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Recent years have seen a huge growth in the acquisition, transmission, and storage

of videos. The visual data consists of both natural scenes as well as synthetic scenes, such

as animated movies, cartoons and video games. In all these cases, the ultimate goal is to

provide the viewers with a satisfactory quality-of-experience. In addition to the traditional

8-bit images, high dynamic range imaging is also becoming popular because of its ability

to represent the real world luminances more realistically. Coming up with objective image

quality assessment algorithms for these applications is an interesting research problem.

In this work, I have developed a synthetic image quality database by introducing

varying degrees of different types of distortions and conducted a subjective experiment

in order to obtain the ground-truth data. I evaluated the performance of state-of-the-

art image quality assessment algorithms (typically meant for natural images) on this

database, especially no-reference algorithms that have not been applied to the domain of

computer graphics images before. I identified the top-performing algorithms along with

ix



analyzing the types of distortions on which the present algorithms show a less impressive

performance.

For high dynamic range(HDR) images, I have designed two new full-reference

image quality assessment algorithms to judge the quality of tonemapped HDR images

using statistical features extracted from them. I have also conducted a massive on-

line crowd-sourced subjective test for HDR image artifacts arising from tonemapping,

multiple-exposure fusion and post processing. To the best of our knowledge, presently

this is the largest HDR image database in the world involving the largest number of

source images and most number of human evaluations. Based on the subjective evalua-

tions obtained, I have also proposed machine learning based no-reference image quality

assessment algorithms to predict the perceptual quality of HDR images.
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Chapter 1

Introduction

Recent years have seen tremendous growth in the acquisition, transmission, and

storage of digital visual data[1]. With the proliferation of hand-held smart devices, the

exponential increase in the amount of mobile image/video traffic will likely continue in the

upcoming years. Some of the popular applications of visual data are streaming websites

like YouTube, High Definition TVs, Video-on-demand services like Hulu and Netflix,

Digital Cinema etc. On an average 350M photos are uploaded to Facebook every year

and YouTube has over a billion users, roughly one-third of all internet users. Apart from

the images and videos captured by optical cameras, the visual data traffic also comprises of

computer graphics generated content, such as those in animated movies and video games.

The genre of massively multi-player online gaming has 23.4M subscribers worldwide. In

addition, fusion of natural and synthetic content is becoming increasing popular due to

the widespread use of augmented reality applications (such as Google Glass).

In addition to the standard dynamic range images (8bits/color/pixel), high dy-

namic range (HDR) images are also being captured by the users, either with high-end

DSLRs or with hand-held smart-devices. For example, Qualcomm’s Snapdragon S4 pro-

cessors supports HDR capture. Also, video streaming services like Amazon Instant Video

supports streaming of HDR videos and HDR displays for home entertainment are becom-
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ing more popular (such as Samsung HDR TVs).

For all of these applications, the source image is subjected to a few processing

stages, beginning with its capture (in case of natural scenes) or rendering (in case of

computer graphics images). Properties of the capturing and display device, rendering

GPUs, limited availability of transmission bandwidth may lead to loss of information in

the source. Since humans are the final consumers of the visual data traffic, the ultimate

goal is to provide a satisfactory quality-of-experience (QoE)[2]. The introduced distortions

may or may not be visible to the human observers and if visible, they lead to varying

degrees of annoyance[3]. Research in QoE deals with quantifying this visual annoyance

and results in more perceptually optimized multimedia services, such as creating high-

quality cinematic content, capturing better videos with hand-held smartphones, rendering

photo-realistic computer-generated imagery in video games and animation movies, and

video compression and transmission over bandwidth limited communication channels.

Conducting subjective experiments to ask for human opinion on multimedia con-

tent is the ultimate ground-truth of QoE evaluation, but these methods are time-consuming

and expensive. Hence many research efforts in recent decades have focused on developing

objective image quality assessment (IQA) algorithms which show a high degree of cor-

relation with human judgment. The next section outlines the different types of Image

Quality Assessment (IQA) methods.

1.1 Image Quality Assessment (IQA) Methods

Depending on the involvement of human subjects in evaluating the visual quality

of images, the IQA algorithms may be divided into the following two categories:
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Figure 1.1: Different categories of objective image quality assessment algorithms. Full-
reference methods need access to both the reference and the distorted image, reduced-
reference methods need access to some supplementary information about the reference,
no-reference methods evaluate the quality just by accessing the test image. The subjec-
tive scores obtained from the automated IQA algorithms are correlated with the ground
subjective opinion scores obtained from human observers.
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1.1.1 Subjective Quality Assessment

In case of subjective IQA, human subjects assess the visual quality to an image

or video and assign a numerical score (say, on a scale of 1 to 100) based on the perceived

quality. Due to the inherent variability among human subjects in judging the visual

quality, in order to represent the population better, multiple subjects are required to

judge and rate the quality of a corpus of images or videos. The subjective studies follow

two paradigms:

� Laboratory Experiments : The studies are conducted in laboratory environments

in order to control precisely the viewing conditions such as ambient illumination,

viewing distance and proper calibration of the display device. The methodology for

subjective testing and analyzing the data has been outlined in the recommenda-

tions provided by the The International Telecommunications Union (ITU). ITU-R

Recommendation BT.500-11 citeitu outlines methodologies for the subjective assess-

ment of the quality of television pictures. Also, for these subjective experiments,

the distorted are images are synthetically created from high-quality pristine images

by the introduction of graded simulated distortions.

� Crowdsourced Experiments : Studies conducted over crowdsourced platforms, mostly

targeted at getting a larger and more varied source image corpus evaluated by a large

group of subjects. The images considered may either be generated by the controlled

introduction of distortions of varying degrees to high quality pristine images or

may be captured by real-world imaging devices afflicted by complex mixtures of

multiple distortions. Unlike the controlled subjective tests in laboratory conditions,
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this paradigm of subjective testing is free from the constraints imposed by viewing

conditions or display devices and helps us in gaining insight on the visual perception

of the subjects under a much wide array of testing conditions.

Although conductive subjective experiments is a cumbersome process, it is imperative

in providing the ground truth data required for the evaluation of the objective IQA

algorithms. More details about the subjective testing frameworks and the major publicly

available subjective databases have been mentioned in the next chapter.

1.1.2 Objective Quality Assessment

Depending on the availability of the reference image to judge the quality of the

test image, the objective image quality assessment algorithms may be classified as:

� Full-reference (FR) IQA algorithms : This class of algorithms requires the reference

image for the prediction of the quality of the test image. The simplest FR algorithm

that has been used to judge image quality for multiple decades was the mean squared

error metric, but it has been found to correlate very poorly with human perception.

More sophisticated FR measures of signal fidelity have been proposed, but since the

reference image is always not available against with the test image is compared, this

severely limits the application areas of FR-IQA algorithms.

� Reduced-reference (RR) IQA algorithms : This class of algorithms requires the some

statistical features extracted from the reference image to predict the quality of

the test image. The systems employing RR-IQA models extract the features from

the reference image at the sender side which are transmitted through an ancillary
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channel to the receiver side. The receiver extracts the features from the test image

and predicts the quality by comparing that with the features extracted from the

reference image. The RR-IQA algorithms should aim at achieving a good balance

between the bandwidth required to transmit the extracted features and the accuracy

of the visual quality prediction [3].

� No-reference (NR) IQA algorithms : This class of objective IQA algorithm is the

most challenging one because the reference image is not available to judge the quality

of the test image. This method of IQA does away with older concepts of signal

fidelity or fidelity [3]. Also, this paradigm of IQA is very useful for applications

where there is no concept of a ‘reference’ image, such as those containing real world

distortions arising from the multitude of image capturing devices used by people, or

High Dynamic Range images created from fusing a stack of images shot at different

exposures. The details about the different categories of NR-IQA algorithms have

been outlined in Chapter 3.

1.2 Synthetic Scene Image Quality Assessment

In addition to videos captured with optical cameras, video traffic also often includes

synthetic scenes, such as animated movies, cartoons and video games. The burgeoning

popularity of multiplayer video games (on mobile platforms) is causing an exponential

increase in synthetic video traffic[4]. The visual quality of synthetic scenes can be de-

graded both by the rendering process (e.g. video gaming on standalone devices) and by

transmission over a wireless network (e.g. cloud gaming applications). Designing objec-

tive IQA algorithms to accurately predict the quality of the synthetic images distorted by
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these artifacts is a challenging problem.

One approach in the performance of evaluation of visual quality in computer graph-

ics is comparison of the results produced by an image processing algorithm with the de

facto golden standard using a full-reference metric. This approach suffers from the dis-

advantage that with the development of new rendering techniques, the de facto standard

itself might be replaced by an algorithm that produces better results, thereby resulting

in a lack of standardization.

Many proposed no-reference algorithms are based on studying the overall statistical

properties possessed by pristine images, which is inspired by natural images having certain

statistical properties regardless of the image content, and are based on the assumption

that distortions tend to deviate the Natural Scene Statistics (NSS) or Natural Video

Statistics (NVS). However, these metrics for evaluating the quality of natural images

have not been studied in the context of images generated using computer graphics. With

the improvement of rendering technology, rendered images are becoming more and more

photo-realistic, which has led me to hypothesize that NSS models can be applied in the

domain of computer graphics with some modifications. Instead of conducting user studies,

the NSS based no-reference algorithms can be used to quantify the perceptual quality of

a rendered scene.

1.3 High Dynamic Range Image Quality Assessment

With the advent of 4K and HDTVs, the user expectations of clarity in video

quality is bound to change in the coming years. Apart from increasing spatial and tem-

poral resolution, there has been a lot of interest in high-dynamic range (HDR) videos,
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for accurate representation of luminance variation in real scenes, from very bright sun-

light to dark shadows. Unlike traditional Standard Dynamic Range (SDR) scenes with 8

bits/color/pixel, the range of the luminance levels in HDR scenes can range from 10,000

to 1[5]. In computer graphics, using HDR images result in more photo-realistic render-

ing with a rich level-of-detail. Recently, Amazon’s Instant Video streaming service has

started to stream HDR video content[6].

An image photographed at a single exposure may have overexposed and underex-

posed regions. The HDR image creation pipeline typically begins by a registered stack

of images of the same scene at different exposures and fusing them to get the irradiance

map, represented by 32 bit floating point images. However, displaying the irradiance map

on ordinary displays meant for SDR images is not possible without tonemapping it to

LDR format. Some applications skip the intermediate step of creating the floating point

irradiance map and instead display the final SDR image by directly fusing the multi-

exposure stack. HDR images created by commercial software like Adobe Photoshop or

Photomatix are also followed by post-processing to increase the aesthetic appeal. These

processes of tone-mapping, multi-exposure fusion or post-processing all give rise to an-

noying artifacts. Apart from the processing artifacts, the HDR images also suffer from

compression artifacts for streaming applications.

Subjective and objective IQA for HDR images is a relatively new research topic.

Compared to SDR images, a lower degree of subjectively evaluated HDR images is avail-

able. Most of the databases lack in variety of source content or the types of artifacts

considered. Hence, conducting subjective studies is imperative to obtain ground truth

data on which the HDR-specific objective IQA algorithms may be built on and evaluated.
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1.4 Dissertation Summary

To summarize, I have contributed to the subjective and objective quality evaluation

of both synthetic scenes and high dynamic range images.

1.4.1 Thesis Statement

In this dissertation, I defend the following statement:

Using scene statistics yields automated visual quality assessment algorithms for

synthetic images and high dynamic range images that have high correlation with human

visual quality evaluation.

1.4.2 Summary of Contributions

For synthetic image quality assessment, I have made the following contributions:

� ESPL Synthetic Image Database: I have designed the ESPL Synthetic Image Database,

comprising of 25 high quality pristine images and 500 distorted images generated by

controlled introduction of varying degrees of different types of processing, compres-

sion and transmission artifacts, such as interpolation, blur, additive noise, JPEG

compression and Fast-Fading channels.

� Laboratory Subjective Study of Synthetic Images : I conducted subjective experi-

ments for collecting data from 64 observers, and analyzed the data to reject the

outlier subjects, calculated the differential mean opinion scores (DMOS) for each of

the distorted images.
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� Performance evaluation of state-of-the-art IQA algorithms : I compared the perfor-

mance of more than 50 FR, RR and NR-IQA algorithms (originally designed for

natural images) by correlating the scores obtained from the IQA algorithms with

the synthetic image DMOS scores. For the FR-IQA algorithms I have identified the

key distortion categories for which the natural images IQA algorithms show a lesser

degree of correlation. I have shown that the NSS based NR-IQA algorithms can be

used even for predicting the quality scores of distorted synthetic scenes.

For high dynamic range images, I have made the following contributions:

� FR-IQA for Tonemapping Artifacts : I improved the state-of-the-art FR-IQA algo-

rithms for evaluating the quality of tonemapped images in comparison to the original

HDR luminance map by incorporating models of natural scene statistics and visual

saliency. In addition, the algorithm also showed a high degree of correlation on

tonemapped images afflicted with JPEG compression artifacts.

� ESPL-LIVE HDR Image Database: I have designed the ESPL-LIVE HDR Image

Database, comprising of more than 600 source HDR scenes, from which 1815 HDR

images were created using different processing artifacts, such as tonemapping and

multi-exposure fusion. In addition, I have also considered post-processing artifacts

in HDR images.

� Crowdsourced HDR Subjective Study : I used the Amazon Mechanical Turk online

crowdsourcing platform to garner ratings on the images of the ESPL-LIVE HDR
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Image Database from a larger number of human subjects. To the best of our knowl-

edge, presently this is the largest HDR image database in the world involving the

largest number of source images and most number of human evaluations.

� Scene Statistics based NR-IQA for HDR images : I proposed a scene-statistics based

NR-IQA algorithm in the gradient domain for evaluating HDR artifacts that out-

performs the state-of-the-art NR-IQA algorithms on this class of distortion. For

completeness, the algorithm has also been evaluated on SDR natural (LIVE Im-

age Quality Database[7], LIVE Multiply Distorted Images[8]) and synthetic image

databases (ESPL Synthetic Image Database).

1.5 Organization

The rest of the dissertation is organized as follows: Chapter 2 summarizes the

design of the ESPL Synthetic Image Database and the steps taken to conduct the sub-

jective test. It describes in detail the source content, different distortions that have been

introduced and the methodologies employed for processing of the raw subjective scores.

The analysis of the performance of the IQA algorithms on the ESPL Synthetic Image

Database has been provided in Chapter 3. This includes the performance of the FR, RR

and NR-IQA algorithms outlined with respect to measures of correlation with ground

truth human subjective data and the run-time complexity of the different methods.

Chapter 4 gives a brief description of the process of creation of HDR content and

explains the proposed FR-IQA algorithm for tonemapped HDR images. The crowdsourced

subjective study of HDR images has been outlined in Chapter 5. This describes the
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source images considered, the different types of processing artifacts, the subjective testing

methodology and the performance of the state-of-the-art NR-IQA algorithms on HDR

artifacts. Details about the proposed NR-IQA algorithm has been described in Chapter

6. Chapter 7 concludes the dissertation with a summary of the presented work and

outlines possible avenues of future research.
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Table 1.1: Table of acronyms
AMT Amazon Mechanical Turk
BIQI Blind Image Quality Index
BLIINDS-II BLind Image Integrity Notator using DCT Statistics-II
BRISQUE Blind/Referenceless Image Spatial QUality Evaluator
C-DIIVINE Complex-DIIVINE
CORNIA COdebook Representation for No-Reference Image Assessment
CPBD Cumulative Probability of Blur Detection
CurveletQA NR-IQA based on Curvelets
DESIQUE Derivative Statistics-based QUality Evaluator
DIIVINE Distortion Identification-based Image Verity and INtegrity Evaluation
ESPL Embedded Signal Processing Laboratory
FF Fast Fading
FISH Fast Wavelet-Based Image Sharpness Estimation
FNVE Fast Noise Variance Estimation
FR Full-reference
FSIM Feature Similarity Index
G-IQA-1 Gradient-Image Quality Assessment-1
G-IQA-2 Gradient-Image Quality Assessment-2
GM-LOG Gradient Magnitude and Laplacian of Gaussian based NR-IQA
GMSD Gradient Magnitude Similarity Deviation
GN Gaussian Noise
GRNN General Regression Neural Network IQA
GSM Gradient Similarity Measure
HDR High Dynamic Range
HDR-VDP-2 High Dynamic Range VDP
HIT Human Intelligence Task
IFC Information Fidelity Criterion
IQA Image Quality Assessment
IW-SSIM Information Content Weighted SSIM
JPEG Joint Photographic Experts Group
JPEG-NR NRIQA of JPEG compressed images
JNBM Just-Noticeable Blur
LIVE Laboratory for Image and Video Engineering
LPC-SI Local Phase Coherence based sharpness index
MAD Most Apparent Distortion
MEF Multi-Exposure Fusion
MSVF Metric based on Singular Value Decomposition
MS-SSIM Multi-scale Structural Similarity Index
NIQR Natural Image Quality Evaluator
NJQA NRIQA of JPEG compressed images via Quality Relevance Map
NLWT Noise-level Estimation using weak textured patches
NQM Noise Quality Measure
NR No-reference
PHA Peak Signal-to-Noise ratio-Human Visual System-A
PHMA Peak Signal-to-Noise ratio-Human Visual System(modified)-A
PHVS Peak Signal-to-Noise ratio-Human Visual System
PHVSM Peak Signal-to-Noise ratio-Human Visual System(modified)
PSNR Peak Signal-to-Noise Ratio
QSSIM Quarternion Structural Similarity Index
RFSIM Riesz-transform based Feature Similarity Metric
RR Reduced-reference
RRDNT Reference based RRIQA with Divisive Normalization
RRED Reduced-Reference Entropic Differences
RRIQA Reduced-Reference Image Quality Assessment (Wavelet Domain)
S3 Spectral and Spatial Measure of Local Perceived Sharpness
SR-SIM Spectral Residual Based Similarity
SSIM Structural Similarity Index
TM-IQA Topic Model based IQA
UQI Universal Quality Index
VIF Visual Information Fidelity
VSI Visual Saliency-Induced Index
VDP Visual Difference Predictor
VSNR Visual Signal-to-Noise ratio
WSNR Weighted Signal-to-Noise ratio
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Chapter 2

Subjective Quality Evaluation of Lightly Distorted

Synthetic Images

2.1 Prior Work

1A subjective study with human observers is the most reliable way to gauge per-

ceptual quality of images. Although a subjective study is difficult to design and time-

consuming to conduct, the ground-truth data obtained from human observers is valuable

for benchmarking objective IQA algorithms that aim to automate the process of visual

quality assessment. The subjective experiments are also imperative for understanding the

gap in performance between the state-of-the-art IQA algorithms and human perception.

To aid in the development of objective image quality assessment (IQA) algorithms,

many natural image databases have been created that contain the subjective ratings of

the images by human observers. Some of the largest natural image databases annotated

by quality scores from humans are the LIVE Image Quality Database [7], the Tampere

Image Database 2013 [10], the Categorical Image Quality Database [11] and EPFL JPEG

XR codec [12]. Most of the commonly occurring distortions in these databases are the pro-

cessing artifacts such as blur, additive noise, contrast changes, and chromatic distortions,

compression artifacts resulting from JPEG or JPEG2000 standards, and transmission

1Contents of this capter has been published in [9]
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artifacts resulting from sending the images over a Rayleigh fading channel.

In comparison, subjective quality evaluation data is not as available for synthetic

images such as those commonly encountered in video games or animated movies. Recently

Cad́ık[13] developed a synthetic image database of computer graphics generated imagery

afflicted by distortions such as noise, aliasing, brightness changes, light leakage and tone

mapping artifacts. Traditionally, compression artifacts, such as JPEG blocking artifacts

were not studied for synthetic images, but with the advent of cloud gaming(such as the

Nvidia Grid[14]), we do need to render the synthetic scenes on the server side (the clients

may be ”dumb” clients, having nothing more than a video playback facility), compress

them, and send them over a wireless network, whereby, the rendered image might suffer

due to packet loss, or low bit-rate connections.

In the development of the ESPL Synthetic Image Database, I considered a larger

number images with a higher degree of source complexity and a broader class of distor-

tions (transmission and compression artifacts) than the previous work by Cad́ık[13][15] so

that the database better represents the types of images and artifacts encountered when

watching animated movies and playing video games. These have not been considered in

any previous subjective study to the best of our knowledge. With the advent of more

powerful Graphics Processing Units, the degree of realism of graphical images[16] has

vastly narrowed between natural scenes and high quality synthetic scenes. Compared to

Cad́ık’s database, our database spans a wider range of scene complexity, as outlined in

Section 2.2.1.
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2.2 Human Subjective Study

This section describes the source and distorted images considered, the methods

employed in generating the synthetic scenes, the subjective testing framework and the

methodology of analyzing the raw scores.

2.2.1 Source Images

A total of 25 synthetic images were chosen from video games and animated movies.

These high quality color images from the Internet are 1920×1080 pixels in size. The video

games that were considered included multiplayer role playing games (such as War of

Warcraft), first person shooter games (such as Counter Strike), motorcycle and car racing

games, and games with more realistic content (such as FIFA). Some of the animated

movies, from which the images were collected, are, The Lion King, the Tinkerbell series,

Avatar, Beauty and the Beast, Monster series, Ratatouille, the Cars series, etc. 2 We

incorporated natural and non-photorealistic renderings of human figures and human-made

objects, renderings of fantasy figures such as fairies and monsters, close-up shots, wide

angle shots, images showing both high and low degrees of color saturation, and background

textures without a foreground object. Fig. 2.1 shows the 25 reference images.

2.2.2 Source Complexity

The complexity of the source images gives an indication of the “richness” of the

content in terms of edge distribution, local textures, contrast variation and colorfullness.

2All images are copyright of their rightful owners, and the authors do not claim ownership. No
copyright infringement is intended. The database is to be used strictly for non-profit educational purposes.
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Figure 2.1: Sources images in the ESPL database [17]

A database is characterized by the variety of the images considered in order to better rep-

resent the real-world scenarios. The source complexity of the database has been analyzed

using the following two quantitative metrics, as outlined in [18].

2.2.2.1 Spatial Information (SI)

This measure indicates the degree of presence of edges in an image. The luminance

of the RGB image can be obtained by Y = 0.299R + 0.587G+ 0.114B , which is filtered

along the horizontal and vertical directions with the Sobel kernel to yield sh and sv

respectively. The edge magnitude at every pixel is given by sr =
√
sh2 + sv2. The final SI

value of the image is obtained by the root mean square of the edge magnitudes at every

pixel.
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SI =
√
L/1080

√∑
sr2/P (2.1)

where P is the number of pixels in the filtered image, L is the vertical resolution. The

factor
√
L/1080 has been included to make the computed SI somewhat scale/resolution

agnostic.

2.2.2.2 Colorfullness (CF)

This measure indicates the variety and intensity of colors in the image. Let rg =

R−G and yb = 0.5(R +G)−B. Colorfulness is defined as:

CF =
√
σrg2 + σby2 + 0.3

√
µrg2 + µby2 (2.2)

Fig 2.2 shows a scatter plot of spatial information vs. colorfulness computed for the

images in the ESPL Synthetic Image Database and three other publicly available image

quality assessment databases. (Cad́ık’s[13], LIVE[7] and TID[10] databases). The scatter

plots from the ESPL database, shown in Fig 2.2(a), show that spatial information and

colorfulness span a similar range of scene complexity as the other natural image databases

as shown in Fig 2.2(c) and Fig 2.2(d). In Fig 2.2(b), Cad́ık’s Synthetic Image database

shows a larger range but sparsely covers the range.

2.2.3 Distortion Simulations

Distortions in synthetic images differ from those in natural images. This is because

the distortions in synthetic images arise from two sources: firstly, the image might have
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(a) (b)

(c) (d)

Figure 2.2: Spatial Information vs. Colorfulness scatter plots for the source images in the
following databases (a) ESPL Synthetic, (b) Cad́ık’s Synthetic Image[13], (c) LIVE[7],(d)
TID 2013[10]. Red lines indicate the convex hull of the points in the scatter plot, which
approximates the range of scene complexity.

artifacts from the rendering process, display and other processing steps, such as tone

mapping and contrast amplification, and secondly, some distortions might be introduced

due to encoding at a low bit-rate or transmission over a network, such as JPEG block

artifacts and transmission noise. Other distortions may arise, such as unnaturalness of

shading, which can be evaluated only given access to both the rendered 2D scene, and the

information provided by the 3D depth buffer. This initial database does not contain these
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other kinds of distortions. Since we did not have access to the proprietary 3D models

and the lighting information that were used to render the scenes, we chose to introduce

distortions on the rendered image themselves.

Three categories of processing artifacts are considered: interpolation (which arises

frequently in texture maps, and causes jaggedness of crisp edges), blurring and additive

Gaussian noise. With the advent of cloud gaming, where the rendered 2D game images

are streamed from the server to ‘dumb’ clients (having only a video playback facility), we

chose to study the effect of compression and transmission artifacts on computer graphics

generated images (which had been previously considered only for natural scenes). Thus in

the ESPL database, JPEG compression and Rayleigh fast-fading wireless channel artifacts

are considered. For each artifact type, the intensity of distortion was varied to create four

distorted versions of the same pristine image, so that they range from barely noticeable to

a high degree of visual impairment. MATLAB was used for all the distortion categories.

The following paragraphs briefly describe the types of distortions considered, and the

methodology used in their generation.

1) Interpolation: The original images were downsampled using integer downsam-

pling factors ranging from 3 to 6, which are upsampled back using nearest neighbor

interpolation. This can be used to simulated the jagged edges caused by ‘aliasing’ in

rendering. Since bilinear and trilinear interpolation eliminate jagged edges, to retain a

higher degree of jaggedness and perceptual separation of these pictures, simple nearest

neighbor (zeroeth order) interpolation was used.

2) Gaussian Blur : The RGB color channels were filtered using a circularly sym-

metric 2D Gaussian kernel with standard deviation ranging from 1.25 to 3.5 pixels. The
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same kernel was employed on each of the color channels at every pixel location. Natu-

ral photographic images often suffer from severe blur as a consequence of lens defocus

and/or motion of the camera. However in computer graphics, generating the degree of

blur (motion blur or depth-of-field blur for aesthetic purposes) is generally controlled.

For this reason, serious blur conditions (e.g. in the LIVE IQA database[7]) were avoided.

