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Advanced MIMO Techniques for

Future Wireless Communications

Multi-user multiple input multiple output (MU-MIMO) technologies exploit the spatial do-

main to serve multiple users on the same time-frequency resource, achieving unrivalled spectral

efficiencies. This thesis investigates and proposes novel signal processing-based solutions to

practical challenges associated with two MU-MIMO technologies that are expected to play a

key role in future wireless systems – massive MIMO and distributed MIMO cloud radio access

networks (C-RAN).

The first part of this thesis addresses the problem of peak-to-average-power ratio (PAPR)

reduction, for improving the operating power efficiency of the large number of power amplifiers

used in massive MIMO transmitters. It begins by using Bussgang’s theory to derive a statistical

signal model for the distortion introduced by conventional clipping-based PAPR reduction. This

model is then used to develop a practical and effective PAPR reduction scheme that uses spatial

filtering to eliminate the effects of clipping distortion from the signals received by the users,

and can incorporate active constellation extension for improved performance.

The remainder of the thesis focuses on lossy data compression for MIMO C-RAN – reducing

the quantity of signal data such that low capacity fronthaul connections can be used. For the

massive MIMO uplink, transform coding is shown to be effective at exploiting the inherent

sparsity in the received signals to achieve efficient data compression. This transform coding

approach is then adapted for distributed MIMO, using jointly optimised rate allocations to

account for correlations between the signals received at different remote receivers.

The final part of the thesis shows that distributed dimension reduction can be applied

to distributed MIMO to produce a reduced dimension MIMO system that preserves many of

the benefits provided by deploying a large number of antennas. Combined with simple scalar

quantization, this represents an efficient fronthaul data compression/reduction strategy for both

the distributed MIMO uplink and downlink.
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Chapter 1

Introduction

Just over a decade on from the release of the first smartphones in 2008, adoption in the UK

stands at over 80%, with the average user spending 2.5 hours a day using a smartphone [159]

and consuming 3.5 gigabytes of mobile data per month [160]. Over this period, global mobile

data traffic is estimated to have grown by a factor of 1000, and now accounts for over 10% of all

internet traffic [57], [58]. This growth in connectivity is not limited to Europe or North America –

the total number of mobile cellular subscriptions now exceeds the number of people on the planet

[137], with usage growing in all regions of the world. In the coming years demand for mobile

data is expected to continue to grow exponentially, with high definition video accounting for

an increasingly dominant proportion of traffic, and billions of additional ‘machine-to-machine’

connections massively increasing the number of connected devices [58].

In order to meet this increasing demand for mobile data services & connectivity, future

cellular & wireless systems must deliver a step change in performance. Along with providing

support for a broader range of devices and quality of service requirements, upcoming fifth gen-

eration networks are expected to provide 10, 20 and 100 fold increases in ubiquitous data rate,

peak data rate and area capacity, respectively, compared to fourth generation LTE networks

[189]. Whilst previous cellular systems have relied heavily on the use of increased transmission

bandwidth to improve data rates and capacity, the relative scarcity of high quality sub-6 GHz

spectrum available to fifth generation systems means that achieving these targets will require

spectral resources to be utilised much more efficiently. Furthermore, with growing concerns

around the energy consumption and environmental impact of cellular networks [83], fifth gen-

eration systems will be required to simultaneously deliver a 100 fold improvement in energy

efficiency [189].

1.1 Advanced Multi-User MIMO

In conventional cellular systems, base stations (BS) are broadly limited to serving a single user

within a given frequency band at any particular time instant, to avoid interference between

user transmissions. Multiple users are served by dividing up the available time and frequency

transmission slots, and the cell capacity and spectral efficiency are fundamentally limited by

the available transmit power, propagation conditions and interference from adjacent cells.

Multi-user MIMO (multiple input multiple output) is a physical layer technology that helps
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overcome these limitations by using an array of BS antennas and dedicated signal processing to

separate user transmissions in the spatial domain, enabling data transmission to or from multiple

users to be spatially multiplexed within the same time-frequency resource with minimal inter-

user interference. Using this space division multiple access (SDMA), cell sum capacities and

spectral efficiencies that scale linearly with the number of user data streams can be achieved

[200].

The core theory behind MU-MIMO has long been well understood [64], but, despite its

inclusion in previous-generation LTE standards, a range of practical challenges have meant that

the potential benefits of MU-MIMO have yet to be fully realised in commercial systems [117].

The past 10 years have seen significant developments in MU-MIMO technology. Research

demonstrating the benefits of deploying a very large number of antennas at the BS has gener-

ated a huge amount of interest in so-called massive MIMO, ushering in a new MIMO paradigm

[178]. These massive MIMO systems use the high spatial resolution provided by a large array

of antennas to tightly focus their radiation within the propagation environment, improving per-

formance and radiated energy efficiency whilst simultaneously providing a scalable architecture

for achieving the step change in capacity and spectral efficiency required by fifth generation

services.

Figure 1.1: Space division multiple access using massive MIMO.

Massive MIMO is now considered a key enabling technology for fifth generation and future

wireless systems [5]. However, along with many benefits and opportunities it also brings new

challenges, many related to the cost, complexity and power consumption of the hardware as-

sociated with deploying a large antenna array [113]. The research in Chapter 3 of this thesis

addresses one of these challenges: reducing the peak-to-average power ratio (PAPR) of the pre-

coded orthogonal frequency division multiplexing (OFDM) signals used in the massive MIMO

downlink, in order to reduce hardware cost & improve overall energy efficiency.

The increasingly popular cloud radio access network (C-RAN) architecture promises to un-

lock further enhancements in MU-MIMO technology. In this architecture, the signal processing

for multiple different antenna units, or remote radio heads, is performed centrally at a shared

central processor (CP), reducing the cost of network deployment and operation [2]. It also

opens the door for joint processing of the uplink and downlink signals for multiple remote radio
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heads, and a distributed MIMO system in which users are jointly served by multiple groups

of antennas distributed geographically across the service area – improving energy efficiency by

reducing propagation distances whilst providing resilience against signal blockage [86].

Figure 1.2: Space division multiple access using distributed MIMO C-RAN.

In the C-RAN architecture fronthaul connections are used to transfer data between the CP

and remote units. Whilst in some scenarios dedicated fibre connections may be used, deployment

costs mean that reduced capacity alternatives based on ethernet, shared fibre or wireless point-

to-point links are often preferred [98]. In these scenarios, the capacity of the fronthaul network

can limit the capacity and spectral efficiency of the distributed MIMO system. The research in

Chapters 4 & 5 of this thesis investigates two different data compression strategies for reducing

the amount of fronthaul signalling data and maximising MIMO C-RAN performance.

1.2 Research Principles

The research outlined in this thesis uses a combination of mathematical analysis and numerical

simulations to develop practical signal processing-based solutions to the massive MIMO PAPR

reduction and MIMO C-RAN fronthaul data compression problems. Throughout this work

an emphasis is placed on identifying robust, low complexity solutions that could feasibly be

implemented in practical systems.

Within the MIMO research literature the use of numerical optimisation techniques is ex-

tremely common, and can provide valuable insights & benchmarks. However, many of these

techniques are impractical (or impossible) to implement within the constraints of real time op-

eration. A conscious effort was therefore made to seek solutions that use linear processing and

simple closed form expressions where possible.

Development of the proposed solutions is guided by broad assumptions & principles, with

care taken to avoid overreliance on assumptions, e.g about the propagation environment, that

may not be fulfilled in practice. The early stages of the PhD involved participation in some of

the Bristol is Open massive MIMO testbed field trials [81]. Whilst implementing any of the final

proposed solutions on the testbed was outside of the scope of this work, witnessing first-hand
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some of the limitations of the assumptions & simplifications commonly used in the literature1

had a significant influence on shaping the approach taken in the PhD.

1.3 Thesis Structure & Key Contributions

This thesis has four main chapters – one background chapter and three research chapters:

Chapter 2 introduces the basic MU-MIMO concept in more detail, outlining the core underly-

ing theory and main signal processing operations. Particular attention is given to the material

required by subsequent research chapters: capacity equations, performance metrics, propaga-

tion models, and various useful mathematical expressions. The chapter ends by describing the

important features of the massive MIMO & distributed MIMO C-RAN architectures, with a

brief discussion of the main research challenges.

Chapter 3 addresses the problem of PAPR reduction for the massive MIMO downlink. Large

instantaneous power fluctuations are a long-standing issue with the OFDM waveform, and

increase the power amplifer peak power requirements whilst reducing its operating power ef-

ficiency. The precoded signals used on the massive MIMO downlink exacerbate this problem,

and hence effective PAPR reduction is required if high energy efficiency is to be achieved.

This chapter proposes a PAPR reduction scheme that adapts the conventional iterative

clipping & filtering scheme to include a novel least squares spatial filtering stage that eliminates

the effects of clipping noise from the received signals. The main contributions of Chapter 3 are:

• A statistical model based on Bussgang’s theorem that accurately statistically models the

signal distortion caused by applying clipping to the precoded MIMO signals.

• A novel clipping & spatial filtering PAPR reduction scheme that incorporates the Bussgang

clipping model and achieves 8 dB PAPR reduction whilst incurring less than 0.5 dB link

degradation.

• An adaptation of the proposed scheme that includes active constellation extension to

achieve an additional 1-2 dB of PAPR reduction when smaller symbol constellations are

used.

Section 3.1.1 summarises these contributions in more detail.

Chapter 4 addresses the problem of efficiently applying lossy data compression to the received

signals on the MU-MIMO C-RAN uplink. The quantity of sampled data produced by the

analogue to digital convertors (ADCs) in a remote receiver with multiple antennas can easily

exceed the available fronthaul capacity when connections based on ethernet, shared/low grade

fibre or wireless links are used. Lossy data compression must therefore be applied at each

receiver before the received signals can be transferred to the CP for processing. However, the

1For example, the asymptotic optimality of matched filter-based processing in massive MIMO is one of the
most widely re-used results from [133]; seeing its performance in real life provided a valuable lesson on the
practical limitations of asymptotic analysis.
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rudimentary data compression techniques currently used severely limit the achievable MIMO

performance when the capacity of the fronthaul network is limited.

This chapter investigates the use of transform coding for achieving efficient uplink signal

compression, giving particular attention to scenarios where the MIMO capacity is fundamentally

limited by the available fronthaul capacity. The main contributions of Chapter 4 are:

• An upper bound on the achievable sum capacity when the sampled signals from each an-

tenna are forwarded directly over fronthaul, demonstrating the need for more sophisticated

data compression.

• Showing that with a single MIMO receiver, transform coding can asymptotically achieve

the cut-set bound at high SNR – perfectly utilising the available fronthaul.

• A transform coding scheme for a single MIMO receiver that captures many of the fun-

damental benefits of massive MIMO, even when the overall MIMO capacity is physically

limited by the fronthaul capacity.

• A scalable transform coding scheme for distributed MIMO that uses jointly optimised rate

allocations to efficiently compress the received signals at different receivers.

• Adaptations of the proposed schemes to account for the use of imperfect CSI at the

receivers.

Section 4.1.1 summarises these contributions in more detail.

Chapter 5 investigates the use of distributed dimension reduction for efficient signal compres-

sion in distributed MIMO C-RAN systems with multi-antenna radio heads and a large overall

excess of BS antennas. Deploying a large excess of BS antennas in a distributed MIMO network

brings well established benefits, but also a proportionate increase in signalling data. Dimension

reduction techniques, which exploit sparsity in high dimensional signals to produce accurate

lower dimension representations, are a common feature of many data compression schemes,

but their explicit use for fronthaul data compression in distributed MIMO networks has not

previously been studied in detail.

This chapter investigates the use of distributed dimension reduction for reducing the dimen-

sionality of the fronthaul signal data on both the distributed MIMO uplink and downlink. The

main contributions of Chapter 5 are:

• Showing that distributed dimension reduction of the uplink signals can be achieved by

applying an optimised linear dimension reduction filter to the multi-antenna signal at each

remote receiver.

• Showing that the dimension reduction filters that maximise the joint mutual information

between the reduced dimension signals and the transmitted user symbols are a truncated

form of the conditional Karhunen-Loeve transform, found using a block coordinate ascent

procedure.

• Numerical results demonstrating that significant dimension reduction can be achieved

whilst preserving the key characteristics of the high dimension signals.
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• A second, low complexity dimension reduction scheme based on matched filtering that can

achieve efficient dimension reduction whilst also reducing the fronthaul data overheads

related to the transfer of CSI.

• Showing that at high SNR, the use of distributed dimension reduction followed by sim-

ple lossy scalar compression results in an uplink MIMO sum capacity that scales ap-

proximately linearly with the available fronthaul capacity, and inversely with the signal

dimension.

• Numerical results demonstrating that this dimension reduction-based uplink signal com-

pression can be a highly efficient fronthaul compression strategy.

• A ‘dual’ two-stage downlink precoding scheme in which an inner precoder at the CP

produces a set of low dimension signals which are quantized and transferred over fronthaul

to the remote transmitters, where they are beamformed using a larger number of antennas.

• A downlink max-min power allocation scheme that uses the user power allocations to

mitigate the impact of the quantization noise received by the users.

Section 5.1.1 summarises these contributions in more detail.

Chapter 6 provides a high level summary of the key findings of this work, and suggests some

directions for further investigation.

1.4 Publications

The following papers were published during the course of this PhD:

1. F. Wiffen, M. Z. Bocus, A. Doufexi and A. Nix, “Phase-Only OFDM Communication for

Downlink Massive MIMO Systems,” 2018 IEEE 87th Vehicular Technology Conference

(VTC Spring), Porto, 2018, pp. 1-5 [222].

2. F. Wiffen, L. Sayer, M. Z. Bocus, A. Doufexi and A. Nix, “Comparison of OTFS and

OFDM in Ray Launched sub-6 GHz and mmWave Line-of-Sight Mobility Channels,”

2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio

Communications (PIMRC), Bologna, 2018, pp. 73-79 [224].

3. F. Wiffen, M. Z. Bocus, A. Doufexi and A. Nix, “Distributed MIMO Uplink Capacity

Under Transform Coding Fronthaul Compression,” ICC 2019 - 2019 IEEE International

Conference on Communications (ICC), Shanghai, China, 2019, pp. 1-6 [223].

4. F. Wiffen, M. Z. Bocus, A. Doufexi and W. H. Chin, “MF-based Dimension Reduction

Signal Compression for Fronthaul-Constrained Distributed MIMO C-RAN,” 2020 IEEE

Wireless Communications and Networking Conference (WCNC), Seoul, Korea (South),

2020, pp. 1-8 [221].
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CHAPTER 1. INTRODUCTION

Papers 1, 3 & 4 correspond, respectively, to the topics discussed in Chapters 3, 4 & 5. However,

many of the key findings outlined in this thesis are currently unpublished, due to recent

progess and time constraints. It is hoped that the unpublished material from Chapters 3 & 4

could be published in 2 additional conference papers, and the material from Chapter 5 published

as a journal paper. This is discussed in more detail in Sections 3.1.2, 4.1.2 & 5.1.2

Entry 2 was also published under the funding provided for this PhD, but addresses a separate

wireless communications topic unrelated to MU-MIMO, and has been omitted from this thesis

for reasons of space and coherence.
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Chapter 2

Fundamentals of Multi-User MIMO

Communication

This chapter outlines the background theory, concepts, techniques and models that underpin

multi-user MIMO (MU-MIMO) technology – providing a basis for understanding the research

material contained in subsequent chapters.

The discussion begins by considering single antenna communication systems. A mathemat-

ical model for the linear time invariant wideband wireless channel is first given, before single

carrier and OFDM waveforms and the ideas of channel capacity and coding are introduced.

The wireless fading channel is then defined, and concepts of ergodic capacity, outage capacity

and diversity introduced.

These ideas are then extended to multi-antenna communication. The use of multiple an-

tennas at one side of a wireless link in SIMO and MISO systems to improve link reliability is

discussed. It is then shown that the use of multiple antennas at a base station enables multiple

users to be spatially multiplexed on the same time-frequency resource. Uplink and downlink

multi-user MIMO channels are defined, and the benefits to system capacity provided by spatial

multiplexing are shown.

The next section focuses on the MIMO signal processing techniques required to spatially

multiplex users, with particular attention given to linear detection and precoding methods,

which represent a practical and scalable solution for cellular systems.

Two simple channel models – ray-based and correlated Rayleigh fading – that capture spatial

characteristics of the MU-MIMO channel are then outlined. Channel estimation techniques for

obtaining the channel state information required for precoding and detection are discussed and

a model for assessing the impact of estimation errors on capacity is established. The use of

power control algorithms in cellular MU-MIMO systems is motivated, and appropriate schemes

outlined.

Finally, two advanced MU-MIMO architectures that are expected to play a significant role

in future cellular & wireless networks are introduced – massive MIMO & distributed MIMO.

The key features of these architectures are described and their benefits discussed, before some

outstanding areas of research are outlined – paving the way for the research provided in Chapters

3 to 5.
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CHAPTER 2. FUNDAMENTALS OF MU-MIMO

Whilst aiming to provide an introduction to important modern digital communication tech-

niques, the scope and length of discussion in this chapter is restricted to focus mainly on

those ideas used by later research material, and therefore some concepts relevant to the design

and analysis of wireless MIMO communications systems – for example space-time coding and

diversity-multiplexing trade-offs – are omitted, or given only a cursory survey.

2.1 Wireless Digital Communication

The fundamental aim of a digital communication system is the error-free transfer of a set of

binary information bits, bi, over a physical channel, subject to an appropriate set of quality

of service constraints, such as transmission rate or delay. The groundbreaking work of Claude

Shannon in his seminal Mathematical Theory of Communication provides a mathematical frame-

work for analysing the performance and limits of such systems, whilst providing crucial insights

into the architectures required to approach these limits [191].

Shannon showed that reliable communication can be achieved using a process called chan-

nel coding, where strings of information bits are mapped to appropriately chosen strings (or

codewords) of symbols, sn, which are transmitted into the channel. At the receiver, a reverse

decoding process is then used to estimate the information bits from the noisy or distorted sym-

bols at the channel output. Providing the coding system is properly designed and information

is transmitted at a rate not greater than the channel capacity, the original bits can be recovered

with an arbitrarily small probability of error.

In modern wireless digital communication systems, coded symbols are transmitted through

a wireless channel by first mapping them to a continuous time baseband signal, x(t), through

baseband modulation and digital-to-analogue conversion. The baseband signal is then upcon-

verted to an appropriate radio frequency, using an IQ modulator, after which it is amplified and

radiated by an antenna into the wireless channel. At the receiver, a second antenna is excited

by this electro-magnetic radiation, and the reverse process takes place, as shown in Figure 2.1.

Figure 2.1: Basic wireless communication system block diagram.

2.1.1 The Wireless Channel

The research in this thesis focuses on techniques that operate in the digital domain, and hence

it is necessary to develop an equivalent channel model that describes the relationship between

the sampled digital signals at transmitter and receiver.
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CHAPTER 2. FUNDAMENTALS OF MU-MIMO

Figure 2.2: Equivalent digital channel.

A static wireless channel with real valued RF transmit and receive signals xRF(t) ∈ R
and yRF(t) ∈ R is a noisy linear time invariant (LTI) system with passband impulse response

hRF(t) ∈ R,

yRF(t) = hRF(t) ∗ xRF(t) + ηRF(t) (2.1)

=

∫
hRF(τ)xRF(t− τ)dτ + ηRF(t),

where ηRF(t) is complex additive white Gaussian noise (AWGN) [174]. It can be shown that

the baseband input-output relation is also a (complex) noisy LTI system

y(t) = h(t) ∗ x(t) + η(t) (2.2)

=

∫
h(τ)x(t− τ)dτ + η(t),

with complex input signal x(t) ∈ C, received signal y(t) ∈ C, AWGN η(t) ∈ C and baseband

equivalent channel impulse response h(t) ∈ C – which captures the combined effect of the

passband wireless channel, up-/down-conversion, and all linear components, such as filters, on

the transmit and receive signal paths.

The continuous transmit signal is generated from a sequence of digital samples, x[n] ∈ C
with sample spacing Ts seconds, filtered with a transmit pulse1, gtx(t),

x(t) =
∑
n

∫
x[n]δ(t− nTs − τ)gtx

(
τ
)
dτ (2.3)

=
∑
n

x[n]gtx
(
t− nTs

)
. (2.4)

Similarly, at the receiver the continuous receive signal is filtered using a receive pulse, grx(t),

and sampled at time intervals nTs, to give digital receive signal

y[n] =

∫
grx(t′ − t)y(t′)dt′

∣∣∣∣∣
t=nTs

. (2.5)

The overall relationship between digital input and output signals can be described by an equiv-

1Pulse shaping is used to limit the spectrum of the signal, and is in practice often carried out digitally through
oversampling – this does not affect the overall equivalent channel expression.
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CHAPTER 2. FUNDAMENTALS OF MU-MIMO

alent digital impulse response, h[m] ∈ C,

y[n] =
∑
m

h[m]x[n−m] + η[n] (2.6)

= h[n] ∗ x[n] + η[n],

and equivalent noise η[n]. This impulse response captures the combined effect of the baseband

equivalent channel and transmit and receive filters

h[n] = h(t) ∗ grx(t) ∗ gtx(−t)
∣∣∣
t=nTs

, (2.7)

and the discrete time LTI transfer function fully describes the wireless channel as seen by

the digital communication system. The specific structure of the transfer function depends on

the propagation environment through which the signal passes. In practical wireless channels,

all propagation paths between transmitter and receiver have a finite physical length, and the

channel transfer function therefore has finite support, L,

h[n] =

h[n], n ∈ [0, L− 1]

0, else.
(2.8)

Channels with multiple non-zero entries (taps), L > 1, are called wideband. Most practical

high bandwidth communication systems operate in wideband channels, since they operate at

high sampling rates (small Ts) in multi-path propagation environments. When the channel has

a single tap (L = 1), it is called narrowband, and the transfer function reduces to a simple

multiplication

y[n] = h[0]x[n] + η[n]. (2.9)

2.1.2 Modulation

Digital communication requires a mapping from the transmission symbols, sn, to the output

samples, x[n]. A large number of digital modulation schemes exist that have been implemented

across a range of wireless technologies. European second generation cellular systems employ a

form of phase shift keying, which produced a signal with constant envelope that allowed for very

power efficient amplification [151]. American second generation and all third generation cellular

systems use direct sequence spread spectrum modulation methods, in which the symbols are

spread across a large signal bandwidth in order to capture additional transmission diversity

and increase reliability [67]. Fourth and fifth generation systems, as well as current WiFi

standards, have all adopted multi-carrier modulation schemes based on orthogonal frequency

division multiplexing (OFDM), due to its flexibility and high spectral efficiency [41].

This section first outlines simple single carrier modulation, before the operation of the

OFDM waveform, as well as simple single carrier modulation.
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Single Carrier

In simple single carrier modulation the symbols are directly mapped to output samples [55],

x[n] = sn, (2.10)

resulting in a received signal

y[n] =
L−1∑
m=0

h[m]sn−m + η[n]. (2.11)

In wideband channels each receive sample contains the transmit symbol corresponding to the

current sample index, plus a linear combination of the L− 1 previous transmit symbols. If the

taps h[1], . . . , h[L − 1] are significant an equaliser must be used to remove this inter-symbol

interference (ISI). The topic of equaliser design has received extensive research attention and a

large variety of architectures have been proposed – see e.g. [173], [213] & [55].

OFDM

Orthogonal frequency division multiplexing (OFDM) uses a cyclic prefix and pre- and post-

processing stages based on the discrete/fast Fourier transform (FFT) to convert the wideband

channel into a set of N parallel narrowband channels, over which the information symbols are

transmitted [246]. This eliminates ISI, and makes channel equalisation trivial.

At the transmitter, a block of N symbols are precoded using the inverse FFT

s[n] =
1√
N

N−1∑
l=0

sle
j2π ln

N . (2.12)

This multiplexes symbols by using each one to modulate an orthogonal complex sinusoidal

basis function, ej2π
ln
N . The composite signal contains N modulated subcarriers – OFDM is a

multicarrier modulation scheme.

An OFDM symbol of length N +Ncp samples is formed by appending a cyclic prefix to the

N multiplexed symbols,

x[n] =

s[n+N ], n ∈ [−Ncp,−1]

s[n] n ∈ [0, N − 1].
(2.13)

Providing the cyclic prefix is longer than the channel impulse response, Ncp ≥ L, this converts

the channel convolution into a cyclic convolution

y[n] = h[n] ∗ x[n] + η[n] (2.14)

= h[n] ~ s[n] + η[n]. (2.15)

At the receiver, the cyclic prefix is discarded and an FFT applied

yl =
1√
N

N−1∑
n=0

y[n]e−j2π
ln
N . (2.16)
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Since the FFT converts a discrete circular convolution into a set of multiplications, the received

signal on each subcarrier is

yl = hlsl + η, (2.17)

and each symbol is effectively passed through a separate narrowband channel with gain hl, given

by

hl =
1√
N

N−1∑
n=0

h[n]e−j2π
ln
N . (2.18)

A channel impulse response with L = 12 taps, and the associated subcarrier gains for OFDM

symbol length N = 128 are shown in Figure 2.3. The presence of multiple taps in the impulse

response causes deep ‘fades’ to occur on some subcarriers, e.g. subcarrier 10 in Figure 2.3. To

prevent high symbol error rates, efficient coding of information across blocks of subcarriers is

necessary [185], as discussed in Section 2.1.4.

Figure 2.3: Channel impulse response (top) and associated OFDM subcarrier gains with L = 12,
N = 128.

Since the FFT can be implemented very efficiently in hardware [241], OFDM is an attractive

way of reducing the complexity of symbol equalisation. The conversion of the wideband channel

into narrowband channels also simplifies analysis and makes OFDM a natural companion to

MIMO technology [201]. Orthogonal frequency division multiple access (OFDMA) – in which

different blocks of subcarriers are allocated to different users – is an efficient means of orthog-

onally multiplexing users [36], and a key component of fourth and upcoming fifth generation
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cellular systems. There are a number of other benefits to OFDM [97] – such as its spectral

properties and capacity achieving performance – that go beyond the scope of this discussion.

A drawback of OFDM is the overhead associated with transmitting the cyclic prefix, which

reduces the overall spectral efficiency by a factor N/(N+Ncp). This can be an issue in channels

with long impulse response (larger Ncp required), or when short OFDM symbols are used (small

N). Another important issue is the high peak-to-average power ratio (PAPR) of the OFDM

signal, which necessitates the use of expensive and inefficient linear power amplifiers [190].

Reduction of the PAPR of OFDM signals in MIMO systems is the focus of the research in

Chapter 3.

2.1.3 Channel Capacity

One of the landmark results from Shannon’s work on information theory was a means of calcu-

lating the maximum rate at which information can be transferred, error-free, through a commu-

nication channel [191]. He called this the capacity of the channel, C, and showed that it is given

by the mutual information between the receive signal and transmit symbols, I(y; s), maximised

over the transmit symbol distribution, ps(s),

C = max
ps(s)

I(y; s), (2.19)

where

I(y; s) = H(y)−H(y|s) (2.20)

= H(s)−H(s|y) (2.21)

with H(a) the entropy of the random variable, a, and H(a|b) the conditional entropy of a given

b [47].

