in Figure 3.5.

In summary, the main differences between the ASN algorithmic architecture and the general

DIG problem statement are the following

1. Inter-platform communication is strictly on a peer-to-peer basis, mk
ij not mk

i∗ (follow-

ing the principle of decentralization).

2. Inter-platform communication is limited to the platform’s local neighborhood ηi,

{mk
ij}j∈ηi with ηi ⊂ α (principle of local interactions).

3. Only beliefs on the world state are transmitted between platforms: including ob-

servation likelihoods, current beliefs, and future beliefs. In information fusion, this

means that raw observations defined on Zi are not transmitted. In decision making, it

means that actions defined on Ai and platform states on Pi are not transmitted. Thus

the difficult problem of utility fusion is circumvented by fusing planned observation

likelihoods and not the utilities (principle of modularity).

3.4 Conceptual Architecture

The previous section described the ASN approach in its entirety but, despite best efforts,

the description did not make it easy to grasp the system as a whole. It serves as an example,

unintentionally, of how the complexity of a large framework may appear unmanageable. The

problem can be traced, at least in part, to the presentation style which describes a large

system as a flat non-hierarchical structure.11 This section and the rest of the chapter are

concerned with partitioning the ASN framework into components in order to make it easier
11Possibly approaching the limits of human short-term memory which can reportedly hold seven, give or

take two, items at a time [153].
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to understand, implement, and use. The conceptual architecture described here begins the

process by directing attention to an appropriate decomposition of the system.

Section 3.4.1 considers module granularity appropriate for this system — the size of the

atomic elements. The approach taken in this work is to select functional roles as the

fundamental structural level which are identified in Section 3.4.2. Interactions between the

component roles are constrained by the meta-architectural principles.

The roles are grouped into three largely independent functions: information fusion, decision

making, and system configuration. The reason, again, is primarily to allow independent

analysis, design, and description. Each functional group is discussed separately in Sec-

tions 3.4.3–3.4.5. In these Sections, the algorithmic and functional structures are matched

by mapping the algorithms from Section 3.3 to the appropriate component roles.

3.4.1 Partitioning Criteria

Having made the decision to design a modular system, the question arises as to what the best

partitioning criteria are. The classic advise, attributed to Parnas, is to choose components

which are highly cohesive internally (serve a single purpose) and loosely coupled (have

few external connections) [171]. Practically, the process of modularization reduces to the

questions of what is contained in a module and what type, kind, and quantity of connectors

are employed. The size of the modules, or component granularity, is an important factor

for reasons of design, implementation, deployment, marketing, legal, etc.12

One natural level of granularity in the DIG problem is the scale of the sensing platforms

themselves. The physical collocation of platform’s hardware and software imposes a certain

level of cohesiveness. At the same time, the physical separation between the platforms and

the outside world creates a natural boundary, or a membrane, with a limited and defined

set of inputs and outputs [54]. This boundary naturally decouples the platforms from each

other.

While platforms seem to satisfy the requirements for module definitions, the ASN architec-

ture opts for finer-grained components for two reasons: algorithmic and composition. The

reference model revisited in Section 3.3 reveals considerable structure in the DIG problem

at the sub-platform level of granularity. From the point of view of system composition,
12A variety of factors which may be considered in choosing the level of granularity are discussed in [224].
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the smaller the size of the modules, the higher the total number of possible permutations,

and the more freedom a designer has in recombining the modules. Thus the modules of

sub-platform granularity are preferred, implying that the platform architectures themselves

should be modular.

On the other hand, very fine-grained modules have disadvantages as well. Intuitively, the

amount of development effort needed to integrate a set of modules grows with the number

of modules. Other issues related to software development process suggest that the module

size should be larger than a class [35, 149].

The optimal size of atomic elements appears to lie somewhere between the scale of compiled

objects and platforms. The approach taken in this work is to select functional roles as

the fundamental building blocks. The actual deployable components are constructed by

combining these building blocks.

3.4.2 Functional Decomposition

Partitioning the system into modules begins by identifying possible component roles in

relation to the data types exchanged within the system. The data is first grouped into

three categories:

1. Current world belief, including beliefs bk
xi ∈ Bx and observation likelihoods bk

li ∈ Bx.

Both are distributions on state space of the environment X.

2. Future (planned) world belief, including beliefs bk+n,k
xi ∈ Bx and planned observation

likelihoods bk+n,k
li ∈ Bx. Both are also distributions on X.

3. Action plans to time horizon tk+n: Ak+n,k
i = {ak+1,k

i , ak+2,k
i , ..., ak+n,k

i }, where ak
i ∈

Ai.

For each of the three data categories, four component roles are considered: source (pro-

ducer), sink (consumer), fuser (aggregator), and distributor (transmitter). Table 3.2 shows

the matrix of possible combinations between the data types and component roles. The

check-marked entries of the table correspond to the ten component roles recognized within

the ASN architecture. The table highlights the difference in how the world belief and ac-

tion plans are treated. Network-wide synchronization of the world beliefs requires all four
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Data type Component role
Source Fuser Distributor Sink

Current world belief (“Belief”) X X X X
Future planned world belief (“Plan”) X X X X
Future planned actions (“Action”) X X

Table 3.2: Component roles with respect to data types. Abbreviated names for each data
type are shown in parentheses. Ten check marks correspond to all component roles possible
within the ASN architecture. Action plans are kept local so their distribution is not needed.
Fusion of action plans is typical in behavior-based robotics but is not implemented in ASN.

component roles. The action plans are local to individual source-sink pairs and, therefore,

do not need to be distributed and fused.

When used as part of role names, the data types names will be abbreviated. “Belief” will

stand for “current belief about the world”, “plan” for “future planned belief about the

world”, and “action” for “future planned action”. To make the reference clear, compo-

nent roles will be set in italics, for example belief source. Figure 3.7 shows the ten roles

implemented in ASN. All ten are derived from (are specializations of) an abstract ASN

Component role.

ASN Role

Belief Source Belief Fuser Belief 

Distributor

Belief Sink

Plan Source Plan Fuser Plan Distributor Plan Sink

Action Source

Action Sink

Figure 3.7: Component roles in ASN. Each role corresponds to a check mark in Table 3.2.
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Figure 3.8: The relationship between component roles in ASN. The top four component roles
related to forming beliefs are grouped into the task of information fusion. The eight roles
related to action selection and execution are grouped into the task of decision making. All
component roles participate in the task system configuration. Action fuser and distributor
roles are not used in ASN but their place in the diagram is indicated for completeness.
The sensing and actuation hardware is shown to indicate the physical coupling between the
actions and observations.

Figure 3.8 shows the same ten roles and the relationships between the roles. Interaction

between the roles is shown using a UML Class diagram.13 It is convenient to separate

the activities in which a platform is engaged into three task groups:14 information fusion,
13UML A Class diagram captures the logical structure of the system – the classes and things that make up

the model. It is a static model, describing what exists and what attributes and behavior it has, rather than
how something is done. [223] Roles in association can have multiplicities specified.

14The term layer is intentionally not used in this context in order not to imply a sense of special structure
between the tasks (e.g. similar to the Open Systems Interconnection reference model [57]).
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decision making, and system configuration. Membership of component roles in the first

two groups is shown as dashed boundaries. All component roles participate in the task of

system configuration, so this grouping is not shown.

The three functional groups are identified because their operation is largely independent

from each other. By considering the functional groups separately, the design, description,

and implementation of the overall architecture is simplified.

Connectivity is the second distinguishing feature: the three groups have different reasons

for interaction which may lead to different communication patterns between platforms and

components. For example, several platforms observing the same part of the environment are

likely to be engaged on the information fusion level. At the same time, the decision makers

on the same platforms, negotiating future plans, may be communicating with a different set

of team members. Meanwhile, the reconfiguration algorithm may be discussing a change in

topology with yet another set of components.

In addition to the three task groups described above, it is easy to envision addition of

functional groups operating at higher levels of abstraction. On the information fusion side,

additional groups may correspond to the higher levels of the JDL fusion model [130], for

example situation awareness. On the decision making side, a “task management” group is

a good candidate intended for task allocation, scheduling, and cooperative execution [126].

These activities go beyond the scope of the ASN framework and the DIG problem and

would lead towards more general-purpose decentralized systems.

In the rest of the section, each of the three functional groups is considered separately. The

possible interactions between the component roles are further constrained by applying the

ASN design principles. At the same time, the independently derived algorithmic and func-

tional structures are matched by mapping the algorithms from Section 3.3 to the component

roles from this section.

3.4.3 Information Fusion Task

The information fusion functional group includes all tasks related to the maintenance of

the current belief: perception, update, storage, synchronization, and delivery to consumers.

Four component roles participate in this function: belief source, fuser, distributor and sink.
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Figure 3.9: Class diagram for the task of information fusion. This is a subset of Figure 3.8.

Figure 3.9 shows a segment of Figure 3.8 focusing on the four component roles participating

in information fusion. The function of extracting information from raw observations and

fusing them into a local belief bk
xi requires two component roles: belief source and belief fuser.

Following the principle of modularity, all observations are processed locally at each belief

source. This modular approach allows heterogeneous sensors to be incorporated easily:

each belief source has access to its own observation model, but the belief fuser does not

need to know it. Sensor-specific observations are translated into the form understood by

everyone — a likelihood defined on the state of the environment. In this form, communicated

information can be interpreted and fused without any knowledge of its source.

A strict many-to-one relationship exists between the sources and the fusers to ensure that

the information from belief sources is not counted twice. As with any non peer-to-peer

relationship, there is a danger that, with the network growth, this relationship becomes

the bottleneck of system performance. To ensure that this does not happen, the number

of belief fusers must grow with the number of belief sources. The ultimate decentralization

of information fusion is achieved when a dedicated belief fuser exists for each belief source.

This may not always be practical, but the architecture and the algorithms must be able to

accommodate this option. In practice, a fuser may limit the maximum number of sources,

based on its communication and computational capacity.

The function of delivering the current belief bk
xi to interested consumers involves two compo-

nent roles: belief sinks request information from the fusers. A fuser can provide information

to several sinks implementing a one-to-many relationship. To ensure proper scaling, the

number of fusers must grow with the number of sinks. The maximum number of sinks

supported by a single fuser may be limited, based on the hardware limitations.
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The function of belief synchronization requires two component roles: belief fuser and belief

distributor. Connections between distributors form the backbone of the ASN framework.

The information exchanged between distributors is in the form of their local beliefs bk
xi and

bk
xj . From the principle of decentralization, the links between distributors are strictly of

peer-to-peer type. From the principle of local interactions, the number of links each dis-

tributor maintains is limited and the maximum number is constant. The following example

illustrates the ASN approach to information fusion.

Platform b

Platform a
Platform i

1 :Belief Sink

i :Belief Fuser

1 :Belief Source

i :Belief Distributor

a :Belief Distributor

b :Belief Distributor

a :Belief Fuser

c :Belief Fuser

1: fuseObservation(L1)

2: setQoS

2.1: updateBelief(bi)

3: sendBelief(ba)

3.1: sendBelief(ba)

3.2: fuseBelief(ba)

4:  bi:= getBelief

4.1: sendBelief(bi)

4.2: sendBelief(bi)

5: sendBelief(bb)

5.1: fuseBelief(bb)

5.2: sendBelief(bb)

Figure 3.10: Communication diagram illustrating the task of information fusion. Three
communicating platforms are shown. Belief distributors (highlighted) form the backbone
of the system synchronizing beliefs of fusers on different platforms.

Example 3.1

Consider an example with three platforms. Message exchange between platforms is shown

in Figure 3.10 as a UML Communication diagram.15 Each software object in the diagram

plays one of the information fusion roles in Figure 3.9. The objects are grouped by platform

boundaries. The description follows the order of messages starting with message group 1.

Platform i contains a belief source which sends a likelihood to a local belief fuser (mes-
15UML A Communication diagram shows the interactions between elements at run-time. The inter-object

relationships are visualized by showing the messages passed between the objects. Communication messages
should be ordered to reflect the sequencing of the diagram. The numbering scheme should reflect the nesting
of each event. A sample sequencing scheme could be 1, 2, 2.1, 2.2, 3. This would indicate events 2.1 and 2.2
occur within an operation initiated by event 2. [223] In this notation event 2 is equivalent to event 2.0.
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sage 1). A belief sink request information from the belief fuser (2) and starts receiving

belief updates (2.1). The three belief distributors form an inter-platform network by estab-

lishing peer-to-peer links. The belief distributor a sends belief updates to belief distributors i

and b (3, 3.1). On receipt, belief distributor i forwards it to its local belief fuser for fusion

(3.2). To send its own belief update, belief distributor i first obtains current belief from the

local belief fuser (4) and sends it to belief distributors a and b (4.1, 4.2).

Note that in this example the distributors formed a cyclic network. This detail is an impor-

tant consideration for some belief update methods and will be further discussed in Chapter 4.

To summarize, when expressed in terms of component roles, the scalability of information

fusion in ASN stems from three design choices:

1. Belief fusers fuse only local observations and remote observations are not communi-

cated. As more belief sources are added, the number of observations to be processed

does not increase.

2. Belief distributors communicate with a limited number of other distributors. As the

network grows in size, the number of communication links maintained by each dis-

tributor does not increase.

3. Belief distributors receive belief updates from neighboring distributors. They are fused

with local beliefs and the combined belief is sent to the neighbors. Regardless of the

number of incoming messages, each distributor transmits a single outgoing message

which contains all new information. Consequently, as the sensor network grows in

size, the amount of information communicated by a distributor remains constant.16

The last design constraint makes it necessary for every platform to contain a belief fuser even

if no local observations are made. Without the ability to fuse incoming beliefs, a distributor

is simply a router of beliefs. This situation is reminiscent of the approach taken in the

Directed Diffusion algorithm [100] where in-network aggregation is absent or minimal and

the platforms route observations to interested belief sinks. The following example illustrates

a system without in-network aggregation. Note that while this example shows a system not
16In the field of µSN, this property is known as in-network processing [128].
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typical of ASN it does demonstrate the use of component roles to describe a very different

approach to solving the DIG problem.

Platform b

Platform dPlatform c

Gateway a

a :Info Distributor

a :Info Sink

b :Info Distributor

c :Info Distributor d :Info Distributor

b :Info Source

c :Info Source d :Info Source

a :Info Fuser

1: setQoS(qa)

1.1: sendQoS(qa)

1.2: sendQoS(qa)

1.3: sendQoS(qa)
1.4: sendQoS(qa)

2: sendObs(zd)2.1: sendObs(zc)

2.2: sendObs(zd)2.3: sendObs(zc)

2.4: sendObs(zd)

2.5: sendObs(zc)

2.6: fuseObs(zc)

2.7: fuseObs(zd)

2.8: update(ba)

Figure 3.11: Information distribution using Direction Diffusion algorithm. Belief distribu-
tors (highlighted) route observations from sources to sinks. Information fusion is performed
only at the gateway platform.

Example 3.2

The network consists of three sensing and one gateway platforms. Network topology and the

messages exchanged are shown in Figure 3.11. A gateway platform is shown on the left.

It contains a belief sink which registers its interests with a local belief fuser (message 1).

From here the interests are propagated through the network until reaching every platform

(1.1–1.4). Some time later, the belief sources c and d observe an event which matches

the interests of the gateway node. They transmit these observations nearly simultaneously

through the network back to the gateway (2–2.5). Because there are no belief fusers in the

network, the observations are not combined and the belief is not stored within the network.

Both observations arrive at the gateway belief fuser (2.6, 2.7). Here they are combined into

a belief ba and forwarded to the belief sink (2.8).

This example is intended as a simple illustration and the reality of µSN is more complex. For

example, multi-path routing, maintained by most routing algorithms for robustness, would

lead to multiple copies of the observations arriving at the gateway. Some algorithms attempt

to discard multiple observations, which does cut down the communication traffic but does
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not constitute fusion.

The approach described in this section leads to important operational properties from the

point of view of an individual platform. If the communication link between two belief distrib-

utors is suspended, the belief fusers on both platforms simply accumulate locally obtained

information. When the communication link is reopened, the total locally accumulated belief

is communicated in a single message. This allows operation with intermittent communi-

cation and provides a degree of flexibility even when the links are reliable. If a platform

is disconnected from the network due to signal loss or jamming, it can be re-introduced

later and information can be synchronized in a single step. Burst transmission of accu-

mulated data can be employed on purpose in order to reduce communication bandwidth

requirements.

3.4.4 Decision Making Task

The decision making functional group includes all tasks related to generating, evaluating,

selecting, and synchronizing action and observation plans. A total of eight component roles

participate in this function: two related to current beliefs, belief source and sink, all four

associated with future beliefs, and two associated with actions, action source and sink.

Figure 3.12 is a segment of Figure 3.8 showing interactions between the eight component

roles participating in decision making. The function of controlling actuators requires two

component roles: action source and action sink. A single action source can issue commands

to one or several action sinks.17 To ensure proper scaling, the number of action sources

must grow with the number of action sinks. The ultimate in decentralization of decision

making is achieved when a dedicated action source exists for each action sink. This may

be impractical in reality, but the architecture and the decision making algorithms must be

able to accommodate this option.

The function of evaluating local utility associated with action plans requires five component

roles: belief, plan, and action sources, as well as belief and plan sinks. Observations are

made by belief sources. The proposed control actions affect observations of one or several
17The role of an “action fuser” is effectively avoided by not allowing many-to-one relationships between

action sources and sinks. See question mark in Table 3.2.
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Figure 3.12: Class diagram for the task of decision making. This is a subset of Figure 3.8.

belief sources. This relationship is typically associated with the physical actuators and

sensors being on the same platform. Feasibility of alternative action plans depends on the

current state of the world provided by the belief source. Different observations lead to

different expected future beliefs about the environment. The utility of observations in a

team scenario depends on plans of other platforms. The combined team belief about the

future state of the world is provided by the plan sink. In summary, action sources select an

action plan based on the states of the action sinks, the properties of the belief sources, the

relevant states of the environment maintained by the belief sink, and the anticipated future

states of the environment maintained by the plan sink.

Following the principle of modularity, the utility of action plans is evaluated locally by

plan sources. Different platforms have different sensors and actuators. A modular approach

allows heterogeneous active platforms to be incorporated easily: each plan source knows the

properties of its own hardware, but the plan fuser does not need to. As a result, platforms

cooperate without knowing specifics of each other’s capabilities. Platform-specific action

and observation plans are translated into the form understood by everyone — a probability
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distribution on the state of the environment. In this form, communicated information can

be interpreted and fused without any knowledge of its source. As with current beliefs, the

relationship between plan sources and plan fusers is many-to-one and the number of fusers

must keep up with the number of sources for scalability.

Delivery and distribution of future beliefs parallels that of current beliefs. The function of

delivering future beliefs to interested consumers involves two component roles: plan sinks

requesting information and plan fusers supplying it. As with current beliefs, the relationship

between plan fusers and plan sinks is one-to-many and the number of fusers must keep

up with the number of sinks for scalability. Plan synchronization is accomplished by the

collaboration between plan fusers and plan distributors. Locality in information access leads

to sparse network topology and peer-to-peer connections between the distributors.

Platform j

Platform i

i :Plan Fuser j :Plan Fuser

i :Plan Distributor j :Plan Distributor

2 :Action Sink

i :Action Source

1 :Belief Source

i :Plan Source

i :Plan Sink

i :Belief Sink i :Belief Fuser

1:  Hi:= get_model

1.1:  Fi:= get_model

1.2: get_belief(QoS)

1.3: get_plan(QoS)

2: belief(bi)

3: plan({bi})

4: send_plan({bj})

4.1: update_plan({bj})

4.2: send_plan({bi})

4.3: update_plan({bi})

5: get_belief

5.1: get_plan

5.2: withdraw_plan(bli)

5.3: fuse_plan(bli)

6: set_plan(A)

6.1: set_state

Figure 3.13: Communication diagram illustrating the task of decision making. Plan distribu-
tors (highlighted) synchronize observation plans between plan fusers on different platforms.
The system makeup and topology on platform j may be different from platform i. The rest
of component roles on platform j are not shown for lack of space.

Example 3.3

Consider an example with two active platforms. Messages exchanged by modules within and

between the platforms are shown in Figure 3.13. The plan source on platform i requests the

actuation and observation models from the local belief source and action sink (messages 1

and 1.1). Belief and plan sources request the current and planned beliefs from the corre-
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sponding fusers (1.2, 1.3). In response to the request, the fusers start sending asynchronous

updates to the sources (2, 3). The future belief updates between the plan distributors and

plan fusers follow the pattern already seen in Example 3.1: each update received by the plan

distributors (4) is fused by the plan fusers (4.1). At decision time, the plan source i obtains

the current and future beliefs from the sources (5, 5.1) and produces the action and obser-

vation plan based on all locally available information. If the new plan is different from the

previous one, the old plan is withdrawn (5.2) and the new local observation plan is submitted

to the plan fuser (5.3). If the negotiation has converged, the platform enters execution stage

by sending commands to the action sink (6, 6.1).

To summarize, cooperative decision making in ASN is based on synchronizing observation

plans. The algorithm and structure of this aspect of decision making closely parallels that

of belief synchronization with all ensuing scalability properties.

3.4.5 System Configuration Task

System configuration is responsible for initialization and maintenance of component con-

nections in a distributed system. All component roles participate in system configuration,

either at start-time, or run-time, or both.

Typical stages of the network configuration process are discovery, selection, addressing,

monitoring, and disconnection. During the discovery phase, a new component is looking for

required services. Once a service is found, its availability and performance is monitored. If

the service is lost or its performance is unacceptable the component returns to the service

discovery phase. Common reasons for reconfiguration are addition, exit and especially

failure of components; motion of platforms and environmental features; changes in operating

conditions, etc.

Because all inter-platform communication in ASN is addressed (not broadcast), finding

physical addresses of other components is an important part of the configuration process.

The directory services are typically organized into two categories, similar to White and

Yellow Pages.18 A naming service converts a service name into a physical address. A trader
18CORBA middleware refers to these as Naming and Trading services respectively [72, 74].
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Figure 3.14: Class diagram for the task of system configuration.

service converts a service description into a physical address. Following the principle of

decentralization, no centralized naming or trading services are used in ASN. In Figure 3.14

this is indicated by the absence of any external or centralized task managers, system config-

uration servers, etc. Components playing a particular role discover, connect, and disconnect

from each other without any help from the infrastructure. Unlike with other associations,

multiplicity of this relation is unspecified.

3.5 Logical Architecture

The conceptual architecture presented in the previous section began the process of partition-

ing the system by defining component roles. This section describes the logical architecture

— a detailed architecture specification. Section 3.5.1 introduces a set of six components

used in the examples and experiments. The components are considered standard for ASN

are are called canonical. Each component type plays one or several component roles. The

interaction between the components is captured in the services which they provide to each

other. Interfaces which formalize the services are defined in Section 3.5.2.

Component specifications make the architecture tangible, but based on the practical ex-

perience with ASN, an architecture defined in terms of services and interfaces is more

flexible. It offers a broader range of implementable systems compared to an architecture

defined in terms of concrete component types. For this reason, the component listing in Sec-

tion 3.5.1 should be considered descriptive, whereas the listing of interfaces in Section 3.5.2

prescriptive.19 In other words, the interfaces become the definition of the architecture. In

Section 3.6, the canonical components are formally specified in terms of the interfaces they

provide and require.
19This view echoes Jonkers, who promotes interface-centric over component-centric architectural descrip-

tions [104].
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Component Belief Plan Action
Type Source Fuse/Dist. Sink Source Fuse/Dist. Sink Source Sink
sensor X
node X X
actuator X
planner X X X X
ui X X X X
frame

Table 3.3: Canonical components and the roles they play. Multiple check marks in the
same row indicates that some inter-role relationships are internalized within a component.
frame does not participate in information fusion or decision making but is required for
localization and other platform-specific tasks.

The process of decomposition of the system is now complete and attention is turned to

composition. Section 3.5.3 combines the components and the interfaces to show how the

use cases of the DIG problem are realized in ASN. Section 3.5.4 returns to the question of

the degree of decentralization in information fusion and decision making. This important

issue was already raised in Sections 3.4.3 and 3.4.4. It is revisited because the idea is easier

to illustrate using the definitions of canonical components.

3.5.1 Canonical Component Types

Ten component roles were identified in Section 3.4.2. It is possible, in principle, to build a

system with ten component types using one-to-one mapping between roles and components.

Some roles, however, are tightly coupled and combining several into a single component is

more efficient. Six component types form a representative list: node, sensor, actuator, plan-

ner, user interface (UI), and frame. These components will be called canonical. Component

names are set in small caps for clarity, for example sensor.

Table 3.3 shows the mapping of canonical components to the component roles. Multiple

check marks within a row indicate that some inter-role relationships are internalized within

a single component. For example, the planner combines four tightly coupled roles related

to generating and evaluating action plans. The same role-to-type mapping is presented

graphically in Figure 3.15 using the generalization relationship.

A sensor plays the role of belief source. It represents one or more physical sensing devices.

It performs the task of perception by processing raw measurements obtained from the
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Figure 3.15: Mapping of component types to roles. Canonical components are shown using
the UML component symbol.

physical sensors.

A node plays the roles of belief fuser and distributor. It is responsible for updating, storing,

synchronizing, and distributing the current belief about the world. In the task of decision

making it also plays the roles plan fuser and distributor. It updates, stores, synchronizes,

and distributes the expected future beliefs about the environment.

An actuator plays the role of an action sink. It represents one or more physical active

devices. It ensures that the action plans are executed.

A planner is responsible for generating action plans in cooperation with other controllers.

In this function it plays the roles of a belief and plan sink, as well as action and plan source.

A ui manages interactions between a human operator and the network. It plays the roles

of belief source and sink and plan sink. It can also control actuators directly and is,

therefore, an action source. It translates between the human inputs and requests and the

probabilistic representation of the sensor network.

A frame represents the physical platform. Its main responsibility is to perform self-

localization in the global coordinate system and to make its pose available to other compo-

nents. Note that frame does not participate in information fusion or decision making.

The six components have different responsibilities, require access to different information to

operate, and encapsulate different parts of the reference model. Table 3.4 shows the mapping
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Component Type G P A F M Z H B D U T πM πA

sensor X X
node X X X X X
actuator X X X
planner X X X
ui X X
frame X

Table 3.4: Probabilistic reference model mapped to canonical components. Sparse entries
highlight modularity of the system (just over one fifth of the cells are check-marked).

of the elements of the reference model to component types. Modularity of the architecture

is apparent from the sparsity of the table. Observation models are confined to sensor

and ui, actuation model to actuator. Fusion algorithm, feature models, messages, and

communication policy are the responsibility of node. Utility, time horizon, and actuation

policy are the domain of planner. Platform state is shared between actuator and

frame.

The mapping of roles to components is not unique. The term canonical is meant to remind

that the list of six components is not exhaustive. A valid component can play any number of

roles (from one to all ten). It would be possible, for example, to redefine planner, instead

of node, to play the roles of plan fuser and distributor.20 Practical experience has shown

that the list of six canonical components, as defined here, is sufficient for implementing a

wide range of systems solving the DIG problem.