Depth-of-field blur can be synthesized by placing sharper foreground objects on a uni-

formly blurred background. Hence, evaluation of images with global blur is an important

component of judging the quality of these images. A future avenue of work would be to

introduce localized types of blur. However as the first step, we chose to study global blur

for synthetic images in order to get an idea of how humans evaluate the quality of blurred

synthetic scenes. Later databases could be dedicated to capturing isolated blur events.

This also can serve as a check when evaluating IQA algorithms originally intended for

use on natural scene for when applying them to synthetic scenes because most existing

natural image databases [7][10] contains uniformly blurred images.

3) Gaussian Noise: Zero mean white Gaussian noise was added to the RGB com-

ponents of the images (same noise variance were used for all the color channels). The

noise standard deviation ranged from 0.071 to 0.316 pixels, using the imnoise MATLAB

function. Noise can occur in the generation of synthetic images using random sampling

based rendering methods, such as Monte Carlo. In creating the current database, high

levels of noise were not considered because synthetic images may be re-rendered in such

cases. Since no assumption was made with regards to the distribution of the noise, we de-

cided to simulate Gaussian noise distributed uniformly across the image. Future avenues

of work could consider more specialized distortions, such as Perlin noise used in texture
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synthesis.

4) JPEG compression: The MATLAB imwrite function compressed the reference

images into JPEG format. The bits-per-pixel (bpp) ranged from 0.0445 to 0.1843. Higher

bpp images were not considered, in order to better simulate playing a cloud video game

under restricted bandwidth conditions. Blockiness in images arises from independent cod-

ing of spatially correlated adjacent blocks[19]. This can occur in both JPEG compression

(using DCT basis functions) or H.264/HEVC (using integer transform basis functions).

Since here we are studying still computer graphics images, JPEG was used. Further

subjective studies involving computer graphics generated videos could probably model

gameplay videos compressed by H.264/HEVC.

5) Simulated Fast Fading Channel : The reference images were compressed into

JPEG2000 bitstreams (with wireless error resilience features enabled and 64 x 64 tiles)

and then transmitted over a simulated Rayleigh-fading channel. The signal-to-noise ratio

(SNR) was varied at the receiver from 14 to 17 dB to introduce different degrees of

transmission errors. SNRs greater than 17 dB did not introduce perceptible distortions

due to the error resilience feature of the JPEG2000 codec.

2.2.4 Testing Methodology

Since the number of images to be evaluated (525) was prohibitively high for a

double stimulus setup, a single stimulus continuous evaluation testing procedure with

hidden reference [20] was used.

Every image in the database was viewed by each subject, over three sessions of one

hour each, with each session separated by roughly 24 hours. Each session was divided into
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two sub-sessions of 25 minutes with a break of five minutes to reduce visual fatigue and

eye strain. The 64 subjects who participated in the test were graduate and undergraduate

students at The University of Texas at Austin (Fall 2014), with ages ranging from 18-30

years, mostly without prior experience participating in subjective tests or image quality

assessment. The gender ratio of the subjects was roughly 1:1.

Before the start of the experiment, the procedure was explained to each subject

and verbal confirmation of normal vision was obtained. Subjects viewed approximately

175 test images during each session which were randomly ordered using a random number

generator, and randomized for each subject. In order to familiarize themselves with the

testing setup, each testing session was preceded by a short training session comprising of

around 10 images, which had different content but same type of distortions as the test

images.

2.2.4.1 Subjective Testing Display

The user interface for the study was designed on two identical PCs in MATLAB,

using the Psychology Toolbox[21]. Both PCs used identical NVIDIA Quadro NVS 285

GPUs and were interfaced to identical Dell 24 inch U2412M displays, which were roughly

of the same age with identical display settings. The monitors had 16:10 aspect ratio,

1,000:1 static contrast ratio. Any additional digital processing of the monitor was turned

off. It was found that the peak luminance of the monitors is 339cd/m2, minimum black

level is 0.04cd/m2 and color gamut is 71% NTSC, 74.3% Adobe RGB, 95.8% sRGB.

Each image was displayed on the screen for 12 s and the experiment was carried out

under normal office illumination conditions. The ambient lighting was measured using
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a 200,000 Lux Docooler Digital LCD Pocket Light Meter and was found to be 540lux.

Subjects viewed the images from about 2 - 2.25 times the display height.

The screen resolution was set at 1920×1200 pixels, but the images were displayed at

their normal resolution (1920×1080) without any distortion introduced by interpolation.

The pixels per degree was found to be 43.63, assuming a viewing distance of 0.66m. The

top and bottom portions of the display were mid gray. At the end of the image display

duration, a continuous quality scale was displayed on the screen, where the default location

of the slider was at the center of the scale. It was marked with five qualitative adjectives:

“Bad”, “Poor”, “Fair”, “Good”, and “Excellent” placed at equal distances along the scale.

After the subject entered a rating for the image, the location of the slider along the scale

was converted into a numerical score lying between [0,100], after rounding to the nearest

integer. The subject could take as much time as needed to decide the score, but there

was no provision for changing the score once entered or viewing the image again. The

next image was automatically displayed once the score was recorded.

2.2.5 Processing of Raw Subjective Scores

The raw subjective scores were analyzed using the ITU-R BT.500-13 recommenda-

tions [20]. Let sijk be the score assigned by subject i to image j in session k = 1, 2, 3, and

siref jk be the score assigned by the same subject to the corresponding reference image.

The difference between the scores of the test image and the score of the corresponding

reference image was calculated for each subject to take into account the preference of

certain subjects for certain images.
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dijk = sijk − siref jk (2.3)

Since any reference image and its distorted version were shown in the same testing ses-

sion, it is assumed that the quality scale used by the subject remained the same for any

single session. The difference scores for the reference images were 0 and were not taken

into consideration in subsequent processing steps. The difference scores per session was

converted to the Z-scores per session:

µik =
1

Nik

Nik∑
1

dijk (2.4)

σik =

√√√√ 1

Nik − 1

Nik∑
j=1

(dijk − µik)2 (2.5)

zijk =
dijk − µik

σik
(2.6)

where Nik is the number of test videos seen by subject iin session k. Thus, the Z-scores

take into account any differences in subject preferences for reference images, use of the

quality scale between subjects and differences in use of the quality scale by a subject

between sessions.

A subject rejection procedure as outlined in ITU-R BT.500-13 recommendations

[20], was used to discard scores from unreliable subjects. 3First, it was determined whether

3The performance of the FR-IQA algorithms was evaluated by calculating the DMOS considering all
subjects without removing the outliers. No noticeable difference was observed in the relative ranking
of the different algorithms although the different algorithms showed small changes in the values of the
correlation measures.
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the scores assigned by the subject are normally distributed by computing the kurtosis of

the scores. If the kurtosis falls between 2 and 4, the scores were assumed to be normally

distributed. If the scores are normally distributed, a subject was rejected whenever more

than 5% of the scores assigned by her falls outside the range of two standard deviations

from the mean scores. If the distribution of the scores deviates from a normal distribution,

a subject was rejected whenever more than 5% of the scores assigned by her falls outside

the range of 4.47 standard deviations from the mean scores. Out of a total of 64 subjects,

12 were treated as outliers and the ratings obtained from the remaining 52 subjects were

considered in the calculation of the final DMOS. The 5% criterion used in the subject

rejection procedure translates to 26 images in the ESPL Synthetic Image Database.

(a) (b)

Figure 2.3: (a) Scatter Plot and (b) Histogram of DMOS scores for test images obtained
from the study, the DMOS scores span a wide perceptual quality range.

The Z-scores are assumed to be distributed as a standard normal distribution,

99.9% of the scores in our study fell in the range of [-3,3]. The scores were rescaled to lie
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in the range of [0,100] by using the linear mapping:

zij′ =
100(zij + 3)

6
(2.7)

The DMOS score for each test image was calculated as the mean of the rescaled Z-scores

from the M = 52 subjects remaining after outlier rejection.

DMOSj =
1

M

M∑
i=1

zij′ (2.8)

Compared to computing MOS by averaging the ratings obtained from the human

subjects, DMOS calculated from the Z-scores removes the bias of the human subjects

towards scene content and helps us focus only on the distortions.

The standard error in the DMOS scores was 0.6212 across distorted images. One

major goal of an image database to be used for perceptual quality assessment is that the

images should span over a wide range of visual quality. To illustrate this, the scatter plot

and histogram of the DMOS scores of the test images are shown in Fig. 2.3. We see

that the DMOS scores of the ESPL Synthetic Image Database spans the range from 18

to 87. Assuming that the Z-scores assigned by a subject comes from a standard normal

distribution, 99% of the Z-scores should lie in the interval [-3,3], which translates to DMOS

scores in the range of [0,100]. [18,87] on the DMOS scale corresponds to mean Z-scores

in the range of [-1.92,2.22], which covers approximately 96% of the area of the standard

normal distribution.

The high number of outliers resulted from the borderline reliability of some of the

subjects. However we find that the scores obtained from the subjects after outlier rejection

shows remarkable consistency. In order to evaluate the degree of consensus among the
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subjects in judging quality, the subjects were divided into two groups, the DMOS scores

for all the images were calculate using the ratings obtained from each group, and the

rank correlation was measured between the two sets of DMOS scores thus obtained. The

mean of the Pearson’s linear correlation coefficient thus obtained was found to be 0.9813

over 50 such randomized splits. This shows a high level of agreement among the users in

evaluating the quality of the images.

2.3 Conclusion

In this section, I have summarized the contributions in creating the ESPL Syn-

thetic image database (comprising of 25 pristine images and 500 distorted images) and

conducting the human subjective test to obtain the ’ground-truth’ score for every image.

The following chapter outlines the results obtained by evaluating how the state-of-the-art

IQA algorithms, meant primarily for natural images, perform on synthetic images.
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Chapter 3

Objective Quality Evaluation of Lightly Distorted

Synthetic Images

3.1 Introduction

1The previous chapter dealt with subjective quality evaluation of synthetic scenes.

This chapter is concerned with the objective quality evaluation of the different artifacts

occurring in synthetic images. As explained in chapter 1, in order to automate perceptual

quality evaluation, two broad categories of objective IQA algorithms have been developed:

with-reference and blind or no-reference methods, based on the availability (or not) of a

reference image. With-reference methods may have access to either the complete reference

image or some statistical features extracted from it. The former defines full-reference

(FR) IQA algorithms, while the latter defines reduced-reference (RR) IQA algorithms.

The performance of several publicly available state-of-the-art FR-IQA algorithms has

been evaluated on popular natural image databases [24][25]. Cad́ık et al. [13] evaluated

the performance of six FR-IQA algorithms and demonstrated that they were sensitive to

brightness and contrast changes, could not distinguish between plausible and implausible

shading, and failed to localize distortions precisely.

When information about the reference image is not available, no-reference (NR)

1Contents of this capter has been published in [22] and [23]
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IQA metrics are better suited. Many NR metrics rely on machine learning approaches

using features expressive of statistical regularities possessed by pristine images, commonly

called natural scene statistics (NSS) models [26][27]. NSS models for good quality natural

images hold reliable well irrespective of image content and it is assumed that distortions

tend to deviate from these statistical regularities. NR-IQA algorithms have not yet been

studied in the context of images generated using computer graphics. Herzog et al. [15]

proposes an NR-IQA metric for quantifying rendering distortions based on machine learn-

ing. The features were chosen heuristically, instead of being based on properties of pristine

synthetic images.

I evaluate the performance of more than 50 state-of-the-art FR, RR and NR IQA

algorithms on the synthetic scenes and compared them to the subjective test results.

The performance of the algorithms was extensively tested using hypothesis testing and

statistical significance analysis. It is hypothesized that with some modifications, NSS

based NR-IQA metrics could be successfully applied to graphics images having sufficient

degree of scene complexity. Here we take an important first step towards evaluating scene

statistics based NR-IQA methods on synthetic scenes, expressed both in the spatial as

well as various transform domains, and quantified how the presence of distortions change

the scene statistics of synthetic images. Top performing NSS-based NR-IQA algorithms

show a high degree of correlation with human perception on synthetic scenes, which is a

promising development in regards to the successful automatic prediction of the perceptual

quality of computer graphics generated imagery for which no ‘ground truth’ information

is available.
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3.2 Synthetic Scene Statistics

In this section we discuss scene statistics for synthetic scenes, and how the statistics

of distorted images deviate from those of pristine images. In [22], we model the mean-

subtracted-contrast-normalized (MSCN) coefficients [28] obtained from synthetic scenes

using Generalized Gaussian and Symmetric α-stable distributions and found that as long

as the image was devoid of distortions, irrespective of natural or synthetic content, the

distribution of the MSCN coefficients still shows a Gaussian-like signature. This has

led us to the hypothesis that, like natural scenes, scene-statistics based approaches can

be used to evaluate the distortions present in synthetic images. Indeed, the presence

of distortion reliably affect the statistics of synthetic images in the spatial as well as in

bandpass transfer domains, as shown in Fig. 3.1.

3.3 Objective IQA Algorithms

More than 50 publicly available objective IQA algorithms were evaluated on the

ESPL Synthetic Image Database. The full-reference, reduced-reference and no-reference

IQA algorithms considered have been summarized in Table 3.1.

3.3.1 Full-Reference IQA Algorithms

For the sake of brevity, we group the IQA algorithms under consideration into

categories, and then summarize each IQA algorithm in that category, as follows:
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(a) (b) (c)

Figure 3.1: Histograms of (a) MSCN pixels, (b) Steerable Pyramid Wavelet Coefficients
and (c) Curvelet Coefficients of pristine and distorted image patches obtained from the
ESPL Synthetic Image Database. The figure shows how distortions change the statistics
of pristine images. The legends Pris, Interp., Blur, GN, JPEG, FF refer to pristine
images, images with interpolation distortion, blur distortion, additive white Gaussian
noise, JPEG compression and simulated transmission over a Rayleigh fast-fading wireless
channel, respectively.
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3.3.1.1 Mean Square Error based algorithms

The Mean Square Error (MSE) between the reference and the test image is the

simplest distortion measure between images. Peak Signal to Noise Ratio (PSNR) is a

function of the MSE between the reference and the test image. For example, in [29]

Shnayderman et al. propose a metric where the MSE between the singular values of the

reference and test image block is computed.

3.3.1.2 Structural Similarity based algorithms

The Structural Similarity Index (SSIM)[30] and its multiscale version MS-SSIM[31]

take into account luminance, contrast and structure changes. MS-SSIM allows for a

wider variation in display resolution and distance of the viewer from the image plane,

by computing the perceptual quality of the image over multiple scales. The Universal

Quality Index (UQI)[33] is an older metric based on similar ideas. The Quarternion

Structural Similarity Index (QSSIM)[32] represents the R,G, and B color channels using

a quarternion.

3.3.1.3 Human Visual System model based algorithms

Different HVS properties such as the contrast sensitivity function (CSF), lumi-

nance masking, etc have been incorporated into number of algorithms like the Visual Dif-

ference Predictor (VDP)[34] and High Dynamic Range VDP (HDR-VDP-2) [35], which

also incorporate viewing distance and display device characteristics. The Noise Qual-

ity Measure (NQM)[36], Weighted Signal-to-Noise ratio (WSNR) [37], PSNR-HVS[38],

PSNR-HVSM[40], PSNR-HMA[39], PSNR-HA[39] are some other IQA algorithms based
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on mean-shifting, CSF and between coefficient contrast masking of DCT basis functions.

3.3.1.4 Information Theoretic algorithms

Here, the test image is considered to be obtained by passing the reference image

through a distortion channel and the resulting loss of visual information is hypothesized

to be related to the capacity of this communication channel[78]. The Information Fidelity

Criterion (IFC)[41] indicates the mutual information between the reference and the test

image. The Visual Information Fidelity metric (VIF, VIFP)[42] is based on a natural

scene statistics model and measures the Shannon information between the reference and

the test images.

3.3.1.5 Feature Similarity based algorithms

These algorithms are based on extracting different types of low-level local features

(that correlate closely with visual perception) from the reference and the test image,

such as: (1) phase correlation, used in Feature Similarity Index (FSIM[44] (2) change

in gradients, used in Gradient Similarity Measure (GSM)[46] and Gradient Magnitude

Similarity Deviation (GMSD)[45] (3) Riesz transform based features in Riesz-transform

based Feature Similarity Metric (RFSIM)[47] etc.

3.3.1.6 Visual Saliency based algorithms

Visual saliency (VS) aim to understand the areas of the image that will attract

the attention of the viewers. Some algorithms which take into account saliency models

to pool the localized quality scores are the Visual Saliency-Induced Index (VSI)[48] and
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the Spectral Residual Based Similarity (SR-SIM)[49]. In the Information Weighted SSIM

metric (IW-SSIM)[43], the local information content of the image is used as a saliency

measure which weighs the local SSIM value.

3.3.1.7 Strategy based algorithms

These algorithms are based on different strategies employed by the HVS depending

on whether the distortions are near-threshold or supra-threshold. The most prominent of

these are the Most Apparent Distortion algorithm (MAD)[11] and the Visual Signal-to-

Noise ratio (VSNR)[50].

3.3.2 Reduced-Reference IQA Algorithms

For RR-IQA algorithms, contrary to full-reference methods, partial information

descriptive of the reference image may be made available to predict the quality of the test

image. RR-IQA algorithms predict visual quality of the test image using as few features

of the reference image as possible.

3.3.2.1 Natural Scene Statistics Feature based

Some examples in this category are [51], [52], and [53]. These algorithms are based

on statistical features of the steerable pyramid representation of the images, coupled with

divisive normalization.
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3.3.2.2 Image Feature based

Many RR-IQA algorithms employ image features such as edge-maps[56]. In [54],

the authors propose an RR-IQA algorithm based on the image gradient magnitude fol-

lowing a Weibull distribution. Sub-image similarity, coupled with edge-based features are

used in [55].

3.3.3 No-Reference IQA Algorithms

This part of our work is aimed primarily at understanding the usefulness at scene-

statistics oriented learning based NR-IQA algorithms of the latter category for quality

evaluation of synthetic scenes, but for the sake of completeness one of the top perform-

ing publicly available algorithms of the former category has also been considered. The

following section outlines the two classes of NR-IQA algorithms:

3.3.3.1 Artifact Based Methods

Some examples of NR-IQA algorithms for blur estimation are based on local

phase coherence (LPCM[57]), pooling strategies (CPBD[58]), spectral and spatial domain

features(S3[60],FISH[61]). To detect blocking artifacts resulting from JPEG compression,

Sheikh et al. in [62] proposed a no-reference blockiness measure using the power spectrum

of the test image. In [63], the authors use a quality relevance map to determine whether

the blocks are naturally uniform or have been made uniform by JPEG compression. For

blind estimation of the noise level of the images, the authors of [64] estimate the noise

level from image patches using principal component analysis after selecting weakly tex-

tured patches from the images. In [65], the noise level is estimated by a local 3× 3 mask
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which is insensitive to the Laplacian of the image.

3.3.3.2 Learning Based Methods

The NSS based NR-IQA use statistical features descriptive of good quality of undis-

torted images. Leading NR-IQA models are based on the premise that natural images

occupy a small subspace of all possible two dimensional signals, and that distortions move

them from this subspace.

• Spatial Domain Features : In [79], it was observed that the MSCN of natural

images tend to follow a Gaussian-like distribution. The distribution of MSCN pixels and

products of adjacent pairs of them have been employed in the Blind/Referenceless Im-

age Spatial QUality Evaluator (BRISQUE)[66] and the Natural Image Quality Evaluator

(NIQE)[28]. The Derivative Statistics-based QUality Evaluator (DESIQUE)[67] supple-

ments BRISQUE by using log-derivative distributions of MSCN pixels. Using the gradient

magnitude (GM) map and the Laplacian of Gaussian (LOG) response, the NR-IQA metric

(GM-LOG)[68], uses Gaussian partial derivative filters along the horizontal and vertical

directions. Two gradient log-derivative statistics based NR-IQA algorithms, G-IQA-1 and

G-IQA-2, proposed in the LAB color space has also been evaluated[80].

• Transform Domain Features : Neurons employed in early stages of the visual

pathway capture information over multiple orientations and scales, motivating multiscale

processing in many NR-IQAs: log-Gabor decomposition (DESIQUE[67]), steerable pyra-

mid wavelets (DIIVINE[69], C-DIIVINE[70]), Daubechies 9/7 wavelets (BIQI[71]), DCT

(BLIINDS-II[72]), phase congruency (GRNN[73]), curvelets (CurveletQA[74]), expected

image entropy upon a set of predefined directions (Anisotropy[75]). By contrast, COde-
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book Representation for No-Reference Image Assessment (CORNIA)[76] uses a supervised

learning technique to learn a dictionary of different distortions from the raw image patches

instead of using a fixed set of features. Mittal[77] applies a “topic model” to the visual

words extracted from the pristine and distorted images.

3.4 Results

This section outlines the results of evaluating the performance of state-of-the-art

IQA algorithms on the ESPL Synthetic Image Database. The performance metrics and

the methods of statistical evaluation is also provided.

3.4.1 Correlation Measures

The performance of the objective IQA algorithms outlined in the previous section

were evaluated using two correlation measures: the Spearman Rank Order Correlation

Coefficient (SROCC) (for measuring prediction monotonicity) and the Pearson Linear

Correlation Coefficient (PLCC) (for measuring prediction accuracy) after non-linear re-

gression on the objective IQA scores using a five-parameter monotonic logistic function

following the procedure outlined in [81].

3.4.2 Root Mean Square Error

The accuracy of the quality scored predicted by the IQA algorihtms have been

quantified using Root Mean Square Error (RMSE) between the DMOS scores and the

objective IQA scores (after non-linear regression).
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3.4.3 Outlier Ratio

Prediction consistency of the objective IQA algorithms was evaluated by measur-

ing the outlier ratio (OR) [82]. Let Q′j be the objective IQA algorithm score obtained for

image j on the ESPL Synthetic Image Database after the logistic fit. Let Z ′j = {zij}, i =

1, 2, . . . ,M be the Z-scores obtained for image j for M observers and σj be the corre-

sponding standard deviation. An image is defined as an outlier if Q′j − DMOSj > 2σj.

The outlier ratio is given by the ratio of the number of outliers to the total number of

images (expressed as %).

3.4.4 Statistical Significance and Hypothesis Testing

The correlation measures were used to measure the differences in performance of

the different IQA algorithms considered. However, to understand whether these differ-

ences are statistically significant based on the number of sample points used, we used two

variance-based F-tests: based on individual quality scores and on DMOS scores respec-

tively, following similar procedures as in [81].

3.5 Discussion of IQA Algorithm Performance

This section outlines trends observed and conclusions drawn from the experimental

results of the IQA algorithms in Section 4.6.

3.5.1 Discussion of results for FR-IQA algorithms

We evaluated performance of 27 state-of-art FR-IQA algorithms on the ESPL

Synthetic Image Database, where the source code for the FR-IQA algorithms came from
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[24] and [84]. The single-scale algorithms have been evaluated on images rescaled by a

factor dependent upon the image dimension and viewing distance[83]. This part of our

study aims at benchmarking performance of different categories of IQA algorithms over

different distortion categories. We have isolated distortion categories on which the FR-

IQA algorithms perform worse and gained insight on the factors that lead certain types

of FR-IQA algorithms to perform better, such as using color information instead of only

luminance, efficient pooling strategy and the role played by strategy.

In Table 3.2, PSNR (row 26) is outperformed by other objective IQA algorithms

(except for SSIM on row 27 and MSVD on row 28), but it performs reasonably well

for additive noise and fast-fading artifacts since it captures high-frequency distortions.

The SSIM and MS-SSIM IQA algorithms, which perform exceedingly well on the LIVE

database[7], shows a less impressive performance on our database, primarily due to the

very low degree of correlation with human judgment on certain classes of distortions, such

as interpolation, which has not been studied in any of the existing databases of natural

images before. However, SSIM is a single-scale measure; hence, it is very important

to find the precise scale that depends both on the image dimensions and the viewing

distance. Based on the rule-of-thumb proposed in [83], if the SSIM index is computed on

the downsampled images, much better degree of correlation is achieved with the human

ground truth subjective data, as shown in row 12. If the scale is chosen appropriately,

SSIM-D (in row 14) outperforms MS-SSIM (in row 23).

Almost all of the existing IQA algorithms fail to accurately predict the subjective

ratings of the interpolation artifact. Only MAD[11] achieves reasonable performance,

which advocates multiple strategies for determining the overall image quality, based on
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whether the distortions are near-threshold or supra-threshold. Low down-sampling factors

result in near-threshold artifacts, which might appear almost imperceptible, especially at

normal viewing distances. Although both interpolation and JPEG compression lead to

blocking artifacts, the algorithms which perform exceedingly well on JPEG compression

distortion (such as FSIM[44]) show much-less impressive performance on interpolation

artifacts. This is because the two types of blocking artifacts deviate the statistics of the

pristine scenes in different ways (Fig. 3.1). We would like to study the effects of varying

display sizes on error visibility for interpolated images, which could prove valuable for

display designers of game consoles. Blurred images also led to a lower degree of correlation

with human scores compared to other categories. In computer graphics, motion blur is

added artificially in many video games in order to create more realistic aesthetically

pleasing images. Hence, the presence of blur in an image may not always correspond to

a lower subjective score. Thus our subjective test reveals a significant performance gap

for certain distortion categories between synthetic and natural images on which future

researchers can work.

Overall, some of the recently proposed FR-IQA algorithms, such as GMSD[45],

FSIM[44], VSI[48], SR-SIM[49] and MAD[11] correlate rather well with human percep-

tion in terms of SROCC. GMSD uses the standard deviation of the gradient map as a

pooling strategy. FSIM takes into account image gradient magnitude and phase congru-

ency (a dimensionless measure of significance of local structure) and then uses it as a

pooling strategy. VSI and SR-SIM use more sophisticated pooling strategies based on

visual fixations. Hence, we see that, irrespective of whether the image is natural or syn-

thetic, IQA algorithms that use more efficient pooling strategies by taking into account
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the localized distortions perform better than other IQA algorithms, as corroborated by

[24]. This shows that irrespective of the content of the scene being natural or synthetic,

finding interesting regions of the image that grab the attention of the HVS will improve

the performance of IQA algorithms. Some of the IQA algorithms which model different

aspects of the human visual system (HVS), such as NQM, VSNR, PSNR-HVSM, perform

worse than the top performing signal driven IQA algorithms. Significant progress has

been made towards understanding the functioning of the HVS, but on synthetic scenes

studying higher level cognitive factors might be useful in understanding user gaze based on

image saliency and also how the HVS differently perceives synthetic scenes as compared

to natural images.