For the narrowband AWGN single input single output (SISO) channel (also referred to as

the Gaussian channel),

y = hs+ η, (2.22)

with η ∼ CN (0, 1), this is given by

C = max
ps(s)

H(hs+ η)−H(η). (2.23)

Under a transmit power constraint, E[ss†] ≤ ρ, the capacity is maximised by setting ps(s) to a

circularly symmetric Gaussian distribution, s ∼ CN (0, ρ), giving

C = log2

(
1 + ρ|h|2

)
(2.24)

bits per channel use (bpcu).

Mapping strings of information bits, bi, to strings/codewords of transmit symbols drawn

randomly from a Gaussian distribution, sn ∼ CN
(
0, ρ), Shannon showed that this result holds

asymptotically as the codeword length approaches infinity, with C the average number of bits
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of information conveyed by each symbol.

Shannon’s random coding scheme is not practical to implement, but represents a useful

upper bound on the performance of all other coding schemes. Recent research has shown that

discrete signal constellations, such as quadrature amplitude modulation (QAM), when used in

conjunction with high performance error correcting codes, such as turbo [198], polar [157] or

low-density parity check (LDPC) [177] codes, can come close to achieving this bound under

finite coding block lengths, with practical computational complexity. Figure 2.4 shows that

QPSK signalling with an off-the-shelf 3/5 rate LDPC code, codeword length 64800 bits, can

achieve within 1 dB of the Shannon limit for the AWGN channel2.

Figure 2.4: Bit error rate performance of QPSK with 3/5 rate LDPC coding.

The analysis of the capacity of systems under Gaussian signalling is therefore widely prac-

tised, since it is a mathematically tractable means of analysing the performance of real systems.

All Gaussian scalar channels have a capacity of the form

C = log2(1 + SNR) (2.25)

where SNR is the receiver signal-to-noise ratio3 (SNR = ρ|h|2 for the AWGN channel). At high

2Optimised LDPC codes that come closer to the channel capacity have been demonstrated, e.g [179], [111].

3In this thesis, the term SNR is used to refer to either transmit SNR,
E[|s|2]

E[|η|2]
= ρ, or receive SNR,

E[|hs|2]

E[|η|2]
=

ρ|h|2. In many cases the two have a direct relationship; the distinction is made clear where important.
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SNR, when ρ|h|2 � 1, the capacity can be approximated

C ≈ log2 ρ+ log2

(
|h|2
)
, (2.26)

and it is seen that capacity increases logarithmically with transmit power and channel gain, as

shown in Figure 2.5.

Figure 2.5: AWGN channel capacity, |h|2 = 1.

Scalar Channel with Interference

The scalar channel with AWGN and additive interference, ϑ, is also frequently encountered in

communication analysis

y = hs+ η + ϑ. (2.27)

When the interference is Gaussian, ϑ ∼ CN (0, σ2
ϑ), the capacity is given by

C = log2

(
1 + SINR

)
(2.28)
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where SINR is the signal-to-noise-plus-interference ratio

SINR =
ρ|h|2

σ2
ϑ + 1

(2.29)

=
signal power

interference power + noise power
. (2.30)

Since Gaussian distributed interference represents a worst case interference [196], this is a lower

bound on capacity for any interference with power σ2
ϑ.

Throughput & Spectral Efficiency

The overall throughput of the channel is equal to the symbol rate, fs, multiplied by the average

number of bits per symbol, and can be upper bounded in terms of the channel capacity.

throughput = symbol rate× average bits per symbol (2.31)

≤ fs × C. (2.32)

The Shannon-Nyquist sampling theorem [192] states that the maximum symbol rate for a pass-

band channel with bandwidth B is

fs ≤ B. (2.33)

The spectral efficiency is the average number of bits transmitted per second per Hertz of band-

width,

SE =
throughput

bandwidth, B
bps/Hz, (2.34)

and a measurement of how efficiently a communication systems uses the available bandwidth.

As bandwidth becomes increasingly scarce, and therefore increasingly expensive for operators

to use, spectral efficiency is a key performance metric for all modern wireless communication

systems.

Substituting (2.31) and (2.33), the maximum spectral efficiency that can be achieved for a

given channel and system is

SE ≤ C bps/Hz (2.35)

Since modern communication systems may achieve performance close to this spectral efficiency,

the terms spectral efficiency and capacity are often used interchangeably. In practice, commu-

nication overheads, such as guard bands and control signals, mean that the actual information

rate is lower than this.

2.1.4 Fading Channels

For most propagation environments, the wireless channel consists of multiple reflected/diffracted

paths between transmitter and receiver, as illustrated in Figure 2.6.

In mobile environments, in which any of the receiver, transmitter or reflective objects within

the propagation environment are in motion, the number of paths, their strengths and their

delays change with time, and hence the wireless channel is a linear time variant system, with
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Figure 2.6: Wireless channel with direct and two reflected paths.

an impulse response that varies continuously with time, h(t, τ). However, for tractability, it is

often sufficient to treat the channel as fixed (invariant) over short time intervals – the block

fading model [212]. The coherence time is the length of time for which the channel impulse

response remains approximately fixed, or highly correlated.

Within the coherence period, the channel impulse response can be modelled (ignoring hard-

ware effects) as

h(t) =
∑
i

αiδ(t− τi)e−j2πfcτi (2.36)

where fc is the carrier frequency and αi and τi the gain and delay associated with propagation

path i. For OFDM modulation with subcarrier frequency spacing ∆f and ideal pulse shaping,

the channel gain on subcarrier n is

hn =
∑
i

αie
−j2πfcτie−j2πn∆fτi , (2.37)

varying with frequency, n∆f , as well as time [224]. When the spread of path delays is small

then the channel gain will tend to vary gradually with frequency, whereas when it is large it

will tend to vary more quickly [212]. Since the channel gains on adjacent subcarriers will tend

to be similar, they are often treated as being constant across a frequency band of certain size –

the coherence bandwidth.

If the coherence bandwidth of a channel covers Nf subcarriers, whilst the coherence time

allows for the transmission of Ns OFDM symbols, Nf × Ns data symbols can be transmitted

within a coherence block, each experiencing (approximately) the same channel gain.
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Rayleigh Fading

Since fc is typically large (∼ GHz), small displacements of the transmitter or receiver (∼ cm)

are sufficient to cause large phase changes for each transmission path, whilst their gains remain

effectively constant. Therefore, (2.37) may be modelled as a random variable

h =
∑
i

αie
jθi (2.38)

where the phases of the paths are uniformly distributed and independent, θi ∼ U(0, 2π). At

some positions, the multipath components will interfere constructively, and the channel gain

become large, whilst at others they will destructively interfere and the channel gain will be

small. According to the central limit theorem [75], when a large number of paths with similar

gain exist, the channel gain may be modelled as a circularly symmetric complex normal random

variable

h ∼ CN (0, β) (2.39)

with an envelope that follows the Rayleigh distribution

|h| ∼ Rayleigh(
√
β/2) (2.40)

where β is the average received signal strength

β = E
[
|h|2
]

=
∑
i

|αi|2. (2.41)

This Rayleigh fading channel model is widely used since it captures the dynamics of fading

well and is analytically tractable – often enabling insightful closed form expressions to be found

[144]. In scenarios where the underpinning assumptions do not hold, for example where there

is a dominant (such as a line-of-sight) propagation path, fading models based on the Rician or

Nakagami distributions may provide a better fit.

Pathloss Model

For modelling purposes, a value for β can be obtained using a distance dependent pathloss

model. In the literature a variety of pathloss models have been proposed based on empirical

measurement campaigns. A commonly used model, and the one used here in later chapters, is

the log-distance path loss model [214]

β = 147.5 +GT +GR − 20 log10(fc)− 10γ log10(d) + Ψ (dB) (2.42)

where

• GT and GR are the gains of transmit and receive antennas in decibels.

• d is the distance between transmitter and receiver, in metres.

• γ is the pathloss exponent, typically in the range γ ∈ [2, 5].
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• Ψ is a normally distributed term, Ψ ∈ N (0, σ2
Ψ), representing shadow fading due to, for

example, blockage.

The parameters γ and σ2
Ψ depend on the type of propagation environment, and can be chosen

as appropriate from empirical studies reported in the literature.

Slow Fading & Outage

Slow fading occurs when the coherence block size is large compared to the block of coded

transmit symbols – for example in a channel that changes slowly. The data is then transmitted

through a channel with capacity

C = log2

(
1 + ρ|h|2

)
, (2.43)

where h is a single random fading channel gain realisation. Since the channel is constantly

changing, the transmitter may not have knowledge of the instantaneous channel capacity, only

the statistics of h, in which case it cannot choose a data transmission rate that it can guarantee

will be decoded error-free. The outage probability, pout(C?), is the likelihood that the channel

cannot support a target transmission rate C? [212],

pout(C?) = Pr
[
C < C?

]
, (2.44)

and is a measure of the reliability of a communication system. Similarly, the ε-outage capacity,

Cε, is the maximum transmission rate that has outage probability of less than ε,

Cε = max
C?

[
C? : pout(C?) ≤ ε

]
. (2.45)

At high SNR, the outage probability of the Rayleigh channel scales approximately inversely

with SNR,

pout(C?) ∼
1

ρ
. (2.46)

Diversity

To reduce the outage probability, signal diversity can be employed. In a system with diversity,

each data symbol is transmitted over multiple fading channels, with the received signals jointly

used for symbol detection. If the channels fade independently, then the probability of all the

channel gains being small, and the system going into outage, is reduced.

For a system with a diversity gain of d, the outage probability scales like

pout(C?) ∼ ρ−d (2.47)

at high SNR [124], as shown in Figure 2.7.

This can be achieved using repeated transmission of each symbol in d different coherence

blocks – for example different time slots or different frequencies (time/frequency diversity). How-

ever, this repetition coding strategy comes at the cost of reduced overall achievable throughput,

since the symbol transmission rate must be decreased by a factor of 1/d.
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Figure 2.7: Outage probability for Rayleigh channel with different diversity levels, C? = 1 bpcu.

Coding of data across subcarriers with OFDM [185] – frequency diversity – is a more efficient

means of exploiting signal diversity, and is commonly used in many current wireless systems.

The use of multiple antennas to exploit spatial diversity is another attractive technique, since it

enables a diversity gain within a single time-frequency coherence block, by transmitting and/or

receiving symbols with multiple antennas simultaneously.

Fast Fading

When the coherence block size is small compared to the length of data transmission, the channel

can be said to experience fast fading [212], and each transmission of a block of coded symbols

spans a number of coherence intervals. This can occur in systems with high mobility or wide-

band systems employing OFDM. An important result from information theory says that as the

number of coherence blocks spanned by transmission tends to infinity, an error free constant

information rate of

C = E
[
C
]

(2.48)

= E
[

log2

(
1 + ρ|h|2

)]
(2.49)

can be achieved with appropriate symbol coding [70]. This is referred to as the ergodic capacity

of the channel. According to Jensen’s inequality [135], for the SISO channel the ergodic capacity
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is upper bounded by the capacity of the SISO channel with average channel gain

C ≤ log2

(
1 + ρE

[
|h|2
])
. (2.50)

Figure 2.8 shows the ergodic and 10%-outage capacity of the Rayleigh fading channel with

β = 1.

Figure 2.8: SISO channel capacity.

2.2 From SISO to MU-MIMO

The logarithmic scaling of capacity with transmit power limits the spectral efficiency that can be

practically achieved in single input single output (SISO) wireless systems. The use of multiple

antennas to enable multiple data streams to be multiplexed within a single channel use can

overcome this limitation in capacity scaling, as well as providing improving link reliability by

providing additional diversity.

This section introduces multi-user multiple input multiple output (MU-MIMO) technology,

in which a base station equipped with multiple antennas serves multiple users on the same

time-frequency resource – a technique also known as space division multiple access (SDMA).

The use of a multiple antenna BS to serve a single user is first considered, and shown

to increase the link SNR whilst providing a diversity gain. This is then extended to a full

MU-MIMO system and analysed in terms of uplink and downlink operation. Sum capacity
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expressions are then derived which show that spatial multiplexing increases the sum spectral

efficiency (SSE) by a factor of approximately K compared to SISO systems.

2.2.1 SIMO & MISO

Before studying the MU-MIMO channel it is instructive to first consider the SIMO (single input

multiple output) and MISO (multiple input single output) channels, which are characterised by

the use of multiple receive and transmit antennas, respectively.

SIMO

In a single input multiple output (SIMO) system, transmissions from a single transmit antenna

are received simultaneously by M receive antennas, as shown in Figure 2.9.

Figure 2.9: SIMO system with M = 3.

The received signal at receiver m is given by

ym[n] = hm[n] ∗ x[n] + ηm[n], (2.51)

where x[n] ∈ C is the transmit signal and ym[n] the signal received at antenna m after passing

through a wideband propagation channel hm[n] ∈ C, as defined in Section 2.1.1.

The full received vector can be compactly written as a vector convolution
y1[n]

...

yM [n]

 =


h1[n]

...

hM [n]

 ∗ x[n] +


η1[n]

...

ηM [n]

 (2.52)

or

y[n] = h[n] ∗ x[n] + η[n]. (2.53)
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If OFDM modulation is used, this set of M convolutions is transformed into a set of parallel

vector multiplications

y[n] = h[n] ∗ xcp[n] + η[n] (2.54)

=⇒ yl = hlxl + ηl, (2.55)

This transformation can significantly reduce signal processing complexity, and hence OFDM is

a natural companion to SIMO, and other multiple antenna technologies [201].

The capacity of the SIMO narrowband channel,

y = hx+ η (2.56)

is given, similarly to (2.19), by

CSIMO = max
px(x)

I(y;x) (2.57)

= max
px(x)

H(hx+ η)−H(η). (2.58)

Assuming independent noise with unit variance4, η ∼ CN (0, IM ), capacity is again maximised

by Gaussian signalling [212], x ∼ CN (0, ρ),

CSIMO = log2

(
1 + ρ‖h‖2

)
(2.59)

= log2

(
1 + ρ

M∑
m=1

|hm|2
)
. (2.60)

This capacity is achieved by applying a matched filter (MF) [187] at the receiver

ỹ = h†y (2.61)

= ‖h‖2x+ h†η (2.62)

to produce a scalar channel, as in Section 2.19, with channel gain ‖h‖2 and receive SNR ρ‖h‖2.

The receive matched filter is also known as maximum ratio combining (MRC) [24]. Full knowl-

edge of the channel realisation h is not required at the transmitter to achieve this capacity.

Under channel fading, the outage probability and ergodic capacity are defined as (2.44) &

(2.48). Providing the receive antennas are sufficiently spaced, the channel impulse responses

and hence signals received at each antenna will differ (see Section 2.4.1). When the elements of

h are independently Rayleigh fading, a diversity gain of M is achieved. Furthermore, since

E
[
‖h‖2

]
= M × E

[
|hm|2

]
, (2.63)

a received SNR gain, or array gain, of M is also achieved relative to SISO communication. This

is illustrated in the capacity CDF in Figure 2.10, with the array gain producing an increase in

the mean capacity whilst the diversity gain reduces capacity variations.

4This may be enforced by appropriate application of a whitening transform to y.
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Figure 2.10: CDF of SIMO channel capacity, ρ = 10 dB

MISO

Reversing the roles of transmit and receive antennas, so that multiple antennas now – co-

operatively – transmit to a single receive antenna, as shown in Figure 2.11, results in the

multiple input single output channel (MISO), the dual of the SIMO channel.

The narrowband MISO channel is given by

y = hTx + η, (2.64)

where

x =
[
x1; . . . xM

]
(2.65)

are the transmit symbols at each antenna and

h =
[
h1; . . . hM

]
(2.66)

the respective narrowband channel gains.

Assuming the channel realisation, h, is known to the transmitter, the capacity-maximising

transmit signal is found by precoding a data symbol, s ∼ CN (0, ρ), using the matched filter,

x =
h∗

‖h‖
s, (2.67)
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Figure 2.11: MISO system with M = 3.

where the denominator ensures a total power constraint, ρ, is met. This is also known as

maximum ratio transmission (MRT). As with the receive matched filter, MRT results in a

scalar channel,

y =
‖h‖2

‖h‖
s+ η, (2.68)

with SNR = ρ‖h‖2 and capacity

CMISO = log2

(
1 + ρ‖h‖2

)
(2.69)

= log2

(
1 + ρ

M∑
m=1

|hm|2
)
. (2.70)

Under the same total transmit power constraint, the capacity of the SIMO and MISO channels

with transmitter channel knowledge are identical. This is in fact a result from the more gen-

eral theory of uplink-downlink duality – a useful tool for relating the capacities of uplink and

downlink dual channels [218].

In reality, obtaining the CSI at the transmitter required for data precoding is non-trivial,

as discussed in Section 2.4.2. When CSI is not available a space time code can instead be used

to achieve a diversity gain. For example, when M = 2, the well known Alamouti scheme also

achieves a diversity gain of d = 2 without requiring channel knowledge at the transmitter, but

does not achieve an array gain [3].

2.2.2 MU-MIMO

SIMO and MISO technology can be implemented on the uplink and downlink of a cellular

system, respectively, by employing multiple antennas at the base station and a single antenna

at the user. Whilst improving link reliability through diversity, the logarithmic scaling of

capacity with transmit power means the sum capacity improvements achieved by SIMO/MISO
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systems are modest. The simultaneous transmission, or spatial multiplexing, of multiple user

data streams offers a means of overcoming these capacity limitations in multi-antenna systems.

Uplink

On the multi-user multiple input multiple output (MU-MIMO) uplink with K single antenna

users simultaneously transmitting, the received signal at the BS is the superposition of K SIMO

channels,

yUL =
K∑
k=1

√
pkh

UL
k xUL

k + η (2.71)

where hUL
k and xUL

k are the channel vector and transmit symbol for user k, respectively, with

user power control coefficients, pk, introduced. This is illustrated in Figure 2.12 for two users.

Figure 2.12: MU-MIMO system with M = 3 and K = 2.

It is often convenient to write (2.71) in matrix form

yUL = HULP1/2xUL + η, (2.72)

where

HUL =
[
hUL

1 . . . hUL
K

]
, (2.73)

xUL =
[
xUL

1 . . . xUL
K

]
, (2.74)

and

P = diag(p1, . . . , pK
)
. (2.75)

The received signal, yUL, contains received transmissions from all K users, and the BS must

apply multi-user detection to estimate each user transmit symbol and decode its message. In

a cellular environment, the spatial separation of different users means that the channel vectors

can generally be assumed to vary independently, and hence it is reasonable to assume that any

set of K ≤M user vectors are linearly independent [212]. The received signals (2.71) & (2.72)
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therefore constitute a linear set of equations with M observations in K unknowns, and so for

K ≤M it is possible for the BS to estimate each xUL
k .

Downlink

Similarly, the MU-MIMO downlink can be thought of as a set of K MISO channels, where user

k receives the BS transmit vector, xDL, passed through its downlink channel, hDL
k ,

yDL
k = (hDL

k )TxDL + η (2.76)

In this case, the transmit vector must be chosen, or precoded, at the BS such that each user

receives its desired stream of data, with minimal interference from the other streams. Writing

the (2.76) in matrix form,

yDL = HDLxDL + η, (2.77)

gives a matrix with K known values, and M variables. Again, providing M ≥ K, an xDL can be

found to give the desired signal at the users. This precoding requires the BS to have knowledge

of the downlink channel matrix HDL.

When the uplink and downlink channels between each antenna pair are the same, the channel

is called reciprocal, and

hDL
k = hUL

k (2.78)

HDL =
(
HUL

)T
. (2.79)

This occurs when uplink and downlink transmissions take place within the same time-frequency

coherence block, such as in time division duplex (TDD) systems, and has the benefit that

channel state information can be obtained on the uplink and re-used for downlink precoding

[134].

For ease of notation, from here on in the UL & DL channel superscripts are omitted, with

transmission direction becoming clear from context.

2.2.3 Channel Capacity

The key benefit of MU-MIMO is its ability to achieve high system throughputs and sum spec-

tral efficiencies through the spatial multiplexing of multiple users on the same time frequency

resource. Capacity analysis of MIMO systems gives a valuable insight into the throughput gains

that can be achieved by modern communication systems operating close to Shannon limits.

MU-MIMO Uplink

The sum capacity of the MU-MIMO uplink is

CUL
SUM = max

px(x)
I(y; x) (2.80)

= max
px(x)

H(y)−H(y|x). (2.81)
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Assuming the symbols transmitted by each user are independent with E[xx†] = ρIK , the optimal

symbol distribution is Gaussian [212], xk ∼ CN (0, ρ), giving

CUL
SUM = log2 det

(
IM + ρHPH†

)
(2.82)

= log2 det
(
IM +

K∑
k=1

ρkhkh
†
k

)
, (2.83)

where ρk = ρ × pk represents the total transmit power for user k. From here on in all MIMO

capacity expressions provided assume the use of Gaussian symbols.

Using the eigendecomposition,

HPH† = UΛU†, (2.84)

where U ∈ CM×M is a unitary matrix of eigenvectors and Λ ∈ CM×M a diagonal matrix

containing the ordered real-valued eigenvalues, λi, of which K are non-zero, the capacity may

be written [208] as a sum of K SISO ‘eigenchannels’

CUL
SUM =

K∑
i=1

log2

(
1 + ρλi

)
. (2.85)

At high SNR (all ρλi � 1) this is approximately

CUL
SUM ≈ K log2 ρ+

K∑
i=1

log2 λi, (2.86)

and the overall capacity increases with K log2 ρ, K times that achieved by the SISO or SIMO

channel. The MU-MIMO system is therefore said to achieve a spatial multiplexing gain of K.

Increasing the number of users (whilst ensuringM ≥ K)5 therefore allows significant throughput

and sum spectral efficiency gains to be achieved, as illustrated in Figure 2.13.

The capacity is a function of the distribution of the channel eigenvalues. For a given received

power,

PR = Tr
(
ρHPH†

)
(2.87)

= ρ

K∑
i=1

λi, (2.88)

the maximum sum capacity is achieved when all channel eigenvalues are equal [178]. This occurs

when the user channel vectors are mutually orthogonal, and the received power for each user is

the same,

hTk hj = 0, ∀k, j (2.89)

pk‖hk‖2 = pj‖hj‖2 ∀k, j. (2.90)

5Strictly, the condition M ≥ K is not necessary for reliable transmission of K user data streams, but is
necessary to achieve a multiplexing gain of K. The MU-MIMO channel with M < K is classed as degraded, and
unavoidably results in the capacity of some user data streams being limited by inter-user interference.
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Figure 2.13: MU-MIMO sum capacity under i.i.d Rayleigh fading, ρk = P/K, M = 8

The worst sum capacity is achieved when only a single eigenvalue is non-zero (implying rank(H) =

1). This occurs when all channel vectors are parallel,

hk ‖ hj ∀k, j, (2.91)

in which case spatial multiplexing cannot be achieved. In practical cellular propagation envi-

ronments, the spatial separation of users will tend to ensure linear independence of the hk and

therefore that K distinct non-zero eigenvalues exist. A larger spread of these eigenvalues corre-

sponds to a reduced MIMO channel capacity. A useful figure of merit is the channel condition

number [212],

κ =
λmax

λmin
, (2.92)

where λmax and λmin are the maximum and minimum λi, respectively. Under i.i.d Rayleigh

fading the channel condition improves (reduces) as M/K increases, as shown in Figure 2.14.

The sum capacity can be achieved by MMSE symbol detection with successive interference

cancellation (MMSE-SIC, see Section 2.3.3), and defines the total achievable throughput of the

MIMO channel [216]. The set of achievable user capacities then depends on the order in which

the user symbols are detected and cancelled. In practice, for systems with many users the

computational complexity of MMSE-SIC is prohibitive, and linear detection methods are often

favoured, as discussed in Section 2.3.1.
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Figure 2.14: MIMO channel condition under i.i.d Rayleigh fading, M = 8.

MU-MIMO Downlink

An important and useful result from the theory of uplink-downlink duality is that the sum

capacity of the downlink Gaussian MU-MIMO channel is identical to that of an equivalent

uplink channel [218],

CDL
SUM = log2 det

(
IM +

K∑
k=1

ρkhkh
†
k

)
(2.93)

where ρk is the downlink power allocated to user data stream k. Under a total transmit power

constraint, PT =
∑

k ρk, sum capacity can be maximised by appropriate allocation of the ρk.

Because of this duality, many conclusions about the behaviour of the uplink channel can be

directly applied to the downlink channel.

A further result from uplink-downlink duality shows that the set of individual user capacities

that can be achieved on the downlink, under a total transmit power constraint, are identical to

those that can be achieved on the uplink dual channel using successive interference cancellation

[218]. These downlink capacities are achieved by precoding using a combination of linear beam-

forming and ‘dirty paper coding’ (DPC) – wherein each user stream is coded to account for

the interference generated by the other user data streams [200]. The complexity of implement-

ing optimal DPC is often prohibitive in practical systems and linear beamforming methods, as

discussed in the following section, are therefore often employed instead.
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2.3 MU-MIMO Processing

The key signal processing tasks in a MU-MIMO system are the multi-user detection and pre-

coding required to separate user data streams. Whilst the use of MMSE-SIC detection and

DPC precoding achieve the maximum uplink and downlink MU-MIMO channel capacities, they

are often impractical to implement when the number of users is large. The tasks of designing

practical detection and precoding techniques have both achieved extensive research attention in

the literature [238]. Here, particular attention is given to linear techniques that have complexity

that scales well to large system, and are known to perform well when the channel matrix is well

conditioned [178].

The discussion begins with linear detection methods, which are then extended to the down-

link through uplink-downlink duality. A brief overview of alternative non-linear processing

techniques, which can improve performance, is given at the end.

2.3.1 Linear Detection

With linear detection, each user symbol is estimated linearly before being individually decoded.

The linear estimator takes the form

x̂k = αkw
T
k y (2.94)

where wk is the receive combining, or beamforming, vector for user k, and αk a scalar that

ensures correct output scaling by minimising E[|xk − x̂k|2]. The resulting estimates contain a

combination of the desired signal, the unwanted/interfering signals and noise

x̂k = αk
(√
pkw

T
k hkxk +

∑
j 6=k

√
pjw

T
k hjxj + wT

k η
)

(2.95)

= Signal + Interference + Noise, (2.96)

and following the reasoning in Section 2.1.3 the capacity for user k under linear detection is

therefore

CUL
k = I(x̂k;xk) (2.97)

= log2

(
1 + SINRUL

k

)
(2.98)

where

SINRUL
k =

ρk|wT
k hk|2∑

j 6=k ρj |wT
k hj |2 + ‖wk‖2

. (2.99)

The total capacity achievable under linear detection is the sum of the K user capacities

CUL
LINEAR =

K∑
k=1

CUL
k . (2.100)

Note that the scaling αk does not affect the estimate SINR or channel capacity, and therefore

can be omitted from further analysis (but must be included when performing signal detection).
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The linear estimation process can then be compactly written in matrix form

x̂ = WULy (2.101)

where

WUL =


wT

1
...

wT
K

 . (2.102)

Linear detection methods benefit from low complexity of detection – requiring only M scalar

complex multiplications per user symbol. The computational complexity associated with calcu-

lating the detection vectors is higher, but since these can be re-used within a coherence block,

the overall computational overheads are manageable for practical coherence block sizes.