3.5.2 Service Interfaces

Component interaction is captured in the services which they provide to each other. In-

terfaces formalize inter-component services. Technically, an interface is “a set of named

operations that can be invoked by clients” [224]. In other words, it is a specification of

behavior that an implementer agrees to meet. The agreement is binding, i.e. an interface is

a contract and by implementing an interface, a component guarantees to support a specified

behavior.

In principle, every one of the thirteen associations shown in Figure 3.8 can give rise to
20The rationale for not doing so is the following. Because some of the platforms are likely to be passive,

the density of nodes is higher than the density of planners, so the probability of preserving network
connectivity is also higher.
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Figure 3.16: Associations mapped to service interfaces and shown as UML interfaces. Four
associations are not shown as they are internalized within components: sync belief, sync
plan, equivalent, based on. Three interfaces do not participate in information fusion or
decision making Localized, Connecting, Detailed (the last one is not shown).

an inter-component service. Canonical components internalize some of the interactions for

efficiency, so the actual number of services is lower. Mapping from associations to service

interfaces is shown in Figure 3.16. Out of thirteen associations appearing in the structural

diagram, five are implemented as services. The ubiquitous system-configuration service is

also included. An additional service which provides platform pose is added. Thus the total

number of services is eight.

The description of services provided below includes name, responsibilities, associated inter-

face, assumptions, and key algorithms [92]. Interface definition in ASN is object-oriented,

meaning that each interface has a data object associated with it. The mapping of interfaces

to data objects is summarized in Table 3.5. Following a convention, interface names are

adjectives. For clarity, they will be capitalized and set in italics, for example Informed.

The observation fusion service (Fusing interface) is used by belief sources to contribute

their observations to the network for fusion. This service must implement a fusion algorithm

which is described in detail in Chapter 4. The same interface accepts future observations, as

part of decentralized decision making described in Chapter 5. The interface is identical for

both robotic (sensors) and human (uis) sources of information. The incoming data object

is observation likelihood, bk
li. As a special case, the same interface propagates deterministic

information through the entire system. In particular, it can be used to adjust the utility
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Interface Data Object
receive transmit

Fusing bk
li –

Informed – bk
xi

Linkable bk
xj bk

xi

Observing – Hi

Controlling ak
i Fi, bk

pi

Localized – bk
pi

Connecting – –

Table 3.5: Interface definition in terms of data objects received and transmitted by the
component which implements the interface. Note that only the data flow objects are shown.
A separate configuration flow is possible for all interfaces. For example, the Fusing interface
can transmit details of the global coordinate system and the Informed interface can receive
QoS requests concerning the environment information it transmits.

weights used in decision making.

The environment information service (Informed interface) is used by belief sinks, both ro-

botic (planners) and human (uis). Note that a sink needs to connect to a single, most

easily accessible component which provides this service. Information originated in other

parts of the network is automatically accounted for through the process of information fu-

sion. The outgoing data object is the local belief about the state of the environment bk
xi.

Quality of Service (QoS) requests may be used to specify the scope and desired quality of

the information request. In particular, a component may be interested in the entire belief

or an estimate based on the belief. Both current and future beliefs can be accessed through

this service.

The belief synchronization service (Linkable interface) is used by belief distributors to ini-

tialize, maintain, and repair peer-to-peer communication links with each other. This service

requires an algorithm for pair-wise synchronization of beliefs on the connected nodes. The

data flow is bidirectional, with local belief bk
xi sent and external belief bk

xj received.

The sensor access service (Observing interface) describes the sensing capabilities of the

platform using a domain-specific model. It is used for the purposes of sensor management

and platform control. The model Hi may include observation function, sensing constraints,

observation costs, etc. As an example of the interface usage, planners use the sensor model

to plan actions and observations.

The actuator access service (Controllable interface) describes the actuation domain-specific
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model. The actuator can be a simple motion device or a sophisticated platform. The

outgoing data objects are the actuation model Fi and the current relevant state bk
pi. The

model Fi may include control influence functions, control and state constraints, actuation

costs. The same interface is used to send commands to the actuator for execution. The

incoming data object is an action ak
i . For example, a planner can request the actuation

model, the current state, and, having made a decision, send back a control action for

execution.

The localization service (Localized interface) provides components with information on the

platform’s position in the world. The outgoing data object is the platform’s position in the

global coordinate frame. Implementation of the interface requires a localization algorithm

which is intentionally left unspecified. Observation preprocessing is an example of the use

of this interface: sensors use the platform pose estimate and the known sensor offset to

convert observations from a local to the global coordinate frame.

The most commonly used service is system configuration (Connecting interface). In a

decentralized system, this functionality must be implemented by each component.21 Key

algorithms for the typical stages of network configuration include service discovery, selection,

addressing, connection and disconnection.

Finally, the Detailed interface is used to communicate component status to the ui for the

purposes of debugging, compiling global topology, performance metrics, etc. Each compo-

nent implements this service. Enabling this service significantly increases communication

requirements but it is invaluable during the design and validation stages of system devel-

opment.

3.5.3 Use Case Realizations

After the service interfaces are defined, it is possible to describe in detail how the DIG use

cases in Figure 2.4 are implemented in ASN. That is, having decomposed the system, it is

time to take a look at how the different pieces fit together.

Figure 3.17 shows a realization of the Operator use case with three canonical components.

An operator interacts with a ui component to access the information available to the net-
21Implementation of this service is typically encapsulated within a component model, which “defines specific

interaction and composition standards” available to and required of component instances [76]. For a review
of the three general-purpose component models in use today, see [131].
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Informed

UI

ACTUATOR

Controllable

Figure 3.17: Realization of the Operator use case. Compare with the use case definition in
Figure 2.4. In this and the following UML structural diagrams, a circle symbol is used for
interfaces. Dependency relationships are shown as dashed arrows.

work through the Informed interface. The operator can also contribute new information

in the form of observation likelihoods through the Fusing interface. Direct teleoperation is

allowed by connecting to an actuator through the Controllable interface. The concept

of local interactions limits the application of the teleoperation scenario to the immediate

neighborhood of the human operator. To overcome this limitation, distribution of actions

needs to be implemented (see Table 3.3).

SENSOR

Observing

FRAME

Localized

NODE

Fusing

Informed

Linkable

PLANNER ACTUATOR

Controllable

Phenomenon

observes

Figure 3.18: Realization of the Collect Information use case. Compare with the use case
definition in Figure 2.4.

Figure 3.18 shows a realization of the Collect Information use case. As expected, all ASN

interfaces are engaged in implementing this central use case. sensors submit their ob-

servations to nodes using the Fusing interface. For observation preprocessing, sensors

need platform position obtained through the Localized interface. nodes connect to each

other and exchange beliefs using the Linkable interface. planners get the beliefs about the

current and future state of the environment from nodes through the Informed interface.
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Observation models are accessed by planners through the Observing interface. planners

issue actions to actuators through the Controllable interface.

ASN COMPONENT

Connecting

Figure 3.19: Realization of the Configure System sub-case. Compare with the use case
definition in Figure 2.4.

Figure 3.19 shows a realization of the Configure System use case. Each component imple-

ments the Connecting interface which allows navigation through the interfaces provided by

remote components.

A closer examination of Figures 3.17–3.19 reveals that the ASN implementation with canoni-

cal components satisfies the acyclic dependency principle (ADP) [149] . This software design

principle states that the dependencies between a set of software elements should not form

a cyclic graph. The original version applied only to the build-time dependencies between

source-code packages. Collins-Cope proposes to extend the principle to run-time depen-

dencies between executable components [35], arguing that if two components cannot be

deployed separately because they require each other to run, then they should be combined

into a single component. Although compliance with the ADP is not an explicit design goal

for ASN, the acyclic property of run-time dependencies certainly simplifies the deployment

procedure.22

3.5.4 Degree of Functional Decentralization

The concept of variable degree of decentralization was brought up in Sections 3.4.3–3.4.4

in the context of component roles and scalability of their interactions. This section revisits

this important topic because the idea is easier to illustrate using the definitions of canonical

components.
22An argument against strict compliance with ADP is that a component may retain partial functionality

when not all of its dependencies are satisfied. In UML, the required interfaces are those required by a
component in order to “offer its full set of provided functionality” [75] (author’s emphasis). This is different
from the situation with source-code which cannot be “partially compiled”.
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Figure 3.20: The range of decentralization options in the task of information fusion. On
the left, a fully centralized system has one node for all belief sources: sensors and uis.
On the right, a fully decentralized system has a dedicated node for each belief source.

Figure 3.20 shows two topological extremes in structuring information fusion: fully central-

ized and fully decentralized. On the left, all belief sources, sensors and uis, submit their

observations to a single node. An information fusion system cannot be more centralized.

On the right, every belief source connects to a dedicated node. The nodes, in turn, link

to each other. In this case, the system cannot be more decentralized.

Figure 3.21 applies the same logic to the decision making function of the network. Fully

centralized topology on the left has a single planner generating commands for all action

sinks. In the fully decentralized case on the right, each action sink has a dedicated planner.

All planners are shown connected to a single node for clarity.

A system in which both the information fusion and decision making tasks are fully decentral-

ized is shown in Figures 3.22. Every platform now has its own sensor, node, planner,

and actuator. The nodes on different platforms connect to each other and exchange

beliefs.

Optimum degree of (de)centralization depends on many factors including the state of the

environment and the relative costs of computation, communication, and storage for each

platform. As most of these factors are unknown a priori and are not constant, an architec-

ture must be flexible enough to allow a range of different topologies depending on the task,

resources, and operating conditions. Global optimality is hard to achieve and is not an
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Figure 3.21: The range of decentralization options in the task of decision making. On the
left, a fully centralized system has one planner for all actuators. On the right, a fully
decentralized system has a dedicated planner for each actuator.

objective of this work. As with other large, complex networks, the structure of the sensor

network arises naturally during the network growth [11]. Connection decisions are made

one at a time and are based on local partial information. More capable and reliable nodes

with cheaper power, processing, and communication resources will accept more connections

and become the hubs of the network.

In this context, it may also be possible to include on-demand activation of components as

part of system’s self-configuration. Consider as an example the system on the left side of

Figure 3.20. If spare computing resources are available, it may be beneficial to activate a

second node which will take on some of the processing load. This type of self-organization

is likely to require new algorithms to be developed.

3.6 Canonical Components

Section 3.5.1 informally described the grouping of roles into component types. Section 3.5.3

showed how the canonical components cooperate to realize the DIG use cases. This section

defines the canonical components by listing the interfaces which they provide and require.

Table 3.6 shows a summary of the interfaces provided and required for all six canonical
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Figure 3.22: A system fully decentralized in both information fusion and decision making.

components. The Connecting and Detailed interfaces are widespread and therefore are not

shown. The Connecting interface is provided and required by all components. Detailed

interface is provided by all components and is required by the ui.

Component Localized Linkable Fusing Informed Observing Controllable
frame •/◦
node ◦ •/◦ • •
sensor ◦ ◦ •
actuator ◦ •
planner ◦ ◦ ◦ ◦
ui ◦ ◦ ◦ ◦

Table 3.6: Canonical component types and the interfaces they provide (•) and require
(◦). Connecting and Detailed interfaces are not listed because they are provided by all
components.

Component descriptions in this section cover functionality, specification, and realization.

The black-box view of a component is its specification. It contains enough information to

allow the component to be “wired” into the system but hides the implementation details.

The white-box view of a component exposes the internal structure of its realization. It

shows how the internal parts are connected to the external interfaces. Where applicable,
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additional constraints and limitations, some algorithmic detail, and other implementation

details are listed. Note that by virtue of being a replaceable element, a component may

have multiple realizations [75], all compliant with its specification. For this reason, the

realizations described in this section are shown for illustration only.

3.6.1 Frame

The frame component is responsible for platform localization, communication, power mon-

itoring, and safety. The black-box specification of frame is shown in Figure 3.23. A frame

interacts with the rest of the system through two ports23: it requires the Hardware interface

and provides localization services through the Localized interface.

FRAME

Localized

Hardware

Figure 3.23: Specification of the frame component. Squares correspond to ports which
contain required or provided interfaces. Circle notation is used for provided interfaces,
half-circles (sockets) for required.

A frame’s primary responsibility is to maintain the belief about platform’s location mea-

sured in the global coordinate system. The localization mechanism is intentionally left

unspecified. The Localized interface shields the consumers of the data from the details of

localization algorithm.

The hardware port connects to sensors, actuators, etc. As a minimum, a frame needs

to access platform’s hardware to perform localization. For a particular implementation of

frame component, the Hardware interface describes the hardware which is assumed to be

present. This interface is not listed as part of the ASN definition because it is strictly local,

i.e. all hardware is accessed within the same platform.
23UML A component’s port specifies a distinct interaction point between [the component] and its environ-

ment [75]. Port’s type is determined by the set of provided and/or required interfaces associated with it.
Any connector to a port must have the matching interfaces.
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FRAME

LocalizerHardware Abstraction

Hardware

Localized

Figure 3.24: A possible realization of the frame component.

A possible frame realization is shown in Figure 3.24. Examples of localization algorithms

are GPS, beacon-based, sensor-based, SLAM, stationary pre-configured, etc. Hardware is

typically accessed through a hardware abstraction layer.

3.6.2 Node

The node component is responsible for fusing information supplied by belief sources and for

distributing it throughout the network. As part of this task, it performs belief prediction,

data association, and belief update. The nodes do not generate or use the information they

store, rather they make it available to others.

NODE

:Linkable
[1..N]

Fusing

Informed

Linkable

Linkable

Figure 3.25: Specification of the node component. A node can be connected to several
other nodes through the Linkable interface. Communication through the Linkable interface
is peer-to-peer and the information flow is bidirectional, i.e. each Linkable port provides
and requires the Linkable interface.

The black-box specification of the node component is shown in Figure 3.25. A node
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interacts with other components through four types of ports which provide the Fusing,

Informed and Linkable interfaces and require the Localized interface. Multiple Linkable

ports are possible.

Both the Fusing and Informed ports implement the server function in a client-server (many-

to-one) connection. The Fusing port can accept multiple clients each submitting observation

likelihoods. The main flow of information is incoming. The Informed port can accept

multiple clients each receiving updates on the state of the environment. The main flow of

information is outgoing. The maximum number of clients for both client-server links can

be configured.

Each of the multiple Linkable ports implements one side in a peer-to-peer connection. The

communication traffic is bidirectional and symmetric. The connection through each port

can be initiated internally (the interface is required in this case) or from the outside (the

interface is then provided). The maximum number of Linkable ports can be configured.

NODE

:Linkable
[1..N]Local Filter [1] Channel Filter [1..N]

TopologyManager 

[1]

Informed

Fusing
Linkable

Linkable

Connecting Connecting

Figure 3.26: A possible realization of the node component. Multiplicity of the Linkable
port and the corresponding Channel Filter part is N .

The main internal subsystems of the node are shown in Figure 3.26. The responsibilities

of the subsystems are indicated by the interfaces they realize.

The Local Filter is responsible for fusing observations submitted by belief sources and main-

taining a local belief on the current state of the environment. It realizes two interfaces: Fus-

ing and Informed, used by belief sources and sinks respectively. The Local Filter generates
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state estimates on the basis of observed, predicted and communicated information. Other

infrastructure such as Channel Filters and the topology manager exist only to support the

proper functioning of the Local Filter.

The Channel Filter is responsible for maintaining a link (or channel) to other nodes. It

implements the Linkable interface. The Channel Filter serves one purpose: it maintains

the state of the link between two directly linked nodes. As will be shown later, common

information shared by two nodes is a key aspect of the channel state as it is critical to

fusing beliefs originating on different sensing platforms. Together, the Local and Channel

Filters implement the central idea of ASN: local aggregation of information. It is important

for efficient inter-node communication and ultimately leads to scalability.

The Topology Manager selects nodes in the neighborhood to connect to using the Linkable

interface. While every component must have basic self-configuration functionality, the links

between nodes however are most important. That is why it is separated into a dedicated

module. The local connection decisions made by individual Topology Managers shape the

global topology of inter-node links.

A more detailed description of the structure and the algorithms of the node is given in

Chapter 4.

3.6.3 Sensor

The sensor component is responsible for gathering information from the environment by

processing raw measurements from physical sensors.

SENSOR

Observing

Hardware Localized

Fusing

Figure 3.27: Specification of the sensor component.

The black-box specification of the sensor component is shown in Figure 3.27. A sensor
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interacts with the rest of the system through four ports. It requires three interfaces: Lo-

calized for platform pose, Fusing to process its observations, and Hardware for access to

physical sensors. A sensor provides one interface: Observing to expose its sensor model.

SENSOR

Hardware Abstraction

Likelihood Generator

Sensor Localizer

Hardware

Fusing

Localized

Observing

Figure 3.28: A possible realization of the sensor component.

Figure 3.28 shows a possible sensor realization. Likelihood Generator is a key module

which converts raw measurements in zk
i ∈ Zi to observation likelihoods in bk

li ∈ B defined on

X. Platform position obtained through the Localized interface are used for spatial alignment.

Once generated, the observation likelihood is submitted for fusion using the Fusing interface.

The Fusing interface expects observation likelihoods for environment features in global

coordinate system. The sensor reads measurements from the sensing hardware in local

(often non-cartesian) coordinate system.

Likelihood Generator

Observation

Sensor
Pose

Likelihood

Read

measurement

Perform

coordinate

transformation

Generate 

observation 

likelihood

Perform data 

association in 

Z space

L( Zk | Xk ),
feature IDL( Zk | Xk )ZkZk

Xp

Figure 3.29: Data transformation steps inside the sensor component.
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The data processing steps inside the sensor component are shown in Figure 3.29. The

preprocessing stage includes coordinate transformation and spatial alignment. Physical

sensor measurements are often made in polar coordinated system and the global coordinate

frame is invariably cartesian. Regardless of the type of the coordinate frame, most, if not

all, sensors report measurements relative to its mounting point, i.e. in local or relative

coordinate system. To perform the transformation to the global coordinate frame, the

sensor needs to know its current pose. It is calculated by the Sensor Localizer based on

the current frame pose and the sensor’s pose in frames local coordinate system — the

sensor’s offset.

The next step is to calculate observation likelihood based on the likelihood function Li.

Building probabilistic sensor models is a well-studied topic covered in most standard text on

data fusion and tracking [150, 219]. Optionally, initial data association may be performed at

the sensor. Often data association is easier to perform in the measurement space Zi than in

the state space X. The measurement itself and the measurement space remain unavailable

to the node. Finally, the observation likelihood (and the results of data association) is

submitted to the node through the Fusing interface.

Communication between the sensor component and the physical sensors is performed

through the Hardware interface. For each particular pair of sensor implementation and

a physical device the interface definition is very specific. There can be one-to-one, one-to-

many, many-to-one, and many-to-many types of relationship between the two. Figure 3.30

illustrates the options with multiple sensors using a laser, a camera, or both. The archi-

tecture emphasizes maximum flexibility: any arrangement is allowed as long the provided

and required interfaces match.

The case of one-to-many (c) represents centralized information fusion at the measurement

level (in Z space). The sensor component receives data streams from two or more physical

sensors and forms observation likelihoods based on all the data available. Compare case

(c) with two instances of case (a), one for the laser and the camera. The advantage of

(c) over (a) is that potentially more information can be recovered by using a combined

sensor model which takes the correlation of the observations into account. Case (a), on

the other hand, offers more modularity because each sensor component may be designed

independently. From the algorithmic point of view, this choice corresponds to data and

decision fusion [39, 111]. With data fusion it is impossible to modularize information fusion
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:SENSOR

:SENSOR

:SENSOR :SENSOR

:SENSOR :SENSOR :SENSOR

(a) (b)

(c) (d)

Figure 3.30: Possible relationships between sensor components and sensing hardware: (a)
one-to-one, (b) many-to-one, (c) one-to-many, and (d) many-to-many. Two types of sensing
hardware are shown: a laser range finder and a video camera. Highlighted sensors (b, d)
produce correlated observations and must be treated with caution.

when heterogeneous sensors are employed. This precludes collaborative signal processing

which requires exchanging raw observations.

The cases of many-to-one and many-to-many (b, d) must be treated with caution because

the likelihoods produced by the logical sensors are correlated if the same raw measurements

were used. It is possible to use this setup if the correlations are explicitly accounted for

(outside of the ASN framework), the different sensors produce likelihoods on different

types of features whose independence is not assumed, or the sensors simply use alternating

measurements thereby eliminating correlations altogether.

3.6.4 Actuator

The actuator component is responsible for providing an interface to a controllable device.

The device in this case can be as simple as a 1-DOF physical actuator or as complicated as

a complete robot.



3.6 Canonical Components 110

ACTUATOR

:Controllable

:Hardware

Controllable

Hardware

Figure 3.31: Specification of the actuator component.

The black-box specification of the actuator component is shown in Figure 3.31. An

actuator interacts with the rest of the system through two ports. It provides one inter-

face: Controlling, which exposes its actuation model. An actuator requires one interface:

Hardware to access the physical actuators.

ACTUATOR

:Controllable

:Hardware

Closed Loop Controller

Hardware Abstraction

State Estimator
Controllable

Hardware

«delegate»

Figure 3.32: A possible realization of the actuator component.

Figure 3.32 shows a possible realization of the actuator component. Typically, there is a

Closed-Loop Controller connected to a State Estimator and which receives reference input

through the Controllable interface. If the controlled property of the actuator is spatial,

it must be converted to the global coordinate system.

Interaction between the actuator component and the physical actuators is governed by

the Hardware interface. There can be one-to-one and one-to-many relationships between the



3.6 Canonical Components 111

:ACTUATOR

:ACTUATOR

:ACTUATOR :ACTUATOR

:ACTUATOR :ACTUATOR :ACTUATOR

(a) (b)

(c) (d)

Figure 3.33: Possible relationships between actuator components and actuation hard-
ware: (a) one-to-one, (b) many-to-one, (c) one-to-many, and (d) many-to-many. Two types
of actuation hardware are shown: an indoor robot and a pan-tilt-zoom camera. High-
lighted actuators in (b, d) may receive conflicting control inputs and must be treated
with caution.

two types of actuators. An example in Figure 3.33 shows multiple actuators controlling a

vehicle, a pan-tilt camera, or both. The architecture emphasizes flexibility: any arrangement

is allowed as long the provided and required interfaces match.

The one-to-one case (a) is the most typical. An example of one-to-many scenario (c) is an

articulated sensor mounted on a vehicle. This scenario may be preferred if the joint defin-

ition of multiple actuators captures an important coupling leading to better performance.

An alternative of having two actuators with one-to-one relationship to the devices is more

modular.

The cases of many-to-one (b) and many-to-many (d) must be treated with caution because

the commands received from different planners may be in conflict. If for some reason

this setup is preferred, the conflicts must be detected and resolved outside of the ASN

framework.24.
24By possibly implementing the role of action fuser which was left blank in Table 3.3
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3.6.5 Planner

The planner component is responsible for generating commands for the actuator which

will maximize a certain utility function. The choice of commands is typically made based

on the current state of the world, state of the actuator under control, together with the

observation and actuation models.

PLANNER

Belief

Plan

Informed

Informed

Fusing

ObservingControllable

Figure 3.34: Specification of the planner component.

The black-box specification of the planner component is shown in Figure 3.34. The plan-

ner interacts with other components through five ports. It provides no services of its own.

It requires several interfaces: Informed for the current and future planned belief about the

state of the world, Controlling for the state and description of the actuators, and Observing

for the description of the sensors. In order to make cooperative plans, a planner needs

the Fusing interface to submit future planned likelihoods.

Figure 3.35 shows a possible realization of the planner component. Two main modules are

identified: Solver and Negotiator. The Negotiator iterates through possible action plans and

chooses an appropriate one based on the preferred ordering of actions supplied by the Solver.

The division of the planner into two modules is for illustration only, since some solution

approaches do not make this distinction. A more detailed description of the structure and

the algorithms of the planner is given in Chapter 5.

3.6.6 User Interface

The ui is a single point of interaction between an operator and the sensor network. It

displays network information to the human operator. It also allows the operator to submit
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PLANNER

Belief :
Informed

Plan :
Informed

Negotiator

Solver

Informed

Informed

Controllable Observing

Fusing

«delegate»

«delegate»

«delegate»

«delegate»«delegate»

Figure 3.35: A possible realization of the planner component.

human observations for fusion with the network’s belief. An operator can also submit a

change in utility weights which will affect the decisions made by individual platforms. A ui

also allows direct teleoperation of platforms. Finally, the ui may be used to compile global

information about the state of the network. This functionality is primarily intended for

debugging purposes.

UI

Belief:
Informed

Plan:
Informed

:Fusing

:Controllable

:Detailed

Informed Informed

Fusing

Controllable

Detailed

Figure 3.36: Specification of the ui component.

The black-box specification of the ui component is shown in Figure 3.36. The ui interacts

with other components through up to five ports. It provides no services and requires five

interfaces: two Informed interfaces for current and future beliefs, Fusing for submitting

human observations, Controlling for teleoperation, and Detailed for debugging.

Figure 3.37 shows the internal structural view of the ui component. The primary goal of
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UI

Belief:
Informed

:Detailed

Plan:
Informed

:Fusing

:Controllable

Output to HumanInput from Human

Global Information

Informed

Detailed

Informed

Fusing

Controllable

Figure 3.37: A possible realization of the ui component.

the ui is to present the information about the environment collected by the network to the

human operator. This task is carried out by the Output to Human module. The network

belief about the world state is accessed through the Informed interface. Because of this

feature, the display of environment information in ASN is as scalable as the network itself.

The user interface can be graphical, textual, or another modality appropriate for the type

of information being gathered.

The information about the network itself may be useful especially for debugging and sta-

tus monitoring purposes. For this reason, the optional Global View module can aggregate

component information obtained through the Detailed interface. Based on individual re-

ports, the Global View can compile the global topology of the network (within a direct

communication range). While convenient, it is important to realize that relying on this

information makes the ui a computational or communication bottleneck. In addition to

increasing the bandwidth requirements, the task of keeping track of component information

also necessitates either the use of a broadcast medium or a direct link between every com-

ponent and every GUI station. Both options are undesirable as they violate the constraints

of decentralization and locality.

The operator input is handled by the Input from Human module. Others have suggested

several classification systems for the roles that a human operator could play while inter-
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acting with robots. For example, Scholtz identifies mechanic, supervisory, and peer-to-peer

levels of human-robot interaction [198]. In ASN, two types of operator controls are distin-

guished: environment-centric and component-centric. The former is scalable but relies on

fully autonomous platform operation. The latter gives more authority to the operator but

scales poorly with the number of platforms.

Environment-Centric Control. In the information based control mode, the information

about the environment which has become available from outside of the network is entered

into the network by a human operator. It is then fused into the system and will affect

actions of one or more of the network components. This is a peer-to-peer mode in which the

operators and the network components act on the same level of authority. The information

is entered into the network as an observation likelihood bk
li through the Fusing interface. The

operator acts as a human sensor. Influencing the action of the network components by

providing it with additional information is a natural extension of the underlying information

fusion and decision making algorithms. The information entered by the operator only needs

to be transmitted to a single node and the network itself propagates it through the rest of

the system, potentially leading to actions by several platforms.

