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0 Preface

0.1 Scope and objectives of Work Package 2

The objective of Work Package 2 (WP2) is to establish a proper nonlinear modeling framework that will
allow the development of novel tools and algorithms for the analysis and design of wireless communica-
tion systems. The expected outcomes within the context of this workpackage include (a) the development
of novel techniques to estimate and compress sparse data sources through the use of parsimonious non-
linear models and (b) algorithms to estimate and sparsely represent nonlinear wireless channels. More
generally, the framework developed in this workpackage sets the basic background for the remaining
work packages and is expected to lead to: (a) Adaptive algorithms for nonlinear channel estimation and
equalization. (b) Error probability bounds and appropriate coding schemes for the nonlinear wireless
channel. (c) Cryptographic and encryption coding schemes of low-computational complexity, and en-
hanced security.

0.2 Report organization

This report consists of two complementary parts, related to the modeling of two important sources of non-
linearities in a communications system. In the first part, an overview of important past work related to the
estimation, compression and processing of sparse data through the use of nonlinear models is provided.
In the second part, the current state of the art on the representation of wireless channels in the presence of
nonlinearities is summarized. In addition to the characteristics of the nonlinear wireless fading channel,
some information is also provided on recent approaches to the sparse representation of such channels.

More specifically, Section 1.1 provides a general perspective on the need of models for sparse
representation of signals, including speech and images, while Section 1.2 introduces the concepts of
dimensionality reduction and sparse principal component analysis. Then, Section 1.3 briefly describes
the main ideas behind compressive sampling and the introduction of adaptive algorithms like dictionary
learning for the reconstruction of sparse data, and Section 1.4 provides an information-theoretic survey of
issues related to the estimation and compression of discrete time series using variable-memory Markov
chains and context tree weighting.

Subsequently, in Chapter 2, Section 2.1 briefly describes the important aspects of the wireless
fading channel. Section 2.2 describes the current approaches to model channel nonlinearities, including
the popular Volterra-type models and models for power clipping, while Section 2.4 extend these ideas to
multi-antenna channels.
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1 Representation and estimation of nonlinear
sources

1.1 Source (De-) Coding: Context and Taxonomy

Source coding at the transmitter along with decoding at the receiver, aim at leveraging correlation among
samples to remove redundancy, and thus store, process, compress, and transmit signals more efficiently,
while being able to reconstruct themwithminimal distortion at the receiver end. Given signal blocks (vec-
tors), the first step of a source coding (a.k.a. compression or codex) module comprises a dimensionality
reduction step of analog-amplitude vector samples. If transmitted via a digital communication system,
this dimensionality reduction step is followed by a bit allocation (a.k.a. quantization) step, where a pre-
scribed bit budget is optimally allocated (in some well defined sense) among the entries of the reduced
dimensionality vector [5, 9, 17, 23].

Fundamental information-theoretic limits for lossy compression and reconstruction are offered by
the celebrated rate-distortion theory, and its generalizations to remote sources and distributed settings
dealing with the so-termed CEO problem, which entails (de-)coding with side information [36, 47, 49,
46, 14]. Given a number of bits and a reconstruction metric (e.g., mean-square error), rate-distortion
theory asserts that for Gaussian distributed signals the process of Karhunen-Loeve based dimensionality
reduction followed by the reverse waterfilling allocation of bits attains the lowest error for the prescribed
rate [5, 17]. On the practical side, mpeg and jpeg standards implement state-of-the-art (de)coders, which
rely on the Fourier or the wavelet transform, and iterative (trellis) scalar or vector quantization.

Low-dimensional modeling and dimensionality reduction are cornerstone tasks in various areas,
where high-dimensional vectors must be mapped to their judiciously chosen low-dimensional counter-
parts – what is also referred to as space (or manifold) learning and embedding [27]. In addition to com-
pression, model reduction, system identification, pattern recognition, big data processing and storage, as
well as machine learning tasks (including regression, classification, feature extraction, and clustering),
all continuously benefit from advances in low-dimensional modeling and dimensionality reduction [24].
Many of these tasks operate only on the low-dimensional (sub)space(s), while (de)coders must eventually
bring compressed vectors back to their high-dimensional reconstructed counterparts.

Over the last decade, researchers recognized two possibilities that spurred renewed interest in
source (de)coding. First, the fact that sampled signals can be sparse (and thus entail low-dimensional
structure) when expanded over an appropriate basis. This attribute of natural or man-made sparsity can
be exploited fruitfully in compression and reconstruction [16, 24]. Second, it was appreciated that source
coding of sparse signals could be pursued jointly with sampling of continuous-variable signals, what led to
the popular themes of compressive sampling or compressed sensing (CS) [10, 18, 3], and the more recent
efforts on sparse coding via dictionary learning (DL) [35, 42]. The emergent tools can be also utilized for
robust source (de)coding when signals are observed in the presence of outliers, and also when samples are
missing. These CS and DL advances to joint sampling and compression are intimately related to the basic
problems of interpolation (a.k.a. imputation), extrapolation (a.k.a. prediction) themes, but they are also
at the heart of contemporary subjects, including matrix completion [11], low-rank representation [13],
and their popular applications to recommender systems and webpage rank schemes [24].

In a nutshell, the vast majority of prior (de-)coding works has been confined to linear source mod-
els, linear dimensionality reducing operators to obtain low-dimensional embeddings, and linear recon-
struction operators at the receiver end. Well justified for Gaussian stationary vector processes, these
operators are obtained based on the sample covariance matrix found using training vectors, and in this
sense they are data-adaptive. The latter is to be contrasted with the CS approaches, which rely on a
so-termed measurement matrix that is chosen to satisfy special conditions (known as restricted isometry
properties), but otherwise it is data-nonadaptive since it ignores the underlying statistics of the signals
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Representation and estimation of nonlinear sources 4

to be compressed. There is clearly a need for source (de-)coding approaches suitable for non-Gaussian,
and (at least piecewise) nonstationary signal sources, which are capable of coping with low-dimensional
nonlinear models and embeddings in a data-adaptive manner, but also offer computationally affordable
compression, reconstruction, and learning algorithms.