Three widely studied linear detection methods are now outlined - the optimal linear min-

imum mean square estimation scheme, zero-forcing – which performs well at high SNR, and

matched filtering – which performs well at low SNR.

Minimum Mean Square Error

The minimum mean square error (MMSE) estimator estimates each user symbol from y by

treating the other interfering users as noise, and amongst all linear estimators achieves the

highest user SINR. The MMSE receive combining vector is given by

w(MMSE)

k = arg min
w

E
[
|wTy − xk|2

]
= R−1

y rxky

=
(
IM +

∑
j 6=k

ρjhjh
†
j

)−1
h∗kρk.

(2.103)

Users capacities can be calculated from the SINRs given by (2.99). An alternative derivation

exploits an underlying relationship between MMSE estimation and mutual information [212],

CUL
k = I(x̂k;xk)

= I(y;xk)

= H(y)−H(y|xk)

= H
( K∑
j=1

√
pjhjxj + η

)
−H

(∑
j 6=k

√
pjhjxj + η

)
= log2

(
1 + ρkh

†
k

(
IM +

∑
j 6=k

ρjhjh
†
j

)−1
hk
)
.

(2.104)

The second line in (2.104) follows since MMSE estimation, uniquely, is information lossless with

respect to xk. To reduce computational complexity, the K MMSE estimation vectors can be

calculated simultaneously using

W(MMSE) = P−1/2
(
H†H + ρ−1P−1

)−1
H†, (2.105)
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which requires a single K×K matrix inversion rather than K separate M×M matrix inversions.

Similarly, the SINR can be written [138]

SINR(MMSE)

k =
1[(

IK + ρP1/2H†HP1/2
)−1
]
k,k

− 1. (2.106)

Zero Forcing

The zero forcing (ZF) estimator minimises the estimate noise whilst eliminating all inter-user

interference, i.e.

w(ZF)

k = arg min
w
‖w‖2

subject to wThj = δj,k,
(2.107)

where

δj,k =

1, j = k

0, j 6= k
(2.108)

The ZF vectors are most concisely expressed in matrix form as the Moore-Penrose pseudo-inverse

W(ZF) =
(
H†H

)−1
H†. (2.109)

This is also known as channel inversion, since

W(ZF)H = IK . (2.110)

The symbol estimate produced by ZF contains only receiver noise

x̂k = xk + w(ZF)T
k η, (2.111)

and has SINR

SINR(ZF)

k =
ρk

‖w(ZF)

k ‖2
. (2.112)

The term ‖w(ZF)

k ‖2 is sometimes called the noise amplification factor,

‖w(ZF)

k ‖2 =
[(

H†H
)−1
]
k,k

(2.113)

and its value reflects how ‘difficult’ it is to eliminate inter-user interference from a given user

stream.

Matched Filter

The matched filter from Section 2.2.1,

w(MF)

k = h∗k, (2.114)

or

W(MF) = H†, (2.115)
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maximises signal to noise ratio (minimises noise amplification), without accounting for inter-user

interference. The SINR of stream k under matched filtering is

SINR(MF)

k =
ρk‖hk‖2∑

j 6=k
ρj
|h†khj |

2

‖hk‖2
+ 1

. (2.116)

Since MF detection does not attempt to reduce inter-user interference it generally performs

poorly in multi-user scenarios. However, at low SNR, where noise dominates over interference,

MF detection is close to optimal.

Performance Comparison

The MMSE detector is the optimal linear detector in that it optimally balances inter-user

interference against noise amplification. Despite this, it does not generally fully achieve the

sum capacity of the uplink channel as given in (2.80), since – unlike the MMSE-SIC detector –

estimation and detection is performed independently for each user symbol.

Using (2.106) and a method similar to [87] it is straightforward to show that the individual

user capacities under MMSE detection are bounded according to the channel eigenvalues

log2(1 + ρλmin) ≤ C(MMSE)

k ≤ log2(1 + ρλmax). (2.117)

When the channel condition number, κ, approaches 1 these bounds converge and MMSE detec-

tion comes close to achieving the full channel sum capacity. A second, tighter, upper bound on

per-user capacity is the single-user bound,

C(MMSE)

k ≤ log2(1 + ρk‖hk‖2), (2.118)

which is the capacity of the SIMO channel where only user k transmits.

Comparing (2.109) to (2.105) it can be seen that for high ρ

W(ZF) ≈ P1/2W(MMSE), (2.119)

and ZF detection and MMSE detection become equivalent (up to a scaling factor). On the

other hand, comparing (2.115) to (2.105) it can be seen that for low ρ,

ρW(MF) ≈ P−1/2W(MMSE), (2.120)

MF detection is approximately optimal.

Under i.i.d Rayleigh fading, both MMSE and ZF detection give a diversity gain of (M−K+1)

per user stream [88], compared to M for the SIMO channel. This loss in diversity is due to a

sacrifice of degrees of freedom when reducing/eliminating inter-user interference. Under linear

detection an excess of BS antennas are therefore required (M > K) to achieve a multi-antenna

diversity gain for the receivers. The trade-off between multiplexing and diversity in multiple

antenna channels is an important aspect of algorithm design and analysis [211], but a detailed
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Figure 2.15: MIMO capacity under linear detection with i.i.d Rayleigh fading, top: M = 8,K =
4, bottom: M = 8,K = 8

study of it is outside the scope of this work.

Figure 2.15 compares the total capacity achieved under the different detection strategies.

When M = 8,K = 4 linear methods come close to achieving the full capacity, whilst for

M = 8,K = 8 the poor channel condition means that they perform poorly compared to optimal

MMSE-SIC detection.

2.3.2 Linear Precoding

Under linear precoding, the transmit signal is a linear combination of the user symbols, where

each symbol is weighted with a beamforming vector, wk,

x =
K∑
k=1

wk

‖wk‖
√
pksk (2.121)

with normalisation to ensure that PT = E[‖x‖2] =
∑K

k=1 ρk. The received signal at user k again

consists of signal, interference and noise,

yk =
hTkwk

‖wk‖
√
pksk +

∑
j 6=k

hTkwj

‖wj‖
√
pjsj + ηk, (2.122)

and therefore has capacity

CDL
k = log2

(
1 + SINRDL

k

)
, (2.123)
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where

SINRDL
k =

ρk|hTkwk|2∑
j 6=k

ρj |hTkwj |2
‖wk‖2

‖wj‖2
+ ‖wk‖2

. (2.124)

The precoding can be written in matrix form

x = WDLP1/2s, (2.125)

where

WDL =
[
w1 . . . wK

]
, (2.126)

and

P = diag
( pk
‖wk‖2

)
. (2.127)

At the users, a scaling factor is applied for optimal scaling before detection [102],

ŝk = αkyk. (2.128)

Uplink-Downlink Duality

An important and remarkable result from uplink-duality [218] says that under a total transmit

power,
∑K

k=1 ρ
DL
k =

∑K
j=1 ρ

UL
j , the same user SINRs can be achieved on both the uplink and

downlink,

SINRDL
k = SINRUL

k ∀k, (2.129)

using the same beamforming vectors

wDL
k = wUL

k ∀k, (2.130)

and a different set of power allocations

ρDL
k 6= ρUL

k (2.131)

Any linear precoding design can therefore be recast and analysed as a dual virtual linear detec-

tion problem with

WDL =
(
WUL

)T
. (2.132)

For reciprocal channels, this may also enable receive beamforming vectors to be re-used on both

uplink and downlink, although since an uplink system will typically operate under per-user

power constraints, ρk ≤ P , whilst the downlink may operate under a total power constraint,∑
k ρk ≤ PT , the optimal (LMMSE) beamforming vectors will differ between the uplink and

downlink.
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Simplified Uplink Channel & Downlink Precoding Model

For ease of analysis, it is convenient to remove the uplink user power scaling matrix by absorbing

it into the channel matrix,

yUL = HULxUL + η (2.133)

where

HUL =
[√

p1h
UL
1 . . .

√
pKhUL

K

]
. (2.134)

Similarly, it is convenient to absorb the power control factors into the beamforming vectors,

wk, reducing the downlink precoding model to

xDL = WDLs, (2.135)

with SINR,

SINRDL
k =

ρk|hTkwk|2∑
j 6=k

ρj |hTkwj |2 + 1
. (2.136)

This model simplifies notation, and is used throughout this thesis.

2.3.3 Non-Linear Methods

The optimal MMSE-SIC and DPC methods, and other non-linear methods that approximate

their performance, can offer potential performance improvements over linear methods.

MMSE-SIC & V-BLAST

The capacity-achieving MMSE-SIC detector has a structure that follows directly from the chain

rule of mutual information [216],

CUL
SUM = I(x; y) (2.137)

= I(x1; y) + I(x2; y|x1) (2.138)

+ I(x3; y|x1, x2) +
K∑
k=4

I(xk; y|x1, . . . , xk−1).

The first term in (2.137) is simply the mutual information captured by the MMSE estimate of

x1 from y. The second term is then the mutual information captured by the MMSE estimate

of x2 from y when x1 is known, the third the MMSE estimate with x1 and x2 known, and so

on. Optimal detection can therefore be achieved by first finding the MMSE estimate of x1 and

decoding the first data stream. If x1 is encoded at a rate less than

CMMSE−SIC

1 = log2

(
1 + ρ1h

†
1

(
IM +

K∑
k=2

ρkhkh
†
k

)−1
h1

)
, (2.139)

it can be decoded error free. The interference generated by x1 is then subtracted from the

received signal, and x2 is estimated. Since this estimate contains no interference from user 1,
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x2 may encoded at a higher rate than under MMSE detection. The capacity of user k is

CMMSE−SIC

k = log2

(
1 + ρkh

†
k

(
IM +

K∑
j=k+1

ρjhjh
†
j

)−1
hk
)

(2.140)

> log2

(
1 + ρkh

†
k

(
IM +

K∑
j 6=k

ρjhjh
†
j

)−1
hk
)
, (2.141)

with symbol estimate k given by

x̂k = wT
k yk (2.142)

where

w(SIC)

k =
(
IM +

K∑
j=k+1

ρjhjh
†
j

)−1
hkρ

−1
k (2.143)

and

yk = y −
k−1∑
j=1

√
pjhjh

†
jxj . (2.144)

Clearly the numbering of the users, which is arbitrary, determines the order of cancellation and

therefore the user capacities. The K! potential user orderings and power allocations ρk define

this region of achievable user transmission rates.

The MMSE-SIC detector relies on each user stream being fully decoded before subsequent

streams can be detected. Since long coding blocks are required for optimal performance, this

can introduce latency and increase data buffering requirements.

A practical alternative is to make hard symbol decoding decisions based on individual symbol

estimates, without applying error correction decoding, and use these symbols to cancel the

interference. This is the basis of the revolutionary V-BLAST (Vertical Bell Laboratories Layered

Space-Time) experimental system [228], a key early demonstrator of the potential of MIMO

systems.

The V-BLAST scheme is a variant of the decision feedback equaliser used in time domain

equalisation systems [68], and can suffer from the same error-propagation issues, where errors

in the hard decisions propagate and cause errors in subsequently decoded streams. At high

SNR the performance of V-BLAST is therefore limited by the first user symbol that is detected,

which has diversity order d = M−K+1 under i.i.d Rayleigh fading (the same as linear MMSE).

Error-propagation can be minimised by optimising the cancellation order, so that symbols with

lower probability of error (higher SINR) are cancelled first [125]. Whilst the use of optimal

cancellation ordering does not improve the diversity order, it can significantly improve bit error

rate by providing an effective SINR gain [240].

Maximum Likelihood Estimation & Sphere Decoding

In practical wireless systems using symbols drawn from discrete lattice alphabets, such as QAM,

symbol estimation is performed over a discrete search space, and optimal detection becomes

more challenging [85].

For a single channel use, the maximum likelihood symbol estimate is found by minimising,
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over the set of discrete candidate symbol vectors, x ∈ A, the Euclidean distance between the

received signal and the candidate transmitted vector

x̂ = arg min
x∈A

‖y −Hx‖2. (2.145)

For coded transmission over multiple channel uses this can be modified to produce soft proba-

bility outputs for use in error correction decoding. Under i.i.d Rayleigh fading, ML detection

achieves the maximum diversity order of d = M [215] – which can represent a significant im-

provement over linear MMSE detection when the number of receive antennas is comparable to

the number of users. Unfortunately, for user constellation size 2b there are |A| = 2bK candidate

solutions to test, and the computational complexity of ML estimation increases exponentially

with the number of users.

Sphere decoding decreases the complexity of ML estimation by limiting the search to those

candidate symbols that fall within a sphere of certain radius around the received signal, x ∈ Ã,

x̂ = arg min
x∈Ã

‖y −Hx‖2. (2.146)

This can reduce the expected complexity to be polynomial, and often roughly cubic in the

codeword size [85].

Figure 2.16 compares the bit error rate achieved under linear (MMSE) and non-linear

(MMSE V-BLAST, sphere decoding) detection in two i.i.d Rayleigh channels. The sphere

decoder is implemented using Matlab’s Communications Toolbox [209]. In the first case (M =

8,K = 2), there is a significant excess of receive antennas and the benefits from using non-

linear detection are small. Increasing the number of users to K = 6 degrades the performance

of MMSE detection, and non-linear detection becomes more beneficial. The use of optimised

cancellation ordering greatly improves the performance of V-BLAST, with sphere decoding

giving the best performance.

Dirty Paper Coding & Non-Linear Precoding

On the downlink, the optimal precoding method is based on the landmark dirty paper coding

result from Costas, which showed that the capacity of a channel with receiver interference known

to the transmitter is identical to the channel capacity without interference [45]. Successive

linear beamforming and dirty paper coding of user symbols, where preceding and subsequent

user symbols are treated as known and unknown interference respectively, provides a theoretical

precoder structure capable of achieving the sum capacity of the MU-MIMO downlink channel,

and is a direct downlink dual of MMSE-SIC detection [218].

Practical sub-optimal DPC-style precoders based on linear beamforming with Tomlinson-

Harashima precoding have been applied to MU-MIMO systems with discrete signal constella-

tions and can offer performance gains over linear precoding [225], and linear beamforming with

a vector peturbation of the user symbols can achieve near-optimal performance whilst only

requiring a simple additional modulo operation at the receivers [89].
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Figure 2.16: Bit error rate of QPSK modulation with MMSE, MMSE V-BLAST (random &
optimised cancellation orders) and sphere decoding in i.i.d Rayleigh channels, top: M = 8,K =
2, bottom: M = 8,K = 6
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2.4 MU-MIMO Channels

As seen above, the performance of an MU-MIMO system under fading depends on the statistical

distributions of the user channel vectors. For the purpose of theoretical analysis the entries

of the channel vectors are generally modelled as independent variables following a Rayleigh

distribution, and assumed to be perfectly known to the user and base station. This allows for

easy comparison of different systems and algorithms, and often enables insightful closed form

expressions to be obtained [144] – increasingly through the use of random matrix theory [46].

However, in accurately modelling practical MIMO systems these assumptions often fail on both

counts – the channel entries being neither independently Rayleigh fading nor perfectly known.

This section discusses the importance of accounting for correlated fading in evaluating MIMO

system performance, and outlines simple ray-based and correlated Rayleigh fading models for

doing so. Channel estimation is then discussed, and a method for analysing the impact of

imperfect CSI on uplink and downlink capacity introduced. Finally, power control methods for

combatting large scale fading are outlined.

2.4.1 Correlated Fading Channel Models

The use of i.i.d Rayleigh fading is based on the reasoning provided in Section 2.1.4, with the

additional assumption that the channel coefficients for each antenna fade independently. Phys-

ically, this implies that the signals transmitted by the user arrive at the base station uniformly

from all directions [15], and assumes the use of physically unrealisable isotropic antennas [178].

This is a reasonable approximation for indoor environments with rich multipath scattering, but

is not valid in larger outdoor settings where propagation is often strongly directional due to

the physical layout of the propagation environment. Measurement results show that real life

capacities can differ significantly to those predicted by independent fading [38].

When fading is instead correlated across antennas, system performance is affected. For

example, there is an increase in the likelihood that when one antenna experiences a deep fade

others also do and hence the effective diversity gain is reduced [171]. Similarly, eliminating inter-

user interference becomes more challenging for closely spaced users when cell geometry means

that their channels are highly correlated [106]. The evaluation of communications systems and

algorithm performance under correlated fading is thus necessary to gain a full picture.

Research into MIMO channel models that more accurately capture the spatial characteris-

tics of both indoor and outdoor wireless environments scenarios has been extensive – see, for

example, [43] for a thorough survey. A detailed discussion or comparison of these models is well

beyond the scope and purpose of this thesis. Instead, a simple ray-based channel model is out-

lined that captures spatial characteristics of the channel. This is then extended to a correlated

Rayleigh fading model. Using channels captured with a ray tracing tool, these channel models

are used later to evaluate algorithm performance.

Deterministic Ray-based Channel

The deterministic path based propagation model in Section 2.1.4 is readily extended to account

for spatial dependencies in the channel by assuming that user transmissions arrive at the BS
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antenna array with a plane wavefront [15]. This effectively assumes that the same propagation

paths exist between each user and BS antenna, with the spacing of the BS antennas meaning

the time delays of the paths vary between antennas. This is a reasonable modelling assumption

whenever the user and reflective clusters in the environment are far enough away from the

BS that they lie in the far-field region of the array. This is illustrated in Figure 2.17 for a

1-dimensional array.

Figure 2.17: Two planewaves incident on four-element 1-dimensional array.

The channel vector for user k is then given by

hk =
∑
i

αk,ia(θk,i, φk,i) (2.147)

where αk,i is a complex coefficient describing the propagation path to the reference BS antenna,

θk,i and φk,i are the azimuth and elevation angles of arrival of the path, and a(θk,i, φk,i) is a

steering vector of the form,

a(θk,i, θk,i) =
[
ejΩ1(θk,i,θk,i) . . . ejΩM (θk,i,θk,i)

]T
(2.148)

where Ωm(θk, φk) is a phase shift at antenna m with respect to the path to the reference antenna,

caused by the differing time delays [15]. Under this model, when a single strongly dominant

path exists between a user and the array the channel coefficients for each antenna vary only by

a phase shift.

Reciprocity of electromagnetic propagation means that this model is equally valid on the

downlink where transmissions are from the BS to the user.
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Correlated Rayleigh Fading Channel

As in Section 2.1.4, the deterministic model above can be extended to a random fading model

by treating the complex coefficients αk,i as random variables. For multipath components with

distinct angles of arrival, the αk,i follow a circular uniform distribution, and can be modelled as

varying independently. In propagation environments with clusters of components arriving from

the same angle of arrival, it can be more appropriate to treat the αk,i as independent Rayleigh

fading variables [15].

Assuming all of the paths (or path clusters) have similar power, by the central limit theorem

the channel can modelled by correlated Rayleigh fading,

hk ∼ CN
(
0,Rk

)
(2.149)

where Rk is the channel covariance for user k,

Rk = E
[
hkh

†
k

]
(2.150)

=
∑
i

E
[
|αk,i|2

]
a(θk,i, φk,i)a(θk,i, φk,i)

†. (2.151)

This is a generalised Rayleigh fading model for which independent fading is a specific case

(Rk = IM ), requiring at least M multipath components to exist. This model assumes that the

channels are wide-sense stationary – the multipath structure stays the same over time. Thus

it is valid if the users only undergo small displacements, but not when the users undergo large

displacements such that the multipath strengths and angles of arrivals change.

The diagonal elements of the covariance matrix represent the large scale fading (average

channel strength)

[
Rk

]
m,m

= βk (2.152)

=
∑
i

E
[
|αk,i|2

]
. (2.153)

Channel covariance matrices can be constructed by generating random arrival paths according

to a statistical angle of arrival model, and normalising according to a chosen pathloss model.

Accurate modelling of the angle of arrival models is very involved [145], but a model based

on a Laplacian distributed angular spread in the azimuth direction [167] and delta distributed

elevation (i.e no spread) has been shown to be reasonable, with azimuth spreads of ∼ 10◦

(standard deviation) representative of urban propagation environments [144].

2.4.2 Channel Estimation

All of the processing methods outlined in Section 2.3 require explicit knowledge of the user

channel vectors. In practice this channel state information (CSI) cannot be known a priori and

must be estimated from measurements of signals received through the channel.

A popular method of estimating the channel is through the transmission of pilot sequences,

known to both transmitter and receiver. This section outlines a basic LMMSE channel estima-
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tion scheme that uses uplink pilots and prior knowledge of the channel statistics to estimate

the channel.

Uplink Pilot-based LMMSE Channel Estimation

Under uplink channel estimation each user transmits a pilot sequence of Ns predefined symbols,

ϕk ∈ CNs within a single coherence block, where ‖ϕk‖2 = Ns. Assuming pilot SNR ρCSI, the

received sequence of symbols, Y ∈ CM×Ns , is given by

Y =
√
ρCSI

K∑
k=1

√
pkhkϕ

†
k + N (2.154)

with receiver noise [N]i,j ∼ CN (0, 1). At the receiver, a statistic tk is then formed for each user

by correlating the received symbols with the appropriate pilot sequence,

tk =
1√
Ns

Yϕk

=
√
ρCSI

√
pkhk +

√
ρCSI

Ns

∑
j 6=k

√
pjhjϕ

†
jϕk + η.

(2.155)

For the case of orthogonal pilots (ϕ†jϕk = Nsδj,k) this reduces to

tk =
√
ρCSI

√
pkhk + η. (2.156)

The use of orthogonal pilots requires Ns ≥ K, and thus increasing the number of users increases

the transmission overhead associated with channel estimation.

The channel vector can then be estimated from the statistic. Linear minimum mean square

error (LMMSE) channel estimation requires knowledge of only the first and second order statis-

tics of the user channel vectors, and represents an attractive means of estimating the channel

when these statistics are available. For the case of correlated Rayleigh fading it is also the

optimal estimation method. Assuming E
[
hk
]

= 0, the LMMSE estimate is given by

ĥk =
1

√
ρCSI

√
pk

Rk

(
Rk +

1

ρCSIpk
IM

)−1
tk. (2.157)

This results in an estimate of the form

ĥk = hk − ek, (2.158)

where ek is the estimation error, which has covariance

Ck = E
[
eke
†
k

]
=
(
R−1
k + ρCSIpkIM

)−1
,

(2.159)

and, by the orthogonality principle, is uncorrelated with the channel estimate

E
[
ĥke

†
k

]
= 0. (2.160)
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LMMSE channel estimation requires knowledge of the channel covariance matrices at the base

station, and in practice these must themselves be estimated – exploiting the fact that the

channel covariance matrices stays fixed across multiple coherence blocks when the multipath

structure stays the same [15]. Alternatively, channel estimation methods that do not require

channel statistics may be used, such as least squares estimation,

ĥk =
tk√

ρCSI

√
pk
, (2.161)

but these result in more channel estimation error.

In principle, a similar scheme can be employed using downlink pilots to estimate the downlink

channels at the users. However, since this downlink CSI is required at the BS, these channel

estimates must then be fed back to the BS. Furthermore, the required length of the downlink

pilot sequences grows with the number of BS antennas, and can become prohibitive for MIMO

systems operating with a large number of BS antennas. Research attention has therefore been

given to CSI quantization and approximation schemes to reduce the overheads associated with

downlink channel estimation, e.g. [40].

When uplink and downlink transmission occurs within the same frequency channel – as

in time division duplex (TDD) systems – CSI feedback can be avoided by exploiting channel

reciprocity. Using the fact that the uplink and downlink propagation channel are identical

within a coherence block, channels measured on the uplink can then be used for downlink

precoding (after appropriate calibration to account for hardware different in the transmit and

receive chains affecting the channel response), reducing overheads.

The treatment of imperfect CSI throughout this thesis assumes that LMMSE channel esti-

mation is used, with channel reciprocity exploited for downlink CSI.

Uplink Channel Capacity with Imperfect CSI

The channel capacities given in Sections 2.2.3 & 2.3 only apply in the case where perfect

channel state information is available. If the channel estimates used for data detection and

precoding have errors then performance will be reduced. In general, full characterisation of the

MIMO channel capacity under imperfect CSI remains an open problem. However, a useful and

achievable lower bound is obtained for correlated Rayleigh fading channels, hk ∼ CN (0,Rk),

by assuming that the signal through the unknown channel component, ek, is treated as noise

[84].

On the uplink, the received signal may be decomposed into parts received through the known

and unknown channel

y =

K∑
k=1

ĥk
√
pkxk +

K∑
k=1

ek
√
pkxk + η (2.162)

= ĤP1/2x + EP1/2x + η. (2.163)

The component through the unknown channel and the receiver noise may then be combined
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into an equivalent noise term, ν =
∑K

k=1 ek
√
pkxk + η, giving

y =

K∑
k=1

√
pkĥkxk + ν. (2.164)

Since the realisation of ek is unknown, for a given channel estimate the statistics of this equiva-

lent noise are unknown. However, over possible channel estimates ek can be treated as a random

variable with variance,

EE

[
νν†

]
= Ω (2.165)

= IM +

K∑
k=1

ρkCk, (2.166)

where EE[.] is the expectation with respect to both transmit symbols and channel estimation

error realisations. From the orthogonality principle, (2.160), this equivalent noise is uncorrelated

with the received signal. With the receiver treating the channel estimation error as equivalent

noise, it is shown in [84] that for Rayleigh fading channels the expected capacity is given by

CSUM = EE

[
log2 det

(
IK + ρP1/2Ĥ†Ω−1ĤP1/2

)]
(2.167)

where the expectation is with respect to the channel estimates. Since both the received signal

and the equivalent noise terms increase with user power, the capacity is upper bounded by

CSUM < EE

[
log2 det

(
IK + P1/2Ĥ†

( K∑
k=1

pkCk

)−1
ĤP1/2

)]
, (2.168)

which is tight at high SNR (ρ → ∞). At high transmit SNR capacity can therefore only be

increased by increasing the SNR of the channel estimates – for example by increasing the SNR

of the uplink pilots.

