44,762 research outputs found

    Fully-automatic inverse tone mapping algorithm based on dynamic mid-level tone mapping

    Get PDF
    High Dynamic Range (HDR) displays can show images with higher color contrast levels and peak luminosities than the common Low Dynamic Range (LDR) displays. However, most existing video content is recorded and/or graded in LDR format. To show LDR content on HDR displays, it needs to be up-scaled using a so-called inverse tone mapping algorithm. Several techniques for inverse tone mapping have been proposed in the last years, going from simple approaches based on global and local operators to more advanced algorithms such as neural networks. Some of the drawbacks of existing techniques for inverse tone mapping are the need for human intervention, the high computation time for more advanced algorithms, limited low peak brightness, and the lack of the preservation of the artistic intentions. In this paper, we propose a fully-automatic inverse tone mapping operator based on mid-level mapping capable of real-time video processing. Our proposed algorithm allows expanding LDR images into HDR images with peak brightness over 1000 nits, preserving the artistic intentions inherent to the HDR domain. We assessed our results using the full-reference objective quality metrics HDR-VDP-2.2 and DRIM, and carrying out a subjective pair-wise comparison experiment. We compared our results with those obtained with the most recent methods found in the literature. Experimental results demonstrate that our proposed method outperforms the current state-of-the-art of simple inverse tone mapping methods and its performance is similar to other more complex and time-consuming advanced techniques

    Which tone-mapping operator is the best? A comparative study of perceptual quality

    Get PDF
    Altres ajuts: CERCA Programme/Generalitat de CatalunyaPublicat sota la llicència Open Access Publishing Agreement, específica d'Optica Publishing Group https://opg.optica.org/submit/review/pdf/CopyrightTransferOpenAccessAgreement-2022-06-27.pdfTone-mapping operators (TMOs) are designed to generate perceptually similar low-dynamic-range images from high-dynamic-range ones. We studied the performance of 15 TMOs in two psychophysical experiments where observers compared the digitally generated tone-mapped images to their corresponding physical scenes. All experiments were performed in a controlled environment, and the setups were designed to emphasize different image properties: in the first experiment we evaluated the local relationships among intensity levels, and in the second one we evaluated global visual appearance among physical scenes and tone-mapped images, which were presented side by side. We ranked the TMOs according to how well they reproduced the results obtained in the physical scene. Our results show that ranking position clearly depends on the adopted evaluation criteria, which implies that, in general, these tone-mapping algorithms consider either local or global image attributes but rarely both. Regarding the question of which TMO is the best, KimKautz ["Consistent tone reproduction," in Proceedings of Computer Graphics and Imaging (2008)] and Krawczyk ["Lightness perception in tone reproduction for high dynamic range images," in Proceedings of Eurographics (2005), p. 3] obtained the better results across the different experiments. We conclude that more thorough and standardized evaluation criteria are needed to study all the characteristics of TMOs, as there is ample room for improvement in future developments

    Color appearance in image displays

    Get PDF

    The Influence of media displays and image quality attributes for HDR image reproductions

    Get PDF
    High Dynamic Range (HDR) photography has been in existence at least since the time of Ansel Adams, with his experiments using analog film and darkroom techniques for the production of black and white prints in the 1940\u27s (Ashbrook, 2010). This photographic method has the ability to provide a more accurate representation of a scene through a greater range of the light and dark areas captured in an image. In the mid-20th century HDR Photography it has continued to grow in popularity among those interested in photography wishing to optimize their resulting image beyond a more commonly used technique. Presently, the limitations of commonly available reproduction technologies can lead to unpredictable output results through media such as monitor displays and inkjet prints. The purpose of this research was to determine the influence of quality attributes and image content on the preference of display media for HDR image reproductions. To achieve this purpose, a psychophysical experiment was conducted of 38 observers with previous imaging related exposure. This part of the study consisted of HDR comparisons across both a monitor display device and inkjet prints. Through qualitative and quantitative methods, common trends were identified among observer responses. The results show that for inkjet prints are the most preferred for the output of HDR images, specifically when printed on a metallic substrate. Additionally, the content of displayed images can directly impact display preference depending on the viewer\u27s perception and relationship formed with the photographic image. When evaluating HDR images across two media platforms, quality attributes comprising of a strong influence towards preference are sharpness, naturalness, contrast and highlights while artifacts, physical qualities and shadows were found to have barely any influence. Within the attributes related to HDR, relationships between attributes are found to be significant regarding image evaluation, leading to areas of further research

    Image appearance modeling

    Get PDF
    Traditional color appearance modeling has recently matured to the point that available, internationally-recommended models such as CIECAM02 are capable of making a wide range of predictions to within the observer variability in color matching and color scaling of stimuli in somewhat simplified viewing conditions. It is proposed that the next significant advances in the field of color appearance modeling will not come from evolutionary revisions of these models. Instead, a more revolutionary approach will be required to make appearance predictions for more complex stimuli in a wider array of viewing conditions. Such an approach can be considered image appearance modeling since it extends the concepts of color appearance modeling to stimuli and viewing environments that are spatially and temporally at the level of complexity of real natural and man-made scenes. This paper reviews the concepts of image appearance modeling, presents iCAM as one example of such a model, and provides a number of examples of the use of iCAM in still and moving image reproduction

    Appearance-based image splitting for HDR display systems

    Get PDF
    High dynamic range displays that incorporate two optically-coupled image planes have recently been developed. This dual image plane design requires that a given HDR input image be split into two complementary standard dynamic range components that drive the coupled systems, therefore there existing image splitting issue. In this research, two types of HDR display systems (hardcopy and softcopy HDR display) are constructed to facilitate the study of HDR image splitting algorithm for building HDR displays. A new HDR image splitting algorithm which incorporates iCAM06 image appearance model is proposed, seeking to create displayed HDR images that can provide better image quality. The new algorithm has potential to improve image details perception, colorfulness and better gamut utilization. Finally, the performance of the new iCAM06-based HDR image splitting algorithm is evaluated and compared with widely spread luminance square root algorithm through psychophysical studies

    The effect of image size on the color appearance of image reproductions

    Get PDF
    Original and reproduced art are usually viewed under quite different viewing conditions. One of the interesting differences in viewing condition is size difference. The main focus of this research was investigation of the effect of image size on color perception of rendered images. This research had several goals. The first goal was to develop an experimental paradigm for measuring the effect of image size on color appearance. The second goal was to identify the most affected image attributes for changes of image size. The final goal was to design and evaluate algorithms to compensate for the change of visual angle (size). To achieve the first goal, an exploratory experiment was performed using a colorimetrically characterized digital projector and LCD. The projector and LCD were light emitting devices and in this sense were similar soft-copy media. The physical sizes of the reproduced images on the LCD and projector screen could be very different. Additionally, one could benefit from flexibility of soft-copy reproduction devices such as real-time image rendering, which is essential for adjustment experiments. The capability of the experimental paradigm in revealing the change of appearance for a change of visual angle (size) was demonstrated by conducting a paired-comparison experiment. Through contrast matching experiments, achromatic and chromatic contrast and mean luminance of an image were identified as the most affected attributes for changes of image size. Measurement of the extent and trend of changes for each attribute were measured using matching experiments. Proper algorithms to compensate for the image size effect were design and evaluated. The correction algorithms were tested versus traditional colorimetric image rendering using a paired-comparison technique. The paired-comparison results confirmed superiority of the algorithms over the traditional colorimetric image rendering for the size effect compensation
    corecore