1.2 Low-dimensional modeling and dimensionality reduction

ConsiderN ∈ N∗ high-dimensional (column) vectors {xn}Nn=1 ⊂ RD, located on or close to a smooth but
otherwise unknown manifoldM ⊂ RD,D ∈ N∗. Given these training data vectors, critical for efficient
source encoding and decoding of out-of-sample vectors x are: (a) the dimensionality reduction module,
which effects (generally lossy) compression from high-dimensional (x ∈ RD) to low-dimensional (y ∈
Rd, N∗ ∋ d ≪ D) vectors at the transmitter (Tx); as well as (b) the reconstruction module at the receiver
(Rx), which yields estimates x̂ of the high-dimensional vectors from their low-dimensional renditions.

Principal component analysis (PCA) relies on the Karhunen-Loeve transform, which constitutes
the “workhorse” of dimensionality reduction using a linear operator, namely a d × D matrix UT (T
denotes transposition) formed by the eigenvectors corresponding to the d (out of D) largest eigenvalues
of the sample covariance matrix N−1

∑N
n=1 xnx

T
n [24, Chap. 14.5]. As the latter is formed using train-

ing data, PCA is a data-adaptive operation. PCA’s premise for compressing x to its lower-dimensional
rendition y = UTx at the Tx, and reconstructing it optimally, in the mean-square sense, is that x is sta-
tionary with the same covariance matrix as {xn}Nn=1. From a deterministic viewpoint, PCA is effective
in (de)compression provided that both training and out-of-sample vectors live on (or stay close in the
least-squares (LS) sense to) an affine subspace.

Albeit never explicitly used, the low-dimensional model underlying PCA is the following linear
one: x = Uy + e, where U has size D × d and e denotes white noise. Over the last dozen years, a
surge of research has emerged that exploits the attribute of sparsity, which in the present context pre-
sumes that y = Bs, where s is a sparse vector (a number of its entries are zero but their locations are
unknown) over a certain basis B. The first cluster of past works on this topic deals with sparse PCA;
see e.g., [27]. However, the nonconvex criterion involved in these works does not lend itself to efficient
optimization. Improved optimization algorithms are reported in [52] using block coordinate descent [6];
and also in [2] using relaxation and greedy solvers. Related approaches augment the standard singular
value decomposition (SVD) cost, or, the maximum likelihood criterion with ℓ1 norm penalties to effect
sparsity [44, 45, 12]. All the aforementioned sparse PCA schemes neither exploit sparsity for compres-
sion and reconstruction nor they account for non-ideal encoder-to-decoder links, and power constraints
at the encoder side. Preliminary results on the latter can be found in [38].

An important generalization of low-dimensional models is offered by those capturing “union of
subspaces” and “nonparametric matrix factor analysers,” which can be estimated using either maximum
likelihood or Bayesian techniques; see e.g., [15, 13] and references therein. The motivation behind these
nonlinear models is that data vectors do not generally lie on an affine subspace, but often on a manifold.
In addition, they are typically realizations of nonstationary or locally stationary processes, including those
formed by e.g., image and speech signals. These considerations prompt approaches to nonlinear dimen-
sionality reduction – a subject explored over the last dozen years primarily in the context of machine
learning themes such as clustering and feature extraction [24, Chap. 14.9]. Among those, popular ones
are the multidimensional scaling (MDS), the ISOMAP, the locally linear embedding (LLE), the Lapla-
cian Eigenmaps (LLE), the semidefinite embedding (SDE), and their common spectral decomposition
tool known as kernel PCA [39, 22, 24]. Among these, LLE has well-documented merits, because [37]:
(a) it is computationally affordable, entailing closed-form expressions and eigen-decomposition level
complexity; (b) it does not require knowledge but only smoothness of the manifold; and (c) it leverages
smoothness to learn the manifold, and obtain LLEs that can be thought of as being applied on tangential
affine subspaces.

So far, LLE has been advocated for manifold learning, clustering, and classification [22]. Recently,
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sparsity has been leveraged to render (kernel) PCA and MDS robust against outliers [33, 20], but also for
LLE-type robust manifold learning and low-dimensional embedding [25, 41, 19, 28]. Neither one has
been investigated for reconstruction purposes in a source (de)coding setup. Sparsity is also the enabling
attribute for compressive sampling (CS) via random projections and also for dictionary learning (DL),
two subjects outlined next.

1.3 Compressive sampling and dictionary learning

Sparsity is an attribute characterizing many natural and man-made signals, not only because nature is
inherently parsimonious, but also because practical constraints encourage engineering designs with as
few degrees of freedom as possible. For this reason, sparsity has been exploited over the last dozen years
in a broad range of statistical inference tasks concerned with the choice of most informative variables
in linear regression models using e.g., the least-absolute shrinkage and selection operator (Lasso) [24].
Lasso has been successfully adopted in a gamut of applications, ranging from the discovery of behavioral
trends in social networks, to unveiling interpretable biological structure in gene expression micro-array
data, diabetes, and prostate cancer prognosis [24]. In parallel, related basis pursuit ideas have capitalized
on sparsity to obtain parsimonious signal representations primarily in deterministic settings [16]. The
latter have led to the recent ground-breaking results on CS, where sparsity has been proved instrumental
to solving under-determined linear systems of equations. CS has created excitement in signal processing
circles too, for sub-Nyquist sampling of sparse signals [10]. Experimental demonstrations of CS have
also emerged using analog designs [3]. To deal with disturbances and noise, Lasso, basis pursuit, and CS
algorithms all involve minimization of a squared-error cost regularized by the ℓ1 norm of the unknowns.