Component-Centric Control. Under direct type of control an action ak
i or a sequence

of actions is sent through the network addressed to the components which possess the

attributes specified. These commands are to be executed directly and no autonomy is

required on the part of the platform. This approach is a direct extension of the teleoperation

or mechanic mode of operation. It may be invaluable in certain situations, but cannot be

considered a primary control tool in large decentralized sensor networks. The actions are

submitted through the Controllable interface and the ui acts as a human planner. In ASN,

teleoperation is limited within a direct communication range. For teleoperation outside of

the platform’s neighborhood, service lookup and action routing must be performed outside

of ASN framework.25

The following two control methods can be classified as supervisory modes. Under the

mode switch type of control, the platforms operate autonomously most of the time, but

are periodically commanded to switch from one pre-programmed action policy to another.

Under the utility change type of control, a change in the utility function U is sent to all or

a subset of the network components addressed by appropriate attributes.
25By possibly implementing the role action distributor which was left blank in Table 3.3.
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3.7 Custom Components

Components, by definition, are substitutable. This is achieved by simultaneously requir-

ing strict compliance with interface definition and allowing full freedom in implementation.

There are many reasons, why freedom in implementation may be insufficient and the com-

ponent specification must be modified. This leads to the creation of custom components by

modifying the existing or creating entirely different specifications.

This section shows three approaches to building custom components: by integrating func-

tions of two standard ones, by adding functionality while changing the list of provided/required

interfaces, and by defining super-components. Other approaches are certainly possible.

What remains unchanged in the process are the ASN interfaces. This allows inter-operability

between the canonical and custom components.

3.7.1 Function Integration

A variety of component types can be defined each implementing different combinations of

component roles identified in Section 3.4.2. Recombination of roles compared to the canon-

ical set may be prompted by algorithmic, implementation, or non-technical reasons.26 Two

examples in this section illustrate how a custom component can be created by combining

functionality of canonical components.

As an example, consider a mobile platform. Figure 3.38(a) shows a partial design using two

canonical components: a frame and an actuator representing the means of locomotion

of the platform. The actuator depends on the Localized interface provided by the frame

and exposes the Controllable interface to be used by action sources. Figure 3.38(b) shows

an integrated custom component vehicle which couples the localization and actuator-

handling functions internally but exposes the same two interfaces for external consumption.

Thereby, efficiency is achieved while preserving inter-operation with the rest of the system.

As another example consider the storage of platform and world belief. Figure 3.39(a) shows

the standard ASN approach whereby frame and node components are independent. A

different configuration would result if a Simultaneous Localization and Mapping algorithm
26Houston and Norris [92] make a similar statement noting that multiple logical subsystems may be

mapped to the same physical component to satisfy the needs of the overall system. The point made here is
slightly different and is concerned with the recombination of roles at the level of logical components.
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ACTUATOR

Controllable

FRAME

Localized

VEHICLE

Localized

Controllable

(a) (b)

Figure 3.38: A custom vehicle component: (a) canonical implementation using a frame
and a actuator and (b) custom implementation. The localization service provided by
Localized interface to actuator is internalized inside the custom component but both
interfaces must still be provided for the benefit of other components in the system. Notice
that the interfaces remain unchanged.

FRAME

Localized

NODE

Informed

SLAM

Localized

Informed

(a) (b)

Figure 3.39: A custom slam component: (a) canonical implementation with a frame and
a node and (b) a custom implementation. The custom component is responsible for both
building the map of the environment and localizing the platform. Both the Localized and
Informed interfaces must still be provided for the benefit of other components in the system.

(SLAM) is used which couples the estimation of the platform pose and the environment

features. Transmitting the information between the two components would be impractical.

As an alternative, slam component would have realized both the Localized and the Informed

interface as shown in Figure 3.39(b).

3.7.2 Additional Functionality

Functionality of canonical components is limited. Nearly every new system will require

some new capability and new algorithms. Extra functionality can be added to canonical

components by changing the list of provided and required interfaces.

An example is shown in Figure 3.40. A canonical frame in panel (a) estimates its pose in the
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FRAME

Localized

SENSOR

FRAME

Localized

SENSOR SUB FRAME

Localized

(a) (b)

Figure 3.40: A custom sub-frame component: (a) canonical implementation with a frame
component which localizes itself in the global coordinate system and (b) a custom sub-
frame connected to another frame.

global coordinate system. A custom frame can be defined as in panel (b) which estimates

its global position by measuring an offset relative to another frame, which acts as a base.

The location of the base frame is accessed through its Localized interface. By connecting

multiple frames, an arbitrary hierarchy of coordinate systems may be constructed to reflect

the physical connectivity of sub-assemblies.

SENSOR

NODE

Fusing

SENSOR W/ 

FEEDBACK

NODE

Fusing Informed

(a) (b)

Figure 3.41: A custom sensor component with state feedback. The environment infor-
mation from the node component is made available to the custom sensor through the
Informed interface. All interfaces remain unchanged.

Another example is shown in Figure 3.41. A standard arrangement is shown in panel

(a): a sensor submits its observation likelihoods to a node through the Fusing interface.

Sometimes the sensor would benefit from having access to the current belief about the

feature it is trying to observe. The extra information available to the node may be a

sophisticated prediction model and information coming from the rest of the network. The

sensor can access it by connecting to the Informed interface of the node as shown in

panel (b).

Another example of a custom component is shown in Figure 3.42. A canonical node in panel
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NODE

Linkable

FRAME

Localized

FRAME

Localized

PROACTIVE 

NODE

Linkable

(a) (b)

Figure 3.42: A custom node component with platform pose input.

(a) makes decisions about connecting (or disconnecting) to other nodes without having

taken into account the relative positions of the platforms. Panel (b) shows a proactive

node which connects to the Localized interface of the local frame to access its current

pose. Each node is aware of its current location and can communicate this information to

linked nodes as part of the topology management protocol.

3.7.3 Super-components

Components may be assembled into larger-scale components in arbitrary hierarchies. In

particular, these super-components can be built using canonical components as building

blocks. A technical reason for such a representation may be that internal and external links

use different communication methods.

Figure 3.43 shows a platform-level super-component realized with six canonical components.

Out of five interfaces used by the participating canonical components only one, Linkable, is

exposed to the rest of the system. At this level the entire team could be composed of in-

teracting platform components. Some functionality has been sacrificed: operator cannot

get the beliefs (Informed interface is not exposed), external sensors cannot submit obser-

vations for fusion (Fusing interface is not exposed), external actuators cannot be controlled

(Controllable interface cannot be connected).

Note that the custom vehicle component used as an example in Section 3.7.1 can also

be built (or simply represented) as a super-component wrapping frame and actuator.

In that case, however, it was argued that it may be more efficient to integrate different

functions into a single tightly-knit component.
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Figure 3.43: A custom platform component composed of six canonical components: (a)
specification and (b) a possible realization. Out of five interfaces used internally only one,
Linkable, is exposed to the outside world.

3.8 Execution Architecture

The Execution architecture traces the mapping of logical components to runtime elements,

such as processes and shared libraries. The deployment view shows the mapping of physical

components onto the nodes of the physical system. The source code view explains how the

software implementing the system is organized. At the architectural level, three items are

addressed: execution, deployment, and source code organization.

At the execution level, a component-based implementation is not necessarily decentralized.

For any distributed system there is a choice of building functionality of the system into the

deployed components or embedding it into the component infrastructure [12]. Szyperski

et al. refer to this as direct component interaction versus interaction mediated by the com-

ponent framework [224]. In the latter case, the decision to use decentralized architectural

style means the component framework must be decentralized as well. Following the princi-

ple of decentralization, this work puts emphasis on building the required functionality into

the components themselves. Components which do not rely on the infrastructure contribute

to achieving the objective of designing autonomous self-contained platforms.

For maximum flexibility in using a highly modular system, arbitrary deployment must be

supported. This imposes certain requirements on the communication library.

Principle of modularity is very important in source code organization. The approach of
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this work is to eliminate any cross-dependencies between individual components. Each

component is a project whose code dependents only on the framework implementation and

some common tools.

3.9 Summary

This chapter described the ASN approach to solving the MSN problem by focusing on three

aspects of the solution: architecture, algorithms, and implementation. To fulfill the MSN

requirements, all three aspects of the solution are carefully designed for compliance.

The focus of this chapter was on the ASN architecture. Architectural design was performed

at multiple levels, starting with the Meta-architecture which established the three guiding

design principles: decentralization, modularity, and locality of interactions. The Algorith-

mic and Execution architectures ensure that the Meta-architecture principles are adhered

to on the algorithmic and implementation levels respectively.

The Conceptual and Logical architectures partitioned the system into a set of manageable

elements. The Logical architecture, in particular, defined a detailed architecture specifica-

tion, including canonical component definition and inter-component service interfaces. The

six representative component types were described in detail and used in the implementation

of experimental systems in this thesis. Several examples of custom components were also

given.

This chapter described the high level organization of the system. The remaining chapters

will fill in the details of the two remaining aspects of the framework: algorithms and imple-

mentation. Algorithmic details of the two main functional groups, information fusion and

decision making, are described in Chapters 4 and 5 respectively. Discussion of the ASN

implementation will continue in Chapter 6.



Chapter 4

Information Fusion Algorithm

4.1 Introduction

This chapter focuses on the task of information fusion. Two developments from Chapter 3

serve as departure points: the overall algorithmic architecture presented in Section 3.3 and

the logical breakdown of the system into canonical components described in Section 3.6.

Using these as a foundation, this chapter describes the information flow and detailed infor-

mation fusion algorithms used in ASN.

Section 4.2 presents a general framework for decentralized Bayesian information fusion. The

framework is an evolution of earlier efforts in Decentralized Data Fusion (DDF) and a brief

historical reference is provided. Continuing with the top-down description approach, the in-

formation flow is described on four, successively more detailed, levels: between components,

between nodes between the internal parts of a single node, and inside the node parts.

The last level of description is sufficiently detailed to identify a small set of information

processing operations, termed the DDF primitives, which constitute the building blocks of

the ASN information fusion algorithm. This will be called the Bayesian Decentralized Data

Fusion (BDDF) algorithm.

The DDF primitives are defined for the general Bayesian case but, in practice, a probability

density function must be represented in one of several ways. The rest of the chapter shows

how the BDDF algorithm can be adapted to a chosen pdf representation. All representation-

specific algorithms are well known and are described in detail elsewhere. A summary of
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most algorithms is given in the Appendix and references to the original work is provided

throughout.

Section 4.3 specializes the BDDF algorithm and the DDF primitives to the case of Gaussian

point features. This representation is most commonly used in the context of DDF due to the

storage and algorithmic efficiency which it allows. A group of well known algorithms using

Gaussian features are presented as special cases of the general Bayesian form of DDF. An

application to tracking point targets is discussed, using simulated and experimental results.

Despite their computational advantages, parameterized probability distributions, such as

Gaussians, are often inadequate because of the limiting assumptions they introduce. The

most common method of representing general distributions is by discrete, piecewise constant

functions. Section 4.4 presents the BDDF algorithm using this type of representation.

Several applications are considered in this context: Bayesian non-linear target tracking,

feature identification, and area mapping using the Certainty Grid representation.

4.2 Bayesian Decentralized Data Fusion Algorithm

This section describes the main information fusion algorithm of ASN called Bayesian De-

centralized Data1 Fusion (BDDF) algorithm. The algorithm is based on the work started

at the robotics group at Oxford University in the late 1980s. The DDF algorithm was orig-

inally developed for Gaussian point features and was based on the use of the information

form of the Kalman filter. A historical account of DDF can be found in [163].

Initially, the DDF algorithm was applied to a network of cameras tracking multiple tar-

gets which included people and robots [180, 182, 183]. The algorithms required a fully

connected topology, meaning that each platform communicated with every other platform,

which is impractical in large networks. The work of Grime [67, 68] made explicit the in-

formation form of the Kalman filter and used this to solve the problem of communicating

in tree-connected networks. This work employed a structure called the Channel Filter to

maintain an estimate of common information between connected fusion nodes. This result

was used to demonstrate the operation of decentralized data fusion systems on a model

process control plant comprising over 150 distributed sensors. More recently, a practical
1In this work, the term information fusion is generally preferred to data fusion. The latter is retained in

the name of the algorithm for historical reasons.
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DDF system was developed as part of the ANSER project [163, 221]. A team of up to three

custom-built UAV’s performed localization of ground features represented as points with

Gaussian position uncertainty. Team makeup was static and communication topology was

pre-configured.

The general decentralized approach including Channel Filters follows the ideas of Grime

[67, 68], Manyika [144, 145], and Nettleton [163, 221]. This work reformulates the approach

in general Bayesian terms and uses the existing Gaussian algorithms as a special case.

4.2.1 Inter-Component Information Flow

The information flow between components is considered first. Figure 4.1 shows four canoni-

cal components participating in the task of information fusion. The four interfaces appearing

in this diagram were described in detail in Chapter 3. Both human and robotic belief sources

and sinks are shown, highlighting the fact that the information flow between components

does not depend on whether a human is involved.

SENSOR

Fusing

Localized

FRAME

Localized

NODE

Fusing

Informed

Linkable

PLANNER

Informed

UI

Fusing

Informed

Figure 4.1: Structural diagram of interactions between canonical components used in infor-
mation fusion. Two types of belief sources are shown: robotic sensor and human ui, as
well as two types of belief sinks: robotic planner and human ui.

The following descriptive example illustrates the use of interfaces in implementing the task

of information fusion.

Example 4.1

Component types and interfaces participating in information fusion are illustrated using a

network of six components shown in Figure 4.2. The diagram shows node 1 connected to
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1 :SENSOR

Localized

1 :NODE
Fusing

Informed
:Linkable

2 :NODE

:Linkable

3 :NODE

1 :UI

1 :FRAME

Figure 4.2: A collaboration scenario illustrating the task of information fusion. It involves
instances of sensor, node, frame, and ui components. The scenario description focuses
on the interactions of node 1 (highlighted).

two other nodes, 2 and 3. node 1 provides fusing services to a single local sensor 1.

The sensor receives localization information from frame 1. An instance of ui receives

environment information from node 1.

The operation of the network is shown in Figure 4.3 as a Sequence diagram.2 The diagram

shows messages passed between the components participating in the scenario. An event in

the environment leads to a measurement zk
1 received by sensor 1. A synchronous call

to frame 1 through the Localized interface returns the current platform pose needed to

process the measurement. The sensor calculates the observation likelihood bk
l1 and submits

it to node 1 through the Fusing interface. node 1 fuses the observation with the belief it

currently holds.

At some later time, node 3 sends its current belief bk
x3 through the Linkable interface and,

independently, node 2 sends its belief bk
x2. Both are processed by node 1. Eventually,

triggered for example by an internal clock, node 1 sends out its updated belief bk
x1 to both

nodes 2 and 3, which fuse it with their local beliefs. It also updates ui 1 through the

Informed interface.

2UML A Sequence diagram is a structured representation of behavior as a series of sequential steps over
time. It is used to depict work flow, message passing and how elements in general cooperate over time to
achieve a result. [223]
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Phenomenon

1 :SENSOR 1 :FRAME 1 :NODE 2 :NODE 3 :NODE 1 :UI

Event

measurement

pose

Process
Measurement

likelihood

fuse_likelihood

belief update

fuse_belief_update

belief update

fuse_belief_update

belief update

fuse_belief_update

belief update

fuse_belief_update

belief update

Figure 4.3: Sequence diagram of inter-component communication in the information fusion
collaboration scenario. Communication exchanges are shown from the point of view of
node 1 (highlighted).

From the Example above it is clear that the node component is at the center of the

information fusion process. For this reason, node-to-node interactions, the internal node

structure, and its algorithms are the focus of this chapter. Several internal subsystems of

the node were identified in Chapter 3. The white-box diagram of internal node structure

is repeated in Figure 4.4 for convenience.

4.2.2 Inter-Node Topology Management

Belief fusion in ASN is accomplished through pair-wise synchronization of beliefs using

peer-to-peer connections between nodes (see Section 3.3). An important aspect of the fu-

sion process is the global topology formed by local node links. The Topology Manager

shown in Figure 4.4 is an internal node part responsible for forming the network of connec-
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NODE

:Linkable
[1..N]Local Filter [1] Channel Filter [1..N]

TopologyManager 

[1]

Informed

Fusing
Linkable

Linkable

Connecting Connecting

Figure 4.4: A possible realization of the node component. Repeated after Figure 3.26.

tions between nodes. Similar to other network configuration decisions, node connections

are established in a decentralized fashion. Local connection decisions made by individual

Topology Managers shape the global topology of inter-node links.

Network topology has a profound effect on the belief fusion algorithms. Following Grime

[67, 68], three types of network topologies are considered: fully-connected, tree-connected,

and general networks. Information exchange in distributed systems performing Bayesian

inference is the subject of Bayesian communication which is reviewed in Appendix B.2. The

main result states that the key to combining local beliefs from two communicating nodes

is in determining what information they have in common.

Finding common information in fully connected networks is trivial because the belief of

all nodes is the same at the end of each communication cycle. However, fully-connected

network topologies do not scale well with the number of network components.

Common information in tree-connected networks is maintained by storing the information

that was previously communicated through the link, or channel, connecting two nodes.

Channel Filters are internal node structures introduced specifically to maintain the infor-

mation common to two nodes. Several Channel Filters are shown in Figure 4.4, one for

each Linkable interface.

In general networks, there is no algorithm for optimal fusion of node beliefs within the
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locality constraints of a decentralized sensing network. The proof of this result can be

found in [232]. Three solution avenues have been investigated: data tagging, spanning

trees, and dynamic determination of common information. Tagging was determined not to

be scalable [165]. Routing using decentralized Bellman-Ford algorithm requires a Manager

node — a central resource with knowledge of global topology [233, 234]. The algorithm

has been demonstrated in networks with relatively low rate of change in topology. In large-

scale networks in which the topology changes dynamically on a regular basis, sub-optimal

methods of determining the common information are most appropriate [165]. To date, the

work on suboptimal (conservative) fusion has been limited to Gaussian point features.

Compared to trees, general network topologies are appealing because of the extra robust-

ness introduced by the redundant links between nodes and the simplicity of arbitrary

connections. However, in the general Bayes case, a solution to the problem of combining

beliefs with unknown common information is unknown. For this reason, the general-network

approach is not considered fully in this thesis. Conversely, the Channel Filter method guar-

antees optimal use of information but requires an acyclic network topology. It is best suited

for situations when the information has low signal to noise ratio and the network topology

is quasi-static. On the other hand, when information is abundant but the makeup and

configuration of the network is highly fluid, conservative fusion of information is preferred.

An acyclic network requires special algorithms on the part of the Topology Manager. Addi-

tion of new nodes does not jeopardize the tree structure but exit or failure of nodes may.

When a node in a non-leaf position in the tree fails, the network is fragmented into two or

more sub-trees and a naive attempt to rejoin the sub-trees may lead to cycles (“head catch-

ing the tail”). A simple approach which solves this problem is to disconnect all child nodes

below a failed link and reconnect them individually. Besides simplicity, this approach has

the positive side effect of re-balancing the network tree. The penalty is in a high level of

communication needed for reconnection and loss of information due to suboptimal fusion at

each node pair immediately after the connection.3 Note that all reconnection algorithms

require some form of conservative fusion.

Even in a perfectly reliable static network, the topology management algorithm has a sig-
3A more sophisticated decentralized algorithm for rebuilding a tree network after a node failure is

proposed in [163]. It has the advantage of minimal information loss as the Channel Filter state inside
the sub-trees is preserved. Its disadvantage is in introducing the concept of the root node and increasing
(at worst doubling) the tree depth after reconnection.
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nificant effect on the performance of the system. One important parameter is the maximum

degree for the vertices in a tree network. There is a trade-off between the depth of the tree

and the load at highly connected vertices. The problem of organization in decentralized

systems from the point of view of performance was investigated by Ho [81]. This work

considered how to best configure a decentralized network using fusion nodes with a fixed

number of communication links. The performance of all fusion nodes was tracked to deter-

mine the effect of different topologies on information flow. For example, in a star-connected

topology the belief of the central node typically has smaller error at any given time because

it receives information in a more timely manner.

The algorithms above are reactive because they consider topology change in response to

communication failure. It has been suggested that proactive algorithms are better suited to

continuous data delivery systems and systems with low network dynamics [227]. Expressed

in terms of ASN components, this idea was illustrated with a custom component in Fig-

ure 3.42 which based connection decisions on the relative positions of the communicating

platforms. Proactive algorithms for network topology control is an open research topic.

4.2.3 Node Information Flow

In this section the information flow within the node component is considered. The com-

munication diagram in Figure 4.5 shows the flow of information between the external ports

of node i and its internal elements. The four activities shown in the diagram occur asyn-

chronously, which is illustrated by arranging the messages into four groups. The first two

activities are triggered by external events, i.e. the arrival of messages at the Fusing and

Informed interfaces. The other two are triggered internally, by timers or other events. The

following listing describes each of the message groups.

1. Local Update. When an observation likelihood bk
xl arrives from one of the local sensors

at the Fusing interface, it is passed to the Local Filter where it is fused with local

belief. Local belief updates are performed as soon as local observations arrive.

2. Incoming Channel Update. When a channel update message arrives from a linked

node j through the Linkable interface, it is first processed internally in the corre-

sponding Channel Filter. Update messages from different channels arrive asynchro-

nously and, if all update messages are fused at the Local Filter on arrival, it may lead
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i :Node

Informed

Fusing Linkable [1..N]i : LocalFilter j : Channel Filter [1..N]1: Bxl 2: Bxj2.1: Bxj, Bxij

3: Bxi 3.1: Bxi

4: Bxi

Figure 4.5: Information flow to and from a node. Events corresponding to the four groups
of messages occur asynchronously. The topology manager module does not participate in
belief maintenance and, for this reason, is not shown.

to multiple near-simultaneous processing involving a potentially expensive prediction

step. To avoid this, the external beliefs bk
xj contained in channel messages are pre-

dicted forward to a specified time in the future (called the time horizon). At that

time, updates from all channels are incorporated into the local belief simultaneously.

For this to happen, the external belief bk
xj and the common belief between the two

nodes bk
xi∩j are passed to the Local Filter for fusion with the local belief bk

xi.

3. Outgoing Channel Update. When an internal event triggers synchronization between

between nodes, the current local estimate bk
xi is passed to the Channel Filter which

sends an update message to the linked node j.

4. Sink Update. When an internal event triggers a state update of the connected belief

sinks, the current local estimate bk
xi is sent out through the Informed interface.

4.2.4 Node Algorithms

This section provides details on the information flow shown in Figure 4.5 by describing the

algorithmic steps inside the Local and Channel Filters. The information processing steps

described in this section constitute the BDDF algorithm in its general Bayesian form.

Local Update. The Local Filter receives observations from one or more local sensors

through the Fusing interface. The Local Filter contains an array of Bayesian filters repre-
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Local Filter i

«interface»

i :Fusing

«collection»

local_belief
:FilterArray

Bi :Filter

send_likelihood(Bli)

*for_all_features

PREDICT(observation_time)

ASSOCIATE(Bli)

[num_of_associations > 1]: ignore

[num_of_associations == 0]: new

UPDATE_BELIEF(Bli)

Figure 4.6: Information flow in the Local Filter on arrival of a local observation. (Message 1
in Figure 4.5.)

senting individual features of the environment. Different feature types may be stored side

by side and filters may use different pdf representations.

A sequence diagram in Figure 4.6 shows the steps inside the Local Filter. Observations

arrive at the Fusing interface and are passed to the Local Filter. Inside the Local Filter,

all features of the matching type are first predicted forward to the observation time. Data

association is performed by matching likelihoods with the local beliefs. Multiply-associated

observations are ignored. If no matching existing feature is found, a new one is initialized.

With a valid association, the Local Filter fuses the observation and the predicted belief.

Incoming Channel Update. Channel Filters maintain the state of the connection to

other nodes. The Channel Filter is structured in the same way as the Local Filter: it

contains an array of Bayesian filters representing individual features of the environment.

Processing of the channel update message begins in the Channel Filter as shown in Fig-

ure 4.7. When a channel update message is received from node j, all estimates of common

information are predicted to the next time horizon, and track-to-track data association is

performed. If there is no match to an existing feature, a new one is initialized. Multiply

associated observations are ignored. If a positive match is found, the remote estimate is

predicted to the time horizon and placed into the Local Filter’s incoming buffer.
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Channel Filter ij

«interface»

j :Linkable

«collection»

common_belief

:FilterArray

Bij :FilterBj :Filter

send_belief(Bj)

PREDICT(time_horizon)

*for_all_features

PREDICT(time_horizon)

ASSOCIATE(Bj)

[num_of_associations > 1]: ignore

[num_of_association == 0]: new

set(Bj)

Figure 4.7: Information flow in the Channel Filter on arrival of a channel update message.
(Message 2 in Figure 4.5.)

Local Filter i

local in :Buffer «collection»

local_belief

:FilterArray

Bi :Filter

*for_all_features_externally_updated

(Bj, Bij):= get

[new_feature]: new

predict_to_horizon

[common belief known]: update_belief(Bj, Bij)

[else]: update_belief_conservative(Bj)

Figure 4.8: Information flow in the Local Filter on arrival of a channel update message.
(Message 2.1 in Figure 4.5.)

At the time horizon, the channel update is processed inside the Local Filter as shown in

Figure 4.8. The fusion procedure depends on whether the common belief contained between

the two communicating nodes is known. If common belief is not known, then the two beliefs

are fused conservatively. This happens when two nodes initially come in contact and it is
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not known whether their beliefs are correlated. If the common belief is known, then the

local and the external beliefs are fused using the optimal belief update equation.

Outgoing Channel Update. When node i has information unknown to node j, a

decision must be made on whether to send a channel update or not. Simple options were

discussed in Section 3.3.5.

Local Filter i

local in :Buffer «collection»

local_belief
:FilterArray

Bi :Filter

*for_all_features_externally_updated

(Bj, Bij):= get

[new_feature]: new

PREDICT(time_horizon)

[common belief known]: UPDATE_BELIEF(Bj, Bij)

[else]: UPDATE_BELIEF(Bj)

Figure 4.9: Information flow in the Channel Filter on local update. (Message 3 in Fig-
ure 4.5.)

Figure 4.9 shows the flow of outgoing information from the Local Filter to the channels. The

Channel Filter finds all features which have new information compared to the linked node j.

The common belief bk
xi∩j is set to current local belief bk

xi and the update is sent through

the Linkable interface. In the event that the channel becomes blocked or disconnected,

the Channel Filter is updated to the latest belief and then waits for the next available

communication opportunity.

Thus, the common belief bk
xi∩j is updated in two cases: when node i receives an update

from node j (Figure 4.7) and when node i sends an update to node j (Figure 4.9).

Sink Update. State update through the Informed interface is simply a matter of sending

the posterior or some part of it to the subscribed belief sinks. Figure 4.10 shows the flow of

outgoing information from the Local Filter to a belief sink. A decision rule similar to the

one for channel update can be applied.
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Local Filter i

«interface»

i :Informed

«collection»

local_belief

:FilterArray

*for_all_feature_locally_updated

send_update(Bi)

Figure 4.10: Information flow in the Local Filter on sink update. (Message 4 in Figure 4.5.)

