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Abstract

Machine learning (ML) techniques have shown promising performance in solving
different communication system issues. Recently, several deep learning-based end-
to-end techniques have been implemented to optimize the transmitter, the channel,
and the receiver blocks in one single process, thereby replacing the conventional
communications system. In this thesis, we start exploring the research for the
end-to-end wireless model where we used the autoencoder (AE) as a based
communication system. We studied the performance of the AE with additive white
Gaussian noise (AWGN) channel and compared it with the equivalent conventional
communication system. Then for deep learning (DL), we introduce a DL-based
detector, termed DL Index Modulation (DLIM), for IM-MIMO-OFDM using a
deep neural network (DNN) in terms of error performance. Our initial results
using the proposed DLIM can detect the transmitted symbols with performance
comparable to near-optimal bit error rate (BER) with shorter runtime than the
existing hand-crafted detectors. Next, for the Intelligent Reflecting Surfaces (IRS),
we proposed an IRS-assisted end-to-end communication system that operates
over AWGN channels, where the modulation and demodulation are performed
by a DNN based on an AE architecture. Simulation results show the BER
performance of our AE-based scheme achieves better performance gains than the
existing classical IRS baseline and the AE hand-crafted baselines. Moreover, a
new probabilistic model, based on the variational autoencoders (VAE), is proposed
for short-packet wireless communication systems. Using this new approach, the
information messages are represented by the so-called packet hot vectors (PHV),
which are inferred by the VAE latent random variables (LRVs). Numerical results
show that the proposed VAE, with a DL classifier, improved symbol error rate
(SER) performance in comparison to the baseline schemes.
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Chapter 1

Introduction

In this chapter, section 1.1 states the background of the work, section 1.2 describes
the motivation behind the work, and section 1.3 states the overall objectives of the
thesis. The major contributions of this dissertation and the relevant publications
are summarized in sections 1.4 and 1.5, respectively. Finally, the outline of the
thesis is discussed in section 1.6.

1.1. Background

Wireless communication has been long sought for achieving optimal and reliable
schemes for the successful transfer of data. In recent years, many experts
have investigated the use of machine learning (ML) to improve performance
in wireless communications. Solving complex issues in computer vision (CV),
automatic speech recognition (ASR) and natural language processing (NLP)
using deep learning (DL) have demonstrated significant success that has inspired
communication experts to apply DL in their fields. Using an inflexible
mathematical model to characterize a real-world image or language is where DL
shines [3, 5–7].

Generally, the mathematical models of most communication signal processing
are linear and stationary as they have strong foundations in information theory
and statistics. However, practical systems have many imperfections and non-
linearities. A deep learning-based communication system does not require a
controllable mathematical model to optimize such an imperfection [3].

20
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In an end-to-end manner, the deep learning-based communication system
attempts to optimise the transmitter and the receiver without defining the block
structure. This system can perform better or equal to the existing system due to
its simple structure that includes less processing delay, less power consumption and
less computing complexity and can be easily implemented in practical systems.

Based on the above background, the objective of this work is to investigate the
deep neural network (DNN) for an end-to-end communications system to achieve
a better or similar bit error rate (BER).

1.2. Motivation

Several critical challenges in the development of learning-based end-to-end
communication systems need to be addressed before DL framework can be applied
across a variety of wireless channels. According to well-known practice, the
DNN weights are generally updated using the stochastic gradient descent (SGD)
method, with the calculated error gradients propagated from the input layer to
the output layer [8]. The end-to-end system gain is prevented when the channel
transfer function is unavailable, preventing the backpropagation of the gradients
from the receiver DNN to the transmitter DNN. In such a situation, the learned
weights would be biased by the assumed channel function, thereby repeating the
pitfalls caused by the discrepancy between the assumed channel model and the
real channel. An additional difficulty associated with the end-to-end paradigm
is the curse of dimensionality during training, particularly when the transmitted
symbol sequence is long. To ensure a sufficient coding gain, the code block size
in a communication system must be large enough. In spite of this, the number
of possible codewords grows exponentially based on the size of the code block,
increasing the number of undetected codewords during training.

In addition, Conventional wireless communication systems have historically
relied on modelling assumptions, often Gaussian-based, linearity, and stationarity.
These assumptions have proven suitable for mathematical analysis and have
been manageable. However, this approach has its limitations when accurately
representing real-world scenarios. In practice, there are discrepancies between
theoretical models and practical systems, primarily caused by shortcomings such
as non-linearities (e.g., imperfect power amplifiers or analog-to-digital converters
with resolution sensitivity). These inherent issues naturally lead to a decrease in
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system performance.
In light of the above arguments, this work investigates and pursues solutions

to wireless communication problems by utilizing a variety of machine learning
techniques, such as assisted communication systems with auto-encoders and deep
learning variable Autoencoders for end-to-end optimized wireless communication
systems.

1.3. Aims and Objectives

The main aim of this research is to apply and investigate different ML applications,
rethink the wireless communications system design problem and contain the
potential for performance enhancements in challenging communications scenarios
that are hard to model with tractable mathematics. In this research, we
cover various practical ML techniques to represent the transmitter, channel, and
receiver as one deep neural network (NN) that can be trained as end-to-end
communications before testing the performance of the model. The main objectives
of this research are detailed as follows:

• To study and analyze advanced ML techniques for representing wireless
communication models by black boxes that are capable of autonomously
learning the entire wireless scenario and find the research gaps and
challenges.

• To propose new techniques that improve the bit error rate (BER) and symbol
error rate (SER).

• To study and investigate the performance of the new technique in comparison
with the conventional maximum likelihood detector based on BER and SER.

• To provide a numerical evaluation of the new techniques to support the
outcomes of the experiment simulation.

• To design advanced distributed ML techniques to help the state of the art
of wireless communication techniques such as intelligent reflecting surfaces
(IRS).
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1.4. Key Contributions

The main contributions of this thesis are illustrated as follows:

• C1 (Chapter 4): A deep learning (DL) algorithm has been applied to enhance
signal detection and performance of multiple-input-multiple-output (MIMO)
based orthogonal frequency-division multiplexing (OFDM) systems with
index modulation (IM). The proposed detector termed deep learning index
modulation (DLIM) is used as fully connected layers of a deep neural network
(DNN) and adopted to achieve minimum bit error rates in IM-MIMO-OFDM
over Rayleigh wireless channels.

• C2 (Chapter 5): An IRS-assisted end-to-end communication system that
operates over additive white Gaussian noise (AWGN) channels is proposed,
where the modulation and demodulation are performed by DNN based on
an AE architecture. The novelty of the proposed fully data-driven system
without any prior knowledge lays on how effectively the system can learn
with the assistance of IRS to encode and decode the transmitted s and the
received ŝ symbols while minimizing the mean square error (MSE) between
s and ŝ.

• C3 (Chapter 5): The symbol error rate (SER) performance numerical results
show that our AE-based scheme achieves better performance gains than the
existing classical IRS baseline [4] and the AE hand-crafted baselines [3].
Moreover, we back up these results by explaining the constellations AE learns
to improve the system performance.

• C4 (Chapter 5): The proposed AE design results show that higher
SER performance can be achieved, even with using a small number of
elements. This overcomes the weakness of IRS-assisted communication
systems performance that have a small number of IRS elements which are
mentioned in [9, 10].

• C5 (Chapter 6): A novel end-to-end communication system is proposed
that represents the symbol as packet hot vectors (PHV) and operates over
binary phase-shift keying (BPSK) modulation in AWGN channels, where
modulation and demodulation are performed by a deep neural network
(DNN) based on a VAE architecture.
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• C6 (Chapter 6): The experiment is extended to investigate the QPSK
modulation, Rayleigh, Rician fading channels, shadowing, and Doppler
effect.

• C7 (Chapter 6): While the baseline AE uses 4 and 7 channels in [3] to achieve
their results. In this proposal, we efficiently use two channels only to achieve
better performance than AE baseline.

• C8 (Chapter 6): This considers a VAE with two latent random variables
(LRVs), and a simple classifier can reconstruct the transmitted message by
sending only the LRVs’ parameters and the message error rate (MER). The
result shows that the performance of our proposed system is better than
that of the existing classical scheme.

1.5. List of Publications

The list of publications that have been extracted from this thesis are detailed as
follows:

• P.1 (Chapter 4): M. A. Alawad and K. A. Hamdi, "A Deep Learning-Based
Detector for IM-MIMO-OFDM," 2021 IEEE 94th Vehicular Technology
Conference (VTC2021-Fall), 2021, pp. 1-5, doi: 10.1109/VTC2021-
Fall52928.2021.9625569.

• P.2 (Chapter 5): M. A. Alawad, M. Q. Hamdan and K. A. Hamdi, "End-
to-End Deep Learning IRS-assisted Communications Systems," 2021 IEEE
94th Vehicular Technology Conference (VTC2021-Fall), 2021, pp. 1-6, doi:
10.1109/VTC2021-Fall52928.2021.9625398.

• P3. (Chapter 6): M. A. Alawad, M. Q. Hamdan, K. A. Hamdi, C. H. Foh
and A. Quddus(2022),"A new approach for an end to end communication
system using Variational Auto-encoder (VAE)," in 2022 IEEE Global
Communications Conference (GLOBECOM). IEEE, 2022, pp.1–6.

• P4. (Chapter 6): M. A. Alawad, M. Q. Hamdan and K. A. Hamdi,
"Innovative Variational AutoEncoder for an End-to-End Communication
System" 2022 IEEE Access.
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1.6. Thesis Organization

This thesis is structured into seven chapters and has been structured as follows:

• Chapter 2 presents the background theory of Machine learning and deep
learning basics and several key works of literature related to wireless
communication. There we explore the potential, challenges and requirements
that should be considered when we plan to build a communication system
using machine learning.

• Chapter 3 discuss the concept of autoencoder (AE) as an end-to-
end communication system proposed by [3] and compares it with
the conventional communication system. In addition, we analyse the
performance of the AE as an end-to-end learning system and compare it with
the conventional communication system considering different modulation
schemes with the intention of achieving a better or similar bit error rate
(BER).

• In chapter 4, a DL approach is proposed to explore the effectiveness of
employing a DNN for the detection of IM-MIMO-OFDM in terms of error
performance.

• In chapter 5, the classical IRS-assisted communication system has been
transformed into an end-to-end AE. Additionally, we proposed DNN loss
function that shows the capability of optimizing the DNN parameters
to reconstruct the transmitted signal by learning signal constellations
representation pattern that reduces the wireless environment contamination
impact on the received signal.

• In chapter 6, a novel approach uses the VAE as a probabilistic model
to reconstruct the transmitted symbol by transmitting the statistical
parameters of the LRVs through the physical layer.

• Chapter 7 concludes the work and describes the future of this research.



Chapter 2

Background Theory

This chapter presents the background information for several key concepts and
theories that are utilized in the thesis. Section 2.1 states some of the fundamental
characteristics of ML in wireless communications, including the background,
basics, and techniques. The fundamental characteristics of DL are described in
section 2.2. In section 2.3, a key literature review on the deep learning approach on
the physical layer of the communication systems is introduced. The fundamental
characteristics of the intelligent reflecting surface (IRS) are described in section
2.4. Finally, section 2.5 summarizes the chapter.

2.1. Machine Learning Techniques in Wireless Communications

2.1.1. Background

In the past decade, ML has changed the landscape of the engineering field with
it is capacity of solving complex problems through different applications, such as
CV and NLP that leads the research community and industry to advocate the
application of ML in wireless communications. Researchers have proposed ML
algorithms for several sub-tasks in the physical layer such as encoding and decoding
[11, 12], modulation recognition [13, 14], channel estimation and equalization [15,
16] etc. Several ML techniques are introduced in this chapter, including supervised
learning, unsupervised learning, reinforcement learning and DNN. Below, each
section begins with an introduction to the learning technique and its applications
in B5G networks.

26
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Figure 2.1: Venn diagram of the relationship between artificial intelligence,
machine learning, deep learning and B5G technology.

2.1.2. Supervised Learning

Supervised learning is a ML technique that is used to label the dataset to map the
features of pairs (input and output) information to reduce the label. Using this
kind of technique begins with gathering data, each with a label then converted
to feature vectors, and based on the training of the data analyst, the model can
predict the output of any new input data set.

Applications in B5G:

Supervised learning algorithms in wireless communications are mainly utilized for
the classification of points/objects. Here are some of the most common supervised
learning techniques:

• Support Vector Machine (SVM) is one of the most often used techniques
in supervised learning for classification. The goal of the SVM is to find the
optimal values that leverage the data [17].

• K Nearest Neighbors (KNN) is also a supervised learning algorithm
that is used for classification. Contrary to the other techniques, KNN use
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memory for all the training [18].

2.1.3. Unsupervised Learning

Unsupervised learning is another ML algorithm where there are no labels on the
data given but a function to describe the hidden pattern in data can still be found.
Unlike the supervised algorithm, discovering and presenting the structure of the
data is left to the unsupervised algorithm.

Applications in B5G:

The most common unsupervised learning technique in wireless communications
is cluster analysis or dimensionality reduction, such as K-mean clustering and
principal component analysis (PCA), respectively:

• Clustering: The K-Means Clustering Algorithm is used to partition the
data point into K distinct clusters. These points will belong to the nearest
mean of the cluster.

• Principal Component Analysis (PCA) is a dimension-reduction tool
where the output of the model has fewer features than the input but still
contains the most information about the input data set [19].

2.1.4. Reinforcement Learning (RL)

The goal of reinforcement learning (RL) is to learn the policy (function). In
RL, different actions are executed in every state that has been perceived by the
environment as a feature vector. Within the same environment, the agent can
move from one state to another, as a different action can bring different rewards.
The policy in RL takes the input from the state of the feature vector and the
output is taken from the optimal action to be executed in that state. Whenever the
maximum of the expected average rewards is reached, then the action is optimal
[20].

Applications in B5G:

The following RL algorithms are applied in wireless communications. Below are
some of the most commonly adopted reinforcement learning algorithms
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• Q-Learning: Based on which RL agent takes an action to learn the Q
values, the RL agent must interact within the environment. Starting at a
tuple of a state and an action followed by a certain policy, the Q values are
defined as discounted accumulative rewards. After this, the learning process
where the Q values are learned and under the current state, the agent can
make a decision per the largest Q value [21].

• Deep Reinforcement Learning (DRL): In DRL, the interaction with
the environment generates the state transition sample and stores it in the
replay memory. After, it samples to train the deep Q network (DQN), and
a target DQN is adapted to generate the target values, which help stabilize
the training DRL [22].

Fig. 2.2 summarises some of the ML techniques and applications that have been
used for future wireless communications.

Figure 2.2: Machine learning techniques and applications [1].

2.1.5. Deep Neural Networks (DNN)

A neural network (NN) is a feed-forward network, where the first layer is the
input layer and the last layer is the output layer. All the layers in between are
hidden layers. The word deep generally refers to the network ranging from a
few to more convolutional layers. The layers in deep neural networks (DNN)
are fully connected by neurons. This connection provides the entire learning
feature from the previous layer. Each DNN layer consists of a number of neurons,
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and each input of these neurons is communicated through weight, while the
output is corresponding through activation functions. There are several traditional
activation functions, such as linear, ReLU, tanh, etc. Moreover, to update the
neural network parameters, we use a backpropagation chain rule to compute the
gradient on NN [20], [1]. The structure of a typical fully connected feed-forward
NN is shown in the Fig. 2.3 below:

Figure 2.3: Layout of fully connected feed-forward NN.

2.1.6. Convolutional Neural Networks (CNN)

Convolution neural networks (CNN) are a special kind of feed-forward network,
without losing the quality of the model, the number of units in DNN can be reduced
in a CNN. Unlike any other NN layer, the working principle of the convolution
layer does not employ connection weights and a weight sum. Instead, it contains
a filter (convolution filter) that converts images. Convolution neural networks are
mostly used with image and text processing.

2.1.7. Recurrent Neural Networks (RNN)

Recurrent neural networks (RNN) are used to generate sequences, classify and
label. RNNs are mostly used for processing a text, as the texts and sentences
are often sequences of characters or words. Labelling is to predict the class of
each feature vector in the sequence and classification is to predict a class of whole
sequences. To generate a sequence is to output another sequence somehow related
to the input sequence [20].
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2.1.8. Autoencoders (AE)

An autoencoder is considered a feed-forward unsupervised neural network that
has three layers net. The AE is designed to learn how to de-noising the data by
compressing and encoding the data before transmitting, then giving an output
similar to the input by reconstructing the data at the receiver. Generally, the AE
consists of four main components, as per Fig. 2.4 below:

• Encoder: In the encoder, the model learns how the dimension of the input
data is reduced and compressed as an encoded representation.

• Bottleneck: The bottleneck is the layer that has the lowest dimension of
the compressed representation of the input data.

• Decoder: In the decoder, the model learns how to be as close to the input
by reconstructing the data from the encoded representation.

• Reconstruction loss: This step is to evaluate the performance of the
decoder, and how accurate the output to the input is.

More details about AE will be illustrated in Chapter 3.

Figure 2.4: The structure of an AE.
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2.2. Deep Learning Basics

The brain cells termed artificial neural network inspires the structure and functions
of DL. DL is a subfield of ML, which is not programmed, though it has a concerned
algorithm that helps make decisions, classify or predict based on given data.
To optimise a given target from raw input data, DL uses a different number of
layers to extract higher-level features. As we mention in the background for the
ML algorithms, DL also expands in supervised, unsupervised and reinforcement
learning [23].

The development of theory and implementation began between the 1940s-
1960s, when the first DL perceptron model succeeded in training one single
neuron [24]. In the 1980s, it was successful when Rumelhart et al. used the
backpropagation of NNs for one or two hidden layers [23], [25]. This technological
advancement has garnered the attention of many researchers to the DL approach
that has eliminated computational limitations. These advantages lead to a wide
range of different applications that used the DL approach.

It is possible to build a DL model from scratch, but it requires a great effort,
as it is a complex task. At each layer, we must define a feed-forward function
and a gradient propagation operation. In addition to that, for the training
model, we must efficiently implement fast optimisation algorithms. Also, we must
compute unified device architecture (CUDA) coding for the graphics processing
units (GPU) parallelisation. However, due to the continuous popularity of DL
applications, a large number of algorithms, tools and libraries must be developed.
They are built with a high-level algorithm and massive parallel GPU architectures
that quicken the training process with a huge amount of data. The high-level
algorithm can be defined in various programming languages or configuration
files, automatic differentiation of training loss functions through arbitrarily large
networks, and a compilation of the network’s forwards and backwards passes into
hardware optimised concurrent dense matrix algebra kernels [3]. TensorFlow,
PyTorch and Caffe are the most common and widely used libraries for DL.

2.3. Literature Review

As we mentioned above, the DL approaches aim to enhance the performance of the
application on the physical layer of the communication system. We can summarise
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this approach by replacing the whole block-based communication system with
DL or improving and optimising certain blocks. More details about these two
approaches will be covered in our literature review.

2.3.1. Block-based Communication

The conventional communication system consists of two main blocks which are
the transmitter and the receiver. At the transmitter side, there are source coding,
channel coding, modulation, and then transmitting over the communication
channel. At the receiver side, there are demodulation, channel decoding, and
source decoding as shown in Fig. 2.5. Based on different optimising algorithms
that have been developed over the years for each block, this communication
structure aims to achieve the optimal solution.

Figure 2.5: The structure of a conventional communication system.

Many studies in recent years have proposed the use of conventional
ML approaches, such as small feed-forward NNs and SVM as alternative
implementations for individual block tasks. Recently, many processing blocks
of these DL-based algorithms have outperformed conventional communication
algorithms. Also, DL-based algorithms are introduced to adapt to different
complex communication environments. These DL structures and algorithms
development approaches have been introduced to many of the DL applications
as alternatives to the conventional algorithm, such as modulation recognition and
channel decoding [26].

2.3.2. Modulation Recognition

The goal of modulation recognition is to classify or predict the pattern of different
modulation schemes of the received signal, which is an important task to facilitate
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communication among different communication systems. It can also be used to
interfere with and monitor enemies’ signals for military use. Over the years,
many studies have been conducted on modulation recognition using different
approaches, such as decision-theoretic and pattern recognition. Preprocessing,
feature extraction and classification are examples of several common procedures.
For decades, many studies have been conducted on modulation classification using
different approaches, such as expert feature engineering, analytic decision tree
or trained discrimination method. Some other advanced approaches have used
different patterns on expert feature maps, such as the spectral coherent function
with NN-based classification α-profile, combined with a NN-based classification [3].