Sparse PCA approaches (and natural extensions to sparse canonical correlation analysis (CCA))
exploit sparsity present in second-order statistical descriptors of the stationary processes involved. Di-
mensionality reduction based on themwill yield high reconstruction performance provided that the (cross-
) covariance or spectral density matrices of the data are sparse, and also representable by a few strong
eigen-components. However, there are cases where the data themselves admit a sparse deterministic
representation over a perhaps unknown basis that is not necessarily generated by the eigenspace of the
covariance or the power spectral density matrix. For instance, images tend to admit sparse representa-
tions over the wavelet basis [1]. If such a basis were known, then it could be used to represent the data
with a coefficient vector whose dimensionality is smaller than the one of the original data vector [16].
Using training data to learn the underlying basis, recent works have advocated sparse overcomplete basis
expansion schemes to parsimoniously represent and effectively reconstruct data vectors [35, 1, 32]. The
resultant so-termed dictionary learning (DL) algorithms are data-adaptive and require solving a sparsity-
aware, bilinear regression problem. The proposed research will capitalize on deterministic descriptors of
sparsity to develop DL-type approaches that account for power constraints at the encoder, and non-ideal
encoder-to-decoder links. It will also accommodate data vectors admitting sparse representations over
time-varying overcomplete bases – a case of paramount importance for compression of nonstationary
(e.g., video) sources.

Summarizing, sparsity is expected to play an instrumental role in various inference tasks. It has
been so far exploited for CS [4] [48] [50], DL [35, 42], and reconstruction. However, its role for LLE-
like nonlinear, data-adaptive (de)compression has not been investigated, except for our preliminary work
reported in [40]. Performance analysis is a fertile ground for research, and fundamental (even asymptotic)
limits are yet to be established.

1.4 Information theoretic issues and compression

In this section, our focus will be on the analysis, estimation and compression of nonlinear sources, based
primarily on sparse representations. Moreover, the main focus of the present section – as well as the
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focus of the relevant proposed work – will be on discrete sources, since the discreteness of the signal is
often the main reason for its “nonlinearity.”

Before proceeding to review the existing relevant literature in detail, we briefly mention that there
are connections with the well-established and extensively developed area of vector quantization of con-
tinuous sources. Until the late 1990s, most of the research effort in vector quantization was devoted to
addressing the issue of universality, see [76] and the references therein, as well as [77] [78] [79] [80][81]
[82] [83][84]. Algorithms emphasizing more practical aspects have been proposed in [85][86][87][88].
So-called “structured source codes” and “structured vector quantizers” also offer sparse representations.
In this connection, we mention tree codes developed by Jelinek and others [89] [90] [85, Ch. 15]; and
source codes based on trellises [91] [92] [93] [94]. Also, there is a long line of work on compression
algorithms based on linear codes, of which the most complexity-efficient ones are those that combine a
linear code with an encoder utilizing sparse-graph properties or a message-passing-type algorithm; see,
e.g., [95][96] and the references therein. Finally, we mention that, more recently, a new class of codes us-
ing sparse random dictionaries have been proposed in [97][98], extending corresponding channel coding
schemes [99], all of which are based on sparse regression ideas from statistics.

1.4.1 Estimation of sparse discrete sources

The main problem of modeling and compression of discrete time series is the fact that, long memory – the
most important feature of the data which can be utilized for effective compression – cannot be modeled
effectively. The obvious description of a model as a dth order Markov chain has long been recognized
as problematic: For example, in order to describe the model of Markov data with an alphabet of size
m, with memory length d, requires the estimation of at least (m − 1)md parameters; even with very
moderate values for m and d this is obviously prohibitively large. For example, a Markov chain with
memory length d = 20 with an alphabet of size m = 10, requires the estimation of ≈ 1021 parameters,
clearly an outrageously impractical goal. See, for example, the extensive discussions in [100][101] and
the references therein.

The most successful line of research that has dealt with this high-dimensionality problem is that
of the utilization of so-called tree sources or variable-memory Markov chains. We first briefly review
their structure and then we give bibliographical pointers to where relevant theoretical results as well as
applications have been developed.

Our starting point is the definition of the distribution of class of dth order, homogeneous Markov
chains, with values in the finite state-space, or “alphabet” A = {0, 1, . . . ,m − 1}. The memory length
d ≥ 0 and the alphabet sizem ≥ 2 are fixed.

Specifically, for the process {Xn} H = {X−D, X−D+1, . . . , X−1, X0, X1, . . .}, we will define
the conditional distribution of eachXi, i ≥ 1, given the previous d symbols (Xi−d, Xi−d+1, . . . , Xi−1),
where we write Xj

i for a vector of random variables (Xi, Xi+1, . . . , Xj) and similarly xji ∈ Aj−i+1 for
a string (xi, xi+1, . . . , xj) representing a realization of the random variables Xj

i . The key element in
specifying these distributions is a context function C:Ad → T , which maps each length-d context xi−1

i−d

to a (typically strictly) shorter suffix C(xi−1
i−d) = xi−1

i−j of itself, for some 0 ≤ j ≤ d. Then the Markov
property for {Xn} takes the form:

P (xn1 |x0−d+1) =

n∏
i=1

P (xi|xi−1
i−d) =

n∏
i=1

P (xi|C(xi−1
i−d)).