Table 3.3 shows the RMSE, reduced χ̃2 statistic between scores predicted by the

algorithms and the DMOS for various FR-IQA Algorithms (after logistic function fitting)

and outlier ratio. The top performing algorithm GMSD also show zero outlier ratio,

which shows that all the predicted scores lie within two times the standard deviation of

the DMOS scores.

3.5.2 Discussion of results for RR-IQA algorithms

RR-IQA algorithms show a lower degree of correlation with human subjective

scores as compared to state-of-the-art FR-IQA algorithms as shown in Table 3.4. Among

the NSS based RR-IQA algorithms, RRED shows the best overall performance (which is

also the best performing RR-IQA algorithm). RRED also shows the best performance for

the interpolation distortion category, since it captures the differences in wavelet coefficient

statistics between the images with interpolation artifacts and that of the pristine images.
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The NSS based RR-IQA algorithms perform better than the other edge-map based RR-

IQA algorithms primarily due to their poor performance on the interpolation artifact

category. Also, as per Table 3.5, the RMSE and outlier ratios of the best performing

RR-IQA algorithms is worse than that of the best-performing FR-algorithms.

3.5.3 Discussion of results for NR-IQA algorithms

In this section, we discuss the performance of the NR-IQA algorithms in predict-

ing the type of distortion in the test image and also the quality score. Many NR-IQA

algorithms operate in two steps: classification of the type of distortion present in the test

image and using the features of the detected class to map the extracted image features

to a quality score. Table 3.8 shows the classification accuracy of the features extracted

for the learning based NR-IQA algorithms in identifying the different category of dis-

tortions. Algorithms like GM-LOG, C-DIIVINE, BRISQUE and DESIQUE show good

performances in distortion identification. Gaussian Noise was easiest to detect among all

the distortion categories by most of the learning based NR-IQA algorithms.

Table 6.9 compares the performances of 26 NR-IQA algorithms which comprise

both learning based methods and artifact based methods in terms of SROCC and PLCC.

For rows 1-9 (learning based methods), after the feature extraction step, a mapping is

obtained from the feature space to the DMOS scores using a regression method, which

provides a measure of the perceptual quality. We used a support vector machine regressor

(SVR), specifically LibSVM [85] to implement ε-SVR with the radial basis function kernel.

The training set had 80% of the reference images (and their corresponding distorted

versions) and the test set had the remaining 20% of the reference images (and their
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corresponding distorted versions). The process was repeated 100 times to eliminate any

bias due to varying spatial content.

Tables 3.8 and 6.9 show that G-IQA-1 (Luminance), DESIQUE, BRISQUE, C-

DIIVINE and GM-LOG features perform the best in classifying distortion and deducing

the mapping between the feature space and DMOS scores.

Fig. 3.4 shows box plots of the distribution of SROCC values for each of the 1000

trials of random train-test splits enable us to study the robustness of performance of the

algorithms with variations of the choice of the training set. DESIQUE, BRISQUE and

C-DIIVINE shows smaller variation in the degree of correlation with human perception.

Compared to learning based models, NIQE and TMIQA use unsupervised learning

models and are not trained on corpus of distorted images. As such, these models perform

worse on synthetic images in spite of showing competitive performance on natural images.

This might occur due to higher amount of variability in the distribution of the MSCN

coefficients for synthetic images as compared to natural scenes[22]. The performance of

artifact based NR-IQA algorithms have been outlined in rows 17-21 (blur), 22-23 (noise)

and 24-25 (JPEG blocking). To the best of our knowledge, we did not find any artifact

based NR-IQA algorithm meant only for images having interpolation or fast-fading arti-

facts. For blur, noise and JPEG blocking, the learning based NR-IQA algorithms perform

better than artifact based NR-IQA algorithms.

Table 3.7 shows that the high outlier ratio for some of the algorithms result from

the high outliers obtained for the JPEG and Fast-Fading distortion category.

Figures 3.2 and 3.3 show scatter plots between predicted scores and DMOS scores
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on ESPL Synthetic Image Database for a selected few IQA algorithms.

DMOS takes into account the preference of the subjects to certain source content

by subtracting out the score provided by her to the source image. For this reason, the

NR-IQA algorithms were also trained on the DMOS scores in the same way as [69][72][66].

On the other hand, the MOS scores do not take into account the score assigned by the

user to the reference image. A comparison between the performance of the NR-IQA

algorithms based on DMOS and MOS scores has also been provided in Tables 3.12 and

3.13. Comparison between Tables 6.9 and 6.9 shows the top-performing IQA algorithms

show similar behavior irrespective of whether MOS or DMOS values are used for training

them.

3.5.4 Determination of Statistical Significance

Results of statistical significance are summarized in Tables 6.5, 3.10 and 3.11.

For this purpose, ten representative IQA algorithms were selected. For the learning based

methods, the statistical significance tests were carried out for multiple training-test splits,

using 60 test images each time, and similar results were obtained. The tables outline the

results obtained for one such representative trial. For the F-Test based on quality scores

provided by individual human observers, the variance of the residuals obtained from

the null-model and the ten selected IQA algorithms, along with the number of samples

considered in each category and the threshold F-ratio at 95% significance are shown in

Table 3.10. None of the IQA algorithms tested was found to be statistically equivalent

to the null-model corresponding to human judgment in any of the distortion categories.

Similar conclusions were reached in [81]. GMSD shows the least variance of the residuals
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Figure 3.2: Predicted IQA scores vs. DMOS scatter plots for some selected full-reference
and reduced-reference IQA algorithms. The red line indicates the logistic regression fit.

(a) (b) (c)

(d) (e)
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Figure 3.3: Predicted IQA scores vs. DMOS scatter plots for some selected no-reference
IQA algorithms. The red line indicates the logistic regression fit.

(a) (b) (c)

(d) (e)
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for the overall database among the ten IQA algorithms.

For the F-test based on the DMOS scores, Table 3.11 outlines the variance of

the residuals obtained from the ten selected IQA algorithms, along with the number of

samples considered in each category, and the threshold F-ratio at 95% significance. For

some of the cases, it was found that the assumption of Gaussianity of the residuals did

not hold. However, we still believe that the F-test can be used in these cases due to the

large number of samples.

To determine whether the IQA algorithms are significantly different from each

other, the F-statistic, as in [7][81], was used to determine the statistical significance

between the variances of the residuals after a non-linear logistic mapping between the

two IQA algorithms, at the 95% confidence interval. Table 6.5 shows the results for ten

selected IQA algorithms and all distortions. Overall, the FR-IQA algorithms are found

to be statistically superior to the NR-IQA algorithms.

Figure 3.4: Box plot of SROCC of learning based NR-IQA algorithms on images in the
ESPL Synthetic Image Database for 4:1 train-test splits over 100 trials. For each box,
median is the central box, edges of the box represent the 25th and 75th percentiles, the
whiskers span the most extreme non-outlier data points, and the outliers are plotted
individually.
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3.5.5 Computational Complexity

Figure 3.5: Scatter plot of SROCC of FR and RR-IQA algorithms with images in the
ESPL Synthetic Image Database vs. runtime.

Fig. 3.5 shows the scatter plot of SROCC vs. execution time for the FR and

RR IQA algorithms considered in this paper and Fig. 3.6 shows the similar plot for NR-

IQA algorithms. All the IQA algorithms have been profiled using the original source

codes provided publicly by the respective authors. FR-IQA metrics like SR-SIM and

GMSD achieve a high degree of correlation with human perception and is computationally

less intensive. As expected, the learning based NR-IQA algorithms (like BRISQUE,

DESIQUE, C-DIIVINE, BLIINDS-II) achieve comparable performance results as the best

performing FR-IQA algorithms, but they are computationally more intensive because they

need to compute the image features and deploy them in a machine learning framework for

quality prediction. RRED shows intermediate performance between FR-IQA and NR-IQA

algorithms both in terms of correlation with human judgment and time complexity.
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Figure 3.6: Scatter plot of SROCC of NR-IQA algorithms with images in the ESPL
Synthetic Image Database vs. runtime.

3.6 Conclusion

We present the publicly available ESPL Synthetic Database comprising pristine

source images and images containing five different types of distortions, annotated by

26,000 quality scores from 52 subjects. We evaluate the performance of more than 50

state-of-the-art IQA algorithms.

For FR-IQA algorithms, we observe the importance of saliency based spatial pool-

ing strategies and strategies for evaluating the quality of the image, based on whether

the artifacts are subthreshold or suprathreshold. GMSD offers the best trade-off between

performance and run-time complexity. RR-IQA algorithms perform worse than FR-IQA

and NR-IQA algorithms. RRED is the best performing RR-IQA algorithm. For NR-IQA,

we see that the deviation in statistical regularity caused by distortions can be used to suc-

cessfully evaluate the quality of synthetic images also. Scene statistics based algorithms
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take a longer time to run. Algorithms such as GMSD, SR-SIM, GM-LOG, and DESIQUE

show high correlation with human perception and reasonable runtime. We find that for

synthetic images, interpolation distortion is the most challenging category for the IQA

algorithms, but the scene statistics based NR-IQA algorithms shows a better performance

for quantifying this artifact.

The chapter concluded the objective quality evaluation of synthetic images of the

ESPL Synthetic Image Database. The next chapter outlines FR-IQA algorithms for

objective quality evaluation of high dynamic range images.
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Table 3.1: List of Image Quality Assessment algorithms evaluated in this study.
Category of IQA Method Algorithm

Full Mean Square Peak Signal-to-Noise Ratio
Reference Error Metric based on Singular Value Decomposition (MSVD)[29]

Structural Similarity Structural Similarity Index (SSIM)[30]
based Multi-scale Structural Similarity Index (MS-SSIM)[31]

Quarternion Structural Similarity Index (QSSIM)[32]
Universal Quality Index (UQI)[33]

Human Visual System Visual Difference Predictor (VDP)[34]
model based High Dynamic Range VDP (HDR-VDP-2) [35]

Noise Quality Measure (NQM)[36]
Weighted Signal-to-Noise ratio (WSNR)[37]

Peak Signal-to-Noise ratio-Human Visual System (PHVS)[38]
Peak Signal-to-Noise ratio-Human Visual System-A (PHA)[39]

Peak Signal-to-Noise ratio-Human Visual System(modified) (PHVSM)[40]
Peak Signal-to-Noise ratio-Human Visual System(modified)-A (PHMA)[39]

Information Theory Information Fidelity Criterion (IFC)[41]
based Visual Information Fidelity (VIF)[42]

Information Content Weighted SSIM (IW-SSIM)[43]
Feature Similarity Feature Similarity Index (FSIM)[44]

based Gradient Magnitude Similarity Deviation (GMSD)[45]
Gradient Similarity Measure (GSM)[46]

Riesz-transform based Feature Similarity Metric (RFSIM)[47]
Visual Saliency Visual Saliency-Induced Index (VSI)[48]

based Spectral Residual Based Similarity (SR-SIM)[49]
Strategy Most Apparent Distortion algorithm (MAD)[11]

based Visual Signal-to-Noise ratio (VSNR)[50]

Reduced Natural Scene Statistics Reduced-Reference Image Quality Assessment (Wavelet Domain) (RRIQA)[51]
Reference based RRIQA with Divisive Normalization (RRDNT)[52]

Reduced-Reference Entropic Differences (RRED) [53]
Image Feature based RRIQA with Weibull Statistics[54]

RRIQA with Sub-Image Similarity[55]
RRIQA with Edge-Pattern map[56]

No- Artifact Blur Local Phase Coherence based sharpness index LPC-SI[57]
Reference based Metric based on Cumulative Probability of Blur Detection (CPBD)[58]

Metric based on Just-Noticeable Blur (JNBM)[59]
Spectral and Spatial Measure of Local Perceived Sharpness (S3)[60]

Fast Wavelet-Based Image Sharpness Estimation (FISH)[61]
Blocking NRIQA of JPEG compressed images (JPEG-NR)[62]

NRIQA of JPEG compressed images via Quality Relevance Map (NJQA)[63]
Noise Noise-level Estimation using weak textured patches (NLWT)[64]

Fast Noise Variance Estimation (FNVE)[65]
Learning Spatial Blind/Referenceless Image Spatial QUality Evaluator (BRISQUE)[66]

based Domain Natural Image Quality Evaluator (NIQE)[28]
Derivative Statistics-based QUality Evaluator (DESIQUE)[67]

Gradient-Image Quality Assessment (G-IQA-1 and G-IQA-2)(Proposed)
Gradient Magnitude and Laplacian of Gaussian based NR-IQA (GM-LOG)[68]

Transform Distortion Identification-based Image Verity and INtegrity Evaluation (DIIVINE)[69]
Domain Complex-DIIVINE (C-DIIVINE)[70]

Blind Image Quality Index (BIQI)[71]
BLind Image Integrity Notator using DCT Statistics-II (BLIINDS-II)[72]

General Regression Neural Network IQA (GRNN)[73]
NR-IQA based on Curvelets (CurveletQA)[74]
NR-IQA based on Anisotropy (Anisotropy)[75]

COdebook Representation for No-Reference Image Assessment (CORNIA)[76]
Topic Model based IQA (TM-IQA)[77]
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Table 3.2: Spearman’s Rank Ordered Correlation Coefficient (SROCC) and Pearson’s
Linear Correlation Coefficient (PLCC) between the algorithm scores and the DMOS for
various FR-IQA Algorithms along with algorithm computation time (on a Macintosh
laptop having 8 GB RAM, 2.9 GHz clock, Intel Core i7 CPU). PSNR is Peak Signal-
to-Noise Ratio. The table has been sorted in the descending order of SROCC for the
“Overall” category. The numbers within parentheses in the “Overall” category show the
confidence intervals on correlation values, computed by bootstrapping using 100 samples.
Bold values indicate the best performing algorithm for that category. SSIM-D computes
SSIM on images downsampled by a factor determined by image dimensions and viewing
distance[83]

IQA Interp. Blur Additive Noise JPEG Blocking Fast Fading Overall (Confidence Interval) Time

SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC (seconds)

1 GMSD 0.727 0.743 0.827 0.838 0.923 0.925 0.918 0.954 0.922 0.915 0.892 (0.877,0.905) 0.890 ( 0.871, 0.905) 0.014
2 SR-SIM 0.752 0.772 0.823 0.729 0.916 0.878 0.925 0.832 0.920 0.913 0.880 ( 0.853, 0.902) 0.873 ( 0.834, 0.891) 0.042
3 FSIMc 0.694 0.697 0.802 0.808 0.902 0.917 0.938 0.874 0.911 0.907 0.877 ( 0.855, 0.896) 0.874 ( 0.850, 0.891) 0.133
4 FSIM 0.692 0.697 0.801 0.809 0.902 0.917 0.940 0.965 0.907 0.902 0.876 ( 0.857, 0.898) 0.872 ( 0.854, 0.892) 0.165
5 VSI 0.692 0.663 0.811 0.814 0.914 0.883 0.880 0.844 0.923 0.917 0.872 ( 0.856, 0.897) 0.873 ( 0.855, 0.889) 0.114
6 MAD 0.788 0.806 0.813 0.815 0.909 0.915 0.933 0.950 0.927 0.917 0.863 ( 0.834, 0.880) 0.869 ( 0.846, 0.889) 1.257
7 PHA 0.716 0.717 0.781 0.772 0.842 0.883 0.898 0.927 0.905 0.900 0.863 ( 0.844, 0.884) 0.861 ( 0.840, 0.879) 0.458
8 PHMA 0.737 0.755 0.823 0.822 0.852 0.889 0.924 0.953 0.911 0.904 0.853 ( 0.822, 0.878) 0.859 ( 0.837, 0.881) 0.234
9 PHVS 0.717 0.718 0.778 0.771 0.876 0.885 0.896 0.926 0.903 0.897 0.853 ( 0.832, 0.874) 0.846 ( 0.822, 0.863) 0.195

10 GSM 0.676 0.630 0.780 0.655 0.919 0.927 0.903 0.881 0.921 0.678 0.839 ( 0.811, 0.866) 0.627 ( 0.584, 0.697) 0.054
11 PHVSM 0.736 0.748 0.839 0.840 0.854 0.874 0.925 0.954 0.905 0.902 0.833 ( 0.808, 0.857) 0.838 ( 0.813, 0.862) 0.207
12 IW-SSIM 0.761 0.793 0.823 0.836 0.902 0.921 0.933 0.959 0.925 0.922 0.827 ( 0.796, 0.849) 0.831 ( 0.790, 0.847) 0.663
13 RFSIM 0.706 0.717 0.763 0.766 0.906 0.912 0.907 0.930 0.891 0.886 0.825 ( 0.794, 0.846) 0.826 ( 0.796, 0.850) 0.218
14 SSIM-D 0.688 0.681 0.772 0.777 0.915 0.922 0.904 0.943 0.914 0.906 0.796 ( 0.758, 0.823) 0.801 ( 0.775, 0.833) 0.052
15 IFC 0.728 0.722 0.792 0.789 0.837 0.845 0.913 0.922 0.850 0.858 0.791 ( 0.757, 0.829) 0.786 ( 0.742, 0.814) 1.199
16 NQM 0.751 0.767 0.831 0.837 0.879 0.893 0.919 0.936 0.859 0.854 0.789 ( 0.760, 0.818) 0.796 ( 0.761, 0.822) 0.107
17 QSSIM 0.697 0.693 0.774 0.647 0.913 0.925 0.905 0.940 0.918 0.915 0.786 ( 0.758, 0.815) 0.793 ( 0.753, 0.812) 0.104
18 UQI 0.707 0.704 0.780 0.678 0.816 0.824 0.869 0.889 0.848 0.848 0.767 ( 0.718, 0.791) 0.776 ( 0.748, 0.818) 0.040
19 CIELAB 0.575 0.572 0.623 0.627 0.840 0.870 0.910 0.925 0.875 0.878 0.758 ( 0.716, 0.795) 0.772 ( 0.736, 0.812) 0.116
20 VIF 0.716 0.737 0.788 0.802 0.874 0.903 0.901 0.925 0.761 0.778 0.755 ( 0.710, 0.799) 0.748 ( 0.705, 0.782) 6.337
21 WSNR 0.627 0.638 0.773 0.777 0.821 0.825 0.886 0.911 0.839 0.845 0.744 ( 0.705, 0.780) 0.745 ( 0.700, 0.775) 0.048
22 HDR-VDP 0.662 0.699 0.766 0.795 0.854 0.861 0.791 0.790 0.856 0.863 0.712 ( 0.666, 0.753) 0.738 ( 0.698, 0.768) 2.245
23 MS-SSIM 0.623 0.635 0.646 0.650 0.908 0.924 0.871 0.891 0.903 0.900 0.699 ( 0.660, 0.742) 0.712 ( 0.678, 0.764) 0.276
24 VIFP 0.651 0.661 0.624 0.623 0.895 0.912 0.878 0.887 0.791 0.802 0.693 ( 0.655, 0.729) 0.695 ( 0.655, 0.730) 0.244
25 VSNR 0.607 0.619 0.611 0.600 0.848 0.889 0.756 0.771 0.884 0.882 0.690 ( 0.639, 0.734) 0.696 ( 0.652, 0.741) 0.237
26 PSNR 0.565 0.591 0.481 0.492 0.864 0.897 0.695 0.702 0.846 0.858 0.590 ( 0.529, 0.632) 0.603 ( 0.556, 0.645) 0.149
27 SSIM 0.463 0.476 0.440 0.455 0.909 0.927 0.633 0.653 0.797 0.815 0.542 ( 0.482, 0.590) 0.531 ( 0.481, 0.592) 0.570
28 MSVD 0.165 0.160 0.403 0.397 0.415 0.423 0.652 0.630 0.363 0.400 0.261 ( 0.176, 0.341) 0.253 ( 0.167, 0.321) 2.272
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Table 3.3: Root-mean-square error (RMSE), reduced χ̃2 statistic between the algorithm
scores and the DMOS for various FR-IQA Algorithms (after logistic function fitting)
and outlier ratio (expressed in percentage) for each distortion category. The bold values
indicate the best performing algorithm for that category.

IQA Interp. Blur Additive Noise JPEG Blocking Fast Fading Overall

RMSE χ̃2 OR RMSE χ̃2 OR RMSE χ̃2 OR RMSE χ̃2 OR RMSE χ̃2 OR RMSE χ̃2 OR

1 GMSD 5.675 3.202 0.0 6.400 0.632 0.0 4.789 1.746 0.0 8.756 4.411 0.0 12.355 2.632 1.0 10.689 2.065 0.0
2 SR-SIM 6.935 1.230 0.0 7.065 2.159 1.0 4.641 1.048 0.0 7.463 0.801 2.0 12.549 3.105 14.0 10.808 3.539 7.6
3 FSIMc 7.308 2.886 0.0 6.856 0.768 0.0 5.301 1.376 0.0 8.093 1.461 0.0 8.166 2.626 6.0 9.182 3.043 4.2
4 FSIM 6.876 2.964 0.0 5.885 1.094 0.0 5.835 1.782 0.0 7.285 1.559 0.0 9.382 2.195 5.0 9.373 2.265 4.6
5 VSI 5.441 0.860 1.0 5.128 1.141 0.0 3.904 2.757 0.0 6.999 0.657 0.0 9.227 1.883 13.0 7.725 1.014 5.6
6 MAD 6.225 1.682 0.0 6.012 1.492 0.0 4.113 1.020 0.0 7.264 0.509 0.0 8.122 2.979 0.0 8.145 6.005 0.4
7 PHA 6.261 1.164 0.0 5.950 2.803 1.0 4.665 4.098 0.0 5.960 0.281 0.0 7.589 2.138 1.0 7.483 2.957 0.4
8 PHMA 5.981 2.862 0.0 5.069 1.439 0.0 5.016 3.620 0.0 4.756 1.733 0.0 7.481 2.077 0.0 8.111 3.507 1.0
9 PHVS 5.298 1.164 0.0 5.594 3.014 1.0 4.143 2.923 0.0 5.521 0.621 0.0 6.918 0.829 0.0 6.886 2.016 0.6

10 GSM 6.402 1.127 0.0 5.506 2.548 1.0 4.000 2.546 0.0 7.670 0.405 0.0 10.626 2.612 17.0 9.214 1.534 7.6
11 PHVSM 6.157 2.863 0.0 5.094 1.431 0.0 3.791 3.704 0.0 4.740 1.576 0.0 7.087 1.669 1.0 6.335 3.284 0.4
12 IW-SSIM 6.402 4.254 0.0 5.491 1.511 0.0 3.989 1.383 0.0 7.721 1.821 1.0 10.765 3.006 3.0 9.283 2.109 1.0
13 RFSIM 8.607 1.263 0.0 5.424 1.340 0.0 4.704 0.893 0.0 8.455 0.601 1.0 11.731 4.082 0.0 10.437 2.434 2.6
14 SSIM-D 7.213 2.718 0.0 8.213 1.025 0.0 4.462 1.403 0.0 11.477 1.486 3.0 8.847 1.946 4.0 11.171 4.429 7.6
15 IFC 6.344 1.422 2.0 6.866 1.314 0.0 6.206 0.638 0.0 9.522 0.608 0.0 9.612 1.632 3.0 8.818 1.729 6.8
16 NQM 7.409 1.118 0.0 7.021 1.040 0.0 5.375 3.101 0.0 6.946 1.146 0.0 8.859 1.064 0.0 10.415 1.934 2.4
17 QSSIM 8.813 3.107 0.0 8.578 3.258 0.0 9.142 0.694 0.0 12.267 0.665 0.0 16.062 2.783 1.0 13.426 5.622 5.4
18 UQI 6.697 1.550 0.0 7.307 1.928 1.0 4.150 0.318 0.0 7.883 1.379 7.0 10.196 1.177 3.0 10.017 3.893 2.6
19 CIELAB 6.447 0.234 0.0 5.872 1.052 0.0 5.362 4.063 0.0 9.675 0.590 0.0 8.779 0.651 1.0 9.357 2.711 3.0
20 VIF 7.038 1.417 0.0 7.497 1.560 0.0 5.123 4.230 0.0 10.647 1.648 0.0 8.230 2.038 7.0 10.015 6.305 4.2
21 WSNR 5.742 1.580 1.0 5.200 0.095 0.0 4.660 0.910 1.0 6.363 1.019 1.0 9.028 0.974 4.0 8.567 1.058 4.8
22 HDR-VDP 5.980 1.766 0.0 5.322 1.515 0.0 4.846 0.493 0.0 4.785 1.263 5.0 7.316 1.598 3.0 7.370 0.667 4.6
23 MS-SSIM 6.535 3.464 0.0 5.880 1.601 0.0 4.503 0.417 0.0 8.727 2.223 0.0 10.012 2.142 5.0 10.247 6.758 8.4
24 VIFP 6.093 2.373 0.0 5.693 1.058 1.0 4.448 3.016 0.0 6.001 2.211 1.0 10.858 1.500 9.0 9.209 2.751 5.4
25 VSNR 6.899 0.544 1.0 7.103 0.201 1.0 4.072 0.267 0.0 7.201 0.392 6.0 9.955 2.400 1.0 11.006 4.417 6.8
26 PSNR 6.681 1.753 0.0 6.822 2.059 1.0 5.591 6.533 0.0 9.249 1.316 8.0 13.111 2.197 1.0 12.697 1.682 9.2
27 SSIM 7.325 1.278 2.0 7.278 1.727 0.0 5.005 1.156 0.0 6.006 0.237 11.0 8.183 2.069 6.0 8.818 1.167 11.2
28 MSVD 6.260 1.880 2.0 5.934 0.603 1.0 4.697 2.038 2.0 5.936 2.877 17.0 7.554 0.880 27.0 7.168 3.128 16.8

Table 3.4: Spearman’s Rank Ordered Correlation Coefficient (SROCC) and Pearson’s
Linear Correlation Coefficient (PLCC) between the algorithm scores and the DMOS for
various RR-IQA Algorithms along with algorithm computation time (on a Macintosh
laptop having 8 GB RAM, 2.9 GHz clock, Intel Core i7 CPU). PSNR is Peak Signal-
to-Noise Ratio. The table has been sorted in the descending order of SROCC for the
“Overall” category. The numbers within parentheses in the “Overall” category show the
confidence intervals on correlation values, computed by bootstrapping using 100 samples.
Bold values indicate the best performing algorithm for that category.