To aid future analysis it is useful to define an equivalent ‘whitened’ channel

Ȟ = Ω−1/2Ĥ, (2.169)

so that (2.167) becomes simply

CSUM = EE

[
log2 det

(
IK + ρP1/2Ȟ†ȞP1/2

)]
. (2.170)

This can be thought of as the result of applying a whitening transform to the received signal,

y̌ = Ω−1/2y (2.171)

= ȞP1/2x + ν̌ (2.172)

where E
[
ν̌ν̌†

]
= IM , a weighting that favours the signal ‘directions’ that (on average) contain
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lower amount of channel estimation error. Whitened channel vectors may also be defined

ȟk = Ω−1/2hk. (2.173)

Under linear detection the estimate of user symbol k is,

x̂k = wT
k y (2.174)

=
√
pkw

T
k ĥkxk + wT

k

(∑
j 6=k

√
pjxĥjxj +

K∑
j=1

√
pjejxj + η

)
. (2.175)

By the same reasoning as above, the expected user capacity can be written [15]

Ck = EE

[
log2

(
1 + SINRUL

k

)]
(2.176)

with effective SINR

SINRUL
k =

ρk|wT
k ĥk|2∑

j 6=k ρj |wT
k ĥj |2 + wT

k Ωw∗k
. (2.177)

The estimator that minimises mean square error with respect to noise and random channel

estimation error is given by [1]

W(MMSE) = P−1/2
(
Ȟ†Ȟ + ρ−1P−1

)−1
Ȟ†Ω−1/2. (2.178)

Figure 2.18 shows the mean sum capacity bound under both optimal and linear detection with

varying CSI quality (defined by the pilot strengths, ρCSI), in the i.i.d Rayleigh channel.

Downlink Channel Capacity

On the downlink, the received signal at user k is

yk = ĥTk x + eTk x + η. (2.179)

Assuming linear precoding is used,

yk =

K∑
j=1

ĥTkwjsj + θk + η, (2.180)

where θk is the component through the unknown channel

θk =

K∑
j=1

eTkwjsj , (2.181)
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Figure 2.18: Uplink channel capacity with varying quality of CSI, M = 8,K = 4. Solid lines:
optimal detection, dotted lines: MMSE detection.

with

Eek

[
θ∗kθk

]
=

K∑
j=1

ρw†jE
[
e∗ke

T
k

]
wj

=

K∑
j=1

ρwT
j Ckw

∗
j .

(2.182)

This results in an effective downlink SINR

SINRDL
k =

ρ|ĥTkwk|2

ρ
∑
j 6=k
|ĥTkwj |2 + ρ

K∑
j=1

wT
j Ckw

∗
j + 1

. (2.183)

2.4.3 Power Control

The distribution of users within the propagation environment means that the proper application

of power control is necessary to achieve good performance. In its simplest form, power control

counteracts the pathloss between users and BS to ensure a signal of appropriate strength is

received for each user. More advanced power control schemes may allocate user power levels

to meet specific quality of service targets, noting the dependencies of sum & user capacities on

power control coefficients above.

A large variety of cellular power control algorithms have been studied, operating with dif-

fering targets and constraints [37]. Here two power control schemes employed in the research

are given – average received power control and max-min power control.
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Average Received Power

The simplest form of cellular power control acts to mitigate the varying pathloss between the

BS and user to achieve a target average received power level. On the uplink, for example, when

the channels from user k to each BS antenna have the same large scale fading,

pkE
[
‖hk‖2

]
= pkβkM. (2.184)

Since the power control coefficients depend only on large scaling fading (pathloss), they are

invariant to small scale fading across time and frequency, and can be kept constant across

multiple coherence blocks, and therefore need not be frequently updated.

In much of the literature power control is performed so that each channel has an average

gain of 1,

pk =
1

βk
. (2.185)

The SNR parameter ρ used as a variable parameter when analysis how performance varies with

transmit power. This method is employed for uplink transmission in the work in this thesis.

Max-Min Power Control

More sophisticated methods modify the power control based on instantaneous CSI towards a

specific performance target. Such methods may be used for downlink transmission, where CSI

is available at the BS. Max-min power control maximises the minimum of the K user SINRs,

subject to a total transmit power constraint. It is straightforward to show that under max-min

power control, the SINR of all users is equal [135], and thus this power control method ensures

a ‘fair’ distribution of power between users.

The downlink max-min power control optimisation is

maximise
ρj∀j

min
k

SINRk

subject to

K∑
k=1

ρk ≤ PT .
(2.186)

Often the SINR can be written in the form

SINRk =
ρk

ak +
∑K

j=1 bk,jρj
, (2.187)

e.g. (2.124) & (2.183), and the optimisation can be reformulated as a convex problem and

efficiently solved. The convex problem is

minimise
ρj∀j

ψ

subject to tk ≤ ψ
K∑
j=1

ρj ≤ PT .

(2.188)
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Figure 2.19: Distribution of downlink user capacities under average and max-min power control,
ZF beamforming, M = 8,K = 4, PT = 10 dB, i.i.d Rayleigh fading.

where ψ is a dummy variable and tk a posynomial

tk =
1

SINRk

= akρ
−1
k +

K∑
j=1

bk,jρjρ
−1
k .

(2.189)

This can then be solved using geometric programming [135]. Uplink-downlink duality [218]

can then be exploited to update the beamforming vectors under the new power allocations,

repeating iteratively to find the optimal pairings.

When ZF beamforming is used – which is optimal at high transmit power – the transmit

signal under max-min power control is simply given by,

x = γW(ZF)s, (2.190)

where

γ =
1∥∥W(ZF)
∥∥
√
PT

ρ
. (2.191)

Figure 2.19 illustrates the difference between the two power control schemes, showing the

distribution of downlink user capacities under ZF beamforming in the i.i.d Rayleigh fading

channel with M = 8,K = 4. With average power control, power is allocated to each user

stream based only on large scale fading (which here is equal for all users), whereas with max-

min power control, the power is allocated such that each user experiences the same capacity.

Under max-min power control a tighter range of capacities are seen – the worst user capacities

are improved at the expense of the best user capacities. A related power control scheme finds

51



CHAPTER 2. FUNDAMENTALS OF MU-MIMO

the power allocations required to achieve target user SINRs [176], but is outside the scope of

this work.

2.5 Advanced MU-MIMO Architectures

Whilst the potential benefits of MU-MIMO technology have been well known since the 1990s,

they have yet to be properly realised in cellular systems. Despite its inclusion in fourth (LTE)

generation cellular standards, the technique was not widely implemented due to limitations

imposed by the standards, stemming from some key practical challenges:

• the need for full downlink CSI at the BS for downlink precoding. European & North

American LTE implementations operate using frequency divison duplex (FDD), where

downlink and uplink transmission occur in different frequency bands, and downlink CSI

must therefore be estimated using downlink pilots and fed back to the BS before trans-

mission occurs (cf. Section 2.4.2). Early LTE standard releases opted to instead use

rudimentary codebook-based precoding, where the precoding matrices are selected from

a set of fixed candidates (rather than calculated from CSI), at the cost of poor perfor-

mance [122]. Later LTE-Advanced releases exploit full downlink CSI, but the overheads

associated with feeding back CSI limit the number of BS antennas that can be deployed

and the number of users served [117].

• the prohibitive complexity of optimal non-linear MIMO processing, and poor performance

of lower complexity linear processing when the channel is poorly conditioned. In conjunc-

tion with the limits imposed by CSI, this means that only modest sum spectral efficiencies

are achieved in LTE-A [22].

• the poor performance of users at the cell-edge. Cellular BS operate with transmit power

constraints, and MU-MIMO operation requires this power to be split between multiple

users, which can lead to poor SINR at the cell-edge, where pathloss is greater and inter-

ference from neighbouring cells higher [122].

As spectrum becomes increasingly scarce, fifth generation and future wireless systems must

employ MU-MIMO technology much more effectively if they are to achieve the high spectral

efficiencies required to meet growing traffic demands. The last 10 years has seen significant

advances towards practical forms of effective MU-MIMO technology, with much of it focused

around two general architectures: massive MIMO and distributed MIMO.

2.5.1 Massive MIMO

A ‘massive’ MU-MIMO system is one in which a large number of antennas are deployed at

the BS (typically in an array), greatly exceeding the number of active users being served,

M � K. Whilst strictly just a specific configuration of conventional MU-MIMO, massive –

or ‘large-scale’ – MIMO has attracted great interest within both the research community and

industry due to a number of practical performance benefits that emerge from the properties of

the MIMO propagation channel as the number of antennas asymptotically approaches infinity
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[133]. Fundamental to the original massive MIMO concept is TDD operation, such that the

uplink and downlink channels are reciprocal and downlink channel estimates can be obtained

from uplink pilots (cf. Section 2.4.2) – enabling the number of BS antennas to be increased

without increasing the signalling overheads associated with obtaining full CSI.

The benefits provided by massive MIMO give it the potential to overcome the limitations

of previous cellular MU-MIMO implementations to achieve order-of-magnitude improvements

in both spectral and energy efficiency [113]. It is now considered a core enabling technology

for fifth generation cellular system, with elements of it already included in fifth generation

standards [66].

Asymptotic Results

The core massive MIMO concept stems from two properties of the MIMO channel that are

exhibited – under the right propagation conditions – as the number of BS antennas increases

[133]:

• channel hardening – the strength of each user channel vector tends towards a deterministic

constant that depends only on the channel pathloss.

• asymptotic orthogonality – the inner product between any two user channel vectors be-

comes vanishingly small to the user channel strengths.

The channel hardening follows directly from the law of large numbers,

lim
M→∞

1

M
‖hk‖2 =

1

M
E
[
‖hk‖2

]
= βk. (2.192)

The asymptotic orthogonality property relies on the propagation environment providing favourable

propagation [135], such that the inner product between two channel vectors grows at a rate less

than M ,

lim
M→∞

1

M
h†khj = 0, (2.193)

or, alternatively [15], that

lim
M→∞

h†khj
‖hk‖2

= 0, (2.194)

When the entries of the two user channel vectors are randomly distributed and uncorrelated this

follows from the law of large numbers, but it also holds for non-random channels, e.g. line-of-

sight [237]. For a fixed number of users K, the channel hardening and asymptotic orthogonality

properties on the uplink are jointly captured by the limit

lim
M→∞

1

M
H†H =


p1β1

. . .

pKβK

 , (2.195)

visualised in Figure 2.20 for an i.i.d Rayleigh fading channel.
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Figure 2.20: Intensity plots of 1
MH†H for various values of M , i.i.d Rayleigh fading channel,

K = 8.

Benefits of Large Arrays

Clearly, no practical system can operate with an infinite number of antennas, but the asymptotic

results are useful in giving insights into the behaviour of MIMO systems operating with a large

array of antennas.

• Linear processing becomes optimal. As shown in Figure 2.15, under i.i.d Rayleigh

fading increasing the number of BS antennas improves the MIMO channel condition num-

ber and performance of linear processing. More generally, when the user channels exhibit

asymptotic orthogonality, inter-user interference can be eliminated by simple matched fil-

ter, zero-forcing, or MMSE detection. With SNR ρ = γ/M , by (2.195) the asymptotic

sum capacity (under optimal MMSE-SIC detection) is given by

lim
M→∞

log2 det
(
IK +

γ

M
H†H

)
=

K∑
k=1

log2

(
1 + γpkβk

)
, (2.196)

i.e. K parallel channels with SINRk = γpkβk. These SINRs are also asymptotically

achieved by MF detection,

SINR(MF)

k =

γ

M
pk‖hk‖2

γ

M

∑
j 6=k

pj
|h†khj |

2

‖hk‖2
+ 1

→ γpkβk, (2.197)

which follows from (2.192)-(2.194), as well as under ZF & MMSE detection – which can

be shown by substitution of (2.195) into (2.106) & (2.113). By uplink-downlink duality,

this asymptotic optimality of linear processing also holds for downlink precoding.

With a finite number of BS antennas, the user channels are generally not perfectly or-
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Figure 2.21: Mean sum capacity under linear detection with varying M , i.i.d Rayleigh fading,
K = 10, pkβk = 1. Top: γ = −5 dB, bottom: γ = 15 dB.

thogonal, and linear processing does not fully achieve the sum capacity. However, as the

channels decorrelate (h†khj/‖hk‖
2 shrinks), the performance of linear methods improves.

As per-the discussion in Section 2.3, at high SNR, MMSE and ZF perform well whilst MF

produces high inter-user interference, whereas at low SNR MMSE and MF perform well,

as shown in Figure 2.21.

• The effects of fast fading disappear. The SINRs that are asymptotically achieved,

SINRk = γpkβk, are independent of the specific channel realisation, depending only on

the channel pathloss and user power control. As a result the user capacities stay constant

across multiple coherence blocks, despite the channel realisations changing to fast fading.

With finite arrays, variations in capacity will tend to decrease as the number of BS an-

tennas is increased, as shown in Figure 2.22 for the i.i.d Rayleigh fading channel. This

can be interpreted from a diversity perspective – the diversity gain of d = M − K + 1

provided by MMSE detection ‘averaging’ over the effects of fast fading.

As well as improving user outage capacities, the removal of fading effects has a wide range

of potential benefits, such as simplifying resource allocation [113], enabling more advanced

uplink power control methods [236] and removing the need for downlink pilots [235].

• Transmit power reduces & energy efficiency increases. The array gain provided

by the antennas means that on the uplink the user transmit power can be reduced as

ρ = γ/M whilst maintaining the same average level of received power [212]

γ

M
pkE

[
‖hk‖2

]
= γpkβk. (2.198)
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Figure 2.22: CDF of user capacities under MMSE detection with varying M , i.i.d Rayleigh
fading, γ = 10 dB, pkβk = 1, K = 10.

Figure 2.23: User capacity scaling with SNR for different numbers of antennas, i.i.d Rayleigh
fading, K = 8, pkβk = 1.

Doubling the number of BS antennas enables the transmit power to be reduced by ∼ 3

dB, whilst maintaining a similar level of performance6, as shown in Figure 2.23.

The array gain is provided regardless of whether the propagation environment provides

favourable propagation conditions, and is also achieved on the downlink, where the pre-

coded signals constructively superimpose at the user, boosting received SNR. Along with

improving the radiated energy efficiency, this means that the individual power requirement

of each transmit RF chain is lowered, enabling the use of cheaper components [113].

Practical Massive MIMO Propagation

Since many of the benefits of massive MIMO are contingent on the presence of favourable

propagation conditions, there has been considerable research into the performance achievable

by massive MIMO systems operating in practical propagation environments with finite numbers

of antennas.

6Under MMSE or ZF detection, the array gain provided is actually M −K + 1 [19].
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Whilst much analysis assumes i.i.d Rayleigh fading, it has been shown that both LoS [155]

and Rician channels [244] are also capable of providing favourable propagation, as long as the

angular separation of the users is sufficient. Under the correlated fading model outlined in

Section 2.4.1, it has been shown that spatially correlated fading can actually be beneficial,

providing the eigenspaces of the channel correlation matrices do not significantly overlap [15].

There are well known benefits to scheduling users according to their channel correlations in

conventional MU-MIMO systems [207], and this has also been shown to be beneficial under

line-of-sight conditions in massive MIMO systems [237].

Measurements taken with uniform circular array in an urban environment with 2 users found

that the measured user channel correlations were significantly higher than under i.i.d fading,

but also decreased as the number of active antennas was increased – up to around M = 20 where

they plateaued [60]. A second study using a 128 element uniform linear array and randomly

selecting groups of 3 users (from 36 captured user channels) found that the correlation decreased

significantly when increasing M from 20 to 128, for both LoS and non-LoS locations [166]. Using

a ‘virtual’ ULA in an outdoor environment it was found in [93] that channel correlations and

eigenvalue spread decreased with M , but that the gain from adding antennas decreased, with

significant channel correlations still present with 112 antennas. Another measurement campaign

found eigenvalue spreads and channel capacities for co-located users with non-LoS channels and

separated users with LoS channels were consistent with i.i.d Rayleigh fading, but that for co-

located users with non-LoS channels they were not [61].

The practical benefits of massive MIMO have been demonstrated by a number of real-time

testbeds [130], [217], [193], [79]. Notably, 256QAM modulation was simultaneously transmitted

by 22 users and accurately detected by a BS with 128 antennas in [79], and an uplink sum

spectral efficiency of 79 bps/Hz was achieved by 12 users in [82], both in indoor rich scattering

LoS environments. In [80], 8 users were simultaneously served with QPSK modulation on both

uplink and downlink by a BS with 100 antennas, in an outdoor mobile environment. In these

cases, channel estimation was performed by the users transmitting uplink pilots on different

subcarriers within the same coherence block.

Research Challenges & Opportunities

The early work demonstrating the potential benefits of massive MIMO was followed by an

explosion in research exploring the new opportunities and addressing the practical challenges

associated with implementing it commercially.

Much work has focused on more accurately quantifying the performance of massive MIMO

systems, for example for more realistic scenarios where the number of BS antennas is finite [154]

and fading is correlated [94]. This research frequently departs from the approaches used previ-

ously for MU-MIMO analysis by making use of random matrix theory and asymptotic results

that become reasonable approximations in the ‘massive’ regime. Beyond conventional single-cell

analysis, the impact of inter-cell interference in non-cooperative multi-cell configurations has

also been considered, for example [18].

The overheads associated with the uplink pilots used for channel estimation were identified

early on as a potential limiting factor – the resources required growing with the number of users
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being served. The seminal massive MIMO work identified a ‘pilot contamination’ problem, in

which the re-use of piloting resources in adjacent cells led to contaminated channel estimates that

meant inter-cell interference (from simultaneous transmissions in the adjacent cells) remained

after inter-user interference within the cell had been cancelled [133]. This led to a glut of

research on pilot design & allocation and mitigation techniques [54]. More recently it has been

shown that pilot contamination does not fundamentally limit performance if the second order

user channel statistics of the contaminating users are known during MMSE channel estimation

and signal detection/precoding [103], providing some mild conditions on the channel covariances

are met [17].

Initially, there was scepticism about the feasibility of implementing massive MIMO, due to

perceived issues with cost & complexity [19]. Numerous hardware implementations have since

demonstrated that linear MIMO detection methods for relatively large systems are well within

the capabilities of current digital signal processing platforms [229], [229]. The conventional

massive MIMO architecture also relies on each antenna being connected to its own individual

RF chain, with digital to analogue convertor (DAC) and power amplifier (PA) for the downlink

and low noise amplifier (LNA) and analogue to digital convertor (ADC) for the uplink, leading

to concerns about hardware cost & power consumption as the array size grows. As a result,

there has been significant investigation into the use of hybrid architectures, where analogue

beamforming at the antennas is employed to reduce the number of RF chains required. However,

effective use of hybrid methods in wideband systems at sub-6GHz is challenging due to the

reduced flexibility of analogue beamforming compared to digital per-subcarrier processing [143].

An alternative – and also widely investigated – approach to reducing the complexity of

massive MIMO hardware is to use lower precision hardware in the transceivers, to reduce cost

and/or improve energy efficiency. This is based on the observation that often non-linearities

introduced due to hardware impairments will ‘average’ across antennas, and their effects dimin-

ish as the number of antennas is increased [16], and has led to particular interest in the use of

reduced resolution ADCs and DACs. From an academic perspective, the study of 1-bit ADCs

poses interesting technical challenges [116], [146], but a more thorough consideration of energy

efficiency indicates that the use of 4-8 bit resolution ADCs is preferable [184].

Beyond the topics briefly outlined here, a huge amount of research has considered other novel

applications and analyses of massive MIMO technology. One interesting area is the exploitation

of the excess degrees of freedom provided by deploying a large excess of BS antennas [113].

Chapter 3 the use of these degrees of freedom to reduce the peak-to-average power ratio (PAPR)

of the massive MIMO transmit signals and further relax hardware requirements and improve

system energy efficiency.

2.5.2 Distributed MIMO C-RAN

A ‘distributed’ MU-MIMO system has BS antennas that are distributed geographically within

the cell or service area, rather than being co-located in an array at a single site as in a conven-

tional MU-MIMO system. This architecture has long been of interest to researchers, and can

be seen as the convergence of two concepts:

1. The co-operation of different BS to reduce or eliminate inter-cell interference and improve
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the performance of cell-edge users. This idea predates third generation systems [176], and

is based on two or more BS jointly transmitting and/or detecting user data across cell

boundaries, using beamforming & shared CSI, such that inter-cell interference contributes

constructively rather than destructively [114]. This is particularly attractive as cellular

deployments densify with the use of small cells, since the reduced pathloss means that

interference otherwise becomes the capacity-limiting factor [63]. A basic level of BS co-

operation is included in LTE-A as co-ordinated multipoint (CoMP) [104].

2. The distribution of BS antennas in a MU-MIMO or massive MIMO system to improve ge-

ographical coverage. Distributed antenna systems were originally conceived of as a means

for improving indoor cellular coverage by providing macro-diversity gain to counteract

the effects of high pathloss, for example due to blockage [181]. The use of distributed

antennas in conjunction with MU-MIMO has since been considered [195], and shown to

provide benefits in terms of both mean and outage capacities compared to centralised

configurations [86].

For fifth generation cellular systems there has been significant interest in the use of a so-

called cloud (or centralised) radio access network (C-RAN) architecture, in which the signal

processing and network functions for multiple base stations – or ‘remote radio heads’ – is

performed at a single central processor (CP) [168], connected via fronthaul connections. The

C-RAN architecture is potentially a key technology for unlocking the full benefits to distributed

MIMO, enabling the group of remote radio heads to be treated as a single ‘network’ MIMO

system. Uplink detection and downlink precoding can then be performed jointly across all

distributed antennas, allowing full control of the inter-user interference whilst capturing all

diversity and macro-diversity present in the network [63].

At its most extreme, distributed MIMO could be used to eliminate traditional cell bound-

aries, with a large number of radio heads jointly serving all active users across an extended

macro-coverage area. This ‘cell-free’ concept is not new [195], but has recently been extended

to incorporate ideas from massive MIMO, so that channel hardening and favourable propaga-

tion can be exploited alongside macro-diversity in order to deliver a uniform quality of service

to all active users [210], [153]. The early work on cell-free massive MIMO focused on a fully

distributed architecture (many single-antenna radio heads), and the use of simple decentralised

detection and precoding based on matched filtering [152]. However, it has since been shown

that using a reduced number of multi-antenna radio heads is a more practical and effective way

of capturing channel hardening [35], and that significant performance benefits result from using

more complex centralised processing [20].

Despite recent progress, there are a number of practical challenges that remain to be solved

before the full potential of distributed MIMO can be realised.

System Model & Simulation Configurations

This thesis considers distributed MIMO C-RAN systems in which L remote receivers/transmitters

each equipped with M antennas jointly serve K active users, as shown in Figure 2.24.
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,  

remote receiver/

transmitter  

user

CP 

Figure 2.24: Example distributed MIMO C-RAN configuration with K = 8, L = 4,M = 8.

On the uplink, the received signal at receiver l is given by the standard MIMO uplink

relation,

yUL
l = HUL

l xUL + η (2.199)

where x ∼ CN
(
0, ρIK

)
, η ∼ CN

(
0, IM

)
, and

HUL
l =

[√
p1hl,1 . . .

√
pKhl,K

]
(2.200)

with hl,k the propagation channel between user k and receiver l, and pk the user power control

coefficient. These user channels can be modelled by appropriate fading and pathloss models,

in the same way as conventional MU-MIMO channels. Note that here it is assumed that each

of the K users has a channel to each of the L receivers; in reality some of these channels may

be very weak if there is significant distance or blockage between a user and receiver, and hence

some columns of Hl may have entries close to zero.

For numerical studies, a dense urban deployment is considered, in which the remote re-

ceivers/transmitter and users are randomly distributed within a 200 m × 200 m area. All users

are at a height of 1 m, and remote antennas at a height of 6m. Pathloss is modelled as described

in Section 2.1.4, using pathloss exponent γ = 2.9, σ2
Ψ = 5.7 dB log-normal shadow fading, and a

3.5 GHz carrier frequency [204]. User uplink power control, pk, is applied such that the average

received power for each user is the same

1

ML
E
[ L∑
l=1

pk
∥∥hl,k∥∥2

]
=

1

L

L∑
l=1

pkβl,k = 1, (2.201)
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in order to normalise user channels for comparison purposes whilst preserving the differences

in large scale fading that characterise the distributed MIMO propagation channels [175]. Mean

capacities are calculated by averaging over both user/receiver/transmitter positions and channel

fading realisations.

On the downlink, the received signal at user k is

yDL
k =

L∑
l=1

hDL
l,kx

DL
l + η (2.202)

where xDL
l is the precoded signal transmitted by transmitter l. This can also be written in

matrix form

yDL =

L∑
l=1

HDL
l xDL

l + η. (2.203)

Distributed MIMO Uplink

On the uplink, the ensemble of all received signals can be represented a global or network level

by a single uplink MIMO equation

yG = HGx + η (2.204)

where

yG =


y1

...

yL

 , HG =


H1

...

HL

 . (2.205)

The sum MIMO uplink capacity is given by

CUL
SUM = log2 det

(
IK + ρH†GHG

)
(2.206)

= log2 det
(
IK + ρ

L∑
l=1

H†lHl

)
, (2.207)

and is achieved by jointly detecting the user symbols using all the received signals and MMSE-

SIC detection. Joint linear MMSE detection can also be used,

x̂ =

L∑
l=1

Wlyl, (2.208)

with detection matrices

Wl = ρ
(
IK + ρ

L∑
l=1

H†lHl

)−1
H†l . (2.209)

Observe that calculating the detection matrices for joint MMSE or MMSE-SIC symbol detection

requires that the CP have access to global CSI. Various other detection methods have also been

proposed that used distributed processing to reduce the CSI requirements, e.g. [11], [20], but

come at the cost of reduced performance.

Figure 2.25 demonstrates how distributing the antennas leads to an improvement in both

mean and outage capacity, for a configuration with K = 4 users, a total of ML = 16 antennas,
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Figure 2.25: User uplink mean capacities for varying number of distributed receivers, L, i.i.d
Rayleigh fading, K = 4, ML = 16. Solid line: mean capacity, dashed line: 10% outage capacity.

Figure 2.26: User uplink capacities for varying number of antennas per receiver, i.i.d Rayleigh
fading, K = 8, L = 4. Solid line: mean capacity, dashed line: 10% outage capacity.

and MMSE detection. In practice, whilst using a large number of individual distributed antennas

may be feasible in certain scenarios, e.g. when they can be spaced along a structure [59], the

cost associated with deploying and connecting a large number of distinct remote radio heads at

different sites may be prohibitive, and the use of a smaller number of multi-antenna radio heads

might be an attractive compromise. This use of multiple antennas at each receiver provides

both array gain and diversity, boosting mean and outage capacities as shown in Figure 2.26

Analysis can be readily extended for the case of imperfect CSI using the method outlined in

Section 2.4.2.

Distributed MIMO Downlink

Whilst under joint processing the distributed MIMO uplink can be treated as a conventional

MU-MIMO system, on the distributed MIMO downlink it is necessary to replace the total

transmit power constraints used in conventional systems with per-transmitter power constraints.
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This use of per-transmitter power constraints means that the duality used to establish the sum

capacity and transmission strategies in Section 2.3 no longer applies, complicating the design

and analysis of optimal precoding schemes.