The range T of C is a subset of ∪d
d=0A

d, where we adopt the convention that the set A0 contains only
the empty string λ. We assume that the set T is proper, namely, that no element in T is a proper suffix
of any other, and that if some xji = (xi, xi+1, . . . , xj) is in the range of C, then so is every string of the
form (y, xi+1, . . . , xj), for all y ∈ A. Observe that, under these assumptions, the context function C is
completely determined by its range T , since, for any string xi−1

i−d there is exactly one element of T which
is a suffix xi−1

i−j of x
i−1
i−d.
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To complete the specification of the (conditional) distribution of the process {Xn}, in addition to
the context setT , with every element s ∈ T we associate a probability vector θs = (θs(0), θs(1), . . . , θs(m−
1)), [where the θs(j) are nonnegative and sum to one,

∑
j∈A θs(j) = 1]. Then, the probabilityP (xn1 |x0−d+1)

is,

P (xn1 |x0−d+1) =

n∏
i=1

P (xi|xi−1
i−d) =

n∏
i=1

P (xi|C(xi−1
i−d)) =

n∏
i=1

θC(xi−1
i−d)

(xi). (1.1)

Note that, instead of taking the product sequentially in time, we can instead take a product over all
possible contexts s ∈ T , and express this probability as,

P (xn1 |x0−d+1) =
∏
s∈T

∏
j∈A

θs(j)
as(j), (1.2)

where each element as(j) of the vector as = (as(0), as(1), . . . , as(m− 1)) is,

as = # times symbol j ∈ A follows context s in xn1 . (1.3)

To summarize, the (conditional) distribution of the Markov chain {Xn} is described by a proper
context setT , and by a collection θ = {θs; s ∈ T} of probability distributions θs = (θs(0), θs(1), . . . , θs(m−
1)) for each element of the context set T .

The distribution of {Xn} is determined as in (1.2), once we have specified a (proper) context set
T – the model – and a collection θ = {θs; s ∈ T} of probability vectors θs, for each s ∈ T – the
parameters. Note that the context set T can be described as a tree, a representation we will find very
useful in the sequel. Therefore, we will refer to models T as context trees, context sets, or simply as
models, interchangeably. In the tree representation, the context corresponding to the empty string λ is
the root of the tree.

Example. Consider a 5th order Markov chain on the alphabet A = {0, 1, 2}, defined by the context tree
T shown below, and by a collection of (known) parameters θ = {θs; s ∈ T}, where θs is a probability
vector corresponding to leaf s in T .

... λ..

θ00

..

θ01

..

θ02000

..

θ02001

..

θ02002

.

•

..

θ0201

..

θ0202

.

•

..

θ0210

..θ0211 ..

θ0212

.• ..

θ022

.• .

•

.

0

..θ1 .1 ..

θ2

.
2

Then the likelihood of an arbitrary string is easily computable explicitly via (1.1) or (1.2). For
example, with d = 5 and n = 12, the string,

1, 0, 2, 1, 1︸ ︷︷ ︸
x0
−4

, 0, 0, 1, 2, 1, 0, 2, 0, 0, 2, 0, 1︸ ︷︷ ︸
x12
1

has probability given by (1.1),

θ1(0) · θ01(0) · θ00(1) · θ1(2) · θ2(1) · θ1(0) · θ01(2) · θ2(0) · θ0201(0) · θ00(2) · θ2(0) · θ02002(1).
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Alternatively, we have the count vectors,

a1 = (2, 0, 1) a2 = (2, 1, 0)

a01 = (1, 0, 1) a00 = (0, 1, 1)

a0201 = (1, 0, 0) a02002 = (0, 1, 0),

with all other s having all-zero count vectors as, so that the probability of xn1 given x0−d+1 as expressed
in (1.2) is:

θ1(0)
2 · θ1(2) · θ2(0)2 · θ2(1) · θ01(0) · θ01(2) · θ00(1) · θ00(2) · θ0201(0) · θ02002(1).

Observe the convention that contexts s are written in the “backwards in time” direction, so that, for
example, the fact that a01(2) = 1 means that there is exactly one place in the string where a “2” follows
the pattern “10.”

Taking a Bayesian point of view, the natural next step is to define an appropriate prior structure on
the class of models and the associated parameters. Given a fixed depthD and an arbitrary β ∈ (0, 1), we
define a prior distribution on models (proper context sets, or the corresponding trees) T as,

π(T ) = πD(T ) = πD(T ;β) = α|T |−1β|T |−LD(T ), (1.4)

where α = (1 − β)1/(m−1), |T | denotes the number of leaves of T , and LD(T ) denotes the number of
leaves T has at depth D.

Given a model (i.e., a context tree) T , we define a prior distribution on the probability vectors θ =
{θs; s ∈ T} on the leaves s of the context tree T : We place an independent Dirichlet(1/2, 1/2, . . . , 1/2)
distribution on each θs so that, π(θ|T ) =

∏
s∈T π(θs), where,

π(θs) = π(θs(0), θs(1), . . . , θs(m− 1)) =
Γ(m/2)

πm/2

m−1∏
j=0

θs(j)
− 1

2 ∝
m−1∏
j=0

θs(j)
− 1

2 . (1.5)

Finally, given the model T and the associated parameters θ = {θs; s ∈ T}, the likelihood of the
observations is given as in (1.1) and (1.2),

P (xn1 |x0−d+1) = P (xn1 |x0−d+1, θ, T ) =
∏
s∈T

m−1∏
j=0

θs(j)
as(j), (1.6)

where, as before, each as(x) is the number of times x follows the context s in xn1 . By convention, when
we write

∑
s∈T or

∏
s∈T , we take the corresponding sum or product over all the leaves s of the tree, not

all its nodes. Also, in order to avoid cumbersome notation, in most of what follows we write x for the
string xn1 and we suppress the dependence on its initial context x0−d+1, so that, for example, we denote,

P (x, θ|T ) = P (xn1 , θ|x0−d+1, T ).