IQA Interp. Blur Additive Noise JPEG Blocking Fast Fading Overall (Confidence Interval) Time

SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC (seconds)

1 RRED 0.691 0.694 0.813 0.815 0.908 0.923 0.878 0.892 0.798 0.802 0.658 (0.593,0.702) 0.666 ( 0.611, 0.706) 5.380
2 RRSIS 0.381 0.471 0.772 0.805 0.888 0.900 0.938 0.955 0.838 0.853 0.624 ( 0.537, 0.676) 0.635 ( 0.584, 0.686) 3.290
3 RRDNT 0.478 0.508 0.643 0.657 0.918 0.928 0.703 0.745 0.657 0.677 0.394 ( 0.311, 0.488) 0.406 ( 0.335, 0.487) 15.100
4 RREdge 0.424 0.489 0.578 0.589 0.842 0.871 0.747 0.809 0.690 0.707 0.351 ( 0.261, 0.420) 0.359 ( 0.297, 0.421) 2.290
5 RRIQA 0.206 0.243 0.613 0.628 0.822 0.840 0.621 0.686 0.669 0.738 0.349 ( 0.264, 0.429) 0.348 ( 0.268, 0.416) 5.920
6 RRWeibull 0.401 0.302 0.789 0.793 0.918 0.919 0.860 0.869 0.844 0.842 0.299 ( 0.203, 0.385) 0.400 ( 0.337, 0.463) 7.100
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Table 3.5: Root-mean-square error (RMSE), reduced χ̃2 statistic between the algorithm
scores and the DMOS for various RR-IQA Algorithms (after logistic function fitting)
and outlier ratio (expressed in percentage) for each distortion category. The bold values
indicate the best performing algorithm for that category.

IQA Interp. Blur Additive Noise JPEG Blocking Fast Fading Overall

RMSE χ̃2 OR RMSE χ̃2 OR RMSE χ̃2 OR RMSE χ̃2 OR RMSE χ̃2 OR RMSE χ̃2 OR

1 RRED 6.490 3.579 0.0 5.486 2.816 0.0 4.061 0.611 0.0 7.173 0.670 0.0 9.885 1.553 6.8 10.264 6.322 6.1
2 RRSIS 7.887 1.069 0.0 5.818 1.742 0.0 5.206 2.342 0.0 4.798 0.883 0.0 8.645 2.373 3.4 10.621 2.606 7.7
3 RRDNT 7.823 0.762 0.0 7.057 0.559 0.0 3.854 1.045 0.0 11.184 2.179 8.0 12.578 1.201 12.5 12.566 1.826 14.3
4 RREdge 7.876 0.860 0.0 7.593 2.045 0.0 5.026 0.464 0.0 9.873 1.885 5.0 12.713 2.972 9.0 12.952 2.503 17.0
5 RRIQA 8.772 0.428 2.3 7.288 1.655 0.0 5.768 1.361 0.0 12.226 2.473 14.8 11.951 2.017 11.4 12.894 1.390 16.1
6 RRWeibull 8.544 0.200 0.0 6.049 0.869 0.0 4.350 4.098 0.0 11.321 1.330 10.2 8.933 0.967 2.3 12.650 4.955 15.5
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Table 3.6: Median Spearman’s Rank Ordered Correlation Coefficient (SROCC) and Pear-
son’s Linear Correlation Coefficient (PLCC) between algorithm scores and DMOS for var-
ious NR-IQA algorithms (described in Section 3.3.3) along with algorithm computation
time needed (on a Macintosh laptop having 8 GB RAM, 2.9 GHz clock, Intel Core i7
CPU) across 100 train-test (4:1) combinations on the ESPL Synthetic Image Database
(50 trials for CORNIA in row 2). Italicized entries are NR-IQA algorithms meant for
particular distortion categories. Italicized algorithms indicate the values obtained when
the mentioned NR-IQA algorithms were applied for distortion categories other than what
they were originally intended for. For these algorithms, the correlation values quoted in
the “Overall” category is same as the correlations in the distortion category for which
the algorithm was originally meant for. The numbers within parentheses in the “Overall”
category show the confidence intervals on correlation values, obtained by considering the
maximum and minimum values of the correlations obtained over a 100 trials. The table
has been sorted in the descending order of SROCC for the “Overall” category. Bold values
indicate the best performing algorithm for that category.

IQA Interp. Blur GN JPEG FF Overall (Confidence Interval) Time

SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC (s)

1 G-IQA-1 (L) 0.605 0.646 0.612 0.640 0.858 0.904 0.901 0.927 0.774 0.833 0.813 ( 0.562, 0.918) 0.819( 0.626, 0.911) 2.134
2 CORNIA 0.808 0.823 0.775 0.801 0.793 0.821 0.898 0.918 0.706 0.763 0.810 ( 0.687, 0.875) 0.807( 0.682, 0.880) 84.330
3 C-DIIVINE 0.702 0.760 0.730 0.769 0.847 0.896 0.841 0.879 0.738 0.802 0.798 ( 0.691, 0.916) 0.808( 0.712, 0.912) 65.720
4 BRISQUE 0.631 0.643 0.720 0.782 0.840 0.902 0.898 0.935 0.717 0.740 0.789 ( 0.663, 0.897) 0.795( 0.690, 0.895) 0.590
5 GM-LOG 0.680 0.711 0.653 0.694 0.853 0.906 0.912 0.944 0.701 0.746 0.787 ( 0.627, 0.893) 0.791( 0.594, 0.892) 0.590
6 G-IQA-1 0.580 0.647 0.474 0.508 0.871 0.920 0.922 0.942 0.726 0.758 0.774 ( 0.552, 0.893) 0.786( 0.569, 0.887) 4.641
7 DESIQUE 0.595 0.678 0.590 0.617 0.886 0.922 0.934 0.955 0.714 0.737 0.773 ( 0.570, 0.909) 0.781( 0.588, 0.901) 2.250
8 G-IQA-2 0.510 0.584 0.565 0.576 0.857 0.906 0.865 0.879 0.728 0.762 0.743 ( 0.387, 0.888) 0.744( 0.406, 0.877) 42.693
9 CurveletQA 0.658 0.695 0.695 0.753 0.880 0.916 0.854 0.880 0.553 0.595 0.731 ( 0.460, 0.872) 0.734( 0.490, 0.863) 20.130

10 G-IQA-2 (L) 0.509 0.563 0.488 0.529 0.859 0.906 0.874 0.909 0.668 0.729 0.689 ( 0.489, 0.876) 0.714( 0.538, 0.881) 14.893
11 BIQI 0.665 0.733 0.732 0.764 0.837 0.903 0.735 0.769 0.538 0.593 0.676 ( 0.338, 0.849) 0.676( 0.414, 0.858) 0.330
12 GRNN 0.537 0.592 0.371 0.409 0.811 0.896 0.738 0.790 0.408 0.551 0.602 ( 0.422, 0.777) 0.643( 0.422, 0.802) 2.480
13 BLIINDS-II 0.388 0.444 0.499 0.556 0.794 0.839 0.680 0.754 0.548 0.608 0.596 ( 0.333, 0.834) 0.622( 0.382, 0.835) 81.790
14 Anisotropy 0.364 0.354 0.357 0.400 0.835 0.871 0.385 0.449 0.392 0.439 0.470 ( 0.379, 0.513) 0.431( 0.391, 0.483) 10.780
15 NIQE 0.428 0.496 0.425 0.528 0.740 0.511 0.732 0.834 0.606 0.623 0.377 ( 0.144, 0.600) 0.395( 0.181, 0.601) 3.240
16 DIIVINE 0.421 0.523 0.441 0.490 0.484 0.537 0.444 0.489 0.439 0.513 0.372 ( 0.080, 0.700) 0.404( 0.121, 0.705) 118.040
17 TMIQA 0.367 0.376 0.437 0.353 0.741 0.681 0.159 0.227 0.411 0.469 0.220 ( 0.097, 0.300) 0.311( 0.223, 0.387) 0.120

18 LPCM 0.415 0.444 0.836 0.847 0.623 0.621 0.211 0.231 0.108 0.237 0.836( 0.791, 0.890) 0.847( 0.792, 0.885) 11.570
19 CPBDM 0.676 0.720 0.757 0.766 0.746 0.815 0.765 0.749 0.347 0.405 0.757 ( 0.678, 0.808) 0.766( 0.669, 0.830) 3.500
20 FISH 0.222 0.305 0.705 0.716 0.823 0.870 0.196 0.252 0.432 0.472 0.705 ( 0.548, 0.787) 0.716( 0.631, 0.793) 0.250
21 S3 0.409 0.449 0.700 0.756 0.747 0.786 0.151 0.189 0.402 0.450 0.700 ( 0.554, 0.792) 0.756( 0.692, 0.818) 308.150
22 JNBM 0.598 0.635 0.506 0.528 0.756 0.816 0.536 0.512 0.448 0.455 0.506 ( 0.327, 0.627) 0.528( 0.336, 0.676) 7.520
23 NLWT 0.324 0.334 0.024 0.141 0.872 0.888 0.000 0.187 0.559 0.589 0.872( 0.821, 0.905) 0.888( 0.847, 0.928) 10.410
24 FNVE 0.320 0.332 0.463 0.553 0.863 0.887 0.517 0.543 0.461 0.459 0.863 ( 0.817, 0.894) 0.887( 0.838, 0.915) 0.030
25 JPEG-NR 0.540 0.570 0.593 0.650 0.748 0.865 0.928 0.954 0.464 0.607 0.928( 0.878, 0.952) 0.954( 0.940, 0.969) 0.110
26 NJQA 0.373 0.406 0.333 0.367 0.878 0.808 0.743 0.819 0.420 0.437 0.743 ( 0.649, 0.854) 0.819( 0.732, 0.869) 192.590
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Table 3.7: Root-mean-square error (RMSE), reduced χ̃2 statistic between the algorithm
scores and the DMOS for various NR-IQA Algorithms (after logistic function fitting)
and outlier ratio (expressed in percentage) for each distortion category. The bold values
indicate the best performing algorithm for that category.

IQA Interp. Blur Additive Noise JPEG Blocking Fast Fading Overall

RMSE χ̃2 OR RMSE χ̃2 OR RMSE χ̃2 OR RMSE χ̃2 OR RMSE χ̃2 OR RMSE χ̃2 OR

1 G-IQA-1 (L) 6.981 0.006 0.000 8.326 0.665 0.000 4.690 3.608 0.000 14.908 0.172 20.000 13.615 0.202 17.500 9.209 4.099 3.000
2 CORNIA 0.112 0.057 0.000 0.131 0.719 0.000 0.136 0.051 0.000 0.151 0.662 0.000 0.262 0.445 0.000 0.190 8.032 0.000
3 C-DIIVINE 5.897 0.084 0.000 8.290 0.306 0.000 5.067 0.131 0.000 14.858 0.429 20.000 14.269 0.019 20.000 9.631 4.586 4.000
4 BRISQUE 6.747 0.007 0.000 6.804 0.017 0.000 5.087 1.105 0.000 15.202 0.005 25.000 14.214 0.017 20.000 9.231 2.427 4.000
5 GM-LOG 6.182 0.000 0.000 7.858 0.166 0.000 4.856 2.231 0.000 14.953 0.006 20.000 14.846 0.009 20.000 9.579 1.390 5.000
6 G-IQA-1 6.803 0.124 0.000 8.256 0.076 0.000 4.720 0.689 0.000 14.985 0.012 25.000 13.532 0.030 10.000 9.933 10.419 6.000
7 DESIQUE 6.799 0.107 0.000 7.993 0.025 0.000 4.527 3.408 0.000 15.207 0.010 25.000 14.205 0.462 20.000 9.799 1.119 5.000
8 G-IQA-2 7.287 0.201 0.000 8.207 0.009 0.000 4.956 0.401 0.000 15.200 0.003 25.000 13.386 1.144 15.000 10.870 2.906 8.500
9 CurveletQA 6.535 0.215 0.000 7.136 0.069 0.000 4.735 0.466 0.000 15.152 0.004 25.000 15.279 0.434 25.000 11.272 6.938 9.000

10 G-IQA-2 (L) 7.480 0.155 0.000 8.250 0.280 0.000 4.912 5.519 0.000 15.204 0.002 25.000 14.095 0.923 20.000 10.836 14.526 8.000
11 BIQI 6.177 0.520 0.000 8.216 0.970 0.000 4.915 0.002 0.000 14.838 0.143 20.000 14.514 0.893 25.000 10.741 3.509 9.000
12 GRNN 6.725 0.296 0.000 8.318 1.415 0.000 5.089 0.778 0.000 15.065 0.004 25.000 15.193 0.772 20.000 11.336 4.263 9.500
13 BLIINDS-II 7.546 0.884 0.000 7.884 0.686 0.000 5.826 0.000 0.000 15.312 0.002 25.000 14.689 0.009 20.000 11.060 6.710 9.000
14 Anisotropy 8.496 0.406 0.000 9.113 0.934 1.000 2.956 2.626 1.000 9.561 1.618 16.000 14.354 1.308 27.000 10.846 3.328 12.800
15 NIQE 7.683 0.030 0.000 8.095 0.234 0.000 8.582 0.346 0.000 10.994 0.002 5.000 12.394 1.493 10.000 12.490 2.538 14.000
16 DIIVINE 7.682 0.000 0.000 8.133 0.028 0.000 8.172 0.126 0.000 14.874 0.004 20.000 14.724 0.172 25.000 12.632 5.402 14.000
17 TMIQA 14.342 1.373 1.000 10.219 0.478 2.000 5.275 2.338 0.000 6.478 4.082 27.000 10.586 1.102 22.000 13.245 2.466 15.200

18 LPCM - - - 4.968 1.019 0.000 - - - - - - - - - 4.968 1.019 0.000
19 CPBDM - - - 6.485 0.440 0.000 - - - - - - - - - 6.485 0.440 0.000
20 FISH - - - 6.603 0.324 0.000 - - - - - - - - - 6.603 0.324 0.000
21 S3 - - - 6.339 0.162 0.000 - - - - - - - - - 6.339 0.162 0.000
22 JNBM - - - 7.952 0.360 1.000 - - - - - - - - - 7.952 0.360 1.000
23 NLWT - - - - - - 4.611 3.620 0.000 - - - - - - 4.611 3.620 0.000
24 FNVE - - - - - - 4.626 6.129 0.000 - - - - - - 4.626 6.129 0.000
25 JPEG-NR - - - - - - - - - 6.949 1.088 0.000 - - - 6.949 1.088 0.000
26 NJQA - - - - - - - - - 9.279 1.453 8.000 - - - 9.279 1.453 8.000

Table 3.8: Mean classification accuracy (in percentage) for various NR-IQA algorithms
(described in Section 3.3.3) across 100 train-test (4:1) combinations on the ESPL Synthetic
Image Database.

IQA Alias Blur GN JPEG FF All

GM-LOG 99.8 96.2 100.0 96.8 92.5 97.1
C-DIIVINE 91.7 95.3 100.0 95.5 93.3 95.2
BRISQUE 90.3 95.6 100.0 92.8 87.2 93.2
DESIQUE 90.7 87.3 100.0 89.1 85.3 90.5

BIQI 89.3 87.9 94.0 92.4 83.0 89.3
G-IQA-1 78.5 83.4 100.0 90.2 87.7 88.0

BLIINDS-II 86.2 84.6 100.0 81.1 81.8 86.7
CurveletQA 87.0 87.0 100.0 81.2 69.5 84.9

DIIVINE 21.8 74.7 80.8 45.1 51.7 54.8
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Table 3.9: Results of the F-test performed on the residuals between model predictions
and DMOS scores.. Each cell in the table is a codeword consisting of 5 symbols that cor-
respond to “Interpolation”’, “Blur”, “Gaussian Noise”, “JPEG Blocking”, “Fast Fading”
and “Overall” distortions. “1”(“0”) indicates that the performance of the row IQA is
superior(inferior) to that of the column IQA. - indicates that the statistical performance
of the row IQA is equivalent to that of the column IQA. The matrix is symmetric.

GMSD FSIM MS-SSIM PSNR RRED G-IQA-1 CORNIA BRISQUE DESIQUE DIIVINE

GMSD - - - - - - - - - - 1 1 - - - - - 1 - - - 1 1 1 - - - 1 1 1 - - 1 1 1 1 - - 1 1 1 1 - - 1 1 1 1 - - 1 1 1 1 - - 1 1 1 1

FSIM - - - - 0 0 - - - - - - - - - - - - - - - - - - - - - - - - - - 1 1 1 1 - - 1 1 1 1 - - 1 1 1 1 - - 1 1 1 1 - - 1 1 1 1

MS-SSIM - - - - - 0 - - - - - - - - - - - - - - - - - - - - - - - - - - 1 1 1 1 - - 1 1 1 1 - - 1 1 1 1 - - 1 1 1 1 - - 1 1 1 1

PSNR - - - 0 0 0 - - - - - - - - - - - - - - - - - - - - 0 - - - - - 1 - 1 - - - 1 - 1 - - - 1 - 1 - - - 1 - 1 - - - 1 - 1 -

RRED - - - 0 0 0 - - - - - - - - - - - - - - 1 - - - - - - - - - - - 1 - 1 1 - - 1 - 1 1 - - 1 - 1 1 - - 1 - 1 1 - - 1 - 1 1

G-IQA-1 - - 0 0 0 0 - - 0 0 0 0 - - 0 0 0 0 - - 0 - 0 - - - 0 - 0 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

CORNIA - - 0 0 0 0 - - 0 0 0 0 - - 0 0 0 0 - - 0 - 0 - - - 0 - 0 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

BRISQUE - - 0 0 0 0 - - 0 0 0 0 - - 0 0 0 0 - - 0 - 0 - - - 0 - 0 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

DESIQUE - - 0 0 0 0 - - 0 0 0 0 - - 0 0 0 0 - - 0 - 0 - - - 0 - 0 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

DIIVINE - - 0 0 0 0 - - 0 0 0 0 - - 0 0 0 0 - - 0 - 0 - - - 0 - 0 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Table 3.10: Variance of the residuals between individual subjective scores and IQA algo-
rithm predictions. Boldfaces indicate the lowest variance of the model residual for that
distortion category. Residuals were found to be normally distributed for all the cases.

IQA Interp. Blur GN JPEG FF All

Samples 624 624 624 624 624 3120

F-ratio 1.14 1.14 1.14 1.14 1.14 1.06

GMSD 134.61 168.49 118.82 143.03 119.41 151.12

FSIM 144.37 176.06 115.92 173.38 168.64 196.02

MS-SSIM 132.91 166.71 111.32 184.97 129.48 199.03

PSNR 161.85 183.06 126.82 251.87 152.79 236.90

RRED 139.04 146.70 107.66 214.15 171.08 192.69

G-IQA-1 164.04 195.01 224.36 354.90 422.75 304.58

CORNIA 162.34 194.80 223.70 346.17 426.44 305.56

BRISQUE 163.71 194.91 224.80 347.69 423.59 306.30

DESIQUE 163.20 195.69 224.72 348.85 423.89 305.32

DIIVINE 163.90 196.38 228.08 354.78 426.64 311.40

Null Model 105.23 110.70 101.30 122.82 112.08 110.28
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Table 3.11: Variance of the residuals between DMOS values and IQA algorithm predic-
tions. Boldfaces indicate the lowest variance of the model residual for that distortion
category. Residuals were found to be normally distributed 80% of the cases.

IQA Interp. Blur GN JPEG FF All

Damples 12 12 12 12 12 60

F-ratio 2.82 2.82 2.82 2.82 2.82 1.54

GMSD 32.01 62.95 19.08 22.01 7.98 41.52

FSIM 42.63 71.18 15.92 55.07 61.60 87.16

MS-SSIM 30.15 61.01 10.91 67.69 18.95 90.22

PSNR 61.67 78.81 27.79 140.56 44.34 128.73

RRED 36.83 39.21 6.93 99.48 64.25 83.77

G-IQA-1 64.06 91.82 134.03 252.77 338.37 197.52

CORNIA 62.21 91.60 133.31 243.27 342.38 198.52

BRISQUE 63.70 91.72 134.51 244.92 339.27 199.27

DESIQUE 63.14 92.57 134.42 246.18 339.61 198.28

DIIVINE 63.90 93.32 138.08 252.64 342.61 204.46
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Table 3.12: Median Spearman’s Rank Ordered Correlation Coefficient (SROCC) and
Pearson’s Linear Correlation Coefficient (PLCC) between algorithm scores and MOS for
various NR-IQA algorithms along with algorithm computation time needed (on a Macin-
tosh laptop having 8 GB RAM, 2.9 GHz clock, Intel Core i7 CPU) across 100 train-test
(4:1) combinations on the ESPL Synthetic Image Database (50 trials for CORNIA in row
2). Italicized entries are NR-IQA algorithms meant for particular distortion categories.
Italicized algorithms indicate the values obtained when the mentioned NR-IQA algorithms
were applied for distortion categories other than what they were originally intended for.
For these algorithms, the correlation values quoted in the “Overall” category is same as
the correlations in the distortion category for which the algorithm was originally meant
for. The numbers within parentheses in the “Overall” category show the confidence inter-
vals on correlation values, obtained by considering the maximum and minimum values of
the correlations obtained over a 100 trials. The table has been sorted in the descending
order of SROCC for the “Overall” category. Bold values indicate the best performing
algorithm for that category.

IQA Interp. Blur GN JPEG FF Overall (Confidence Interval) Time

SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC (s)

1 CORNIA 0.892 0.902 0.877 0.889 0.912 0.947 0.928 0.951 0.771 0.817 0.868 ( 0.826, 0.931) 0.867( 0.817, 0.919) 84.330
2 GM-LOG 0.817 0.832 0.702 0.756 0.929 0.969 0.931 0.953 0.770 0.807 0.855 ( 0.730, 0.916) 0.853( 0.715, 0.914) 0.590
3 G-IQA-1 (L) 0.691 0.777 0.638 0.679 0.948 0.975 0.938 0.956 0.814 0.846 0.831 ( 0.554, 0.951) 0.844( 0.603, 0.947) 2.134
4 BRISQUE 0.659 0.681 0.797 0.814 0.914 0.962 0.925 0.945 0.738 0.793 0.830 ( 0.691, 0.944) 0.833( 0.692, 0.938) 0.590
5 C-DIIVINE 0.747 0.800 0.734 0.779 0.932 0.969 0.893 0.912 0.762 0.805 0.830 ( 0.697, 0.925) 0.838( 0.701, 0.936) 65.720
6 G-IQA-1 0.635 0.721 0.571 0.612 0.938 0.970 0.944 0.957 0.786 0.837 0.829 ( 0.664, 0.906) 0.831( 0.702, 0.914) 4.641
7 DESIQUE 0.707 0.744 0.660 0.696 0.952 0.976 0.945 0.962 0.735 0.769 0.803 ( 0.472, 0.935) 0.816( 0.473, 0.933) 2.250
8 CurveletQA 0.759 0.784 0.704 0.753 0.905 0.960 0.911 0.927 0.602 0.663 0.795 ( 0.606, 0.877) 0.794( 0.620, 0.877) 20.130
9 G-IQA-2 0.571 0.627 0.565 0.600 0.928 0.965 0.902 0.913 0.726 0.760 0.760 ( 0.580, 0.907) 0.767( 0.586, 0.911) 42.693

10 G-IQA-2 (L) 0.483 0.536 0.563 0.586 0.926 0.963 0.911 0.926 0.738 0.805 0.737 ( 0.396, 0.902) 0.757( 0.441, 0.897) 14.893
11 BIQI 0.703 0.804 0.819 0.841 0.880 0.935 0.739 0.765 0.504 0.576 0.700 ( 0.539, 0.823) 0.692( 0.531, 0.808) 0.330
12 BLIINDS-II 0.553 0.552 0.580 0.611 0.862 0.920 0.802 0.862 0.683 0.740 0.688 ( 0.483, 0.872) 0.701( 0.479, 0.860) 81.790
13 GRNN 0.468 0.457 0.246 0.336 0.823 0.940 0.745 0.800 0.489 0.594 0.615 ( 0.461, 0.765) 0.633( 0.485, 0.790) 2.480
14 Anisotropy 0.392 0.433 0.363 0.360 0.893 0.921 0.469 0.505 0.476 0.506 0.532 ( 0.468, 0.585) 0.481( 0.409, 0.514) 10.780
15 NIQE 0.347 0.446 0.453 0.492 0.773 0.522 0.741 0.848 0.644 0.661 0.406 ( 0.193, 0.629) 0.443( 0.253, 0.647) 3.240
16 DIIVINE 0.435 0.476 0.462 0.518 0.526 0.567 0.503 0.540 0.459 0.541 0.385 ( 0.127, 0.723) 0.460( 0.203, 0.718) 118.040
17 TMIQA 0.308 0.307 0.492 0.518 0.772 0.815 0.180 0.138 0.389 0.459 0.285 ( 0.181, 0.383) 0.330( 0.228, 0.409) 0.120

18 LPCM 0.415 0.444 0.836 0.847 0.623 0.621 0.211 0.231 0.108 0.237 0.836( 0.791, 0.890) 0.847( 0.792, 0.885) 11.570
19 CPBDM 0.676 0.720 0.757 0.766 0.746 0.815 0.765 0.749 0.347 0.405 0.757 ( 0.678, 0.808) 0.766( 0.669, 0.830) 3.500
20 FISH 0.222 0.305 0.705 0.716 0.823 0.870 0.196 0.252 0.432 0.472 0.705 ( 0.548, 0.787) 0.716( 0.631, 0.793) 0.250
21 S3 0.409 0.449 0.700 0.756 0.747 0.786 0.151 0.189 0.402 0.450 0.700 ( 0.554, 0.792) 0.756( 0.692, 0.818) 308.150
22 JNBM 0.598 0.635 0.506 0.528 0.756 0.816 0.536 0.512 0.448 0.455 0.506 ( 0.327, 0.627) 0.528( 0.336, 0.676) 7.520
23 NLWT 0.361 0.350 0.000 0.056 0.905 0.943 0.000 0.206 0.622 0.638 0.905 ( 0.875, 0.927) 0.943( 0.923, 0.956) 10.410
24 FNVE 0.304 0.328 0.497 0.528 0.891 0.939 0.511 0.526 0.368 0.472 0.891 ( 0.869, 0.918) 0.939( 0.907, 0.953) 0.030
25 JPEG-NR 0.611 0.509 0.605 0.613 0.775 0.915 0.951 0.966 0.497 0.625 0.951( 0.937, 0.966) 0.966( 0.952, 0.975) 0.110
26 NJQA 0.448 0.415 0.307 0.284 0.872 0.932 0.768 0.837 0.479 0.511 0.768 ( 0.667, 0.849) 0.837( 0.748, 0.876) 192.590
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Table 3.13: Root-mean-square error (RMSE), reduced χ̃2 statistic between the algorithm
scores and the MOS for various NR-IQA Algorithms (after logistic function fitting) and
outlier ratio (expressed in percentage) for each distortion category. The bold values
indicate the best performing algorithm for that category.