4.2.5 Decentralized Data Fusion Primitives

A closer examination of the sequence diagrams in Figures 4.6–4.9 reveals that, regardless

of the implementation of the probabilistic filter and the belief representation it uses, the

BDDF algorithm can be expressed in terms of three basic operations:

1. Prediction of feature state

2. Belief update

3. Data association

These three basic operations will be referred to as DDF primitives. In the diagrams, these

three operations are shown in all capitals.

Prediction of Feature State. Also known as motion update, this step is used to obtain a

belief on the state at the current time based on all past information. The belief prediction

equation was defined as part of the reference model in Equation 2.10 and is repeated here

for convenience

bk
xi = G′(bk−1

xi ). (4.1)

The non-linear Bayes filter4 is reviewed in Appendix B.1. The belief prediction function G′

is given in Equation B.5 and is repeated here (omitting the initial prior for clarity)

P(xk | Zk−1
i ) =

∫
P(xk | xk−1)P(xk−1 | Zk−1

i ) dxk−1. (4.2)

4The term filtering refers to the estimation of the (current) state of a dynamic system [10].
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It calculates the probability distribution on the feature state x at time tk based on the

information available up to time tk−1 and the state transition function P(xk | xk−1).

Belief Update. Also known as information update, this step combines beliefs from two

nodes. The joint belief of two nodes is designated bk
xi∪j , it is based on the union of two

information sets. The information common to two nodes is designated bk
xi∩j , it is based on

the intersection of two information sets. The belief update function can then be written as

bk
xi∪j = D(bk

xi, b
k
xj , b

k
xi∩j), (4.3)

which expresses the joint belief bk
xi∪j as a function of the individual beliefs bk

xi and bk
xj , and

the common belief bk
xi∩j . Three cases are possible with respect to availability of common

belief bk
xi∩j .

1. The two beliefs bk
xi and bk

xj are known to be independent when conditioned on the true

state of the world. The belief update function for this case is given in Equation B.4

and is repeated here

P(xk | Zk
i ) =

P(zk
i = z | xk)P(xk | Zk−1

i )
P(zk

i = z | Zk−1
i )

. (4.4)

This belief update function is the recursive form of Bayes theorem and it produces the

posterior distribution based on the prior P(xk | Zk−1
i ) and the observation likelihood

P(zk
i | xk). The same algorithm applies to fusing beliefs with observation likelihoods

and to fusing two independently obtained beliefs.

2. The two beliefs are known to be conditionally dependent, the network is acyclic, and

the common information bk
xi∩j is known. If the common belief is known, then the local

and the external beliefs are fused using the optimal belief update equation given in

Equation B.8 and repeated here

P(xk | Zk
i ∪ Zk

j ) =
1
C

P(xk | Zk
i )P(x | Zk

j )

P(xk | Zk
i ∩ Zk

j )
. (4.5)

This update equation calculates the joint belief P(xk | Zk
i ∪ Zk

j ), based on the local

belief P(xk | Zk
i ), external belief P(x | Zk

j ), and the belief common between the two

nodes P(xk | Zk
i ∩ Zk

j ).
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3. The two beliefs are known to be conditionally dependent and the common information

bk
xi∩j is unknown or the network is cyclic. It is necessary to perform a conservative

fusion of two distributions. A simple way to do this is to keep the more informa-

tive one of the two beliefs and discard the other one. Entropy can be a measure of

informativeness in this case. Nothing more can be done for a general distribution,

however, for some representations it may be possible to design a way of combining

two correlated distributions in a consistent fashion (see Section 4.3).

Data Association. Sensor observation typically do not contain an explicit reference to the

observed feature of the environment5. The problem of assigning measurements to features

is known as data association and, in practice, it is often the most challenging part of

the information gathering process. The fundamental approach is to assess the degree of

similarity between an observation and the current belief or between two beliefs. Commonly

used algorithms are mentioned in the sections on specific probabilistic representations. For

general distributions, distance measures [107] may be useful for quantifying dissimilarity

between two distributions, but the topic is beyond the scope of the work.

In summary, the BDDF algorithm is defined in five sequence diagrams in Figures 4.6–4.9

and three primitive operations.
5Anonymous versus ID sensors in [199]
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DDF Primitives

Prediction of feature state:

bk+1,k
xi = G′(bk

xi)

Belief update, with no common information:

bk
xi∪j = D(bk

xi, b
k
xj , 0)

Belief update, with known common information:

bk
xi∪j = D(bk

xi, b
k
xj , b

k
xi∩j)

Belief update, with unknown common information:

bk
xi∪j = D(bk

xi, b
k
xj , ?)

Data Association:

DA(bk
li, b

k
xi) =





1 if match

0 otherwise
DA(bk

xi, b
k
xj) =





1 if match

0 otherwise

The BDDF algorithm is defined for an arbitrary pdf but implementation details differ

depending on the pdf representation. In the rest of the chapter the DDF primitives are

derived for specific representations of uncertainty: Gaussian point features, discrete general

distributions, and Certainty Grids.

4.3 Gaussian Point Representation

Parametric features with Gaussian uncertainty are widely used in the context of data fusion

due to the storage and algorithmic efficiency which they allow. This section describes the

algorithms used in fusion of information for Gaussian features and presents them as special

cases of DDF primitives. Target tracking is a typical application in this category [10]. An

application of BDDF to point target tracking is discussed in Section 4.3.2 using simulations

and experimental results.
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4.3.1 DDF Primitives

State estimation algorithms for Gaussian point features are well known and are summarized

for reference in Appendix C. This section maps these algorithms to the DDF primitives.

Consider the combined vector of platform and the relevant feature states x = [xpi xf ]T .

When the state uncertainty is represented by a Gaussian distribution, it is fully described

by the mean value x̂(i | j) and variance P(i | j) at time ti, given observations up to time tj

x̂(i | j) 4
= E

{
x(ti) | Zj

}
, P(i | j) 4

= E
{
(x(ti)− x̂(i | j))(x(ti)− x̂(i | j))T | Zj

}
. (4.6)

The Kalman filter is a recursive linear estimator which calculates an estimate for a con-

tinuous valued state, that evolves over time, on the basis of periodic observations. When

a number of strict constraints are met, the Kalman filter is the optimal estimator [9, 150].

The Information filter is the “information” or “inverse covariance” form of the Kalman

filter. The Information filter is defined in terms of two information-space variables, the

information vector ŷ(· | ·) and the information matrix Y(· | ·)

ŷ(i | j) 4
= P−1(i | j)x̂(i | j), Y(i | j) 4

= P−1(i | j). (4.7)

In addition, the information associated with an observation taken at time tk is defined as

follows

i(k)
4
= HT (k)R−1

k z(k), I(k)
4
= HT (k)R−1

k Hk. (4.8)

Detailed derivation of the Information filter can be found in [144]. A summary of the

algorithm is presented in Appendix C.2.

The update stage in information form is computationally simpler than the update stage for

the Kalman filter, at the cost of increased complexity in the prediction stage. The value

of this in decentralized sensing is that estimation occurs locally at each node, requiring

partition of the estimation equations which are simpler in their information form. The

information form of the Kalman filter, while widely known, is not commonly used because

the update terms are of dimension the state, whereas in the Kalman filter updates are of

dimension the observation. For single sensor estimation problems, this argues for the use

of the Kalman filter over the Information filter. However, in multiple sensor problems, the

opposite is true.
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The prediction and belief update DDF primitives follow naturally from the equations of the

Information filter. The belief update employing the Channel Filter can also be written in

terms of information variables. Channel algorithms for Gaussian features are described in

[67, 68] and more recently in [163, 164].

If the Channel Filter is not initialized or is invalid, then an alternative method of extracting

common information must be employed. The Covariance Intersect (CI) algorithm provides

a solution to the problem of combining two Gaussian random variables in the case when the

correlation between the variables is unknown [105]. The algorithm is based on the geometric

interpretation of the covariance or information matrices. The CI algorithm is reviewed in

Appendix C.3.

To perform data association for Gaussian features, a simple gating mechanism can be em-

ployed which dismisses observations which are considered unlikely based on the current

belief. The values of the gate are drawn from Chi-Squared distribution [9]. Data associa-

tion in the case of Information filter is described in Appendix C.2.

Decentralized Data Fusion algorithm for Gaussian point features can be summarized as

follows:
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DDF Primitives for Gaussian point features

Prediction:

ŷ(k | k − 1) = [1−MkBwkΣ−1
k BT

wk]F
−T
k ŷ(k − 1 | k − 1) + Y(k | k − 1)Bukuk,

Y(k | k − 1) = Mk −MkBwkΣ−1
k BT

wkMk

where Σk = BT
wkMkBwk + Q−1

k and Mk = F−T
k Y(k − 1 | k − 1)F−1

k .

Belief Update, with no common information:

ŷi∪j(k | k) = ŷi(k | k) + ŷj(k | k)

Yi∪j(k | k) = Yi(k | k) + Yj(k | k),

where in the case of a single observation ŷj(k | k) = i(k), Yj(k | k) = I(k).

Belief Update, with known common information:

ŷi∪j(k | k) = ŷi(k | k) + ŷj(k | k)− ŷi∩j(k | k − 1)

Yi∪j(k | k) = Yi(k | k) + Yj(k | k)−Yi∩j(k | k − 1)

Belief Update, with unknown common information:

ŷi∪j(k | k) = ωŷi(k | k) + (1− ω)ŷj(k | k)

Yi∪j(k | k) = ωYi(k | k) + (1− ω)Yj(k | k),

where ω = arg max |Yi∪j(k | k)|.
Data Association:

vT
2 (k)B2(k)v2(k) < γ,

where v2(k) and B2(k) are defined in Appendix C.2.

4.3.2 Application to Target Tracking

The term tracking refers to the estimation of the state of a moving object based on remote

measurements, using one or more sensors at fixed locations or on moving platforms [10].

Tracking is one of the main applications of Kalman filtering techniques [9, 150]. ANSER
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project is a notable example of decentralized tracking using the Information filter algorithm

to track ground targets from multiple aircraft [187, 221]. The feature state in this case

represents the location of the target. The following two numeric examples illustrate the

approach with a simple two-dimensional problem.

Example 4.2

As an example consider tracking a target in two dimensions. The sensing network used

in this and following examples is shown in Figure 4.11(a). The sensing platforms are

stationary. The hardware makeup and the software deployment strategy is not specified

and is not important in this example. The system consists of two nodes, each with a

local sensor and connected to each other through the Linkable interface. The information

exchange between the components is illustrated in Figure 4.11(b). At time step t0, the two

nodes have the same belief and properly initialized Channel Filters, i.e. both know that the

beliefs they hold are common between them.

A :NODE

:Fusing

:Linkable

B :NODE

:Fusing

[1..N]

1 :SENSOR

:Fusing

2 :SENSOR

:Fusing

A :Node B :Node1 :Sensor 2 :Sensor

t = 0

t = 1

t = 2

t = 3

L1 ( z | x )

P1 ( x )

L2 ( z | x )

P2 ( x )

(a) (b)

Figure 4.11: Two-node information fusion example: (a) component diagram and (b)
information flow between the component. Each node has a single local sensor. The two
nodes are linked into a network through the Linkable interface.

The time steps shown in the sequence diagram correspond to the time horizon used by the

nodes. Each of the two nodes receives a local observation during time horizons t1 and t2

respectively. A channel update message is sent from node A to node B during step t1,
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Figure 4.12: Belief evolution in the Information filter example. The panels show platform
positions (¤), current true target position (¨), and observations (∗). The target velocity is
shown as a line drawn from the mean of the position.
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and from node B to A during step t2.

The target moves with constant velocity. The observations are of range-bearing type with

uncertainty in range much higher than in bearing. The evolution of local beliefs for each

node is shown in Figure 4.12. The benefit of information fusion in this case is driven by

making observations from two different vantage points. At time step t3, the belief on the

target location is the same for both nodes. This result means that the two nodes have

exchanged all the information they have.
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Figure 4.13: Entropy evolution in the Information filter example. Lower entropy corre-
sponds to higher information quality, i.e. information content of the belief increases with
each observation. The entropy level of the beliefs at the two nodes is the same after all
information is exchanged.

The same idea is conveyed by Figure 4.13, which plots entropy of the beliefs at the two

nodes. Entropy is a measure of belief quality described Appendix B.3. The final entropy

levels for the two beliefs are the same. At all steps in the tracking process the centralized

fusion produces optimal results. The result of decentralized algorithm differs from the cen-

tralized version only by time delays which demonstrates that, ultimately, no information is

lost.
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This is the first in a series of examples demonstrating the BDDF algorithm for different

probability representations and different systems. In all examples to follow the basic inter-

action pattern between components remains unchanged. The message exchange between any

two nodes is always similar to the one shown in Figure 4.11(b). The beliefs of the linked

nodes evolve in near-unison as in Figure 4.12, only one message away from being synchro-

nized. The entropies of the node beliefs rise during the prediction stage and fall following

an observation or a channel update, always one message away from being the same.

In the previous example, the initial estimates of the nodes are the same and the nodes are

aware of it. The next example describes information fusion with an uninitialized Channel

Filter.

Example 4.3

The network topology and geometry of the problem is the same as in the previous example.

The difference is in that when the two nodes come in contact, they both have beliefs on the

target location. Both have communicated with the network before and it is unknown if the

two beliefs are based on independent information sets.

Because the common information in this case is unknown, a conservative fusion algorithm

must be used. Covariance Intersect algorithm described in Appendix C.3 can be used in

this situation. Due to the conservative nature of the algorithm, some information is lost

during the fusion process. A comparison of the entropy levels in node beliefs is shown in

Figure 4.14. The final entropy level for the case of conservative fusion is correspondingly

higher than in the case of optimal (centralized or decentralized) fusion.

For comparison, the entropy of the belief obtained using the “throw away” method is shown.

This “fusion” method keeps the more informative belief and discards the other. The entropy

level using the CI algorithm is lower, due to the fact that it actually combines the information

contained in two beliefs.

This example demonstrated how a conservative fusion algorithm is used in situations when

common information between two nodes cannot be determined. Note that conservative

fusion has to be applied only once, right after the two nodes connect. Once the Channel
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Figure 4.14: Entropy evolution in the Information filter example with Covariance Intersect.
The belief obtained as a result of decentralized fusion is more uncertain due to the sub-
optimal nature of CI algorithm. The beliefs at the two nodes are the same at the last
step.

Filters on both nodes are initialized (and assuming that the topology is acyclic), the fusion

process becomes optimal, which is equivalent to getting to the start of Example 4.2.

4.3.3 Experiments with Point Target Localization

This section describes an experiment demonstrating information fusion on an indoor sensor

network.6 The task in this set of experiments is to estimate locations of stationary point

targets. Figure 4.15 shows the overall view of the system. The team consists of two Pioneer

robots, a stationary sensor module, and two operator workstations (one stationary and one

mobile). The two Pioneers and the stationary sensor are equipped with laser range finders.

The experiments ran for up to an hour at a time. The precise component makeup of the
6Parts of this section have been previously published in [137, 138].
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Figure 4.15: Indoor network for localizing stationary point targets. Four platforms are
involved: two Pioneer robots mozzy and hornet, a stationary sensor module fly, and a ground
station base. In addition, there is a mobile human operator tobie. The network topology is
shown with links connecting four frames (¤), three nodes (◦), and four sensors (4).

system and the deployment strategy is not important in this example (it is revisited in

Section 6.3.5).

The main objective of this experiment is to demonstrate information exchange between

nodes executing the BDDF algorithm with Gaussian point features. The result, shown in

Figure 4.16, is that the beliefs of the two nodes (and platforms) are synchronized. The
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screen shots are taken during the system startup and only three platforms are operational

at this point.

The screen shot in Figure 4.16(a) shows the view of the world from the point of view of the

node on platform hornet. Feature 1 is located within hornet’s sensor range. The larger

ellipse represents the latest observation, the smaller one represents the current belief about

the features location. Feature 2 is outside hornet’s sensor range and the information about

it was sent from the node on platform base.

The screen shot in Figure 4.16(b) shows the view of the world from the point of view of

the node on platform base. No current laser scan is shown because base does not have any

local sensors. Observations arrive from a remote sensor executed on platform fly. Note

that the feature ID’s used by the two nodes are different, {1, 2} on hornet and {0, 1} on

base. This highlights the need for data association, which in this case is performed using

the Information Gate algorithm described in Appendix C.2.

The second objective of this experiment is to demonstrate simultaneous information input

from robotic and human sources. Figure 4.17 shows manual input of feature information

though the ui. Four platforms are operational at this point and the world view is shown

from the point of view of the node on platform mozzy. Two features, with ID’s 0 and 1,

were observed by the robotic platforms.

The human operator identifies the likely location of a feature currently unknown to the

network which lies outside the sensor range of all platforms. The uncertainty circle7 drawn

by the operator is centered at the most probable location of the new feature, and the

radius of the circle is interpreted to be equal to three standard deviations of its position

uncertainty. This information is physically entered through a hand-held device as shown in

Figure 4.15. The circle properties are sent to the GUI node as an observation message and

is indistinguishable from messages submitted by regular (robotic) sensors. This observation

can be sent to any one (and only one) node. After the new feature is initialized as feature 2,

all other nodes are informed about its existence.

Note that in this example the operator actually sent two consecutive observation messages.

The second one is more certain (the circle is tighter) and its mean lies to the right from the

original observation. The node associates the second observation with an existing feature
7Uncertainty circle is used instead of a more common ellipse to simplify implementation.
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(a)

(b)

Figure 4.16: View of the environment from two Gaussian point nodes. Beliefs of the two
nodes are essentially the same despite the fact that the information about the two features
came from two different sensors.
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Figure 4.17: Human input of point feature location. Feature 2 lies outside the sensor range
of all robotic platforms. Its position is entered by a human operator using two consecutive
observations.

and fuses them together. This behavior is identical to what happens when observations

arrive from multiple robotic sensors and the fact that these particular observations are

entered by an operator (or several operators) makes no difference.

The series of experiments described in this section demonstrated application of the Gaussian

version of the BDDF algorithm to a small team of mobile indoor robots. Although the

scalability metrics were not explicitly measured in these experiments, the results on compu-

tational and communication scalability reported in [164, 221] apply because the information

fusion algorithms are the same.
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4.4 Discrete Grid Representation

Despite their computational advantages, parameterized probability distributions, like Gaussian,

are often insufficient for a task because of their limited representation ability. The most

common method of representing general distributions in centralized information fusion em-

ploys discrete, piecewise constant, representations of the belief. Although, in theory, the

resulting tessellation can be of arbitrary shape, the use of a uniform grid is the simplest

and most common representation.

A key advantage of the discrete grid is that it can represent arbitrary probability distribu-

tions. However, the computational, storage, and communication burden required in practice

presents a problem. As the complexity grows exponentially with the number of dimensions,

grid-based approaches can only be applied to low-dimensional estimation problems. Decen-

tralization of the grid algorithms is straightforward and the DDF primitives for the case of

grid representation are listed in Section 4.4.1.

Application of grid-based methods to decentralized target tracking is covered in Section 4.4.2.

The state space is divided into a large number of cells, each representing the probability

of the target being in that cell. If the number of discrete states is small, the states can be

thought off as categories and the approach is sometimes called decentralized identification

[16]. This application is addressed in section 4.4.3. A special case of probabilistic iden-

tification is the Certainty Grid map which also divides the environment into cells. Each

cell characterizes a certain aspect of the environment but the difference is that each cell is

independent from all other cells. The algorithm for Decentralized Certainty Grid maps is

described in Section 4.4.4.

4.4.1 DDF Primitives

The prediction and update equations for the discrete representation are easily derived from

the general Bayes case summarized in Appendix B.1. Prediction is the same as in the

general case but integrals are replaced by sums. Belief update is also the same as in the

general case with pdf multiplication performed element by element.

The combined estimate based on the observations of two nodes is found through element-

by-element multiplication and division of the two individual estimates, and the information
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they have in common. At present there is no known algorithm to conservatively combine

two distributions with unknown amount of common information. It is always safe, however,

to simply pick the more informative estimate and discard the other.

DDF Primitives for Discrete Grids

Prediction:

P(xk | xk−1, Zk−1, x0) =
∑

xk−1

P(xk | xk−1)P(xk−1 | Zk−1, x0)

Belief Update, with no common information:

P(xk | Zk
i∪j) = P(xk | Zk

i )P(xk | Zk
j ),

where in the case of a single observation P(xk | Zk
j ) = 1

C L(zk
j | xk).

Belief Update, with known common information:

P(xk | Zk
i∪j) =

1
C

P(xk | Zk
i )P(xk | Zk

j )

P(xk | Zk
i∩j)

Belief Update, with unknown common information:

P(xk | Zk
i∪j) =





P(xk | Zk
i ) if En(xk | Zk

i ) < En(xk | Zk
j )

P(xk | Zk
j ) otherwise

Data Association:

same as in the general case.

4.4.2 Application to Target Tracking

In the case of target tracking, each cell of the spatial grid contains the probability of target

occupancy. Observation are defined on the same grid, and each cell contains the likelihood

of that particular observation being made if the target was at that location.

Continuous states must be discretized to be used with grid representation. The total size

of the grid is then the product of the number of discrete cells for each state. With this in

mind, storage requirement for feature models and beliefs in grid format can be significant if
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the entire grid is pre-allocated. As a practical solution, grids with dynamic resolution were

implemented in the Nodestar submarine tracking system [218, 219]. This system applied to

the case of a single platform and a single target but the same approach can be used in the

DIG context.

Example 4.4

Consider again the scenario described in Example 4.2 but with the process and observation

models now nonlinear and the noise non-Gaussian. The state transition model G is illus-

trated in Figure 4.18(a). The velocity of the target is not part of the state to save storage and

computation. It is assumed to be a constant vector with mean [2.5,−5.0] and a covariance

[3.0, 1.5] in the rotated coordinate system.
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(a) (b)

Figure 4.18: Motion and observation models for non-linear filtering: (a) Gaussian motion
model and (b) probability of detection for an acoustic sensor [219]. Darker colors correspond
to higher probability.

Both sensor platforms are stationary. Platform A is equipped with a range-bearing sensor.

Its observation uncertainty is exponential in range and Gaussian in bearing. Platform B is

equipped with an acoustic sensor described in [219] (p.47). The probability of target detection

is shown in Figure 4.18(b). The range-dependent probability of detection is combined with

Gaussian bearing likelihood function to obtain the full observation likelihood function.

Figure 4.19 shows the estimate of target position available at nodes A and B over time.
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Figure 4.19: Example of decentralized target tracking using nonlinear filtering techniques.
The panels show platform positions (¤) and current true target position (♦). Darker colors
correspond to higher probability.
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Figure 4.20: Entropy evolution in the grid tracking example.

Both platforms start with an uninformative prior distribution. Platform A makes an obser-

vation at t1. The posterior PA(x | Z1
A) is exponential in range and Gaussian in bearing.

Node A sends a channel update to node B. node B receives the message and first calcu-

lates the new information contained in it by subtracting common information stored in the

Channel Filter. Platform B also makes a local observation. The result is sent to node B.

At t2 platform A does not make local observation and only predicts its belief forward which

results in less informative “more spread out” distribution. At t3 it receives a channel update

message from node B and fuses it with its local belief. Both nodes predict their beliefs

forward.

The beliefs at both nodes at t3 are the same. This fact is further highlighted in Figure 4.20

which shows the evolution of the entropy of the state estimate at the two nodes. At the last

step t3 the entropies of the two beleifs are the same.
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4.4.3 Application to Feature Identification

This application is similar to discrete filtering but the state space is usually small and state

transition models are trivial. The feature state defines probability of the feature belonging to

a certain class, for example X = {rock, bush, tree, other}. Observations express probability

of a particular identification being made if the feature in fact belonged to a particular class.

The following example illustrates decentralized feature identification with two nodes.

Example 4.5

Consider again the scenario described in Example 4.2. Instead of tracking the target’s

location the platforms try to identify its type. The target can be one of three types: human,

robot, or other: X = {H,R, O}. The categories are assumed to be mutually exclusive.
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Figure 4.21: Belief evolution in the identification example. At t1, platform A observes a
feature moving with medium speed, indicative of a human or a robot. At t2, platform B
observes a cold feature, making the presence of a robot more likely. At t3, the belief on
feature identity is the same for both nodes.

The first sensor detects motion and returns one of four possible values: fast, medium, slow,
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and zero speed: Z1 = {F, M, S, Z}. Note that the sensor space is different from the state

space. The sensor model is described by the likelihood matrix L1(z | x)

z1 z2 z3 z4

x1 0.05 0.50 0.30 0.15

x2 0.05 0.10 0.40 0.45

x3 0.20 0.10 0.10 0.60

.

The second platform has an infrared sensor which returns one of two values: warm and

cold: Z2 = {W,C}. Note that the sensor space of this sensor is different from state space

and the sensor space of the first sensor. The sensor is described with a likelihood matrix

L2(x | x)

z1 z2

x1 0.80 0.20

x2 0.10 0.90

x3 0.10 0.90

.

The motion sensor can discriminate between all feature types but is fairly noisy. The thermal

sensor can identify human well but cannot tell robots apart from the environment.

Observations and message exchanges follow the communication sequence in Figure 4.11.

The evolution of the local beliefs is shown in Figure 4.21. Both nodes start with an un-

informative prior distribution. At t1 platform A observes a feature moving with medium

speed z1
A = M . After this observation is fused, the belief has high probability for both human

and robotic objects: PA(x | Z1
A) = (0.38, 0.50, 0.13). Node A sends a channel update to

node B. node B receives the message and first calculates the new information contained

in it by subtracting common information stored in the Channel Filter

PB(x | Z1
A\B) = α

PA(x | Z1
A)

PB(x | Z1
A∩B)

= α(0.38, 0.50, 0.13)® (0.33, 0.33, 0.33)

= (0.38, 0.50, 0.13),

where ® means element-by-element division.

The thermal sensor on platform B observes a cold object, z2
B = C. Local observation is

fused with current (uninformative) local belief resulting in a posterior which assigns equal
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Figure 4.22: Entropy evolution in the identification example.

probability to robots and background, PB(x | Z2
B) = (0.10, 0.45, 0.45). The new information

contained in the message from node A is also combined with the local posterior

PB(x | Z2
A∪B) = αPB(x | Z1

A\B)PB(x | Z2
B)

= α(0.38, 0.50, 0.13)⊗ (0.10, 0.45, 0.45)

= (0.12, 0.71, 0.18),

where ⊗ means element-by-element multiplication.

The resulting posterior is quite confident in the presence of a robot. Now the posterior is

sent back to node A, where the new information is extracted

PA(x | Z2
B\A) = α

PB(x | Z2
B)

PA(x | Z2
A∩B)

= α(0.12, 0.71, 0.18)® (0.38, 0.50, 0.13)

= (0.10, 0.45, 0.45)
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and then fused with the local belief

PA(x | Z3
A∪B) = αPA(x | Z2

B\A)PA(x | Z3
A)

= α(0.10, 0.45, 0.45)⊗ (0.38, 0.50, 0.13)

= (0.12, 0.71, 0.18).