As with conventional systems, the use of linear precoding is desirable from an implementation

perspective,

xl = WlP
1/2s, (2.210)

with precoding matrices, Wl, and user power control, P, chosen to ensure the per-transmitter

power constraints are met

E
[
‖xl‖2

]
= ρTr

(
WlPWl

)
≤ PT . (2.211)

Under joint signal processing, ZF precoding with the conventional Moore-Penrose pseudo-inverse

is a straightforward and popular strategy [96],

Wl = H†l
( L∑
i=1

HiH
†
i

)−1
. (2.212)

Under max-min power control, the power must be backed off at each receiver in line with the

precoding matrix with the highest power,

xl =

√
PT/ρ

max
j
‖Wj‖

Wls, (2.213)

meaning that only one of the transmitters will operate at full transmit power, with others

potentially transmitting well below their maximum level. This contrasts with the case of a

single total power constraint, where precoding with the Moore-Penrose pseudo-inverse uses all

of the available power [220].

When the total number of transmit antennas exceeds the number of users, ML > K,

an infinite number of ZF precoding matrices that perfectly eliminate inter-user interference

exist – some of which may outperform the Moore-Penrose under per-transmitter constraints.

Unfortunately, finding the optimal ZF precoding matrix generally involves the use of numerical

methods. Under max-min power control, the optimal ZF precoding matrix7 can be found by

adapting the convex optimisation in [108],

maximise
ϕ,Wl

ϕ (2.214)

subject to

L∑
l=1

HlWl ≥ ϕIK , (2.215)

=
( L∑
l=1

HlWl

)
= 0, (2.216)

∥∥Wl

∥∥2 ≤ PT ∀l, (2.217)

where ϕ represents the received signal strength at all users.

7Here the power control is absorbed into Wl.

63



CHAPTER 2. FUNDAMENTALS OF MU-MIMO

Figure 2.27: Mean downlink user capacity under ZF precoding with max-min power control,
i.i.d Rayleigh fading, K = 8, L = 4. Solid line: standard ZF, dashed line: ZF-MPC.

Figure 2.27 compares the mean user capacities achieved under per-transmitter power con-

straints for the two ZF precoding schemes. In the first case the standard Moore-Penrose pre-

coding matrices are used, with power control applied to ensure per-transmitter contraints are

met. The second case (ZF-MPC) directly optimises the precoding matrices under multiple per-

transmitter power constraints as in (2.214). The ZF-MPC precoding matrices better utilise

the available power to increase the signal strength at the users, with performance improving

relative to standard ZF as the number of transmitter power constraints increases. In practice,

however, the standard ZF solution may be preferable due to the significantly higher computa-

tional complexity of ZF-MPC. There has been significant research into other downlink trans-

mission schemes, and it has been shown that a variation of duality can also be exploited under

per-transmitter power constraints to full characterise the achievable downlink capacities [242].

Approaches that use distributed processing rather than joint processing have also been proposed

[153], [21].

Signalling & Co-ordination Challenges

Beyond the fundamental signal processing operations that must be adapted for distributed

MIMO C-RAN, there are also key challenges related to the signalling & co-ordination required

between the remote radio heads, CP and users:

• Joint detection and transmission requires the synchronisation of the clocks used in the

receivers & transmitters, as well as the users. Whilst distributed synchronisation methods

have been developed [197], the use of centralised synchronisation using either a shared

control channel or the global navigation satellite system may be most appropriate in a

C-RAN system, as discussed in [115] (and references therein).

• Joint processing requires full CSI on both the uplink and downlink. For the uplink, this

can be obtained using pilots transmitted by the users, as described in Section 2.4.2. These

estimates can either be formed locally at the receivers and transferred over fronthaul to
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the CP, or the received pilot signals can be forwarded directly over fronthaul and the

estimates formed at the CP. For the purposes of the work here, the former is assumed, as

the availability of local CSI at each receiver enables some signal processing operations to be

performed there. On the downlink, TDD operation is desired as this enables uplink pilots

& reciprocity to be used [23], overcoming the bottleneck associated with CSI feedback in

frequency division duplexing.

• Joint processing requires the transfer of both CSI and uplink/downlink data payloads

over the fronthaul connections between CP and remote units. When these fronthaul

connections are made by dedicated high capacity fibre this is straightforward, but in

many scenarios the fronthaul may have limited capacity, and hence require the use of

bespoke signal compression/quantization to maximise performance under this constraint

[98].

The research in Chapters 4 & 5 of this thesis focuses specifically on final point, and the

design of signal compression schemes that can enable high user data throughput to be achieved

when the fronthaul capacity is limited.

2.6 Conclusion

Multi-user MIMO is a physical layer communication technology that provides significant spectral

efficiency improvements by spatially multiplexing multiple users on the same time-frequency

resource, and is expected to play a growing role in future wireless networks. This background

chapter has provided a brief introduction into MU-MIMO systems, and acts as a reference for

the mathematical models and ideas used in the MU-MIMO research in Chapters 3, 4 & 5.

The fundamental communication techniques that MU-MIMO systems are built on have been

outlined – modulation, channel coding & OFDM – along with the principal signal processing op-

erations: uplink multi-user signal detection, downlink signal precoding, power control & channel

estimation. Important communication concepts that are used to guide the design & analysis of

MU-MIMO systems have also been introduced – capacity, fading, spatial multiplexing, diversity,

outage & array gain, with numerical examples provided throughout to illustrate key concepts

and results. A variety of mathematical expressions that are re-used in the following research

chapters have also been provided.

The final section of the chapter contains an overview of the massive MIMO and distributed

MIMO architectures that are the focus of the research in this thesis. The massive MIMO section

examines the benefits of deploying a large number of antennas at the MU-MIMO base station,

before the distributed MIMO section discusses the key implications of geographically distribut-

ing base station antennas within the service area. This background material is supplemented

by more in-depth reviews of the relevant state-of-art research provided at the beginning of each

research chapter.

The background material provided in this chapter is not exhaustive, and largely limits it

focus to those ideas and methods required to understand the subsequent research material. For

the interested reader, [174], [212] & [15] represent excellent references for developing a further

understanding of MU-MIMO systems.
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Chapter 3

Clipping-based PAPR Reduction for

the Massive MIMO Downlink

In fourth generation LTE systems it is estimated that BSs account for 80% of total network

power consumption, of which between 30% and 60% can be attributed to the RF transmit

frontend [7]. With fifth generation and future wireless systems seeing significant increases

in both network density and functionality, there are growing concerns over the environmental

impact of cellular networks, and energy efficiency is becoming an important design consideration

for physical layer technologies [230].

The high peak-to-average power ratio (PAPR) of OFDM waveforms, now ubiquitous in

wireless systems, requires the use of linear power amplifiers (PAs) that operate with a large

power back-off, resulting in poor power efficiency [101]. The power consumption of these PAs

dominates BS RF power consumption, and PAPR reduction schemes that can improve efficiency

by reducing PA power back-off, whilst preserving system performance, have long been a topic

of academic and industrial research [231].

The shift to a massive MIMO paradigm has the potential to reduce overall radiated power

and increase energy efficiency, whilst enabling the small number of high power, expensive, linear

PAs used in a conventional BS to be replaced with a large number of low power, cheaper PAs

[113]. However, the high PAPR of OFDM signals reduces the overall energy efficiency of these

systems, making the use of reduced PAPR signals in massive MIMO systems desirable [149].

Fortunately, massive MIMO facilitates new means of addressing the OFDM PAPR problem

through the exploitation of the large number of excess degrees of freedom at the transmitter,

and has stimulated a new body of research into the problem.

This chapter investigates the adaptation of iterative clipping & filtering, a classical PAPR

reduction technique, to exploit the degrees of freedom in the massive MIMO downlink for im-

proved performance. It begins by developing a statistical model for the effect of non-linear signal

distortion caused by clipping & filtering, using a vector Bussgang decomposition. This model

shows that clipping & filtering has two effects on the MIMO downlink signal – it introduces ad-

ditive clipping noise, and it attenuates and distorts the downlink symbol precoding. Numerical

examples are provided to show the impact of clipping & filtering on link performance, providing

motivation for the development of new methods that mitigate these effects.

66



CHAPTER 3. CLIPPING-BASED PAPR REDUCTION FOR MASSIVE MIMO

In the second part of the chapter, a novel clipping and spatial filtering scheme is outlined

that is capable of achieving high PAPR reduction with negligible loss in link performance. The

scheme is based on generating, at each iteration, a least squares approximation of the clipped

and filtered signal that is constrained to give a specified received signal at the users. The massive

MIMO channel’s large nullspace means that the error of this least squares approximation can

be kept small, preserving the good PAPR properties of the clipped and filtered signal. It is

shown that this least squares approximation can be generated as an additive combination of

the clipped & filtered signal and a low power error cancellation signal that is precoded using

the standard ZF matrix to correct the signal received at the users. The general architecture is

shown in Figure 3.1.

Whilst least squares filtering-type approaches have previously been proposed, the work here

improves on earlier work by explicitly accounting for the effects of the Bussgang clipping model

when formulating the least squares problem (referred to here as Bussgang-aware least squares,

BLS, filtering). This ensures that the algorithm converges at small clipping ratios, and enables

greater PAPR reduction to be achieved. Numerical results for i.i.d & correlated Rayleigh fading

channels show that for a typical massive MIMO configuration the scheme can achieve over 8

dB of PAPR reduction – 1 dB improvement on previous schemes – whilst incurring only 0.3 dB

link performance degradation compared to ideal unclipped OFDM.

Finally, the BLS scheme is adapted to include active constellation extension (ACE), in

which some distortion due to clipping is permitted providing it falls within certain regions of

the symbol constellation. This is shown through numerical examples to provide an extra 1 dB

of PAPR reduction in a massive MIMO setting when QPSK signalling is used, without any

additional performance penalty. It is shown to be an attractive modification when the number

of transmit antennas is reduced and when smaller QAM constellation sizes are used.

The proposed scheme relies on only linear processing, and has computational complexity

that scales linearly with the MIMO dimensions, comparing favourably with the non-linear PAPR

reduction techniques that have previously been proposed for massive MIMO. For typical MIMO

configurations its overall complexity is around double that of conventional iterative clipping &

filtering PAPR reduction. The scheme is able to achieve high levels of PAPR reduction with

negligible loss in performance, and constitutes a promising practical method for PAPR reduction

in massive MIMO systems.
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Figure 3.1: Block diagram of proposed PAPR reduction scheme.

3.1 Chapter Overview

The chapter has the following general structure:

• Section 3.2 provides the background to the PAPR problem in OFDM communication

systems. The causes of and issues with high PAPR in OFDM are discussed, before a

summary of classical approaches to PAPR reduction for SISO systems is given. The

PAPR problem in MIMO systems is then discussed, and a review of state-of-the-art PAPR

reduction methods for massive MIMO systems is provided.

• Section 3.3 derives a vector Bussgang model for analysing the effects of clipping & filtering

in MIMO systems. It begins by analysing the effect of a single clipping & filtering iteration

on the MIMO-OFDM signal, before generalising this to iterative clipping & filtering.

• Section 3.4 analyses the impact of standard clipping & filtering on massive MIMO perfor-

mance using the Bussgang model, providing analysis and numerical results that demon-

strate its limitations as a means of reducing PAPR.

• Section 3.5 develops the proposed Bussgang-aware least squares (BLS) PAPR reduction

method. The limitations of prior work are discussed, before the proposed scheme is

described – improving upon prior work by incorporating the Bussgang clipping model.

The scheme is then adapted to incorporate active constellation extension for enhanced

performance. Numerical results are provided throughout the chapter demonstrating its

benefits.

• Section 3.6 summarises the findings and provides some concluding remarks and directions

for future work.

3.1.1 Novel Contributions

The key contributions to the state-of-the-art made in this chapter are:
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• The derivation of a rigorous vector Bussgang model for analysing the effect of

clipping on MIMO signals, sections 3.3.1, 3.3.2. Whilst Bussgang’s decomposition

has been widely used to study non-linear effects in MIMO systems, and has previously

been used for SISO clipping analysis, it has not previously been rigorously applied to the

study of iterative clipping & filtering in MIMO systems. The development of this clipping

model is foundational to the development of the BLS PAPR reduction scheme.

• A clipping & spatial filtering PAPR reduction scheme that incorporates the

Bussgang clipping model, sections 3.5.2, 3.5.3. Previously proposed solutions have

used a simple additive error model that does not adequately model the impact of non-

linear clipping distortion on the MIMO signal, limiting their performance. Accounting for

these effects enables the proposed scheme to achieve 8 dB of PAPR reduction – over 1 dB

improvement compared to previous work.

• The extension of the proposed PAPR reduction scheme to include active con-

stellation extension, Section 3.5.5. Despite being well established as a PAPR method

for SISO OFDM systems, ACE has not been previously applied to the MU-MIMO down-

link. Here it is shown that it is a natural companion to the spatial filtering approach, and

can provide up to 1 dB of additional PAPR reduction in massive MIMO systems, with no

extra performance degradation. When operating with a reduced number of BS transmit

antennas, ACE can provide over 2 dB of additional PAPR reduction compared to just

spatial filtering.

3.1.2 Published Work

The basis of the Bussgang model and clipping analysis in this work was published in [222].

However, the model used there made assumptions about the transmit signal and clipping noise

statistics that do not always hold, and was applied to phase-only clipping, rather than iterative

clipping & filtering. As such those assumptions have been removed here, with phase-only

clipping given as a special case in Section 3.3.3.

Two of the main contributions of this chapter – the BLS PAPR reduction method and ACE

method – are currently unpublished, due to time constraints. It is anticipated that another

conference paper or letter could be published with these findings in.

3.2 Background

OFDM has become the de facto waveform of choice for modern high throughput wireless com-

munication systems, due to its high spectral efficiency, flexibility and ease of use. Despite this

ubiquity, however, the high peak-to-average power ratio (PAPR) of OFDM signals is a long

standing problem, for which no universally applicable solution has been found [231]. A sub-

stantial body of research has therefore been produced, and continues to be produced, on the

subject of PAPR reduction for OFDM.

This section begins by explaining the motivation for PAPR reduction, before outlining some

of the most important and relevant solutions that have been proposed within the research
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literature. Attention is first given to classical PAPR reduction techniques for SISO systems.

It is then shown that the OFDM PAPR problem is exacerbated in MIMO systems, before

PAPR reduction techniques that exploit specific opportunities provided by MIMO systems are

discussed. A particular focus is given to methods related to clipping & filtering, since these

techniques form the basis of the investigations and proposals of the new research in this chapter.

3.2.1 Motivation

The instantaneous transmit power of a wireless signal depends on the encoded information

symbols, and is, in general, a continuously varying function of time,

p(t) =
∣∣xRF(t)

∣∣2. (3.1)

As discussed in Section 2.1.3, the capacity of a communication system is determined by the

SNR or SINR of a link, which is a function of the average power of the transmit signal, E
[
p(t)

]
.

However, when designing a wireless system, the peak instantaneous power is also a crucial

parameter, since this determines the power level that the power amplifier (PA) in the transmitter

must be capable of supplying.

An important characteristic of a signal is therefore its peak-to-average power ratio

PAPR =
peak power

average power
. (3.2)

Power amplifiers are inherently non-linear devices that have an input-output characteristic

that is only approximately linear below a certain input power level. Operating beyond this

level results in non-linear distortion of the input signal, causing performance degradation and

spurious out-of-band emissions. The input must therefore be ‘backed-off’ to ensure that the PA

operates within its linear region at all power levels, as shown in Figure 3.2.

This backoff is determined by the PAPR of the transmit signal – a high PAPR requiring a

large power backoff. The use of signals with high PAPR therefore has a number of disadvantages:

• For a given performance level (average power) the PA must be capable of supplying a

higher peak power, increasing the cost and size of the power amplifier. Alternatively, for a

given PA peak power a lower average power must be used, resulting in worse performance.

• Power amplifiers generally operate at maximum efficiency at their peak power level, and

therefore the use of large power backoff results in poor power efficiency. This can be illus-

trated (somewhat simplistically) by considering an ideal class A PA, which has constant

power consumption and efficiency of 50% at peak power,

power efficiency =
0.5

power backoff
. (3.3)

For a maximum expected PAPR of 10 dB, a power backoff of 10 dB will be used, resulting

in an efficiency of just 5%. Modern PA architectures can improve this efficiency – at the

expense of increased complexity and cost – but also operate most efficiently with small

backoffs [25].
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Figure 3.2: Example power amplifier input-output characteristic.

• The digital transmit signal samples must be converted to analogue using a digital to

analogue convertor (DAC). A larger PAPR & backoff means higher resolution DACs must

be used, which have higher power consumption & cost [190].

The PAPR of the RF transmit signal, xRF(t), is given by

RF PAPR =
max
t

p(t)

E
[
p(t)

] . (3.4)

Due to the presence of the RF carrier, this is approximately double the PAPR of the baseband

transmit signal [101]

RF PAPR ≈ 2× baseband PAPR, (3.5)

which is similarly defined,

baseband PAPR =
max
t

∣∣x(t)
∣∣2

E
[∣∣x(t)

∣∣2] . (3.6)

In practice, it is more convenient to measure PAPR in the digital domain. Assuming appropriate

(e.g sinc) pulse shaping is used, the baseband PAPR can be estimated from the digital baseband

transmit signal as

baseband PAPR ≈
max
n

∣∣x[n]
∣∣2

E
[∣∣x[n]

∣∣2] , (3.7)

where n represents the sample number, and it is assumed that the transmit signal, x[n], is over-

sampled by a factor of q in order to accurately capture the peaks in the signal. An oversampling
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factor of q ≥ 4 is sufficient for accurate results [101]. Herein, the term PAPR refers to baseband

PAPR (noting that this has a direct relationship with RF PAPR).

OFDM is ubiquitous in modern high performance wireless applications due to its ability to

deliver high spectral efficiencies, and is the waveform of choice in fifth generation and future

WiFi standards. However, its time domain signal, which is the aggregate of many independently

modulated subcarriers, naturally suffers from a high PAPR.

The oversampled SISO OFDM samples, x[n], are given by

x[n] =
1√
N

N−1∑
l=0

sle
j2π ln

qN . (3.8)

If the chosen symbol alphabet (typically a QAM constellation) has average power E
[
|sl|2

]
= ρ,

with peak symbol power ρmax, then the maximum possible PAPR of an OFDM symbols is N ρmax

ρ

(occurring if the same peak power symbol is transmitted simultaneously on every subcarrier).

As N grows large the maximum PAPR becomes very large, but the probability of this peak

power occurring also becomes very small. For large N , by the central limit theorem the time

domain samples tend towards following a complex normal distribution,

x[n] ∼ CN (0, ρ). (3.9)

The PAPR of each OFDM symbol depends on the random information message symbols, and

therefore itself randomly varies between symbols [101], as shown by the complementary cumula-

tive distribution function in Figure 3.3. The ‘PAPR of a signal’ can be quoted as the maximum

Figure 3.3: Complementary cumulative distribution function of OFDM PAPR (baseband), vary-
ing number of subcarriers (N), QPSK symbols.

PAPR value that is exceeded by less than 1 in 1,000 symbols (other figures, e.g. 1 in 10,000
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may also be used). Figure 3.3 shows that OFDM symbols typically have a maximum expected

PAPR well in excess of 10 dB, and the use of PAPR reduction techniques is therefore vital to

improving PA efficiency and reducing cost.

3.2.2 Classical PAPR Reduction

A large variety of techniques for reducing the PAPR in SISO OFDM systems have been pro-

posed, each having associated benefits and costs in terms of PAPR reduction capability, link

performance degradation, signalling overheads and computational complexity.

Clipping & Filtering

The simplest – and mostly widely used – PAPR reduction method is clipping, in which the

peak amplitude of the oversampled signal is digitally limited prior to analogue conversion [158].

This can in principle achieve an arbitrary PAPR reduction, but at the expense of introducing

distortion, or clipping noise, into the signal. This clipping noise is spread over all frequencies,

causing both in-band and out-of-band distortion, and increases in power when clipping is applied

more aggressively.

The out-of-band distortion from clipping can violate out-of-band emission regulations, and

clipping must therefore be followed by filtering to remove these signal components [158]. This

filtering operation causes signal peak regrowth, and so clipping & filtering is generally applied

repeatedly, until convergence to a signal with reduced PAPR [6]. A number of schemes have

sought to address the increased computational complexity of repeated clipping & filtering, e.g

[127].

The filtering operation does not alleviate the effects of in-band distortion, which introduces

a noise-like error on each subcarrier, degrading the link performance. Methods for estimating

and cancelling in-band distortion at the receiver have therefore been proposed, e.g. [78]. For

improved performance, clipping & filtering can also be applied in conjunction with other PAPR

reduction techniques.

Active Constellation Extension

The active constellation extension (ACE) method is based on the observation that, for finite,

discrete symbol constellations – such as QAM – the outermost constellation points can be

extended infinitely without reducing the probability of symbols being accurately decoded [112].

Transmit symbols that occupy these outermost constellation points can therefore be dynamically

extended in order to reduce PAPR. This is illustrated for QPSK, where the constellation points

can be extended into shaded regions without reducing the minimum constellation spacing, dmin.

The PAPR minimising ACE transmit symbols on each subcarrier can be found as the solution

to a convex optimisation problem. However, a more practical but sub-optimal solution is to

use clipping & filtering to generate a reduced PAPR signal, and then modify the resulting

distorted symbols so that they lie at the nearest point within the appropriate constellation

extension region, repeating iteratively until convergence. Gradient based methods to improve

the convergence of the algorithm have been proposed in [112] and [8].
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Figure 3.4: Active constellation extension regions (shaded) for QPSK.

ACE has the unique property of imposing no link performance penalty whilst also requiring

no additional side information at the receivers – the use of ACE at the transmitter is transparent

to the receiver. A modification to the ACE method to further reduce PAPR by allowing a small

amount of distortion has been proposed in [186].

Partial Transmit Sequences & Selected Mapping

Another approach is to modulate sub-blocks of subcarriers and then combine them in a such

way that the overall OFDM symbol produced has low PAPR.

In the partial transmit sequence method, NPTS blocks of N/NPTS subcarriers are modu-

lated separately to produce NPTS partial transmit sequences. An optimised phase weighting is

then applied to each sequence and they are combined to form a full OFDM symbol, with the

phase weightings chosen to minimise PAPR . These phase weightings must be communicated

to the receiver as side information, with overheads kept low by restricting the set of possible

phase weightings [150]. To reduce computational complexity, various sub-optimal methods for

choosing the phase weights have been proposed, e.g. [42].

Closely related is the selected mapping method, in which a selection of candidate OFDM

symbols are generating using pre-determined sets of phase weightings (applied to either indi-

vidual or sub-blocks of subcarriers), and the symbol with the lowest PAPR selected [13]. This

has the benefit of reduced side information overhead, since only the index of the selected set of

phase weights needs to be communicated.

Other Methods

Other methods for PAPR reduction include [101]:
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• Tone injection – the discrete symbol constellation lattice is repeated infinitely, such that

each of the original constellation points maps to many points. The transmit points on the

new lattice that (approximately) minimise PAPR are then found, with the original signal

recovered at the receiver using a modulo operation.

• Tone reservation – certain subcarriers are reserved from carrying data, and used to instead

transmit arbitrary symbols that are chosen to cancel the peaks in the data signal.

• Companding – similar to clipping, except that an invertible, soft clipping function is used

instead of hard limiting. After equalisation at the receiver, the original signal can then

be approximately recovered.

3.2.3 PAPR Reduction in MIMO Systems

As discussed in Section 2.2.1, OFDM is the natural choice of waveform in MIMO systems,

converting the high dimensional multi-antenna time domain channel into a set of parallel vector

multiplications.

Consider a linearly precoded MIMO-OFDM signal,

x[n] =
1√
N

N−1∑
l=0

xle
j2π ln

qN (3.10)

where

xl = Wlsl, (3.11)

where Wl is the precoding matrix on subcarrier l (e.g. ZF or MMSE). By the central limit

theorem, the MIMO-OFDM signal samples can be modelled, for large N , as coming from a

wide sense stationary complex normal distribution,

x[n] ∼ CN
(
0,Rx

)
(3.12)

where

Rx = E
[
x[n]x†[n]

]
(3.13)

=
1

N

N−1∑
l=0

WlW
†
l . (3.14)

The average total transmit power of the system is

PT = Tr
(
Rx

)
, (3.15)

whilst the average transmit power of antenna m is

Pm =
[
Rx

]
m,m

. (3.16)

On a per-antenna level, the precoded OFDM signals follow the same PAPR distribution as in

SISO systems. However, since the power must be backed off equally at all antennas, the required
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backoff is determined by the antenna with the peak power. An ‘array PAPR’ metric is thus a

more appropriate measure of the PAPR performance of any scheme

array PAPR =
peak per-antenna power

average per-antenna power
(3.17)

=
max
m,n

∣∣xm[n]
∣∣2

PT/M
. (3.18)

The array PAPR is necessarily higher than the per-antenna PAPR, for two reasons:

• The increased number of signal samples means that the probability of a certain peak

power value being reached within one OFDM symbol is greater. This is illustrated in

Figure 3.5 for a MIMO system with 8 users and N = 512 subcarriers (where each antenna

experiences independent fading with 10 Rayleigh distributed time domain channel taps).

Figure 3.5: Complementary cumulative distribution function of MIMO-OFDM PAPR, varying
number of BS antennas (M), 10 time domain i.i.d Rayleigh fading channel taps, 512 subcarriers,
QPSK symbols.

• The use of spatial precoding means that the average and peak transmit powers may differ

between transmit antennas. Conventional precoding methods as outlined in Section 2.3

optimise performance subject to a total power constraint (TPC), and can result in signifi-

cant variation in per-antenna average power, particularly in spatially correlated channels.

This is illustrated in Figure 3.6 for a correlated Rayleigh fading channel with a M = 64

element horizontal uniform linear array, 10◦ azimuth spread and K = 8 users roughly

equally spaced, equidistant from the BS, within a single sector of a three sector cell. Pre-

coding under per-antenna power constraints (PAPC), using the method in [242], reduces

PAPR in the correlated fading channel by 2.5 dB, but is much more computationally

expensive.
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Figure 3.6: Complementary cumulative distribution function of MIMO-OFDM PAPR in corre-
lated channel, with different precodings.

The increased PAPR indicates that PAs in massive MIMO systems will tend to have to op-

erate with a larger backoff than in SISO systems, reducing their efficiency. Fortunately, some

properties of massive MIMO help mitigate this problem.

Firstly, it is known from Chapter 2 that the array gain of a massive MIMO system can

significantly reduce overall, so that overall energy efficiency may still be improved despite a

decrease in individual PA efficiency [16].

Secondly, it is shown in [147] that both in-band and out-of-band non-linear PA distortion are

beamformed with a smaller gain than the precoded information symbols, and thus their impact

reduces. This suggests that PAs may be allowed to operate beyond their linear operating region

without necessarily violating spectral regulations or significantly impacting link performance.

Finally – the focus of this chapter – the massive MIMO channel facilitates new ways of

reducing the PAPR of transmit signals without incurring significant link performance loss,

thanks to its large nullspace. The key feature that enables these methods is that on each

subcarrier, an additional signal e ∈ CM may be transmitted,

xl = Wlsl + e, (3.19)

without having any effect on the received signal,

Hlxl = HlWlsl, (3.20)

providing e lies in the channel nullspace, i.e.