An important and very useful property of this prior specification is that the parameters θ can easily
be integrated out, so that the marginal likelihoods P (T |x) can be expressed in closed form: Themarginal
likelihood P (x|T ) of the observations x given a model T is,

P (x|T ) =
∫

P (x, θ|T )dθ =

∫
P (x|θ, T )π(θ|T )dθ =

∏
s∈T

Pe(as),

where the count vectors as are defined in (1.3) as before, and where the quantity Pe(a) is given by,

Pe(a) =

∏m−1
j=0 [(1/2)(3/2) · · · (a(j)− 1/2)]

(m/2)(m/2 + 1) · · · (m/2 +M − 1)
, (1.7)
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for a count vector a = (a(0), a(1), . . . , a(m− 1)), whereM = a(0) + a(1) + · · ·+ a(m− 1), and with
the convention that any empty product is taken to be equal to 1.

In terms of inference, the more interesting quantity is the model posterior distribution,

π(T |x) = P (x|T )π(T )
P (x)

.

As usual, the main obstacle in the computation of π(T |x) is the appearance of P (x), which can be
expressed as the weighted mean of the marginal likelihoods P (x|T ): P (x) =

∑
T π(T )P (x|T ). Since

P (x)will be central inmuch of the subsequent development, we refer to it as themeanmarginal likelihood
of the observations x.



2 Modeling and Sparse representation of
nonlinear wireless channels

In this chapter we will review the basic models for the wireless channel nonlinearities. After providing
a brief overview of the linear fading channel characteristics, a survey of past work on modeling of non-
linearities is presented. Subsequently, models for the description of nonlinear multi input multi output
(MIMO) sources and systems are reviewed. Sparsity is a key constraint imposed on the model. The pres-
ence of sparsity is often dictated by physical considerations as in wireless fading channel–estimation. In
other cases it appears as a pragmatic modelling approach that seeks to cope with the curse of dimension-
ality, particularly acute in nonlinear systems like Volterra type series. When system nonlinearities are
present, possible remedies based on linear approximations may degrade system performance. A popular
model that captures system nonlinearities is the Volterra series [73, 74, 75]. This model is employed in
many applications including wireless communications. Volterra series constitute a class of polynomial
models that can be regarded as a Taylor series with memory. An attractive feature of this model is that
the unknown parameters enter linearly at the output. On the other hand, the number of terms increases
exponentially with the order and memory of the model. Most of the work reported in the literature focuses
on modelling and identification of single input single output (SISO) Volterra systems. When the under-
lying nonlinear system is a MIMO system, as in MIMO communications, the resulting model is more
complicated and has received little attention. MIMO models are addressed in this chapter. Nonlinear
MIMO systems involve a large number of parameters, which increases exponentially with the order, the
memory and the number of inputs. Therefore, there is a strong need to reduce complexity by considering
those terms that strongly contribute to the outputs. This leads naturally to a sparse approximation of the
underlying nonlinear MIMO system. The models described in this chapter will be used in the estimation
of sparse nonlinear MIMO sources and channels.

2.1 Modeling of wireless fading channels

The wireless signal transmission between two points for telecommunication links can be realized either
using radio frequencies (RF), or optical frequencies. In the latter case the systems are known as optical
wireless or free space optical (FSO) communications systems.

2.1.1 The RF Wireless Channel

The RF wireless channel models RF propagation for the purposes of mobile antennas in the presence
of significant scattering. Typically, the models incorporate three generic types of cellular environments:
suburban macrocells, urban macrocells, and urban microcells. The relationship between a given chan-
nel scenario and the channel coefficients for a given link can be described in terms of three levels of
abstraction [53].

At themacroscopic level, time-averaged local properties of the channel are described, e.g., the aver-
age power, delay spread (DS), and angle spread (AS). These quantities are also designated as “composite”
parameters to imply the inclusion of all delayed components. Apart from a deterministic part, these vari-
ables have a log-normal random part, which captures the fluctuations due to propagation through several
independent “city block” regions.

Focusing in to a deeper “mesoscopic” level, the channel has additional structure. In particular, each
composite energy cluster is decomposed into multiple paths with relative delays, and angles of arrival
and angles of departure consistent with the composite statistics. Each of these paths can be thought of
as coming from different buildings within the neighborhood of that block. Also at this mesoscopic level,
the path delays and average path powers are generated as realizations of random variables.

10
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At the deepest, microscopic level, each of these paths undergoes Rayleigh fading, generated from
the temporal variability of the particular link (e.g., due to the terminal’s movement). Each path is rep-
resented as a sum of subpaths modeled as planewaves. Since the various length-scales are not always
clearly separable, the interpretation of these levels of abstraction does not always correspond with reality.
However, they certainly make sense and can always be used to describe the experimental data of outdoors
channels. In any event, the above characteristics are intertwined with the need of power amplifiers, which
inevitably produce nonlinearities. These have to be studied together and not separately from the above
(linear) characteristics of the channel.

2.1.2 The FSO Channel

On the other hand, the FSO links use optical wavelengths and more specifically operate in the range be-
tween 0.68µm—1.55µm. In these wavelengths the atmospheric attenuation is strong and thus the maxi-
mum operational range of these systems is about five or six km, depending on the atmospheric conditions
between the transmitter and the receiver. Moreover, this communication link demands full line of sight
between the transmitter and the receiver of the point to point link. However, the FSO links can achieve
very high bandwidth, secure communications, with low interference and relatively low installation and
operational cost. Additionally, this technology does not need any license to establish a new link. Further-
more, the performance of the FSO links depends strongly on the atmospheric conditions in the area of
link. Thus, fog, strong rain and hail can mitigate its performance. Moreover, the atmospheric turbulence
conditions are decreasing the channel’s performance due to the scintillation effect which transforms the
optical static channel into a fading one.