At this point the beliefs at the two nodes are synchronized, PA(x | Z3
A∪B) = PB(x | Z3

A∪B),

and are the same as would be obtained in the case of centralized fusion. The entropies of

the two distributions are shown in Figure 4.22 and, as expected, after the last step they are

the same.

4.4.4 Application to Certainty Grid Maps

This section applies the BDDF algorithm to the problem of constructing Certainty Grid

(CG) maps. The CG representation was pioneered by Elfes [47]. It allows a simple and

intuitive means of capturing distributed spatial information such as occupancy for indoor

spaces or traversability for the outdoors. The CG representation is popular because it

supports path planning and navigation [48, 148].

Formally, the CG map is a discrete-state binary random field. Each element encodes the

probability of the corresponding grid cell being in one of several possible states. The number

of states is not limited to two, although the vast majority of applications use the original

binary state space, X = {occupied, empty}. 8

As the CG representation is probabilistic and discrete, the problem of building a map with

multiple platform may be viewed as an instance of decentralized identification. In the case

of occupancy maps, the states to be identified are occupied and empty for each grid cell.

The simplicity of the representation makes some of the DDF primitives rather trivial. Data

association is not required because the “features” (the CG cells) are referred to explicitly

by their locations. A stationary environment is a standard assumption for CG, so loca-

tion of the cells in the CG map are assumed to be constant and known. This makes the
8For an example of a richer representation see [217].
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Figure 4.23: Simulated world for the CG example. White color designates open space, black
obstacles.

prediction step unnecessary. It is possible to relax this assumption and allow quasi-static

environments by introducing a certain amount of information “forgetting” or blurring [48].

The time scale associated with information loss may reflect the expected dynamic aspect

of the environment. Any information entered into the map is not permanent and has to be

verified periodically.

Standard Channel Filter techniques are applied to keep track of common information be-

tween platforms.9

Example 4.6

As an example consider a small Certainty Grid map with 22 by 22 cells representing tra-

versability of a flat two-dimensional space. The world layout is shown in Figure 4.23. The

locations of two platforms are shown as squares. The sensor model is obtained as first pro-

posed in [47] and is explained in detail in the appendix of [119]. Each platform executes an

instance of frame, sensor, and node components. The information exchange between

the two nodes follows the pattern of Figure 4.11.

The evolution of the two local belief is shown in Figure 4.24. As in the previous examples,
9The problem of fusing information from multiple mappers was considered in the original CG work. An

argument is presented in [47] for using the Independent Opinion Pool approach [16] for combining two maps
under the assumption that the two maps were built using independent observations.
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Figure 4.24: Belief evolution in CG map example. Lighter colors correspond to higher
probability of traversable (empty) space, darker — to less traversable (occupied). The
panels show platform positions (¤) and sensor returns (∗).
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the maps stored at the two nodes are the same after all information has been exchanged.

The change in entropy of the entire map is plotted in Figure 4.25. Both platforms start with

a blank uninformative map with equal (maximum) entropy levels. The increase in entropy

between observations is due to the blurring process.
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Figure 4.25: Entropy evolution in Certainty Grid map example.

The changes in the entropy are shown in Figure 4.25. Once again, at the last step the entropy

is the same. A simple multiplicative form of information “forgetting” is implemented. This

explains the increase in entropy (information loss) in the absence of observations. Note that

until some information is added to the map, the entropy cannot increase. This explains the

fact that the entropy of the belief does not increase until t1 for node A, and until t2 for

node B.

4.4.5 Experiments with Motion Detection Using Certainty Grid Maps

In this section, the decentralized Certainty Grid algorithm is applied to mapping motion in

an indoor environment. Unlike the previous simulation example, the following results were
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obtained experimentally.

The aim of the experiment is to use a dynamically configured sensor network to monitor

motion in an office environment over a extended period of time. The office space of approx-

imately 25 by 25 m is represented by a CG map with 30 cm square cells. The state space

of each grid cell is binary, X={static, dynamic}.

Figure 4.26: Deployment of sensors in the motion mapping experiment. The experiment
employed a total of 12 sensors of two types: lasers (¤) and video cameras (4).

The task is performed by a team of stationary sensing platforms. Two types of physical

sensors were used to detect motion: video cameras and laser scanners. The elements of the

sensor network were deployed manually so as to achieve reasonable coverage, as shown in

Figure 4.26. Each sensing platform has a processor and executes three software components:

a frame, a sensor, and a node. The platform positions were surveyed manually and

specified on initialization. Simple frame-differencing algorithms were implemented for both



4.4 Discrete Grid Representation 163

vision and laser sensors. The raw measurements were converted to the likelihoods of motion

in particular grid cells. Geometric projections were used to convert from observations in

local coordinate systems into the global CG frame.

Figure 4.27: Certainty Grid map of motion built by the indoor sensor network. Darker red
color corresponds to higher probability of motion, lighter blue colors — to higher probability
of stationary environment.

The world view of the operator station in Figure 4.27 displays the state of the world as seen

from the platform to which the GUI is connected. The motion grid, from the point of view

of the node in the lower-right corner, is shown in shades of gray and red. Dark-red colors

indicate higher certainty of motion in that cell. A large dark-red blob near the center of

the map corresponds to a constantly moving group of a dozen or so people participating in

a meeting. The office floor plan is overlaid manually for clarity. The hand-drawn plan is

inaccurate, which explains the apparent overlap of walls and human motion in some areas.
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Blue lines indicate connections between nodes, along which beliefs are shared.

Figure 4.28: View of the environment from two Certainty Grid nodes.

Figure 4.28 shows near-simultaneous views of the same environment from two nodes. In-

stantaneous range-bearing scans from the local lasers are shown in yellow. The two screen

shots illustrate the fact that the belief of two nodes is the same allowing for a certain

amount of communication a delay. A person’s track coming from the bottom is actually old

information which has already disappeared in the belief of the node who observes this part

of the environment directly (shown in the right panel). The update has not yet reached the

node whose belief is shown on the left.

This series of experiments described in this section demonstrated application of the Cer-

tainty Grid version of the BDDF algorithm to a medium-size team of stationary indoor

sensors. Feasibility was demonstrated although hard data on scalability was not collected.
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4.5 Summary

This chapter described how the task of information fusion is performed in ASN. The ap-

proach was presented in two parts: a general framework for decentralized Bayesian informa-

tion fusion, called the BDDF algorithm, and its specialization to several pdf representations.

To make the process of specialization more straightforward, the DDF primitives were iden-

tified. These are a small set of information processing operations, which constitute the ASN

information fusion algorithm.

A series of simulations for different representations and applications demonstrated the use of

the BDDF algorithm. Two specific representations were considered: Gaussian and the dis-

crete grid. Well known algorithms for these representations have been shown to implement

various aspects of the BDDF algorithm. A special case of the discrete pdf representa-

tion is the CG map. The Decentralized Certainty Grid algorithm presented in this thesis

is a novel application of the DDF approach to a well known Certainty Grid environment

representation.

When choosing an appropriate pdf representation for a feature, it is often possible to

break up the state vector into independent subsets and represent each subset with the

most appropriate representation. The BDDF algorithm and the primitives are applied

individually to each group of states. The combined hybrid state can easily be decentralized,

provided that the DDF primitives for the individual representations exist. One applications

of the hybrid state representation is in the integrated track existence and target tracking.

An example of this approach is Integrated Probabilistic Data Association (IPDA) [159]

which incorporates probability of track existence and target tracking information. Another

application combines target identification and tracking. Another use for a hybrid state is in

joint target tracking and classification algorithms [29]. Kalman filter tracking and particle

filter identification were combined in [59, 199].

The ideas of probabilistic information fusion naturally lead to sensor management. Decen-

tralized decision making is the subject of the next chapter.



Chapter 5

Decision Making Algorithm

5.1 Introduction

This chapter focuses on the task of decision making. As in the case of the information

fusion algorithm, two sections from Chapter 3 are used as departure points. The overall

algorithmic structure from Section 3.3 and the logical breakdown of the system into canon-

ical components from Section 3.6. Using these as a foundation, this chapter describes the

information flow and detailed decision making algorithms used in ASN.

Section 5.2 presents a general framework for decentralized Bayesian decision making. The

framework is an evolution of earlier work in decentralized sensor management and a brief

historical reference is provided. Continuing with the top-down description approach, the

algorithm is described on three, successively more detailed, levels: the information flow

between components, between the internal parts of the planner, and inside the internal

planner parts. The last level of description is sufficiently detailed to identify a small

set of information processing operations, called the Decentralized Decision Making (DDM)

primitives, which constitute the building blocks of the algorithm. The information process-

ing steps, expressed in terms of the three primitive operations, define the decision making

algorithm of ASN called Bayesian Decentralized Decision Making (BDDM) algorithm.

Section 5.3 specializes the algorithm and, specifically, the DDM primitives to the case of

Gaussian point features. A group of well known algorithms using Gaussian features are

presented as special cases of the general Bayesian form of DDM. An application to tracking
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point targets is discussed, using simulated and experimental results.

Section 5.4 repeats the process for the discrete grid representation. Two applications are

considered in this context: Bayesian feature identification and indoor exploration using

Certainty Grid representation.

5.2 Bayesian Decentralized Decision Making Algorithm

This section describes the main decision making algorithm of ASN called Bayesian Decen-

tralized Decision Making Algorithm (BDDM). The algorithm is based on the work started

at the robotics group at Oxford University in the early 1990s. Initially, the algorithm was

applied to sensor management [144, 145], which is concerned with making discrete assign-

ments of environment features to localization trackers. The approach used information

measures in evaluating expected utility and introduced an iterative bargaining algorithm

for decentralized sensor assignment. The algorithm was implemented on OxNav, an experi-

mental indoor vehicle. The work of Grocholsky [70, 71] tied the tasks of information fusion

and decision making closer together by utilizing the Channel Filter approach for cooper-

ative planning. It also extended the work to the continuous case of controlling a mobile

sensing platform. The solution procedure casts platform’s decision making as an optimal

control problem. Feature representation was limited to Gaussian points and communication

topology was pre-configured.

Continuing with the top-down description approach, the information flow between compo-

nents is considered first in Section 5.2.1. Section 5.2.2 looks inside the planner component

and describes the information flow between its internal parts. Then each part is considered

in detail and the algorithm is represented in terms of a set of primitive operations.

5.2.1 Inter-Component Information Flow

The information flow between components is considered first. Figure 5.1 shows five canonical

components participating in the task of decision making. The four interfaces employed in

this diagram are described in detail in Chapter 3. Both human and robotic action sources

are shown highlighting the fact that the two sources are identical in terms of information

flow.
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SENSOR

Fusing

Observing

NODE

Fusing

Informed

Linkable

PLANNER

Controllable

Fusing Informed

Observing

ACTUATOR

Controllable

UI

Controllable

Figure 5.1: Structural diagram of interactions between canonical components used in de-
cision making. Two types of action sources are shown: human ui and robotic planner.
Here and below, services used in implementing the task of information fusion are omitted
for clarity.

System operation depends on the choice of one of three synchronization modes listed in

Table 3.1. The case of an isolated decision maker is trivial because the decisions are made

locally based only on local information. The other two types, coordinated and cooperative,

are illustrated with examples below. A coordinated system is considered first. In this

synchronization mode, platforms’ beliefs are synchronized but their plans are not.

Example 5.1

Collaboration between components in coordinated mode is illustrated using the scenario

shown in Figure 5.2. The diagram shows two Platforms, 1 and 2, each executing four

canonical components: a sensor, an actuator, a node, and a planner. The nodes

on the two platforms are linked together for belief synchronization. The planners commu-

nicate only with components co-located on the same platform.

The sequence diagram in Figure 5.3 shows the messages passed between the components

on platform 1 and cross-platform communication between the nodes. The scenario begins

with planner 1 collecting information about the available sensing and actuation hardware

through the Observing and Controlling interfaces of sensor 1 and actuator 1 respec-

tively. The two “belief” nodes, B1 and B2, periodically synchronize their beliefs through

the Linkable interface.

At decision time, planner 1 gets current belief from local node B1 and the current actuator
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Platform 2Platform 1

1 :SENSOR

Fusing

Observing

2 :SENSORFusing

Observing

1 :PLANNER

Controllable

2 :PLANNER

1 :ACTUATOR 2 :ACTUATOR

Controllable

B1 :NODE

Informed

Linkable 1

B2 :NODE

Informed

Figure 5.2: A collaboration scenario illustrating coordinated decision making. Two plat-
forms coordinate their actions by synchronizing the beliefs of the corresponding “belief”
nodes, B1 and B2. The scenario description focuses on interactions of planner 1 (high-
lighted).

1 :PLANNER1 :SENSOR 1 :ACTUATOR B1 :NODE B2 :NODE

H1:= getModel

F1:= getModel

updateBelief(Bx2 (k))

updateBelief(Bx1 (k))

Bx1 (k):= getBelief

p1:= getState

A1 (k+n,k):= selectLocalPolicy

setAction(A1 (k+n,k))

Figure 5.3: Inter-component communication in coordinated decision making.

state from actuator 1. On the basis of all collected information, planner 1 generates

an action plan. The commands are sent to the actuator 1 for execution through the

Controllable interface. It is then the responsibility of the actuator to implement the
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action plan.

The next example describes a cooperative system, in which both the beliefs and the obser-

vation plans are synchronized between platforms.

Platform 2Platform 1

1 :SENSOR

Fusing

Observing

2 :SENSORFusing

Observing

1 :PLANNER

Controllable

2 :PLANNER

1 :ACTUATOR 2 :ACTUATOR

Controllable

B1 :NODE

Informed

Linkable 1

B2 :NODE

Informed

P1 :NODE

Fusing

Informed

P2 :NODE

Fusing

Informed

Linkable 1

Figure 5.4: A collaboration scenario illustrating cooperative control. Compared to the
coordinated scenario in Figure 5.2, the system has two additional “plan” nodes, P1 and P2,
which maintain the belief on the future state of the environment. The scenario description
focuses on interactions of planner 1 (highlighted).

Example 5.2

Collaboration between component in cooperative mode is illustrated using a scenario shown

in Figure 5.4. The diagram shows two platforms, 1 and 2, each executing five components:

a sensor, an actuator, two nodes and a planner. The two nodes, B1 and P1,

maintain the current and future beliefs respectively. The corresponding nodes on the two

platforms are linked together for belief and plan synchronization.

A sequence diagram in Figure 5.5 shows messages passed between the components. As

before, planner 1 collects information about the available sensing and actuating hardware.

The two node pairs, B1/B2 and P1/P2, periodically synchronize their beliefs through the

Linkable interface.
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B1 :NODE B2 :NODE1 :PLANNER1 :SENSOR 1 :ACTUATOR P1 :NODE P2 :NODE

H1:= get_model

F1:= get_model

belief(bx2 (k))

belief(bx1 (k))

plan(bx1 (k+n,k))

plan(bx2 (k+n,k))

bx1 (k):= get_belief

p1:= getState

[until converged]: * A1 (k+n,k):= select_team_policy

bx1 (k+n,k,l):= get_plan

A1 (k+n,k,l):= select_local_policy

planned_likelihood(bl1 (k+n,k,l))

pause

set_action(A1 (k+n,k))

Figure 5.5: Inter-component communication in cooperative decision making.

At decision time, planner 1 gets current belief from local “belief” node B1, future belief

from “plan” node P1, and the current actuator state from actuator 1. On the basis

of all collected information, planner 1 generates a local action plan. Its effect on the

world belief is summarized in a single planned observation likelihood which is forwarded to

node P1 for fusion. At this point iteration may be necessary if the actions of the platforms

are coupled. After a pause to allow node P1 to synchronize its plans with the rest of

the team, planner 1 gets an updated team plan, generates a new observation plan, and

submits the new planned observation likelihood to node P1. Once the team plan converged

sufficiently, the commands are sent to actuator 1 for execution through the Controllable

interface.

From the example above it is clear that the planner component is at the center of the
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decision making process. For this reason, the internal planner structure and algorithms

are the focus of this chapter. The main internal subsystems of the planner were identified

in Chapter 3. The white-box diagram of internal planner structure is repeated for con-

venience in Figure 5.6. Belief synchronization is a critical aspect of decision making and is

implemented by node components. The algorithms for synchronizing observation plans are

identical to those described in Chapter 4 in the context of current belief synchronization.

PLANNER

Belief :
Informed

Plan :
Informed

Negotiator

Solver

Informed

Informed

Controllable Observing

Fusing

«delegate»

«delegate»

«delegate»

«delegate»«delegate»

Figure 5.6: A possible realization of the planner component. Repeated after Figure 3.35.

5.2.2 Planner Information Flow

Information flow within the planner component is considered next. Communication dia-

grams in Figures 5.7 and 5.8 show the flow of information between the planner’s external

ports and its two internal parts.

Decision making in coordinated mode is confined within a single platform. The process

of local policy selection is illustrated in Figure 5.7 with all of planner’s functionality

implemented by the Solver. It first collects the sensing and actuation models, the current

state of the actuator and the environment (messages 1–1.3). Based on this information, the

Solver evaluates utility of feasible actions and selects the best one. The chosen action plan

is sent through the Controllable interface (1.4). Note that, when in coordinated mode, the

Fusing and Plan:Informed interfaces of the planner component are not used.
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i:PLANNER

Plan :
Informed

Belief :
Informed

:Observing:Controllable

:Fusing

Solver

1:  Hi:= get_model

1.1:  Fi:= get_model

1.2:  bxi (k):= get_belief

1.3:  bpi (k):= get_state

1.4: set_action(Ai ( k+n,k ))

Figure 5.7: Information flow inside planner in coordinated mode.

i:PLANNER

Belief :
Informed

Plan :
Informed

:Observing:Controllable

:Fusing

Negotiator

Solver

1: get_plan

1.1: get_best_response

1.2: planned_likelihood

2:  bxi ( k+n,k,l-1 ):= get_plan

2.1: get_best_response

2.2: planned_likelihood

3:  bxi ( k+n,k,l-1 ):= get_plan

3.1: get_best_response

3.2: set_action

3.3: set_action

Figure 5.8: Information flow inside planner in cooperative mode.

In cooperative mode, the platform’s action policy is negotiated with the rest of the team.

The process of team policy negotiation is illustrated in Figure 5.8 and involves two of

planner’s internal parts: the Solver which evaluates local actions (as in coordinated mode)

and the Negotiator which negotiates with the rest of the team. The Negotiator gets the

team plan through the Informed interface (message 1), tells the Solver to choose the locally

optimal policy (1.1), decides on which action to take, and submits the planned observation

likelihood through the Fusing interface (1.2). The negotiation process is iterative and the
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same sequence of operation is repeated (message groups 2.x, 3.x). Negotiation terminates

when sufficient convergence is achieved. The resulting action plan is sent out through the

Controllable interface (3.2).

The two diagrams demonstrate that the cooperative mode subsumes the coordinated one.

The discussion below focuses on the cooperative synchronization mode since the other two

can be viewed as special (and simpler) cases.

5.2.3 Planner Algorithms

This section covers detailed algorithmic steps inside the Solver and Negotiator parts. The

diagrams in this section specify the high-level information flow in Figure 5.8.

Solver

«interface»

B1 :Informed

«collection»

belief :FilterArray

«interface»

1 :Controllable

«interface»

1 :Observing

1 :Solver

H1:= get_model

F1:= get_model

p1:= get_state

[action feasible]: *for_all_actions

[feature relevant]: *for_all_features

PREDICT(observation_time)

get_belief

bx1(k):= get_belief

predict

update

EXPECTED_VALUE

A1*(k+n,k):= SELECT_POLICY

Figure 5.9: Information flow in the Solver on local re-plan. This is a more detailed version
of Figure 5.7.

Local Policy Selection. Internal steps inside Solver are shown in Figure 5.9. At decision
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time (triggered by an external event), the Solver collects the necessary information: sensor

model from the Observing interface, actuation model and current actuator state from the

Controllable interface. For all feasible actions and all relevant features the Solver evaluates

the expected utility. The current belief for each feature is obtained through the Informed

interface. The action with the highest expected value is chosen.

1 :Negotiator «interface»

P1 :Fusing

1 :Solver«interface»

P1 :Informed

bx1(k+n,k,l-1):= get_plan

remove_local_plan

set_team_plan(bx1(k+n,k,l))

A1*(k+n,k):= SELECT_POLICY

A1(k+n,k,l):= SELECT_POLICY(A1(k+n,k,l-1), A1*(k+n,k,l))

[converged]: action(A1(k+n,k))

planned_likelihood(bl1(k+n,k))

Figure 5.10: Information flow in the Negotiator. This is a more detailed version of Fig-
ure 5.8.

Team Policy Negotiation. Internal steps inside Negotiator are shown in Figure 5.10.

First, the updated team plan is obtained. It contains the previous local plan which has to

be subtracted. Based on the latest team plan, the Solver generates the action plan with

the highest expected value. This action is sometimes called best response. Best response

procedure in a distributed environment suffers from several problems with local minima,

poor convergence, and oscillations. A better response algorithm proposed by Grocholsky

[70] adds some damping on action update between the stages of negotiation and adds some

noise to the process of action selection. The update parameters may be varied during a

single optimization run.
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5.2.4 Decentralized Decision Making Primitives

A closer examination of the sequence diagrams in Figures 5.9–5.10 reveals that the ASN

decision making algorithm can be expressed in terms of three basic operations:

1. Prediction of platform state

2. Expected value evaluation

3. Policy selection

These three basic operations will be referred to as DDM primitives. In the diagrams, these

three operations are shown in all capitals.

Prediction of platform state. This step involves predicting the platform state forward

in time. This part is the same as in the prediction step of the information fusion task as

described in Section 4.2.5

P(pk
i | Zk−1

i ) =
∫

P(pk
i | pk−1

i = p)P(pk−1
i = p | Zk−1

i ) dp. (5.1)

Expected value evaluation. The expected partial value was defined in Section 3.3.4 as

Ṽ K
i (πiA) ≈ ρ̃k+K,k

iB +
K∑

t=0

ρ̃k+t,k
iA +

K∑

t=0

ρ̃k+t,k
iM . (5.2)

For systems solving the DIG problem, quality of information about the environment, cap-

tured in ρ̃k+k,k
iB , makes up a major portion of the overall utility. The question remains on

how this utility should be calculated. Note that the utilities of action and communication,

ρ̃k+t,k
iA and ρ̃k+t,k

iM , are application specific.

It was shown by Manyika [145] that the utility based on entropy of the belief satisfies the

rationality axioms1 guaranteeing a preference ordering UB = En(xk
i ). Entropy is given by

En(x) =
∫∞
∞ P(x) log P(x) dx. The entropic form of Bayes theorem shown in Appendix B.3

is repeated here

En(x | z) = En(z | x) + En(x)− En(z). (5.3)
1Proof that the axioms imply the existence of a utility function can be found in [16].
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Being able to describe changes in entropy as a result of observations leads naturally to

asking an important question: which observation is the most informative. This question

may be answered through the concept of mutual information. The mutual information

I (x, z) obtained about a random variable x with respect to a second random variable z is

defined as

I (x, z) = −E

{
log

P(x | z)
P(x)

}
= −E

{
log

P(z | x)
P(z)

}
. (5.4)

Mutual information is an a priori measure of the information to be gained through observa-

tion. It is a function of the ratio of the density P(x | z) following an observation to the prior

density P(x). The expectation is taken over all possible z and x, so the mutual information

gives an average measure of the gain to be expected before making the observation. (See

Appendix B.3 for a summary of the relationship between entropy and mutual information.)

In coordinated mode, the partial belief utility is found as a mutual information between the

current local belief bk
xi and the planned future observation zk+n,k

i

ρ̃k+K,k
iB = Ibk

xi(xk+n,k, zk+n,k
i ). (5.5)

In cooperative mode, the team plan bk+n,k
xα (with the local plan subtracted) is used instead

of the current belief

ρ̃k+K,k
iB = Ibk+n,k

xα (xk+n,k, zk+n,k
i ). (5.6)

Policy selection. The choice of appropriate policy selection mechanism is application

dependent. Two approaches have already been mentioned: best response and better re-

sponse. In the context of negotiation, Grocholsky [70] considers two practical algorithms:

Generalized Jacobi and Generalized Gauss-Seidel algorithms. The former is synchronous,

i.e. decisions at different platforms are made simultaneously, and the latter is sequential,

i.e. decisions are made one at a time.

It is instructive to compare the decision making primitives identified in this section to the

DDF Primitives in Section 4.2.5. Only one aspect of the DDM primitives, evaluation of

belief utility, depends on the belief representation. In the decision making algorithm, more

choices are left unspecified. Virtually all aspects of policy selection can be varied depending

on the application and remain active research topics.
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5.3 Gaussian Point Features

Gaussian point features were considered in Section 4.3 from the point of view of information

fusion. Feature and sensor models for Gaussian distributions are described in Appendix C.1.

This section extends the discussion into the task of decision making. The applications to

active feature localization is discussed in Section 5.3.2.

5.3.1 DDM Primitives

Algorithms for Gaussian point features are well known and are summarized for reference in

Appendix C. This section maps these algorithms to the DDM primitives.

The method of predicting future platform state is the same as in Chapter 4, using the

Kalman or Information filter algorithms.

The information measures used in evaluating the belief utility UB is described in Appen-

dix C.4. In coordinated mode, the partial belief utility is found as a mutual information

between the current belief Yk
i and the belief at the planning horizon Yk+K,k

i

ρ̃k+K,k =
|Yk+K,k

i |
|Yk

i |
. (5.7)

In cooperative mode, the team plan Yk+K,k
α (without the local plan) is used instead of the

current belief

ρ̃k+K,k =
|Yk+K,k

i |
|Yk+K,k

α | . (5.8)

If there is a finite discrete set of policy options then simple evaluation and ranking provides

an obvious means of policy selection. Such an approach has been demonstrated in the

context of feature-based SLAM for a single platform [20, 52]. The alternative is to consider

the continuous motion problem when policy selection is cast as a deterministic optimization

problem [70]. The Information surfing algorithm is a special case of this approach with

one-step look-ahead planning horizon. It is described in Appendix C.5.
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5.3.2 Application to Active Target Localization

The objective is to find where stationary targets are located. The sensing platforms can

move in order to improve information quality. The next two examples show simulation and

experimental results of coordinated control of sensing platforms.

Example 5.3

This example demonstrates coordinated solution for platform motion control.2 Let us con-

sider two bearings-only sensor platforms localizing a single point feature. Planning with zero

look-ahead provides a special case in coordinated multi vehicle control. This can be used to

form simple approximate solutions where the sensor platforms are directed by the dynamics

of the gradient field of the mutual information rate I (t). The Information Surfing algorithm

used here for action selection is described in Appendix C.5.

The trajectories of platforms in isolated and coordinated synchronization modes are shown

in Figure 5.11. Three snapshots of the locally optimal trajectories, with and without belief

synchronization are shown in panels (a)–(c). The evolution of feature information available

to the platforms is plotted in panel (d). The planners on both platforms implement local

control laws which maximize their individual information gain from bearings-only observa-

tions given local belief. Coordination results from the DDF algorithm updating local beliefs

from which the optimal action is generated.