The authors in [27], proposed a powerful modulation classifier as a NN
architecture to distinguish a noise corrupted band-limited modulated signals from
13 types of analog and digital modulation schemes. From the original signal, this
modulation classifier can manually extract features that characterize analog or
digital modulations as well as some basic parameters, such as amplitude, frequency
and phase. In order to discriminate the modulation schemes, these features
are fed to four-layer NNs. To estimate the level of the M-ary amplitude shift-
keying (MASK) and the M-ary frequency shift-keying (MFSK) modulation and
it is identified as a second two-layer NNs. The performance of these approaches
strongly depends on the extracted features due to the limited learning ability of
conventional NNs [26].

In [3], the authors proposed an automatic learning feature from raw data using
the superior learning capability of DNNs to optimize the end-to-end performance
and the possibility to replace the artificial feature extraction. They have looked
into the modulation classification problem of a single carrier modulation scheme
based on the sampled radio frequency time-series data using the approach of CNN.
The CNN modulation classification approach is trained data consisting of 1.2M
sequences of 128 complex-valued baseband in-phase and quadrature (I,Q) samples
corresponding to 10 different analog and digital single-carrier modulation schemes,
which have been sent through a wireless channel with multipath fading, sample
rates and centre frequency offsets. The results of their CNN-based modulation
classifier approach have shown better performance compared with the other two
approaches: an extreme gradient boosting with 1000 estimators and a single scikit-
learn tree working on the extracted expert features in the low to medium signal-
to-noise ratio (SNR) range, and with the high SNR, the performance is similar.
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2.3.3. Channel Decoding

Due to the straightforward channel decoding applications of NNs, ML-based
decoders have been used since the 1990s. In bit-level processing, the channel
coding algorithm was conveniently treated and represented the bits in codewords
or one-hot representation as the inputs and expected outputs of NNs. Moreover,
as the codewords are random and sampled with help of the distribution of channel
noise, the NN can learn from this noise version of the codewords and avoid the
overfitting problem in each training epoch. After the training of the channel
decoder, the decoding process becomes simple and with very low latency as the
architecture of the NN does not require expert knowledge [26].

However, the process of learning and classifying using the DL-based algorithm
is restricted due to it is dimensionality. Luckily, the DL algorithm not only
provides a parallel implementation for complex computations but also provides
a multi-layer architecture with realisable training methods that offer DL with
outstanding learning capacity [28].

In [29], the authors proposed a fully connected DNNs-based decoder. Their
goal was to enhance the performance in decoding high-density parity check
(HDPC) codes using the belief propagation (BP) algorithm. Normally, using the
BP algorithm, we can achieve as almost as Shannon capacity when we decode
low-density parity-check codes, though not when we decode HDPC codes.

A DNNs-based BP algorithm differs from the original algorithm when weights
are added. In a DNN-based BP algorithm, the weights are assigned to the edge
in the Tanner graph where each variable node is connected to some check nodes.
While in a DNN-based decoder, the weights share the same decoding structure of
the Tanner graph.

A BP-RNN decoder, which is transformed from the RNN architecture to form
a fully connected DNN-based decoder was proposed in [29]. This proposal aims
to unify each iteration weight and gives feedback for the output of parity layers
into the inputs of variable layers. This method’s performance exceeds the plain
BP method, as it remarkably reduces the number of parameters.

Another proposal in [30], based on DNN architecture, termed NN decoder
(NND) aims to decode codewords of length N with K information bits. In order
to observe the communication channel effect, the codeword of N length must pass
through the modulation layer and the AWGN channel layer. After this step, for
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a network of three layers, an N-dimensional input will generate the information
of log-likelihood ratios (LLRs) of the noisy codeword, and it will be trained to
output with K estimated information bits. Their proposal performs well and
achieved the maximum posterior (MAP) for a random and structured code of 16-
bits length, but not when we increase the number of information bits. However,
with regard to the issue of one of the DNN advantages is learning the decoding
algorithm. We can do that by generalising a subset of codewords for training
purposes to unseen codewords when decoding structure codes. The DNN also has
more advantages that make it a promising algorithm, such as one-shot decoding
and parallel architecture. Moreover, the authors of this paper show that using
binary cross entropy or mean squared error (MSE) as a loss function has no
outstanding effect on the final results when we train with direct channel values
or log-likelihood ratios (LLRs). Furthermore, they propose the existence of an
optimal SNR for training to classify the codewords over arbitrary SNRs and argue
that having more training epochs can lead to better performance.

In [31], the authors proposed a partitioned neural network (PNN) architecture
that competes with the BP algorithm and the conventional successive cancellation.
However, with a high number of sub-blocks, the performance decay restricts the
number of applications for large codes. Regardless, PNN still offers a promising
solution to dimensionality problems.

2.3.4. Deep Learning Based End-to-End Communication

Sending a message from the source (transmitter) over a communication channel
to the destination (receiver) has some requirements in the communication
system, such as block structure. The block structure helps control and enable
individual analysis for each block. However, optimising each block using this
structure can not guarantee that we will reach the global optimisation for the
communication problem. In order to reach the improved performance of end-to-
end communication, a joint optimization of two blocks or more is necessary.

Recently, O’Shea et al. introduced a novel concept by recasting the
communication task as an end-to-end reconstruction optimisation task and
replacing the artificial block construction of the conventional communication
system [3]. Based on DL theories, this novel concept represents the simplified
system as an AE system. The initial studies have shown the performance and
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potential of the end-to-end method compared with the convolution system. In this
section, we focused our literature review on AE-based end-to-end communication
and cover some of the very recent work based on that.

2.3.5. Autoencoder Based End-to-End Communication

In [3], the authors introduced the AE first as a new design of the communication
system. This system was presented as an end-to-end reconstruction task where
the transmitter and the receiver are jointly optimized in a single process. In this
paper, they used a DL model to learn the implementation of the transmitter and
the receiver for a given channel model that optimises for a specific loss function.
All of the transmitters, channels and receivers were implemented as one DNN in
order to train as an AE. They represent the transmitter and the receiver as fully
connected DNNs, while the AWGN channel in between is represented as a noise
layer with a desired variance. Thus, the AE can be seen as a communication system
that aims to learn the message s out of M possible messages s ∈ M = 1, 2...,M ,
in order to generate the representation of the transmitted signal x which is robust
against the communication channel. At the receiver side, the original message
produces ŝ the transmitted message s with the lowest error rate by learning from
the received y.

2.3.6. Autoencoder for Multiple Transmitter and Receiver

The authors in [3], extend their work of AE to multiple transmitters and receivers,
which share a common channel. This application means that the transmitter-
receiver pair of each user attempting to communicate over the same channel
simultaneously leads to channel interference. In this scenario, the goal of each
transmitter-receiver pair is to optimize the system in order to transmit their own
messages with the best accuracy. This system represents both transmitter-receiver
pairs as multiple input and output NNs that are jointly optimised and minimize
the weighted sum of both losses, i.e., This AE system achieves similar or better
BER performance at the same communication rate than the conventional uncoded
quadrature amplitude modulation QAM schemes, thereby validating the potential
application of the AE model in multi-user cases as well.
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2.3.7. Over-the-Air Communications Systems

Using the initial finding of [3], the authors of [32] aspired to model an AE for over-
the-air transmission. Using unsynchronised off-the-shelf software-defined radios
(SDRs) and open-source DL software libraries to model, train and run a NN of a
communication system. The authors were able to overcome the restriction of short
block lengths of the current AE for continuous data transmission and receiver
synchronisation by implementing a frame synchronisation module mechanism
based on another NN. They have shown a comparable BER performance close
to 1dB of the learned system with a practical baseline. Moreover, to overcome
training the model over the actual channel, they implemented two-phase training
procedures based on the concept of transfer learning by fine-tuning the receiver
part of the model to capture the actual channel effect. Finally, the study shows
that it is possible to build an end-to-end communications system where the whole
physical layer processing is carried out by NN.

The two-phase training strategy we mentioned in the previous paragraph has
some limitations. In the fin-tuning step, it is not possible to backpropagate
through the black box of the radio channel. However, it is only possible to optimize
the receiver side. This restriction has been overcome in [33], where they propose an
approach to the adversarial of the channel response approximation. This learning-
based approach does not require an analytical model impairment in the channel.
The generative adversarial approach adopted helps the model to jointly optimize
these tasks:

• Channel response approximation of an arbitrary communication system.

• Learning an optimal encode and decode scheme that optimizes any given
performance metrics.

This paper has shown that by using such a model, can achieve a robust
performance without needing a closed-form channel model or implementation.

2.3.8. Communications System without Channel Model

The novelty in [34] is solving the shortcoming of the AEs that requires a
differentiable channel model. The authors introduced an algorithm that iterates
between unsupervised learning training and RL at the receiver and the transmitter,
respectively. By using two different parametric functions, the transmitter and
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receiver have been implemented to be independently optimised. Normally, the
former approach requires a differentiable channel, and they proposed a model that
does not require a channel model at all. The iterations of the training algorithm
are done in two stages: at the receiver and then at the transmitter. It will not stop
until the benchmark is satisfied. Since the receiver has access to the sent message,
training the receiver is considered an unsupervised learning approach. While the
receiver is a reinforcement learning task, it generates channel symbols that will
minimize the scalar loss that had been generated by the receiver. This paper
has shown that over additive white Gaussian noise (AWGN) and Rayleigh block-
fading (RBF) channels, the alternating training model performs similarly to the
fully supervised approach. However, it still requires an additional reliable channel
during training in order to provide feedback on the losses from the transmitter to
the receiver.

2.3.9. Deep Reinforcement Learning Autoencoder with Noisy Feedback

The authors in [35], used the initial finding of [34] by showing that alternating
training can work even with a noisy feedback channel without performance loss
to an extent to a certain limit. They have designed a system that can learn to
transmit real values over unknown channels without any need to have a reliable
link or a preexisting feedback link. Then, they used this feedback system for the
alternating training of the AE to communicate the losses. This paper has shown
that using this feedback system can achieve the same performance as if we trained
the system with a perfect feedback link over AWGN and RBF channels. However,
for the noisy feedback, it performs well without performance loss only up to a
certain MSE and for the feedback system, up to a realistic training SNR.

2.3.10. Deep Learning Based Autoencoder for Interference Channels

One of the challenges that the data-driven end-to-end communication system
faces is the robustness of the AE under an interference challenge. In [36], the
authors began investigating the issue of unknown interference as it can be applied
to different channel models as well as the loss functions that give the optimal
solutions. The AE successfully decodes the signals without the knowledge of
the interference channel at the weak interference case. Then, they investigated
the performance of the AE under different levels of interference by introducing
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a symmetric k-user Gaussian model, where they classified the interference to
different levels from weak to very strong, based on the value of coupling parameter
α. They found that, based on the interference levels and the knowledge of α
that from the weak to moderate interference channels for training the AE, the
system performs well up to 10% offset for α. However, to have and maintain good
performance for the strong interference case, the offset for α has to be less than
5%, as well as for the very strong interference case, the offset for α has to be less
than 2%.

In [37], the authors proposed an adaptive algorithm to solve the performance
issues of the AE under strong and very strong interference. Based on the level of
interference, the algorithm was able to predict the decoding process in real-time.
This paper has shown how the adaptive learning algorithm significantly improved
the robustness of the interference channel and provided an adaptable AE to real-
time interference on many levels of interference. However, compared with the
conventional AE with offline learning, this algorithm is more notable when we
have a strong and very strong interference level.

2.4. Multiple-Input Multiple-Output OFDM with Index

Modulation

It has been established that multi-carrier systems play an important role in
high-speed wireless communications due to the robustness of these systems to
multipath fading and interference [38]. A number of new multicarrier technologies,
including generalized frequency division multiplexing and filter bank multicarrier
modulation, have recently been proposed as being eligible for fifth-generation
(5G) technology. Orthogonal frequency division multiplexing (OFDM) is the most
widely used and well-established multicarrier modulation method that is the basis
of many existing wireless standards, including IEEE 802.11 (Wi-Fi) and Long
Term Evolution-Advanced (LTE-A) [39,40].

It has become increasingly popular to study multiple-input multiple-output
(MIMO) transmission techniques over the past decade due to their advantages
over single antenna techniques, such as improved data rates and reduced
energy consumption. One of the most promising solutions for next-generation
communication systems based on MIMO spectral and energy-efficient solutions is
spatial modulation (SM), which transmits information bits based on the indices
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of the active transmit antennas in a MIMO system [41, 42]. The use of SM has
attracted significant attention from researchers in the past few years [43–48], and
it remains a hot topic in wireless communications [49].

A new multicarrier transmission technique known as OFDM with index
modulation (OFDM-IM) [50] has been proposed as an alternative to classical
OFDM. OFDM-IM is based on the SM concept, involving index modulation
techniques for the indices of the available subcarriers of an OFDM system.

In OFDM-IM, only a subset of the available subcarriers is selected as active
based on the information bits, whereas the remaining inactive subcarriers are
set to zero. Therefore, information is transmitted not only using the data
symbols selected from M-ary signal constellations but also by the indices of the
active subcarriers. In contrast to conventional OFDM, OFDM-IM allows for the
adjustment of the number of active subcarriers in the system, and this flexibility
in system design enables an interesting trade-off between error performance and
spectral efficiency. Furthermore, it has been demonstrated that OFDM-IM
has the potential to perform better when it comes to error performance than
classical OFDM when spectral efficiency is in the low-to-mid range. Considering
its adjustable number of active subcarriers, OFDM-IM is not only a potential
candidate for high-speed wireless communications systems, but also for machine-
to-machine (M2M) communications systems that require low power consumption
[50].

Over the past two years, researchers have been studying the subcarrier index
modulation concept as it pertains to OFDM [50–52], and a number of studies have
been conducted on it recently [53–62].

It is shown in [53] that a tight approximation for the error performance of
OFDM-IM can be obtained. The OFDM-IM scheme has been generalized in [54]
by introducing a more flexible method for selecting active subcarriers as a means
to increase spectral efficiency further. The authors in [55,56] address the problem
of selecting an optimal number of active subcarriers. To improve the performance
of OFDM-IM, subcarrier-level block interleaving is introduced in [57] to take
advantage of uncorrelated subcarriers. OFDM-IM with interleaved grouping
is adapted for vehicular communication in [58]. For the purpose of achieving
additional diversity gains, OFDM-IM is combined with coordinate interleaving
in [59]. Recently, OFDM-IM and its variants have significantly outperformed
classical OFDM in terms of ergodic achievable rate [60] and coding gain [61].
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In light of the advantages of both OFDM and MIMO transmission techniques,
their combination appears to be a viable alternative for the development of B5G
wireless networks [40]. A recently proposed multicarrier transmission technology -
MIMO-OFDM-IM - is obtained by combining MIMO and OFDM-IM transmission
techniques and can be considered as an alternative to classic MIMO-OFDM [62].
As part of this scheme, each transmit antenna transmits an OFDM-IM frame in
order to increase the data rate at the receiver’s end, these frames are separated and
demodulated by a novel sequential minimum mean square error (MMSE) detector
that considers the statistics of the MMSE filtered signals received.

2.5. Intelligent Reflecting Surfaces

Intelligent reflecting surfaces (IRSs) have gained significant heft because of
their ability to provide reconfigurable propagation environments. Absorption,
reflection, scattering, and diffraction features can be modified with time. They
can be tuned to proffer wireless communication capabilities and specifically helpful
in propagation environments with severe blockage. Because of reconfigurable
properties, IRSs improve utility in terms of error rates, data rates, communication
range, etc.

IRS-enabled wireless communication is a hot research area because of
its capability to improve the efficiency of wireless systems via reconfiguring
propagation environment. It enables operators to control radio wave
characteristics, which helps mitigate the adverse effects of natural wireless
propagation. Thus, IRS can be a crucial element in future-generation wireless
communication. However, the development relies on transmission schemes and
their optimization using classic tools or advanced machine-learning approaches.
The impact of IRS on future-generation wireless networks can be fathomed by
performance analysis, which will reflect IRSs’ efficacy to perform in challenging
environments. Several other areas, including cost, implementation, and energy
efficiency, are essential from researchers’ perspectives [63–69].

2.5.1. An Overview of IRS

IRSs are man-made surfaces with unique wireless communication capabilities.
These surfaces are made of electronically-controlled electromagnetic material.
An array of passive reflecting elements, classified into antenna-array-based or
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metasurface-based structures, can adapt to dynamically fluctuating propagation
environments [63,70,71]

Figure 2.6: IRS architecture. [2]

The distinctive feature of IRS lies in making a controlled environment that
facilitates operators to shape and control the electromagnetic response of the
environmental objects [4]. Though 5G networks have been rolled out globally,
millimetre-wave communication (mmWave), envisioned as a critical technology for
5G networks, is not adopted worldwide. MmWave technology has high bandwidth,
which can support high data rates. However, mmWave-aided communication faces
grave challenges, such as severe path loss and sensitivity to blockages by cars,
trees, and other objects. IRS is an enabling technology that can circumvent these
problems. IRS can be installed on large flat areas, such as walls, buildings, or
outdoor signages. IRS can reflect radio frequency energy around obstructions and
establishes a virtual LoS (line of sight) propagation path between the source and
destination [70].

Unlike current systems where operators cannot control the environment, IRS
establishes a “smart radio environment” that is software-based reconfigurable
platforms. The underlying technology behind this promising concept is meta-
surfaces, which are 2D equivalent meta-materials. [4]. Unique characteristics of
IRS include:

• They are unaffected by noise.

• They do not need any dedicated energy source.

• They can be easily established on ceilings, indoor spaces, and even on human
clothing.
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• They can perform at any operating frequency.

IRS possesses several advantages for practical implementations. Its reflecting
elements passively reflect the signals without any signal processing operations or
transceiver hardware. It is a reason that cost of IRS is significantly lower than
conventional transmitters. The passive nature of elements makes its installation
easy on walls, signages, street lamps, etc. Furthermore, IRS operates in a full-
duplex mode without introducing thermal noise. They gain high spectral efficiency.

2.5.2. Applications of IRS

Some promising IRS applications include IRS-aided multicell networks, IRS-aided
physical layer security (PLS) networks, IRS-aided multicast networks, and IRS-
aided cognitive radio networks. Cognitive Radio (CR) networks enhance spectrum
efficiency by facilitating secondary users to reutilize the same spectrum with
primary users. In the conventional approach, beamforming is used to improve
the sum rate for secondary users. Still, gains are limited with this approach.
By contrast, IRS can be deployed near primary user receiver (PU-RXs). It can
mitigate the interference and improve the signal power at secondary users [72–74].

SWIPT (Simultaneous Wireless Information and Power Transfer) is a
promising concept for providing cost-effective power delivery, but it is not without
challenges. In SWIPT systems, information receivers (IRs) and energy receivers
(ERs) have different power supply needs. ERs have higher power needs than IRs.
Thus, they need to be deployed near the base station to facilitate sufficient power.
Researchers have proposed to deal with this issue by deploying IRS near ERs.

2.5.3. IRS and System Performance: Interference Minimization

Research indicates that IRS enhances system performance by minimizing
interferences. IRS significantly outperforms the widely used semidefinite
relaxation (SDR) approach by allowing simultaneous communication by multiple
users [75]. The authors in [75] have formulated an optimization-based approach
for interference minimization using the system model. In addition, they have
considered SDR as a benchmark solution and delineated the potential of the IRS in
allowing multiple user pairs to communicate simultaneously via the same channel.
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2.5.4. IRS Implementation

Literature has investigated two main implementations of IRS, i.e., traditional
reflectarrays and metasurfaces. Irrespective of the implementation, IRS must be
passive, i.e., it will not emit any power. IRS aims to manipulate transmitted
waves, which makes it different from relaying [75].