The fading may vary in time, or in frequency and is modeling as a random process and can be
caused either due to the multiple propagation paths, either due to shadowing from obstacles either from
turbulence effect, mostly in very small wavelengths referring to optical links. Fading channels often, are
modeling the effects of electromagnetic wave transmission in the atmosphere and usually are modeling
as time-varying random process which affects the amplitude and the phase of the information signal.
The fading channel could follow either fast of slow fading statistics. The slow fading resulting when
the coherence time of the channel is relative to its delay constraint , [54, 55]. In this case the changes,
caused by the fading propagation path, in amplitude and phase of the information signal can, accurately
considered as constant for a period of use.

Many statistical models have been proposed in order to model accurately the fading effect. It is
obvious that their accuracy depends on the operational wavelength of the emulated wireless communi-
cation system, as well, the obstacles intruding inside the propagation path, the multipath selection, the
atmospheric conditions, the strength of the turbulence effect, etc. Thus, Rayleigh and the Rice are very
often using model, while the log normal, the Weibull, the Nakagami, the K, the I-K, the negative ex-
ponential and the gamma gamma distribution are providing accurately distribution model for specific,
realistic enough, setups [56, 57, 58, 59, 60, 61, 62]. As a result, optical amplifiers are necessary for
overcoming this decreasing. Therefore, their existence in the FSO link, adds nonlinearities at the whole
system’s performance evaluation.

2.2 Models for wireless channel nonlinearities

2.2.1 Volterra Models

Volterra series constitute a popular model for the description of nonlinear behaviour [73, 74]. A single-
input single-output (SISO) discrete–time Volterra model has the following form

y(n) =
∞∑
p=1

∞∑
τ1=−∞

· · ·
∞∑

τp=−∞
hp(τ1, . . . , τp)

[
p∏

i=1

x(n− τi)

]
. (2.1)
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Each output is formed by weighting the input shifted samples x(n− τi) and their products. The weights
hp(τ1, . . . , τp) constitute the Volterra kernels of order p. Well posed conditions ensuring that inputs give
rise to well defined outputs are given in [135, 136]. If only a finitely number of nonlinearities enters Eq.
(2.1), the resulting expression defines a finite Volterra system. Suppose the kernels of a finite Volterra
system are causal and absolutely summable. Then Eq. (2.1) defines a bounded input bounded output
(BIBO) stable system and can be approximated by the polynomial system

y(n) =

P∑
p=1

M∑
τ1=0

· · ·
M∑

τp=0

hp(τ1, . . . , τp)

[
p∏

i=1

x(n− τi)

]
. (2.2)

Eq. (2.2) is parametrized by the finite Volterra kernels and has finite memoryM . A more general result
established by Boyd and Chua [137, 136] states that any shift invariant causal BIBO stable system with
fading memory can be approximated by Eq. (2.2). The fading memory is a continuity property with
respect to a weighted norm which penalizes the remote past in the formation of the current output. The
reader may consult [137, 136, 135] for more details.

A key feature of Eq. (2.2) is that it is linear in the parameters. For estimation purposes it is useful
to write Eq. (2.2) in matrix form using Kronecker products [138]. Indeed, let x⃗(n) = [x(n), x(n −
1), · · · , x(n−M)]T and the pth-order Kronecker power

x⃗p(n) = x⃗⊗ · · · ⊗ x⃗︸ ︷︷ ︸
p times

, p = 2, . . . , P.

The Kronecker power contains all pth–order products of the input. Likewise h⃗ =
[⃗
h1(·), · · · , h⃗p(·)

]T is
obtained by treating the p–dimensional kernel as aMp column vector. We rewrite Eq. (2.2) as follows

y(n) =
[
x⃗T (n) · · · x⃗Tp (n)

]  h⃗1
...
h⃗p

 = x⃗T (n)⃗h. (2.3)

Collecting n successive output samples from the above equation into the vector y⃗(n) = [y(1), . . . , y(n)]
results in the following system of linear equations:

y⃗(n) = X⃗(n)⃗h

when
X⃗(n) =

[
x⃗T (1), . . . , x⃗T (n)

]T
.

From a practical viewpoint, Volterra models of order higher than three are rarely considered. This
is due to the fact that the number of parameters involved in the model of Eq. (2.2) grows exponentially as
a function of the memory size and the order of nonlinearity (#parameters:

∑P
p=1M

p). To cope with this
complexity several sub–families of Eq. (2.2) have been considered, most notable Wiener, Hammerstein
and Wiener–Hammerstein models. In all cases the universal approximation capability is lost.

AWiener system is the cascade of a linear filter followed by a static nonlinearity. If we approximate
the static nonlinearity with its Taylor expansion up to a certain order, we obtain the following expression
for the output of the Wiener system

y(n) =
P∑

p=1

[
M∑
τ=0

hp(τ)x(n− τ)

]p

. (2.4)

The Hammerstein system (or memory polynomial) is composed of a memoryless nonlinearity (a Taylor
approximation of the static nonlinearity is employed) followed by a linear filter, and has the following
form

y(n) =

P∑
p=1

M∑
τ=0

hp(τ)x
p(n− τ). (2.5)
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A Wiener–Hammerstein or sandwich model is composed of a memoryless nonlinearity sandwiched be-
tween two linear filters with impulse responses h(·) and g(·) and is defined as

y(n) =
P∑

p=1

M∑
τ1=0

· · ·
M∑

τp=0

Mhp+Mgp∑
k=0

gp(k)

p∏
l=1

hp(τl − k)x(n− τl). (2.6)

The above models have been employed in a wide range of applications including: satellite, telephone
channels, mobile cellular communications, wireless LAN devices, radio and TV stations, digital magnetic
systems and others [139, 73, 75, 140, 141].