This comparison demonstrates the improvement in performance achieved simply by employ-

ing the DDF algorithm in the network of decision makers with local information seeking

planners.

5.3.3 Experiments with Active Target Localization

This section shows experimental results of implementing coordinated control of sensing plat-

forms within the ASN framework. It uses a small-scale network of indoor mobile platforms

described in Section 4.3.3.
2This example has been previously published in [71].
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Figure 5.11: An example of coordinated target localization: (a)–(c) platform trajectories
and (d) collected information (from [71]). Platform trajectories for isolated and coordi-
nated modes are different from each other. At any given time, the platforms gather more
information about the environment feature when operating in coordinated mode.

For the experiments involving decision making, each Pioneer robot executes four canonical

components: a Pioneer frame, a Gaussian point node, a sensor which converts laser

scans to observations of Gaussian point features, and a planner which implements the

Information Surfing algorithm described in Appendix C.5. The stationary sensor does not

make any decisions so it does not need a planner. All together, the network consists of

13 components on 5 hosts: three nodes execute the Information filter algorithm and three

sensors convert laser scans to Gaussian point observations.
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(a)

(b)

Figure 5.12: Experiments with coordinated information surfing: (a) information available
to the robots before the start of planning and (b) robots trajectories.
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Features 0 and 1 in Figure 5.12(a) were acquired by the robotic sensors, feature 2 is

outside of the platforms’ sensor range and was entered by the operator as described in

Section 4.3.3. The quality of information about the location of features 0 and 1 is too

high to justify platform motion. Once a human-entered observation with large uncertainty

becomes available to the platform, the expected utility exceeds the threshold and both

platforms start to move. Platform trajectories are shown in Figure 5.12(b). Note that the

estimated location of feature 2 has moved and its uncertainty has decreased due to the

actual observations made by sensors mounted on the robots.

The experiment described in this section demonstrated application of the Gaussian version

coordinate decision making to indoor active target localization. The experiments validate

the basic approach but to be useful a much better integration with basic platform com-

petence is necessary. One of the conclusions was that multi-step lookahead is required for

any real-life scenario. A significant implementation effort required for robust optimization

algorithms became the limiting factor for further work in this direction.

5.4 Discrete Grid Representations

Discrete grid feature representations were considered in Section 4.4 from the point of view

of information fusion. Feature and sensor models for discrete distributions were described

in Section 4.4.1. This section extends the discussion into the task of decision making.

Sections 5.4.2 and 5.4.3 discuss two applications: feature identification and exploration

with CG maps. Application to tracking is not discussed but some work in this direction

can be found in [19, 21].

5.4.1 DDM Primitives

In coordinated mode, the utility of information gain is calculated by comparing the current

belief with the planned belief based on local action plan Ak+n,k
i

ρ̃k+K,k
iB = −E

{
log

P(xk+K | xk, Ak+n,k
i )

P(xk)

}
. (5.9)
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In cooperative mode, the basis for comparison is the planned belief based on team action

plan Ak+n,k
α

ρ̃k+K,k
iB = −E

{
log

P(xk+K | xk, Ak+n,k
i )

P(xk+K | xk, Ak+n,k
α )

}
. (5.10)

Analytical control solutions are intractable with this representation. Numerical optimiza-

tion techniques are possible but have not been demonstrated. Policy selection approaches

have been limited to enumeration of options and selection of the one with highest expected

value.

5.4.2 Application to Feature Identification

The following example demonstrates cooperative feature identification in simulation. The

decision corresponds to target assignment. Extensive experimental work on this topic is

described in [145].

Example 5.4

This example uses the temperature and motion sensors described in Example 4.5 and con-

siders the task of sensor management with two sensing platforms and two features. The

system composition is the same as in Figure 5.4. The platform and feature locations are

shown in Figure 5.13. The list of feasible actions contains three options: observe feature 1,

observe feature 2, and make no observations. Both platforms can choose to observe the

same feature.

Both the current and planned beliefs are initialized with a uniform distribution. The coor-

dinated synchronization mode is considered first for comparison. Since both feature beliefs

are equally uninformative, both observation actions are equally attractive for both platforms.

If distance to the feature is part of the action utility (i.e. platforms must approach the fea-

ture for identification), then both platforms select to observe feature 1. This outcome is

shown in Figure 5.13(a). The result is suboptimal compared to the cooperative mode which

is considered next.

Information exchange between platforms follows the pattern shown in Figure 4.11, but, in-

stead of the current beliefs, the platforms synchronize their plans. Platform decisions are

made sequentially following the Generalized Gauss-Seidel algorithm.
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Figure 5.13: Target assignment in the feature identification example: (a) coordinated and
(b) cooperative synchronization modes.

Evolution of the planned belief state is shown in Figure 5.14, starting with an uninforma-

tive distribution. At t1, planner A considers which action to choose. It makes a decision

to observe feature 1, because the information gain utility ρ̃k
iB is the same and feature 1 is

closer. To inform the rest of the team about its decision, it must form a planned observa-

tion likelihood. The first step is to find the most likely observation using the current prior

(uniform) and the observation model for sensor A. The probability of all four possible

observations are [0.10, 0.23, 0.27, 0.40], with a zero-speed observation the most likely. The

observation likelihood assuming the most likely observation is [0.15, 0.45, 0.60]. When sub-

mitted to node A and combined with the prior, it results in the belief [0.13, 0.38, 0.50] as

shown in the top-left panel of Figure 5.15.

Nodes A and B exchange information using standard BDDF algorithm. In addition to

receiving the plan from node A, node B makes its own decision. The expected reduction

in entropy after making a single observation for features 1 and 2 are 0.136 and 0.253 respec-

tively. Thus observing feature 2 is preferred because, on average, the observation will be more

informative. To form a planned observation likelihood, the most likely observation must be

found. The probability of two possible observations are [0.33, 0.67], with cold observation

more likely. The observation likelihood for the more likely observation is [0.20, 0.90, 0.90].
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Figure 5.14: Evolution of the observation plan in the cooperative identification example.
The graphs show the planned belief at the planning horizon, bk+1,k

xi . At t1, platform A
makes a decision to observe feature 1. At t2, platform B responds with a decision to
observe feature 2. At t3, the team plans are synchronized and ready for execution.

When combined with the belief by node B, it results in [0.10, 0.45, 0.45] as shown in the

mid-right panel of Figure 5.15. By t3, the plans on both platforms are synchronized and

ready for execution.

So far, the decisions made are based solely on the utility of belief quality. Utility of action

can be a function of the distance to feature in the case when a platform has to move to a

feature to perform observations. The two partial utilities are combined as follows

Ṽ K
i (πiA) ≈ (1− λ)ρ̃k+K,k

iB + λρ̃k+K,k
iAN + 0, (5.11)

where λ is a weighting coefficient and the utility of communication is zero. Consider again

the decision process of platform B at t2. Figure 5.15 shows the change in expected value

of the two actions as a function of the weighting coefficient λ. Based on the utility of

information gain alone (λ = 0), the planner B chose to observe feature 2. For λ > 0.71,



5.4 Discrete Grid Representations 186

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.05

0.1

0.15

0.2

0.25

Utility Weighting, λ

T
ot

al
 U

til
ity

, ρ
B

Feature 1
Feature 2

Figure 5.15: Expected value as a function of the weighting coefficient. Platform B prefers to
observe feature 2 when the distance to target is not taken into account. Observing feature 1
becomes preferred for λ > 0.71.

the penalty on driving to a more distant feature 2 outweighs the higher expected information

gain, and observing feature 1 becomes preferred.

5.4.3 Experiments with Exploration Using Certainty Grid Maps

The Certainty Grid (CG) representation was described in Section 4.4.4 in the context of

information fusion. This section considers CG from the point of view of decision making.

Experiments were conducted with a single platform performing exploration of an indoor

office environment. In ASN terms, this is equivalent to a platform acting in the isolated

synchronization mode. The same exploration algorithm can be used by several platforms in
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coordinated mode.

The expression for expected value was given in Equation 5.2. In the exploration experi-

ments, the utility of action is further divided into the integral utility of locomotion and the

terminal utility of localization quality. The latter takes into account the expected quality

of localization at the proposed destination point. The total expected value is calculated as

Ṽ K
i (πiA) ≈ (1− λ)ρ̃k+K,k

iB + λ

(
K∑

t=0

ρ̃k+t,k
iAN + ρ̃k+K,k

iAL

)
+ 0, (5.12)

where λ is a weighting coefficient. Note that, since a single platform was used, the util-

ity of communication is zero. Details of utility definitions are provided for reference in

Appendix D.

The individual and combined effect of the three utilities can be observed in Figure 5.16.

The belief utility favors regions near the edges of the known map, the navigation utility

prefers the vehicle to stay close to current location, and the localization utility leads the

robot towards the well mapped regions. From the list of proposed destinations, the location

with the highest total utility value is selected as the next destination.

The exploration algorithm works as follows. A list of destinations is first proposed. For

each destination, the expected value is evaluated and the destination with the highest value

is selected. The action plan in this case is a list of way points to the chosen destination.

Details of the Integrated Exploration algorithms are provided for reference in Appendix D.1.

The map built by the robot is shown in Figure 5.17. Exploration time was approximately

20 minutes. The size of the map is 25 by 25 meters. A single laser was used for sens-

ing the environment. Platform localization was performed using a feature-based SLAM

algorithm [240]. The features were artificial light-reflecting markers placed throughout the

environment.

One novel feature of the exploration algorithm is the inclusion of the utility of localizability.

To demonstrate its effect on the platform behavior, the light-reflecting markers used for

localization were not distributed uniformly, with fewer of them placed around the periphery

of the building. With utility of localizability disabled (its relative weight set to zero), the

platform quickly became lost in areas with few beacons. When the localizability utility

taken into account, the platform does not venture out into territory far from well marked



5.4 Discrete Grid Representations 188

(a) (b)

(c) (d)

Figure 5.16: Illustration of the planning process for a section of an experimentally obtained
map: (a) information gain utility, (b) navigation utility, (c) localization utility (for k = 10)
and (d) total utility. All utilities favor dark colored regions. Also shown where relevant:
current vehicle position (4), landmarks (¤) and potential destinations (∗). All utilities are
calculated off-line for illustration only.
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Figure 5.17: A Certainty Grid map autonomously constructed by a single mobile robot.

areas. As a result an acceptable level of localization quality is maintained.

The exploration experiment described in this section demonstrated application of the CG

version of the BDDF algorithm to an individual mobile robot. In terms of ASN, the tran-

sition from isolated to coordinated decision making is trivially accomplished by enabling

the inter-node synchronization (demonstrated in Section 4.4.5). In practice, coordinated

exploration was not performed for lack of suitable multi-platform localization algorithm.
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5.5 Summary

This chapter described how the task of decision making is performed in ASN. First, a gen-

eral framework for decentralized Bayesian decision making was presented. Similar to the

information fusion case, several primitive operations were identified which define the de-

cision making algorithm of ASN called Bayesian Decentralized Decision Making (BDDM)

algorithm. Well known algorithms for the Gaussian representation have been shown to im-

plement various aspects of the BDDM algorithm. For the first time, experimental validation

of decentralized coordinated platform control was performed.

Decision making in the context of CG map building led to the development of the Integrated

Exploration algorithm. A novel feature of this algorithm is in the inclusion of the utility of

localizability into the total utility for choosing destinations. It was shown experimentally

that when the localizability utility is taken into account, the platform avoids territory where

localization is expected to be poor. As a result, an acceptable level of localization quality

is maintained and higher quality maps can be obtained. Although demonstrated in an

environment with artificially placed navigation beacons, the same approach is applicable in

uninstrumented environment as long as the expected localization quality can be predicted

in advance. This exploration algorithm is readily extendible to multi-platform case in

coordinated and, possibly, cooperative modes.

This chapter concludes presentation of ASN algorithms. The next chapter describes the

concrete implementation of the ASN framework used in performing experiments described

in this thesis.



Chapter 6

Implementation

6.1 Introduction

This chapter focuses on the implementation aspect of ASN. Two developments from Chap-

ter 3 serve as departure points: the Execution architecture presented in Section 3.8 and

the logical breakdown of the system into canonical components described in Section 3.6.

Using these as a foundation, this chapter describes the software and hardware used in

implementing the current version of ASN.

Section 6.2 describes the hardware used in the experiments including sensors, actuators, and

two types of operator stations: stationary desktop computers and mobile hand-held devices.

All experiments were conducted indoors, using both mobile and stationary platforms.

Software is described in Section 6.3. The description contains a list of components currently

implemented in ASN and used in the experiments mentioned in the thesis. The User

Interface plays a special role in the design and debugging of a large distributed system.

Component communication, deployment, and configuration are also discussed.

Examples of typical platforms and networks are listed in Section 6.4. The examples serve

to illustrate how the modular approach of ASN is applied to real-life situations. Some of

the platforms appearing here were used in the experiments which are not described in the

thesis. In addition to the networks actually implemented in ASN, hypothetical cases are

considered drawn from the literature.
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6.2 Hardware

The hardware description in this section starts with platforms, proceeds to sensors and

actuators, and finishes with details of operator stations.

6.2.1 Platforms

Commercial indoor robots Pioneer 2 shown in Figure 6.1(a) were used as mobile platforms.

Standard Intel Pentium III boards were used as on-board computers.

Stationary sensor platforms were custom-built. On-board processors included low-power

Intel Pentium III on micro boards and PC-104 form factor. The units housing lasers could

be deployed independently as well as on the Pioneer robots.

Standard wired and wireless Ethernet was used to connect the platforms into a network.

6.2.2 Sensors and Actuators

The most commonly used sensors were SICK LMS-291 laser range finders with a scan angle

of 180 degrees. The lasers were configured to low-range (8 m) high-resolution operating

mode more suitable for indoor applications. Scan frequency was limited to 5 Hz which was

considered adequate for static and slow-moving environments.

A ring of range-finding sonars built into the Pioneer robots were used in some experiments.

Three types of cameras were used: high quality SONY DFW-VL500 FireWire, pan-tilt-

zoom analog SONY EVI-D100P, and low-cost Creative NX Pro USB webcams. All three

types are shown in Figure 6.1(b).

The wheeled base of the Pioneer 2 robot shown in Figure 6.1(a) was the most commonly

used actuator. Motion control is achieved by specifying forward speed and the rate of turn.

A built-in micro controller closes a low-level feedback loop from optical encoders to the

motor drive.

Pan-tilt actuators in the base of the camera shown in Figure 6.1(b) were used in some

experiments. Motion control is achieved by specifying the desired pan and tilt angles. A

built-in micro-controller commands the base to move to the specified attitude.
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(a)

(b)

Figure 6.1: Mobile and stationary indoor sensor platforms: (a) mobile Pioneer platform
and stationary laser sensor, and (b) custom-built PC-104 boxes used with video cameras.

6.2.3 Operator Stations

Operator stations serve as hardware access points for connecting to the ASN. Three types

of operator stations were used: desktops, laptops, and handheld computers. The difference

is in the available computing power, communication type, screen size, and input meth-
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ods. Smaller less capable devices were useful only in the final stages of development and

deployment.1

(a) (b)

Figure 6.2: Two types of operator stations: (a) stationary version on a desktop computer
and (b) a mobile one on a hand-held computing device.

An example of using ui running on a desktop computer is shown in Figure 6.2(a). An

example of the handheld device in operation is shown in Figure 6.2(b). The mobile ui

was executed on a Hewlett Packard iPaq 3870 running the Linux operating system. The

connection to the network is wireless.

6.3 Software

All software is executed on the Linux operating system. All software components run as

separate applications and communicate with each other using a common communication

library. Communication is supported using different mechanisms: on the same processor and

networked, both wireless and connected by a physical communication bus. Inter-component

communication is described in Section 6.3.2. Execution and deployment is discussed in

Section 6.3.4.
1The newly available trackpad devices with full-size screens, large batteries, and stylus-based input is a

promising form factor for this application. These computers were not used in the experiments because the
Linux support was lacking at the time.
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Hardware abstraction is an important aspect of modularity and, in the context of indoor

robots, it is achieved by using Player [63, 176], an open source device server developed at

the University of Southern California. Player is used to access the Pioneer mobile robot,

the SICK laser, and the SONY pan-tilt-zoom camera.

6.3.1 Component Implementation

ASN is a component framework2 implemented as a set of C++ libraries. The system

consists of approximately 50 classes implemented in 50,000 lines of source code. Roughly

one third of the code implements the base classes which provide generic functionality (partial

implementation) and infrastructure. The rest of the source is devoted to the implementation

of specific components types.

At the time of writing, the ASN is comprised of 21 components: two nodes, five frames,

ten sensors, two planners, and two uis. The twelve components mentioned in this thesis

are listed and briefly described below.

Gauss Point Node. (PointNode) A node component for Gaussian point feature repre-

sentation. It implements information fusion algorithms described in Section 4.3.

Certainty Grid Node. (OgNode) A node component for CG feature representation. It

implements information fusion algorithms described in Section 4.4.4.

Pioneer Frame. (Pioneer) A frame component for use with Pioneer mobile robots.

Localization of the mobile platforms was performed using beacon-based navigation. Light-

reflecting strips placed around the office served as beacons. The beacon map was obtained

a priori with a single Pioneer robot in teleoperation mode and executing the Constrained

Local Sub-Map version of the SLAM algorithm [240]. For safe locomotion and obstacle

avoidance, the VFH+ algorithm [230] was implemented.

Box Frame. (Box) A simple frame component for use with stationary platforms. The

platform position was either supplied on startup (measured a priori) or estimated on line

using the approach described in [23].

Laser to Point Sensor. (Laser2Point) A sensor component which converts laser range-

bearing scans to point features with Gaussian position uncertainty. Range uncertainty of the
2Component framework is ”a set of interfaces and rules of interactions that govern how the components

’plugged into’ the framework may interact” [224].
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SICK laser is approximately Gaussian with standard deviation of 5 mm. In order to obtain

non-trivial trajectories in the experiments described in Section 5.3.3, range uncertainty was

artificially increased to make observations almost bearing only.

Laser to Occupancy Grid Sensor. (Laser2Og) A sensor component which converts

laser range-bearing scans to likelihoods of indoor space traversability. Occupancy Grid is

a Certainty Grid which contains the probability of occupancy of the environment. CG

techniques for line-of-sight range-bearing sensors are well established in the literature [47,

48].

Laser to Motion Grid Sensor. (Laser2Motion) A sensor component which converts

laser range-bearing scans to likelihoods of moving objects in the environment. Motion Grid

is a Certainty Grid which contains the probability of motion in the environment. Simple

scan-differencing technique was used to detect a moving object. Only stationary platforms

were used in these experiments so the more difficult problem of subtracting ego-motion was

not encountered.

Vision to Point Sensor. (Vision2Point) A sensor component which converts visual

observations to certain point features with Gaussian position uncertainty. The algorithm is

limited to tracking human motion [24]. It uses a combination of background subtraction,

frame differencing, and floor interception to estimate the position of the feet of the human

in the global cartesian frame of reference.

Vision to Motion Grid Sensor. (Vision2Motion) A sensor component which converts

visual observations to likelihoods of moving objects in the environment. The algorithm is

limited to tracking human motion and is described in [22].

Point Target Information Surfing Planner. (SurfController) A planner compo-

nent which generates robot motion commands to maximize instantaneous information gain

about environmental feature represented by Gaussian points. The algorithm is described in

[71] and reviewed in Appendix C.5.

Occupancy Grid Exploration Planner. (OgExplore) A planner component which

generates robot motion commands to maximize the expected value comprised of the utilities

of information gain, locomotion, and localization quality. The utilities for exploration of

an indoor environment using an CG map are described in Section 5.4.3. The component

also implements the Frontier exploration algorithm [242] and the Navigation Function path



6.3 Software 197

planning algorithm [118].

Desktop Graphical User Interface (GuiDesktop). A ui component for operating and

debugging an ASN system. Figure 6.3 shows two screen-shots of the desktop version of

the ASN GUI. Two views are available: the world view and the network view. In world

view mode, the GUI provides environmental information in two representations: point

features and Certainty Grid. An example of the CG display is shown in Figure 6.3(a).

The GUI allowed operator input in two modalities: entering point feature information as

described in Section 4.3.3 and direct teleoperation of Pioneer platforms. In network view,

the GUI compiled information on all network components within communication range and

assembled the global network topology. An example of network topology view is shown in

Figure 6.3(b).

The handheld version of the GUI is similar to the desktop one, with minor changes to

account for smaller screen area and the fact that the stylus is the only mode of information

input.

The experience of implementing and using ASN showed that a Graphical User Interface is

critical in the development stage of a large distributed system. The process of debugging is

more difficult in a distributed environment and a GUI provides a convenient access to the

state of individual components regardless of their physical location. The ability to record

and playback all incoming messages was also a feature which was found to be very useful.

6.3.2 Inter-Component Communication

All ASN interfaces are implemented as a set of messages. Message format is known to all

components and does not change. Message classes are responsible for their own serialization.

In terms of distribution scope, ASN, similar to [220], identifies three communication types

listed below in order of increasing distribution scope:

1. Component–Component. Addressed component-to-component communication forms

the backbone of our system. This communication type is used to implement the

Fusing, Linkable, Informed, and other interfaces.

2. Component–Neighborhood. Local distribution is implemented with broadcast which

may be further constrained by the use of communication channels. Certain types of



6.3 Software 198

(a)

(b)

Figure 6.3: The Graphical User Interface. The operator has a choice of (a) the world view
and (b) the network view. Connection details for the selected component are shown on the
right. These were often useful for debugging.
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components may sign up for channels organized by information type. This communi-

cation type is used for system configuration.

3. Component–Network. Global distribution is facilitated by nodes. This communica-

tion type is used to propagate environment information and team control priorities.

The first two communication types are implemented with a communication library used by

ASN. The last type, responsible for global information distribution, is implemented on the

ASN component level.

Both addressed and broadcast communication types are facilitated by a single custom library

which works as follows. Each host runs a daemon process which is responsible for message

routing. When a new component process starts up, it registers with the daemon and

subscribes to receive messages on predetermined channels which depend on the component

type. The daemon at each host maintains a table of other daemons within communication

range and the channels to which they are subscribing. This infrastructure communication

[227] is performed using a custom low-bandwidth broadcast protocol.

The daemon is indistinguishable from any other communicating process except that it pro-

vides a “gateway” (a forwarding facility) to remote hosts. Messages are sent from one

component process to another in the following manner. If the destination component is

local, the process simply writes its message contents to the addressees shared memory. If

the message is inter-host, the process first writes to the local daemons shared memory which

then sends an addressed UDP packet to the daemon on the receiving host which, in turn,

forwards it to the appropriate process. An unaddressed (broadcast) message is sent to all

daemons in the neighborhood subscribing to the particular channel who distribute it to all

subscribing processes on the same host.

Due to the algorithm-intensive nature of information fusion and control, the inter-component

communication link can be subject to effective optimization. Figure 6.4 shows a link be-

tween a component and its remote proxy.3 As an illustration, consider the case when

components A and B are executed on different platforms (hosts) and have to communicate

over a radio link. Component B needs some information from component A. It expects
3”A remote proxy provides a local representation for an object in a different address space” [61]. In the

context of ASN, a sensor, instead of talking to the frame which may be on a different host, may talk to a
local proxy which provides access to the same localization information.
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Process on host A

Transmit from A

to B

Process on host B

O1 Oj+1 OnOj... ...
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Figure 6.4: A chain of operations between a component and its remote proxy. Operations
O1 through On transform the data into potentially different representations d0 through dn.
Operations O1 through Oj are performed on host A. The data is then transmitted to host B
in dj representation, and the rest of the operations are performed on host B. The relative
costs of computation and communication determine the optimal choice of communication
step j.

to receive it in the form of representation dn. Component A has the data available in the

form of d0. There are n operations which must be applied to the data, each one poten-

tially changing its representation. After a certain number of operations the data must be

transmitted to component B. The code for performing all operations is available at both

the actual component and its proxy. The total cost of delivering data dn to component B is

CAB =
i∑

j=0

Ccomp
A (Oj) + Ccomm

AB (di) +
n∑

j=i+1

Ccomp
B (Oj). (6.1)

It is a simple optimization problem to find the step i for data transmission which minimizes

the cost CAB. The computational and communication costs can be either specified or

estimated at run time.

For example, the data size of a range-bearing contact-based observation is small compared

to an observation likelihood defined on a fine spatial grid. It may be beneficial, in this case,

for a sensor to communicate the observation zk
i to the node where the sensor-proxy will

transform the observation into a likelihood bk
li. As a counter example, the data size for a

vision-based system typically outweighs the corresponding likelihood in any representation.

6.3.3 System Configuration

Service discovery is performed at run time using a ping-and-reply mechanism. The algorithm

is decentralized on the component level, i.e., each component is responsible for looking for

the services it requires. Depending on the interface, selection from multiple replies is made

randomly or based on information supplied with the replies.
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Addressing between components is implemented using unique 32-bit identifiers based on

the IP address of the host and the process ID of the component.

After a service is initialized, the link is monitored and the process of discovery and connec-

tion is repeated if the service is lost.

Figure 6.5: Topological view of an experimental sensor network described in Section 4.4.5.
The diagram shows frames (¤), nodes (◦), and sensors (4). A total of 33 components
are currently connected into a network. The nodes clearly form a tree network.

Figure 6.5 shows the network topology of an experimental system from Section 4.4.5. The

system ran for several days with individual platforms turning on and off.
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6.3.4 Component Deployment

Deployment refers to the mapping of executable software units to physical hardware. In

general, distributed architectures offer an opportunity to implement a flexible and adap-

tive deployment strategy although such considerations are beyond the topic of this thesis.

Perhaps the main issue in component deployment, and the only one discussed here, is the

quality of communication links between components. Communication has many aspects,

including reliability, delays, energy consumption, and security. An obvious guideline is to de-

ploy components in such a way that the mission-critical bandwidth-hungry links correspond

to reliable high-bandwidth low-power communication lines. Such lines of communication

typically exist inside platforms.

Platform
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Actuator 

Hardware

Sensor

Hardware

ACTUATORSENSOR ASN COMPONENT

Platform Hardware
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Figure 6.6: Relation between the platform hardware and software. Compare with the
diagram of platform hardware in Figure 2.5.

This is why the term platform remains useful despite the fact that the ASN framework

is fully distributed and, in principle, any component can be deployed anywhere as long

the network connection is maintained. The “membrane” separating the platform from the

outside world makes the environment inside it more sheltered. This is true for mechanical

systems: stable offsets of sensors compared to the motion of the platform. This is also true

for computer systems: low communication costs, short delays, and low probability of failure

compared to the inter-platform communication. To exploit this benefit, it is advisable to
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keep some component interactions local.4 The relationship between platform hardware and

software is illustrated in Figure 6.6. It is apparent that, if the rule of local hardware access is

adopted, then at least two types of components, sensor and actuator, must be deployed

at the platform to which the hardware is attached.

