185 research outputs found

    Intelligent Processing in Wireless Communications Using Particle Swarm Based Methods

    Get PDF
    There are a lot of optimization needs in the research and design of wireless communica- tion systems. Many of these optimization problems are Nondeterministic Polynomial (NP) hard problems and could not be solved well. Many of other non-NP-hard optimization problems are combinatorial and do not have satisfying solutions either. This dissertation presents a series of Particle Swarm Optimization (PSO) based search and optimization algorithms that solve open research and design problems in wireless communications. These problems are either avoided or solved approximately before. PSO is a bottom-up approach for optimization problems. It imposes no conditions on the underlying problem. Its simple formulation makes it easy to implement, apply, extend and hybridize. The algorithm uses simple operators like adders, and multipliers to travel through the search space and the process requires just five simple steps. PSO is also easy to control because it has limited number of parameters and is less sensitive to parameters than other swarm intelligence algorithms. It is not dependent on initial points and converges very fast. Four types of PSO based approaches are proposed targeting four different kinds of problems in wireless communications. First, we use binary PSO and continuous PSO together to find optimal compositions of Gaussian derivative pulses to form several UWB pulses that not only comply with the FCC spectrum mask, but also best exploit the avail- able spectrum and power. Second, three different PSO based algorithms are developed to solve the NLOS/LOS channel differentiation, NLOS range error mitigation and multilateration problems respectively. Third, a PSO based search method is proposed to find optimal orthogonal code sets to reduce the inter carrier interference effects in an frequency redundant OFDM system. Fourth, a PSO based phase optimization technique is proposed in reducing the PAPR of an frequency redundant OFDM system. The PSO based approaches are compared with other canonical solutions for these communication problems and showed superior performance in many aspects. which are confirmed by analysis and simulation results provided respectively. Open questions and future Open questions and future works for the dissertation are proposed to serve as a guide for the future research efforts

    Target localization in passive and active systems : performance bonds

    Get PDF
    The main goal of this dissertation is to improve the understanding and to develop ways to predict the performance of localization techniques as a function of signal-to-noise ratio (SNR) and of system parameters. To this end, lower bounds on the maximum likelihood estimator (MLE) performance are studied. The Cramer-Rao lower bound (CRLB) for coherent passive localization of a near-field source is derived. It is shown through the Cramer-Rao bound that, the coherent localization systems can provide high accuracies in localization, to the order of carrier frequency of the observed signal. High accuracies come to a price of having a highly multimodal estimation metric which can lead to sidelobes competing with the mainlobe and engendering ambiguity in the selection of the correct peak. The effect of the sidelobes over the estimator performance at different SNR levels is analyzed and predicted with the use of Ziv-Zakai lower bound (ZZB). Through simulations it is shown that ZZB is tight to the MLEs performance over the whole SNR range. Moreover, the ZZB is a convenient tool to assess the coherent localization performance as a function of various system parameters. The ZZB was also used to derive a lower bound on the MSE of estimating the range and the range rate of a target in active systems. From the expression of the derived lower bound it was noted that, the ZZB is determined by SNR and by the ambiguity function (AF). Thus, the ZZB can serve as an alternative to the ambiguity function (AF) as a tool for radar design. Furthermore, the derivation is extended to the problem of estimating target’s location and velocity in a distributed multiple input multiple output (MIMO) radar system. The derived bound is determined by SNR, by the product between the number of transmitting antennas and the number of receiving antennas from the radar system, and by all the ambiguity functions and the cross-ambiguity functions corresponding to all pairs transmitter-target-receiver. Similar to the coherent localization, the ZZB can be applied to study the performance of the estimator as a function of different system parameters. Comparison between the ZZB and the MSE of the MLE obtained through simulations demonstrate that the bound is tight in all SNR regions

    Adjustable dynamic range for paper reduction schemes in large-scale MIMO-OFDM systems

    Get PDF
    In a multi-input-multi-output (MIMO) communication system there is a necessity to limit the power that the output antenna amplifiers can deliver. Their signal is a combination of many independent channels, so the demanded amplitude can peak to many times the average value. The orthogonal frequency division multiplexing (OFDM) system causes high peak signals to occur because many subcarrier components are added by an inverse discrete Fourier transformation process at the base station. This causes out-of-band spectral regrowth. If simple clipping of the input signal is used, there will be in-band distortions in the transmitted signals and the bit error rate will increase substantially. This work presents a novel technique that reduces the peak-to-average power ratio (PAPR). It is a combination of two main stages, a variable clipping level and an Adaptive Optimizer that takes advantage of the channel state information sent from all users in the cell. Simulation results show that the proposed method achieves a better overall system performance than that of conventional peak reduction systems in terms of the symbol error rate. As a result, the linear output of the power amplifiers can be minimized with a great saving in cost

    State–of–the–art report on nonlinear representation of sources and channels

    Get PDF
    This report consists of two complementary parts, related to the modeling of two important sources of nonlinearities in a communications system. In the first part, an overview of important past work related to the estimation, compression and processing of sparse data through the use of nonlinear models is provided. In the second part, the current state of the art on the representation of wireless channels in the presence of nonlinearities is summarized. In addition to the characteristics of the nonlinear wireless fading channel, some information is also provided on recent approaches to the sparse representation of such channels

    Deep Learning-Aided Multicarrier Systems

    Get PDF
    This paper proposes a deep learning (DL)-aided multicarrier (MC) system operating on fading channels, where both modulation and demodulation blocks are modeled by deep neural networks (DNNs), regarded as the encoder and decoder of an autoencoder (AE) architecture, respectively. Unlike existing AE-based systems, which incorporate domain knowledge of a channel equalizer to suppress the effects of wireless channels, the proposed scheme, termed as MC-AE, directly feeds the decoder with the channel state information and received signal, which are then processed in a fully data-driven manner. This new approach enables MC-AE to jointly learn the encoder and decoder to optimize the diversity and coding gains over fading channels. In particular, the block error rate of MC-AE is analyzed to show its higher performance gains than existing hand-crafted baselines, such as various recent index modulation-based MC schemes. We then extend MC-AE to multiuser scenarios, wherein the resultant system is termed as MU-MC-AE. Accordingly, two novel DNN structures for uplink and downlink MU-MC-AE transmissions are proposed, along with a novel cost function that ensures a fast training convergence and fairness among users. Finally, simulation results are provided to show the superiority of the proposed DL-based schemes over current baselines, in terms of both the error performance and receiver complexity
    • …
    corecore