2.2.2 Models for power clipping

The above Volterra-type approach provides a good description on the low-nonlinearity region of power
amplification. To describe the region where the amplification leads to clipping, i.e. to the cutoff of higher
power outputs, one needs to be able to model the larger output power regions. One way to do this it to
provide models for modulation of the output phase due to amplitude non-linearities, represented by am-
plitude modulation (AM) to phase modulation (PM) conversion (AM/PM) and the amplitude modulation
to amplitude modulation conversion (AM/AM) due to the nonlinearity. The first conversion refers to
the amount of undesired phase deviation that is caused by amplitude variations of the system while the
second one to undesired amplitude deviation [68]. A simple way to represent this behavior is given by
Saleh’s model. Specifically, the AM/AM distortion is given by the following equation [70]:

A(r) =
aAr

1 + bA|r|2
(2.7)

and the AM/PM distortion by the equation

P (r) =
aP r

1 + bP |r|2
(2.8)

where a and b are the parameters that characterize the behavior of the model and r(t) is the amplitude of
the input signal.

Other models that deal with strong nonlinearities are the following [72]:

Soft limiter. This model can approach the physical behavior of an amplifier in case of using a
suitable predistorter which will linearize the nonlinear element.

F [x] = min(|x|, A) (2.9)

Solid State Power amplifier.The relationship between input and output is given by

Fp[x] =
x[

1 +
(
|x|
A

)2p
] 1

2p

(2.10)

In this model there is a parameter,p , which controls the smoothness of the transition from the linear
region to the saturation region.

2.3 Linearly Mixed models

In MIMO systems the signals from the ni inputs interact with each other and the resulting mixture is
received at each output. If the path between each input and each output is modelled as a Volterra system,
then the rth output is expressed as follows

yr(n) =

P∑
p=1

ni∑
t=1

M∑
τ1=0

· · ·
M∑

τp=0

h(r,t)p (τ1, . . . , τp)

p∏
i=1

xt(n− τi) (2.11)
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where h(r,t)p (τ1, . . . , τp) is the pth–order Volterra kernel between the tth input and the rth output for all
t = 1, . . . , ni and r = 1, . . . , no. The above model does not allow product combinations along different
inputs. Instead each input is nonlinearly transformed and then all different inputs are linearly mixed.
Such a model can be considered as a parallel cascade of ni SIMO Volterra models.

We start by defining the tth input regressor vector as

x⃗(t)(n) = [x(t)(n), x(t)(n− 1), . . . , x(t)(n−M)]T

and thus the linearly mixed input vector is defined in the following compact way:

x⃗(n) = [x⃗
(1)
1 (n), x⃗

(1)
2 (n), . . . , x⃗(1)p (n), · · · , x⃗(ni)

1 (n), x⃗
(ni)
2 (n), . . . , x⃗(ni)

p (n)]T .

The total number of parameters of the above parallel cascade or linearly mixed model is

#parameters: ni

p∑
i=1

Mp

and is considerably reduced when compared to the general case.
The linearly mixed model finds application in nonlinear communications. Communication nonlin-

earities can be categorized into the following three types: transmitter nonlinearity (due to nonlinearity in
amplifiers), inherent physical channel nonlinearity, and receiver nonlinearity (e.g., due to nonlinear filter-
ing). The Power Amplifier (PA) (which is located at the transmitter) constitutes the main source of non-
linearity for several communication systems. In a system equipped with multiple transmit antennas, each
transmitter amplifies the signal. Amplifiers often operate near saturation to achieve power efficiency.
In those cases they introduce nolinearities which cause interference and reduce spectral efficiency. At
the receiver end, each antenna receives a linear superposition of all transmitted signals, as illustrated in
Fig. 2.1. It should be pointed out that the nonlinear effects are applied to each input signal individually
prior to mixing the transmitted signals. Finally, it should also be stressed that, since amplifiers typically
jointly amplify signals for different users, the interference caused through the non-linearities should also
be taken into account.

2.4 Nonlinear communication systems

MIMO communication systems equipped with multiple transmit and/or receive antennas are MIMO sys-
tems that help provide spatial diversity. Exploitation of spatial diversity results in higher capacity and
performance improvements in interference reduction, fading mitigation and spectral efficiency. Most of
existing MIMO schemes are limited to linear systems. However, in many cases, system nonlinearities are
present and possible remedies based on linear MIMO approximations degrade performance significantly.

In a communication system, there are often limited resources (power, frequency, and time slots)
which have to be efficiently shared by many users. Quite often in practice we encounter a situation
whereby the number of users exceeds the number of available frequency or time slots. In infrastruc-
ture–based networks, a base station or an access point is responsible for simultaneously sharing the re-
sources among the users, thereby reducing the access delays/transmission latency and improving qual-
ity–of–service (QoS). This is established through a variety ofmultiple access schemes. Two key multiple
access technologies suitable for higher data rates and performance are: orthogonal frequency–division
multiple access (OFDMA) and code–division multiple access (CDMA).