The simplest method to implement IRS is to use a passive reflectarray. In
this, each element has a limited influence on propagated waves. Still, large
numbers of elements can control incident waves quite effectively. The practical
implementation relies on large numbers of antenna elements. Each element in this
system is like a tag in backscatter communication systems. Still, some differences
exist. Backscatter communications use reflections to communicate from reflector
to receiver, while IRS only helps in ongoing transmission. It does not communicate
information from the reflector to the receiver. Though a single element in this
system can be considered a tag in the backscatter system, the collective working
of all elements creates a potent effect on the incident wave.

A more sophisticated implementation is metasurface-based implementation,
a two-dimensional planar made from synthetic man-made material. Its
electromagnetic features are lacking in naturally occurring elements. Typically,
a metasurface comprises pixels or meta-atoms that are densely spaced
subwavelength resonating elements. Their small size proffers excellent freedom in
manipulating incident electromagnetic waves. Specifically, a metasurface can have
fine control over a scattered electric field by imposing arbitrary quasi-continuous
amplitude profiles. Earlier, metasurfaces could not be modified after fabrication
because of static meta-atoms designs. Later designs facilitate modifications in the
underlying meta-atom structure and the electromagnetic behaviour [75]. These
tunable surfaces have gained attraction because of their cost-effectiveness and
adaptability. A metasurface-based IRS is made of many tiles. Each tile is
a reconfigurable surface. i.e., each individual element of the system possesses
functions akin to a reflectarrays. Thus, it allows excellent flexibility in incident
wave manipulation. However, most of the research studies have focused on
reflectarray-based IRS. Though reflectarray can also fetch impressive results,
outcomes can be better metasurface-based IRS. More experimentation is needed
to explore how enhanced sophistication would help operators make performance
gains.
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2.5.5. Spectrum Efficient and Energy Efficient Wireless Communication

IRS technology is promising in attaining both spectrum and energy-efficient
wireless communication by integrating low-cost and passive reflecting elements.
By manipulating incident wave features such as phase, frequency, and amplitude,
IRS reflects manipulated waves to the destination without requiring complex signal
processing. [76] have analyzed the asymptomatic optimality of achievable rate in a
downlink IRS system. Simulation results revealed that passive beamforming and
modulation schemes could achieve asymptomatic optimality.

Multiple base stations in different cells reutilize the same scarce frequency
sources in order to maximize spectrum efficiency. As a result, cell-edge users
experience a low SINR. The researchers proposed that deploying IRS at the cell
boundary can help enhance the signal from the serving base station by minimizing
the interference from the other. Simulation results have revealed that the sum-rate
achieved by an IRS-aided system with 80 reflecting elements might double that of
a system without IRS [70].

IRS-aided Non-orthogonal Multiple Access (NOMA) is a promising technique
in which multiple users simultaneously use orthogonal resource blocks. It
improves the spectral efficiency of conventional Orthogonal Multiple Access
(OMA). Furthermore, NOMA is ideal when all users’ channel vectors represent
the same angular direction [70].

2.5.6. IRS for Localization and Mapping

IRS can operate as a reconfigurable lens or mirror. A local control unit controls
it and adjusts its phase profile. Based on operating modes, IRS can be an
anomalous reflector, receiver, or transmitter where the direction of the reflected
wave is steerable. IRS concept can be implemented at various wavelengths-
from sub-6GHz to 28GHz mmWave bands. At a higher wavelength, benefits
can be significant, but technology is immature. Several issues can crop up at
0.1-1THz because of increased sensitivity to blockages, hardware limitations, and
atmospheric absorption. These properties of IRS make it an exciting application
for localization and mapping [77].

There is a shortage of literature concerning localization and mapping in IRS
systems. Recently, Wymeersch, He and Denis have argued that IRS is beneficial
for localization and mapping in terms of extensive physical coverage and enhanced
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accuracy. However, appropriate models and algorithms need to be developed to
fetch the gains. The immaturity of models has hampered progress in this direction,
and further investigation and validation are necessary.

Different visions of the IRS can provide distinct merits and demerits concerning
localization and mapping. Though authors have shown possibilities of low costs,
deploying additional base stations can be challenging. Still, IRS can be a game-
changer for localization and mapping applications. Therefore, it deserves heft from
signal processing, propagation, communication, and antenna communities.

In sync with the analysis done in [77] performed Fisher’s information analysis
and proposed a 2-stage localization algorithm. Results showed that when a-
priori information is present, positional beamforming can fetch good performance.
However, random beamforming is a better option when a-priori information is
lacking.

2.5.7. IRS and Security

Wireless communication is prone to security threats such as information leakage
and jamming attacks. Physical layer security (PLS) techniques have received
much attention in recent years because of their suitability for latency-sensitive
applications. Researchers have suggested artificial noise and multiple antennas to
maximize the rate of the secure communication link. Still, issues can crop up when
eavesdroppers and legitimate users have correlated channels or eavesdroppers are
situated closer to the base station than legitimate users. These conditions can
affect the achievable secure rate. Deploying IRS can increase the signal power for
legitimate users while mitigating information leakage to eavesdroppers [78,79].

The authors in [70] have studied the IRS-assisted OFDM system. They have
proposed a practical transmission protocol to reduce training overhead in channel
training. They proposed a unique grouping method where each group is comprised
of adjacent IRS elements sharing a common reflection coefficient. This grouping
method facilitated the researchers to propose a protocol wherein only the combined
channel of each group needed to be estimated as it reduced training overhead.
Simulation results revealed that the proposed design colossally improved OFDM
link rate performance compared to the scenarios where IRS was not used.
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2.6. Chapter Summary

This chapter presented the key concepts of ML and DL for the physical layer and
their potential. Next, we discuss some general background about DL concepts,
we focus our work on DL for the physical layer of the communication system.
Moreover, a key literature review of ML and DL on wireless communication
systems. Finally, the IRS concept, application and implementation were presented.



Chapter 3

Applied Autoencoder(AE) Techniques

Autoencoder (AE) is a type of artificial NN that has been mainly implemented
throughout this chapter. This chapter aims to describe the fundamental aspects of
AE and how it can be applied in wireless communication. Section 3.1 introduces
the ML and AE in wireless communication. Section 3.2 explain the neurons in AE
while the activation functions are covered in section 3.3. Section 3.4 illustrates the
architecture of AE followed by types of AE in section 3.5. Section 3.6 introduces
the applications of AEs, while section 3.7 illustrates how the AE works and learns
in section 3.8. Section 3.9 explains the gradient descent algorithm followed by the
backpropagation algorithm in section 3.10. Section 3.11 presents some basics for
DL AE and its training. Section 3.12 investigates the different configurations of
the AE with the aim of understanding its potential before extending the existing
research. Section 3.13 presents the simulation and results of AE under different
channels. Finally, section 3.14 summarize the chapter.

3.1. Introduction

ML has become quite common in the modern era of digitization and technology
[80,81]. It finds extensive applications in weather forecasting, anomaly detection,
speech recognition, and content filtering in social networks [81, 82]. For decades,
ML algorithms focused only on supervised learning. Then came the notion of DL
which carries the capability to automatically extract features and patterns from
data [81]. At its core, the DL functions through multiple levels of representation

49
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with the help of nonlinear modules or functions for representation of the preceding
level. The recent advances in the DL field have given rise to artificial NNs that
carry the built-in capability to model data points through multiple layers of hidden
representations. These NNs are referred to as AE.

The basic functioning of the AE involves a layer-wise pre-training method
involving specific features and representations. Once all individual layers are
pre-trained, they are then integrated to form an AE that requires fine-tuning
for improving the functioning of the overall DL model [80]. The concept of
unsupervised learning lies at the heart of the AEs in which some sort of relationship
among input functions enables them to learn and adapt the model parameters [80].
Moreover, the presence of the bottleneck or limiting constraints is essential for
constructing features that could force learned compression of the input data [80].
The ideal AE balances in terms of sensitivity to the inputs to accurately build
the reconstruction and insensitivity enough to an extent that the model simply
doesn’t repeat the training data [80]. Due to this tradeoff. The model focuses
only on the variations in data to reconstruct the input.

3.2. Neuron in Autoencoders

The term NN or neurons refers to the links associated with the inputs and outputs
in the DL algorithms [83]. The AE learns significant patterns from the data by
minimizing the reconstruction error between the input and output data. In AEs,
the number of neurons present in the output layer is exactly equal to the number
of neurons in the input layer. AEs have a large number of nodes in the input and
output layers [83]. The training is carried out to redesign the input vector instead
of mapping it to a target label. The number of neurons in a hidden layer is less
as compared to the input layer neurons so that encoding of the data is performed
in a lower-dimensional space and abstract features are derived.

The role of neurons in DL algorithms and AEs is an estimation of
the representations for updating the system. The measurement of the loss
function and certain regularization terms requires designing an objective-oriented
representation function. Similarities and differences among hidden neurons
provide input to the regularization of the estimated neural networks and AEs.
Robustness and development of discriminative features are essential for building
reliable AEs for various applications. The activation functions and other features
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make deep learning models for AEs quite meaningful. The relationship between
the input and output parameters is important to establish frameworks for the
training of data and feature extraction.

3.3. Activation Functions

Activation is the mapping capability of the AE that uses the nonlinear
transformations for associating the encoded coefficients into a specific range [84].
The application of the activation functions lies in the mathematical formulation of
the DL algorithms and AEs. In modern digital networks, the activation functions
are generally nonlinear which allows it to learn more complex functional mappings
between input and outputs. Moreover, the constraints associated with the linear
functions are avoided with the help of such complex modelling of activation
functions.

There are various activation functions commonly used in the AEs domain.
For example, the sigmoid activation function σ(x) maps a real number x into an
interval between 0 and 1 [82]. It could be expressed as follows:

σ(x) =
1

1 + e−x
. (3.1)

The hyperbolic tangent function (tanh) is another example of the activation
function that maps the real numbers to the range between -1 and 1 [82]. Unlike
the sigmoid function, the output passes through zero. Mathematically, we have:

tanh =
1− e−2x

1 + e−2x
. (3.2)

Learning of the deep networks and AEs could improve in utilizing the recurrent
models [85]. The concept of memory cells could be employed for mapping
input and output features [85]. The connections could be easily set up between
representations for the dynamic adaptability of the NNs. The standard nonlinear
networks could be dynamically updated to adapt to the innovative features and
provide the required accuracy for AEs. The main objective of the development of
the activation functions of the AEs is to derive the loss terms that minimize the
derivatives of the hidden layer activations, concerning the input training examples.
This strategy penalizes instances where a minor change in the input could lead to
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a larger change in the encoder nonlinear mapping.

3.4. Architecture of Autoencoders

The architecture of the DNN is built by concatenating the basic models
hierarchically [84]. Due to their simple modelling and representation, the AEs have
found various applications. The NN architecture comprises output representations
in the form of hidden layers. The depth of the network is ascertained with the help
of a group of experiments and training of the model. The inputs of the successive
layers are linked to the output of the previous layer [84]. The performance of the
AE is dependent on its architecture as research showed that stacked AE is much
better as compared to the single hidden-layer model [84].

The architecture of the AE comprises several parameters for the representation
of the input and output. The parameters like code size, number of layers, loss
function, activation function at each layer, regularizer, and optimizer determine
the architecture of the AE. The DL models don’t require labelled information
for data. Training of AEs in the field of DL is difficult due to the diversity of
the architectural features like differences in the magnitudes of the gradients in
lower and higher layers, the landscape of the objective function is tough for SGD
for finding the good choice for local optimum. Moreover, DL networks involve
various parameters for remembering the training data. Pretraining the AEs, the
architecture of the NN scheme is considered reliable when it involves accurate
linkages and adaptable nodes between inputs and outputs.

3.5. Types of Autoencoders

There are various types of encoders as described below. The types of encoders
stem from various architectures that can be employed for hidden representations
of deep non-linear neural networks.

3.5.1. Sparse Autoencoder

Sparsity is an important concept in the field of DL and AEs. In general, the sparse
AEs have the characteristic of getting only a few neurons, roughly 5%, for any
given computation in the encoding layer. For forcing sparsity, one could easily
introduce sparsity measure and feature its minimization during the training of
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the neurons [86]. The architecture of the sparse AE is overcomplete in the sense
that it allows many hidden units in the code, but most of the hidden neurons
result in only a minor activation. For every hidden node, the average activation
value should be nearly zero [82]. The goal is to activate neurons only for a small
proportion of the training examples [82]. Since the samples have different features,
the activation of the neurons must not be held similarly in all neurons and must
be coordinated.

The training of the sparse encoder includes a penalty term in its loss function
for minimizing deviation from the desired sparsity. With a higher level of sparsity,
the network seemed to capture local fragments of digits, and it required learning
a more comprehensive representation of each digit [82].

3.5.2. Denoising Autoencoder

The NNs could be trained by adding noise to the network and then mapping the
inputs to the outputs. The noise in the input layer provides a disturbance to
the system for enforcing its adaptability towards actual and undesired inputs [82].
The inputs provided to the system are corrupted and the system automatically
adapts its representations to filter input from noise and establish related neurons.
The loss function associated with denoising input involves the corrupted version
instead of the original input to minimize the error of mapping. Traditionally, the
AEs minimize the following loss function:

L(x, g(f(x))), (3.3)

where L is the loss function that penalizes the function g(f(x)) from being
dissimilar with x. Ideally, the convolution of g and f would yield an identity
function. The denoising AE minimizes the following function:

L(x, g(f(x̃))). (3.4)

In the above equation, x̃ is the copy of the original function x that has been
corrupted by some form of noise. The denoising AEs must remove the corruption
from the input instead of copying inputs to outputs. Denoising AEs provide
an example of how useful properties could be extracted from NNs by simple
reconstruction of systems. Moreover, denoising systems also provide insight
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into high-capacity models as long as preventing them from learning the identity
function.

The application of denoising AE could be found in the image processing
systems in which the original image is corrupted by glitches or noise [87].
Reconstruction of the image requires encoding the corrupted input to the
representations of the system and identifying features from it [87]. After
minimizing the loss function and training the system to minimize noise, the original
image can be extracted at the output.

3.5.3. Stacked Autoencoder

As the name suggests, the stacked AE is a deep representation of the simple
encoder with layer-wise pre-training of the system. It functions by removing the
top layer of the simple encoder while the bottom and middle layers stay intact [84].
The value of the middle layer could be named h1, and the corresponding layer could
also be called from the same name. Secondly, with the help of layer h1 and the old
middle layer as inputs, two more layers are added as h2 and ĥ1 [86]. The resulting
three layers could be considered as stacked encoders and are trained according to
standard rules. The same process could be repeated to add more layers to get
more representations and stacked neural network structure or deep AE.

The decrease in the number of features in successive layers occurs according
to diverse heuristic architectures or with the help of regularization parameters.
The components of the deep AE were parametrized in the same manner for each
training method. The input data fed into the AE could be normalized to the
original values.

3.5.4. Contractive Autoencoder

The regularization of AEs could be performed in a variety of ways. In contractive
encoders, a specific penalty Ω is imposed on the parameters of the system such
that the function doesn’t change much with slight variations in the input. Since
this penalty is only applied to the training examples, it makes the AE learn the
features that capture information regarding the training distribution. The AE
regularized in this manner is called a contractive AE. It functions by defining an
explicit regularizer on the code such that the derivatives are as small as possible.
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3.5.5. Deep Autoencoder

The deep AEs are like contractive AEs in terms of functioning and model
implementation [88]. Each layer of the deep AE is pretrained to form a series
of single-layer AEs. Since each layer is independent in terms of self-learning,
the overall model is quite different from the architecture in which all layers are
pretrained in parallel. The penalty is imposed on the Jacobian of the deep model,
but still, it possesses several desirable features.

The deep AE contains at least one hidden additional layer inside the encoder
itself. It can approximate any kind of mapping from input to code from the given
hidden units. The main advantage of depth is an exponential reduction in the
computational cost of representing source functions. Depth can also minimize
the amount of training data required to learn some functions. Deep AEs yield a
high degree of compression than the corresponding linear type of AEs. A common
method to train a deep AE is rigorous pretraining the deep architecture by training
a hierarchy of shallow AEs. The limitation of the deep AE is information loss
should be minimized through the compression hidden layer concept. Due to the
minimization of the loss function, the deep AEs function very well.

3.6. Applications of Autoencoders

AEs are successfully applied in terms of dimensionally reducing information
retrieval tasks. Dimensionality reduction is one of the interesting applications of
DL and represents self-learning regimes. In one of the applications, the researchers
trained a set of hidden layers by using their weights to form a deep AE [89]. The
overall structure culminated itself in the bottleneck of 30 units. The self-learning
model was qualitatively easier to implement and then relate to the underlying
categories, with these features depicting themselves as well-separated clusters.

The applications of low-dimensional models are numerous. Models of smaller
spaces use less memory and computation time. Many different forms of
dimensionality reduction utilize semantically related examples. The hints offered
by mapping to the lower-dimensionality space help in the generalization of the
models.

One major application of AEs is information retrieval from a huge database
that resembles a query entry. This task is efficient not only in terms of
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dimensionality reduction, but the computational time for searching index terms
could be very small for certain stacked implementations. Specifically, we can easily
train the AE model that plays the function of dimensionality reduction for storing
the database entries in a kind of hash-table for mapping of binary code vectors to
different entries. The hash table would allow information retrieval by returning
all kinds of database entries that carry the same binary code as the index search
term. This approach towards information retrieval with the help of dimensionality
reduction and binarization is called semantic hashing.

For producing binary codes for semantic hashing, one typically utilizes an
encoding function with sigmoid on the final layer. These units must be trained
to provide binary outputs for the given input values. One trick to accomplish
this objective is the addition of additive noise just before the nonlinearity for the
training period. The magnitude of the noise must have an increasing trend over
time. For minimization of noise to the overall system, the magnitude of the inputs
is increased to the function, until saturation occurs [90].

3.7. How do the Autoencoders Work?

AEs work by self-learning from a set of modular inputs, big data, NNs, and DL
schemes. The overall process of coding the inputs for learning the process is called
encoding. The concept of self-learning is important for pretraining a set of inputs
against which the model sets the base-level implementation. After pretraining,
the self-learning of the AEs improves with time by processing the inputs.

The objective of the AEs is the implementation of functions that could adapt
according to the environment and the input. The logic associated with the AEs
ensures that the system’s adaptability to the conditions improves with time. For
quantitative assessment of the AEs, the loss function is important. For different
categories of AEs, the loss function is designed that must be minimized to reduce
the error between the expected output and the actual output.

The function of AEs must also be understood from the perspective of layering
or DL. The contractive or deep AEs train layers independently to form hidden
layers and the resulting stacked network finds various applications. The learning
of AEs could improve by using different schemes for DL. When you consider
applications of AEs in binary hash applications, the learning schemes could be
diverse [24,91].
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3.8. How do Autoencoders Learn?

Learning of AE occurs with the help of NNs by recognizing the pattern among
the structural layers. The learning of AEs occurs with the help of pretraining of
inputs and outputs mapping to each other. Designing AEs involves imposing the
NN, which imposes the bottleneck in the architecture. The resulting framework is
a compressed knowledge representation of the original input. The input features
could be dependent on each other. The applications in which the training set
involves independent inputs couldn’t utilize AEs for training functions.

For training the AEs, a set of inputs could be chosen for representation and
self-learning. The task is generating a model for the reconstruction of the original
inputs by learning the patterns and dependencies among the inputs. The output
of the AEs could be a reconstructed version of inputs by minimizing the error
between actual inputs and reconstructed inputs. The loss function determines the
mathematical formulation of error generated due to representation or self-learning.

The bottleneck is an important function of the AE that determines the presence
of the information source as the representable gradient. Without the presence of
the information bottleneck, the system could easily learn to memorize the input
values by transferring these values along with the network. The bottleneck allows
forced compression of the data and traversing of information from input through
the channel to the output. The activation functions work in layers to help the
reconstruction of inputs and perform a learned representation of the original input
data. The key to the representation or the learning function is to be sensitive to
the input data for accurately building the reconstruction and insensitive enough
to those inputs that involve simple memorization or overfitting the training data.
The tradeoff allows the system to maintain the variations in the data instead of
copying the system values and generating their image. The terms included in the
model for representation provide the trade-off between different objectives [92,93].