Hle = 0. (3.21)

77



CHAPTER 3. CLIPPING-BASED PAPR REDUCTION FOR MASSIVE MIMO

This nullspace has dimension M − K, and thus with a large excess of BS antennas a huge

(infinite) range of different e vectors can be inserted onto each subcarrier without introducing

any additional interference at theK users. The PAPR of the MIMO-OFDM signal may therefore

be reduced by using a peak reduction/cancellation signal that lies (or approximately lies) within

the channel nullspace – at the expense of increased average transmit power due to the additional

power associated with e.

Nullspace-based PAPR reduction has now received significant research attention. Some of

the proposed methods use it explicitly, by performing standard massive MIMO-OFDM precod-

ing and then finding a PAPR reducing signal, and others implicitly – directly choosing the xl to

give the desired response at the users whilst minimising transmit PAPR. The former methods

often have the benefit of being add-ons to a standard MIMO-OFDM PHY architecture, whilst

the latter category benefit from having potentially better performance, at the expense of greater

computational complexity due to their need for each symbol to precoded individually.

A review of research into these methods is now provided, with a particular focus on tech-

niques which employ clipping – the basis of the techniques proposed in this chapter. Alternative

PAPR reduction methods that do not exploit the characteristics of the massive MIMO channel

have also been proposed, but are outside the focus of this work.

Constant Envelope & Low PAPR Precoding

In [142] it is shown that for narrowband single carrier massive MIMO systems, it is possible to

use ‘constant envelope’ (CE) signals, constrained to the form

xm[n] = γejθm[n] (3.22)

whilst, for sufficiently large M , still suppressing inter-user interference and achieving an array

gain. A non-linear least squares optimisation for finding the phase angles, θm[n], is given. A

number of follow up works propose alternative narrowband CE precoding schemes for massive

MIMO systems, such as [4] and [34], and have extended this idea to more realistic wideband

channels in [141] and [119].

However, it is important to note that CE precoding schemes are not truly constant enve-

lope, as they generally only have a phase-only characteristic when critically sampled at the

Nyquist frequency, and therefore their time domain signals do not have a constant power level.

The stringent constant envelope condition in (3.22) therefore does not necessarily produce the

precoded signals with the overall lowest PAPR. A true (continuous time) constant envelope

precoding scheme is derived in [148], but exhibits poor spectral efficiency.

In [203] the authors instead formulate a convex optimisation problem that minimises the

peak transmit power, whilst giving a desired received signal pattern. The proposed ‘FITRA’

algorithm is able to approximate any linear precoder and is implemented by a simple iterative

algorithm. It is seen to outperform conventional clipping at low PAPR values, but the authors

note that due to the large number of iterations required for convergence it has complexity ‘one-

to-two orders of magnitude larger’ than linear precoding. Various other PAPR-aware precoding

methods have been proposed, e.g. [9], [33], [239]. However, since precoding is performed
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iteratively and on a per-symbol basis (in contrast to linear precoders, which have closed form

solutions that only need to be calculated once per coherence block), they incur a significant

increase in computational complexity.

Clipping & Spatial Filtering Methods

Conventional clipping methods use frequency domain filtering to eliminate the out-of-band

effects of clipping, but do nothing to mitigate the deleterious effects of clipping on in-band

performance. The addition of a spatial filtering stage can be seen as a generalisation of the

clipping & filtering scheme for MIMO systems, that enables the in-band error at the users to be

eliminated. This idea was first applied to single user MIMO in [205], where a reduced number of

data streams are transmitted and the clipping-induced error filtered to lie only in the remaining

channel nullspace, such that no link degradation occurs.

This idea is naturally extended to massive MIMO systems, where a large channel nullspace

is inherently present, as in [206]. There, filtering is achieved by using the singular value de-

composition to calculate M − K basis vectors for the channel nullspace, and then projecting

the clipping error (the difference between the clipped signal and original precoded OFDM sig-

nal) into this nullspace. When M/K is large, much of the error often naturally lies within the

nullspace, and hence the difference between the two signals is small.

As observed in [219], the nullspace projection method, applied on each subcarrier, gives a

least squares approximation of the clipped signal – minimising the squared difference between

the transmit signal and the clipped signal, whilst giving the desired response at the users.

Whilst this least squares approximation does not explicitly limit PAPR – which depends on

the maximum peak power, or `∞ norm – it acts as an effective and simple proxy, particularly

when applied iteratively, and has been shown to produce low PAPR signals using only linear

processing. A more complex algorithm is proposed in [243], where symbol precoding is also

incorporated into the iterative clipping and nullspace projection algorithm, at the expense of

increased computational cost.

An alternative approach is taken in [172], where a heavily clipped OFDM signal is transmit-

ted using the majority of the BS antennas, with the remaining antennas reserved to transmit

a low power precoded signal that cancels out the error caused by clipping at the users. The

research later in this chapter shows that this method is in fact closely related to the clipping

& spatial filtering approach, which can be seen as transmitting both the clipped OFDM signal

plus a small cancellation signal simultaneously with all antennas.

Other PAPR Reduction Methods

Other approaches have been taken to finding nullspace-based peak cancellation signals, such as

[31], where the cancellation signal inserted onto each subcarrier is optimised, with the ability

to trade-off link performance against PAPR reduction. The proposed algorithm significantly

reduces PAPR, but requires a numerical optimisation with complexity ≥ O(N3) to be performed

for each OFDM symbol. In [107] a set of candidate cancellation signals are generated randomly

and the best one selected, with modest results.
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Methods that do not exploit the large nullspace of the MIMO channel include an adaptation

of the partial transmit sequence scheme for MIMO systems [109], and a tone reservation scheme

that concentrates on peak cancellation only on the antennas experiencing highest peak power

[156].

3.3 Clipping & Filtering in Massive MIMO-OFDM Systems

This chapter develops an analytically tractable statistical model for the non-linear distortion

that occurs when clipping & filtering is applied to a MIMO-OFDM signal, using Bussgang’s

theorem.

3.3.1 Clipping & Filtering of MIMO-OFDM

In a MIMO-OFDM downlink system, clipping is applied to each of the M antenna signals to

limit the peak signal magnitude at each antenna to a maximum level, Amax. The value of Amax

is fixed across all antennas, in order to impose a uniform peak power limit, and usefully written

as a function of an ‘array clipping ratio’, γ and the average per-antenna power, PT /M ,

Amax = γ
√
PT/M, (3.23)

where PT = Tr
(
Rx

)
. The clipping operation is a defined by a non-linear function,

xC,m[n] = fC
(
xm[n], Amax

)
, (3.24)

given by

fC(x,Amax) =


x, |x| ≤ Amax

Amax

x

|x|
, |x| > Amax.

(3.25)

The peak clipped signal power is γ2PT/M , and it is straightforward to see from (3.17) that the

PAPR of the clipped signal is then approximately1

array PAPR ≈ γ2. (3.26)

In previous work [105], an additive error model has been used to model the effect of clipping

xC[n] = x[n] + c[n]. (3.27)

However, the additive error c[n] is correlated with the original OFDM signal2, x[n], limiting its

usefulness for analysing the effects of clipping.

Fortunately, since the OFDM signals are Gaussian distributed, Bussgang’s theorem [26] can

be applied to decompose the clipped signal into two uncorrelated components, a technique that

1Since the clipping operation decreases the average as well as the peak power of the signal, this approximation
doesn’t hold for small clipping ratios, where a significant proportion of samples are clipped and average power
reduced significantly. However, the relationship between clipping ratio and PAPR remains monotonic.

2This is readily inferred from the fact that clipping reduces signal power, and hence the power of the clipped
signal must be less than the original OFDM signal, E

[
‖x[n] + c[n]‖2

]
< E

[
‖x[n]‖2

]
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has previously been used to analyse the effect of clipping in SISO OFDM systems [158]. The

Bussgang decomposition is

xC,m[n] = Ax[n] + ε[n] (3.28)

where A is the Bussgang gain and ε[n] is clipping noise that is uncorrelated with the original

OFDM signal

E
[
x[n]ε†[n]

]
= 0. (3.29)

The Bussgang gain is a diagonal scaling matrix A = diag(α1, . . . , αM ) [50], with elements

0 < αm < 1 given by [158]

αm =
E
[
xC,m[n]x∗m[n]

]
E
[∣∣xm[n]

∣∣2] =
E
[
xC,m[n]x∗m[n]

]
Pm

(3.30)

= 1− e−γ2m +

√
πγm
2

erfc(γm), (3.31)

a monotonically decreasing function of γm (the per-antenna clipping ratio at antenna m)

γm =
Amax√
Pm

= γ

√
PT/M√
Pm

. (3.32)

The Bussgang model reveals that clipping has two effects – it transforms the OFDM signal

component, and it introduces clipping noise into the transmission. When each antenna has the

same average power the Bussgang gain is of the form αIM , and the OFDM signal component

is simply attenuated by a factor α. For the general case of differing per-antenna powers, this

scaling effectively distorts the OFDM component by attenuating the signal at each antenna by

differing amounts. The power of the clipping noise can be quantified as in [158], but it suffices

here to note that it increases in power relative to the OFDM signal as γ is decreased.

The Bussgang model is stationary whilst the statistics of x[n] are stationary – i.e. whilst

the set of linear precoders is fixed. The Bussgain gain also remains constant under a scaling in

transmit power, providing there is a corresponding scaling in the clipping level, Amax (such that

γ remains constant), with the clipping noise power scaling accordingly. The use of a Bussgang

signal model here is a key improvement that facilitates the algorithm design and analysis in this

research chapter.

In the frequency domain, by the linearity of the Fourier transform, the signal on each

subcarrier is

xC,l =

Axl + εl l ∈ [0, N − 1]

εl l ∈ [N, qN − 1].
(3.33)

The in-band subcarriers contain a transformed version of the precoded MIMO signal, corrupted

by clipping noise, whilst the out-of-band subcarriers contain only clipping noise. This frequency

domain clipping noise is given by

εl =
1

N

qN−1∑
n=0

ε[n]e
−j2π ln

qN , (3.34)
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and, by the central limit theorem, is approximately jointly Gaussian,

εl ∼ CN
(
0,Rε,l

)
, (3.35)

as well as being uncorrelated with the data signal,

E
[
xlε
†
l

]
= 0. (3.36)

The covariance matrix,

Rε,l = E
[
εlε
†
l

]
, (3.37)

describes the spatial characteristics of the clipping noise. This varies with frequency, l (as can

be inferred from the analysis in [158]), but – due to its non-linear relationship with x[n] – a

convenient closed form expression is not available, and hence it must be estimated numerically.

The out-of-band clipping noise components in xC[n] must be filtered for the transmission

signal to comply with regulatory licenses. Perfect filtering of these components is achieved by

simply setting the out-of-band subcarriers to zero,

xCF,l =

xC,l l ∈ [0, N − 1]

0 l ∈ [N, qN − 1].
, (3.38)

leading to the clipped and filtered OFDM signal,

xCF[n] =
1

N

N−1∑
l=0

xCF,le
−j2π ln

qN . (3.39)

The frequency domain filtering operation causes regrowth of some signal peaks, and hence

the PAPR of the clipped and filtered signal is considerably higher than indicated by (3.26).

The clipping operation has computational complexity O
(
qMN

)
and hence complexity is dom-

inated by the FFT and IFFT required for the filtering operation, with overall complexity

O
(
qMN log2(qN)

)
.
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Figure 3.7: Original OFDM signal (top), clipped OFDM signal (middle), clipped & filtered
OFDM signal (bottom).

3.3.2 Iterative Clipping & Filtering

To combat the peak regrowth it is common to apply clipping & filtering iteratively,

x
(i+1)
C,m [n] = fC

(
x

(i)
CF,m[n], A

)
(3.40)

until the signal converges to a reduced PAPR, as shown in Figure 3.8.

As the clipped and filtered input to the clipping function is no longer Gaussian distributed,

Bussgang’s theorem cannot be directly applied. However, a statistically equivalent model of the

clipped signal still exists in the same form,

x
(i)
C [n] = A(i)x

(i−1)
CF [n] + ε(i)[n] (3.41)

where the clipping noise is uncorrelated with the clipped and filtered signal and A(i) is given

by [50]

A(i) = R(i)
xc,xcf

(
R(i−1)
xcf

)−1
, (3.42)

with

R(i)
xc,xcf

= E
[
x

(i)
C [n]x

(i−1)†
CF [n]

]
, (3.43)

R(i−1)
xcf

= E
[
x

(i−1)
CF [n]x

(i−1)†
CF [n]

]
. (3.44)

The final clipped and filtered signal can be expressed,

xCF[n] = Ax[n] + ε[n] (3.45)
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Figure 3.8: Complementary cumulative distribution function of array PAPR with iterative
clipping & filtering, γ = 1.2, 8 users, 64 BS antennas, 512 subcarriers, QPSK symbols.

where

E
[
x[n]ε†[n]

]
= 0, (3.46)

and

A =
∏
i

A(i) (3.47)

= Rxcf ,xR
−1
x (3.48)

with

Rxcf ,x = E
[
xCF[n]x†[n]

]
. (3.49)

As with the Bussgang decomposition, on a subcarrier level the signal is similarly expressed,

xCF,l = Ax + εl. (3.50)

This is referred to here as the generalised Bussgang model, and can be analysed in the same way

as the Bussgang model. The main difference is that the matrix A is now generally non-diagonal,

and must be estimated numerically. The exception here is the case where the transmit samples

are independent at each antenna, in which case Rxcf ,x and Rx are both diagonal matrices,

resulting in diagonal A and Rε.

3.3.3 Phase-only OFDM

The ideal transmit signal has a PAPR of 1 – all samples have the same amplitude. This can

be produced by a ‘phase-only’ clipping function in which all samples are clipped to a constant
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amplitude, AP, with only the phase information of the OFDM signal preserved,

fP(x) = AP

x

|x|
. (3.51)

As with standard clipping & filtering, the phase-only signal can be represented using the

Bussgang decomposition, with

αm =
E
[
|xm[n]|

]
E
[
|xm[n]|2

] =
AP

2

√
π

Pm
, (3.52)

which follows directly from properties of the Rayleigh distribution. Thus the Bussgang gain for

each antenna varies inversely with the per-antenna power – high power antennas experiencing

greater signal attenuation. This Bussgang decomposition gives an interesting insight – just the

phase information of the OFDM signal is sufficient to communicate some information [158].

Since the necessary filtering of out-of-band signal components causes peak regrowth, as in

3.2.2, improved performance is achieved by applying the phase-only and filtering scheme (PF)

iteratively. Whilst the final PF signal does not have a constant envelope, it can be considered

‘phase-only’ in the sense that only the phase information from the original OFDM signal is

present. The analysis in the following sections can be applied equally to clipped & filtered

OFDM or phase-only OFDM (which can be seen as a special case of CF).

3.4 Impact of Clipping & Filtering on Massive MIMO Perfor-

mance

The received clipped and filtered signal on a given subcarrier is given by,

y = HxCF + η (3.53)

= HAWs + Hε+ η, (3.54)

(where the subcarrier and iteration indices are dropped for clarity), whilst at a given user the

received signal is

yk = hTkAwksk +
∑
j 6=k

hTkAwjsj + hTk ε+ η. (3.55)

The clipping manifests itself in two effects:

• The Bussgang attenuation, A, distorts the MIMO precoding. This will generally lead to

a reduction in received signal power for the intended user data stream, and an increase in

interference from other user data streams. For example, under zero-forcing precoding the

orthogonality of the data streams will be lost if A is not of the form αIM .

• The clipping noise introduces an additional source of (approximately) Gaussian error at

the receiver, with power hTkRεh
∗
k. For a given Rε, the strength of the received clipping

noise depends on both the ‘direction’ of the user channel, hk/‖hk‖, and the strength of

the channel vector, ‖hk‖.
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Using the fact that the signal components are all uncorrelated, the receive SINR is

SINRk =
ρk
∣∣hTkAwk

∣∣2∑
j 6=k ρj

∣∣hTkAwj

∣∣2 + hTkRεh∗k + 1
, (3.56)

and

Ck = log2

(
1 + SINRk

)
(3.57)

is an achievable rate (since treating hTk ε as Gaussian noise provides a lower bound on capacity

[84]).

Since clipping reduces the average power of the transmit signal, for a meaningful performance

comparison the clipped and filtered signal should be normalised so that it has the same average

power as the original OFDM signal. Figure 3.9 compares the mean user capacity with and

without average power normalisation at different clipping ratios, for a system with 8 users,

where the user channels have identical pathloss and ten Rayleigh fading channel taps. The

power level is set so that each user has an SNR of 15 dB without clipping. The clipping error

covariance matrices for each subcarrier are calculated numerically. In this example, most of the

capacity loss is due to the Bussgang gain reducing the desired signal power, and is partially

compensated for by normalising the transmit power.

Figure 3.9: Mean user capacity for different clipping ratios with and without power normalisa-
tion, clipping & filtering with three iterations. Normalised to receive SNR 15 dB (unclipped),
8 users, 64 BS antennas, 512 subcarriers.
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3.4.1 Asymptotic Performance

As discussed in Chapter 2, much MIMO analysis assumes fading at different antennas occurs

independently. Under this assumption, providing significant frequency diversity is present3, it

can then be assumed that transmit power is evenly distributed between antennas, with low

correlations between their time domain transmit samples,

Rx ≈
PT

M
IM . (3.58)

The clipped & filtered signals will then also be uncorrelated, and therefore

A = αIM , (3.59)

with spatially white clipping noise

Rε = σ2
εIM . (3.60)

For large M , the received clipping noise power is given by,

hTkRεh
∗
k ≈ σ2

εβkM. (3.61)

For a constant clipping ratio the clipping noise power is proportional to the transmit power,

σ2
ε ∝ PT/M . Since, due to array gain, the required transmit power also decreases PT ∼ 1/M

(cf. Section 2.5.1), the received clipping noise asymptotically disappears as M →∞,

hTkRεh
∗
k → 0. (3.62)

The effect of clipping is then only to reduce the SNR at the users by a factor α, which can be

compensated for by normalising the final signal power. This is illustrated in Figure 3.10 for 8

users with independent 10-tap Rayleigh fading channels and 3 iterations of clipping & filtering

with γ = 1.2. Observe here that the impact of clipping on performance is more significant at

higher SNRs, with receiver noise being the main limiting factor at low SNR.

3If the channels to all antennas have the same path loss, and the precoding matrices are independent on
different blocks of subcarriers then by the law of large numbers 1

N

∑N−1
l=0 WlW

†
l →

PT
M

IM for large N .
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Figure 3.10: Mean user capacity with varying antenna numbers, 8 users, 512 subcarriers, γ =
1.2, 3 iterations.

3.4.2 Spatially Correlated Channels

As shown in Figure 3.6, precoding for spatially correlated MIMO channels can result in increased

PAPR, and a greater need for PAPR reduction. This change in channel statistics will also impact

the effect clipping & filtering has on performance.

Firstly, when there is variation in per-antenna average transmit power, Pm, the Bussgang

gain matrix, A, will not be of the form αIM , and the symbol precoding will be distorted –

leading to additional inter-user interference.

Secondly, high spatial correlation in the OFDM transmit signal samples will lead to spatially

correlated clipping noise. The relationship between the OFDM signal spatial correlation and

clipping noise spatial correlation is difficult to analyse, and the clipping noise correlation must

generally be evaluated numerically

Rε,l = E
[(

xCF,l −Axl
)(

xCF,l −Axl
)†]
. (3.63)

However, analysis of the spatial characteristics of general non-linear distortion in [147] shows

that when there is a dominant transmit direction the distortion will tend to be beamformed

in that direction, whilst for multiple transmit directions, with none dominant, the distortion

will tend to be radiated fairly isotropically (i.e. low spatial correlation). It also shown that the

number of directions the distortion is radiated in increases rapidly with the number of users

(∼ K3), whilst frequency diversity will tend to reduce the distortion correlation.

The spatial correlation of a signal can be usefully visualised using the eigenvalues of the

spatial covariance matrix [15]. The magnitudes of the eigenvalues of both the transmit signal

correlation matrix, Rx, and the clipping noise covariance matrix, Rε,l, are shown in Figure 3.11
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(all normalised to their largest respective eigenvalue). Two channels are considered – the i.i.d

Rayleigh fading channel with 10 taps, and the correlated Rayleigh fading channel from Figure

3.6. Conventional ZF precoding with a total power constraint is used, and the eigenvalues are

averaged over many fading realisations.

Figure 3.11: Solid line: normalised eigenvalues of clipping noise covariance (measured on central
subcarrier), dashed line: normalised eigenvalues of transmit signal covariance.

The eigenvalue spread for the clipping noise covariance under i.i.d fading is small, indicating

that it is radiated almost isotropically. Under correlated fading, the transmit signal samples

are highly correlated. The clipping noise is radiated more evenly than the correlated transmit

signal, but exhibits significantly higher spatial correlation than the clipping noise produced

under i.i.d fading. Overall, the impact of clipping on performance can be expected to be more

severe in the correlated fading case, as is shown in Figure 3.12.
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Figure 3.12: Mean user capacity with varying antenna numbers, 8 users, 512 subcarriers, γ =
1.2, 3 iterations.

3.4.3 Near-Far Effect

The power of the received clipping noise at user k is proportional to the channel strength, ‖hk‖2.

Under max-min power control a near-far effect can therefore occur where, in the presence of

users with weak channels, the clipping noise strongly degrades the performance of users with

strong channels. This occurs because under max-min power control, more power is allocated to

users with weak channels, so that all users have the same received signal strength. The clipping

noise (which has a power related to the total transmit power) therefore has a disproportionate

effect on the near users. This is illustrated in Figure 3.13, where the near user has a channel

strength 10 dB greater than the far users – the degradation of the performance of the near user

due to clipping noise is much worse than the far users4.

When all users have a similar pathloss this effect is reduced, because the BS power is shared

more equally between users. For example if all the users have strong channels, under max-min

power control they will each receive a stronger signal (compared to the case where far users are

also present), and the impact of the clipping noise will be reduced. The spatial filtering method

proposed in the next section presents an attractive means of addressing this problem, whilst

also improving the performance of the far users.

4A similar near-far effect occurs when beamforming with imperfect CSI, and can be addressed by incorporating
CSI errors into max-min power control. A similar thing could be potentially attempted with clipping, and is a
possible area for future work.
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Figure 3.13: Near-far effect of clipping on user capacity where average channel strength of near
user is 10 dB greater than far users. Power normalised to receive SNR 15 dB (unclipped), three
iterations of clipping & filtering, 1 near user, 7 far users, 64 BS antennas, 512 subcarriers.

3.5 Clipping & Least Squares Spatial Filtering

The use of aggressive clipping & filtering leads to transmit signals with very good PAPR per-

formance, at the expense of often considerable degradation to link performance. If a signal can

be found that closely represents the CF signal in the time domain, but which gives improved

link performance, this signal will be a strong candidate for a low PAPR transmit signal. This

section shows that such a signal can be found through spatial filtering of the CF signal.

The least squares spatial filtering approach is based on the idea, previously noted in [219],

that a signal that closely matches the CF signal in a squared error sense, i.e. a transmit signal,

xLS[n] with a low value of

ε =
1

qN

qN−1∑
n=0

∥∥xLS[n]− xCF[n]
∥∥2
, (3.64)

will also display attractive PAPR characteristics. The use of a squared error measure is at-

tractive since, as this section shows, it enables a simple linear closed form expression for the

transmit signal to be found. Whilst its use is heuristic – it does not explicitly minimise the peak

power of the transmit signal – the results presented here show that the least squares filtering

approach can produce signals with very low PAPR, whilst suffering only a small performance

loss.

This section begins by outlining the conventional spatial filtering, or nullspace projection,

method that has been previously been employed in [205], [136] & [219]. Using the Bussgang

clipping model developed in the previous section, the limitations of this scheme are identified. A

new scheme that accounts properly for the effects of clipping – referred to as the Bussgang-aware
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least squares (BLS) method – is then developed, and the benefits of this scheme demonstrated.

The idea of active constellation extension is then incorporated into this scheme.

3.5.1 Least Squares Spatial Filtering / Nullspace Projection Method

A good candidate transmit signal achieves good link performance whilst closely approximating

the low PAPR CF signal. A key feature of the squared error measure (3.64) is that, using

Parseval’s theorem, it may also be expressed in terms of the squared error on the subcarriers,

ε =
1

N

N−1∑
l=0

∥∥xLS,l − xCF,l

∥∥2
. (3.65)

Minimisation of the squared error between the transmit and CF time domain signals can there-

fore be achieved by minimising the error on each subcarrier – which is attractive since MIMO-

OFDM processing is carried out on a subcarrier level. In the previously proposed methods,

the transmit signal is chosen such that the signal received at the users is equal to the original

precoded signal, i.e.

HlxLS,l = Hlxl. (3.66)

The optimal transmit signal can be found independently for each subcarrier, by solving N

parallel constrained least squares optimisations

minimise
xLS,l

∥∥xLS,l − xCF,l

∥∥2
, (3.67)

subject to HlxLS,l = Hlxl. (3.68)

Dropping the subcarrier index for clarity, the solution to this can be easily shown to be (see

Appendix 1.1)

xLS = xCF −H†(HH†)−1H
(
xCF − x

)
. (3.69)

The CF signal can be written as the sum of the OFDM signal, x, and an additive error as in

[205], [136], [219],

xCF = x + c, (3.70)

where the additive error, c, is responsible for cancelling the peaks in the OFDM signal. The

least squares solution can then be interpreted intuitively in two ways.

First, the transmit signal can be written

xLS = x +
(
IM −H†(HH†)−1H

)
c. (3.71)

The matrix
(
IM −H†(HH†)−1H

)
is the orthogonal nullspace projection matrix for H, and the

least squares approximation is the original OFDM signal plus a peak reduction signal generated

through spatially filtering the CF peak cancellation signal (by projecting it into the channel

nullspace). This is the approach used in [205], [136] & [219], where the nullspace projection

matrix is calculated using the singular value decomposition of H.
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Alternatively, the transmit signal can be expressed

xLS = xCF −W(ZF)d (3.72)

where W(ZF) is the conventional zero-forcing precoder as described in Section 2.3, and d is the

error at the receivers due to the peak reduction signal,

d = Hc. (3.73)

The least squares signal can then be thought of as the CF signal plus a second signal that

cancels out the error caused by the peak reduction signal. This second interpretation is useful

from an implementation perspective, showing that the least squares signal can be generated

using the ZF precoder – which in many cases will already be available.

Analysis

The addition of the error cancellation signal to the original CF signal changes the transmit

signal samples, with squared error

ε =
1

N

N−1∑
l=0

∥∥W(ZF)

l dl
∥∥2
. (3.74)

When this error is small, the transmit signal can be expected to retain its good PAPR properties,

and when it is large peak regrowth can be expected.