IQA Interp. Blur Additive Noise JPEG Blocking Fast Fading Overall

RMSE χ̃2 OR RMSE χ̃2 OR RMSE χ̃2 OR RMSE χ̃2 OR RMSE χ̃2 OR RMSE χ̃2 OR

1 CORNIA 0.099 0.039 0.000 0.113 0.620 0.000 0.097 0.059 0.000 0.144 0.415 0.000 0.266 0.059 0.000 0.190 5.979 0.000
2 GM-LOG 4.664 2.040 0.000 5.973 0.695 0.000 2.553 0.067 0.000 5.106 3.931 0.000 12.013 0.066 15.000 8.426 14.715 7.000
3 G-IQA-1 (L) 5.476 0.081 0.000 6.540 0.216 0.000 2.330 0.066 0.000 5.128 0.111 0.000 10.231 1.120 12.500 12.344 3.825 22.000
4 BRISQUE 6.170 0.005 5.000 5.185 1.565 0.000 3.139 0.104 0.000 5.608 3.309 0.000 11.717 2.501 15.000 8.325 23.099 7.500
5 C-DIIVINE 5.147 0.531 0.000 5.845 0.300 0.000 2.842 0.033 0.000 6.840 0.364 0.000 11.420 0.150 20.000 12.257 3.478 22.000
6 G-IQA-1 5.789 0.115 0.000 6.988 0.083 0.000 2.359 0.075 0.000 4.961 0.301 0.000 10.248 0.111 10.000 12.377 2.543 22.000
7 DESIQUE 5.584 0.158 0.000 6.415 0.856 0.000 2.184 0.044 0.000 4.760 0.040 0.000 12.557 1.810 20.000 12.163 2.659 21.000
8 CurveletQA 5.174 1.097 0.000 6.053 0.309 0.000 3.162 0.004 0.000 6.797 0.001 5.000 13.932 0.191 30.000 10.206 3.488 14.000
9 G-IQA-2 6.378 0.168 5.000 7.038 0.593 5.000 2.621 0.095 0.000 7.176 0.559 5.000 11.929 1.861 15.000 10.345 3.044 14.000

10 G-IQA-2 (L) 6.736 0.001 5.000 7.106 0.018 5.000 3.150 0.524 0.000 6.651 0.346 5.000 12.164 1.531 20.000 12.332 2.555 21.500
11 BIQI 5.272 0.183 0.000 4.885 3.948 0.000 3.917 0.238 0.000 10.977 1.539 15.000 13.896 0.103 25.000 10.423 2.344 17.000
12 BLIINDS-II 6.480 0.258 5.000 7.081 0.359 5.000 4.550 1.289 0.000 9.042 0.295 10.000 12.336 1.879 20.000 11.238 3.506 17.500
13 GRNN 7.065 1.777 5.000 8.078 0.411 5.000 4.416 0.004 0.000 10.472 1.110 15.000 14.277 0.195 25.000 11.538 3.025 19.500
14 Anisotropy 6.023 1.886 8.000 0.000 2.168 5.000 7.664 0.316 0.000 8.567 3.153 33.000 11.341 2.090 33.000 11.882 3.302 23.400
15 NIQE 7.079 0.005 5.000 7.909 0.113 5.000 7.974 0.100 5.000 8.565 0.716 15.000 12.550 0.256 20.000 12.105 12.093 22.000
16 DIIVINE 7.004 0.512 5.000 7.676 0.941 5.000 7.734 0.152 5.000 13.124 0.286 30.000 14.026 0.138 25.000 12.569 4.401 24.000
17 TMIQA 7.718 2.035 8.000 7.338 0.322 5.000 9.033 1.359 0.000 11.744 6.088 35.000 11.287 0.705 27.000 12.338 1.578 24.400
18 LPCM - - - 4.968 1.019 0.000 - - - - - - - - - 4.968 1.019 0.000
19 CPBDM - - - 6.485 0.440 0.000 - - - - - - - - - 6.485 0.440 0.000
20 FISH - - - 6.603 0.324 0.000 - - - - - - - - - 6.603 0.324 0.000
21 S3 - - - 6.339 0.162 0.000 - - - - - - - - - 6.339 0.162 0.000
22 JNBM - - - 7.952 0.360 1.000 - - - - - - - - - 7.952 0.360 1.000
23 NLWT - - - - - - 3.181 1.989 0.000 - - - - - - 3.181 1.989 0.000
24 FNVE - - - - - - 3.337 1.793 0.000 - - - - - - 3.337 1.793 0.000
25 JPEG-NR - - - - - - - - - 6.815 1.421 5.000 - - - 6.815 1.421 5.000
26 NJQA - - - - - - - - - 9.937 1.232 13.000 - - - 9.937 1.232 13.000

61



Chapter 4

Objective evaluation of tone-mapping artifacts in

HDR images

4.1 Introduction

1The range of radiance values encountered in the real world far exceeds the range

that can be captured by a photographic sensor. To deal with this limitation, recent years

have seen a huge growth in the popularity of High Dynamic Range (HDR) images due

to their ability to accurately represent the wide range of variation of illumination in real

scenes. Unlike traditional Standard Dynamic Range (SDR) scenes with 8 bits/color/pixel,

the range of the luminance levels in HDR scenes can range from 10,000 to 1[5]. Apart

from natural scenes, HDR rendering also finds its use in computer graphics where the

lighting calculations are performed over a wider dynamic range. This results in a better

contrast variation leading to a higher degree of detail preservation.

For photographs taken under challenging lighting conditions, an image taken at

a single exposure may contain overexposed and underexposed regions. Hence, a widely

used approach for generating well-exposed SDR images is to begin with a stack of regis-

tered images taken at different exposures[87] (typically taken in the Automatic Exposure

Bracketing mode of digital SLR cameras to intentionally underexpose and overexpose the

1Contents of this capter has been published in [86]
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scene) and performing the following three post-processing steps:

� Estimating the radiometric response function of the camera from the registered

images.

� Estimating a radiance map by merging pixels from different exposures to get the

HDR image.

� Tone-mapping the HDR image to an SDR image to visualize the images on standard

displays meant for HDR images. The resulting HDR is more visually appealing and

informative than any single-exposure image.

However, a different class of algorithms is used in many consumer electronic de-

vices in order to generate a sufficiently detailed well-exposed image by bypassing the

intermediate step of constructing an HDR radiance map[88]. These multi-exposure fusion

(MEF) algorithms take as input a stack of registered images taken at different exposures

and outputs an image in which the details are clearly visible both in the underexposed

and overexposed regions.

Different tone-mapping operators (TMO) or MEF algorithms may result in dif-

ferent SDR visualization, so a natural question is how to gauge the quality of the im-

ages obtained. In addition, quality evaluation of compressed tone-mapped images is an

emerging problem that involves the joint optimization of tone-mapping and compression

parameters. This chapter focuses on FR-IQA algorithms for comparing the tone-mapped

SDR image with the original HDR image.
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In a previous work, the Tone-Mapped image Quality Index (TMQI)[5] compares

the original HDR image with the rendered SDR image. TMQI quantifies distortions

locally and pools them by uniform averaging, in addition to measuring naturalness of the

SDR image. For SDR images, perceptual pooling strategies have improved correlation

of image quality assessment (IQA) algorithms with subjective scores. In this chapter we

outline different perceptual pooling strategies for the TMQI IQA algorithm, propose a

NSS based model for quantifying image naturalness and test the proposed methods on

JPEG compressed tone-mapped images and tone-mapped images for SDR displays using

human subjective scores.

This chapter is organized as follows: Section 4.2 summarizes the tone-mapping

algorithms used to generate the SDR visualizations (the MEF algorithms will be described

in the next section), section 4.3 outlines the previous FR-IQA algorithms proposed for

evaluating tone-mapping artifacts, section 4.4 describes the TMQI IQA algorithm, the

proposed contributions have been outlined in 4.5, the experimental results have beem

mentioned in section4.6. Section 4.7 concludes the chapter.

4.2 HDR Image Creation

The process of generating well-exposed SDR scenes involves estimating the scene

radiance map, followed by tone-mapping it to the displayable gamut of the SDR displays.

4.2.1 Creating scene radiance map

Some of the earliest algorithms for estimating the radiance map of a natural scene in

the HDR format was proposed in [89][90][91] by using photographs taken with conventional
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digital cameras. From the multiple photographs of the same scene taken with different

degrees of exposures, the algorithm first recovers the camera response function (up to a

factor of scale) and uses that to fuse multiply exposed images into a single HDR radiance

map whose pixel values are proportional to the true radiance values of the scene.

It is presumed that the scene is static and the series of images photographed by

deliberately changing the exposure is taken in quick succession so that the lighting changes

in the actual scene can be safely ignored. In [89] the digitized images are assumed to be

taken with the same camera position with different known exposure durations tj. Ei

represents the irradiance values for each pixel (assumed to be constant), Zij represents

the pixel values, where i is the spatial index and j indexes over the exposure times tj.

The sensor reciprocity equation is expressed as:

Zij = f(Eitj) (4.1)

Since f is assumed to be monotonic, it is invertible. Hence 4.1 can be expressed as:

f−1(Zij) = Eitj (4.2)

Taking the natural logarithm on both sides we get,

ln f−1(Zij) = ln(Ei) + ln(tj) (4.3)

Let g = ln f−1. Then we have the set of equations:

g(Zij) = ln(Ei) + ln(tj) (4.4)
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where i ranges over the pixels and j indexes the exposure durations. The unknown

exposures Ei and the response values gk = g(k) (discretized according to the 256 pixel

values commonly observed in eight-bit images) is solved via least squares.

In computer graphics, HDR rendering is becoming increasingly popular now-a-days

and is supported by OpenGL, the de-facto standard for rendering 2D and 3D graphics.

Instead of clamping the color values in the frame-buffer between the values of 0.0 and 1.0

after each fragment shader run, HDR OpenGL rendering allows the colors to be saved

in true floating point values outside the default range of 0.0 and 1.0. This leads to the

preservation of more detail as well as provides the designer with the ability to configure

the lighting of the scene better with more realistic lighting parameters [92].

4.2.2 Tone-Mapping algorithms

Once the radiance map is obtained, either from the multiply exposed images in

case of photographs taken with optical images or the floating point rendered color values

in computer graphics, it is tonemapped to a lower gamut (8 bit/color/pixel) of the SDR

display. These algorithms try to replicate the local-adaptation behavior of the human

visual system. The human eye deals with the vast range of real-world illuminations by

changing their sensitivity to be responsive at different illumination levels in a highly

localized fashion, enabling us to see the details both in the bright and dark regions [93].

The tone-mapping algorithms compute either a spatially varying transfer function or

shrinks the image gradients to fit into the available dynamic range [87]. Depending on

the type of processing involved, the tone-mapping algorithms may be classified into the

following classes:
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� Global methods : A global transfer curve maybe used to map an HDR image to

the displayable gamut [94]. Each color channel may be processed separately or the

input image may be split up into luminance and chrominance channels and the

global gamma curve maybe applied only on the luminance channel.

� Local Adaptation methods : The global approach is found to be less successful for

images having a wide range of exposures. The local adaptation methods work on

the principle of dividing each pixel by the average luminance of the region around

the pixel and replicates the “dodging-and-burning” technique employed by pho-

tographes [95]. This corresponds to subtracting out the low-pass filtered version

from the original image in the logarithm domain. However, linear filtering does not

preserve the edges, hence the tone-mapped image might end with unnatural halos.

Instead, different edge-preserving filters may be used, such as: bilateral filtering[96],

weighted least square filtering [97], or guided filtering [98].

� Gradient Domain methods : These class of algorithms compress the gradient of the

log-luminance image by a spatially varying attenuation factor and takes into account

gradients at different scales. The modified gradient field is re-integrated by solving

a first order variational problem [99].

4.3 Visual Quality Evaluation

Subjective testing is important in evaluating the visual quality of images produced

by different algorithms. A faster and less expensive alternative is objective quality eval-

uation. Recently, full-reference IQA (FR-IQA) algorithms[5][100][101] were proposed for
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(a) (b) (c) (d)

Figure 4.1: (a) Input HDR image, linearly, mapped to [0-255] (b) Gamma compressed
(c) Processed with Reinhard’s “dodging-and-burning” method [95] (d) Processed with
gradient domain method [99]

evaluating tone-mapped SDR images in comparison to the reference HDR image. In [5],

Yeganeh et al. carried out a subjective study with various tone-mapped SDR images and

proposed the tone-mapped image quality index (TMQI) based on the structural similar-

ity metric in order to ensure that the details in the original HDR image are represented

faithfully in the SDR version. It is combined with a naturalness measure based on scene

statistics in order to ensure that the rendered image looks realistic.

Tone-mappped FR-IQA metrics employ average pooling that weights all pixels

equally. Using different pooling strategies for combining local quality scores to yield

the final quality index of the processed SDR image is well-researched[24][43][49]. Using

perceptual pooling methods for quality evaluation of HDR images is less well studied. In

[102], the authors have proposed Saliency weighted Tone-Mapped Quality Index (STMQI)

that employ an Attention based on Information Maximization[103] model to find the

salient regions of the image.
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Petit et al.[104] propose a variation of the SDR image saliency measure by Itti

et al.[105] to make it suitable for HDR images. In this work, we use this method with

TMQI for pooling the local quality scores. Although this is found to show good correla-

tion with the ground-truth eye-tracking data obtained from human subjects, computing

the saliency map using Gaussian Dyadic Pyramid and Gabor filters is computationaly

expensive. To reduce complexity, we also propose simple local information content based

pooling strategies that improve the performance of the TMQI algorithm.

We also investigate a natural scene satistics model based on mean-subtracted-

contrast-normalized (MSCN) pixels that has been widely used for blind quality prediction

of natural SDR images [66][28]. This does not need any previous training on the corpus

of natural images, unlike the model in [5] that fits a Gaussian and a Beta probability

distribution to the histograms of the means and standard deviations of these images.

Quality evaluation of compressed tone-mapped images is an emerging problem

that involves the joint optimization of tone-mapping and compression parameters. The

proposed FR-IQA algorithms have not been evaluated until now for this application. In

this chapter, we evaluate the performance of the proposed algorithm on multiple artifacts

arising from tone-mapping and JPEG compression of HDR images.

4.4 Tone Mapped Quality Index

The TMQI algorithm is based on the combination of two image quality indicators:

1) a multi-scale image fidelity metric based on a modified structural similarity (SSIM)[30]

index and 2) a measure based on natural scene statistics (NSS): the mean and standard

deviation of pixel intensities. Since the dynamic range of the HDR images is much higher
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than that of standard SDR displays, the TMOs cannot preserve all the details of the HDR

versions; however it must ensure that the SDR image is structurally similar to the HDR

version. The SSIM-inspired component takes into account this aspect of signal fidelity.

In addition, the SDR image must also ensure that it looks natural because the human

visual system is trained on NSS that appear irrespective of image content. The TMQI

algorithm takes into account only the pixel luminances. Both the HDR and SDR images

are converted from RGB color space to the Yxy color space and the algorithm is applied

only to the Y component.

4.4.1 Structural Fidelity

The SSIM index (and its multi-scale version MS-SSIM) measures changes in lumi-

nance, structure and contrast between the images. Tone mapping operators change local

intensity and contrast[5], so TMQI redefines the structural fidelity term as:

Slocal(x, y) =
2σx

′σy
′ + C1

σx′2 + σy ′2 + C1

.
σxy + C2

σxσy + C2

(4.5)

where x and y are image patches in the HDR and the corresponding tone-mapped SDR

image, σx, σy and σxy are the local standard deviations and cross-correlations between

them, σx
′ and σy

′ are the nonlinearly mapped versions of σx and σy in (4.6). The al-

gorithm penalizes only those cases where the signal strength is significant in one of the

image patches, but insignificant in the other. To distinguish between significant and in-

significant signal strength, the local standard deviation in mapped nonlinearly through a

psychometric function (related to the visual sensitivity of contrast) which takes the form
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of a cumulative normal distribution, given by

σ′ =
1√

2πθσ

∫ σ

−∞
exp

[
−(x− τσ)2

2θσ
2

]
dx (4.6)

where σ’ is the mapped version of σ, τσ is the modulation threshold, and θσ is the standard

deviation of the normal distribution. It is bounded between 0 and 1. τσ is proportional

to the inverse of the visual contrast sensitivity[106]. At each scale, the scaled version of

map is pooled by averaging to output a single score:

Sl =
1

Nl

Nl∑
i=1

Slocal (xi, yi) (4.7)

where xi and yi are the i-th patches in the HDR and SDR images respectively and Nl

is the number of patches in the l-th scale. The overall structural similarity metric is

obtained by multiplying the structural similarity scores from the various scales:

S =
L∏
l=1

Sl
wl (4.8)

where L is the total number of scales and wl is the weight assigned to the l-th scale.

4.4.2 Image Naturalness

Apart from maintaining structural fidelity, the tone-mapped SDR images should

also satisfy some criterion of natural fidelity. In[5], the authors have used naturalness

measures based on brightness and contrast of the tone-mapped images. The histograms

of the means and standard deviations of natural images have been found to fit a Gaussian

and Beta probability distribution respectively. The naturalness measure is the product of
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these two distributions since natural scene statistics of brightness and contrast are largely

independent quantities. The final Tone Mapped image Quality Index (TMQI) is given

by:

Q = aSγ + (1− a)N δ (4.9)

where 0 ≤ a ≤ 1 adjusts the relative importance of the structual measure (S) and the

naturalness measure (N), and γ and δ control their sensitivities.

4.5 Proposed IQA algorithm

This section outlines the modifications made to the TMQI algorithm to take into

account perceptual pooling strategies and a NSS model based on the distribution of the

MSCN pixels to quantify image naturalness.

4.5.1 Visual saliency measure

In[105], the authors build a master ”saliency map” using features like color, in-

tensity and orientations at different scales. Instead of just using intensity differences for

HDR images,[104] uses intensity contrast between the scales and normalizes the orienta-

tion features also over the intensity channel. We use this method of saliency detection

to improve performance of the TMQI algorithm. In addition, we explore the role of the

local contrast of the tone-mapped images in pooling the quality scores since the quality

of tone-mapped images on SDR displays depends on the degree of detail-preservation.

Measures of edge density and local contrast tend to be greater at the points of fixation
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than at other locations [107][108]. Regions of higher contrast in the tone-mapped SDR

image should be given higher weight in pooling the local structural fidelity score at every

scale.

The local contrast of the test image (the tone-mapped SDR image or the JPEG

compressed tone-mapped image) is measured with two simple methods. (1) σ-map of

the image obtained by (4.12), and (2) local entropy of the image at every pixel location

(using a rectangular window). Since entropy is a measure of uncertainty of the random

variables, it can be used to capture the local contrast also. For example, if a tone-mapping

operator leads to over-exposed uniformly bright regions (such as the sky), these regions

are expected to show higher entropy than a region having aesthetically rendered foliage.

4.5.2 Natural Scene Statistics

For this work, we model the scene statistics of tone mapped images in the spatial

domain, MSCN pixels and the σ-field of the image. The pixels of the image are prepro-

cessed by mean subtraction and divisive normalization. Let M×N be the dimension of

the image I, and I(i, j) be the pixel value in the (i, j)-th spatial location, i ∈ {1, 2, ..,M},

j ∈ {1, 2, ..., N}. MSCN pixels are generated by

Î(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + 1
(4.10)

where the local mean µ(i, j) and standard deviation σ(i, j) are defined as:

µ(i, j) =
k=K∑
k=−K

l=L∑
l=−L

wk,lI(i+ k, j + l) (4.11)
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σ(i, j) =

√√√√ k=K∑
k=−K

l=L∑
l=−L

wk,l[I(i+ k, j + l)− µ(i, j)]2 (4.12)

w = {wk,l|k = −K, ..,K, l = −L, ..., L} is a symmetric local convolution window centered

at the (i, j)-th pixel. K and L determine the size of local patch considered in the calcu-

lation of the mean and standard deviation. In [66], the authors considered 7 × 7 image

patches, and a circularly symmetric 2D Gaussian kernel; however, experiments show that

the distribution of the MSCN patches are not very sensitive to the window size, or the

convolution kernel.

The variance normalized image (Î) tends to be more uniform than the original

image, and almost looks like a noise pattern, except at object boundaries. Also, their

histograms seem to show a Gaussian like distribution. The standard deviation image σ

looks more like the original image, highlighting object boundaries and attenuating tex-

tures. The MSCN pixels have been modeled using an Asymmetric Generalized Gaussian

Distribution and used in image quality assessment[66][28].

As a measure of the image naturalness, we consider the scale parameter of the

distribution of the MSCN pixels (β) and standard deviation of the σ-field, obtained from

(4.12). Let φ be the variance of the σ field. The modified TMQI index is given by:

Q = aSγ +
1

2
(1− a)βδ1 +

1

2
(1− a)φδ2 (4.13)

4.6 Experimental Results

This section outlines the performance of the proposed algorithms on two HDR

datasets. The first one (”TMQI Database”)[5] contains 15 reference natural HDR images
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(a) (b) (c)

Figure 4.2: (a) An image from the TMQI database[5] and the corresponding histograms of
(b) MSCN pixels and (c) σ-field of the tone-mapped SDR images. The figures show how
different tone-mapping operators result in different distribution of the MSCN pixels and
the σ-field, which can be quantified into the naturalness measure of FR-IQA algorithms.

(a) (b) (c) (d)

Figure 4.3: (a) An reference image from the HDR-JPEG database[109], (b) A compressed
image and the corresponding histograms of (c) MSCN pixels and (d) σ-field of both the
images. The figures show how JPEG compression, coupled with tone-mapping operators
result in different distribution of the MSCN pixels and the σ-field, which can be quantified
into the naturalness measure of FR-IQA algorithms.
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(d) (s) (m) (e)

Figure 4.4: Results from the TMQI database: Tone-mapped LDR image (d), the corre-
sponding local structural similarity map (s), the fidelity maps obtained by the product
of the structural similarity map and the σ-map (m) and that obtained by the product of
the structural similarity map and the local entropy map (e). Brighter gray level means
higher similarity. Results are shown only for the coarsest scale.
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(d) (s) (m) (e)

Figure 4.5: Results from the HDR-JPEG database: Compressed HDR image (d), the
corresponding structural similarity map(s), the fidelity maps obtained by the product of
the structural similarity map and the σ-map (m) and that obtained by the product of
the structural similarity map and the local entropy map (e). Brighter gray level means
higher similarity. Results are shown only for the coarsest scale.

and 8 tone-mapped SDR images for each of them, generated using different algorithms.

The SDR images were ranked according to the quality from 1 (best) to 8 (worst) by 20

subjects. The second one is a tone mapping based HDR compression dataset (”HDR-

JPEG Database”)[109] comprising of 10 different still images and 14 distorted versions

obtained by JPEG compression of the original one with 7 different bitrates and using

two different optimization criteria (Mean Squared Error and the Structural Similarity

Index Metric[30]). This database contains both natural and synthetic scenes. The Visual

Information Fidelity metric[42] has also been included for comparison because it is a

wavelet domain FR-IQA method that correlates well with human perception for SDR

images.

The performance of TMQI, FSITM, TMQI-II, and STMQI FR-IQA algorithms

have been evaluated using the MATLAB source codes provided by the authors. TMQI-
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Table 4.1: Spearman Rank-order Correlation Coefficient (SROCC), Pearson’s Linear Cor-
relation Coefficient (PLCC) and Kendall’s Correlation Coefficient (KCC) between the al-
gorithm scores for various IQA algorithms and the DMOS scores for TMQI database[5]
along with runtime (in seconds). The table has been sorted in the descending order of
SROCC. Bold values indicate the best performing algorithm. Red indicates the proposed
methods.

IQA SROCC PLCC KCC Runtime

TMQI-NSS-σ 0.8810 0.9439 0.7857 0.3212
TMQI-NSS-Entropy 0.8810 0.9438 0.7143 1.2759

SHDR-TMQI 0.8810 0.9346 0.7143 0.8010
FSITM-TMQI [101] 0.8571 0.9230 0.7857 0.9428

STMQI [102] 0.8503 0.9382 0.7638 1.5385
TMQI-II [100] 0.8333 0.8790 0.7143 0.2002
FSITM [101] 0.8333 0.8948 0.7143 0.4741

TMQI [5] 0.8095 0.9082 0.6429 0.5206
VIF [42] 0.3810 0.6136 0.2857 1.3935

NSS-σ uses the TMQI index in conjunction with the MSCN based natural scene statistics

model and the σ-map as the local pooling strategy. SHDR-TMQI and TMQI-NSS-Entropy

employ a similar scheme but use the saliency detection method proposed in [104] and local

entropy respectively for pooling the structural fidelity score. These pooling based IQA

algorithms employing the MSCN based naturalness measure outperform the state-of-the-

art FR-IQA algorithms both for tone-mapping artifacts (Table 4.1) as well as for multiply

distorted HDR images having both tone-mapping and JPEG compression artifacts (Ta-

ble 4.2).

For the different variations of the TMQI algorithm, the relative weightage of the

structural similarity term with respect to the naturalness term has been kept constant

(a = 0.8012). Five levels have been considered for all the IQA algorithms except for
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Table 4.2: Spearman Rank-order Correlation Coefficient (SROCC), Pearson’s Linear
Correlation Coefficient (PLCC) and Kendall’s Correlation Coefficient (KCC) between
the algorithm scores for various IQA algorithms and the DMOS scores for HDR-JPEG
database[109] along with runtime (in seconds). The table has been sorted in the descend-
ing order of SROCC. Bold values indicate the best performing algorithm. Red indicates
the proposed methods. For the HDR-VDP-2 algorithm (in row 6), in absence of any infor-
mation on the display size at [109], the correlation values have been computed assuming
that a 24 inch HDR monitor was used for the subjective experiments.