3.9. Gradient Descent

It is an optimization algorithm in the domain of neural networks and AEs that
involves self-representation of data. It is based on the convex optimization problem
and manipulates the system parameters to minimize the given objective function.
The system works by defining a set of input parameters and adjusting them such
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that the objective function is maximized or minimized.
The concept of the gradient is generic that measures how much the output

changes if you change the input slightly in a small increment. It simply calculates
the variations in the weight of the parameters of the function. The higher the
gradient, the steeper the slope of the function and the faster the system can learn.
If the slope of the gradient is zero, the model will stop learning and the self-learning
will be ineffective in the case of AEs. This concept is important for ML algorithms
that involve the learning curves and functions for which gradient descent could be
used for minimizing the given objective function.

Consider the problem of minimizing the cost function in the form of losses
incurred due to the representation of the inputs in the AE. The loss function
involves errors concerning differences in input and reconstructed input. For
minimizing the loss function, the parameters could be tweaked such that the
reconstruction error could be optimized. For finding the right values of the convex
optimization problem, the variables could be tweaked in a manner that minimizes
the overall functional error. The learning rate could be set to achieve the desired
highest or lowest value [94–96].

3.10. Backpropagation

It is the main essence of the neural network training that is employed in the AEs.
It is the method of tweaking the weights of the AEs based on the rate of error in
successive iterations. Proper tuning allows the reduction of error rates and makes
the model reliable by improving its generalization.

Backpropagation is the short form of backward propagation of errors, and it
represents the standardized method of training artificial NNs. With the help of
backpropagation, we can measure the gradient of the loss function concerning
the weights in the network. The system requires studying the group of inputs and
activation values for developing the relationship between the input and the hidden
unit layers. It helps in assessing the impact that a given input variable has on
different kinds of network outputs. It is especially useful for DNNs, by working
on error-prone projects such as speech recognition and image processing. It takes
advantage of the chain and power rules that allow backpropagation to function
with any number of inputs [25, 97].
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3.11. Basic Deep Learning Based Autoencoders

An autoencoder as feed-forward NN, or multilayer perceptron (MLP) with L
number of layers, can be described as mapping f(r0; θ) : RN0 7→ RNL of the
input vector r0 ∈ RN0 to the output vector rL ∈ RNL via L iterations:

rℓ = fℓ(rℓ−1; θℓ), ℓ = 1, ..., L, (3.5)

where fℓ(rℓ−1) : RNℓ−1 7→ RNℓ is the mapping on the ℓth layer. This mapping
depends on the output vector rℓ−1 from the previous layers and on a series of
parameters θℓ. We define θ = θ1, ...θL in order to denote the set of parameters in
each layer of all L layers. The ℓth layer, called dense layer or fully-connected layer
if fℓ(rℓ−1; θℓ) can be written as:

fℓ(rℓ−1; θℓ) = σ(Wℓrℓ−1 + bℓ), (3.6)

where the weight is Wℓ ∈ RNℓ−1×Nℓ−1, the bias is bℓ ∈ RNℓ and σ(.) is the activation
function. The set of parameters in the dense layer are θℓ = [Wℓ, bℓ]. Table 3.1
shows a list of different layer types with mapping functions and parameters. All
the L layers with random mapping generate random mapping each time. For
example, the noise layer involves adding a Gaussian noise vector to the input a
zero means and variance matrix βINℓ−1

. Therefore, it generates a different output,
for the same input each time. The activation function σ(.) in equation 3.7 is a
non-linear function that is important because, without non-linearity, there will
be no advantage of heaping different layers on top of each other. The activation
function is generally applied individually to each entry vector. Table 3.2 lists some
frequently used activation functions. Generally, we train the NNs by labelling the
training data, i.e. a pair of input and output vectors (r0,i, r

∗
L,i), i = 1, ...S where

r∗L,i is the targeted output, and r0,i is the input of the NN. Our goal is to attain
the minimized loss

L(θ) =
1

S

s∑
i=1

l(r∗L,i, rL,i), (3.7)

where l(u, v) : RNL × RNL 7→ R is the loss function, and rL,i is the prediction of
the NN, while r0,i is the input. Table 3.3 shows several relevant loss functions.
One of the most popular algorithms for finding suitable sets of coefficients is the
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stochastic gradient descent method (SGD) [98], which begins with some initial
random values of θ = θ0 and then iteratively updates θ as

θt+1 = θt − η▽ L̃(θt), (3.8)

where η > 0 is the learning step while the result of the loss function calculated
from a random mini-batch of the training set is L̃(θt). St ⊂ 1, 2, ..., S in each
training epoch, i.e.

L̃(θ) =
1

St

∑
i∈st

l(r∗L,i, rL,i). (3.9)

When we select a small St compared with the S, the calculation complexity
will reduce and continue reducing the variance of the weights. There are many
different kinds of SGD algorithms that can modify the learning step dynamically to
promote convergence [99]. In this work, we have used adaptive moment estimation
(Adam) [100] to optimize and update the parameters.

Table 3.1: A list of layer types.

Name rℓ = fℓ(rℓ−1; θℓ) θℓ
Dense σ(Wℓrℓ−1 + bℓ) [Wℓ, bℓ]
Noise x+ η none

Normalization x√
E.|x2|

none

Table 3.2: A list of activation functions.

Name [σ(u)]i Range
ReLU max(0, ui) [0,∞)
tanh tanh(ui) (−1, 1)

sigmoid 1
1+eui

(0, 1)

softmax eui∑
j e

u
j

(0, 1)

Table 3.3: A list of loss functions.

Name l(u, v)

MSE ∥u− v∥22
Categorical cross-entropy −

∑
j ujlog(vj)

The power of AE is derived from its nonlinear nature. AE can learn
rather powerful representations of the input data in lower dimensions with



CHAPTER 3. APPLIED AUTOENCODER(AE) TECHNIQUES 61

little information loss when nonlinearity is added (such as nonlinear activation
functions)

3.12. End-to-End Communications System Based Autoencoders

As we introduced in the previous chapter, using AE based on DL end-to-end
communications system has garnered interest due to it is flexibility and simplicity.
In this section, we have investigated the different configurations of the AE with
the aim of understanding its potential before extending the existing research. We
investigate the AE performance based on end-to-end communication systems, and
we start this chapter by explaining the concept of AE as proposed by [3] and its
application, then we formulate the AE system model and its layout. Next, we
present the implementation of the system before presenting the results.

3.12.1. System Model

A communication system consists of a transmitter, a channel and a receiver, as
shown in Fig. 3.1 The transmitter sends one message out of M possible messages
s ∈ M = 1, 2...,M to the receiver making n use of the channel. In general,
the hardware of the transmitter imposes power constraints on x, such as energy
constraint x22 ≤ n or an average power constraint E [x2i ] ⩽ 1∀i.

Figure 3.1: A structure of a simple communication system.

The communication system will represent each message s in k = log2(M)

using a communication system rate R = k/n [bits/channel use]. The conditional
probability density function p(y|x), can describe the channel as it causes distortion
to the transmitted symbols so that the receiver, upon the reception of y, it
produces ŝ of the transmitted message s.

3.12.2. End-to-End Learning Using Autoencoders

One of the artificial neural network (ANN) types is the AE which uses an
unsupervised ML algorithm to reconstruct its input at the output. Originally,
the main goal of an AE is to reduce the dimensionality of its input, which allows
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for a reconstruction of the output in an unsupervised manner with minimum
error. However, the main purpose in our case is to learn to represent input x of
the message s which is robust then the transmitter can recover the message with
a small probability of error. The AE consists of a number of layers forming a
representation of a DL network, or there can be multiple hidden layers that form
a DNN. The hidden layers, h describe a code used to represent the input data
x. The hidden layers are constructed to learn about representation from its input
dataset, so it can copy it into the output layer. In order to maximize the end-
to-end recovery accuracy, the weights/parameters of the DNNs are trained in a
supervised learning manner. It is possible to simulate the effect of wireless channels
by adding noise to the hidden layers in order to obtain robustness to noise. As
shown in Fig. 3.2 the network of an AE as an end-to-end communication system
consists of three parts:

Figure 3.2: A communication system represented as an autoencoder.

Encoder:

the transmitter wants to transmit one input symbol s out of M = 2k messages.
The input symbol is encoded as a one-hot vector 1s ∈ RM as M-dimensional
vector, then fed into the input layer after the encoder recognizes a transformation
of f : Rk → Rn in order to transfer ŝ ∈ Rk to the signal x = f(s) ∈ Rn. As
shown in Fig. 3.2 the encoder consists of multiple dense layers; a dense layer of
M units with a ReLU activation function and a dense layer of n units with a



CHAPTER 3. APPLIED AUTOENCODER(AE) TECHNIQUES 63

linear activation function. After, at the normalization layer, an energy constraint
E[∥x∥2] = n. As mentioned above, the use of AE will add some redundancy by
making n ≥ k for x of the message s so it can fight the channel impairments
mapping x to y. The end-to-end AE uses the communication rate R = k/n

[bits/channel use].

Channel:

The channel layers come after the encoder layer, and its a flat fading channel
that consists of fading layer and a noise layer. The channel layers add some
perturbations to x, which is the output of the encoder.

y = h⊙ x+w, (3.10)

where ⊙ stands for the element-wise multiplication, h ∈ Rn is the impulse response
data fed to the fading layer, x ∈ Rn is the encoder output and w is the AWGN
characterized as distribution CN(0, β2I). The channel is represented by AWGN
due to the assumption that the main source of the noise is on the receiver side [101].
The channel uses a fixed variance β = (2REb/No)

−1, where (Eb/No) is the energy
per bit Eb to the noise power spectral density No ratio.

Decoder:

The decoder is on the receiver side of the communication system that consists
of two dense layers of M units. The decoder transforms g : Rn → Rk to the
noise signal y ∈ Rn to message ŝ ∈ Rk. The decoder uses ReLU as an activation
function on one dense layer and a softmax activation function on the other dense
layer. The result of the decoder is a probability distribution with M probabilities
and the highest index probability is converted to a decoded message ŝ. Training
an end-to-end AE can be done by minimizing the reconstruction loss function.
The loss function L, such as categorical cross-entropy or MSE, is used to penalize
the change of g(f(x)) to the input x.

L = −
N∑
i=1

(s1 log ŝ
(i)
1 + s2 log ŝ

(i)
2 + ....+ sM log ŝ

(i)
M ), (3.11)
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where the original message has been sent by the transmitter is s =

(s1; s2; s3; ....; sM) and the decoded message at the receiver is ŝ = (ŝ1; ŝ2; ŝ3; ....; ŝm).
For training the AE, we used Adam optimizer to execute the SGD as mentioned
earlier. Table 3.4 lists the layout of AE model.

Table 3.4: Layout of the end-to-end autoencoder

Component Layer Activation Function Output Dimension

Transmitter

Input M
Dense ReLU M
Dense Linear M

Normalization n

Channel Fading n
Noise n

Receiver
Dense Linear M
Dense ReLU M
Dense softmax M

3.13. Simulation and Results

In this section, we present the AE implementation and results as an end-to-end
communication system in comparison with a conventional communication system.
Our performance benchmark is the standard communication system using BPSK
modulation and a Hamming code as the coding method. The AE model we
implemented was proposed by [3]. For implementing the model, we used Python
with Keras [102], and Tensorflow [103], as its backend for training and testing uses
the parameters in Tabel 3.4.

The AE has the input symbol s, which has a M finite state, while the channel
with some random features acting on the encoded signal x then generates the
output signal y. We can consider these random features of the channel as a sort
of regularisation to prevent the problem of overfitting. The training was done
on different channels as follows: AWGN channel, Rayleigh channel and Rician
channel. All the training over these different channels was done with 50 epochs.
Each of these epochs uses a different training symbol of 106 and at a fixed Adam
optimisation learning rate of 0.001, and at fixed Eb/No = 7dB.
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3.13.1. AWGN Channel

To evaluate our coding performance, we began training our communication system
over the AWGN channel as it is widely used in coding theory.

Fig. 3.3 shows the bit error rate (BER) of the end-to-end AE and Hamming
Code with the binary phase-shift keying (BPSK) modulation operating rate at
R = 4/7. Also, to achieve a clear code gain, we simulate uncoded BPSK (4,4).
To achieve optimal performance, the Hamming code uses maximum likelihood
decoding (MLD). The AE (7,4) at rate R = 4/7 is almost the same BER as the
Hamming (7,4). While at rate R = 4/7, the AE (7,4) outperforms the BER of the
uncoded BPSK. These results indicate that the AE without any prior knowledge of
the encoder and decoder function achieves the same performance as the Hamming
(7,4) and better performance in (4,4). This result means that improving the
complexity of coding and decoding will increase the coding gain.

Figure 3.3: BER versus (Eb/No) for the Uncoded BPSK (4,4), Hamming (7,4),
Autoencoder (7,4) and Hamming (7,4) MLD.

Fig. 3.4 shows a comparison of a communication system for (2,2) and (8,8).
We notice that the BER of the AE is almost the same as the uncoded BPSK (2,2).
On the other hand, the AE (8,8) outperforms the uncoded BPSK (8,8). From this
comparison, we can conclude that the AE achieved some coding gain by learning
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some join coding and modulation schemes.

Figure 3.4: BER versus (Eb/No) for the Uncoded BPSK(2,2), Autoencoder (2,2),
Uncoded BPSK(8,8) and Autoencoder(8,8).

Learned Constellations

After training the AE model, we can split the system into three parts: an encoder,
a channel and a decoder. The encoder part is where the encoded symbol is
generated at the transmitter before it sends through the channel and then to
the receiver where the decoder is implemented to recover the message. Fig. 3.5
(a) shows the scatter plots x for all messages with different values of (n, k). The
simple (2,2) system with some arbitrary rotation, learned constellations similar to
(QPSK). In Fig.3.5 (b), we can observe that the (2,4) system leads to a rotated
16-PSK.



CHAPTER 3. APPLIED AUTOENCODER(AE) TECHNIQUES 67

(a) (b)

Figure 3.5: Constellations produced by autoencoders using parameters (n, k): (a)
(2, 2) and (b) (2, 4).

Effects of Training (Eb/No) Values and Hyperparameter Tuning

During the training of the AE, we notice that the architecture of the deep model
and parameters of training, such as the length of the encoded signal, batch size
and learning rate, are affecting the performance of the training model. Fig. 3.6
shows a comparison of the BER of the AE (2,4) to the AE (8,4). We notice
that the BER had become lower when the length of the encoded signal x grows
longer. This means that reducing the source transmission rate resulted in BER
gain. While growing the length of x, the code gain decreases until it vanishes
completely.

Figure 3.6: BER versus (Eb/No) for the Autoencoder (k,4), k=2, 3, 4, 5, 6, 7, 8.
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From Fig. 3.7 we can observe that when we fixed the (Eb/No) value of 7dB,
the small batch size of 100 resulted in improving the BER performance compared
with the large batch size of 1000.

Figure 3.7: BER performance for different training batch size values.

Fig. 3.8 shows that at a fixed batch size of 1000, the performance of the trained
autoencoder is better with a low (Eb/No) value at 4dB compared with 7dB.

Figure 3.8: BER performance for different training (Eb/No) values.

3.14. Chapter Summary

In this chapter, we have introduced and presented the key concepts of AE
before we start to investigate the different configurations of the AE with the
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aim of understanding its potential before extending the existing research. In
addition, we evaluated the implementation of machine learning in end-to-end
wireless communication based on existing neural network technologies in the
AE. In particular, we compared the BER performance for SISO systems of the
uncoded communications systems with the equivalent AE models. Our simulation
results show that the performance of the AE-based systems is comparable to the
conventional systems. We also investigated the effect of training (Eb/No) and
hyperparameters on the AE system and the effect of these parameters on the
performance of the system. Then, we trained the AE model using various wireless
channel types and compared the AE performance under AWGN. The AE has
shown better performance than the Hamming code in BER performance, with
less processing complexity compared with the conventional system. Moreover,
the parallel architecture of the DL allows the processing of information faster.
This has proven the power of the DL in the physical layer and in terms of error
performance in the next chapter.



Chapter 4

Design of A Deep Learning-Based
Detector for IM-MIMO-OFDM

This chapter is organised as follows: section 4.1 introduces the chapter and states
the main contributions. Section 4.2 states the related works, followed by deep
learning-based detection in section 4.3. Section 4.4 introduces the experiment
setup and training procedure. The numerical simulation comparing the results
with other works is presented in section 4.5. Finally, section 4.6 summarises the
chapter. The work in this chapter has been published in P.1.

4.1. Introduction

Deep learning (DL) is playing an increasingly important role in the design of
next-generation communication systems. In this chapter, we apply DL algorithms
to enhance signal detection and performance of multiple-input-multiple-output
(MIMO) based orthogonal frequency-division multiplexing (OFDM) systems with
index modulation (IM). The proposed detector termed DLIM is used as fully
connected layers of a deep neural network (DNN) and adopted to achieve minimum
bit error rates (BER) in IM-MIMO-OFDM over Rayleigh wireless channels. To
show the enhancement of the proposed algorithm, the DL model is trained initially
offline using data generated from simulation based on common statistical wireless
channel models. DLIM is then adopted to recover the online transmitted data.
Simulation results confirm that the proposed DLIM can detect the transmitted

70
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symbols with a performance comparable to near-optimal BER in a shorter runtime
than required by the existing classical detectors.

4.2. Related Works

Recently, IM has attracted attention as means to achieve high-required energy and
spectrum efficiency (SE) for OFDM [104]. Studies have shown that orthogonal
frequency division multiplexing with index modulation (OFDM-IM) [50] is a
promising multicarrier system that can replace conventional OFDM. In OFDM-
IM, a subset of the sub-carriers is active, and the indices for them are used to
convey information bits. This allows the OFDM-IM to be more reliable and energy
efficient than the conventional OFDM due to the fact that there is no need for
bandwidth or extra power when using indices of the active subcarriers to carry
the data bits.

In view of the above characteristics and benefits, many studies in recent years
have proposed OFDM-IM. For example, analysing the frameworks of the symbol
probability in [105] and the BER of OFDM-IM with uncertain channel state
information (CSI) in [106]. Researchers have also studied the potential to improve
the performance of OFDM-IM [107–109]. Further, [110], combined OFDM-IM
with multiple-input multiple-output (MIMO) systems to improve SE. Based on an
energy detector, [111] proposed a low complexity greedy detector (GD) and [112]
analysed its BER.

Compared to conventional OFDM systems, the OFDM-IM performs better
but still suffers from high detection complexity. For example, the maximum-
likelihood detector (MLD) achieved optimal BER performance with exponentially
high complexity. With precise knowledge of the receiver noise power spectral
density, a low-complexity log-likelihood-ratio (LLR) detector to achieve near-
ML performance was proposed in [50]. Like an OFDM detector, GD has low
complexity; however, it suffers from high-performance loss compared to the ML
detector.

MIMO systems play an important role in most modern communication
channels. A MIMO system can provide substantial performance gain since
the dimensions can account for different resources, such as frequency resources,
multiple users, multiple antennas, and time. However, MIMOs present
computational complexities resulting in detection problems. We note that IM-
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aided MIMO-OFDM (IM-MIMO-OFDM) cannot be used directly with a classical
detector in MIMO-OFDM systems. This is due to the increase of in-detector
complexity since part of the information bits are conveyed on the indices of
the active transmit antennas (TAs) and subcarriers that need to be detected in
addition to the modulated symbols [50].

A maximum likelihood-based detector has been analyzed in [113] and [59];
however, with the rises in TAs, sub-carrier numbers, and the constellation signal
size, detector complexity has increased rapidly. In order to reduce the complexity
of detection, a number of low-complexity detectors have been proposed, such as
a log-likelihood ratio (LLR) detector, a matched filtering (MF) detector, a simple
minimum mean square error (MMSE) detector, and a signal vector-based list
(SVBL) detector. However, all of the proposed low-complexity detectors suffer
from a notable degradation in error performance.

In this chapter, we introduce a DL-based detector for IM-MIMO-OFDM using
a DNN in terms of error performance. In the DLIM design, based on domain
knowledge, the channel information and the received signal are preprocessed before
being fed to the DNN. Using the simulated data, the DLIM is trained offline in
order to minimize the BER and then, with low runtime, the trained model can
be used as an online detector. Our initial results using this detector design have
significantly reduced the complexity while maintaining a near-optimal performance
compared to the existing hand-designed detectors.