OFDMA is a popular multiple access method, for high–speed communications, whereby it dynam-
ically allocates resources both in frequency (by dividing the available bandwidth into a number of sub-
bands, called subcarriers) and in time (via OFDM symbols). The transmission assigns different users to
groups of orthogonal subcarriers and thus allows them to be spaced very close together with no overhead
as in frequency division multiple access. Furthermore it prevents interference between adjacent subcar-
riers. OFDMA has been implemented in several wireless communication standards (IEEE 802.11a/g/n
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Figure 2.1: An example of a parallel cascade MIMO Volterra channel

wireless local area networks (WLANs), IEEE 802.16e/m worldwide interoperability for microwave ac-
cess (WiMAX), Hiperlan II), high–bit–rate digital subscriber lines (HDSL), asymmetric digital subscriber
lines (ADSL), very high-speed digital subscriber lines (VHDSL), digital audio broadcasting (DAB), dig-
ital television and high-definition television (HDTV).

OFDMA is capable of mitigating intersymbol interference (ISI), due to multipath propagation)
using low–complexity/simple equalization structures. This is established by transforming the available
bandwidth into multiple orthogonal narrowband subcarriers, where each subcarrier is sufficiently narrow
to experience relatively flat fading. Nevertheless, OFDM is sensitive to synchronization issues and is
characterized by high peak–to–average–power–ratio (PAPR), caused by the sum of several symbols with
large power fluctuations. Such variations are problematic because practical communication systems are
peak powered limited. In addition, OFDM transceivers are also intrinsically sensitive to power ampli-
fier (PA) nonlinear distortion [143], which dissipates the highest amount of power. One way to avoid
nonlinear distortion is to operate the PA at the so–called “back–off” regime which results in low power
efficiency. The trade–off between power efficiency and linearity motivated the development of signal
processing tools that cope with MIMO–OFDM nonlinear distortion [144, 145, 143].

CDMA is based upon spread spectrum techniqueswhich have been used by themilitary for decades.
Spread spectrum techniques play an important role in third generation mobile systems (3G) and have
found application in IEEE 802.11b/g (WLAN), Bluetooth, and cordless telephony. In CDMA multiple
users share the same bandwidth at the same time through the use of (nearly) orthogonal spreading codes.
The whole process effectively spreads the bandwidth over a wide frequency range (using pseudo-random
code spreading or frequency hopping) several magnitudes higher than the original data rate.

Two critical factors that limit the performance of CDMA systems are interchip/intersymbol in-
terference (ICI/ISI), due to multipath propagation, mainly because they tend to destroy orthogonality
between user codes and thus prevent interference elimination. Suppression of the detrimental effects
of interference (ICI and ISI) get further complicated when nonlinear distortion is introduced due to
power amplifiers. The combined effects of ICI, ISI and nonlinearities are comprehensively examined
in [146, 144]. However, as recently illustrated in [147] the CDMA system model is sparse due to user
inactivity/uncertainty, timing offsets and multipath propagation. CDMA system performance can be ex-
pected to improve further if nonlinearities along with sparse ICI/ISI are revisited.



3 Research Issues for SWINCOM and
conclusions

The following research issueswill be addressed in the context of representation and estimation of non–linear
sources.

a. Development and estimation of sparse locally affine manifold models. As mentioned earlier,
CS involves linear and data-nonadaptive operators for compression and reconstruction. A recent
noteworthy effort to depart from the linear CS paradigm and develop linear-quadratic CS oper-
ators can be found under the term quadratic basis pursuit in [34]. However, this approach too
is data-nonadaptive, which means that the (de-) coding operators are “one-size-fits-all” random
matrices that satisfy generalized restricted isometry properties, but totally ignore the underlying
signal statistics. As a result, they cannot even come close to jpeg and mpeg standard (de-) coding
modules.
Our first approach toward nonlinear and data-adaptive (de-) coders will rely on the sparse (locally)
affine manifold models we alluded to in the previous subsection [40]. The framework will pursue
a two-pronged objective: (a) Based on {xn}Nn=1, the goal is to develop a sparsity-aware, outlier-
resilient estimate of the manifold M, and map it to a lower-dimensional space Rd (with d ≪
D) by robust sparse embeddings in the training phase; and (b) leverage this mapping during the
operational phase to “compress” x ∈ RD as y ∈ Rd at the Tx, and use the latter (or its noisy
version ŷ) to reconstruct an estimate x̂ of x at the Rx [40].
Wewill derive novel performance bounds to assess performance of these (locally) affine regression-
type and bilinear DL-type (de-)coders, both analytically and with thorough testing of simulated and
real image and audio data. We will further gauge performance of our novel schemes in cluster-
ing, classification, sampling, interpolation, extrapolation, and reconstruction even when the source
waveforms have missing samples.

b. Development and estimation of non–linear PCA filterbanks and joint design of PCA filter-
banks and quantizers. The second approach we will pursue is through nonlinear PCA filterbanks.
Those will build on our prior works on linear PCA-based filterbanks in [43]. The potential of this
approach is corroborated by the success we had in equalizing Volterra communication channels
in [21].
We will jointly design these nonlinear and data-adaptive dimensionality reduction steps with (vec-
tor) quantizers [23]. In addition to investigating novel quantizer designs, it will be important to
explore optimal reconstruction schemes from quantized vectors. Recent efforts to reconstructing
CS vectors using quantized data can be found in e.g., [7, 8, 26, 29, 30]. Reconstruction perfor-
mance from quantized measurements for DL and for the novel (de-)coders proposed here is an
uncharted territory, and thus a fertile ground for exciting research.

c. Estimation and compression of sparse discrete sources. New techniques will be developed for
the estimation and compression of sparse discrete sources. Rissanen tree sources, variable memory
Markov Chains and context tree maximization procedures will form the foundation of our proposed
development.

d. Approximations of non–linearMIMO systems with Universal approximation capability. The
aim is to develop finitely parametrizable structures that extend the single input models to multi
input multi output settings and poses a universal approximation capability. Furthermore, par-
simonious models will be identified, using sparsity considerations. These will include MIMO
Wiener–Hammerstein models.
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