A useful insight is provided by analysing the expected transmit signal error

E[ε] =
1

N

N−1∑
l=0

E
[∥∥W(ZF)

l dl
∥∥2]

(3.75)

=
1

N

N−1∑
l=0

E
[∥∥W(ZF)

l Hl

(
εl +

(
A− IM

)
Wlsl

)∥∥2]
(3.76)

=
1

N

N−1∑
l=0

∥∥W(ZF)

l HlR
1/2
ε,l

∥∥2
+

1

N

N−1∑
l=0

ρ
∥∥W(ZF)

l Hl

(
A− IM

)
Wl

∥∥2
(3.77)

=
1

N

N−1∑
l=0

∥∥W(ZF)

l HlR
1/2
ε,l

∥∥2
+

1

N

N−1∑
l=0

ρ
∥∥AWl −Wl

∥∥2
(3.78)

where the second line follows since cl = Axl + εl − xl, and the fourth line since W(ZF)

l Hl is an

orthogonal projection into the channel column space (which the precoded signal component lies

fully within).

This error is a combination of the power needed to cancel the uncorrelated clipping noise and

the power needed to correct the error in the data symbol precoding due to the Bussgang gain.

It is the power required to correct the symbol precoding that limits the PAPR performance of

this scheme. This can be understood by considering the simplified example from 3.4.1, with
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A = αIM . Using (3.14), the power required to cancel the precoding error component is

1

N

N−1∑
l=0

ρ
∥∥(α− 1)Wl

∥∥2
=
(
1− α)2PT , (3.79)

where PT is the total transmit power of the original OFDM signal as in (3.15). As clipping is

applied more aggressively (γ decreases), the Bussgang gain, α, decreases and ε increases. When

α is small the power of the cancellation signal is comparable to the power of the original OFDM

signal, and significant peak regrowth occurs – effectively reversing the PAPR reduction achieved

by clipping.

This is shown in Figure 3.14, where beyond a clipping ratio of around γ = 1.5 significant

peak regrowth occurs and the PAPR grows again. This limits the PAPR reduction that can be

achieved, even when many clipping & spatial filtering iterations are used.

Figure 3.14: PAPR reduction of iterative least squares filtering scheme in Rayleigh channel,
K = 8, M = 64 and N = 512.

3.5.2 Bussgang-aware Least Squares Filtering

The conventional least squares filtering method attempts to maintain the same received signal

at the users, despite the fact that – as shown in Section 3.3 – the clipping operation inherently

reduces the strength of the OFDM signal component. This prevents the method from converging

when the clipping ratio is small, limiting the PAPR reduction it can achieve. Here, it is proposed

that this can be addressed by choosing a target received signal that accounts for the loss in gain

– the Bussgang-aware least squares filtering approach (BLS).

The key idea with the Bussgang-aware least squares approach is to replace the constraints
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in (3.66) with

HlxBLS,l = µlHlxl (3.80)

where µl are constants chosen to account for the loss in gain due to clipping. The least squares

signals are then the solutions to

minimise
xBLS,l

∥∥xBLS,l − xCF,l

∥∥2
, (3.81)

subject to HlxBLS,l = µlHlxl, (3.82)

which are given, similarly, as

xBLS = xCF −W(ZF)H
(
xCF − µx

)
(3.83)

= xCF −W(ZF)H
(
AWs + ε− µWs

)
. (3.84)

The cancellation signal is now the difference between the clipped signal and a scaled version of

the original OFDM signal.

The optimal choices of scaling factor, in terms of PAPR, are the ones that minimise the

average power of the cancellation signal,

minimise
µl∀l

E[ε], (3.85)

equivalent to solving the N optimisation problems

minimise
µl

∥∥AWl − µlWl

∥∥2
. (3.86)

This is achieved by the scaling factors (see Appendix 1.2)

µl =
Tr
(
W†

lAWl

)
Tr
(
W†

lWl

) (3.87)

The cancellation signal now has two roles – it removes the clipping noise at the users, and it

corrects the distortion to the precoding caused by clipping, but it does not attempt to com-

pensate for the attenuation of the OFDM signal component. As a result, a better least squares

approximation is achieved than the conventional least squares method, and significantly less

peak regrowth occurs, as shown for the 10 tap Rayleigh channel in Figure 3.15.

For the illustrative case of A = αIM , no power is expended correcting the precoding under

the BLS scheme (since µ = α) whilst for Rε = σ2
εIM , the power required to cancel the clipping

noise is given by,

1

N

N−1∑
l=0

∥∥W(ZF)

l HlR
1/2
ε,l

∥∥2
= Kσ2

ε , (3.88)

and by the reasoning used in Section 3.4.1, under this model as M →∞,

Kσ2
ε → 0. (3.89)
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Figure 3.15: Comparison of PAPR regrowth of LS and BLS spatial filtering methods.

Thus, if sufficiently rich scattering is present, as the number of antennas grows it can be expected

that the least squares approximation of the clipped & filtered signal becomes more accurate,

and the PAPR performance improves.

3.5.3 Iterative BLS

To achieve good performance the iterative clipping & filtering should be used, with the BLS

approximation applied after each stage. Using the generalised Bussgang model, the clipped

signal on subsequent iterations can be written

x
(i)
CF = A(i)x

(i−1)
BLS + ε(i) (3.90)

= µ(i−1)A(i)x + A(i)
(
IM −W(ZF)H

)
ε(i−1) + ε(i) (3.91)

= µ(i−1)A(i)x + ε′, (3.92)

where A(i) is given by

A(i) = R(i)
xcf ,xbls

(
R(i−1)
xbls

)−1
, (3.93)

with

R(i)
xcf ,xbls

= E
[
x

(i)
CF[n]x

(i−1)†
BLS [n]

]
, (3.94)

R(i−1)
xbls

= E
[
x

(i−1)
BLS [n]x

(i−1)†
BLS [n]

]
. (3.95)

Estimating A(i) fully is prohibitive, since it requires the estimation and inversion of an M ×M
matrix. Instead, the Bussgang gain may be approximated as a diagonal matrix, Ã(i), similarly
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to (3.30), with diagonal entries

[
Ã(i)

]
m,m

=
E
[
x

(i)
CF,m[n]x

(i−1)∗
BLS,m [n]

]
E
[∣∣x(i−1)

BLS,m[n]
∣∣2] (3.96)

≈
∑qN−1

n=0 x
(i)
CF,m[n]x

(i−1)∗
BLS,m [n]∑qN−1

n=0

∣∣x(i−1)
BLS,m[n]

∣∣2 . (3.97)

Since the Bussgang matrix estimate is only used for setting the target symbol scaling some error

can be tolerated provided the overall effect of signal attenuation is still captured.

The Bussgang least squares filtering on the second iteration is then applied as,

x
(i)
BLS = x

(i)
CF −W(ZF)H

(
x

(i)
CF − µ(i)x

)
(3.98)

where

µ(i) =
Tr
(
W†Ã(i)W

)
Tr
(
W†W

) µ(i−1) (3.99)

Figure 3.16 shows that, unlike the conventional least squares method, with this strategy the

scheme converges at all clipping ratios. Furthermore, significantly lower PAPR can be achieved

– a PAPR of less than 5 dB can be achieved, compared to around 6 dB for the least squares

method.

Figure 3.16: PAPR reduction of iterative BLS scheme in Rayleigh channel, K = 8, M = 64 and
N = 512.

An apparent downside of the BLS PAPR reduction scheme is that it reduces the strength

of the signal received at the users. However, the BLS scheme also reduces the average power of

the transmit signal, and after power normalisation the loss in overall receiver SNR is small, as
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shown in Figure 3.17.

Figure 3.17: Loss in received signal power after power normaliation. 5 clipping iterations, i.i.d
Rayleigh channel, K = 8, M = 64 and N = 512.

At a clipping ratio γ = 1, the BLS scheme only imposes a 0.3 dB penalty relative to

unclipped OFDM. Comparing with Figure 3.16, beyond this point the PAPR continues to

reduce, but slowly, whilst the SNR loss drops off more quickly, indicating that operating γ = 1

is a good operating point. Note that the LS method does not achieve PAPR reduction at small

clipping ratios. Figure 3.18 shows the PAPR convergence and SNR loss of the BLS method.

The use of phase-only clipping results in significant SNR loss compared to standard clipping.

Figure 3.18: PAPR reduction and receive SNR loss of iterative BLS clipping & filtering in 10
tap i.i.d Rayleigh channel, K = 8, M = 64 and N = 512.

Since the projection matrix W(ZF)

l Hl does not depend on the user channel strengths5 the

5This can be seen by writing H = DH̄ where D = diag(‖hk‖) and the rows of H̄ have unit norm. Then
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near-far clipping noise effects discussed in 3.4.3 are eliminated. Figure 3.19 shows the BER for

uncoded QPSK in the near-far scenario where one user has a average channel 10 dB stronger than

the others. Under the BLS scheme the performance loss is negligible, but under conventional

clipping & filtering the near user experiences a high error floor.

Figure 3.19: Bit error rate in near-far scenario, i.i.d Rayleigh channel, QPSK, 5 clipping itera-
tions with γ = 1, K = 8, M = 64 and N = 512.

3.5.4 BLS in Correlated Channels

The error in the least squares approximation depends on the Bussgang gain and clipping noise

covariance, and therefore the PAPR reduction that is achieved depends on the MIMO channel.

When operating in spatially correlated channels, clipping & filtering can introduce more inter-

user interference and clipping noise at the users, as discussed in Section 3.4.2. Under the BLS

scheme, this means that more power must be used to cancel the effects of clipping, which will

generally result in higher overall PAPR.

Figure 3.20 shows the PAPR reduction and SNR loss (compared to unclipped OFDM)

achieved when iteratively applying the BLS clipping & filtering scheme, for the correlated

channel from Section 3.4.2. With clipping ratio γ = 1 the scheme can reduce the PAPR

from over 15 dB to less than 6 dB with less than 0.4 dB performance penalty, but requires a

larger number of iterations than in the i.i.d Rayleigh channel.

W(ZF)H = H̄†
(
H̄H̄†

)−1
H̄ – any scaling of ‖hk‖ does not impact the power required to cancel the user clipping

noise.
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Figure 3.20: PAPR reduction and receive SNR loss of iterative BLS clipping & filtering in
correlated Rayleigh channel, K = 8, M = 64 and N = 512.

3.5.5 Active Constellation Extension

Under ACE some clipping noise is permitted at the receiver providing it falls within certain

regions of the symbol constellation [112]. This enables a closer representation of the CF signal

to be used, improving PAPR performance.

The BLS is easily extended to include ACE by replacing the constraint in (3.80) with

HxBLS = µHWs̃, (3.100)

where s̃ is the nearest point to the clipped signal that lies within the extended constellation

region,

minimise
s̃

∥∥HxCF − µHWs̃
∥∥2
, (3.101)

subject to s̃ ∈ C(s), (3.102)

where C(s) is the extended constellation region for symbol vector s. This is achieved by pro-

jecting the received clipped signal point for each user into the permitted constellation region

(with appropriate scaling), as illustrated geometrically for QPSK signalling in Figure 3.21.

The extended constellation point, s̃ may contain either/both clipping noise and inter-user

interference, and necessarily have

∥∥HxCF − µHWs̃
∥∥2 ≤

∥∥HxCF − µHWs
∥∥2
, (3.103)
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Figure 3.21: Illustration of projection of hTk xCF into C(s) for QPSK.

meaning that ACE-BLS results in less peak regrowth than BLS. Since only the outermost

constellation points are extended under ACE it is most effective for smaller constellations –

where there is a higher probability of the received clipped signal falling within the allowed

regions. This suggests that ACE is most applicable in scenarios with low to moderate individual

user data rates.

When the number of antennas is reduced, the nullspace dimension, M − K, reduces, and

the performance of the BLS algorithm reduces. The marginal improvement offered by using

ACE is then increased, as shown in 3.23 for a reduced size MIMO system with K = 8 users and

M = 16 antennas. Under QPSK signalling, ACE can provide over 2 dB of additional PAPR

reduction, whilst achieving the same bit error rate, as shown in 3.24.
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Figure 3.22: PAPR of ACE PAPR reduction scheme in 10 tap i.i.d Rayleigh channel. 5 clipping
iterations, γ = 1, K = 8, M = 64, N = 512.

Figure 3.23: PAPR of ACE PAPR reduction scheme in 10 tap i.i.d Rayleigh channel. 5 clipping
iterations, γ = 1, K = 8, M = 16, N = 512.
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Figure 3.24: BER of QPSK under CF, BLS and ACE PAPR reduction schemes in 10 tap i.i.d
Rayleigh channel. 5 clipping iterations, γ = 1, K = 8, M = 16, N = 512.
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3.5.6 Practical Aspects

Finally, this section discusses some practical aspects of the proposed scheme: the computational

complexity of the scheme is first explored and a basic algorithm for implementing the scheme

is given. Finally, the implications of imperfect channel state information are discussed.

Computational Complexity

The key computations involved in the BLS scheme are:

• The FFTs and IFFTs required to convert the signal into the time domain for clipping, and

back to the frequency domain. These each have complexity O
(
qN log2(qN)

)
per antenna,

for a total complexity of O
(
qMN log2(qN)

)
per iteration.

• Calculation of the Bussgang matrix, A(i). Using the expression in (3.97) this has overall

complexity O
(
qMN

)
per iteration. From A(i), the target symbol scalings µl can be

calculated, with complexity O
(
qMN

)
. These should be kept fixed for the duration of

the coherence block (multiple subcarriers across multiple OFDM symbols), to ensure a

constant symbol scaling is observed at the users.

• Calculation of the cancellation signal, requiring matrix multiplications for calculating the

received clipped signal and the cancellation precoding, with overall complexity O
(
MKN

)
.

Since ZF precoding is optimal in many massive MIMO settings, it can be assumed that

the ZF precoding matrix is available at no additional computational cost. Furthermore,

existing signal processing software architecture used for data precoding could be re-used

for calculating the LS signal.

For typical massive MIMO configurations (K �M � N), the overall complexity is

computational complexity of BLS scheme ∼ O
(
MN(q log2(qN) +K)it

)
, (3.104)

per OFDM symbol. This is linear in both MIMO dimensions and bandwidth, and hence scales

well to large systems. Furthermore, overall complexity is comparable to that of conventional

clipping & filtering – for example, in a system with 1200 subcarriers, oversampling factor 4, 64

BS antennas and 8 users the complexity of the BLS scheme is approximately double that of con-

ventional CF per iteration. Since the PAPR reduction increases when more iterations are used,

as shown in Figures 3.18 & 3.20, there is a tradeoff between performance and computational

complexity.

Algorithm

The basic (unoptimised) BLS algorithm is shown in Algorithm 1.

Implications of Imperfect CSI

Practical MIMO systems will generally operate with imperfect CSI. Assuming the signal through

the unknown channel component is treated as noise, two sources of interference will be produced
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Algorithm 1 Bussgang-aware Least Squares Spatial Filtering

inputs: x[n],Wl,Hl,Rx, γ

xBLS[n]← x[n]

Amax ←
γ

M
Tr
(
Rx

)
µl ← 1

A← IM

for i = 1 : it do

for m = 1 : M do

for n = 0 : qN − 1 do

xC,m[n]← min
(
Amax,

∣∣xBLS,m[n]
∣∣)× xBLS,m[n]

|xBLS,m[n]|

end for

[A]m,m ←
∑qN−1

n=0 x
(i)
C,m[n]x

(i−1)∗
BLS,m[n]∑qN−1

n=0 |x
(i−1)
BLS,m[n]|2

end for

xC,l ← FFT
(
xC[n]

)
for l = 0 : N − 1 do

µl =
Tr(W†

l AWl)

Tr(W†
l Wl)

µl

xBLS,l ← xC,l −Wl

(
HlxC,l − µlxl

)
end for
xBLS[n]← IFFT

(
xBLS,l

)
end for

xBLS[n]← ζxBLS[n]

outputs: xBLS[n]

under the BLS scheme – interference that results from the data symbol precoding not perfectly

matching the channel, and interference that results from the clipping noise not being perfectly

cancelled out by the BLS method.

Using the analysis method outlined in Section 2.4.2, the received signal under the BLS

scheme is given by

yk = ĥTk xBLS + eTk xBLS + η (3.105)

= ĥTk xBLS + µeTkWs + eTk
(
IM −W(ZF)H

)
ε+ η (3.106)

= µĥTkwksk + (µ
∑
j 6=k

ĥTkwjsj + θk + φk) + η (3.107)

= signal + interference + noise (3.108)

where all terms are uncorrelated and θk is interference due to data precoding and φk interference

due to uncancelled clipping noise. Since the power of the data signal component is much larger
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than the power of the clipping noise it can generally be assumed that E
[∣∣θk∣∣2]� E

[
|φk|2

]
, and

the data precoding is the main limiting factor, rather than the BLS scheme.

Some insights can be gained from assuming the clipping analysis model in Section 2.4.2,

under which

E
[∣∣θk∣∣2] = α2ρ

K∑
j=1

w†jCkwj (3.109)

E
[
|φk|2

]
= σ2

ε Tr
((

IM −W(ZF)H
)
Ck

)
(3.110)

< σ2
ε Tr

(
Ck

)
, (3.111)

where the inequality follows since
(
IM −W(ZF)H

)
is a nullspace projection. In comparison,

under standard clipping & filtering

yk = ĥTk xCF + eTk xCF + η (3.112)

= ĥTkAwksk +
(∑
j 6=k

ĥTkAwjsj + ĥTk ε+ eTkAWs + eTk ε
)

+ η (3.113)

= αĥTkwksk +
(
α
∑
j 6=k

ĥTkwjsj + ĥTk ε+ θk + φ′k
)

+ η (3.114)

= signal + interference + noise. (3.115)

Under the simplified clipping analysis model

E
[
|ĥTk ε|2

]
= σ2

ε

∥∥ĥk∥∥2
(3.116)

E
[
|φ′k|2

]
= σ2

ε Tr
(
Ck

)
. (3.117)

From this it can be seen that BLS scheme experiences lower amounts of interference from

clipping noise compared to standard clipping & filtering, and better SINR, for any quality of

CSI. However, as the CSI error grows large the error due to data precoding with a poor estimate

of the channel matrix, θk, will come to dominate over all of the clipping noise effects. At this

point, the benefits of using BLS will be small compared to just using standard clipping &

filtering.

Generally, it can be expected that the BLS scheme will experience improved SINR over

conventional clipping & filtering for any quality of CSI, since the error cancellation stage will

always cancel out some of the error introduced by clipping & filtering. However, when the CSI

is of poor quality, performance degradation will be mainly due to imperfect CSI, rather than

clipping noise, and the BLS scheme will not significantly improve performance. A thorough

numerical investigation into the benefits of the scheme under imperfect CSI remains as future

work.

3.6 Conclusion

The high PAPR of OFDM signals is a long-standing problem that affects the energy efficiency

and hardware cost of cellular systems. The precoded downlink signals used in massive MIMO-
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OFDM systems suffer from worse PAPR than SISO systems, and therefore new practical and

effective PAPR reduction schemes are required to help massive MIMO achieve the high energy

efficiencies required by fifth generation & future wireless systems.

The primary contribution of this chapter is a clipping & spatial filtering PAPR reduction

scheme that uses clipping to reduce the PAPR of the transmit signal, simultaneously transmit-

ting an additional low power spatially precoded signal to correct the distortion introduced at the

receivers by the clipping operation. This enables aggressive levels of clipping to be applied to the

BS transmit signal without incurring the significant performance degradation that occurs under

conventional clipping & filtering. Numerical results show that for a massive MIMO-OFDM

system with 8 users, 64 BS antennas and 512 subcarriers, the scheme can reduce the PAPR of

the transmit signal by over 8 dB whilst only incurring a performance loss of 0.3 dB.

Whilst related clipping & spatial filtering schemes have previously been proposed, the

method developed here explicitly accounts for the signal attenuation caused by the clipping

operation, improving convergence at low clipping ratios to facilitate 1 dB additional PAPR

reduction compared to previous schemes. This improvement comes from developing & in-

corporating a statistical model for the clipping operation, based on Bussgang’s theory, that

decomposes the clipped signal into a linear transformation (attenuation) of the transmit signal

and an uncorrelated clipping noise.

The proposed solution is extended to include active constellation extension, where certain

distortion is allowed at the users provided it falls outside of the signal constellation. This

enables a further 1-2 dB PAPR reduction with no additional performance cost, and is shown

to be particularly beneficial when smaller constellation sizes are used and/or when a smaller

excess of antennas is used at the BS. It could therefore be a valuable addition to massive MIMO

systems that simultaneously serve low to medium data rates to a large numbers of users.

Overall, the proposed solution represents an approach to PAPR reduction for massive MIMO

which is both effective and practical. The scheme can be used ‘on-top’ of a conventional linearly

precoded massive MIMO-OFDM system, and its main computational tasks re-use the conven-

tional FFT and linear ZF precoding operations already used within MIMO-OFDM systems. For

a typical system the computational complexity is around double that of conventional clipping

& filtering, representing an attractive compromise between performance and computational

requirement.

However, there may be some scenarios where this additional complexity is not justified

– for example, when operating at low SNR or with poor quality CSI the relative impact of

clipping noise on performance is reduced, and the use of conventional clipping & filtering without

spatial filtering may give adequate performance. Further work to characterise the benefits under

different operating conditions would therefore be a useful next step in the development of the

scheme.

The findings of this chapter suggest that another standout area requiring investigation is

the impact of precoding and channel conditions on the signal PAPR. Results presented here

show, for example, that precoding for a correlated fading channel can result in a MIMO-OFDM

signal with 2+ dB higher PAPR than under i.i.d fading. Thus, whilst the proposed solution

achieves similar levels of PAPR reduction in both the i.i.d and correlated fading examples, the
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overall PAPR remains higher under correlated fading. One factor that should be investigated is

the influence on PAPR of an unequal power distribution between the transmit antennas, since

a spread of powers brings an inherent PAPR increase. Conventional MIMO precoding matrices

are designed under total power constraints, but results presented in this chapter indicate that

designing the precoding matrices using per-antenna power constraints can significantly reduce

PAPR. Low complexity precoding schemes that minimise power variations between antennas

could therefore complement the proposed solution to bring further PAPR reduction.
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Chapter 4

Transform Coding-based Signal

Compression for Uplink MIMO

C-RAN

The MIMO cloud (or centralised) radio access network (C-RAN) represents a promising concept

for handling the densification of cellular networks required to meet future capacity demands

[168]. Performing the processing for multiple geographically distributed remote radio heads

at a single central processor (CP) enables inter-user interference to be eliminated and good

service provided to large numbers of users within the macro-coverage area. The computationally

intensive signal processing, MAC and higher layer network functions are performed in software

at the CP, and upgrades to the network require only CP software updates and the deployment of

additional low-cost radio heads. Furthermore, distributing the radio heads reduces the path-loss

to users, enabling transmit power to be reduced and energy efficiency improved.

In the C-RAN architecture a ‘fronthaul’ network provides the connections between the radio

heads and CP, and ideally consists of high capacity fibre links. However, in many scenarios the

provision of a full fibre connection to each radio head is prohibitively expensive, leading to a

growing interest in the use of finite-capacity fronthaul based on reduced capacity fibre, ethernet

or wireless point-to-point links1 [169]. Under the rudimentary signal compression techniques

that exist in current cellular systems, these finite-capacity fronthaul connections can become

a bottleneck for system performance, severely constraining the sum capacity of the C-RAN

network [98]. This motivates the development of bespoke signal compression schemes targeted

towards optimising the performance of a C-RAN network with finite-capacity fronthaul links.

Focusing on the compression of uplink signals, this chapter investigates the use of transform

coding for compression of the received signals in MIMO systems with multi-antenna receivers,

with particular focus on the operating region in which the system capacity is limited by the

capacity of the fronthaul network. Under the proposed transform coding scheme, a lossless

linear transformation is applied to the correlated received signal vector at each remote receiver,

before the components of the transformed signals are individually compressed, at appropriate

resolutions, using scalar compression, as illustrated in Figure 4.1. Assuming optimal Gaussian

1In 2016, around 40% of connections used wireless links [76]
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scalar compression (an information theoretic model that provides an tractable approximation

of entropy coded scalar compression), expressions are derived for sum and per-user network

capacities under transform coding, and performance optimised through the choice of linear

transformations and scalar compression rates. A ‘fronthaul efficiency’ metric is introduced as

the ratio of total uplink MIMO throughput/capacity to total fronthaul throughput/capacity, to

quantify how well the compression scheme utilises the limited fronthaul capacity.

Figure 4.1: Block diagram of proposed transform coding fronthaul compression scheme.

First, the compression of massive MIMO uplink signals in a system with a single remote

receiver is considered. This is relevant to a scenario where the processing for different massive

MIMO receivers is performed separately but at the same CP, and serves as a good starting

point for analysing the use of transform coding in MIMO systems. A new sum capacity upper

bound for the case where the signals at each antenna are individually compressed/quantized is

first developed, showing that this leads to very poor fronthaul efficiency when the number of

antennas grows large. It is then shown that this issue is overcome by exploiting the underlying

sparsity in the massive MIMO received signal through transform coding.

The sum capacity maximising transform coding scheme for a single MIMO receiver is known

to use the Karhunen-Loeve transform (KLT) in a conjunction with a waterfilling rate allocation

[226]. Here, this is applied to massive MIMO systems, and shown to use the available fronthaul

very efficiently, particularly at high SNR. A separate transform coding scheme that produces

a uniform quantization noise level (UQN) across the signal is then shown to approximate the

waterfilling allocation at higher fronthaul rates, and shown numerically to achieve similar per-

formance at all rates. Under this UQN scheme it is shown, using a combination of mathematical

arguments and numerical results, that, whilst the MIMO sum capacity is limited by the amount

of fronthaul available, some of the asymptotic benefits of deploying large numbers of antennas

are preserved – linear detection is optimal, fast fading disappears and required transmit power

reduces.

The remainder of the chapter focuses on transform coding compression for distributed

MIMO, where the CP uses the individually transform coded signals from multiple receivers

to jointly detect the user symbols. Whilst this is known to be the optimal point-to-point (P2P)

compression strategy for distributed MIMO, in contrast to the single receiver case no closed
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form solutions for finding the sum capacity maximising transforms and rate allocations exist.

Instead, these must be found using a successive convex approximation approach (SCA-P2P) in

which a sequence of convex optimisations is solved using computationally expensive numerical

solvers [248] – a procedure that is not practical to implement in real distributed MIMO C-RAN

deployments.

First, the performance of local transform coding with a UQN rate allocation is analysed in

the distributed MIMO setting. Whilst this has been shown to be approximately optimal at high

fronthaul rates, a simple high SNR sum capacity upper bound is derived that shows that when

the network has an overall excess of antennas and limited fronthaul UQN compression will tend

to utilise the available fronthaul poorly. The benefits of using the SCA-P2P approach are then

demonstrated using numerical examples.

To address the respective issues of performance and computational complexity of the UQN

and SCA-P2P schemes, a third approach is investigated here in which a fixed transform is used

in conjunction with a jointly optimised rate allocation. Using the local KLT as the transform

at each receiver, this scheme is an adaptation of the single receiver transform coding scheme in

which the local rate allocations are replaced by ones that are jointly calculated for all receivers

using global CSI.