4.3. Deep Learning Based Detection

4.3.1. Deep Learning Methods

DL and artificial neural networks (ANNs) have been successfully applied to many
applications, including solving a complex issue in computer vision (CV), automatic
speech recognition (ASR), and natural language processing (NLP), which has
inspired communication experts to apply DL to their fields.

Recently, DL methods have been responsible for improving the performance
of several communication applications. For example, localisation based on CSI
[106], channel equalisation [111], replacing both the transmitter and the receiver
of the communication system [3], reducing the peak-to-average-ratio of an OFDM
system [114], and for designing a joint-channel estimation and signal-detection
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receiver for an OFDM system [115]. Using a DL approach to improve detection
for OFDM-IM was proposed in [116]. In [117], a learning-based detector for an
IM-aided MIMO-OFDM system was proposed. Previous work investigating the
use of DL in OFDM-IM detection and complexity reduction in [116] has resulted
in a near-optimal performance. Our goal was to apply DL to an IM-MIMO-OFDM
system. In this chapter, we propose a DL-based detector for IM-MIMO-OFDM
that can detect the transmitted symbols with performance comparable to near-
optimal BER with shorter runtime than the existing hand-crafted detectors.

4.3.2. System Architecture

Similar to the current IM-MIMO-OFDM detector schemes, the system is equipped
with Nt transmit antennas and Nr receive antennas, as shown in Fig. 4.1. The
block diagram of IM-MIMO-OFDM at each transmit antenna is given in Fig. 4.2.
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Figure 4.1: Transceiver structure of the IM-MIMO-OFDM scheme.

OFDM-IM 
Block 
Creator CPN-IFFT

m 
bits

P
bits

P
bits

P1 bits

P2 bits

P1 bits

P2 bits

Index Sel.

Index Sel.

M-ary
Modulator

M-ary
Modulator

X1

XG

X XT:
:

Bit
Splitter

Figure 4.2: Block diagram of the OFDM-IM at each branch of the transmitter.
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The proposed structure of the IM-MIMO-OFDM detector using DNNs, termed
DLIM, is shown in Fig. 4.3. We consider the IM-MIMO-OFDM system as a
system with Nc subcarriers split into a G group of N subcarriers. The signal of
each group is processed both the same and independently of each other on the
transmitter side. To send a total of p data bits, only k out of N subcarriers are
activated and carried by the K complex data symbol p1 = Klog2M bits (M is the
M-ary modulation size) and p2 = [log2C(N,K)] bits carried by indices of active
subcarriers, resulting in p = p1 + p2.

We use the look-up table or a combination of methods to implement the
mapping from p1 bits to a combination of k active indices [50,116]. The transmitter
vector x = [x1, ..., xN ] contains the simultaneously transmitted symbols from all
transmit antennas and can have zero terms due to index selection in each branch of
the transmitter. In other words, the transmitter vector x will be formed depending
on the incoming p bits and by assigning K non-zero data symbols to corresponding
K active subcarriers i.e., xi is non-zero if subcarrier i is active and xi = 0,
otherwise, i = 1, ..., N . x = fOFDM−IM(b), is a function of the bit-to-symbol
mapping, where b is a sequence of p incoming bits in one group.

On the receiver side, the receiver signal for N consecutive subcarriers of a given
sub-block g can be expressed in a frequency domain by

yg = Hgxg + wg, (4.1)

for g = 1, 2, ..., G, where yg ∈ CRN×1 is the vector of the stacked received signal
for the corresponding subblock, while the block-diagonal channel (h) matrix, with
dimensions R × T , that contains the channel coefficients between the transmit
and receive antennas is assumed to be perfectly known and the receiver is Hg ∈
CRN×TN , xg ∈ CTN×1 is the equivalent data vector, and the noise vector is wg ∈
CRN×1. The average received signal-to-noise ratio (SNR) is γ = Es/σ

2 and Es is
the average energy of a transmitted M-ary symbol.
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Figure 4.3: The structure of the proposed DLIM detector for IM-MIMO-OFDM.

4.3.3. Model Training

In the current IM-MIMO-OFDM detection scheme, the channel information is
assumed to be known at the receiver. However, the received signal yg and the
channel Hg will be pre-processed based on the domain knowledge of IM-MIMO-
OFDM and considered as the inputs for the DNN. The index selection of the active
subcarrier is performed using look-up tables of the OFDM index modulators of the
transmitter. At each branch of the transmitter, the OFDM index modulators will
obtain the subblocks of the OFDM-IM first before concatenating these subblocks
to form the main OFDM blocks. In particular, to improve the reconstruction of
the M-ary symbol of the active subcarriers and to achieve an equalised received
signal as yg = yg ⊙ h−1, the zero-forcing (ZF) equaliser is applied. Then, ym =

[|y1|2, ..., |y2N |] is computed, which is the energy of the received signal before it is
combined with y to create the input of the DNN. Finally, we concatenated the
real yR and the imaginary parts yI of y with the received energy vector ym to
form a 3N-dimensional input vector z = [yR, yI , ym]. As shown in Fig. 1, the
DNN consists of one hidden layer of Q nodes with two fully connected (FC) layers
and one output FC layer of p nodes. For the hidden layer, we used two different
activation functions. The rectifier linear unit (Relu), fRelu(x) = max(0, x), or
the hyperbolic tangent (Tanh) function, fTanh(x) = 1−e−2x

1+e−2x . To get the estimated
output of the transmitted data b̂ at the output layer, we applied the sigmoid
function fSig(x) = 1

1+e−x . Since the output of the sigmoid function is between 0
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and 1, b will be 1 bit when its value is more than 0.5 or 0 bits otherwise. Moreover,
it is worth noting that in order to accurately detect the M-ary and the index bits
of the DLIM, only two nonlinear layers are required. We can express the output
of the DLIM model as

b̂ = fSigW2fTanh/Relu(W1z + b1) + b2, (4.2)

where W1, b1 and W2, b2 are the weights and the biases of the first and second
FC layers, respectively. In particular, the system parameters (i.e., N , K, and M)
determined the length of the input and output of the DLIM. However, in order
to achieve the desired performance, the value of Q needs to be properly selected
for every system configuration. In other words, the value of Q needs to be large
enough that the number of transmitted bits p increases in order to guarantee the
pre-determined performance. Another advantage of adjusting Q is that we can
reach a satisfactory trade-off between performance and complexity.

4.4. Experiment Setup and Training Procedure

In this section, we present the training procedure before using the proposed system
and then compare it with the existing schemes, such as ML and GD detectors, for
different system configurations.

4.4.1. Offline Training

To collect the data from the simulation, we started training the model offline by
randomly generating a sequence of p bits b in order to achieve a corresponding set
of transmitted vectors, such that x = fOFDMIM(b). Next, we sent all the vectors
that were subjected to the effects of the Rayleigh fading channel and AWGN noise
to the receiver. Based on known statistical models, the vectors of the channel
and the noise were randomly generated and changed from a one-bit sequence to
another. The collected received signal y and channel vectors h were pre-processed
in order to obtain the input dataset z whose label corresponded to bit sequence b.

Our model was trained using the collected data to minimize the BER or trained
to minimize the difference between b and its prediction b̂. Thus, we use the mean-
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squared error (MSE) loss function for the training

L(b, b̂) = 1

p

∥∥∥b− b̂∥∥∥2

, (4.3)

where θ = (Wi, bi)i=1,2 are the weights and the biases of the model. Using the
SGD algorithm, the parameter can be updated for every randomly picked up
batch from the datasets using the learning rate η, which defines the step size of
the SGD as follows:

θ+ := θ − η▽L(b, b̂; θ). (4.4)

To train our model based on the SGD, we used Adam optimizer and
implemented it using Tensorflow and Keras for DL. In order to efficiently train our
model, it is essential to choose the best level of SNR γtrain since the performance
of the model is very sensitive to it. Thus, the model trained by γtrain will still
perform well under any other SNRs of interest. Moreover, in order to prevent
overfitting in training, the number of the training datasets (z,b) must be large
enough.

4.4.2. Online Training

After offline training, the model is utilized for the online deployment of signal
detection in the DLIM. Now, we can implement it in real-time in order to estimate
the data bits over the different channel fading conditions with no extra training
for θ. In other words, every time the received signal and the channel information
are fed to the DLIM, it will output the estimated bits in a very short computation
time.

4.5. Simulation Results

In this section, we present simulation results for different configurations of the
DLIM in order to analyse the performance of our proposed scheme against the
ML detection and GD detector. All simulations were run over a Rayleigh fading
channel with AWGN noise. Our proposal was trained with 300 epochs with 20-
batch sizes; the learning rate η was set to 0.01. The rest of the parameters varied
for each experiment.
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4.5.1. BER Performance

Fig. 4.4 compares the BER results for all antennas of our DLIM proposal with
ML detector and GD detectors when (N , K, M) = (4, 2, 2), γtrain is set to 15
dB, and perfect CSI is assumed. For the proposed DLIM, different values of Q
and corresponding activation functions are considered at the hidden layer. For
example, for a large value of Q, i.e., Q = 128, the activation function Relu is used,
while for smaller values of Q, i.e., Q = 64, 32, . . . , the activation function Tanh is
used since it is not limited to being a non-negative value as is the case with Relu.
This provides a higher model capacity to perform the detection task. As shown in
Fig. 4.4, DLIM with Q = 128, 64 achieves a BER very close to ML detector: there
is just a slight performance gap between the proposed detector and ML detector.
However, the GD performance is worse than the proposed detector. While with
small values of Q, i.e., Q = 32 and 16, the performance is very close compared to
GD. Moreover, for the same Q = 16, the Tanh is much better than Relu.

Figure 4.4: BER comparison between the proposed DLIM and the reference
detectors and (N , K, M) = (4, 2, 2) and 15 dB SNR .

Fig. 4.5 illustrates the BER comparison for higher γtrain, i.e., 5 dB when
(N , K, M) = (4, 2, 4). DLIM with Q = 128 achieves a BER very close to ML
detector. There is just a slight performance gap between the proposed detector
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and ML detector. However, the GD performance is much worse than the proposed
detector. With a small Q, i.e., Q = 32 and 16 the performance is still better than
GD and very close compared to ML detector. While for the same Q = 32, the
Tanh is much better than Relu. From these two figures, we notice that there is a
trade-off between the performance and the complexity every time we adjust Q.

Figure 4.5: BER comparison between the proposed DLIM and the reference
detectors and (N , K, M) = (4, 3, 4) and 5 dB SNR .

Fig. 4.6 presents the BER comparison when (N , K, M) = (4, 3, 4) and the
γtrain is set to 5 dB. We demonstrate this by adapting the MMSE-based variable-
imperfect CSI, where the CSI error variance ε2 is a function of the average SNR
as in [105]. From Fig. 4.6, we can see that DLIM with Q = 128 achieves a BER
very close to ML detector and significantly outperforms GD. From Fig. 4.5 and
Fig. 4.6, it is clear that when the numbers of activated antennas and subcarriers
increase, the BER performance has a specific gain when using the proposed DLIM
detector.
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Figure 4.6: BER comparison between the proposed DLIM and the reference
detectors and (N , K, M) = (4, 3, 4) and 5 dB SNR.

4.5.2. Complexity Comparison

To showcase the low complexity of the proposed DLIM against the other two
traditional detectors (ML detector and GD), a Q = 128 with Relu and Q = 64
with Tanh were employed for all the cases. As shown in Table I, the runtimes are
almost identical in the DLIM with the Relu and Tanh, and far less than ML and
GD. From Table I, we can see that when M increases, the runtime of DeepIM with
the Relu and Tanh shortens compared to ML and GD. Moreover, as K gets larger,
the runtime of DeepIM with the Relu and Tanh is greatly shortened compared to
ML and GD. From Tabel 4.1, we can observe that unlike the current detectors, the
proposed DLIM complexity is less and depends on the K and M values. Moreover,
when we increase the number of subcarriers and activate more antennas to convey
information, naturally, the computational complexity also increases.
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Table 4.1: A COMPARISON OF COMPLEXITY AMONG DLIM, ML, AND GD
DETECTORS

(N , K, M) ML GD DLIM/Relu DLIM/Tanh
( 4, 2, 2 ) 0.2 0.099 0.038 0.04
( 4, 2, 4 ) 0.38 0.08 0.04 0.042
( 4, 3, 4 ) 1.9 0.09 0.044 0.047

4.6. Chapter Summary

In this chapter, we illustrated the effectiveness of employing a DNN for the
detection of IM-MIMO-OFDM in terms of error performance. The proposed
model, DLIM, trained the received signal and channel vectors offline based on
domain knowledge, such as a ZF equalizer and energy detection. Then, the fully
connected DNN was trained to recover the data bits. The results of this simulation
show that a DL method has advantages. Once the model is trained, we can employ
the DLIM in an online manner with very low runtime while achieving near-optimal
performance. The next chapter introduces a classical IRS-assisted communication
system transformed into an end-to-end AE based on DL.



Chapter 5

Design of Autoencoder Model for
End-to-End Deep Learning IRS-
assisted Communications Systems

This chapter is organised as follows: section 5.1 introduces the chapter. Section 5.2
states the related works and states the main contributions. The end-to-end IRS-
assisted design is illustrated in section 5.3. Section 5.4 introduces the experiment
setup and AEs training. The numerical simulation comparing the results with
other works is presented in section 5.5. Finally, section 5.6 summarises the chapter.
The work in this chapter has been published in P.2.

5.1. Introduction

In this chapter, we are re-modelling the IRS-assisted communication systems using
the AE DL technique to represent the classical IRS system as an end-to-end
communication system. The cascaded channels from source to sink through the
IRS have been transformed into a DNN that learns how to reduce the wireless
environment impairments effect by optimizing the representation of transmitted
symbols. The proposed system design shows superior symbol error rate (SER)
performance under the AWGN channel compared to both classical IRS and
conventional AE end-to-end systems. The relation between improvement of
performance and the capability of the proposed AE to learn optimized presentation

82
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for transmitted symbols is explained by observing and comparing the baseline AE
constellations learning with the ones that the proposed model learned.

5.2. Related Works

Recent research has identified IRS as one of the key technologies for wireless
networks beyond 5G. Among the future wireless systems, the IRS has emerged as
a promising solution for improving coverage and rate. IRS can be implemented
using nearly passive elements with parameters that can be reconfigured [2,
118–121]. Moreover, the IRS has a unique wireless communication capability,
where an integrated printed electronic board is placed on a surface coated with
electromagnetic (EM) material, which controls the reflected electromagnetic signal
by changing the phase of the incident signal to minimize the effects of stochastic
wireless environments at the receiver. Smart radio environments are well suited
to IRS-assisted communications due to the simplicity of their implementation and
their nearly-passive elements [122, 123]. In this case, however, the IRS is unable
to perform any radio frequency (RF) processing, which limits the estimation
of both the CSI and the signal phase angles at the receiver end. For this
reason, the receiver must estimate the channel and received phase angle without
heavily relying on the IRS. [10, 124]. Another disadvantage of the IRS is the
large number of elements it requires [124], [9]. There have been several different
designs introduced in [125,126] for conventional reflect-arrays and software-defined
meta-materials in [64], [127]. There has been the development of DL tools
in [10,128–131]; the objective of these studies is to learn directly from the sampled
channel knowledge how to predict the optimal IRS reflection matrices. The IRS
array geometry is not assumed in this approach, nor does it require knowledge of
the sparse channels.

As DL has proven tremendously successful in various applications such as
modulation, it has increased researchers’ interest in the area of communications
in recent years [3], signal detection [132], channel estimation [3] and channel
coding [133]. Based on the end-to-end DL model in [3], the authors demonstrate
significant gains upon jointly designing the modulation and coding together.
By utilising two-way amplify-and-forward (TWAF) relay networks under block
fading Rayleigh channels, the authors in [134] proposed and tested an end-to-
end DL model for relay networks. In comparison to the conventional method, the
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authors demonstrated a promising performance gain with the use of learning-based
networks.

Inspired by AE network in [3], the authors in [135] use the AE to relay amplify-
and-forward (AF) data in two ways: differential modulation coding schemes for
one-way amplify-and-forward (OWAF) and TWAF relay networks, where BER
performance is significantly improved in comparison to the classical method by
combining coding and modulation in a DL-based framework under block fading
channels.

The AE is typically viewed as a generative model comprised of an encoder,
bottleneck, and decoder. As a result of the encoder, the input signal is reduced in
dimension and the decoder takes this reduced information and decodes it back into
an original signal. The design of the end-to-end communication system for the
IRS is based on state-of-the-art research on AE and IRS, where the whole system
is considered as one entity in DL. This allows optimizing the whole communication
system as a single DNN, as opposed to optimizing each component separately as is
the case with conventional systems. A hot vector is assigned to each input symbol,
and this vector is used as the input to AE. AE encoder output is altered by an
IRS layer, which then uses its output as an input to a noise layer. A final step
in the decoding process occurs when the noise layer output is used to reconstruct
the transmitted symbol.

5.3. Main Contributions

In this chapter, a new approach has been proposed and investigated with the help
of AE. Our main contributions can be summarized as follows:

• As part of an end-to-end communication system that utilizes AWGN
channels, we propose a DNN-based architecture based on AE to perform
modulation and demodulation. This novel, fully data-driven system, relies
on IRS assistance to learn effectively to encode and decode the transmitted s
and the received ŝ symbols with IRS help while minimizing the MSE between
s and ŝ.

• We have demonstrated through numerical results that our AE-based scheme
achieves higher performance gains than the existing classical IRS scheme
[4] and the AE hand-crafted baselines [3]. Additionally, we explain how
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AE learns constellations to improve system performance in support of these
findings.

• The proposed AE design results demonstrate the possibility of achieving a
higher SER performance even with a limited number of elements. As a result
of this, the weaknesses of IRS-assisted communication systems performance
that have a small number of IRS elements are overcome, which is mentioned
in [9, 10].

5.4. End-to-End IRS assist AE design

AEs were originally designed in order to reduce the dimensionality of their inputs,
which allowed them to reconstruct their output unsupervised with a minimum level
of error. As a result, we are primarily concerned with learning how to represent
the input x of the messages robustly so that they can be decoded with a small
probability of error. This network is composed of a number of layers constituting
a representation of a DNN, it may consist of a number of hidden layers that form a
DNN. The hidden layers, b, describe a bottleneck used to represent the input data
x. We propose to create an end-to-end DL model for a none-line of sight (N-LoS)
communication system that includes a transmitter, receiver, and N meta-surfaces
IRS, as shown in Fig.5.1, introduce two challenges. Firstly, how to model the
propagation path of each signal through two channels, instead of one, for signals
propagating between the transmitter and receiver. Secondly, how to represent the
substantial improvement in SNR at the receiver caused by constructively reflected
signals superposition with optimized phase shifts, this can be formulated under
the assumption of fully optimized IRS to compensate the reflection coefficients as
in [4]:

Sr = gTΦhSt + no, (5.1)

where h =
[
α1e

−jθ1 , . . . , αie
−jθi , . . . , α

N
e−jθN

]T
is the channels coefficients

from the transmitter to each IRS meta-surface for the transmitted signal St.

g =
[
β1e

−jψ1 , . . . , βie
−jψi , . . . , β

N
e−jψN

]T
is the channels coefficients from

each IRS meta-surface to the receiver, both αie−jθi and β1e−jψi are sampled from
CN (0, 1) , Φ is the diagonal matrix of the applied phase shifts by each meta-surface
Φ = diag(

[
ejϕ1 ejϕ2 . . . ejϕN

]
) and the no is the AWGN noise ∼ CN (0, σ2), where
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the σ2 is the variance value contaminates the amplitude and phase of transmitted
signal, this can be depicted for one signal route between the transmitter and
receiver in Fig.5.2. However, by using an IRS with N number of meta-surface
elements, Fig.5.3 portray Eq.(5.1) communication system block diagram Fig.5.1.
The main contribution in this work is to transform this conventional system in
Fig.5.3 to an end-to-end communication system using the AE as in Fig.5.4, which
consists of :

5.4.1. Encoder

Suppose that the space of possible messages transmitted is M = 2k and that
the number of bits necessary to represent each message m is k. Following this,
transmitting input symbol st ∈ {1, ...,m, ...,M} with space size M denoting the
number of possible transmitted. After encoding the input symbol as a one-hot
vector, 1s ∈ R2k as a 2k-dimensional vector and recognizing a transformation of
f : R2k → Rc, the encoder feeds it into the input layer. In the encoder, c is the
dimension of the last layer, which serves as the input for the next step, where the
IRS, as well as the wireless channels, have been modelled as augmenting layers,
which include the effect of AWGN noise on the encoder output code. This encoder
can be formulated by:

yi = f(x, θT ), (5.2)

to describe the hyperparameters θT for the transmitter’s DNN layers.