FR-IQA algorithms SROCC PLCC KCC Runtime

SHDR-TMQI 0.8510 0.8533 0.6700 3.0003
TMQI-NSS-σ 0.8485 0.8520 0.6659 1.6470

TMQI-NSS-Entropy 0.8454 0.8645 0.6719 6.7424
VIF [42] 0.8004 0.8178 0.6143 9.5000
TMQI [5] 0.7947 0.8057 0.6127 3.4394

HDR-VDP-2[35] 0.6389 0.6479 0.4737 19.5031
FSITM-TMQI [101] 0.6300 0.6584 0.4762 8.3486

TMQI-II [100] 0.5096 0.5137 0.3642 1.3424
FSITM [101] 0.4720 0.5167 0.3422 5.2617
STMQI [102] 0.3464 0.3244 0.2449 11.9965
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SHDR-TMQI, where two levels have been considered in order to ensure that the size

of the image do not fall below 128×128; an implementation restriction imposed by the

authors of Itti’s saliency measure[105]. The source code of our proposed algorithm can

be downloaded from[110].

Spearman Rank-order Correlation Coefficient (SROCC), Pearson’s Linear Corre-

lation Coefficient (PLCC) and Kendall’s Correlation Coefficient (KCC) have been used

to evaluate the performance of FR-IQA algorithms. Execution time (in seconds) for each

algorithm (on a Linux desktop having 12 GB RAM, Intel Xeon CPU, 3.33 GHz clock) has

also been evaluated. Results for the TMQI and HDR-JPEG Databases are summarized

in Tables 4.1 and 4.2 respectively.

4.7 Conclusion

In this chapter we show that simple perceptual pooling techniques that take into ac-

count the local contrast improve the performance of the TMQI algorithm for full-reference

quality evaluation and propose a different NSS model to better qualify the image natu-

ralness. We show that in addition to tone-mapping artifacts, the proposed methods

show good correlation with human observers for JPEG compressed tone-mapped images.

However, the currently available HDR databases are limited in the number of images

considered or the number of subjects participating in the subjective study. In the next

chapter we describe a massive online crowdsourced subjective study for judging the qual-

ity of HDR images providing a much larger corpus of source images, processing artifacts

and the number of subjects involved.
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Chapter 5

Crowdsourced evaluation of HDR images

5.1 Introduction

Most available HDR IQA databases suffer from the limitation of having a relatively

small number of images and small number of human subjects participating in the exper-

iments, typically conducted in a stringently controlled visual environment. In addition,

most of these databases either ask the subjects to rank multiple versions of the same HDR

scene created using different processing algorithms or implement a two-alternative forced

choice method of subjective evaluation. These approaches severely restrict the number of

the source images that can be considered, the type of processing artifacts and the number

of subjects participating in the experiments.

The previous chapter outlined a FR assessment method for tonemapping artifacts

in HDR images. In applications in which the reference 32-bit irradiance map is not avail-

able for comparison, no-reference IQA is the way to go. In the present legacy databases,

since the HDR images are annotated with a rank relative to other images instead of an

absolute raw quality score, they are unsuitable for blind IQA for the perceptual quan-

tification of HDR artifacts as has been done for SDR images. In order to address these

limitations, I propose the following contributions:

� Designing the ESPL-LIVE HDR Image Database, comprising of 1,811 HDR pro-
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cessed images created from 605 high quality source HDR scenes. The images have

been obtained by eleven HDR processing algorithms involving tonemapping, multi-

exposure fusion algorithms. In addition I have also considered post-processing arti-

facts in HDR image creation, typically found in commercial HDR softwares.

� Conducting subjective experiments for collecting data from thousands of observers

over a online crowdsourcing platform, and analyzing the data to reject the outlier

subjects, and calculate the mean opinion scores (MOS) for each image.

5.2 Related Work

Some of the HDR IQA databases have addressed two typical HDR processing

methods: tonemapping and multi-exposure fusion. In [5], Yeganeh et al. carried out a

subjective study with 15 reference natural HDR images and 8 tone-mapped SDR images

for each of them, generated using different algorithms. The SDR images were ranked

according to the quality from 1 (best) to 8 (worst) by 20 subjects. Ma et al conducted a

subjective experiment with 17 reference HDR images and 8 images created using different

multi-exposure fusion algorithm for each of them. 25 subjects participated in the study.

HDR compression artifacts have been subjectively evaluated in [109] and [111].

[109] comprises of 10 different still images (both natural and synthetic) and 14 distorted

versions obtained by JPEG compression of the original one with 7 different bitrates and

using two different optimization criteria (Mean Squared Error and the Structural Similar-

ity Index Metric[30]). In [111], Hanhart et al. conducted a subjective experiment with 240

images obtained by tonemapping 20 HDR images using a display adaptive tone-mapping
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algorithm and compressed using different profiles of the JPEG XT [112] compression al-

gorithm. In [113], the authors have considered 192 images created from 6 source HDR

images inflicted with four types of disotortions (namely, JPEG/JPEG2K compression,

white noise injection and Gaussian blurring) at 8 different levels with 25 naive partici-

pants.

For SDR images, one of the earliest crowdsourced subjective experiements [114]

garnered ratings from 40 subjects with 116 JPEG compressed images. In [115], the authors

developed the LIVE In the Wild Image Quality Challenge Database comprising of 1,162

images containing real world distortions involving more than 8,100 unique subjects. For

HDR images, crowdsourcing has been used before in [116] for evaluating privacy. To

the best of our knowledge, crowdsourcing has not been used before for the purpose of

subjective quality evaluation of HDR images at this large scale.

5.3 ESPL-LIVE HDR Database

This section describes the types of source images considered, the method of cap-

turing them and the HDR processing algorithms used to generate different versions of the

source images in the ESPL-LIVE HDR Database.

5.3.1 Source Content

The images considered in this database comprised of real-world HDR scenes of

nature, lakes, snow, forests, cities, man-made structures, historical architectures etc. The

database consists of images shot both during the day and the night and includes both

indoor and outdoor scenes. Figure 5.1 shows some of the sample images of our database.
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Figure 5.2(a) and (b) show the distribution of the source scenes under various imaging

conditions. The high dynamic range images used in this database has been obtained by

combining photographs of the same scene shot with multiple exposures using a modern

digital SLR camera. The auto-bracketing feature of modern SLR cameras allow the photo

of the scene captured at a number of exposures with one depression of the shutter release.

Figure 5.1: Sample images from the ESPL-LIVE HDR Image Quality Database. The
images include pictures taken during day and night under different illuminating conditions.
Both indoor and outdoor photos have been considered, along with scenes containing
natural or man-made objects.

106 images have been obtained from the HDR Photographic Survey [117]. For
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(a) (b)

Figure 5.2: Bar chart showing the number of source images taken (a) during day and
night, (b) indoors and outdoors

these images, a Nikon D2x was used with a selection of lenses. Most of the images were

obtained with a Nikon 17-55mm f/2.8 ED-IF AF-S DX Zoom-Nikkor lens. The D2x

is a professional digital SLR with a 12.4 Megapixel CMOS sensor. The auto-bracketing

function allowed for nine exposures to be made with one stop increments in exposure time

at a fixed aperture. This, combined with the high speed of 5 frames/second , allowed nine-

exposure HDR sequences covering a nine-stop exposure range to be made in less than two

seconds with sufficient light, a feature that is helpful for subjects that might tend to move.

The images have a resolution of 4288× 2848.

The rest of the images were captured using a Canon Rebel T5 and Nikon D5300

digital SLR camera, with an 18 Megapixel CMOS sensor. An 18-55mm standard zoom

lens was used. The auto-bracketing function allowed three exposures to be captured

for every scene. The exact range of the exposures considered varied from scene to scene

depending on the subject and the available lighting conditions. For low lighting conditions,
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a tripod was used to prevent inadvertent camera shakes. These images have a resolution

of 5184× 3456. All images were saved in raw electronic format (NEF for Nikon and CR2

for Canon cameras).

Lastly, in order to minimize the degree of ghosting artifacts arising from moving

objects in the scene, care has been taken to ensure that no high motion objects appear in

the scene, especially in the foreground.

5.3.2 Source Complexity

The source complexity of the image database has been evaluated using two metrics:

spatial information, that gives an indication of the richness of the edge distribution in the

image, and colorfullness, that quantifies color saturation. Details of these measures may

be found in Chapter 2 (Section 2.2.2). However, since for HDR images the scenes are

captured at multiple exposures, the scene complexity is determined from the medium

exposure image. Figure 5.3 shows the scatter plot between the spatial information and

colorfulness of the source scenes.

5.3.3 HDR Processing Algorithms

Unlike the legacy subjective image quality assessment databases that come with

clearly marked distortion categories (such as ”Blur”, ”JPEG Compression”, and ”Color

Saturation”), it is hard to come up with such classification schemes for HDR images. De-

pending on the scene and the type of processing algorithm considered, the image might

be inflicted by a complex interplay of luminacne, structual or chromatic artifacts that are

hard to categorize. Furthermore, many of the commercial HDR processing programs post-
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(a) (b)

Figure 5.3: Spatial Information vs. Colorfulness scatter plots for the source images in
the following databases (a) ESPL-LIVE HDR, (b) LIVE In the Wild Challenge[115]. Red
lines indicate the convex hull of the points in the scatter plot, which approximates the
range of scene complexity.

process the images by changing the local contrast and color saturation, thereby leading

to a wide perceptual gamut of images.

Prior to fusion of the exposure stack, the bracketed photos need to be registered

because of small misalignments due to camera movement between bracketed shots. In

addition, even if the camera is held fixed (as with a tripod), the scene may have moving

objects, and since the merging process assumes that the pixels in the bracketed stack are

aligned perfectly, the moving objects results in ghosting or blurring artifacts depending

on whether the amount of motion is high or low respectively[118]. If the trailing ‘ghost’

of the moving objects are not removed, the observers may be annoyed by the artifacts.

Hence, in this section we outline the different HDR algorithms used for creating the

images instead of outlining ’distortion’ categories. Figure 5.4 shows the distribution of

the different algorithms considered in our database.
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Figure 5.4: Bar chart showing the number of images in the database created by the
different HDR algorithms. ’TMO’, ’MEF’, ’Effects’ stand for Tone-Mapping Operators,
Multi-Exposure Fusion Algorithms and Post Processing respectively.
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Most of the algorithms have been obtained from the HDR Toolbox [119], imple-

mented in MATLAB. The remaining source codes has been provided by the authors.The

final images displayed to the subjects had a resolution of 960 × 540 for landscape orien-

tation and 304× 540 for portrait images (downsampled from the original resolution using

’imresize’ functionality in MATLAB with bicubic interpolation method). This was done

to ensure that the images fit comfortably within the monitors of smaller display size and

the subjects do not face any issues with delay in loading the images over lower bandwidth

internet connections.

5.3.4 Images generated by Tone Mapping Operators (TMO)

Chapter 4 outlines the process of generating well-exposed SDR scenes by estimat-

ing the scene radiance map, followed by tone-mapping it to the displayable gamut of the

SDR displays. For every scene, the raw exposure stack was registered and combined into

a 32-bit floating point irradiance map (in OpenEXR format) using Photomatix software

with minimal processing. Apart from capturing photographs of the same scene at multi-

ple exposures, some OpenEXR images were also obtained from [120]. The tonemapped

images were created by using four representative TMOs proposed by Ward[94], Fattal[99],

Durand[96] and Reinhard[95]. The resulting image was downsampled to a resolution of

960× 540 for landscape orientation and 304× 540 for portrait images.

5.3.5 Images generated by Multi-Exposure Fusion (MEF)

The bracketed stack of images, after being downsampled to the display resolution

was first registered using a SIFT based image alignment method[119] and the aligned
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images were cropped so that every pixel is visible in all the image of the stack, devoid of

“black border” artifact. The exposure images are then blended using a MEF algorithm,

which can broadly be expressed as [88]:

Y (i) =
K∑
k=1

Wk(i)Xk(i) (5.1)

where K is the number of bracketed images, Y is the fused image, and Xk(i) and

Wk(i) indicates the luminance or color either in the spatial modain or some coefficient

in a transform domain, and the weight at the i-th pixel in the k-th exposure image

respectively. Wk represents the relative weightage given to the spatial locations and

the different exposure levels based on the perceptual information content. Different MEF

algorithms differ in the ways of computing the weights, but has the end goal of maintaining

the details both in the underexposed and overexposed regions. These methods bypass the

intermediate step of creating the HDR irradiance map and instead creates an SDR image

that can displayed directly on standard displays.

The algorithms that have been used to create the multi-exposure fused images

are: local and global energy weighting methods, Raman’s method based on bilateral

filtering[121], the method by Pece et. al. that also deghosts along with multi-exposure

fusion[122] and Paul et. al ’s method based on blending the luminance component in the

gradient domain.
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5.3.6 Post Processed Images

Many HDR images created by professional and amateur photographers are post-

processed in order to convey different ‘feels’ about the scene, that can drastically alter

the final look of the image. Hence, for our database, we have also included these post-

processed HDR images for subjective evaluation; an issue that was not addressed in any

of the existing databases. For our implementation, we first created the irradiance map

using Photomatix and tonemapped it using their default tone-mapping algorithm, followed

by post-processing using two commonly used effects, namely “Surreal’ and “’Grunge”

by using different parameters of color saturation, color temperature and detail contrast

preservation.

5.4 Subjective Study Setup

Crowdsourced subjective image quality assessment studies provides a wider range

of challenges to us compared to a traditional subjective study in a laboratory study

primarily due to the lack of control over the precise experimental setup. However in order

to demonstrate the effective of such a setup, we also conducted a small-scale laboratory

subjective test with a small subset of the HDR images that was used as the control

group or ‘gold standard’ in the large scale crowdsourced subjective study. This section

describes the set up of the laboratory and online subjective test, methods used to check

the consistency of ratings and the techniques used to analyze the raw scores. In addition,

we also show the dependency of the subjective scores on various demographical factors

such as age and gender and viewing conditions like distance from the display screen and

type of display used.

91



5.4.1 Laboratory Subjective Evaluation

Fifteen graduate students comprising of five women and ten men roughly of the

age group of 20-30 years participated in the laboratory subjective study conducted at the

Department of Electrical and Computer Engineering at the University of Texas at Austin

in Spring 2016. Most of the subjects did not have prior experience of participating in

a visual subjective test. A single stimulus continuous evaluation testing procedure with

hidden reference [20] was used. The subjects viewed a total of 38 images of a range of

qualities processed by a variety of HDR algorithms. The actual testing session comprised

of 27 images and it was preceded by a short training phase, where the subject was shown

11 images. The training phase was provided in order to make the subject familiar with

the experimental setup and hence, the scores entered by the subject during this phase

were not considered. On an average, each subject took roughly 15 minutes to complete

the task.

The user interface for the study was designed on a PC on MATLAB, using the

Psychology Toolbox[21] with NVIDIA Quadro NVS 285 GPUs and were interfaced with

Dell 24-inch U2412M display. Each image was displayed on the screen for 12 seconds and

the experiment was carried out under normal office illumination conditions. The subjects

viewed the images from about 2 - 2.25 times of the display height.

The screen resolution was set at 1920×1200 pixels, but the images were displayed at

their normal resolution (1920×1080) without any distortion introduced by interpolation.

The top and bottom portions of the display were gray. At the end of the image display

duration, a continuous quality scale was displayed on the screen, where the default location

of the slider was at the center of the scale. It was marked with five qualitative adjectives:
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“Bad”, “Poor”, “Fair”, “Good”, and “Excellent” placed at equal distances along the scale.

After the subject entered a rating for the image, the location of the slider along the scale

was converted into a numerical score lying between [0,100], after rounding to the nearest

integer. The subject could take as much time as needed to decide the score, but there was

no provision for changing the score once entered or to view the image again. The next

image was automatically displayed once the score was recorded.

3 of the 15 subjects were found to be outliers and the mean opinion score (MOS)

for every image was calculated using the scores of the remaining 12 subjects. In order

to take into account the variability among the subjects in using the quality scale, the

raw subjective scores were converted to Z-scores before calculating the MOS for every

image. A method similar to section 2.2.5 was followed for rejecting the outlier subjects

and processing the raw scores. Based on the MOS scores, five images were chosen as the

gold standard to approximately span the entire quality scale.

5.4.2 Challenges of crowdsourcing

In the recent days, there has been a growing popularity of using crowdsourcing

platforms such as Amazon Mechanical Turk (AMT)[123], Microworkers[124], Crowd-

flower[125] etc in psychology research for effective large-scale collection of data from a

diverse and distributed population from all over the world over the web. The registered

‘requesters’ advertise their tasks to registered ‘workers’ on the different platforms and the

workers may choose to provide their inputs for data-collection in lieu of some monetary

compensation. The following salient features should be kept in mind while designing a

crowdsourced subjective experiment:
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� While the reach of these online platforms to a large number of potential subjects does

ensure that the requesters may collect a large number of image ratings in a much

shorter time compared to the standard laboratory experiments, the requesters have

limited control on the experimental setup such as the display devices used, distance

from the display, and the illumination conditions of the viewing environment. Since

these factors may have a compelling effect on the image ratings provided by the

users, some information on these factors were accumulated from the users at the

end of the viewing session by asking them to complete a short survey. In addition,

we gathered information from them on their familiarity with HDR photography,

the devices used to capture HDR content and the softwares used to process HDR

images. Further details are outlined in the next section.

� The time spent by a subject on doing a subjective study via a crowdsourcing plat-

form differs from a laboratory experiment. In the latter setup, the goal is make the

subject evaluate each and every image in the dataset, hence the study may last for

a couple of hours which is broken down into multiple sessions in order to avoid sub-

ject fatigue. Such setup was used to gather the subjective evaluations for the ESPL

Synthetic Image Database (outlined in chapter 2), where each of the 64 participants

viewed all 525 images in the database over three sessions, each lasting an hour.

However, in a crowdsourced settings, since it is difficult to make workers participate

in time-consuming tasks[126], the online tasks need to be segmented into smaller

chunks. Hence, all the images in the database will not be viewed and evaluated by

every participating worker.
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5.4.3 Instructions, Training, and Testing

Although there have been image quality subjective studies before to judge image

aesthetics, for this particular study, the subjects were instructed to focus on the image

quality than image aesthetics. Care was taken to provide a wide array of images having

different degrees of aesthetic appeal. On AMT, requesters present the tasks as Human

Intelligence Tasks (HITs). The workers are shown the instructions page explaining the

details of the study along with the monetary reimbursement offered. If the worker is

interested to participate, she has to click the “Accept HIT” button to begin the actual

task. At the end of the task, the worker has to submit her results to the requester by

clicking on the “Submit Results” button.

5.4.3.1 Interface used

Figure 5.5 shows the screenshot of the instructions page shown to the workers.

Apart from the instructions, the workers were also shown some representative images

in the database along with a screenshot of the interface to be used to rate the images.

Once the worker accepted the HIT, she was presented with a rating interface as shown

in Figure 5.6 containing the image to be evaluated and a slider below it. A single stim-

ulus continuous quality evaluation[20] method was used in the experiment. The subjects

entered the ratings by dragging the horizontal slider bar that was divided into five seg-

ments and labeled as bad, poor, fair, good, and excellent to aid the subject in entering his

judgment. Once she decided on the rating, she pressed the “Next Image” button, upon

which the position of the slider was converted to a quality score between [1-100] and the

next image was presented. Thus unlike the laboratory experiments where the subjects are
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shown each image for a fixed amount of time, on the crowdsourced platform, the subjects

can view each image for as long as they want.

Figure 5.5: Instruction Screen for Amazon Mechanical Task HIT shown to the subjects
for collecting the ratings.

Figure 5.6: Rating Screen for Amazon Mechanical Task HIT shown to the subjects for
collecting the ratings.

5.4.3.2 Training and Testing Phase

Following similar procedure as the laboratory experiment, before the testing phase,

each participant was shown a set of 11 training images in order to make them familiar
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with the user interface, approximate range of image qualities, and the type of processing

artifacts that they might encounter during the actual testing phase. The training set of

images was the same for all participants.

The actual testing phase considered of 49 images selected randomly from the corpus

of 1,811 images of our database, that were presented in a random order to each subject.

The testing phase was followed by a short survey. On an average the subjects took 9

minutes to complete the task of evaluating a total of 60 images and they were reimbursed

with 45 cents for their participation.

5.4.4 Subject Reliability and Rejection Strategies

Although AMT allows us to gather subjective evaluations from a large number of

subjects in a relatively short period of time, stringent subject rejection strategies need to

be implemented in order to ensure high quality reliable ratings. Following are the subject

rejection methods considered in this work.

� Intrinsic metric: Only those workers on AMT having confidence values greater than

0.75 were allowed to participate in this study. This number, lying between 0 and 1

is based on their responses across all tasks they have completed on AMT. Although

this number does not take into account the performance of the subject only on the

visual tasks, a higher confidence number indicates a more reliable subject. Also, if

the same worker picked up the study multiple times, it might bias the ratings. Hence,

since we wanted unique participants for this study, if the same worker selected the

task again, she was not allowed proceed beyond the instructions page.
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� Using corrective lens : If any worker wore corrective lens in their day-to-day life, they

were instructed to wear them during the entire duration of the study. At the end

of the task, they are asked two questions on whether they normally wore corrective

lens and whether they were wearing them during the task. If a certain worker, who

was supposed to be wearing lens, reported that she was not using them during the

study, her scores were rejected.

� Repeated images : Among the 49 test images, 5 of them were randomly chosen

and presented twice to each subject during the testing phase. If the difference

between the two scores provided by the worker to the same image exceeded a certain

threshold for at least 3 of the 5 repeated images, the scores from the worker was

rejected. During the initial phase of the study, the average standard deviation of the

scores obtained from 400 workers was found to be 17 (rounding up to the nearest

integer). 1.5 times the average standard deviation was considered as the threshold

for rejecting subjects. This method helped to eliminate inattentive subjects who

were providing arbitrary scores to the images.

� Gold standard images : 5 of the remaining 44 images were chosen from the labo-

ratory subjective study. These images, referred to as “gold standard” was used to

provide a control. The median value of the Pearson’s linear correlation coefficient

(PLCC) between the scores provided by each subject to these five images in the

crowdsourced study and the corresponding MOS calculated from the laboratory

subjective test was found to be 0.94651 and the median root-mean-square-error

1All the correlation values between the IQA algorithm scores and/or human ground truth values are
computed after using a non-linear logistic regression as outlined in [7].
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between the subject scores and the ground truth MOS values was 5.4710. The

high degree of agreement between the ground truth data obtained from the labora-

tory settings and that obtained from the online platform shows the high degree of

reliability of the scores obtained by crowdsourcing.

5.4.5 Subject-Consistency Analysis

Figure 5.7: Variation of inter-subject consistency with number of ratings. The horizontal
axis indicates the minimum number of ratings per image for the subject of the images used
to check subject consistency. The vertical axis shows mean Spearman’s Rank Ordered
Correlation Coefficient between the MOS values of two halves of ratings randomized over
10 splits, along with the 95 % confidence intervals. As the number of ratings per image
increases so does the inter-subject consistency.

The consistency of the scores obtained from the subjects has also been measured

using the following methods:

� Inter-Subject consistency : For every image, the ratings were divided into two disjoint

equal sized subsets and the MOS values were computed using each of them. The
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procedure were repeated over 10 random splits and the mean Spearman’s Rank

Ordered Correlation Coefficient (SROCC) between the MOS between the two sets

was found to be 0.9677. Figure 5.7 shoes the inter-subject consistency variation

with the increasing number of ratings per image.

� Intra-Subject consistency : Pearson’s linear correlation coefficient was measured be-

tween the individual opinion scores and the MOS values for the gold standard im-

ages. The median PLCC of 0.8743 was obtained over all the subjects.

The high values of these metrics indicates good consistency between the scores

obtained from the subjects for each image.

5.5 Analysis of subjective scores

We have gathered 327,720 ratings, the images of the database have being evaluated

by 5,462 unique participants. 388 subjects were eliminated following the rejection criterion

based on their performance on the “gold standard” images and/or for not following the

instruction of wearing corrective lenses when they were supposed to. On an average every

image has been evaluated by 110 observers. Figure 5.8 shows the histogram of the number

of ratings per image received till now.

The MOS has been computed by averaging the Z-scores as outlined in Chapter

2. The range of the MOS values spans [16.941 - 68.502]. Figure 5.9 shows the scatter

plot and histogram of the MOS scores for every image obtained from the Z-scores. The

average standard deviation of the subjective scores obtained on every image was found to

be 21.131.
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Figure 5.8: Distribution of number of ratings per image.

(a) (b)

Figure 5.9: (a) Scatter plot and (b) Histogram of MOS obtained from the human subjects.
The range of the MOS values spans [16.941 - 68.502]
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In this subjective study, we also gathered demographic information about the sub-

jects, such as age and gender, as outlined in Figure 5.10. Since familiarity of the subjects

with HDR photography might affect the quality scores provided by them, the subjects

were also requested to provide information on that. Figure 5.11 shows the awareness of

the subjects about HDR photography, the type of optical devices used by them to capture

HDR content (if they indeed knew about HDR) and their familiarity with image process-

ing softwares like Adobe Photoshop or Photomatix. The last factor was included in the

survey because some of the images were created by adding special post-processing effects

after HDR fusion.

(a) (b)

Figure 5.10: Demographics of a sample of subjects (a) age (b) gender

The subjects were instructed to work on the HIT only from personal computers

instead of smartphones or tablets. The type of display devices used and the distance from

the screen can affect visual quality of the image. The subjects also provided information

on these aspects. Figure 5.12 shows the different displays used by the subjects and their

estimated distance from the screen while completing the HIT.
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(a) (b) (c)

Figure 5.11: HDR awareness of the subjects (a) Number of subjects aware of HDR images
(b) The devices used to capture HDR content mostly. The bar titled ‘NA’ shows the
subjects who are not familiar with HDR (c) Number of subjects familiar with softwares
like Photoshop or Photomatix

(a) (b)

Figure 5.12: Display used by subjects (a) display devices used by the subjects (b) ap-
proximate distance of the subject to the display used

103



(a) MOS = 62.43 ±
2.043

(b) MOS = 52.90 ±
2.170

(c) MOS = 42.33±2.77

(d) MOS = 40.23±2.42 (e) MOS = 31.07±2.82

Figure 5.13: Sample images from HDR database used to illustrate the effect of increasing
the number of participants on the calculated MOS. The caption of each image gives the
MOS values and the associated 95% confidence intervals.