Having a large number of components running on physically distributed hardware presents

a management problem which is not fully resolved in ASN. The partial solution involves a

combination of Unix scripts which start up the specified components and background dae-

mons which monitor the status of the running software. Software distribution, versioning,

etc. remain real problems.5

6.3.5 Configuration and Deployment in the Experiments

This section describes deployment strategies for the two experiments described throughout

this thesis.

Experiments with active target localization were described in Section 5.3.3 and the overall

view of the system was shown in Figure 4.15. The experiment involves five platforms: two

mobile Pioneer robots, a stationary sensor module, and two operator stations, one stationary

and one mobile.

Figure 6.7 shows a deployment diagram for this system. Each of the two Pioneers executes a

custom component vehicle (see Figure 3.38) and three canonical components: a Gaussian

point node, a laser-to-point sensor, and an information surfing planner. By executing

all four components internally, the mobile platform is made relatively independent from the

rest of the team. Even if all external communication links are lost, the robot will continue

to control its wheel base, sense the environment, maintain its local belief, and make local

decisions.

The stationary sensor unit fly executes the same sensor, but its Box frame is much

simpler. A sensor executes on fly for local access to its laser. Fly’s processing power is

insufficient to run node so its sensor connects to a remote node which happens to be on

the ground station base.
4To quote the designers of Hive “Things have places!” [155].
5These problems are not unique to robotics and all commercial component models address them to a

certain degree [131]. In a research setting, an interesting application of mobile code approach to solving the
problem of software distribution is described in [155].
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Figure 6.7: Deployment diagram for the active localization experiments in Section 5.3.3.
Each UML Node element represents a host, a physical piece of equipment (e.g. a desktop
PC called base).

Platform base has no local sensors of its own. It executes a desktop version of the GUI

software and an instance of Gauss point node. The mobile operators station gnat can only

run a handheld version of GUI which connects to a remote node on mozzy.

Experiments with motion mapping using Certainty Grid representation were described in

Section 4.4.5 and the physical locations of sensor platforms was shown in Figure 4.26. The

experiment ran for several days and involved up to 39 components on up to 11 platforms.6

Figure 6.8 shows a partial deployment diagram with six platforms. Compared with the

previous example, the platforms here are more encapsulated. Most of inter-component

connections are between nodes using Linkable interface. The only exception is desktop ui

on laptop cocoa connected to a remote node on hornet.

The composition of the software running on all Pioneers is the same. Each executes three

components: a CG node, a Box frame, and a laser-to-motion sensor.
6As a side note, a comparison of the two sets of experiments shows the improvement in reliability due to

a year of implementation work. The first version, used in the point target localization experiments, ran for
several hours before something would go wrong. This version, a year later, ran for several days at a time.
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Figure 6.8: Partial deployment diagram for the motion mapping experiments in Sec-
tion 4.4.5.

Each of the two stationary sensor platforms is equipped with a video camera and executes

three components: a Box frame, an CG node, and a vision-to-motion sensor which

extracts motion information from video frames.

Figure 6.9 shows a deployment diagram for the exploration experiment described in Sec-

tion 5.4.3. The experiment involved a single platform and an operator station. All software

necessary for exploration was executed on the platform itself.

These experiments demonstrate the flexibility in component deployment offered by the ASN

framework. It seems that the biggest benefit to be gained from this flexibility is in the up-

coming multi-host robotic platforms. For example, the on-board computing resources of

the CMU entry in the 2004 Grand Challenge competition included 8 hosts with the total
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«NODE»
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Figure 6.9: Deployment diagram for the exploration experiments in Section 5.4.3.

of 14 processors [231]. All hosts were interconnected with 1 Gb Ethernet internally and a

wireless external link was available. This configuration is ideal for deploying a decentralized

ASN-based system.

6.4 Examples

This section considers several examples of platforms and sensor networks. The objective

is to illustrate the modular breakdown and component interaction in the ASN framework.

Most of the platforms used in the examples were actually implemented using the ASN

framework and used in the experiments described throughout the thesis. Network examples

are both experimental and hypothetical showing how the ASN approach could be applied

to the systems described in the literature.

Platform

ASN Component
FRAME NODE PLANNER

SENSOR ACTUATOR UI

Figure 6.10: Symbols used for the canonical component types. The standard UML symbol
for a component is shown for comparison on the left. The platform boundaries are marked
with a dash line.

The instances of platform and network architectures are described with UML component
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diagrams. To improve readability of component diagrams, each canonical component type

is coded with a distinctive shape and color. Figure 6.10 shows the legend of graphical

symbols.

6.4.1 Typical Platforms

To illustrate how the modular breakdown applies to typical robotic sensing platforms several

examples are considered. All platforms except for the UAV have been implemented using

the ASN framework.

Certainty Grid
NODE

Exploration
PLANNERPioneer 2

FRAME

Laser-to-CG
SENSOR

Position2D
ACTUATOR

SICK Laser

Pioneer 2 robot

(a) (b)

Figure 6.11: A Pioneer 2 indoor robot with a mounted laser range finder: (a) the physical
view and (b) the component diagram.

A Pioneer 2 with a mounted laser range finder is a typical indoor mobile robotic platform.

Figure 6.11 shows its physical view and the component diagram. The actuator component

represents the mobility of a wheeled base. The sensor converts raw observations of the

laser range finder to the chosen feature representation, in this case Certainty Grid map.

A Sony pan-tilt-zoom camera is a simple articulated sensor platform. Figure 6.12 shows its

physical view and the component diagram.

A SICK laser range finder is used as an example of a stationary uncontrolled platform.

Figure 6.13 shows its physical view and the component diagram. No planners are present.

The processor is capable of running the node.
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Certainty Grid 
NODE

Exploration
PLANNER

Box
FRAME

Vision-to-CG
SENSOR

PTZ
ACTUATOR

Sony PTZ camera

(a) (b)

Figure 6.12: A PTZ camera with a processing unit: (a) the physical view and (b) the
component diagram.

Certainty Grid
NODE

Box
FRAME

Laser-to-CG
SENSOR

SICK Laser

(a) (b)

Figure 6.13: A stationary laser range finder with a processing unit: (a) the physical view
and (b) the component diagram.

A low-cost web camera and a small-size processing board is used as an example of a station-

ary low-power platform. Figure 6.14 shows its physical view and the component diagram.

No planners are present. The computer does not have enough processing power to execute

the node component so the observations are sent to a remote node.

Brumby Mk.III UAV is used as an example of an advanced flying platform. Figure 6.15

shows its physical view and the hypothetical component diagram. Each sensor payload

includes a processor and both execute the node component.
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Box

FRAME

Vision-to-CG

SENSOR

(a) (b)

Figure 6.14: A stationary webcam with a processing unit: (a) the physical view and (b) the
component diagram.

Gauss Point
NODE

Gauss Point
NODE

Brumby
FRAME Vision-to-Point

SENSOR
VisionLaser-to-Point
SENSOR

Aircraft
ACTUATOR

(a) (b)

Figure 6.15: An UAV Brumby Mk.III with a camera and a laser: (a) the physical view and
(b) a possible component diagram.

6.4.2 Typical Networks

This section considers several typical systems prevalent in the literature and shows how

they can be implemented using ASN framework. In particular, centralized and hierarchical

system can be implemented as special cases of a fully decentralized architecture. Some of

the algorithms underlying the actual systems are implemented within the Bayesian frame-

work, some are not. Casting these literature examples into the ASN mold does not make

claims about the algorithmic compatibility, the diagrams simply refer to connectivity and

information flow.

FireMapper is a commercial airborne fire-tracking system [87]. It employs centralized in-
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AH-1 Platform

C-172 Platform

Grid NODE

IR-to-Grid
SENSOR

IR-to-Grid
SENSOR

Airborne Command
UI

Ground Fire 
Fighter
UI

Aircraft
FRAME

Aircraft
FRAME

(a) (b)

Figure 6.16: Component diagram for a hypothetical fire tracking system: (a) the composite
view of the environment [87] and (b) the component diagram of a possible ASN implemen-
tation.

formation fusion of observations and decentralized human control of sensing platforms.

Figure 6.16 shows a hypothetical implementation of the system using the ASN framework.

Platform A

Platform C

Platform B

Platform D

"Connected"
NODE

Multi-modal SENSOR

'Leaf'
NODE

'Leaf' NODESingle-mode SENSORs

SENSOR

(a) (b)

Figure 6.17: Hierarchical sensor network (a) a hierarchical system [58] and (b) the compo-
nent diagram of a possible ASN implementation.

Hierarchical information fusion architectures are often proposed and implemented [28, 66,

202]. Cerpa et al. [28] describe a system with “inexpensive sensor nodes” or “tags” which

send information to “larger more capable nodes”. The former can be implemented as ASN

sensors and the latter as ASN nodes. Foresti and Snidaro [58] describe a hierarchical

system in which sensors connect to nodes at different hierarchical levels. The information

fusion method is not Bayesian. Figure 6.17 shows the original architecture structure and the

corresponding ASN interpretation. The figure shows four platform types: a fully-featured

node with local sensors and multiple node-to-node links (platform A), a “leaf” node
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which connects local sensors and a single external node (platform B), a sensor without

a node (platform C), and a “leaf” node without local sensors (platform D).

Ground Station

Brumby 3

Brumby 2Brumby 1

Gauss Point 
NODE

Gauss Point 
NODE

Vision-to-Point
SENSOR

VisionLaser-to-Point
SENSOR

Aircraft
FRAME

Aircraft
FRAME

Vision-to-Point
SENSOR

Gauss Point
NODE

Gauss Point
NODE

Desktop
UI

Gauss Point
NODE Aircraft

FRAME
Vision-to-Point
SENSOR

(a) (b)

Figure 6.18: An airborne sensor network developed as part of the ANSER project [221]:
(a) the aircraft and (b) a possible component diagram of the sensor network. Component
diagrams for individual platforms are shown in Figure 6.15.

Fixed-wing Unmanned Aerial Vehicles were applied to tracking ground targets [221]. Up to

three of them were flown simultaneously during a three year flight program with up to six

fusion nodes (precursors to ASN nodes) operating simultaneously and in real time. Fig-

ure 6.18 shows the aircraft used in the experiments and a hypothetical ASN implementation

of the sensor network.

6.5 Summary

This chapter has described the experimental implementation of the ASN framework. The

framework has proven to be flexible enough to accommodate a variety of system topologies,

platform and sensor hardware, and environment representations.

The implementation described in this Chapter was created strictly for research purposes

and many functions are missing. For example, the issues of timing, deployment, versioning,

and many others are not addressed.

Nevertheless, the practical experience with the system validated the fundamental premise

of the approach: modularity and decentralization. Modular component-based design made

it possible to develop components individually and to add capability incrementally. Several
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developers could easily write code simultaneously when working on different components

which is an important feature for large projects. For example, the information fusion task

in the experiments with localizing point features (Section 4.3.3) was developed first and

decision making functionality was added later (Section 5.3.3). While this property could be

expected from several implementation strategies, the CBSE approach made it particularly

simple.

Decentralization allowed easy addition of network capacity by simply deploying more plat-

forms. For example, in the experiments with motion mapping (Section 4.4.5), the area

coverage was gradually increased from a few square meters to nearly the entire floor of

roughly 400 square meters. Such growth could not have been possible with a centralized

system without careful planning.



Chapter 7

Conclusions

This chapter summarizes the principle contributions of this thesis and provides suggestions

for future research directions.

7.1 Summary of Contributions

This thesis is concerned with the development of distributed information gathering systems.

The principle contribution of the thesis is in the development of the ASN framework which

includes architecture design, new algorithm formulation, and a concrete system implemen-

tation.

7.1.1 Probabilistic Problem Statement

The probabilistic reference model of the DIG problem is a significant contribution of this

thesis. The reference model established the structure of the DIG problem and helped

to categorize the solution space by listing a number of options available to the designer.

A quantitative survey of related work suggested three types of systems commonly used in

solving the DIG problem: Micro Sensor Networks, Macro Sensor Networks and Multi-Robot

Systems. This taxonomic breakdown elucidated the relationship between common technical

requirements and the solution strategies widely used in the field. This thesis has presented

a system which satisfies the requirements for Macro Sensor Networks.
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7.1.2 Solution Framework

The main contribution of this work is in designing a comprehensive framework, called

Active Sensor Network (ASN), which addresses the tasks of information fusion, decision

making, system configuration, and user interaction in MSN. The framework is designed to

accommodate a large number of mobile autonomous heterogeneous platforms acting as a

team to collect information about the environment.

The framework has been described from three complementary points of view: architecture,

algorithms, and implementation. This should not obscure the fact that ASN is a unified

comprehensive solution. Several guiding principles were identified and applied consistently

across the board and at all levels of the framework. There is a certain value in such holistic

treatment which goes beyond the individual contributions in the architecture, algorithms,

and implementation which are listed below. Such an approach is necessary to ensure that

no aspect of the solution becomes a performance bottleneck as the system scales up in size.

7.1.3 Architecture

A key aspect of the ASN framework is its architecture which is a necessary considera-

tion for a large distributed system. Architectural design was performed at multiple levels,

starting with the Meta-architecture which established the three guiding design principles:

decentralization, modularity, and locality of interactions.

The Conceptual and Logical architectures partitioned the system into a set of manageable

elements. The Logical architecture, in particular, defined a detailed architecture specifica-

tion, including canonical component definition and inter-component service interfaces. The

six representative component types were described in detail and used in the implementation

of experimental systems in this thesis. The Algorithmic and Execution architectures ensure

that the Meta-architecture principles are adhered to on the algorithmic and implementation

levels respectively.

The architecture design has emphasized interactions between components rather than the

definition of the components themselves. The architecture specified a small set of interfaces

sufficient to implement a wide range of information gathering systems. By placing empha-

sis on the interfaces, the ASN architecture is made flexible and extendable, with custom

components extending and refining the functionality provided by canonical components.
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7.1.4 Algorithms

The main contribution of this work in the area of algorithms is in the extension of the

Decentralized Data Fusion algorithm to the general Bayesian case. The thesis presented the

Bayesian Decentralized Data Fusion (BDDF) algorithm formulated for environment features

represented by a general probability density function. Several specific representations were

also considered: Gaussian, discrete, and the Certainty Grid map. Well known algorithms for

these representations have been shown to implement various aspects of the BDDF algorithm.

To make the process of applying the BDDF algorithm to a specific representation more

straightforward, the DDF primitives were identified. These are a small set of information

processing operations, which constitute the ASN information fusion algorithm. It is hoped

that a clear general formulation will stimulate extensions to efficient non-parametric rep-

resentations of arbitrary distributions. Stating the algorithm in Bayesian terms has an

additional practical advantage of allowing a generic software implementation.

The Decentralized Certainty Grid algorithm presented in this thesis is a novel application

of the DDF approach to a well known Certainty Grid environment representation. CG

maps are popular in indoor robotics because they are easy to construct and use for path

planning and navigation. Extending the DDF approach to this environment representation

is an important practical contribution.

This thesis also makes a contribution in extending earlier efforts in decentralized sensor

management and control to the general Bayesian case. Similar to the information fusion

case, several primitive operations were identified which define the decision making algorithm

of ASN called Bayesian Decentralized Decision Making (BDDM) algorithm. Well known

algorithms for the Gaussian representation have been shown to implement various aspects of

the BDDM algorithm. Additionally, the experimental results of decentralized coordinated

information-theoretic control of sensing platforms are first of a kind.

Decision making in the context of building CG maps lead to the development of the In-

tegrated Exploration algorithm. A novel feature of this algorithm is in the inclusion of

the utility of localizability into the total utility for choosing destinations. A localizabil-

ity metric for a particular Simultaneous Localization and Mapping (SLAM) algorithm has

been derived. It was shown experimentally that when the localizability utility is taken into

account, the platform avoids territory where localization is expected to be poor. As a re-
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sult, an acceptable level of localization quality is maintained and higher quality maps can

be obtained. Although demonstrated in an environment with artificially placed navigation

beacons, the same approach is applicable in uninstrumented environment as long as the

expected localization quality can be predicted in advance. This exploration algorithm is

readily extendible to multi-platform case in coordinated and, possibly, cooperative modes.

7.1.5 Implementation

As part of this thesis work, a concrete implementation of the Active Sensor Network (ASN)

framework has been developed and tested in an indoor environment. Practical experience

with the system has validated the fundamental principles of the ASN approach. Modular

component-based design made it possible to develop components independently and add

capability incrementally. Decentralization allowed easy addition of network capacity by

simply deploying more platforms.

Perhaps, the best measure of success of the implementation is reflected in its contribution

to the work of other researchers. In fact, only half of the 21 ASN components have been

implemented by the author. The rest were added by the fellow researchers who found

the framework suitable for their needs and useful as a tool. As a result, the ASN frame-

work, in addition to the experiments described in this thesis, was fully or partially used

in experiments on human-robot interactions [108], human motion tracking [24], sensor self-

localization [23], cooperative search [19], and in an interactive art installation [237].

7.2 Future Research

Within the confines of the DIG problem, the ASN offers a fairly complete framework for

building large distributed information gathering systems. A significant additional effort is

required to implement all of the described functionality and test the architectural decisions

in various situations. Beyond that, several of numerous research directions are explored in

this section.
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7.2.1 Architecture

One of the most exciting properties of modular architectures is the possibility of system

composition. The simulated and practical examples in this thesis provided numerous ex-

amples manual off-line system composition using canonical components. An important

research direction is in automatic system composition which was not considered here at all.

It can take many forms, both off- and on-line.

Off-line composition of both hardware and software given a task description was briefly

discussed in Section 2.5 and illustrated in Example 2.1. It requires a quantitative metric of

performance which is readily available in the task of information gathering. The pioneering

work by Henderson et al. as part of the Logical Sensor Systems framework [40, 78] can be

revisited in the context of decentralized multi-platform environment. This approach may

require platforms to exchange quantitative models of their capabilities. Standardizing on

the model types and formats may be the biggest difficulty in this area.

It is even more interesting to explore on-line adaptive system composition. In general, the

self-configuration aspect of an ASN has not been addressed fully in this work. The concept

of adaptive degree of decentralization was mentioned in Section 3.5.3 from the point of

view of changing network topology. A more advanced concept is on-demand activation and

de-activation of components as part of system’s self-configuration. Changes in the makeup

of system components executed on a particular platform would essentially change the role

which the platform plays.

What is described above may be called Systems Engineering. The field of Systems of

Systems Engineering (SoSE) is concerned with “complex systems which become a subsystem

within a larger system of systems” [110]. This field straddles the line between engineering

and management which is indicative of the types of problems presented by real-life large-

scale systems.

7.2.2 Information Fusion Algorithms

The list of representations considered in this thesis was rather limited. Future research may

focus on more expressive and efficient representations of general probability distributions,

e.g. functional approximations, multi-Gaussian [188], particle filters [191], kernel and other

non-parametric methods.
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Maintaining a tree topology in a large network requires significant effort and, at present, is

inefficient. New algorithms and experiments are needed. For many systems, the optimality

offered by using Channel Filters in an acyclic network is unnecessary but more research is

needed to find conservative fusion of general probability densities.

Interaction between human operators and the robotic sensor network is practically valuable

and, at present, poorly understood. The few existing approaches are very different from

the one in this thesis and are not closely tied to the information about the environment

(c.f. [226]). Incorporation of human observation and knowledge into the network belief may

require different sensor models from those currently used.

The fundamental difference in how the environment is perceived by humans and the current

generation of robotic sensors suggests the use of multi-level environment representation.

This would require making automatic inferences from the quantitative picture built by the

SN. The use of Bayesian Network representation may also be explored in this context.

7.2.3 Decision Making Algorithms

In the discussion of decentralized decision making, this thesis made a fundamental assump-

tion that the information quality, or more precisely the information gain resulting from an

action, is the primary component of action utility. This allowed an approximation of utility

fusion by information fusion.

A very interesting and well-developed approach which deals with full utility coupling can

be found in the field of scheduling [126]. It utilizes the task structure defined as “a precise

quantitative definition of the degree of achievement in terms of measurable characteristics

such as solution quality and time” and which is essentially a utility. The task structure

also contains information on task relationships that indicate how basic actions or abstract

task achievement effect task characteristics (e.g. quality and time) elsewhere in the task

structure. Therefore the task structure encapsulates the information about action coupling,

which is a requirement for cooperation. The difficulty is that for mobile and geographically

distributed platforms obtaining the task relationships is not easy.

Many research opportunities lie in the area of cooperative human-network decision making.

Cooperative decision making as described in Section 5.2 can be easily extended to interaction

between operators and robotic platforms. The operators and the planner components
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would in this case as as peers. It would be interesting to investigate the possibility of

defining a sliding scale of authority exercised by the operator to span the gap between peer-

to-peer interaction and teleoperation. This approach is being actively pursued in the field

of Human Robot Interaction under the name of adjustable autonomy [56]. This work has

so far been limited to one-to-one human-robot communication.

7.2.4 Implementation

Having a large number of components executed on physically distributed hardware presents

a management problem which has not been resolved in ASN. Software distribution, ver-

sioning, execution, status monitoring, etc. remain real problems and should be addressed

comprehensively as part of the component model.

The ASN experience highlighted the practical complexity of implementing a heterogenous

distributed system. Some of the factors contributing to this complexity include potential

hardware, operating system, and programming language diversity; issues related to data

serialization and type safety; name resolution, addressing, routing, and many other. Many

of these issues are addressed in dedicated distributed middleware packages. One of several

common middleware systems, CORBA [73], hides the location of remote objects, simplifying

the application’s interactions with these remote objects by allowing all operations to appear

local. The ASN framework has essentially implemented its own middleware. The advantage

of following the custom middleware route is in the ability to customize its feature to the

specifics of the problem but, as the ASN experience has shown, the effort in doing so may be

significant. It seems likely that the field of robotics will eventually adopt general distributed

middleware products just like it is common today to use standard off-the-shelf components

like processors, operating systems, and development tools.

The component-based approach advocated in this thesis can be pushed down from the sensor

network level to the individual platforms. A good implementation would allow the low-level

local components interact seamlessly with the decentralized ASN components. Several open

source projects with similar goals are currently underway (c.f. [175]) and could be used in

future systems solving the DIG problem.
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7.3 Summary

Frameworks similar in scope to the one described in this thesis will certainly be needed to

bring to life scalable, autonomous, and cooperative information gathering systems. This

thesis has made a significant contribution to the art and science of designing such frame-

works.



Appendix A

Quantitative Survey of Sensor

Network Literature

This appendix provides details of the quantitative literature survey described in Chapter 2.

The reported and estimated data is listed in Section A.1. The derived metrics are explained

and listed in Section A.2. Projects are classified into SN types in Section A.3.

A.1 Data

Both experimental and selected simulated sensor networks are included. Most sources do

not report detailed system metrics. In such cases, the numbers had to be estimated from

secondary data or from figures and must therefore be treated as rough estimates.

Table A.1 lists primary infrastructure data about the project. These numbers are often

directly quoted in the literature.

Table A.2 lists primary objectives data about the project. In most cases, the area is esti-

mated from plots and maps. For robotics applications, a typical mission duration is often

quoted. For simulated sensor networks, mission duration was equated to the often-stated

objectives for long-lived embedded systems.

Table A.3 lists solution types used in each of the projects.
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No. Project Unit Team Active Hetero
mass size platforms platforms

1 GEMS study [143] 2.5 mg 1010

2 Berkley sim [201] 100 g 25 X X
3 Xerox PARC [51] 180 g 76
4 Umass sim [90] 180 g 21
5 UCLA energy sim [214] 180 g 45
6 29 Palms [45] 500 g 61
7 ASN (CG) [22] 1 kg 13 X
8 UMN Scouts [194] 200 g 11 X X
9 CMU millibots [66] 500 g 5 X X

10 USC sim [93] 5 kg 100 X
11 Centibots [114] 5 kg 42–66 X X
12 RoboCup [43] 10 kg 6 X
13 CMU mapping [211] 5 kg 3 X X
14 ASN (Gauss) [137] 10 kg 3 X X
15 ANSER [221] 45 kg 3 X
16 UAV SAR sim [21] 45 kg 6–10 X
17 FireMapper [87] 1000 kg 2 X X

Table A.1: Problem metrics. Project names are shown in italics if only simulated data is
reported.

No. Project Mission Area High Low
time accuracy latency

1 GEMS study [143] 1 week – – –
2 Berkley sim [201] year 540 m2 – –
3 Xerox PARC [51] 1 week 2.3 m2 – –
4 Umass sim [90] days – – –
5 UCLA energy sim [214] TBD density – –
6 29 Palms [45] days ? – –
7 ASN (CG) [22] days 600 m2 X –
8 UMN Scouts [194] hours 1400 m2 – X
9 CMU millibots [66] 1 hour 30 m2 – –

10 USC sim [93] 5 min. relative – –
11 Centibots [114] 30 min. 2790 m2 X X
12 RoboCup [43] 90 min. 7350 m2 X X
13 CMU mapping [211] 10 min. 890 m2 X X
14 ASN (Gauss) [137] 1 hour 100 m2 X –
15 ANSER [221] 45 min. 2 km2 X –
16 UAV SAR sim [21] hours 50 km2 X –
17 FireMapper [87] days ∼ km2 X –

Table A.2: Mission requirements.
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No. Project Arch. Info Utility Policy
fusion selection

1 GEMS study [143] ? ? – –
2 Berkley sim [201] dec. – – –
3 Xerox PARC [51] dec. aggregation – –
4 Umass sim [90] hierach. deterministic – –
5 UCLA energy sim [214] dec. ? – –
6 29 Palms [45] ? CSP – –
7 ASN (CG) [22] dec. Bayes – –
8 UMN Scouts [194] centr. – – reactive
9 CMU millibots [66] centr. Bayes – teleop.

10 USC sim [93] dec. – – reactive
11 Centibots [114] hierach. Bayes info gain hierarch.
12 RoboCup [43] centr. Bayes domain domain
13 CMU mapping [211] centr. Bayes info gain central
14 ASN (Gauss) [137] dec. Bayes info gain dec.
15 ANSER [221] dec. Bayes – teleop.
16 UAV SAR sim [21] dec. Bayes info gain dec.
17 FireMapper [87] centr. deterministic – manual

Table A.3: Solution approaches.

A.2 Metrics

Sensor coverage. The majority of entries sense a 2D environment. Area coverage is an

appropriate metric for such systems. For systems localizing or tracking discrete features,

the ratio of observed to the total number of features is more appropriate

CA =
Aobserved

Atotal
, CF =

Fobserved

Ftotal
.

The total area (number of features) is easier to estimate than the observed one. Information

about sensor range can be used for the latter, but it can only be an estimate since, it depends

on the environment and it is dynamic for mobile platforms.

In many micro sensor applications observations are very local. This is a rather special case

of sampling networks. Rather than imply zero coverage, it is assumed that interpolation is

adequate for the task and coverage is implicitly unity.

Platform mobility In terms of observing the environment, platform mobility may be

approximated by sensor mobility : the ratio of dynamic space coverage to static sensor
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footprint

MA =
∑

As∑
as

, MF =
∑

Nf∑
nf

.