5.4.2. Signal Route

IRS layer

It has been necessary to add a new layer to increase the dimensionality of this
study so that the particular features of physical single signal propagation routes,
including IRS single element phase shift effects, can be analyzed: Rc → RNc,
where the N is the number of the meta-surfaces the IRS consists of. After, at
the normalization layer, physical constraints on x average power E [|xm|2] ≤ 1 ∀m
applied. Lastly we reduce the dimensionality back to Rc using one more fully
connected (FC) layer z(f(x)) : Rc → Rc. This IRS layer can be formulated by:

yi = z(f(x), θSR), (5.3)
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to describe the hyper parameters θSR for the signal route’s DNN layer.

Channel

In the proposed communication system, the channel layer is one of several layers
that are integrally part of the signal pathway following the IRS layer, and it is
described by p(w|y), where w ∈ Rc and c are the number of channels that the
system utilizes to send one message out of 2k messages. There is a way to quantify
the communications rate by using r = k/c [bit/channel use], where k = log2(M)

and it is the number of bits that represent the message. The channel noise is an
AWGN due to the assumption that the main source of the noise is on the receiver
side [3]. The channel is characterized as a distribution N (0, ξ2I) with a fixed
variance ξ = (2rEb/No)

−1, where (Eb/No) is the energy per bit Eb to the noise
spectral density No ratio. Based on the conditional probability function, we can
describe the input-output relationship of the signal route component including the
IRS layer as follows:

p(w|y) = p(y,w)

p(y)
, (5.4)

where to sample w ∼ p(w) requires to assume the knowledge of p(w,y) to find∫
p(w,y)dy =

∫
p(w|y)p(y)dy, which is in general is difficult to find. However,

at training time both p(w|y) and p(y)dy are available respectively to give p(w) =∫
p(w|y)p(y)dy.

5.4.3. Decoder

In the communication system, the decoder is located on the receiver side, which is
composed of two layers of dense M units. Based on the output signal of the noise
layer w ∈ Rc, the decoder transforms k(w) : Rc → R2k in order to reconstruct
the message probability output vector x̂. The received symbol sr decoded using
x̂, sr ∈ R2k . During decoding, one dense layer is activated using ReLU, while
the other density layer is activated using softmax. The results of the decoding
process are a probability distribution with M probabilities, and the highest index
probability is converted into a decoded message sr. This decoder can be formulated
by:

yi = k(w, θR), (5.5)

to describe the hyperparameters θR for the receiver’s DNN layers.
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Training an end-to-end AE can be done by minimizing the reconstruction loss
function.

AEs are penalized based on loss function L, such as categorical cross-entropy
or MSE, which describes the difference between the desired input xm, where m ∈
{1, ..,M} and the observed output x̂im, i ∈ {1, ...,D}, where D is the size of the
training set. In our work we are using below categorical cross-entropy equation:

L(x, x̂) = −
D∑
i=1

M∑
m=1

xm ln(x̂(i)m ). (5.6)

The stochastic gradient descent (SGD) method was used to train the AE using
the Adam optimizer. This process leads to optimize all AE hyperparameters
(θT , θSR, θR) as one entity [100].

Assuming that each IRS element receives and reflects a signal independently of
the others, and the signals are constructively received, then the equation describing
the expected message probability output vector is as follows:

E[x̂] =
1

N

N∑
n=1

x̂n, (5.7)

where N is the number of IRS meta-surfaces. Then the E[x̂] will be used to have
the final decoded symbol sr.

While the training of the model has been summarized in algorithm 1, the
deployed model has been outlined in algorithm 2. Moreover, Table 5.1 lists the
layout and general configuration of each proposed IRS-assisted AE component we
adopt in this proposal.

Table 5.1: Layout of proposed IRS-assisted end-to-end AE as in Fig. 5.4

Component Layer Activation Function Output Dimension
Input M

Transmitter Dense (FC) ReLU M
Dense (FC) Linear c
Dense (FC) Linear N ×c

Signal route Normalization N ×c
Dense (FC) Linear c

Noise c
Dense (FC) ReLU M

Receiver Dense (FC) softmax M
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Figure 5.1: Physical N-LoS IRS communication system

Figure 5.2: Block diagram for conventional single signal route including phase
shift effect caused by one IRS element

Figure 5.3: Block diagram for conventional IRS assisted -communication system
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Figure 5.4: Proposed IRS-assisted end-to-end communication system using AE
architecture

5.5. Experiment Setup and AEs training

Monte-Carlo simulations are used during the IRS part of the experiment to run
2 × 106 BPSK symbols. Following [4], gray encoded symbols and the (Eb/No)

is the same as (Es/No) for BPSK modulation scheme. Considering the symbol
period time of the signal is the same as the sampling period of the signal, then the
SNR = (Eb/No). The hi and gi are sampled from CN (0, 1), Φi = θi+ψi according
to Eq. (5.1). A Maximum Likelihood Detector (MLD) decodes the received signal
at the receiver, and the SER performance has been produced almost the same as
in [4] at different (Eb/No). Furthermore, we used these results as a baseline for
comparing with the results of our assisted end-to-end communication system. For
our experiment, we have also used the AE designed by [3] to obtain results for
r = k/c, where k = 1 and c = 7, to determine the BPSK SER performance for
different (Eb/No) values. It is worth mentioning that the representation of the
BPSK constellation has been changed from one dimension to 7 dimensions at the
bottleneck of the AE. We used these results as a second baseline for evaluating the
performance of our proposed assisted end-to-end communication system. We have
configured and trained our proposed model setup to evaluate the SER performance
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of BPSK over AWGN channels. We used python for our simulations, and the
system parameters used during these simulations are listed in Tables 5.2 and 5.3.

Table 5.2: Layout of proposed IRS-assisted end-to-end AE as in Fig.5.4

Layer + Activation Function Output Dimension

Input M = 2

Dense (FC) + ReLU M = 2

Dense (FC) + Linear c = 7

Dense (FC) + Linear 7×N , N ∈ {4, 16, 64}
Batch Normalization 7×N , N ∈ {4, 16, 64}
Dense (FC) + Linear c = 7

Noise c = 7

Dense (FC) + ReLU M = 2

Dense (FC) + softmax M = 2

Table 5.3: Parameters used for simulations

Parameter Value

Modulation scheme BPSK
AWGN channel noise level type Eb/No [dB]

IRS size N ∈ {4, 16, 64} [meta-surface]
No. of BPSK transmitted symbols 2× 106 symbols

Used Eb/No in training AEs 7 dB
Epo (epochs)=17

AEs main training parameters Batch size=300
Validation data size= 1500

η=0.001
Adam optimizer parameters (λ1, λ2)=(0.9, 0.999)

ε = 1−7

5.6. Experiment Results

In Fig.5.5 the results indicate that our proposed AE communication system
without IRS elements outperforms the baseline AE communication system in [3].
This can be verified by looking at Fig.5.7 (a), where the learned constellations
by the proposed system have larger euclidean distances in comparison to the
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Algorithm 1 IRS-assisted AE training
Initialization: {Epo,Itr, x, no, η, θ}, where
Epo: number of epochs training.
Itr: number of iterations per epoch.
x: training input vector. Also the desired output.
no: noise sample ∼ N (0, ξ2)
θ: DNN weights and biases matrix for θT , θSR, θR
for each Epo do

for each Itr do
use x for input layer to produce y = f(x, θT )
use y for IRS layer to produce z = z(y, θSR)
use z for noise layer input to produce vector augmented random values w ∼
N (0, ξ2)
use w as decoder input to calculate the message probability vector x̂ = k(w)
Apply Eq. (5.6) to find the loss function:
L(x, x̂) =

∑D
i=1

∑M
m=1 xm ln(x̂

(i)
m )

Apply Adam optimization algorithm to optimize θ using initial parameters:
η(learning rate), λ1&λ2 (the exponential decay rate for the 1st and 2nd moment
estimates respectively), ε (a small constant value for numerical stability) to get
the gradient gItr :
gItr ←− ∇θL(x, x̂, θ)
use gItr to update θItr according to [134].

end for
end for
Output: Return the up to date θ =0

baseline ones. Further, the constellations in each system have different phases
to compensate for channel noise. In spite of this, there is no evidence that
the proposed system learns better constellations phase in comparison with the
baseline system since the distances between the constellations are not the same.
Additionally, the SER performance improves with an increase in the number of
IRS elements. The reason for this can be explained by looking at Fig.5.7 (a)-
(c), which shows that even though the distance between the constellations of the
proposed system in Fig.5.7 (b) and (c) is almost the same, the performance of
N = 16 has a significant advantage over N = 4. The improvement in learning
may be due to the better learning of the constellation phases, which may provide
evidence that distance learning is not the only factor that is important, but also
the constellation phase. Although we used 2 × 106 symbols in our simulation, it
may be necessary to run more experiments in order to overcome the zero SER
values.
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Algorithm 2 IRS-assisted AE for inference
Initialization: create IRS-assisted communication model using θ parameters from
Algorithm 1
IRS size: N [element]
Eb/No [dB] range
create all transmitter symbols: st
for each Eb/No do

for each st do
for 1 to N do

produce the coded signal z = z(f(x, θT ), θSR)
contaminate z (the coded signal) using channel noise layer to sample w ∼
p(w)
obtain the message probability vector x̂ by decoding w using k(w, θR)

end for
apply Eq. (5.7) to find the expectation of all IRS elements probability messages:
E[x̂] = 1

N

∑N
n=1 x̂n

end for
transform the E[x̂] to received signal sr

update, calculate and store the SER at the specific Eb/No

end for
store the system SERs at each Eb/No assisted by IRS size N
Output: Return all system SERs and plot SERs vs Eb/No assisted by IRS size N .
=0

In Fig.5.6 the result shows that our proposed AE communication system still
outperforms the baseline in [4]. According to a comparison of the two systems
with the same IRS size of N elements, the proposed system performs better,
especially at lower IRS sizes. In particular, the proposed system with N = 4 is
nearly as efficient as the classical IRS with N = 16 elements. Using this approach,
IRS may be able to overcome its challenge of improving system performance by
incorporating a large number of elements. In addition, increasing the number
of IRS elements N reduces the gap between the two systems’ performance. For
instance, the performance gain between the two systems at N = 4 is much higher
at N = 16 and at N = 16 the performance gain is higher than N = 64.

Fig.5.7 (a)-(f) Show how different modulation schemes such as BPSK and
QPSK can be learned for different IRS sizes. Comparing Fig.5.7 (a) and (d)
of the proposed system without IRS to the baseline in [3], it shows that the
proposed system learned nearly the same constellations. While in Fig.5.7 (c)
and (f), when the IRS (N = 16) assisted the communication system, the proposed
system has augmented signal amplitudes and shifted constellation phases. Clearly,



CHAPTER 5. DESIGN OF AUTOENCODER MODEL FOR END-TO-END
DEEP LEARNING IRS-ASSISTED COMMUNICATIONS SYSTEMS 94

Figure 5.5: SER performance (BPSK) of the proposed IRS assisted AE-based
scheme vs baseline [3].

this indicates that the proposed system learned both the phase and amplitude of
the received signal when learning the IRS effect.

As a result of all of the above results, introducing the IRS deep layer and
expectations of the message probabilities for all IRS N elements, the proposed
design performs better than the conventional AE approach used in [3] as well as
the conventional IRS in [4].
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Figure 5.6: SER performance (BPSK) of proposed IRS assisted AE-based scheme
vs baseline [4] for different IRS sizes.

Figure 5.7: 2-D learned constellations presentation for IRS assisted AE-base
scheme and baseline [3] for BPSK and QPSK modulations at different IRS sizes
using AE-channels c = 2.
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5.7. Chapter Summary

In this chapter, the classical IRS-assisted communication system has been
transformed into an end-to-end AE. A piece of evidence has been provided to
support that the proposed design models both the channels that the desired signal
propagates through and the IRS augmentation effect on the signal as one DNN.
The proposed DNN loss function shows the capability of optimizing the DNN
parameters to reconstruct the transmitted signal by learning signal constellations
representation pattern that reduces the wireless environment contamination
impact on the received signal. The SER performance of the proposed system
improves when the number of IRS elements is increasing at the same Eb/No.
Lastly, the SER performance of the proposed system shows better performance
in comparison to both the conventional AE and classical IRS. The next chapter
introduces a novel approach using VAE as a probabilistic model to re-construct
the transmitted symbol from LRVs’ statistical parameters without sending the
data bits out of the transmitter.



Chapter 6

Design of Innovative Variational
Autoencoder Model for an End-to-
End Communication System

This chapter is organised as follows: section 6.1 introduces the chapter. Section
6.2 states the related works, followed by the main contributions in section 6.3. The
system model is presented in section 6.4. Section 6.5 introduces the experiment
setup and the system training. The numerical simulation comparing the results
with other works is presented in section 6.6. Finally, section 6.7 summarises the
chapter. Part of the work in this chapter has been published in P.3 and P.4.

6.1. Introduction

Wireless networks and other related services are becoming more intelligent with
innovative advances and unprecedented levels of computing capability. The
advent of numerous unprecedented services, such as factories, self-driving cars,
smart cities, and telemedicine and remote diagnostics, presents a challenge to the
classical communication in terms of latency, flexibility, reliability, energy efficiency,
and connection density. All of these technologies require new architectures,
approaches, and algorithms in almost all layers of communications systems. An
advanced AI-based approach can significantly improve the design and management
of communication components. AI, represented by ML and DL, has attracted

97
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tremendous attention as it has successfully transformed the manner in which
humans work and communicate. This has been addressed in [136, 137]. Some
of these techniques have been applied in the communication literature, have
triggered extensive research, and have significantly impacted the solutions to
some communication problems. Various emerging trends for the DL method
are also considered based on information theory, probability, statistics, and solid
mathematical modelling. The basic function of a communication system is to
transmit a message, such as a bit stream, from the source to the destination
over a channel through the accurate use of a transmitter and receiver. In
order to achieve this optimally, the transmitter and receiver are segmented
into strings of multiple independent blocks, each of which is responsible for
a particular mini-task. Many approaches have been demonstrated in various
applications such as modulation recognition [3], signal detection [132], channel
coding [133, 138], channel decoding [29–31, 139–141], and channel estimation and
detection [115, 142–147], and replacement of the total communication system
with a novel architecture based on an AE. In [3, 148], the authors show a
significant gain by introducing an AE as a communication system, in which the
modulation and coding are jointly designed as one end-to-end DL model. The
work in [3] showed how the use of block structures typically enables individual
optimization, analysis, and control of each block, without the need for any domain-
specific information; the end-to-end AE can achieve a performance similar to the
conventional method in AWGN channels. However, the block-based approach
is sub-optimal in certain cases [3]. Considering the DL-based communications
system design, the optimization of end-to-end as one black box block is proposed
in [3, 149].

All previous work has shown that the idea of end-to-end learning in
communication systems has received widespread attention in the wireless
communications community [150, 151]. In our work, we use generative models
known as variational autoencoders (VAEs) [152,153], as they have been extensively
used for unsupervised and semi-supervised DL. Moreover, since most of the current
mobile systems generate unlabeled or semi-labelled data, the VAE is well suited
to learning in wireless environments.
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6.2. Related Works

As DL advances, the research paradigm can shift away from designing schemes
using mathematical models to autonomously constructing end-to-end DL schemes
based on observations of large quantities of data. For example, when DL is
employed for image classification, feature detectors that are far more accurate
than conventional detectors can be derived from a large set of image inputs
using DNN structures. Therefore, in the age of DL, it starts with preparing,
selecting, and pre-processing data to be used in the DNN structure. Then,
determine the appropriate structure for the DNN. Lastly, interpreting the output
of the DNN becomes increasingly important than developing analytic schemes
from mathematical systems that typically contain assumptions necessary to enable
analysis.

Recently, DL has been applied to many areas of wireless communications
research. Besides improving conventional communication modules, DL-based end-
to-end communication systems have recently been developed, in which DNNs
represent both the transmitter and receiver. A framework with block structures
under the AWGN channels was proposed in [3] and performs similarly to
traditional approaches. There is also an end-to-end framework in the OFDM
system [154], and singular value decomposition (SVD) precoding-based MIMO
system [148], which view the channels as a group of independent sub-channels.

Moreover, Recent research has examined how to learn an end-to-end
communication system without prior knowledge of channel models. A RL
approach based on reinforcement learning was developed [155] to optimize
the transmitter DNN without regard to the channel transfer function or CSI.
The stochastic perturbation approach was used in [156] to design a model-
free end-to-end communication framework. In [157], a conditional generative
adversarial network (GAN) approach has been developed for building end-to-end
communications, where the channel effects are modelled by a conditional GAN.

In contrast to other ML techniques that do not require communication
resources, federated learning (FL) utilizes communication between the central
server and distributed local clients in order to train and optimize the model. ML-
based FL allows training models to be distributed between multiple clients, each
with a certain amount of training data and coordinated through a central server.
Therefore, the computation can be offloaded from the central server to the client.
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In brief, in FL, the local clients communicate with the central server only using
model parameters learned locally rather than raw data, preserving both privacy
and communication overhead [158–160].

A part of the AI field is ML, which includes algorithms for classification,
clustering, and dimensionality reduction (DR). Over the last decade, various
classification algorithms have been developed, including Deep Convolutional
Neural Networks (DCNNs) [161], and VAEs [152]. The VAE inherits the
traditional AE architecture, meaning it is composed of two NNs, an encoder
and a decoder, respectively. The encoder decreases the dimensionality of the
inputs into a latent space. The decoder, on the other hand, can reconstruct
the inputs from the latent space through learning. Thus, VAEs can be used
for classification [162–164] and production [165–167]. Moreover, VAE can learn
a data generation distribution that can take random samples from the latent
space. It then generates unique images with features similar to those on
which the network was trained after decoding the random samples using the
decoder network. Using the Bayes rule [168], the VAE can learn the joint
probability of input data and labels simultaneously. Bayesian inference is a method
of statistical inference that provides a powerful framework for reasoning and
prediction under uncertainty. However, the limitation of computing the posterior
with only a few parametric distributions makes wider applications of Bayesian
inference difficult [169]. Recently, to approximate the posterior by representing
the variational distribution with a set of particles and update them through a
deterministic optimization process, particle-based variational inference (ParVI)
methods have been proposed [31, 170, 171]. Although the ParVI method can
achieve computational efficiency and asymptotic accuracy, it restricts the fixed
number of particles and lacks the ability to draw new samples beyond the initial set
of particles [31]. Generally, variational inference and Markov chain Monte Carlo
(MCMC) methods have been used to give tractable approximate inference, but
these approaches bring their own set of challenges when the space’s dimensionality
is particularly high. Bayesian neural networks (BNNs) are a recent example of
interest. These apply Bayesian inference to DNN training to provide a principled
mechanism to analyze model uncertainty. The purpose of this is to represent the
posterior of every parameter in all weight tensors from each layer of deep networks.
Developing efficient computer strategies to estimate this intractable posterior with
exceptionally high dimensionality, on the other hand, remains challenging.
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On the basis of the above and the development of DL, semantic communication
is again being considered a key technology and has received significant attention.
As the 5G system has approached the Shannon limit, semantic communication
aims to retain the successful transmission of semantic information by the source
rather than the accurate reception of each bit or single symbol regardless of
its meaning. Semantic communication is at the second level of communication
based on Shannon and Weaver [172], aiming to accurately convey the semantic
information of the transmission symbols rather than accurately recovering the
transmitted information.