5.5.1 Variation of subjective scores with different factors

In section outlines the observations on how the perceptual quality of the subjects

are affected by different parameters such as age, gender, display device used for partici-

pating in the subjective study, distance from the display and their familiarity with HDR

image processing. Figure 5.13 shows some representative images upon which the effect of

the above mentioned factors on the subjective scores was studied.

5.5.1.1 Age

Subjects who used a laptop during the study and were sitting about 15 - 30 inches

away from the screen were considered to isolate the effect of age on perceived quality of the
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images while keeping other factors constant. These display settings were selected because

most of the subjects participated in the experiment using their laptops and reported to be

sitting at about 15 - 30 inches away from the screen, thereby providing us with sufficient

number of samples to study the effect of age on perceived quality. The individual ratings

on the images shown in Fig. 5.13 were grouped according to three age categories: ‘20-30’,

‘30-40’ and ‘>40’ and the MOS was computed for each group, as shown in Figure 5.14.

For these images, no overall conclusion can be drawn, but subjects from the ‘20-30’ group

were found to assign lower scores to some of the images as compared to the other age

groups.

Figure 5.14: Individual Z-scores obtained from subjects of different ages who rated the
images shown in Fig 5.13. For each vertical column, median is the center of the central
box, while the upper and lower edges of each box represent the 25th and 75th percentiles,
the whiskers span the most extreme non-outlier data points.

5.5.1.2 Gender

Subjects between 2030 years of age, who used a laptop during the study and were

sitting about 15 - 30 inches away from the screen were considered to isolate the effect of

gender on perceived quality of the images while keeping other factors constant. These
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display settings were selected because most of the subjects participated in the experiment

using their laptops and reported to be sitting at about 15 - 30 inches away from the

screen, thereby providing us with sufficient number of samples to study the effect of

gender on perceived quality. The individual ratings on the images shown in Fig. 5.13

were grouped according to their gender and the MOS was computed for each group, as

shown in Fig. 5.15. For these images, no overall conclusion can be drawn, but female

subjects were found to assign lower scores to some of the images as compared to the male

participants.

Figure 5.15: Individual Z-scores obtained from subjects of different genders who rated the
images shown in Fig 5.13. For each vertical column, median is the center of the central
box, while the upper and lower edges of each box represent the 25th and 75th percentiles,
the whiskers span the most extreme non-outlier data points.

5.5.1.3 HDR Awareness

One of the questions asked of the subjects was whether they were familiar with

HDR images. Fig. 5.11 shows the distribution of the answer of the subjects to various

HDR related questions. The individual ratings on the images shown in Figure 5.13 were

grouped according to whether the users were familiar with HDR imaging and the MOS

106



was computed for each group, as shown in Figure 5.16. It was found that the subjects

evaluated the perceptual quality of the images in a similar manner, irrespective of whether

they were familiar with HDR imaging or not.

Figure 5.16: Individual Z-scores obtained from subjects familiar with or not familiar with
HDR imaging who rated the images shown in Fig 5.13. For each vertical column, median
is the center of the central box, while the upper and lower edges of each box represent the
25th and 75th percentiles, the whiskers span the most extreme non-outlier data points.

5.5.1.4 Display device used

The subjects were asked to report the type of display device they used to participate

in this study. The individual ratings on the images shown in Fig. 5.13 were grouped

according to whether the users were using a desktop or a laptop computer and the MOS

was computed for each group, as shown in Fig. 5.17. It was found that the subjects

evaluated the perceptual quality of the images in a similar manner for these two types of

displays.
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Figure 5.17: Individual Z-scores obtained from subjects using different display devices
who rated the images shown in Fig 5.13. For each vertical column, median is the center
of the central box, while the upper and lower edges of each box represent the 25th and
75th percentiles, the whiskers span the most extreme non-outlier data points.

5.5.1.5 Distance from display

The subjects were asked to report how far they were sitting from the display while

participating in this study. The individual ratings on the images shown in Figure 5.13 were

grouped according to three distances: ‘<15’, ‘15-30’ and ‘>30’ inches from the display

and the MOS was computed for each group, as shown in Figure 5.18. It was found that

the subjects evaluated the perceptual quality of the images in a similar manner for these

different distances.

5.5.2 Variation of subjective scores with number of sujects

In order to study the effect of including more subjects to the final computed MOS

scores for different images, we randomly selected five images of varying qualities from the

database and plotted the MOS values for each against the number of subjective evaluations

considered. Figure 5.19 shows that the computed MOS values are more or less constant

to the number of subjects viewing the images but the standard error decreases upon
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Figure 5.18: Individual Z-scores obtained from subjects viewing the images at different
distances who rated the images shown in Fig 5.13. For each vertical column, median is
the center of the central box, while the upper and lower edges of each box represent the
25th and 75th percentiles, the whiskers span the most extreme non-outlier data points.

considering more and more subjects.

Figure 5.19: MOS plotted against the number of workers who viewed and rated the images
shown in Fig 5.13 along with the 95 % confidence intervals.

5.6 Experiments Conducted

The performance of the leading NR-IQA algorithms were tested on this database

to see the usefulness and limitations of the current algorithms to evaluate blindly the dif-

ferent HDR processing artifacts. The algorithms G-IQA-1 and G-IQA-2 are two proposed
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gradient scene-statistics based NR-IQA algorithms in the LAB color space that correlates

better with the human ground truth subjective score for HDR scenes, compared to the

existing state-of-the-art NR-IQA algorithms. G-IQA-1 (L) and G-IQA-2 (L) indicate ver-

sions of the proposed algorithms using only the luminance channel (L). Details of these

methods are outlined in the next chapter.

Most of the algorithms are based on training a machine learning based model

with perceptually relevant features extracted from the images in different domains. We

randomly split the data into disjoint training and testing sets at 4:1 ratio and the split was

randomized over 100 iterations. Care was taken to ensure that the same source scene does

not appear in the training and the testing sets in order to prevent artificial inflation of

the results. The Spearman's rank ordered correlation coefficient (SROCC) and Pearson's

linear correlation coefficient (PLCC) values between the predicted and the ground truth

quality scores for every iteration and the median value of the correlations were reported.

We discovered that there is significant room for improvement in using the present NR-IQA

metrics to predict HDR artifacts. The results are summarized in Table 5.1.

5.7 Conclusion

In this chapter we have outlined the different sources of the HDR images, the

algorithms used to process them and the crowdsourced subjective study framework to

have the images evaluated by thousands of observers over the internet. We also showed

the shortcomings of the present NR-IQA algorithms in judging the perceptual quality

of HDR images and proposed a spatial-domain NR-IQA algorithm that shows correlates

better with human perception. The goal of this subjective study is to gather ratings from
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Table 5.1: Median Spearman”s Rank Ordered Correlaton Coefficient (SROCC) and Pear-
son”s Linear Correlation Coefficient (PLCC) between the algorithm scores for various
IQA algorithms and the MOS scores for ESPL-LIVE HDR database. The table has been
sorted in the descending order of SROCC of the ‘Overall category’. Red indicates the
proposed methods. The bold values indicate the best performing algorithm.

IQA Tone Mapping Multi-Exposure Fusion Post Processing Overall

SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

1 G-IQA-1 0.728 0.764 0.711 0.705 0.616 0.643 0.719 ( 0.671, 0.766) 0.718( 0.652, 0.776)
2 G-IQA-2 0.752 0.777 0.706 0.690 0.529 0.552 0.711 ( 0.639, 0.792) 0.704( 0.645, 0.788)
3 G-IQA-2 (L) 0.703 0.737 0.662 0.661 0.465 0.515 0.662 ( 0.575, 0.730) 0.663( 0.571, 0.730)
4 G-IQA-1 (L) 0.672 0.702 0.634 0.637 0.551 0.582 0.661 ( 0.595, 0.732) 0.658( 0.590, 0.738)
5 DESIQUE 0.542 0.553 0.572 0.584 0.529 0.563 0.570 ( 0.481, 0.657) 0.568( 0.467, 0.650)
6 GM-LOG 0.549 0.562 0.545 0.541 0.578 0.599 0.556 ( 0.448, 0.638) 0.557( 0.465, 0.639)
7 CurveletQA 0.584 0.623 0.517 0.535 0.481 0.506 0.547 ( 0.458, 0.610) 0.560( 0.447, 0.631)
8 DIIVINE 0.523 0.530 0.453 0.472 0.392 0.447 0.482 ( 0.326, 0.578) 0.484( 0.331, 0.583)
9 BLIINDS-II 0.412 0.442 0.446 0.459 0.486 0.510 0.444 ( 0.310, 0.519) 0.454( 0.326, 0.545)

10 C-DIIVINE 0.453 0.453 0.423 0.460 0.432 0.470 0.434 ( 0.265, 0.551) 0.444( 0.277, 0.538)
11 BRISQUE 0.340 0.370 0.494 0.516 0.468 0.483 0.418 ( 0.300, 0.500) 0.444( 0.313, 0.528)

more than 5,000 unique observers. To the best of our knowledge, this is the world’s largest

and most comprehensive study of HDR image quality ever conducted. This can be used

to construct better performing NR-IQA algorithms for HDR images. The next chapter

outlines the details of the proposed NR-IQA algorithms. For the sake of completeness, the

performance of these algorithms have been evaluated on the legacy natural and synthetic

SDR images.
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Chapter 6

Image Quality Evaluation Algorithm based on

Natural Scene Statistics

6.1 Introduction

The previous chapter compares several NSS-based NR-IQA algorithms in terms of

their correlation with human subjective evaluations of HDR image artifacts. For HDR

image artifacts, this study shows that there is significant room for improvement in NSS-

based NR-IQA algorithms. This chapter proposes two NSS-based NR-IQA algorithms

that use the gradient domain and that show high degrees of correlation with human

subjective scores for HDR artifacts. For completeness, the correlation performance of the

proposed algorithms and other NSS-based NR-IQA algorithms has also been evaluated

on natural and synthetic SDR images.

Among the existing algorithms, DErivative Statistics-based QUality Evaluator

(DESIQUE) [67] has been found to show very good correlation with human ground truth

scores for natural and synthetic images. This algorithm uses log-derivative statistics and

combines features in both spatial and the frequency domain because certain class of dis-

tortions affect the scene statistics in complimentary transform domains. In this work,

we propose a spatial domain NR-IQA algorithm using log-derivative statistics on the

mean-subtracted contrast normalized (MSCN) transformed pixels[79]. In addition, we
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also extract features from the σ-field of the image. Statistical features are also computed

on the gradient field. Lastly, we take into account the chromatic artifacts by computing

these statistics in perceptually relevant color spaces. The LAB color space has been used.

The process is repeated over two scales.

6.2 Proposed algorithm

This section summarizes the proposed algorithm. This is based on the assumption

that the log-derivative statistics of the pixels and the pixels gradient magnitudes change

with the different types of HDR processing methods and this deviation may be used to

predict the quality scores.

6.2.1 Computing Log-Derivatives

The log-derivative statistics of the images are based on the difference between a

particular pixel and its neighbors after converting the pixels to the logarithm domain[67].

Let M×N be the dimension of the image I, and I(i, j) be the pixel value in the (i, j)-th

spatial location, i ∈ {1, 2, ..,M}, j ∈ {1, 2, ..., N}. The logarithm image is given by:

J(i, j) = log[I(i, j) + C] (6.1)

where C is a small constant added to avoid numerical instabilities. Considering the

different neighboring directions, the following log-derivatives are defined:

D1 : ∇xJ(i, j) = J(i, j + 1)− J(i, j) (6.2)
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D2 : ∇yJ(i, j) = J(i+ 1, j)− J(i, j) (6.3)

D3 : ∇xyJ(i, j) = J(i+ 1, j + 1)− J(i, j) (6.4)

D4 : ∇yxJ(i, j) = J(i+ 1, j − 1)− J(i, j) (6.5)

D5 : ∇x∇yJ(i, j) = J(i− 1, j) + J(i+ 1, j)− J(i, j − 1)− J(i, j + 1) (6.6)

D6 : ∇cx∇cyJ(i, j)1 = J(i, j) + J(i+ 1, j + 1)− J(i, j + 1)− J(i+ 1, j) (6.7)

D7 : ∇cx∇cyJ(i, j)2 = J(i−1, j−1)+J(i+1, j+1)−J(i−1, j+1)−J(i+1, j−1) (6.8)

6.2.2 Spatial Domain Scene Statistics

For this work, we model the scene statistics of the images in the spatial domain,

MSCN pixels and the σ-field of the image. The pixels of the image are preprocessed by

mean subtraction and divisive normalization. MSCN pixels are generated by:

Î(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + 1
(6.9)

where the local mean µ(i, j) and standard deviation σ(i, j) are defined as:

µ(i, j) =
k=K∑
k=−K

l=L∑
l=−L

wk,lI(i+ k, j + l) (6.10)

σ(i, j) =

√√√√ k=K∑
k=−K

l=L∑
l=−L

wk,l[I(i+ k, j + l)− µ(i, j)]2 (6.11)

w = {wk,l|k = −K, ..,K, l = −L, ..., L} is a symmetric local convolution window centered

at the (i, j)-th pixel. K and L determine the size of local patch considered in the calcu-

lation of the mean and standard deviation. In [66], the authors considered 7 × 7 image
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patches, and a circularly symmetric 2D Gaussian kernel; however, experiments show that

the distribution of the MSCN patches are not very sensitive to the window size, or the

convolution kernel.

A zero mean Generalized Gaussian Distribution (GGD) can be used to model the

MSCN coefficients Î(i, j):

f(x;α, γ2) =
α

2βΓ(1/α)
exp

[
−
(
|x|
β

)2
]

(6.12)

where β = γ
√

Γ(1/α)
Γ(3/α)

and Γ(x) =
∫∞

0
t(x−1)e−t, x > 0 is the gamma function. The pa-

rameters α and γ are known as shape and scale parameters respectively and are used as

features that capture the deviation in the image statistics for the different HDR processing

artifacts.

Log-derivatives of the adjacent MSCN coefficients are also modeled by a GGD. The

shape(α) and scale(γ) parameters of the GGD fitted to the seven types of log-derivatives

have also been used as features in the spatial domain.

We also extract two quantities from the σ-field: mean(Φσ) and square inverse of

coefficient of variation(Ψσ). The quantities are defined as:

Φσ =
1

MN

M−1∑
i=0

N−1∑
j=0

σ(i, j) (6.13)

Σσ(i, j) =

√√√√M−1∑
i=0

N−1∑
j=0

[σ(i+ k, j + l)− Φσ(i, j)]2 (6.14)

Ψσ =

(
Φσ

Σσ

)2

(6.15)
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Table 6.1 shows a summary of the spatial domain features extracted in every scale

and in each color channel.

Table 6.1: Spatial domain features considered for the proposed algorithm.
Feature ID Feature Description

f1 − f2 Shape and Scale parameters of the GGD fitted to the MSCN coef-
ficients as outlined in 6.9

f3 − f16 Shape and Scale parameters of the GGD fitted to the log-derivative
of the seven types of neighbors as outlined in 6.2.1

f17 − f18 Two parameters extracted from the σ-field as outlined in 6.11

6.2.3 Gradient Domain Scene Statistics

The gradient field of the image gives important information about the distribution

of edges and variations in local contrast. The magnitude of the gradient gives information

about the amount of local change in luminance and the orientation tells us the direction

in which the change is the most rapid. Many of the HDR processing algorithms, such as

tone-mapping or multi-exposure fusion algorithms are found to modify the local gradients

of the multi-exposure stacks, and that results in changing the contrast of the resultant

fused image both locally and globally. This has led us to believe that extracting the

statistical features in the gradient domain may lead to better NR-IQA models. In this

algorithm, the gradient information is incorporated in two different ways:

6.2.3.1 Using Gradient Magnitude

The gradient magnitude has been used in FR-IQA metrics[45]. The local gradient

is computed by convolving the image with linear filters along the horizontal and vertical
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directions. The Sobel operator is one such commonly used 3 × 3 gradient filter. The

horizontal (Hx) and vertical (Hy) components of the Sobel operator are given by:

Hx =

−1 0 1
−2 0 2
−1 0 1

 (6.16)

Hy =

−1 −2 −1
0 0 0
1 2 1

 (6.17)

The gradient magnitude,M of the image I(i, j) at the (i, j)-th spatial location is

given by:

M(i, j) =
√

(I ∗Hx)2(i, j) + (I ∗Hy)2(i, j) (6.18)

where ∗ denotes the convolution operator. The features, as summarized in Table6.1 are

also extracted from the gradient magnitude field. The resultant algorithm that combines

the spatial domain features of section 6.2.2 with these gradient magnitude features is

referred to as Gradient-Image Quality Assessment-1 (G-IQA-1).

6.2.4 Using Gradient Structure Tensor

The gradient structure tensor[127] is an important operator that summarizes the

predominant gradient directions over a local neighborhood. The 2D structure tensor is

given by:

J =

[
f(Gx) f(Gx.Gy)

f(Gx.Gy) f(Gy)

]
(6.19)

where

f(V ) =
∑
l,k

w[i, j]V (i− l, j − k)2 (6.20)
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Gx(i, j) and Gy(i, j) are the horizontal and vertical components of the gradient vector

at pixel (i, j) respectively and w is a window of dimension of PXP over which the lo-

calized structure tensor is computed. The quantities Gx(i, j) and Gy(i, j) are computed

by convolving with difference-of-Gaussians. The relative discrepancy of between the two

eigenvalues indicates the degree of anisotropy of the local gradient. The coherence mea-

sure is defined by:

C =

(
λ1 − λ2

λ1 + λ2

)2

(6.21)

where λ1 and λ2 are the two eigenvalues of the gradient structure tensor. The coherene

measure is computed over PXP non-overlapping blocks of the image and the mean,

standard deviation, skewness and kurtosis values are considered as the features. The

resultant algorithm that combines the spatial domain features of section 6.2.2 with the

gradient structure tensor features is referred to as Gradient-Image Quality Assessment-2

(G-IQA-2).

Table 6.2 shows the correlation of each type of feature with the MOS on the ESPL-

LIVE HDR database. The low correlations between each individual features and the MOS

indicates the need to combine complementary feature in order to predict the quality scores

of image inflicted with a wide range of artifacts. Figure 6.1 shows three images of the same

scene (obtained from the ESPL-LIVE HDR database) tone-mapped using three different

versions. Each of the tonemapping operators give rise to distinctly different images.

Figures 6.2 and 6.3 show the corresponding changes in features in different domains.

118



Table 6.2: Spearman’s Rank Ordered Correlation Coefficient (SROCC) and Pearson’s
Linear Correlation Coefficient (PLCC) between each feature and DMOS across 50 train-
test (4:1) combinations on the ESPL-LIVE HDR Database over a single image scale
and considering the L-component. Low correlations between each individual feature and
DMOS show that the features complement each other

Domain Feature Description SROCC PLCC

Spatial Shape and Scale parameters of the GGD fitted to the MSCN coef-
ficients (6.9) [f1 − f2]

0.238 0.266

Spatial Shape and Scale parameters of the GGD fitted to the log-derivative
of the seven types of neighbors (Section 6.2.1) [f3 − f16]

0.439 0.436

Spatial Two parameters extracted from the σ-field (6.11) [f17 − f18] 0.369 0.358
Gradient Shape and Scale parameters of the GGD fitted to the MSCN coef-

ficients of gradient magnitude field (Section 6.2.3.1) [f19 − f20]
0.250 0.277

Gradient Shape and Scale parameters of the GGD fitted to the log-derivative
of the seven types of neighbors of gradient magnitude field (Section
6.2.3.1) [f21 − f34]

0.386 0.384

Gradient Two parameters extracted from the σ-field of gradient magnitude
field (Section 6.2.3.1) [f35 − f36]

0.388 0.392

Gradient Mean, standard deviation, skewness, and kurtosis of gradient struc-
ture tensor (Section 6.2.4) [f37 − f38]

0.420 0.466
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(a) MOS = 40.47 (b) MOS = 49.23 (c) MOS = 52.80

Figure 6.1: Image of the same scene tone-mapped using three different versions. (a)
Method 1 (Durand TMO [96]) (b) Method 2 (Fattal TMO [99]) (c) Method 3 (Reinhard
TMO [95]) The caption of each image shows the MOS.

6.3 Results

This section outlines the results of evaluating the performance of state-of-the-art

NR-IQA algorithms on the ESPL-LIVE HDR Database. The performance of the proposed

algorithms have been evaluated by measuring correlation with subjective scores and the

results have also been analyzed to determine statistical significance.

Once the features were extracted, a mapping is obtained from the feature space to

the DMOS scores using a regression method, which provides a measure of the perceptual

quality. We used a support vector machine regressor (SVR), specifically LibSVM [85] to

implement ε-SVR with the radial basis function kernel, γ is by default the inverse of the

number of features.
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(a) (b) (c)

(d) (e) (f)

Figure 6.2: Histograms of (a) MSCN pixels, (b) Log-derviatives of the MSCN pixels (c) σ-
field of the pixels (d) MSCN coefficients of the gradient magnitude field (e) Log-derviatives
of the MSCN coefficients of the gradient magnitude field (f) σ-field of the gradient magni-
tude field. The legends “Method 1”, “Method 2”, and “Method 3” represents processing
by Durand TMO [96], Fattal TMO [99], and Reinhard TMO [95] respectively as show in
Fig 6.1.
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Figure 6.3: Histograms of coherence of the gradient structure tensor. The legends
“Method 1”, “Method 2”, and “Method 3” represents processing by Durand TMO [96],
Fattal TMO [99], and Reinhard TMO [95] respectively as show in Fig 6.1.

6.3.1 Experiments on ESPL-LIVE HDR Database

The proposed algorithms, G-IQA-1 and G-IQA-2 have been evaluated on the

ESPL-LIVE HDR database. G-IQA-1 (L) and G-IQA-2 (L) indicate versions of the

proposed algorithms using only the luminance channel (L). We randomly split the data

into disjoint training and testing sets at 4:1 ratio and the split was randomized over 100

trials. Care was taken to ensure that the same source scene does not appear in the training

and the testing sets in order to prevent artificial inflation of the results. The Spearmans

rank ordered correlation coefficient (SROCC) and Pearsons linear correlation coefficient

(PLCC) values between the predicted and the ground truth quality scores for every iter-

ation and the median value of the correlations were reported. We discovered that there is

significant room for improvement in using the present NR-IQA metrics to predict HDR

artifacts. The results are summarized in table 6.3.

Table 6.4 shows the root-mean-squared-error (RMSE), reduced χ̃2 statistic between

scores predicted by the algorithms and the MOS for various algorithms (after logistic func-
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Table 6.3: Median Spearman’s Rank Ordered Correlaton Coefficient (SROCC) and Pear-
son’s Linear Correlation Coefficient (PLCC) between the algorithm scores for various
IQA algorithms and the MOS scores for ESPL-LIVE HDR database. The table has been
sorted in the descending order of SROCC of the ‘Overall category’. The numbers within
parentheses in the “Overall” category show the confidence intervals on correlation values,
computed by bootstrapping using 100 samples. Red indicates the proposed methods. The
bold values indicate the best performing algorithm.

IQA Tone Mapping Multi-Exposure Fusion Post Processing Overall

SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

1 G-IQA-1 0.728 0.764 0.711 0.705 0.616 0.643 0.719 ( 0.671, 0.766) 0.718( 0.652, 0.776)
2 G-IQA-2 0.752 0.777 0.706 0.690 0.529 0.552 0.711 ( 0.639, 0.792) 0.704( 0.645, 0.788)
3 G-IQA-2 (L) 0.703 0.737 0.662 0.661 0.465 0.515 0.662 ( 0.575, 0.730) 0.663( 0.571, 0.730)
4 G-IQA-1 (L) 0.672 0.702 0.634 0.637 0.551 0.582 0.661 ( 0.595, 0.732) 0.658( 0.590, 0.738)
5 DESIQUE 0.542 0.553 0.572 0.584 0.529 0.563 0.570 ( 0.481, 0.657) 0.568( 0.467, 0.650)
6 GM-LOG 0.549 0.562 0.545 0.541 0.578 0.599 0.556 ( 0.448, 0.638) 0.557( 0.465, 0.639)
7 CurveletQA 0.584 0.623 0.517 0.535 0.481 0.506 0.547 ( 0.458, 0.610) 0.560( 0.447, 0.631)
8 DIIVINE 0.523 0.530 0.453 0.472 0.392 0.447 0.482 ( 0.326, 0.578) 0.484( 0.331, 0.583)
9 BLIINDS-II 0.412 0.442 0.446 0.459 0.486 0.510 0.444 ( 0.310, 0.519) 0.454( 0.326, 0.545)

10 C-DIIVINE 0.453 0.453 0.423 0.460 0.432 0.470 0.434 ( 0.265, 0.551) 0.444( 0.277, 0.538)
11 BRISQUE 0.340 0.370 0.494 0.516 0.468 0.483 0.418 ( 0.300, 0.500) 0.444( 0.313, 0.528)

tion fitting) and outlier ratio (expressed in percentage). The top performing algorithms

also show lower values of RMSE and outlier ratio.

Fig. 6.4 shows box plots of the distribution of SROCC values for each of the 100

trials of random train-test splits on the ESPL-LIVE HDR Image Database. This enable us

to study the robustness of performance of the algorithms with variations of the choice of

the training set. The proposed method shows smaller variation in the degree of correlation

with human subjective evaluation.

To analyze the degree of variation of SROCC between the scores predicted by the

algorithm and the DMOS, the percentage of train/test splits was varied from 90% of the

content used for training and the remaining 10% used for testing to 10% of the content

used for training to 90% used for testing. The knee of the curve occurs roughly at 60:40

train:test splits. This shows that the results are not affected by overfitting or underfitting
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Figure 6.4: Box plot of SROCC of learning based NR-IQA algorithms on images in the
ESPL-LIVE HDR Image Database for 4:1 train-test splits over 100 trials. For each box,
median is the central box, edges of the box represent the 25th and 75th percentiles, the
whiskers span the most extreme non-outlier data points, and the outliers are plotted
individually.