No. Project Space Sensor
coverage mobility

1 GEMS study [143] 1.0 0
2 Berkley sim [201] 1.0
3 Xerox PARC [51] 3.1 0
4 Umass sim [90] 3.65 0
5 UCLA energy sim [214] ? 0
6 29 Palms [45] 1.0 0
7 ASN (CG) [22] 0.5 0
8 UMN Scouts [194] 0.28 0.12
9 CMU millibots [66] 0.13 1e-3

10 USC sim [93] 3.0 0?
11 Centibots [114] 0.5 0.18
12 RoboCup [43] 1.0? 0.3?
13 CMU mapping [211] 0.13 0.20
14 ASN (Gauss points) [137] 0.2 0.09
15 ANSER [221] 2.7E-3 1.58
16 UAV SAR sim [21] 7.0E-4 0.087
17 FireMapper [87] 1.0e-2? 0.5?

Table A.4: Derived metrics.

Table A.4 lists derived metrics about the projects.

A.3 Classification

Table A.5 shows assignment of the projects to one of three sensor network types. Several

project are hard to classify. In such cases, a question mark stands for the second possible

classification. For example, the competing entries in the Centibots project [94, 114] have

strong roots in Multi-Robot Systems in terms of application and solution approaches. The

exploration and mapping tasks performed by the robots have a finite duration, typically

under one hour. A limited number of robots (under 10) participated in this stage of the

exercise. The second task is oriented towards long-term surveillance, redeployment, search.

An unusually high number of robots involved at this stage (up to 66), requires solutions

typical of Macro Sensor Networks.
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No. Project µSN MSN MRS
1 GEMS study [143] X
2 Berkley sim [201] X
3 Xerox PARC [51] X
4 Umass sim [90] X
5 UCLA energy sim [214] X
6 29 Palms [45] X
7 ASN (CG) [22] X
8 UMN Scouts [194] X
9 CMU millibots [66] X

10 USC sim [93] X ?
11 Centibots [114] X ?
12 RoboCup [43] X
13 CMU mapping [211] ? X
14 ASN (Gauss) [137] ? X
15 ANSER [221] X
16 UAV SAR sim [21] X
17 FireMapper [87] X

Table A.5: Sensor network type assignment.
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Bayesian Algorithms

B.1 Bayesian Filtering

Following [219], nonlinear Bayesian filtering equations are derived for a single feature and

a single sensing platform. Let xk = x(tk) be feature state at time tk. The feature state is

unknown and needs to be estimated. Let uk = u(tk) be control inputs applied to the feature

at time tk. A history of internal feature inputs up to time tk may be stored as a sequence

Uk = {u1, u2 . . . uk}. Define the state transition model at time tk ≥ 1

Gk = P(xk | xk−1, uk). (B.1)

This definition assumes that the state has Markov property: state transition function de-

pends only on the state of the feature at the time of transition.

Let zk = z(tk) be an observation of the feature described by a state vector xk taken at time

tk. A history of observations up to time tk may be stored as a sequence Zk = {z1, z2 . . . zk}.
Define the sensor likelihood function at time tk

Lk = P(zk | xk). (B.2)

This definition assumes that the sensor likelihood function depends only on the state of

the feature at the time of the observation. This assumption is necessary to allow recursive

computation of the posterior but is quite reasonable in practice.
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The problem is formulated as follows: find the posterior probability at time tk based on the

initial information and the histories of inputs and observations

P(xk | Zk, Uk, x0). (B.3)

The solution uses the recursive form of Bayes’ theorem

P(xk | Zk, x0) =
P(zk = z | xk)P(xk | Zk−1, x0)

P(zk = z | Zk−1)
, (B.4)

where the prior is predicted (recursively) based on the information available at time step

tk−1

P(xk | Zk−1, Uk, x0) =
∫

P(xk | xk−1, uk
i )P(xk−1 | Zk−1, Uk−1, x0) dxk−1. (B.5)

B.2 Bayesian Communication

Consider a sensing platform i whose belief about the feature state is described by Equa-

tion B.3. The information set Zk
i denotes all information available to platform i, both

locally observed and communicated. Omitting internal inputs and the initial prior for clar-

ity, P(xk | Zk
i ) defines the posterior probability on the feature state given all locally available

information.

If there are two communicating platforms i and j, with information sets Zk
i and Zk

j respec-

tively, it is desirable to determine the common information set Zk
i ∪ Zk

j found as a union

of the two local information sets. This may then be used to find a posterior distribution

P(xk | Zk
i ∪ Zk

j ) for the state based on both sources of information. If the two information

sets have no information in common Zk
i ∩Zk

j = ∅, then it is simple to construct the union of

the sets from a sum. However if the two sets do have observations in common Zk
i ∩Zk

j 6= ∅
then key to constructing the union Zk

i ∪ Zk
j is finding the common information Zk

i ∩ Zk
j .

The most general solution to the common information problem is in the form of Bayes

theorem. Consider the interaction of pairs of platforms. For each communicating pair (i, j),

the required probability is P(xk | Zk
i ∪ Zk

j ). Let the union of the individual observation
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information sets be partitioned into disjoint sets as

Zk
i ∪ Zk

j = Zk
i\j ∪ Zk

j\i ∪ Zk
ij , (B.6)

where

Zk
i\j = Zk

i \ Zk
ij , Zk

j\i = Zk
j \ Zk

ij , Zk
ij = Zk

i ∩ Zk
j ,

and where the notation p\r (the restriction operation) means elements of the set p excluding

those elements that are also in set r. Note also that

Zk
i\j ∪ Zk

ij = Zk
i , Zk

j\i ∪ Zk
ij = Zk

j .

Then

P(Zk
i ∪ Zk

j | xk) =
P(Zk

i | xk)P(Zk
j | xk)

P(Zk
i ∩ Zk

j | xk)
. (B.7)

Substituting into Bayes theorem and simplifying the result gives

P(xk | Zk
i ∪ Zk

j ) =
P(Zk

i ∪ Zk
j | xk)

P(Zk
i ∪ Zk

j )

=
1
C

P(xk | Zk
i )P(xk | Zk

j )

P(xk | Zk
i ∩ Zk

j )
, (B.8)

which states how to determine the joint belief given information from both platforms,

P(xk | Zk
i ∪Zk

j ), when the individuals beliefs, P(xk | Zk
i ) and P(xk | Zk

j ), and the information

common to the two platforms, P(xk | Zk
i ∩ Zk

j ), are available.

An alternative expression for the joint belief is possible, expressed in terms of local belief

and the new information contained in the external belief

P(xk | Zk
i ∪ Zk

j ) =
1
C

P(xk | Zk
i )P(xk | Zk

j \ Zk
i ), (B.9)

where the new information is found as

P(xk | Zk
j \ Zk

i ) =
P(xk | Zk

j )

P(xk | Zk
i ∩ Zk

j )
. (B.10)

For the full derivation, refer to [67].



B.3 Information Measures 229

B.3 Information Measures

It was shown by Manyika [145] that the utility based on entropy of the belief satisfies the

rationality axioms guaranteeing a preference ordering. Proof that the axioms imply the

existence of a utility function can be found in [16]. An appropriate definition of utility is

now provided by the log-likelihood

U(x) = log P(x). (B.11)

The expected utility is known as entropy, defined as follows

En(x)
4
= −E {log P(x)} =

∫ ∞

−∞
P(x) log P(x) dx. (B.12)

With the definitions of entropy, it is possible to write an “information form” of Bayes

theorem. Taking logs and expectations of Equation B.4 with respect to both the state x

and the observation z gives

En(x | z) = En(z | x) + En(x)− En(z). (B.13)

This equation describes the change in entropy following an observation from a sensor mod-

elled by the likelihood L(z | x). Being able to describe changes in entropy leads naturally to

asking an important question: which of the possible observations is the most informative?

The objective is to take an observation which on average will reduce entropy of the pos-

terior distribution the most. This question may be answered using the concept of mutual

information I (x, z) defined as follows

I (x, z) = En(x) + En(z)− En(x, z)

= En(x)− En(x | z)

= En(z)− En(z | x). (B.14)

Mutual information is an a priori measure of the information to be gained through obser-

vation. It measures the average reduction in uncertainty about x that results from learning

the value of z or vice versa. The relationship between the joint, marginal, and conditional

entropies and mutual information is illustrated in Figure B.1.



B.3 Information Measures 230

En(x, z)

En(x)

En(z)

En(x | z) I (x; z) En(z | x)

Figure B.1: Relation between joint entropy, marginal entropy, conditional entropy and
mutual information (from [136]).

Alternatively, the mutual information I (x, z) can be written as the expectation of the ratio

of probability distributions

I (x, z) = −E

{
log

P(x | z)
P(x)

}
= −E

{
log

P(z | x)
P(z)

}
. (B.15)

Equation B.14 is an a priori measure of the “compression” of the probability mass caused

by an observation.



Appendix C

Algorithms for Gaussian Point

Features

C.1 Model

Consider a linear (or linearized) discrete-time system described by the equation

xk = Fkxk−1 + Bakak + Bwkwk, (C.1)

where xk = [xk
f ,xk

pi]
T is the combined feature and platform state vector at time tk, Fk is

the combined state transition matrix from time tk−1 to tk
1, Bak is the influence matrix for

actions, Bwk is the influence matrix for process noise, and wk is the associated process noise

modelled as an uncorrelated white sequence with E
{
w(i)wT (j)

}
= δijQ(i). The system

uses a sensor with a linear (or linearized) observation model

zk = Hkxk + vk, (C.2)

where zk is the vector of observations made at time tk, Hk is the observation matrix, and

vk is the associated observation noise modelled as an uncorrelated white sequence with

E
{
v(i)vT (j)

}
= δijR(i).

1Note a slight change in notation in this section: for matrices, the time step is shown as a subscript to
allow room for transcripts and inverses in the superscript.
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The state estimate x̂(i | j) and its variance P(i | j) at time ti, given observations up to time

tj , are defined as

x̂(i | j) 4
= E

{
x(ti) | Zj

}
, P(i | j) 4

= E
{
(x(ti)− x̂(i | j))(x(ti)− x̂(i | j))T | Zj

}
. (C.3)

The mean x̂(i | j) and the covariance matrix P(i | j) are state-space variables.

C.2 Information Filter Algorithm

The Information filter is equivalent to the Kalman filter [9, 150] but is more suitable for de-

centralization. Two “information” variables, the information vector ŷ(· | ·) and information

matrix Y(· | ·), are defined as

ŷ(i | j) 4
= P−1(i | j)x̂(i | j), Y(i | j) 4

= P−1(i | j). (C.4)

In addition, the information associated with an observation at time tk is expressed in terms

of two new variables, the information gain vector i(·) and information gain matrix I(·)

i(k)
4
= HT

k R−1
k z(k), I(k)

4
= HT

k R−1
k Hk. (C.5)

The prediction and update stages of the Information filter can now be stated.

Prediction. The prediction stage is more complicated than in state-space form

ŷ(k | k − 1) = [1−MkBwkΣ−1
k BT

wk]F
−T
k ŷ(k − 1 | k − 1) + Y(k | k − 1)Buku(k)

Y(k | k − 1) = Mk −MkBwkΣ−1
k BT

wkMk. (C.6)

where Σk = BT
wkMkBwk + Q−1

k , Mk = F−T
k Y(k − 1 | k − 1)F−1

k . Equation C.6 is the

Information filter equivalent of Equation B.5.

Belief update. The update state is simplified compared to the state-space form

ŷ(k | k) = ŷ(k | k − 1) + i(k)

Y(k | k) = Y(k | k − 1) + I(k). (C.7)
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Equation C.7 is the Information filter equivalent of Equation B.4.

Channel update. Two beliefs are combined by adding the information in the individual

beliefs and subtracting the information they have in common

ŷi∪j(k | k) = ŷi(k | k) + ŷj(k | k)− ŷi∩j(k | k − 1)

Yi∪j(k | k) = Yi(k | k) + Yj(k | k)−Yi∩j(k | k − 1). (C.8)

Equation C.8 is the Information filter equivalent of Equation B.8.

The full derivation and discussion of the algorithm can be found in [67, 68] and more recently

in [163, 164].

Data Association with Information Gate. The information gate [55] can be used for

data association with the Information filter. It is the information equivalent of the state

space innovation gate. The test is

vT
2 (k)B2(k)v2(k) < γ, (C.9)

where γ is selected from a Chi-Squared distribution with the number of degrees of freedom

of the observation and

B1(k) = I(k)[I(k) + Y−1(k | k − 1)]I(k)

B2(k) = HT
k [HkB1(k)HT

k ]Hk

I1(k) = HT
k [HkI(k)HT (k)]Hk

v2(k) = I(k)[I1(k)i(k)−Y−1(k | k − 1)ŷ(k | k − 1)]. (C.10)

A complete derivation of the information gate can be found [55] and in an Appendix of

[163].
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C.3 Covariance Intersect Algorithm

If two available estimates are known to be independent, then the Kalman filter update gives

the combined estimate

ŷc(k | k) = ŷa(k | k) + ŷb(k | k)

Yc(k | k) = Ya(k | k) + Yb(k | k). (C.11)

If the assumption of independence is not valid than this estimate double counts information

and is too optimistic. Instead the CI algorithm computes an updated covariance matrix as

a convex combination of the two initial covariance matrices in the form

ŷc(k | k) = ωŷa(k | k) + (1− ω)ŷb(k | k)

Yc(k | k) = ωYa(k | k) + (1− ω)Yb(k | k), (C.12)

where ω is selected based on a heuristic. The most commonly used heuristic is to select ω

which minimizes the determinant of the resulting covariance matrix. Figure C.1 shows an

example of application of the algorithm.

(a) (b)

Figure C.1: Covariance Intersect updates for two estimates: (a) optimal fusion when com-
mon information is known and (b) conservative fusion when it is unknown. A set of possible
estimates is shown, with the least uncertain one highlighted.

A proof and a discussion of the conservative nature of the CI algorithm can be found in

[105].
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C.4 Information Measures

Of particular interest in the following is the entropic information on an n-dimensional state

x modelled by a Gaussian with a covariance matrix P [37]

En(x) =
1
2

log [(2πen)|P|] . (C.13)

Entropy is a measure of the volume enclosed by the covariance matrix and consequently

the compactness of the probability distribution. Equation C.13 is the Gaussian version of

Equation B.12.

For a feature described by Gaussian uncertainty, mutual information is calculated as

I (xk, zk) = −1
2

log
|P(k | k)|

|P(k − 1 | k − 1)| =
1
2

log
|Y(k | k)|

|Y(k − 1 | k − 1)| , (C.14)

where P is the covariance and Y is the information matrices respectively. Equation C.14

is the Gaussian version of Equation B.15.

C.5 Information Surfing Algorithm

Planning with zero look ahead provides a special case in coordinated multi vehicle con-

trol. This can be used to form simple approximate solutions where the sensor platforms

are directed by the dynamics of the mutual information rate gradient field. The Fisher

information evolution in continuous linearized filtering is given by the information form of

the Ricatti equation

Ẏ(t) = −FkY(t)− FT
k Y(t)−YBwkQkBT

wkY(t) +
n∑

i=1

HT
ikR

−1
ik Hik. (C.15)

Using matrix calculus identities, the instantaneous rate of change of entropy, or mutual

information rate is

I (t) =
1
2

d

dt
log |Y(t)| = 1

2
trace(Y−1(t)Ẏ(t)). (C.16)

Equation C.16 represents a time varying vector field. It shows that the mutual information
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rate is determined by the current Fisher information and Fisher information rate from

Equation C.15. The gradient of the mutual information rate relates changes in the system

state and control to changes in the rate of change of entropic information. Since Y(t) is

not an explicit function of x or a, the gradient field is calculated as

∇xI (t) =
1
2
trace(Y−1(t)∇xẎ(t)). (C.17)

This allows evaluation of the gradient field in terms of the current Fisher information

and the partial derivatives of Equation C.15. Actions can be scheduled according to the

direction and magnitude of the local gradient field. In order to maximize the information

rate Equation C.16, the platform should head in the direction of the gradient vector of

information rate with respect to the vehicle state {x, y}. The best action with zero look

ahead is the direction of the gradient vector of information rate with respect to the vehicle

state {x, y}
ψ?(t) = arctan

(∇yI(t)
∇xI(t)

)
. (C.18)

The full derivation, discussion, and examples can be found in [70].
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Algorithms for Certainty Grids

D.1 Integrated Exploration Algorithm

A popular approach to choosing the exploration path when using Certainty Grids is to pro-

pose several potential destinations based on certain criteria, evaluate the expected utilities

for each one, and pick the one with the highest expected value. The exploration action

sequence adopted in this work is shown in Figure D.1. The algorithm is called Integrated

Exploration, referring to the balanced evaluation of alternative motion actions from the

point of view of information gain, localization quality, and motion cost.

The frontier method [242] is used to identify areas of interest which tend to lie on the edge

of the explored and the unexplored regions. Figure D.2 shows an example of the frontier

destinations for a partially built CG map. Other criteria for proposing destinations are

certainly possible. For example, if the vehicle pose uncertainty is getting dangerously large,

locations where the chances of relocalizing are high may be suggested.

The total expected value of driving to a particular destination and making observations

there is calculated as a weighted sum of the utilities of information gain, action, and com-

munication. The utility of action is further divided into the integral utility of navigation to

the destination ρ̃k+t,k
iAN and the terminal utility of localization quality ρ̃k+K,k

iAL

Ṽ K
i (πiA) ≈ (1− λ)ρ̃k+K,k

iB + λ

(
K∑

t=0

ρ̃k+t,k
iAN + ρ̃k+K,k

iAL

)
+ 0, (D.1)
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Propose
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Evaluate Utilities 

for each 

Destination

Select Destination

Plan Path to 

Chosen Destination

Navigate to 

Chosen Destination

Start

End

Collect Info

[failed]

[failed < n times] [failed => n times]

Figure D.1: Integrated Exploration algorithm.

where λ is a weighting coefficient. The result is approximate because the information gain

along the path to the destination is ignored.

D.2 Utility of Information Gain

The main goal of an exploration strategy is to collect information about the world. The

information utility is designed to favor destinations which offer higher information gain.

For each CG cell ci within the estimated sensed region W and each observation j, the infor-

mation gain is computed as the mutual information of the belief and the observation. The

total information gain is the sum over all cells in the sensed region W and all observations k

ρ̃k+K,k
iB =

∑

W

∑
t

Ibk
xi(xk, zk+t,k

i ). (D.2)

In practice, the expression for ρ̃k+K,k
iB can be simplified if the platform takes multiple ob-

servations at the destination point. It can be assumed that all information will be collected
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(a) (b)

Figure D.2: Illustration of the planning process for a section of an experimentally obtained
map: (a) the CG and the SLAM feature maps and (b) proposed destination frontiers. Also
shown: the current vehicle position (4), SLAM landmarks (¤) and potential destinations
(◦).

about the region visible from the destination point. The information utility is found by

summing the entropy in all cells within the estimated sensed region

ρ̃k+K,k
iB =

∑

W

En(bk
xi). (D.3)

For a realistic estimate of the information gain from a destination point, the size and shape

of the region covered by the sensor must be predicted. For the case of a range bearing

sensor such as laser range finder, a ray tracing algorithm is employed. A screen shot in

Figure D.3 illustrates the process.

Figure 5.16(b) shows the entropy distribution for a partially built occupancy map. Darker

regions have higher entropy and, therefore, less information about them is available. The

never-visited territory is completely unknown and has maximum entropy.
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Figure D.3: Ray tracing used to estimated the shape of the sensed region. The total
observed area is estimated by summing the area of sectors along each ray. The accuracy
can be traded for processing time by varying the number of rays.

D.3 Utility of Navigation

Long travel time between destinations reduces the efficiency of exploration. The navigation

utility is used to make shorter drives more appealing. The navigation component of total

utility is

ρ̃k+K,k
iAN =

K∑

t=0

ρ̃k+t,k
iAN =

1∑K
t=0 t

=
1
T

, (D.4)

where T is the total expected time it takes to drive to the destination. The hyperbolic

penalty imposed by the 1/T term, however, makes the far away destination points pro-

hibitively expensive. An alternative which has performed better in practice is a polynomial

utility term in the form of (T ∗ − T )λn , where T ∗ is the platform’s maximum range and λn

is a scaling parameter. Figure D.4 shows linear, quadratic, and cubic options compared to

the hyperbolic one.

The expected time of travel T is found by computing the numerical navigation function

[118]. Additional terms can be easily added to the navigation utility as long as they are
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Figure D.4: Options for re-scaling the navigation utility.

expressed in units of time, such as penalty for large angle turns which could be slow on real

life robots.

Figure 5.16(e) shows the navigation utility calculated for a partially built occupancy map.

Darker areas are closer and therefore are more appealing. Notice that the algorithm pro-

duces navigation utility for all destinations at once from the current starting point.

D.4 Utility of Localizability

Collecting data about the previously unmapped territory is of little use if this information

cannot be integrated properly into the map due to high vehicle localization error. The

localization utility is used to distinguish between destinations with different localization

quality. Conceptually, the quality of localization at any given point xi is determined by the
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uncertainty in vehicle position achievable at that point. The uncertainty is described by

the state covariance matrix Pvv(xi, t) at the point xi at time t.

To provide a uniform basis of comparison between different locations, the localizability

metric is defined as the minimum vehicle covariance achievable by re-localizing a lost vehicle

at a given location by observing only the features visible from that location. The number

of observations is allowed to vary within k ∈ [1 ∞). The advantage of this definition is that

the metric is clearly a function of both the map quality and the environment itself.

The details of calculating localizability depend on the specific localization algorithm. For

the case of SLAM, the vehicle position uncertainty is represented by a covariance matrix

Pvv. In Appendix D.5, the upper bound on the vehicle covariance matrix achievable after

re-localization given the current feature map is derived. To convert the re-localized vehicle

covariance matrix Pk
vv to a scalar utility, the Shannon information measure is used as defined

in Equation B.12

UL
i = −En(Pk

vv) = −1
2

log((2πe)n|Pk
vv|), (D.5)

where n is the number of vehicle states and Pk
vv is the vehicle state covariance after k

observations given by Equation D.11. Figure 5.16(c) shows the localizability metric for a

partially built occupancy map. The number of observations was set to k = 10.

Calculation of the localizability metric is an expensive operation. It is only performed during

the planning stage and only for a limited number of proposed destinations. The costliest

part of the current implementation is ray-tracing to determine visibility of beacons. The

possibility of calculating the metric for the entire map or part of the map is currently

under investigation. This information could then be incorporated into the path planning

operation. Such a map would conceptually be very similar to the one described in [193]

where the map is computed off-line from an a priori map.

D.5 Localizability Metric for SLAM Algorithm

The platform is localized using the Simultaneous Localization and Mapping (SLAM) algo-

rithm [44, 123, 240]. The method uses the Extended Kalman Filter (EKF) algorithm to

optimally estimate the state vector x, containing both the vehicle states xv and the feature
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states xm, as well as the associated covariance matrix P

x =


xv

xm


 ,P =


Pvv Pvm

PT
vm Pmm


 . (D.6)

Details of the SLAM algorithm can be found in [44].

We now define the localizability metric for the case of SLAM feature-based localization. As-

suming a partially known feature map and a partially known occupancy map, the following

steps are taken:

1. Start with a completely unknown vehicle location (infinite covariance) and a partially

known feature map Pmm

2. Using the occupancy map, estimate which of the known features are observable from

the location in question

3. Keep the vehicle stationary and estimate the vehicle covariance Pk
vv after k observa-

tions of visible features

In the derivation of Pvv(k) it is convenient to use the information form of the Kalman filter

described in Appendix C.2. The initial information matrix for a “teleported” vehicle is

P−1
ox =


0 0

0 P−1
om


 . (D.7)

where Pom is the covariance matrix of the landmarks observable from the location in ques-

tion. The unobservable features do not influence the vehicle covariance, greatly reducing

the size of the problem. The zero sub-matrix in the upper-left corner reflects the lack of

information about the initial vehicle location. The off-diagonal terms are also set to zero.

The update equation is

P−1(k | k) = P−1(k | k − 1) +


HT

v

HT
m


R−1

[
HT

v HT
m

]
. (D.8)

where Hv and Hm are the appropriately sized Jacobians of the generally non-linear ob-

servation function, and R is the variance of the sensor noise, assumed to be non-singular.
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Because the localizability metric is defined for a stationary vehicle, the linearization of the

observation function has to be performed only once and the information state vector does

not have to be updated. For the same reason, the process noise is zero (Q(k) = 0) and the

prediction stage is simply

P−1(k | k − 1) = P−1(k − 1 | k − 1). (D.9)

Following [44], the Equations D.7 through D.9 are combined to find the information matrix

after k observations

P−1(k | k) = P−1
ox + k


HT

v R−1Hv HT
v R−1Hm

HT
mR−1Hv HT

mR−1Hm


 . (D.10)

Invoking the matrix inversion lemma twice, the vehicle covariance after k observations can

be found. We are interested primarily in the sub-matrix corresponding to the vehicle states

Pvv

Pk
vv =

[
Hv

T
[

1
kR + HmPomHT

m

]−1
Hv

]−1

. (D.11)

Note that in this form, the intermediate matrices are symmetric positive definite which

allowing the use of computationally efficient matrix inversion algorithms. In the limit for

k →∞, the vehicle covariance reaches steady state at

P∞
vv =

[
HT

v

[
HmPomHT

m

]−1
Hv

]−1

. (D.12)

If the vehicle were to re-localize in practice at the given location, its true steady-state re-

localized uncertainty would be not higher than the variance in Equation D.12. The upper

bound property of P∞
vv follows from the result that the map covariances in the SLAM

algorithm cannot increase [44].

As an illustration, consider a vehicle in 2-D space, equipped with a range and bearing sensor.

The non-linear observation model is

zk =


zr(k)

zθ(k)


 =




√
(xv − xi)2 + (yv − yi)2

arctan( yv−yi

xv−xi
)− ψv


 +


ωr

ωθ


 . (D.13)
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where (xv, yv, ψv) and (xi, yi) are coordinates of the vehicle and a landmark at time k.

k = 1 k = 4 k = 18

k = 75 k = 361 k = ∞
Figure D.5: An example of vehicle covariance after k observations. Darker color indicates
higher uncertainty in vehicle localization. Initial feature uncertainties are drawn as ellipses

The localizability metric for an area around three uncorrelated landmarks is shown in

Figure D.5. Results for different number of observations are shown. In this example there

are no obstacles and the step of finding observable features is not necessary. In the limiting

case (k = ∞), the localizability metric has the same value for all locations. In this case the

localizability metric is simply a projection of the initial map uncertainty from the feature

space into the vehicle space. For a finite number of observations, however, the vehicle

covariance depends also on the relative configuration of the vehicle and the landmarks.

The dominant factors in the value of localizability are the number of landmarks visible from

a given point and the uncertainty in the landmark locations. To illustrate the dependence

between the number of visible features and localizability, the plot of localization utility (see

Equation D.5) for different numbers of visible landmarks is shown in Figure D.6. The results

are for all the cells of the map segment in Figure 5.16(c) k = 10. The strong dependence of
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Figure D.6: Dependence of localizability on the number of visible beacons, the mean (∗)
and one standard deviation bounds are shown

localizability on the number of visible beacons is readily seen as well as the variation within

each group.
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