Recently, several semantic communication concepts have been developed based
on NNs to replace conventional communication blocks. In [173], the conditional
GAN was designed to represent channel effects, while in [32], a complete point-to-
point communication system in the physical layer was developed using NNs. The
authors of [174], show that the network can learn a projection function from feature
space to a semantic embedding space in zero-shot learning (ZSL) models. The
work in [175] developed a DL-based semantic communication system (DeepSC)
for text transmission, with the aim of maximizing the capacity of the system and
minimizing semantic errors, as it would recover the meaning of sentences rather
than the bit or symbol error. Moreover, the authors in [176] proposed a semantic
communication approach based on AE for the wireless relay channel (AESC) to
extract and compress semantic information and reconstruct its semantic features.
However, there are some key differences between semantic communication systems
and conventional communication that can be defined as follows [175]:

• The design and optimization of the information transmission module in
conventional systems are contained in the transceiver, unlike the semantic
system, where the whole information processing block is jointly designed
from the source information to sink.

• Recovering the exact data is the focus of conventional communication
systems; however, semantic communication systems are intended for
transmission decisions.

• Conventional communication systems compress data in the entropy domain,
while semantic communication systems process data in the semantic domain.
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6.3. Main Contributions

In this chapter, a new approach has been proposed and investigated with the
help of a VAE as a probabilistic model to reconstruct the transmitted symbol
without sending the data bits out of the transmitter. Our main contributions are
summarized as follows:

• We propose an end-to-end communication system that represents the symbol
as packet hot vector (PHV) and operates over BPSK modulation in AWGN
channels, where modulation and demodulation are performed by a DNN
based on a VAE architecture.

• We extend our experiment to investigate the QPSK modulation, Rayleigh,
Rician fading channels, shadowing, and Doppler effect for a limited range of
doppler frequency shifts and phase offsets.

• While the baseline AE uses 4 and 7 channels in [3] to achieve their results. In
our work, we efficiently use two channels only to achieve better performance
than AE baseline.

• Our work considers a VAE with two LRVs, and a simple classifier can
reconstruct the transmitted message by sending only the LRVs’ parameters
and the message error rate (MER). The result shows that the performance
of our proposed system is better than that of the existing classical scheme.

6.4. System Model

In this work, the wireless communication system model has a simple setup to
allow the reader to follow the proposed idea. Our goal is to design a probabilistic
model that can reconstruct the transmitted information without sending the exact
bits or the deterministic transformed bits of the exact symbol (e.g, channel coding
using Hamming codes), but by transmitting the statistical parameters of the LRVs
through the physical layer rather than sending the data bits of the original symbol
out of the transmitter.
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6.4.1. Variational AutoEncoder (VAE)

A brief description of the basic VAE, on which this work builds, are required to
grasp what follows clearly. The VAE is a popular generative model, allowing us
to solve problems in the framework of probabilistic graphical models with latent
variables [152, 177]. As opposed to AE, VAE provides the generative capability
to the entire space by addressing the problem of non-regularized latent space.
Rather than output vectors in the latent space, the encoder of VAE outputs
parameters for a predefined distribution in the latent space for each input. In
the VAE, a constraint is applied to this latent distribution, forcing it to be a
normal distribution. By imposing this constraint on the latent space, it ensures
that it is regularized.

VAEs can be considered as two independently parameterized models: the
recognition model, known as the encoder, and the generative model or decoder.
The encoder delivers an approximation to its posterior over latent random
variables to the decoder, which is required to update its parameters inside the
iteration of expectation maximization learning. Conversely, the decoder is a
scaffolding of sorts for the encoder to learn meaningful representations of the
data besides class-labels. In other words, the VAE helps the encoder infer the
distribution of original data rather than the original data itself. By employing a
properly designed object function, the distribution of original data can be encoded
into certain low-dimensional distributions. Similarly, the decoder training allows
the decoder to transform the distributions into the approximate original data
distribution to obtain a new sample that represents the reconstruction of the
original ones.

Moreover, as probabilistic models, VAEs also contain data and unknowns.
Therefore we need to assume some level of uncertainty around this aspect of the
model. This uncertainty can be specified in terms of a conditional probability
distribution, where the model can contain both discrete and continuous variable
values. In addition, between these variables, this probabilistic model is able
to specify all correlations and higher-order dependencies in the form of a joint
probability distribution.

As shown in Fig. 6.1, VAEs can learn the stochastic mappings between
the observed x-space that has distribution qD(x) and the latent z-space. The
generative model learns the joint distribution pθ(x,z), which is factorized as
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pθ(x,z)=pθ(z)pθ(x|z) with a prior distribution over latent space pθ(z) and a
stochastic decoder pθ(x|z). The inference model or the stochastic encoder qϕ(x|z)
approximate the true but intractable posterior pθ(x|z) of the generative model
[177].

Figure 6.1: General VAE stochastic mapping.

Specifically, we use the vector (x) to represent the set of all observed variables
that we want to model its joint distribution. We assume the observed variable
(x) from an unknown underlying process is a random sample that has unknown
probability distribution p∗(x). To approximate this underlying process, we used
a chosen model pθ(x), with parameters θ which can be written as:

x ∼ pθ(x). (6.1)

To find the value for the parameter θ, we used the learning1 process, which
is the most commonly used search process. Since the probability distribution
function is given by the model pθ(x) and approximates the true distribution of
the data, denoted by p∗(x), therefore, for any observed (x):

pθ(x) ≈ p∗(x). (6.2)

Often, in the case of classification or regression problems, we are interested in
a learning conditional model such as pθ(y/x) that approximates the underlying
conditional distribution p∗(y/x), where the distribution of the value over the
variable y is conditioned on the value of the observed variable x. In this case, x

1learning: In terms of ML, the concept of learning can be formulated as Tom Michell
defines it, as a “problem of searching through a predefined space of potential hypotheses for
the hypothesis that best fits the training examples.” [178]



CHAPTER 6. DESIGN OF INNOVATIVE VARIATIONAL AUTOENCODER
MODEL FOR AN END-TO-END COMMUNICATION SYSTEM 105

is the input of the model. As in the previous paragraph, the model pθ (y/x) is
chosen and optimized to be close to the unknown underlying distribution for any
x and y:

pθ(y/x) ≈ p∗(y/x). (6.3)

One of the most common examples of conditional modelling is image
classification, where (x) is an image, and (y) is the image’s class that we want to
predict.

We can extend the models discussed above into directed models with latent
variables, where the latent variables can be defined as variables that are part of the
model but are not part of the data-set, and which, therefore, we do not observe.
Normally, we use z to denote the latent variables. In the case of unconditional
modelling of the observed variable x, we can represent the directed graphical
model by a joint distribution pθ(x , z) over the observed variable x and the latent
variables z. The marginal distribution over the observed variables pθ(x) can be
written as:

pθ(x) =

∫
pθ(x, z)dz. (6.4)

The model pθ(x , z) can be conditioned in some context, such as pθ(x ,
z | y) and for this, we use the term "deep latent variable model" (DLVM),
which is when the distributions are parameterized by NNs. The advantage of
the DLVM is that when each factor in the directed model, whether its prior or
conditional distribution, is relatively simple, the marginal distribution p∗(x) can
be very complex. This expression makes the DLVM attractive for approximating
complicated underlying distributions. One of the most common and simplest
DLVM is known as factorization, which can be defined as follows:

pθ(x, z) = pθ(z)pθ(x|z). (6.5)

Fig. 6.2 shows a simple schematic of computational flow in the VAE with the
evidence lower bound (ELBO), which is the optimization objective of the VAE.

Figure 6.2: Simple schematic of computational flow in a VAE.
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More details about the VAE can be found in [152,177,179].

6.4.2. Wireless System Models

We build up an end-to-end communication system that consists of a transmitter
sending the desired signal to the receiver, as shown in Fig. 6.3. We assume that
the wireless channels have AWGN. The equation below formulates the received
signal vector sr:

sr = Hs
d
+ no, (6.6)

where H = diag (h) is the channel coefficient vector, h = [h1, ...hi, ...,hN ], hi ∈
C1×1, s

d
is the desired transmitted signal vector for propagated sd from the

transmitter to the receiver, and no is the AWGN noise vector, n0 ∼ CN (0, σ),
where No = σ2 is the noise power variance that contaminates the transmitted
signal power as shown in Fig.6.3.

By definition, the signal-to-noise ratio (SNR) is :

Γ = Sr/No, (6.7)

where Sr is the power of the desired signal received, and No is the AWGN power.
For t bits per symbol in Eb/No, (6.6) and (6.7) can be written as:

γ =
Sr

No × t
. (6.8)

Moreover, hi ∈ C1×1 sampled for Rayleigh distribution, Rician distribution,
and long normal Shadowing for Rayleigh, Rician and Shadowing models,
respectively [180]. While in the Doppler model, we use the theoretical flat Doppler
spectrum S(f), where S(f) = 1

2fd
, and phase shift ϕd [181].

6.4.3. The VAE as a Wireless System Model

The proposed VAE model design learns the noise, multi-path, line of sight,
and non-line of sight effects features using a directed probabilistic graph model
(DPGM) as in Fig. 6.5, where z represents the LRVs that are used to infer
the signal features from the PHV. Using this method, the relation between the
transmitted signal and the received signal patterns can be presented using inferred
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Figure 6.3: Simple wireless system with AWGN channel.

Figure 6.4: End-to-end wireless communication architecture consists of the VAE
and classifier DNNs.

LRVs.
Inspired by the semantic level communication and VAE, our work considers the

use of variational inference for generative modelling; however, we reinterpret the
variational inference from a new perspective. We use generative modelling, which
refers to the process of valid samples from p(x). Fig. 6.5, shows our generative
model. In this work, the samples of x are generated from a latent variable z, and
θ represents the associated parameters, while the solid lines denote the generative
model pθ (z) pθ (x | z). For example, to generate valid samples of x, we first
sample z, then use z and θ to generate x. The dashed lines represent the inference
procedure with a variational approximation of the intractable posterior pθ (z |
x). Moreover, we apply DL that is proposed by a stochastic optimization-based
technique to approximate the inference p(z | x) with appropriate prior on p(z)
using an encoder network qϕ(z | x). After that comes the decoder network pθ(x
| z) to compute the reconstruction x̂ of the message x, where this will be learned
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during the training phase. Given a NN model with sufficient learning capability
and good prior distribution p(z), this high-capacity model will approximate the
posterior by qϕ (z | x) ≈pθ(z | x). Since this model is structured as an encoder-
decoder, the technique is known as autoencoding variational Bayes (AVB), where
the expected marginal likelihood pθ(x) of the datapoint x ∈ X , under an encoding
function, qϕ(.), can be computed as in [182]:

Ep(x) log pθ (x) = Ep(x)DKL (qϕ (z|x) ||pθ (z|x)) + Lθ,ϕ (x) . (6.9)

The first term in (6.9) is the Kullback-Leibler (KL) divergence between qϕ (z|x)
and pθ(z|x).

The second term in (6.9) is called the evidence lower bound (ELBO):

Lθ,ϕ (x) = Ep(x)Eqϕ(z|x)
(
log

pθ (x, z)

qϕ (z|x)

)
, (6.10)

and
DKL (qϕ (z|x) ||pθ (z|x)) = Eqϕ(z|x)

(
log

qϕ (z|x)
pθ (z|x)

)
. (6.11)

We have to maximize the Lθ,ϕ (x) by minimizing the DKL (qϕ (z|x) ||pθ (z|x))
in order to maximize the penalized likelihood of the reconstruction of x from z

using:

Lθ,ϕ (x) = Ep(x) log pθ (x)− Ep(x)DKL (qϕ (z|x) ||pθ (z|x)) . (6.12)

Moreover, since backpropagation through a random operation is not possible
in the training stage, we use the reparameterization trick to move the random
sampling operation to an auxiliary variable ε that is shifted by the mean µi and
scaled by the standard deviation σi, respectively, representing the distribution Φ

that the network is trying to learn, as in Fig. 6.6. This allows backpropagation
through the deterministic nodes f, z,Φ. The idea here is that sampling from
N(µi, σ

2
i ) is the same as sampling from (µi + ε.σi), where ε ∼ N(0, 1).

Next, we describe the architecture of the VAE in the proposed end-to-end
wireless communication system shown in Fig. 6.4 and compare this transformation
with a simple wireless system as shown in Fig. 6.3.
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Figure 6.5: DPGM for used VAE.

Figure 6.6: Reparameterization trick used for training VAE.

VAE input

The hot vector in [3] can be replaced with a new concept known as the PHV in the
same way that [179] used to represent the constellation of a symbol. However, in
this work, we present the symbol as a packet of ones and zeroes where the inputs
s0 and s1 to the transmitter are encoded as a one-PHV 1s ∈ RM . The sent BPSK
message s0 has been presented by a packet of B bits. This packet consists of K
sub-packets, where each sub-packet ki, i ∈ {1, ..., K} contains b bits. For example,
this means that the total length of our PHV is 1× bK. Let the space of possible
messages be M = 2bK and bK be the necessary number of bits to represent each
message m. Then transmit input message st ∈ {1, ...,m, ...,M}, where M is the
space size of the possible messages as in Fig.6.7.

VAE encoder

Each PHV x fed into the input layer will be transformed by f : R1×bK → R1×c,
where c is the dimension of the last layer in the encoder. Looking at Fig.6.4, the
encoder layers include two-dimensional convolution (2DConv) layers, each of which
is configured with several filters (each filter has a size of ℏ height and ϖ width).
The features output by each layer is mapped to a number of filters ν1 and ν2,
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respectively. The filter shifts by ς strides at each convolution step, while the
padding size ℘ can be calculated using: size (2DConv) = k˘ℏϖ+2℘

ς
+1, to keep the

output size equal to the input. A rectified linear unit (ReLU) layer is used after
each 2DConv to eliminate any negative output value. A final fully connected (FC)
layer was added to the encoder with the dimension of 1 × 2c. The output of the
FC layer is divided into two sets µz = [µ1, ..., µc] and σz = [σ1+c, ..., σ2c], which
represents the latent variables’ distributions parameters (the expectation and the
variance, respectively).

The transformation can be formulated using the DNN hyperparameters θT :

y
n
= f(xn , θT ), (6.13)

where xn ∈ X , xn is the input data point and y
n

is the output of the FC layer
which has decimal format. After this, the FC decimal output values use the
physical decimal to binary converter (DCB) component to start sending the LRVs’
distribution parameters over the physical layer.

Figure 6.7: Packet representation for VAE input.

Physical Medium

In this work, our unique approach is to explain the practical aspect of
implementing an end-to-end system that includes the realization of the physical
wireless transmission and the receiving components, such as the digitization of µ
and σ values for each LRV, the modulator, demodulator, and AWGN channel:

• Decimal-coded binary (DCB) and binary-coded decimal (BCD) converters:
In the DCB component, the received decimal integer part will be represented
by by number of bits and the same for the fractional part of the decimal value.
In addition, an extra bit for the sign has been added as the most significant
bit (MSB), which means 2 × by + 1 is the final length of bits code that the
modulator receives. After signal demodulation, the BCD will use the binary
decoded bits to convert it back as a decimal integer and fraction parts before
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combining both using a fixed point radix to retrieve the decimal value. This
proposed method eliminates any digitization error for the y values when by

length satisfies the required significant figures for precision sf .

• BPSK modulation and demodulation components: The BPSK is used to
modulate the output of the DCB using a standard modulation, whereas the
demodulated output is used to feed the BCD input.

• AWGN noise channel: the physical AWGN noise is ∼ CN (0, ξ), where ξ
is the fixed standard deviation value that contaminates the amplitude and
phase of the received signal.

The number of channels in the physical wireless component medium has
the dimension of R1×c, and c is the number of channels that the proposed
communication system uses to send one message out of the 2bK messages. The end-
to-end rate of this communication can be measured by r

E2E
= bK

c
[bits/channel

use]. However, over the physical wireless components medium, the rate of the
physical transmission is r

PH
= (2by + 1) [bits/channel use]. This leads to the

compression rate (CR) formula:

CR =
(2by + 1)c

2bK
. (6.14)

The channel noise is an AWGN due to the assumption that the main source
of the noise is on the receiver side [3]. The channel uses a fixed variance ξ2 =

(Eb/No)
−1 and is characterized as a distribution N (0, ξ2I), where (Eb/No) is the

energy per bit Eb to the ratio of the spectral density of noise power No that
contaminates the desired signal at the receiver after converting the values from
binary to a decimal using the BCD.

VAE Decoder

The BCD output of the physical medium represents the LRVs’ contaminated
expectation, and variance decimal parameters vector values as a function
of Eb/No are µ̂z(Eb/No) = [µ̂1(Eb/No), ..., µ̂c(Eb/No)] and σ̂z(Eb/No) =

[σ̂1+c(Eb/No), ..., σ̂2c(Eb/No)], respectively. In this work, we proposed to use the
sampling layer inside the receiver to realize a practical architecture of the end-
to-end wireless system. The dimensions of the sampling input layers are equal
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to those of the last encoder output layer 1 × 2c. However, for the following
layers, the reparameterization trick is necessary to allow the VAE to perform
the backpropagation at the training phase and to sample the ẑ as shown in Fig.
6.6, and has been formulated using ϵ ∈∼ [N1(0, 1), ...,Nc(0, 1)] as:

ẑ(Eb/No) = µz(Eb/No) + σz(Eb/No)⊙ ϵ. (6.15)

At high Eb/No values, ẑ = z as a result of eliminating any contamination of
the z values, due to the AWGN channel effect, is mathematically proved by:

lim
Eb/No→∞

ẑ(Eb/No) = z, (6.16)

which is the input of the decoder that is transformed back to f−1 : R1×c → RbK to
reconstruct the input symbol s as ŝ. The transformation can be formulated using
the DNN hyperparameters θR :

x̂ = f−1(τ(f(x, θT )), θR). (6.17)

The DNN consists of one input layer, three transposed 2DConv layers, and a
ReLU layer that is used to eliminate the negative values at each output. Lastly, a
2DConv is used to reconstruct the transmitted image.

6.4.4. Simple DNN Image Classifier

To classify the final reconstructed symbol x̂ → sd ∈ {1, ...,m, ...,M}, a simple
DNN classifier has been used. Fig.6.4, shows the architect of the classifier block
using convolution, batch normalization, ReLU and max-pooling layers to extract
the feature of x̂. The classifier output layer learns the final message ŝd from the
output size of the previous fully connected and softmax layers with output size M
possible messages.

6.4.5. Proposed Numerical Performance Measurement Methods for the
New End-to-End Wireless System

To measure the performance of the proposed end-to-end (E2E) VAE wireless
system, we suggested the following methods:

• BER
E2E

definition: This is the ratio of bits error of the transmitted PHV
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from transmitter to receiver

BER
E2E

=

N∑
n=1

bk∑
i=1

(|x
i
− x̂

i
|)

NbK
, (6.18)

where N is the number of transmitted PHVs (Symbols). xi and x̂i ∈
{1, ..., bK} bits that produced by converting x and x̂ from decimal to binary
respectively.

• BER
PH

definition: This is the ratio of bits error of the transmitted LRVs
values between the DCB and BCD components.

BER
PH

=

N∑
n=1

(2by+1)∑
i=1

(|DCB(yi)−DCB(BCD(wi))|)

N(2by + 1)
. (6.19)

• MER definition: This is the ratio of the wrongly classified messages at the
receiver to the transmitted ones.

MER =

N∑
n=1

(sd − ŝd)

N
. (6.20)

It is important to mention that the SER is the analogy of the proposed
MER measurement in classical wireless communication. More discussion
regarding this point can be found in Section 6.6. However, the most
important of the three methods is the MER, because it measures the final
ratio of the correctly received messages out of the total transmitted ones,
which is the ultimate goal of the proposed system.

6.5. Experiment Setup, End-to-End Wireless System

Training and Simulation

6.5.1. Experiment Setup

The main parameters for the VAE, classifier and physical wireless component
layers are summarized in Table. 6.1
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Table 6.1: Parameters used for simulations

Parameter Value

Modulation scheme BPSK and QPSK
AWGN channel noise level type Eb/No ∈ [0, 9] [dB]

Channel Block coding type Hamming (1,3)
DCB No. of bits by for Inte & Frac parts by=8 [bits]

BCD decimal resolution No. of of SF=6
No. of transmitted packet ho vectors 1× 106 messages

Eb/No=7 dB
Epo (epochs)=50

VAEs main training parameters Batch size=64
Iteration=300/epoch

Validation data size= 4000
η
V
=0.001

No. of LRVs z = 2

VAE adaptive moment estimation (Adam) optimizer parameters (λ1, λ2)=(0.9, 0.999)
ε
V
= 1−7

Eb/No=0 dB
Image classifier main training parameters Epo (epochs)=50

Batch size=128
Validation data size= 500

ηc=0.001
Image classifier SGDM optimizer parameters Iteration=170/epoch

Υ=0.9

6.5.2. Classifier Training

A classifier stochastic gradient descent with momentum (SGDM) training type is
used to train PHVs under AWGN contamination with a value of Eb/No = 0 dB to
produce the final retrieved sent message. The SGDM algorithm can oscillate along
the path of the steepest descent towards the optimum. Adding the momentum
term with the contribution factor Υ to the parameter update is one way to reduce
this oscillation as in (6.15). Algorithm 3 describes the classifier training process
[183].