Figure 6.5: Mean SROCC between predicted and subjective DMOS scores for G-IQA-
1 (and the associated 95% confidence intervals) as a function of the percentage of the
content used for training on images in the ESPL-LIVE HDR Image Database over 50
trials.
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Table 6.4: Root-mean-square error (RMSE), reduced χ̃2 statistic between the algorithm
scores and the DMOS for various NR-IQA Algorithms (after logistic function fitting)
and outlier ratio (expressed in percentage) for each distortion category for ESPL-LIVE
HDR database. Red indicates the proposed methods. The bold values indicate the best
performing algorithm for that category.

IQA Tone Mapping Multi-Exposure Fusion Post Processing Overall
RMSE χ̃2 OR RMSE χ̃2 OR RMSE χ̃2 OR RMSE χ̃2 OR

1 G-IQA-1 6.711 9.908 0.000 6.884 21.155 0.000 6.884 2.376 0.000 7.033 13.918 0.275
2 G-IQA-2 6.643 3.576 0.000 6.988 5.983 0.000 7.457 6.660 0.000 7.231 16.495 0.277
3 G-IQA-2 (L) 7.070 5.327 0.000 7.178 13.882 0.000 7.742 3.227 0.000 7.607 13.879 0.551
4 G-IQA-1 (L) 7.434 8.624 0.662 7.484 5.263 0.000 7.308 3.131 0.000 7.628 12.558 0.552
5 DESIQUE 8.577 12.079 0.683 7.862 11.588 0.687 7.402 1.851 0.000 8.296 19.614 0.829
6 GM-LOG 8.632 5.002 1.170 8.028 15.027 0.702 7.420 0.851 0.000 8.357 20.659 0.829
7 CurveletQA 8.177 17.408 0.694 8.054 10.754 0.714 7.922 2.892 0.000 8.511 15.253 0.829
8 DIIVINE 8.805 10.025 0.791 8.371 5.663 0.667 7.979 2.659 0.000 8.821 12.115 0.829
9 BLIINDS-II 9.330 7.565 0.697 8.517 19.979 0.752 7.818 1.976 0.000 8.975 21.948 0.828

10 C-DIIVINE 9.167 15.338 1.356 8.485 8.374 0.671 7.852 1.428 0.000 8.983 12.305 0.966
11 BRISQUE 9.535 16.712 1.356 8.227 5.681 0.685 7.894 7.146 0.000 9.049 17.259 0.831

to the training data. Figure 6.5 shows the results.

Figure shows the scatter plot between predicted scores and MOS scores on ESPL-

LIVE HDR Database for a selected few NR-IQA algorithms.

6.3.2 Determination of Statistical Significance

For this purpose, nine representative NR-IQA algorithms were selected. The sta-

tistical significance tests were carried out for multiple training-test splits, using different

4:1 train-test splits of the database each time, and similar results were obtained. The ta-

ble outlines the results obtained for one such representative trial. To determine whether

the IQA algorithms are significantly different from each other, the F-statistic, as in [7][81],

was used to determine the statistical significance between the variances of the residuals

after a non-linear logistic mapping between the two IQA algorithms, at the 95% con-

fidence interval. Table 6.5 shows the results for ten selected IQA algorithms and all
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distortions. Overall, the proposed algorithms are found to be statistically superior to the

other NR-IQA algorithms.

Table 6.5: Results of the F-test performed on the residuals between model predictions and
MOS scores on ESPL-LIVE HDR database. Each cell in the table is a codeword consisting
of 4 symbols that correspond to “Tone Mapping Operators”’, “Multi-Exposure Fusion”,
“Post Processing”, and “Overall” distortions. “1”(“0”) indicates that the performance
of the row IQA is superior(inferior) to that of the column IQA. - indicates that the
statistical performance of the row IQA is equivalent to that of the column IQA. The
matrix is symmetric. Red indicates the proposed methods.

G-IQA-1 G-IQA-2 DESIQUE BRISQUE GM-LOG C-DIIVINE DIIVINE BLIINDS-II CurveletQA

G-IQA-1 - - - - - - - - 1 - - 1 1 1 - 1 1 1 - 1 1 1 - 1 1 1 - 1 1 1 - 1 1 1 - 1

G-IQA-2 - - - - - - - - 1 1 - 1 1 1 - 1 1 1 - 1 1 1 - 1 1 1 - 1 1 1 - 1 - 1 - 1

DESIQUE 0 - - 0 0 0 - 0 - - - - 1 - - 1 - - - - - - - - - - - - - - - - - - - -

BRISQUE 0 0 - 0 0 0 - 0 0 - - 0 - - - - - - - - - - - - - - - - - - - - 0 - - -

GM-LOG 0 0 - 0 0 0 - 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

C-DIIVINE 0 0 - 0 0 0 - 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

DIIVINE 0 0 - 0 0 0 - 0 - - - - - - - - - - - - - - - - - - - - - - - - 0 - - -

BLIINDS-II 0 0 - 0 0 0 - 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

CurveletQA 0 0 - 0 - 0 - 0 - - - - 1 - - - - - - - - - - - 1 - - - - - - - - - - -

6.3.3 Experiments on other databases

In addition to the ESPL-HDR database, for the sake of completeness, the perfor-

mance of the proposed algorithm has also been tested on the legacy LIVE database[7],

LIVE Multiply Distorted Database[8] and on the ESPL Synthetic Image Database[9].

Table 6.6 and Table 6.7 show the performance of the proposed algorithm on the LIVE

database[7] and LIVE Multiply Distorted Image Database[8] respectively. Similar tech-

nique of splitting the data into disjoint training and testing sets at 4:1 ratio, randomized

over 100 trials, was followed. The high degrees of correlation with the subjective data

shows that the proposed methods can also capture the processing, compression and trans-

mission artifacts arising in SDR images.
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Table 6.6: Median Spearman’s Rank Ordered Correlation Coefficient (SROCC) and Pear-
son’s Linear Correlation Coefficient (PLCC) between algorithm scores and DMOS for var-
ious NR-IQA algorithms across 100 train-test (4:1) combinations on the LIVE Database
of natural images. Bold values indicate the best performing algorithm for that cate-
gory. Performances of some FR-IQA algorithms (shown in italics) have been included for
comparison. Red indicates the proposed methods. Italics indicate FR-IQA algorithms.

IQA JP2K JPEG Gaussian Noise Blur Fast Fading Overall

SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

1 GM-LOG 0.882 0.904 0.878 0.917 0.978 0.988 0.915 0.925 0.899 0.917 0.914 ( 0.860, 0.941) 0.917( 0.857, 0.942)
2 G-IQA-1 0.905 0.914 0.883 0.915 0.983 0.990 0.917 0.925 0.836 0.860 0.906 ( 0.788, 0.952) 0.907( 0.786, 0.952)
3 G-IQA-2 0.904 0.910 0.867 0.902 0.982 0.990 0.920 0.930 0.841 0.863 0.904 ( 0.810, 0.943) 0.903( 0.819, 0.943)
4 BRISQUE 0.878 0.888 0.852 0.889 0.962 0.975 0.941 0.942 0.863 0.887 0.902 ( 0.798, 0.950) 0.900( 0.786, 0.949)
5 C-DIIVINE 0.872 0.882 0.839 0.876 0.965 0.974 0.915 0.915 0.891 0.915 0.898 ( 0.817, 0.944) 0.905( 0.816, 0.945)
6 BLIINDS-II 0.907 0.912 0.846 0.884 0.939 0.960 0.906 0.918 0.884 0.902 0.897 ( 0.775, 0.938) 0.900( 0.746, 0.946)
7 DESIQUE 0.875 0.893 0.824 0.869 0.975 0.985 0.908 0.925 0.829 0.865 0.878 ( 0.805, 0.944) 0.884( 0.797, 0.938)
8 G-IQA-1 (L) 0.848 0.853 0.839 0.870 0.955 0.960 0.865 0.891 0.788 0.836 0.866 ( 0.721, 0.934) 0.861( 0.710, 0.930)
9 CurveletQA 0.816 0.824 0.827 0.836 0.969 0.979 0.896 0.900 0.826 0.866 0.863 ( 0.694, 0.916) 0.859( 0.493, 0.911)

10 G-IQA-2 (L) 0.822 0.843 0.818 0.855 0.941 0.956 0.897 0.907 0.729 0.737 0.837 ( 0.600, 0.920) 0.840( 0.621, 0.911)
11 DIIVINE 0.824 0.828 0.759 0.798 0.937 0.950 0.854 0.888 0.759 0.792 0.827 ( 0.451, 0.924) 0.829( 0.452, 0.919)
12 GRNN 0.816 0.822 0.765 0.748 0.916 0.939 0.877 0.896 0.816 0.861 0.776 ( 0.652, 0.833) 0.784( 0.688, 0.854)
13 BIQI 0.668 0.689 0.580 0.612 0.776 0.782 0.744 0.783 0.567 0.578 0.634 ( 0.173, 0.811) 0.642( 0.194, 0.815)

14 MS-SSIM 0.963 0.975 0.979 0.979 0.977 0.988 0.954 0.965 0.939 0.949 0.954 0.951
15 SSIM 0.939 0.941 0.947 0.946 0.964 0.982 0.905 0.900 0.939 0.951 0.913 0.907
16 PSNR 0.865 0.876 0.883 0.903 0.941 0.917 0.752 0.780 0.8736 0.880 0.864 0.859

In order to show the database independence of the proposed method, it was trained

on the LIVE database of natural images and the performance was evaluated on the TID

2013 database[10]. Among the distortions present in the TID2008 database: JPEG2000,

JPEG, Gaussian noise, and blur were chosen. Table 6.8 shows the results obtained for the

different types of artifacts. In addition, for the sake of comparison, the results obtained

from some well-known NR-IQA and FR-IQA algorithms have also been included. The

degree of correlation drops in contrast to the results obtained when the methods are

trained and tested on disjoint sets of the same database, but still we see a sufficiently

high degree of match with the human subjective scores. The results are also visually

illustrated in figure 6.7.

The proposed algorithms have also been evaluated on the ESPL Synthetic Image

Database in Chapter 2. Table 6.9 summarizes the results, along with the runtime.
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Table 6.7: Spearman Rank-order Correlation Coefficient (SROCC) and Pearson’s Linear
Correlation Coefficient (PLCC) between the algorithm scores for various IQA algorithms
and the MOS scores across 100 train-test (4:1) combinations on the LIVE Multiply Dis-
torted Image database (100 iterations considered for G-IQA-1 and G-IQA-2). Bold values
indicate the best performing algorithm for that category. Performances of some FR-IQA
algorithms (shown in italics) have been included for comparison. Red indicates the pro-
posed methods.

NR-IQA algorithms SROCC PLCC

G-IQA-1 0.9523 0.9589
G-IQA-2 0.9541 0.9577

DESIQUE 0.9403 0.9511
BRISQUE 0.9111 0.9349

PSNR 0.6954 0.7637
MS-SSIM 0.8454 0.8825

VIF 0.8874 0.9083
IFC 0.8888 0.9137

NQM 0.9020 0.9160
VSNR 0.7844 0.8326
WSNR 0.7768 0.8408

6.4 Conclusion

In this chapter, I describe the different spatial domain features extracted in the

proposed scene-statistics based NR-IQA algorithms. I also conduct a series of experiments

on different IQA databases to evaluate its performance. The proposed methods show

high degree of correlations for HDR artifacts and also performs well on the legacy natural

and synthetic SDR image databases. The next chapter summarizes the dissertation and

proposes avenues of future work.
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Table 6.8: Spearman’s Rank Ordered Correlation Coefficient (SROCC) and Pearson’s
Linear Correlation Coefficient (PLCC) between algorithm scores and DMOS for various
NR-IQA algorithms (mentioned in Table 3.1) across 100 train-test (4:1) combinations on a
subset of the TID 2013 Database after training the algorithms on the LIVE database. Bold
values indicate the best performing algorithm for that category. Performances of some
FR-IQA algorithms (shown in italics) have been included for comparison. ‘-’ indicates
that the original paper did not report these values. Red indicates the proposed methods.

IQA JPEG JP2K GN Blur Overall

SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

G-IQA-1 0.8644 0.9133 0.9094 0.9257 0.8741 0.8841 0.9268 0.9220 0.8393 0.8828
BLIINDS-II 0.8889 - 0.9147 - 0.6956 - 0.8572 - 0.8542 -
BRISQUE 0.8355 0.8670 0.8704 0.8896 0.6955 0.6993 0.8159 0.8049 0.7789 0.8191
DESIQUE 0.7622 0.8310 0.8116 0.8053 0.7521 0.7699 0.7137 0.7565 0.7271 0.7494

GMSD 0.9507 0.9736 0.9657 0.9788 0.9462 0.9126 0.9113 0.8924 0.9508 0.9488
MS-SSIM 0.9172 0.9781 0.9486 0.9776 0.8641 0.9541 0.9619 0.9481 0.9135 0.9495
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(a) (b) (c)

(d) (e)

Figure 6.6: Scatter plot between predicted scores and MOS scores on ESPL-LIVE HDR
Database for a selected few NR-IQA algorithms. The red line indicates the logistic regres-
sion fit. The abbreviations ”TMO”, ”MEF”, and ”PP” indicate Tone-Mapping, Multi-
Exposure Fusion and Post-Processing algorithms respectively.
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Figure 6.7: Scatter plot between predicted scores of G-IQA-1 Versus subjective MOS on
TID2013 database[10] when the proposed algorithm is trained on LIVE database[7].
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Table 6.9: Median Spearman’s Rank Ordered Correlation Coefficient (SROCC) and Pear-
son’s Linear Correlation Coefficient (PLCC) between algorithm scores and DMOS for var-
ious NR-IQA algorithms (described in Section 3.3.3) along with algorithm computation
time needed (on a Macintosh laptop having 8 GB RAM, 2.9 GHz clock, Intel Core i7
CPU) across 100 train-test (4:1) combinations on the ESPL Synthetic Image Database
(50 trials for CORNIA in row 2). Italicized entries are NR-IQA algorithms meant for
particular distortion categories. Italicized algorithms indicate the values obtained when
the mentioned NR-IQA algorithms were applied for distortion categories other than what
they were originally intended for. For these algorithms, the correlation values quoted in
the “Overall” category is same as the correlations in the distortion category for which
the algorithm was originally meant for. The numbers within parentheses in the “Overall”
category show the confidence intervals on correlation values, obtained by considering the
maximum and minimum values of the correlations obtained over a 100 trials. The table
has been sorted in the descending order of SROCC for the “Overall” category. Red indi-
cates the proposed methods. Bold values indicate the best performing algorithm for that
category.

IQA Interp. Blur GN JPEG FF Overall (Confidence Interval) Time

SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC (s)

1 G-IQA-1 (L) 0.605 0.646 0.612 0.640 0.858 0.904 0.901 0.927 0.774 0.833 0.813 ( 0.562, 0.918) 0.819( 0.626, 0.911) 2.134
2 CORNIA 0.808 0.823 0.775 0.801 0.793 0.821 0.898 0.918 0.706 0.763 0.810 ( 0.687, 0.875) 0.807( 0.682, 0.880) 84.330
3 C-DIIVINE 0.702 0.760 0.730 0.769 0.847 0.896 0.841 0.879 0.738 0.802 0.798 ( 0.691, 0.916) 0.808( 0.712, 0.912) 65.720
4 BRISQUE 0.631 0.643 0.720 0.782 0.840 0.902 0.898 0.935 0.717 0.740 0.789 ( 0.663, 0.897) 0.795( 0.690, 0.895) 0.590
5 GM-LOG 0.680 0.711 0.653 0.694 0.853 0.906 0.912 0.944 0.701 0.746 0.787 ( 0.627, 0.893) 0.791( 0.594, 0.892) 0.590
6 G-IQA-1 0.580 0.647 0.474 0.508 0.871 0.920 0.922 0.942 0.726 0.758 0.774 ( 0.552, 0.893) 0.786( 0.569, 0.887) 4.641
7 DESIQUE 0.595 0.678 0.590 0.617 0.886 0.922 0.934 0.955 0.714 0.737 0.773 ( 0.570, 0.909) 0.781( 0.588, 0.901) 2.250
8 G-IQA-2 0.510 0.584 0.565 0.576 0.857 0.906 0.865 0.879 0.728 0.762 0.743 ( 0.387, 0.888) 0.744( 0.406, 0.877) 42.693
9 CurveletQA 0.658 0.695 0.695 0.753 0.880 0.916 0.854 0.880 0.553 0.595 0.731 ( 0.460, 0.872) 0.734( 0.490, 0.863) 20.130

10 G-IQA-2 (L) 0.509 0.563 0.488 0.529 0.859 0.906 0.874 0.909 0.668 0.729 0.689 ( 0.489, 0.876) 0.714( 0.538, 0.881) 14.893
11 BIQI 0.665 0.733 0.732 0.764 0.837 0.903 0.735 0.769 0.538 0.593 0.676 ( 0.338, 0.849) 0.676( 0.414, 0.858) 0.330
12 GRNN 0.537 0.592 0.371 0.409 0.811 0.896 0.738 0.790 0.408 0.551 0.602 ( 0.422, 0.777) 0.643( 0.422, 0.802) 2.480
13 BLIINDS-II 0.388 0.444 0.499 0.556 0.794 0.839 0.680 0.754 0.548 0.608 0.596 ( 0.333, 0.834) 0.622( 0.382, 0.835) 81.790
14 Anisotropy 0.364 0.354 0.357 0.400 0.835 0.871 0.385 0.449 0.392 0.439 0.470 ( 0.379, 0.513) 0.431( 0.391, 0.483) 10.780
15 NIQE 0.428 0.496 0.425 0.528 0.740 0.511 0.732 0.834 0.606 0.623 0.377 ( 0.144, 0.600) 0.395( 0.181, 0.601) 3.240
16 DIIVINE 0.421 0.523 0.441 0.490 0.484 0.537 0.444 0.489 0.439 0.513 0.372 ( 0.080, 0.700) 0.404( 0.121, 0.705) 118.040
17 TMIQA 0.367 0.376 0.437 0.353 0.741 0.681 0.159 0.227 0.411 0.469 0.220 ( 0.097, 0.300) 0.311( 0.223, 0.387) 0.120

18 LPCM 0.415 0.444 0.836 0.847 0.623 0.621 0.211 0.231 0.108 0.237 0.836( 0.791, 0.890) 0.847( 0.792, 0.885) 11.570
19 CPBDM 0.676 0.720 0.757 0.766 0.746 0.815 0.765 0.749 0.347 0.405 0.757 ( 0.678, 0.808) 0.766( 0.669, 0.830) 3.500
20 FISH 0.222 0.305 0.705 0.716 0.823 0.870 0.196 0.252 0.432 0.472 0.705 ( 0.548, 0.787) 0.716( 0.631, 0.793) 0.250
21 S3 0.409 0.449 0.700 0.756 0.747 0.786 0.151 0.189 0.402 0.450 0.700 ( 0.554, 0.792) 0.756( 0.692, 0.818) 308.150
22 JNBM 0.598 0.635 0.506 0.528 0.756 0.816 0.536 0.512 0.448 0.455 0.506 ( 0.327, 0.627) 0.528( 0.336, 0.676) 7.520
23 NLWT 0.324 0.334 0.024 0.141 0.872 0.888 0.000 0.187 0.559 0.589 0.872( 0.821, 0.905) 0.888( 0.847, 0.928) 10.410
24 FNVE 0.320 0.332 0.463 0.553 0.863 0.887 0.517 0.543 0.461 0.459 0.863 ( 0.817, 0.894) 0.887( 0.838, 0.915) 0.030
25 JPEG-NR 0.540 0.570 0.593 0.650 0.748 0.865 0.928 0.954 0.464 0.607 0.928( 0.878, 0.952) 0.954( 0.940, 0.969) 0.110
26 NJQA 0.373 0.406 0.333 0.367 0.878 0.808 0.743 0.819 0.420 0.437 0.743 ( 0.649, 0.854) 0.819( 0.732, 0.869) 192.590
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Chapter 7

Conclusion and Future Work

While more and more visual data is being generated in the world, either from

capturing natural scenes using optical cameras or rendering computer generated imagery,

visual quality evaluation is an interesting and relevant problem to explore. In my dis-

sertation, I have contributed in subjective and objective quality evaluation of synthetic

scenes and high dynamic range images. I propose the following thesis statement:

Using scene statistics yields automated visual quality assessment algorithms for

synthetic images and high dynamic range images that have high correlation with human

visual quality evaluation.

In the following section, I discuss how my contributions in each chapter contribute

toward defending this thesis statement. Section 7.1 discusses my contributions in each

chapter toward defending the thesis statement. Section 7.2 presents future work to build

on and extend the dissertation results.

7.1 Summary

In this section, I would like to summarize how my contribution in every chapter

helps to defend my thesis statement. The premise of Natural Scene Statistics (NSS)

is based on the fact that irrespective of content, natural images possess very unique
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statistical properties and the presence of distortions make the image deviate from these

statistics. The NSS based NR-IQA algorithms exploit this change in the image statistics

to predict the visual quality of images. However, these methods have not been applied

to distorted synthetic and HDR images. In addition, there has been a dearth of images

annotated with human scores in these domains. Collecting ground truth subjective scores

is very important both for synthetic and HDR scenes because the NR-IQA algorithms

need to be trained on the human ratings.

In chapter 2, I outline the details of the SPL Synthetic Image Database, comprising

of 25 high quality pristine images and 500 distorted images generated by controlled intro-

duction of varying degrees of different types of processing, compression and transmission

artifacts, such as interpolation, blur, additive noise, JPEG compression and Fast-Fading

channels. I also explain the methods of processing the raw scores and rejecting outliers.

In chapter 3, I compare the performance of more than 50 FR, RR and NR-IQA algorithms

(originally designed for natural images) by correlating the scores obtained from the IQA

algorithms with the synthetic image DMOS scores . For the FR-IQA algorithms I have

identified the key distortion categories for which the natural images IQA algorithms show

a lesser degree of correlation. I have shown that the NSS based NR-IQA algorithms can

be used even for predicting the quality scores of distorted synthetic scenes.

For HDR images, in chapter 4, I improved the state-of-the-art FR-IQA algorithms

for evaluating the quality of tonemapped images in comparison to the original HDR

luminance map by incorporating models of natural scene statistics and visual saliency.

The scene statistics model is based on mean-subtracted-contrast-normalized coefficients

and the standard deviation field. In addition, the algorithm also showed a high degree of
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correlation on tonemapped images afflicted with JPEG compression artifacts.

In chapter 5, I conducted a large scale online crowdsourced subjective test on a

corpus of 1815 HDR images created using different processing artifacts in order to garner

ratings from a larger number of human subjects. To the best of our knowledge, presently

this is the largest HDR image database in the world involving the largest number of

source images and most number of human evaluations. In chapter 6, I proposed a scene-

statistics based NR-IQA algorithm in the gradient domain for evaluating HDR artifacts

that outperforms the state-of-the-art NR-IQA algorithms on this class of distortion. For

completeness, the algorithm has also been evaluated on SDR natural (LIVE Image Quality

Database[7], LIVE Multiply Distorted Images[8]) and synthetic image databases (ESPL

Synthetic Image Database).

All of these contributions aim at emphasizing the usefulness of scene statistics

models for objective quality evaluation of synthetic images and HDR images.

7.2 Future Work

In this section I outline several interesting research directions in image quality

assessment to which the researchers in image processing may potentially contribute to.

7.2.1 IQA for a larger number of graphics artifacts

In this dissertation, I have conducted subjective tests on high quality computer

graphics generated images after the controlled addition of different types of distortions at

varying levels. A follow-up subjective study can be done on images rendered directly by

using a graphics rendering pipeline. Some of these aspects that may be considered are:
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7.2.1.1 Dynamic resolution rendering

Instead of rendering every frame at the same display resolution, based on the

scene content, the rendering resolution may be changed, leading to significant savings in

computation time and power. Subjective tests need to be considered in order to gain

some insight on how the rendering resolution may be varied locally depending upon the

scene complexity.

7.2.1.2 Number and/or types of lights used

The number and types of light sources used can drastically affect the rendered

scnene. However, the present algorithms depend on feedback from human subjects in

order to optimally place the light sources. Designing objective metrics that give some

idea of local and global contrast and correlates well with human perception need to be

designed to make benchmarking of algorithms easier for this class of problems.

7.2.1.3 Motion Blur

In this disseration, we found that for some of the images, the observers evaluated

the slightly blurred image higher than the corresponding reference and the present NR-

IQA blur evaluation methods, that do well on natural scenes, shows a less impressive

performance in predicting blur in synthetic scenes. We conjecture that, since in many

computer graphics applications, blur is introduced intentionally in order to increase aes-

thetic quality (such as ”soft shadowing” or motion blur), users found them to be less

annoying compared to natural scenes. A follow up subjective test on motioned blurred

computer graphics images would be a potential avenue of future research.
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7.2.2 Using IQA algorithms for different applications

This dissertation shows the usefulness of the scene-statistics approaches in quanti-

fying different types of visual distortions. Following are the potential areas of applications

of these algorithms:

7.2.2.1 Cloud gaming

Unlike the other computer graphics databases, artifacts arising from compressing

graphics images and sending them over a Rayleigh fading channel have been included in

this work. The IQA metrics studied can be used in this context for quantifying the visual

distortions arising from sending the rendered video game frames from the server to the

dumb clients.

7.2.2.2 IQA for hybrid scenes

This dissertation shows that the presence of distortions deviate the scene-statistics

of synthetic images in the same way as natural scenes. This leads us to the interesting

problem of visual quality evaluation of hybrid natural and synthetic scenes that occur

frequently in many augmented reality applications. The scene-statistics based approaches

can lead to a synergistic IQA algorithm that would be useful for evaluating the artifacts

in hybrid images having both natural and synthetic components.

7.2.3 NR-IQA algorithms of HDR images

This dissertation describes a large-scale crowdsourced study for HDR artifacts and

proposes a NR-IQA algorithm based on scene-statistics using support vector regression
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technique that does well on these artifacts. However, there is plenty of scope to improve

upon these algorithms to come up with methods that correlate better with human percep-

tion. In future, researchers may look at improved features or advanced machine learning

algorithms in order to exploit fully the subjective ratings obtained in this database.

7.2.4 Aesthetic quality assessment of HDR images

Many of the HDR post processing artifacts are added in order to improve the

aesthetic quality of the images, and similar post-processing methods may result in dras-

tically different levels of aesthetic pleasure based on the scene content. The present class

of algorithms does not take into account this aspect of the HDR images. Future research

endeavors may look at incorporating content specific aesthetics for evaluating the quality

of HDR images.
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