θcl+1
= θcl − ηc∇L(θcl) + Υ(θcl − θcl−1

), (6.21)

where θcl is the vector of weight and bias parameters for the DNN classifier in
iteration l, ηc is the learning rate, and L(θcl) is the loss function, while ∇L(θcl) is
the gradient of the loss function used to train the entire training set.
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Algorithm 3 Classifier training
Initialization: {Epo,Itr, x, No, ηc, Υ, θ}, where
Epo: number of epochs training.
Itr: number of iterations per epoch.
X: training image hot vectors.
sd :the desired output message.
No: noise sample ∼ N (0, ξ2)
θc: DNN perceptron weights and biases matrix.
for each Epo do

for each Itr do
The input layer passes the PHV values to the 2DConv layer.
The 2DConv layer produces the first features map.
The output of the 2DConv layer passes the batch normalization to speed up the
training and reduce the sensitivity of network initialization. Then the output passes
the ReLU layer to remove any negative values.
To reduce the spatial size of the feature map and redundant spatial information, the
ReLU output uses the max-pooling layer to down-sample the input.
Repeat steps 5 to 7, to fine-tune the detection of the important features in the message.
(The gradient threshold = + ∞)
Apply SGDM algorithm to optimize θc as in (6.21) using initial parameters: ηc
(learning rate), Υ (the momentum contribution factor) to get the gradient g

Itr
:

g
Itr
←− ∇θcL(x, x̂, θc)

use g
Itr

to update θc according to [183].
end for

end for
Output: Return the up-to-date θc and save the DNN "Classifier-PHV" model. =0

6.5.3. The VAE Training

VAE training aims to reconstruct the sent PHV from a meaningful continuous
space produced by the LRVs z ranges using the ELBO as in:

min
θV

ELBO = E[L(θV ) + β ×KL(θV )], (6.22)

where

min
θV
L(θV ) =

k∑
1

1

2
(x̂− x)2. (6.23)

max
θV
KL(θV ) =

k∑
1

−1
2
(1 + log(σz)− µ2

z − eσz). (6.24)

However, unlike the existing references, the contamination of the LRVs’ inferred
parameters occurs at the transmitted binary (not decimal values) level bits while
it is propagated through the wireless channel to imitate the practical aspects of
the experiment. In addition, the sampling layer has been moved to the receiver
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side to produce the contaminated LRV’s z values from the received contaminated
LRVs’ inferred parameters. The optimization algorithm used for DL networks
wights is Adam with an added momentum term. It keeps an element-wise moving
average of both the parameter gradients and their squared values [100]. The VAE
Training was done at a fixed value of Eb/No = 7 dB with a learning rate of 0:001
and batch size=64. More details about the training setup will be illustrated in
section 6.6.

Algorithm 4 describes the proposed VAE training process.

Algorithm 4 VAE end-to-end wireless system training
Initialization: {Epo,Itr, x, No, ηV

, θ
V
}, where

Epo: number of epochs training.
Itr: number of iterations per epoch.
x: training input vector. In addition, the desired output.
No: noise sample ∼ N (0, ξ2)
θ
V
: DNN weights and biases matrix for θT and θR.

n: number of re-sampled PHV at the receiver,
for each Epo do

for each Itr do
use x for input layer to produce y = f(x, θT )
use y for physical wireless layer to produce w = τ(y)
use w for sampling layer input to produce the LRVs z values using (6.15).
use the sampling layer output to reconstruct the PHV :
x̂ = f−1(w, θR)
Apply (6.25) to find the ELBO:
Apply Adam optimization algorithm to optimize θ

V
using initial parameters:

η
V
(learning rate), λ1&λ2 (the exponential decay rate for the 1st and 2nd moment

estimates respectively), ε
V

(a small constant value for numerical stability) to get the
gradient g

Itr
:

g
Itr
←− ∇θ

V
L(x, x̂, θ

V
)

use g
Itr

to update θVItr
according to [100].

end for
end for
Output: Return the up-to-date θ

V
and save the DNN "VAE-Wireless" model. =0

6.5.4. End-to-End Wireless System Simulation Realization

Once both the ′Classifier′ and ′VAE−Wireless′ models have been trained, the
two models cascade as in Fig. 6.4, and then the real data transmission starts. In
this experiment, 106 PHVs have been sent from the transmitter through the VAE-
encoder, physical wireless component layer, and VAE-encoder and finally pass
the classifier to each under observation Eb/No. The proposed system has a novel
method to re-sample the retrieved message for N times using parallel computing
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techniques and hardware such as graphics processing units (GPUs), then finding
the mode (the data value with the highest count) of the N re-sampled messages
(ŝnd)

N
n=1 :

ŝd = mode
(
(ŝnd)

N
n=1

)
. (6.25)

Algorithm 5 describes the realization process.

Algorithm 5 VAE end-to-end wireless system realization
Initialization: {x, Exp, Eb/No, N , ′Classifier′ model, ′VAE−Wireless′ model}, where
Exp: number of transmitted messages
x: Test PHV for each Exp messages.
Eb/No : the range of power contamination at the physical wireless layer
n: number of re-sampled PHV at the receiver,
for each Eb/No do

for each Exp do
use x for input layer to produce y = f(x, θT ), where θT ∈ "VAE-Wireless"
use y for physical wireless layer to produce w = τ(y)
for each n do

use w for sampling layer input to produce the LRVs z values using (6.15).
use the sampling layer output to reconstruct the PHV :
x̂ = f−1(w, θR) where θR ∈ "VAE-Wireless"
Use x̂ as input for the "Classifier-PHV" model
provide the final class of received message x̂⇒ ŝd ∈ {1, ...,m, ...,M}

end for
find the ŝd = mode

(
(ŝnd )

N
n=1

)
for the N re-samples message.

compare ŝd to sd

end for
Calculate the MER at specific Eb/No

end for
Output: Return MER for all Eb/No. =0

6.6. Numerical Results

In this section, a series of experiments will be implemented to evaluate the
performance of the new approach proposed under various scenarios and compared
with several benchmarks. In particular, we consider QPSK modulation in AWGN
and BPSK modulation with the effects of AWGN, fading, shadowing and Doppler
on the model. We compare our results with the commonly used QPSK and BPSK
expert modulation schemes which have long been used [180].
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We start this section with the training process by using BPSK modulation in
AWGN with the parameter settings recommended by Adam [100]. To begin with,
we fixed the learning rate to 0.001 and increased the batch size from 32 to 128.
From the simulation results shown in Fig. 6.8, we can see that all the curves have
a similar trend, but the curve for batch size = 64 is smoother and more stable
than the other curves. This is due to the effect of underfitting and overfitting the
data while calculating the loss function at the training stage [184]. As a result,
we choose batch size = 64 in our training process.
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Figure 6.8: SER performance with fixed learning rate versus Eb/No for different
batch sizes.

Next, it is important to choose appropriate learning parameters. The
parameters are adjusted by observing the SER values as shown in Fig. 6.8, and
Fig. 6.9. In this case, we fixed the batch size to 64 and increased the learning
rate from 0.0001 to 0.01. The lowest SER can be obtained with a learning rate
= 0.001, and the learning rate value we used in our training procedure was 0.001.
The results using η

Y
= 0.0001 show deterioration in SER as the search for the

optimal solution required more iterations than the used one (in this work, the
iterations: 300 iteration/epoch × 50 epoch=1500 iterations).

On the other hand, choosing η
Y

= 0.01 produces results between the different
choices due to utilising the iterations but with less resolution in loss function [185].
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Figure 6.9: SER performance with fixed batch size versus Eb/No for different
learning rate based.

Similarly, with a fixed learning rate and different batch sizes, we observe a similar
trend in SER. As the Eb/No increase, the SER constantly decreases.

Having established the feasible learning parameters, we simulate the
performance of the proposed algorithm as follows:

6.6.1. BPSK Channel

The numerically computed SER values versus Eb/No ∈ [0,9] dB with BPSK
modulation in AWGN are depicted in Fig. 6.10. The proposed VAE with two LRVs
is capable of reconstructing the transmitted message by only sending the LRVs’
parameters (µz,σz), and the MER (in our work, MER = SER) decreases when
the Eb/No increases as the green curve shows. As the AE and VAE state-of-the-art
articles assume that the encoder output has decimal output values only, we used
Hamming code to add protection and correction to the binary transmitted values
of the encoder output after converting it to binary by adding two bits for each
transmitted bit over the physical layer. However, when comparing the numerical
performance of the VAE SER with the theoretical Hamming (3,1) decoded by the
hard-decision method, our proposed VAE outperforms Hamming (3,1), as shown
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in Fig.6.10. Moreover, the proposed VAE outperforms the hard-decision-decoded
Golay scheme with a semi-constant gap (parallel) with an average of 0.5 dB.
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Figure 6.10: SER performance of the BPSK VAE vs baseline schemes.

Moreover, comparing the performance of the VAE SER to the classical AE [3],
the dashed curves show that at the same number of channels used to transmit
the encoder outputs (AE(1,4) in brown), the proposed VAE outperforms the AE
scheme, as shown in Fig. 6.11. However, as the number of channels of the AE
increased, the performance gap decreased as the blue dashed curve AE(7,4) in
comparison to the amber curve (VAE with 2 LRVs), which means that the VAE
use fewer channels than the classical AE to achieve the same SER numerical
performance.

6.6.2. QPSK Channel

Fig. 6.12 shows a similar comparison, but for a higher-order modulation scheme,
specifically, quadrature phase shift keying (QPSK) under AWGN channel to the
classical AE [3] and the proposed VAE. This result shows that the proposed VAE
with different modulation (BPSK and QPSK) achieve better performance than
the classical AE. Notice that even the QPSK VAE still perform better than AE
(7,4) at low Eb/NO as in [3].
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Figure 6.11: SER performance of the BPSK VAE vs AE baseline schemes.
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Figure 6.12: SER performance BPSK and QPSK of the VAE scheme under AWGN
vs AE baseline schemes.
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6.6.3. Rayleigh Fading Channel

The numerically computed SER values versus Eb/No ∈ [0,20] dB with Rayleigh
are depicted in Fig. 6.13. The proposed VAE with two LRVs is capable of
reconstructing the transmitted message by only sending the LRVs’ parameters
(µz,σz) and the SER decreases as the Eb/No increases, as in Fig. 6.13. As
with BPSK VAE SER performance, when comparing the VAE SER numerical
performance with the theoretical Rayleigh [180], our proposed VAE with Rayleigh
outperforms the theoretical one.
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Figure 6.13: SER performance of the BPSK VAE scheme under AWGN vs
Rayleigh channel.

6.6.4. Rician Fading Channel

The numerically computed SER values versus Eb/No ∈ [0,16] dB with Rician are
shown in Fig. 6.14. The proposed VAE with two LRVs is capable of reconstructing
the transmitted message by only sending the LRVs’ parameters (µz,σz), and the
MER (in the BPSK case the MER = SER) decreases as the Eb/No increases,
as shown in Fig. 6.14. The numerical performance of VAE SER with the
different Rician factors that measure the relative strength of the line of sight
(LoS) component and measure the severity of fading, with K = 2 being the most
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severe case of fading (very close to Rayleigh fading), while K = 14 represents
almost no fading, and at K = 7 lay in-between.

Our proposed VAE with Rician performs better when the value of k increases
until it gets close to the performance of the AWGN.
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Figure 6.14: SER performance of the BPSK VAE scheme under AWGN vs Rician
channel.

6.6.5. Shadowing Effect

Fig. 6.15 shows the proposed BPSK VAE SER performance compared to VAE
with shadowing behaviour regarding the σ of lognormal fading for a different
number of Eb/No. In this figure, it is possible to observe that increasing Eb/No in
the presence of the shadowing effect decrease the SER.
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Figure 6.15: SER performance of the BPSK VAE with Shadowing σ=4.5 dB.

6.6.6. Doppler Effect

Fig. 6.16 presents the proposed VAE with a variation of the Doppler shift value
under the non-stationary case. From the simulated results, we can notice that the
SER increases as the Doppler shift increase if we assume that both transmitter
and receiver are moving along the same axis with different phase offsets 5◦ and
45◦, which demonstrates increasing mobility causing SER increment in compared
to the stationary scenario.
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Figure 6.16: SER performance of the Doppler effect of the BPSK VAE with
different phase and frequency offsets.

6.6.7. Further Results Discussion

We extend our experiment to investigate the shadowing, Rayleigh and Rician
fading channels in addition to the AWGN. Moreover, the QPSK modulation under
AWGN has been used to investigate the possibility of applying higher modulation
schemes, which provides promising insight. However, due to the work limitation
in focusing on the proof of the proposed concept where short packets can be
transmitted through a wireless E2E VAE-based system. Further work can be
conducted to find the SER performance for 64PSK and 128PSK. Furthermore,
the Doppler effect has been added to the experiment to show that the proposed
design has potential for non-stationary scenarios, and it requires to study of more
varying channel parameters in order to overcome the limitation of this experiment
from the perspective of the transmitter-receiver mobility.

6.7. Chapter Summary

This chapter introduced a novel approach using the VAE as a probabilistic model
to reconstruct the transmitted symbol by transmitting the statistical parameters
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of the LRVs through the physical layer instead of sending the data bits of the
original symbol out of the transmitter. We show significantly improved PHV or
SER performance compared to the baseline Hamming code with hard decision
decoding and classical AE end-to-end, where increasing the Eb/No improves the
SER of the proposed system in comparison to the baseline schemes. In addition,
the proposed VAE shows a promising channel utilizing efficiency in comparison to
the classical AE, where the results show that the VAE with two channels (BPSK
and QPSK) under AWGN, outperforms the classical AE of 4 and 7 channels
schemes. Moreover, the performance of the proposed approach in the presence
of fading (Rayleigh, Rician and shadowing) is promising too, as the results show
the performance improvement towards the BPSK VAE SER. Furthermore, other
cases, such as the Doppler effect, have been simulated and discussed, showing
that the proposed model can be generalized to the case in which the LVRs’
parameters are transmitted rather than the original bits. Our findings illustrate
the importance of using the VAE approach and may inspire other researchers to use
a similar approach for future communication systems. Nevertheless, while we are
concentrating on the proof of the proposed concept, there are some limitations to
our work; further work can be conducted to find the SER performance for 64PSK
and 128PSK. In addition, this paper probes the applications of the proposed design
for a non-stationary case. Further investigation is required for both high mobility
and higher modulation schemes to find how such limitations can be overcome.



Chapter 7

Summary, Conclusion and Future
Work

7.1. Conclusion

In this thesis, we explore how machine learning techniques can be applied to some
of the most advanced wireless communication technologies currently available
and demonstrate how the potential and impact of such techniques can affect
the future performance of wireless communication networks and future research
areas. In accordance with the five research objectives set forth in section 1.3, our
research contributes four new accomplishments to the literature for B5G enabling
technologies such as end-to-end optimized wireless communication systems.

7.2. Summary

The study presented in this thesis can be summarized below:
In chapter 2, the background information on wireless communication, including

DL and ML, was presented. An overview of DL for the physical layer of
the communication system was presented, including background, applications,
advantages, challenges, basics and related works.

Chapter 3 focused on the concept of AE as an end-to-end communications
system and compared it with the conventional communication system. In addition,
we analyse the performance of the AE as an end-to-end learning system and
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compare it with the conventional communication system with different modulation
schemes with the intention of achieving a better or similar BER.

In chapter 4, we illustrated the effectiveness of employing a DNN for the
detection of IM-MIMO-OFDM in terms of error performance. The proposed
model, DLIM, trained the received signal and channel vectors offline based on
domain knowledge, such as a ZF equaliser and energy detection. Then, the fully
connected DNN was trained to recover the data bits.

In chapter 5, the classical IRS-assisted communication system has been
transformed into an end-to-end AE. Additionally, we proposed DNN loss function
that shows the capability of optimizing the DNN parameters to reconstruct the
transmitted signal, by learning signal constellations representation pattern that
reduces the wireless environment contamination impact on the received signal.

In chapter 6, a model for the classical IRS-assisted communication system
has been proposed based on an end-to-end AE. It is evident from the numerical
results that the proposed design models both the channels through which the
desired signal propagates as well as the IRS augmentation effect on the routed
signal as a single DNN with loss function. It has been shown that the parameters
of the DNN can be optimized to reconstruct the transmitted signal by optimizing
DNN parameters.

7.3. Future Work

By exploring different machine learning techniques along with classical
optimization, this thesis illustrates an awareness of the potential to enhance
the performance of next-generation wireless networks using machine learning
techniques. Some of the potential future directions of this research are listed
below:

7.3.1. End-to-End Communication System Using Masked Auto-encoder
(MAE)

Since its appearance, the Transformer [186], has been integrated in DL framework.
Inspired by the semantic level communication, we will try to design a novel Masked
Auto-encoder (MAE) based communication system to improve the reliability
of AE for the end-to-end physical layer. The design of the system will be a
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simple, effective, and scalable form of a masked autoencoder (MAE) for short-
packet communications. That is reliable in the communications system, including
asymmetric encoder-decoder architecture powered by NNs.

Our goal is to design an MAE model for an end-to-end communication system.
Our MAE eliminates the low-level information by masking a large portion of the
input packet patches, where the encoder takes only the visible patches while the
lightweight decoder reconstructs the input from the latent representation. Due to
the asymmetric encoder-decoder architecture of our MAE, a very high masking
ratio of the input (e.g., 75%) yields to achieve increase the optimization accuracy
and at the same time allows the encoder to process only a small portion of the
patch (e.g., 25%). This can result in reducing the overall pre-training time and
reducing memory consumption.

Moreover, we aim to design a neat and efficient scheme of MAE for end-to-
end learning representation through masked message modelling, which masks a
portion of the input signal and predicts the original message back at the masked
part of the signal. The framework consists of:

• Masking approach: this component designs how to select the patch to mask
and how to implement the masking before using it as an input.

• The encoder extracts the latent representation for the masked patch, which
is then used to predict the signals at the masked patch.

• The decoder maps the latent representation back to the input to predict the
missing patch that contains rich semantic information.

7.3.2. Terahertz (THz) Communication Technologies for the Sixth
Generation (6G)

Research on how ML can be used to improve the throughput of small cells using the
IRS technique by using the THz band wireless communications ML application.

In spite of the fact that mmWave spectrum may seem important for 5G
communications, the demand for even higher data rates of up to terabits per
second requires the utilization of 0.1-10 THz for beyond 5G applications [187].

By utilizing THz spectrum, existing wireless communication systems can
be expanded to include novel applications such as ultra-high-speed wireless
links for virtual reality and augmented reality, reliable wireless backhaul and
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access networks, the Internet of nano-things, etc. However, the use of THz
frequency suffers from severe propagation and penetration losses, which limits
the communication distance of the system. Therefore, it becomes challenging to
communicate even at distances of ten meters.

There are many challenges associated with distance in mmWave and THz
frequency spectrum, requiring solutions such as distance-aware physical layer
design, ultra-mMIMO communication, intelligent surfaces, and reflect arrays. It
has been demonstrated that mmWave and THz spectrum are viable and beneficial
in the context of line-of-sight and non-line-of-sight communication scenarios for
distances of approximately 100 meters [187].

7.3.3. Other Extensions

• The work in chapter 5 can be extended to further examine the system
performance after replacing the AE with VAE to be an IRS-assisted
communication system into an end-to-end VAE.

• Lastly, investigate the use of transformer architectures [186] with VAE as
a probabilistic model using a semantic communication approach based on
AE for the wireless relay channel (AESC) to extract and compress semantic
information and reconstruct its semantic features.
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