A similar concept was previously explored in [123], based on maximising the minimum user

capacity under fixed rate scalar quantization. Here, a new rate allocation scheme is proposed

that uses a successive convex approximation approach to maximise the sum capacity, under

either linear or non-linear symbol detection, with optimal Gaussian scalar compression (SCA-

RA). This is shown to have a simple iterative solution in which a waterfilling-type rate allocation

is performed and the corresponding MMSE detection matrices calculated. Unlike the approaches

in [123] this does not require the use of any numerical solvers, with numerical results indicating

convergence to an acceptable solution requires only a small number of iterations (∼ 5).

Overall, the proposed SCA-RA scheme is shown using numerical examples to incur only

a small performance loss compared to the optimal SCA-P2P transform coding solution, and

greatly outperform local transform coding with UQN rate allocation. Analysis of the rate

allocation scheme shows that when the system has an overall excess of antennas, the proposed

scheme will tend to produce to a sparse rate allocation when operating in the fronthaul-limited

region – in response to the joint sparsity intrinsically present in the network. Numerical results

show that the scheme performs best at high SNR, continues to achieve good fronthaul efficiently

as the network densifies, and that there is a benefit to deploying additional antennas at each

receiver. The reduction in signalling overheads compared to the SCA-P2P scheme are also

discussed.

The transform coding schemes for both massive MIMO and distributed MIMO are adapted

for the case of imperfect CSI, and the importance of having good CSI estimates is shown.

Overall, transform coding with the KLT transform and optimised rate allocations represents

a scalable solution for exploiting sparsity and dependencies in the received signals to achieve

efficient fronthaul compression in both massive MIMO and distributed MIMO C-RAN.
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4.1 Chapter Overview

The chapter has the following general structure:

• Section 4.2 provides the background to the C-RAN fronthaul compression problem. It

begins with a more through exposition of the need for bespoke signal compression scheme

for C-RAN systems. A brief summary of lossy signal compression theory is provided,

before a review of the state-of-the-art fronthaul compression techniques for MIMO C-

RAN is provided.

• Section 4.3 studies the application of transform coding to massive MIMO. It begins by

considering the direct scalar compression of the received signals, before outlining the

optimal and UQN transform coding schemes. The performance of massive MIMO systems

under UQN transform coding is then analysed, and the impact of increasing the number

of BS antennas discussed. The method is then adapted for the case of imperfect CSI at

the receiver.

• Section 4.4 studies the application of transform coding to distributed MIMO. A transform

scheme that jointly optimises the compression rates at each receiver is derived, and shown

to deliver a good compromise between complexity and performance. Numerical results

are provided to analyse its performance under different conditions, before the scheme is

adapted for imperfect CSI and practical aspects discussed.

• Section 4.5 summarises the findings and provides some concluding remarks and directions

for future work.

4.1.1 Novel Contributions

The key contributions to the state-of-the-art made in this chapter are:

• A simple upper bound on the sum capacity achievable under direct sampling

& forward, Section 4.3.1. For the case where the received signals at each antenna are

individually compressed, it is shown that the achievable sum capacity increases slowly

with the available fronthaul capacity when the BS has a large excess of receive antennas,

resulting in poor fronthaul efficiency.

• Showing that for a single MIMO receiver, transform coding using the KLT

and Gaussian scalar compression asymptotically achieves the cut-set bound

at high SNR, Section 4.3.2. This demonstrates that the compress & forward strategy

with transform coding can achieve high fronthaul efficiency, at the expense of increased

transmit power and reduced energy efficiency.

• Demonstrating the benefits of adding more antennas under favourable prop-

agation conditions, Section 4.3.4. This follows first from showing that with a single

receiver, transform coding with the KLT and a uniform quantization noise level is quasi-

optimal, from which it is then shown that a number of the asymptotic massive MIMO
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results still hold when the performance is limited by the fronthaul capacity – linear pro-

cessing becomes optimal, fast fading disappears and user transmit power reduces.

• A scalable transform coding scheme for distributed MIMO that uses jointly

optimised rate allocations to efficiently compress the received signals at differ-

ent receivers, Section 4.4.3. Whilst the approach taken is similar to previously used

in and [123], here a lower complexity scheme is developed that doesn’t require numerical

solvers. This comes close to the performance of optimal point-to-point compression, and

at high SNR can achieve very good fronthaul efficiency in the fronthaul-limited region.

• Adapting both schemes for the case of imperfect CSI, sections 4.3.5, 4.4.5.

Assuming MMSE channel estimation is used, both schemes are adapted for the case of

imperfect CSI at the receivers, and capacity expressions derived. The importance of

having good CSI estimates is demonstrated.

4.1.2 Published Work

The basis of the transform coding approach was published in [223]. This applied transform

coding with the KLT to the MIMO uplink under Gaussian scalar compression, and derived

capacity expressions for massive MIMO and distributed MIMO scenarios. The idea of using

local and joint rate allocations were discussed, and numerical results provided.

However, various key results provided in this chapter remain unpublished. Notably, the

analysis of massive MIMO under UQN compression and results on increasing the number of

antennas under favourable propagation are new, whilst the joint rate allocation in [223] used a

simple non-linear gradient descent, as opposed to the more rigorously derived successive convex

approximation approach here. All of the results for transform coding with imperfect CSI are

unpublished. It is anticipated that some combination of these findings could form the basis of

at least one additional conference paper.

4.2 Background

This section outlines the motivation behind the research in this chapter and Chapter 5, as well

as summarising the relevant existing research efforts.

4.2.1 Motivation

The simplest radio head receiver would consist of just an RF frontend and ADC – downcon-

verting and digitising the received signals and transferring the raw IQ samples back to the

CP for processing. However, in scenarios where the capacity of the fronthaul connections are

constrained, such a system is not always feasible due to the large amounts of data that are

produced. Consider a MIMO C-RAN uplink system where a remote receiver equipped with M

antennas is connected via a fronthaul connection to a CP. If the system has operating bandwidth

B Hz, and the baseband signals at each antenna are sampled at a resolution of nb bits (per I &

Q complex dimension), with an oversampling factor q, the total bit rate of the sampled signals
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at the receiver is

total sampled bit rate = M ×B × q × 2nb bps. (4.1)

A system with bandwidth 100 MHz, oversampling factor 1.2, and 15 bit resolution [44] generates

3.6 Gbps of data per antenna, and as the number of antennas increases the quantity of sampled

data becomes very large – 16 antennas producing over 50 Gbps.

The amount of actual user uplink data conveyed by the received signals,

total uplink user throughput = SSE×B bps, (4.2)

is considerably lower than this. For example, a MIMO system with average sum spectral

efficiency of 40 bps/Hz would achieve a total throughput of 4 Gbps in a 100 MHz channel.

Transferring the raw IQ samples across the fronthaul for MIMO processing and symbol

decoding at the CP is therefore very fronthaul inefficient – the fronthaul capacity required is

orders of magnitude larger than the quantity of useful data conveyed,

fronthaul efficiency =
total uplink user throughput

total fronthaul throughput
. (4.3)

In deployments where fronthaul connections are provided by dedicated high capacity optical

fibre a poor fronthaul efficiency may not be an issue. However, as cellular systems densify,

the capital expenditure associated with deploying dedicated fibre fronthaul for each radio head

becomes prohibitive. This has led to cheaper fronthaul, more flexible, solutions based on either

shared/lower grade fibre [168], or wireless point-to-point links [169] being considered. Recently,

there has been a particular growing interest in the use of mmWave bands (above 60 GHz)

for providing fronthaul, exploiting the underutilised spectrum at higher frequencies to provide

multi-gigabit fronthaul capacities of between 1 and 10 Gbps [98].

A potential solution for limited fronthaul systems is to perform the full MIMO detection

and symbol decoding at the remote receiver, and transfer the decoded user data streams over

the fronthaul – a strategy known as ‘decode & forward’. However, this approach comes at

the expense of increased radio head complexity and therefore higher cost. Furthermore, in a

distributed MIMO C-RAN system, optimal MIMO detection requires joint processing of all

received signals, and local decoding therefore generally cannot capture the full benefits of the

C-RAN architecture.

The splitting of functionality between the remote receivers and CP has been an area of

practical research [52], [129]. Performing some simple parts of the receive signal processing

chain at the remote receiver, such as the IFFT part of OFDM processing, can enable redundant

temporal features to be removed from the received signal, and significantly reduce the amount

of data that must be transferred over fronthaul [44]. However, for the best utilisation of the

fronthaul it is necessary to also account for spatial dependencies between the received signals,

both locally (between different antennas) and across the C-RAN network (between different

receivers).

From an information theory perspective, the study of fronthaul constrained systems has

roots in network information theory, a relatively recent branch of information theory dedicated
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to studying the communication limits of networks of interconnected nodes. The fronthaul

constrained C-RAN networks considered in this thesis are two-hop networks, in which the

first hops – between the users and remote receivers – are wireless channels, whilst the second

hops – the fronthaul connections between remote receivers and CP – are treated as noiseless

links that can achieve error-free communication up to a certain rate. This fronthaul model,

shown in Figure 4.2, is appropriate for either rate limited wired/fibre connections or point-to-

point wireless links (which have a fixed, often line-of-sight, channel and thus do not experience

significant time dependent fading).

Figure 4.2: Fronthaul constrained C-RAN network topology with K = 5 users, L = 2 receivers
and central processor.

Potential signalling strategies for this network include:

• Sample & forward, in which the receivers simply digitize their received signals and forward

the sampled signals over fronthaul to the CP.

• Decode & forward, or partial decode & forward, in which the receivers either fully or

partially decode the users messages, and forward them over fronthaul to the CP.

• Compress & forward, in which the receivers compress their received signals, and then

forward the compressed signals over fronthaul to the CP, where they are decoded.

The research in this thesis focuses on the use of compress & forward, in which the CP receives

compressed signals over the fronthaul connections and performs MIMO detection jointly on
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the decompressed signals. This approach treats the fronthaul as a black box and the artefacts

introduced by compression as a noise, and can be used with conventional transmission techniques

and standard MIMO detection methods. It is flexible, and can easily be modified to incorporate

different topologies – e.g. the scenario where some fronthaul links have finite capacity and

others infinite. Throughout this work, it is assumed that OFDM signalling is used, and that

all compression is performed on a subcarrier level, with IFFT processing first carried out at

the receiver. There is a particular focus on low complexity methods that exploit the spatial

characteristics of the received signals in large-scale MIMO systems.

4.2.2 Fundamentals of Signal Compression

Lossy signal compression addresses the problem of encoding the ‘best’ representation, ỹ, of a

continuously valued signal, y, using a finite number of bits. As part of his groundbreaking infor-

mation theory work [191], Shannon established the theoretical basis of lossy signal compression,

showing that the minimum average number of bits, R, required to encode a lossy compressed

signal is equal to the mutual information between the original and compressed signals

R = I
(
ỹ; y

)
. (4.4)

His work addressed the problem of establishing a relationship between the encoding rate of a

compression scheme, and the distortion it introduced. In his rate-distortion theory, distortion,

D, is quantified by some metric that measures the difference between the original signal and

the compressed signal, such as mean squared error,

D = E
[
‖ỹ − y‖2

]
, (4.5)

and a rate-distortion function, D(R), is sought. The ideas from rate-distortion theory have been

hugely influential, and form the basis of modern image, audio and video compression schemes.

In the fronthaul compress and forward scheme, compression is applied to the received signals

at each remote radio head, before they are forwarded over fronthaul to the CP for user symbol

detection. The fronthaul compression and rate-distortion problems are therefore distinct: the

latter aims to produce an accurate representation of the received signal, whilst the former aims

to produce a signal representation from which the underlying user symbols can be reliably

recovered. As a result, it is possible for a fronthaul compression scheme to produce compressed

signals that are a poor representation of the original received signals (in terms of distortion),

but which achieve good MIMO symbol detection performance. Conversely, compressing the

signals to minimise distortion can lead to poor overall MIMO performance. There is thus a

need for bespoke compress-and-forward solutions for fronthaul constrained C-RAN.

This section briefly outlines the fundamentals of scalar and vector point-to-point compres-

sion, before briefly discussing the idea of distributed compression. As with the capacity analysis

elsewhere in this thesis, the treatment assumes that all symbols are drawn from a Gaussian dis-

tribution.
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Gaussian Scalar Compression

Optimal compression of a complex Gaussian scalar, y ∼ CN (0, σ2), is characterised by the

‘Gaussian test channel2’,

ỹ = y + δ, (4.6)

where δ ∼ CN (0, φ) is Gaussian quantization noise that is independent of y. The minimum

average encoding rate (bits), r, is

r = I
(
ỹ; y
)

(4.7)

= log2

(
1 +

σ2

φ

)
(4.8)

Rearranging, the quantization noise variance therefore scales as

φ =
σ2

2r − 1
(4.9)

≈ σ22−r, (4.10)

where the approximation is tight for r > 2, as shown in Figure 4.3. When r = 0, φ = ∞,

accurately modelling the scenario where y is not encoded.

Figure 4.3: Exact and approximate quantization noise variance.

The Gaussian test channel model is an information-theoretic concept, and cannot be per-

fectly realised in practice. However, block coding compression schemes based on trellis coding

[131] and sphere coding [77] have been shown to achieve comparable performance with manage-

able complexity, whilst at high rates simple uniform quantization followed by entropy coding

incurs a rate penalty of only 0.5 bits [69]. The simplicity of the test channel model therefore

makes it useful for analysing performance of systems under compression, and has been widely

used.

In [227] it is shown that when the signal being compressed takes the form of a scalar AWGN

channel,

y = hx+ η, (4.11)

2This is known as the forward test channel. Gaussian compression can also be modelled by a reverse test
channel, where δ is instead independent of ỹ. For analysis purposes, the forward test channel is most appropriate
here.
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the Gaussian test channel also maximises the mutual information between ỹ and x,

I
(
ỹ;x
)

= log2

(
1 +

ρ|h|2

φ+ 1

)
(4.12)

= log2

(
1 + (2r − 1)

ρ|h|2

ρ|h|2 + 2r

)
, (4.13)

which is the capacity of the compressed and forwarded scalar AWGN channel, compressed at

average rate r bits per channel use.

Fixed-Rate Scalar Quantization

In many practical applications, fixed-rate quantization – in which each quantized sample is

encoded individually as a string of b bits – is preferred to block coding methods, because of

its simplicity. For y ∼ CN (0, σ2), optimal fixed-rate quantization is achieved by individually

quantizing the real and imaginary components,

ỹ = Qc
(
y
)

(4.14)

= Q
(
<(y)

)
+ jQ

(
=(y)

)
, (4.15)

using quantization points found using the Lloyd-Max algorithm (and stored in a look-up table).

The output of the fixed-rate quantizer can be expressed in a similar form to (4.6),

ỹ = y + δ. (4.16)

where δ is quantization noise with E[|δ|2] = φ but arbitrary distribution. For b ≥ 6 it can be

shown that

φ ≈ σ2π
√

3

2
2−b, (4.17)

and comparing to (4.9), an additional log2

(
π
√

3/2
)
≈ 1.4 bits are required compared to optimal

Gaussian scalar compression [72], with the additional constraint that the number of bits be a

multiple of two (integer for both real and imaginary), b ∈ 2Z+. Since Gaussian noise is the

worst case noise distribution from a capacity perspective [84], analysis that uses the Gaussian

test channel can be easily generalised to fixed-rate quantization.

Gaussian Vector Compression

Compression of a complex Gaussian vector, y, can also be modelled using a test channel,

ỹ = y +ψ, (4.18)

where ψ ∼ CN
(
0,Ψ

)
, with Ψ a suitably chosen covariance matrix. Using the eigendecomposi-

tion

Ψ = FΦF†, (4.19)
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the compressed signal can be transformed into

z̃ = F†ỹ (4.20)

= F†y + δ, (4.21)

where δ ∼ CN (0,Φ) is spatially white quantization noise (since Φ is diagonal). For a given Ψ,

the vector test channel can therefore be implemented using a transform coding approach:

• Apply the linear unitary transform F† to y, to produce the transformed vector z,

z = F†y. (4.22)

• Independently compress the elements of z using M scalar compression codebooks with

rates calculated using (4.7) to give the desired quantization noise variances Φ.

• Reverse transform z̃ to produce ỹ,

ỹ = Fz̃. (4.23)

When the compressed signal is used for MIMO detection the final reverse transform stage is in

fact unnecessary, since MIMO processing can be equivalently performed directly on z̃.

An interesting observation made in [226] is that the vector compression strategies for min-

imising distortion in ỹ and for maximising the mutual information I
(
ỹ; x

)
are different – they

use the same linear transform, but different rate allocations. This result is discussed in more

detail in the following section, which considers transform coding signal compression for massive

MIMO systems.

When y is non-Gaussian, the transform coding approach is generally sub-optimal, and vec-

tor quantization methods [73] can give improved performance. However, the optimal vector

quantization regions depend on the statistical distribution of the signal and must be calculated

numerically. When the distribution is unknown, or varies with time (such as for a time varying

MIMO channel), this becomes impractical, and hence transform coding is widely used in many

real life vector compression applications [72].

Distributed Lossy Compression

In an uplink distributed MIMO C-RAN system, the received signals at each receiver must be

individually compressed and forwarded to the CP. These received signals are inherently statis-

tically dependent, and a good compression scheme should account for this to reduce redundant

signal features for efficient fronthaul use. Under Gaussian vector compression, this dependency

can be partially accounted for by jointly choosing the quantization noise covariance matrices to

optimise overall MIMO performance.

However, point-to-point compression schemes are generally sub-optimal in the multi-receiver

setting, with so-called ‘distributed source coding’ schemes having the potential for improved

performance. These schemes have their roots in the landmark work on distributed lossless

compression by Slepian & Wolf [199], and subsequent adaptation for lossy compression by
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Wyner & Ziv [232], characterised by their use of joint decompression for recovering the set of

compressed signals.

In the canonical Wyner-Ziv-type compression scheme, quantization is first applied at each

source to produce lossy signal representations. The individual encoders then map the finite

number of quantized signal states to a reduced number of codewords, or ‘bins’, using a many-

to-one mapping, therefore reducing the encoding rate. By jointly considering the codewords

from all sources, the decoder can exploit signal correlations to accurately determine the original

quantized signal state for each codeword and recover the compressed signals.

However, its performance gains come at the expense of increased computational complexity

at the decoder, which may be prohibitive in large distributed systems. Distributed source coding

has previously been applied in compression for video applications and sensor networks, and has

been considered for use in C-RAN systems.

4.2.3 Signal Compression for Uplink MIMO C-RAN

A good fronthaul compression scheme maximises MIMO performance under given fronthaul

capacity constraints. To evaluate the performance of such schemes it is useful to compare

them to theoretical performance bounds from network information theory. The cut-set bound

states that the ‘rate of information flow across any boundary is less than the mutual information

between the inputs on one side of the boundary and the outputs on the other side, conditioned on

the inputs on the other side’ [47]. A useful upper bound follows from this – the total sum capacity

of the MIMO C-RAN system cannot exceed either the sum capacity of the uncompressed wireless

links, or the total fronthaul capacity, as shown in 4.4.

Figure 4.4: Cut-set upper bound on sum capacity of C-RAN network with limited fronthaul
capacity.

At low fronthaul rates the system sum capacity is fundamentally limited by the amount

of fronthaul available. Within this fronthaul-limited operating region, efficient signal compres-

sion is vital to ensure good system capacity is achieved. At higher fronthaul capacities, the
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fundamental limit is instead the capacity of the wireless links – or the transmit power of the

users. The fronthaul efficiency naturally drops off in this operating region, and hence efficient

compression is necessary to ensure good fronthaul utilisation. In many scenarios the cut-set

bound cannot be achieved by compress and forward schemes [53], but the bound serves as a

useful indicator of performance.

For a distributed MIMO system with L receivers connected to the CP by fronthaul links

with capacity R, the sum capacity cut-set bound is

CSUM = I
(
ỹ1, . . . , ỹL; x

)
(4.24)

≤ min
(
I
(
y1, . . . ,yL; x

)
,RL

)
. (4.25)

Of course, in a cellular MU-MIMO system other metrics beyond sum capacity, such as

per-user and outage capacities, are also of importance. Moreover, the fronthaul efficiency of

a compression scheme is not its only important feature – cellular systems operate with con-

straints on delay, in mobile environments where the channels may change rapidly, and therefore

both computational complexity and the signalling overheads associated with a scheme are also

important.

A variety of different approaches have been taken to solving this problem, ranging from

practical quantization-based schemes to more complex distributed coding schemes that establish

achievable bounds on performance. This section outlines the most significant of these schemes.

Compression strategies based on dimension reduction are the subject of the next chapter, to

which discussion of them is deferred.

Low Resolution Sampling

The most direct way of reducing uplink fronthaul traffic is to reduce the amount of sampled

data produced. A considerable amount of research has been devoted to the use of reduced

resolution and single-bit ADCs for sampling the received signals in MIMO systems. This work

has mainly focused on the potential reduction in hardware cost and improved energy efficiency,

but the potential benefits for reducing fronthaul load have also been noted. For example, in

[202] is is shown that reducing the ADC resolution to 4-6 bits per I or Q sample (8-12 bits per

antenna) in a massive MIMO-OFDM systems incurs negligible performance loss, whilst reducing

the sampled data by around half compared to conventional high-resolution sampling (10+ bits

per I or Q). The work in [164] considers the use of analogue beamforming and single-bit ADCs

for reducing the fronthaul traffic in a cell-free MIMO C-RAN system.

Explicit optimisation of the sampling resolution for fronthaul capacity constrained systems

is carried out in [163], where a limited number of bits are optimally allocated to the ADCs

at the receive antennas. Improved fronthaul efficiencies are demonstrated, but the analysis is

limited to narrowband MIMO systems, and it is unclear whether such an architecture could in

practice be implemented in hardware. The optimal number of antennas under equal resolution

ADCs with a fixed total number of sampling bits is considered in [99], concluding that this

varies according to SNR.

Overall, whilst offering some gains, low resolution sampling is inflexible and cannot properly
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exploit the inherent temporal & spatial correlations in the received signals. Most work on

fronthaul-constrained C-RAN MIMO therefore considers signal compression as a secondary

stage that is implemented digitally after sampling. The performance degradation that occurs

due to digitisation is then typically ignored when designing fronthaul compression schemes

(implicitly assuming ADC quantization noise is small compared to receiver noise).

Functional Splits & Signal Quantization Methods

Improved compression performance can be achieved by performing some functions at the remote

receiver before transferring bits over fronthaul. In [182] filtering and downsampling is used to

remove temporal redundancies due to oversampling, followed by digital quantization of the

signal with adaptively chosen resolution. In [39], a classical principal component transform

coding approach is used to identify correlations in the signal across both space and time, and

reduce the signal dimensionality. Performing OFDM demodulation at the receiver is a simple

way to remove redundancies due to oversampling and unused spectral resources [44]. This is a

starting point for most of the proposed MIMO C-RAN fronthaul compression schemes, which

then consider further compression of narrowband MIMO signals.

For single cell massive MIMO C-RAN systems, the large number of antennas at the receiver

massively increases the amount of sampled data produced. In [95] & [32] it is noted that

ZF/MMSE detection can be decomposed into a matched filtering stage, and an inversion stage.

Since the matched filtering stage reduces the signal dimensionality from M to K, it is beneficial

to perform this stage at the receiver to reduce the amount of data transferred across fronthaul,

with the more computationally complex inversion stage performed at the CP.

The fronthaul reduction problem for distributed MIMO differs somewhat – the sampled

antenna data being distributed between the different receivers. In [12] simple fixed-rate scalar

quantization is used to reduce fronthaul load, applied to the subcarrier level received signal

either before or after matched filtering, depending on the number of antennas per receiver and

the number of users. In [132] it is shown that the use of ZF detection, with only a small number

of bits and quantized channel estimates, is sufficient to outperform ideal unquantized MF-based

processing – highlighting the benefit of performing full detection at the CP. In [121] bits are

optimally allocated to the scalar quantizers on different subcarriers to maximise throughput.

The schemes above use a somewhat heuristic approach to reducing fronthaul load, but

improved performance can be gained by approaching the problem from a signal compression

theory perspective.

Point-to-Point Compression Schemes

In [248] optimal point-to-point fronthaul compression for distributed MIMO C-RAN with multi-

antenna receivers under the Gaussian vector test channel compression model is considered. It is

shown that maximising either sum capacity or weighted user rates subject to fronthaul capacity

constraints involves solving a non-convex optimisation problem to find the optimal quantization

noise covariance matrices. A stationary point to this problem is then shown to be found by

solving alternating convex problems. Whilst this scheme effectively solves the point-to-point

compression problem, it requires the use of computationally intensive numerical solvers and
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must be recalculated for each coherence interval, making it impractical to implement in real

systems. To address this, [249] shows that at high signal-to-quantization-noise ratio (SQNR),

i.e. at higher fronthaul rates when the quantization noise is small compared to the desired

signal, a simple uniform quantization noise level is asymptotically optimal, and can be found

using a simple bisection method.

A more tractable suboptimal ‘spatial compression & forward’ approach for distributed multi-

antenna MIMO C-RAN is investigated in [123]. This is effectively a transform coding method,

where a linear transform is applied to the signal at each receiver, followed by fixed-rate scalar

quantization. In their formulation, the linear transforms are calculated based on local CSI and

fixed, with quantizer rate allocations and user transmit powers then optimised on a global level

using a max-min SINR objective. A stationary point is also found by numerically solving a

sequence of alternating convex optimisations, but on lower dimensional scalar bit and power

optimisation variables, rather than matrix values. It is shown that when the network has an

excess of antennas, the main benefit comes from the optimal allocation of quantization bits,

and that with multiple distributed receivers the scheme outperforms a single massive MIMO

receiver (with no fronthaul constraints). The benefits of deploying additional antennas at each

remote receiver are also shown.

To reduce the hardware requirements when each receiver has a large number of antennas, a

hybrid spatial compression scheme that uses both analogue and digital spatial filters is proposed

in [118]. The digital filtering stage and rate allocation use instantaneous CSI and are formulated

similarly to [123], whilst the analogue stage performs a dimension reduction and is adapted on

a slower timescale to match the channel statistics. Simulations show that the performance

of the proposed scheme is close to that of the fully-digital scheme, but benefits from reduced

complexity.

Wyner-Ziv Compression Schemes

The best compression performance is achieved using Wyner-Ziv type distributed source cod-

ing with joint signal decompression, and has received attention from the information theory

community for both gaining theoretical insights and for the design of compression schemes.

Amongst early work, the theoretical sub-optimality of using compress and forward with

Gaussian signalling in fronthaul-constrained networks is demonstrated in [183]. Nonetheless, the

compress and forward strategy has attracted attention, due to its tractability and consistency

with practical transmission schemes.

When the input signal is constrained to be Gaussian, [247] shows that the Gaussian vec-

tor Wyner-Ziv compression represents the optimal compression. However, it is noted that the

number of constraints involved in determining the quantization noise covariances grows expo-

nentially with the number of fronthaul links, and hence optimal compression is impractical for

all but the smallest networks. To reduce the number constraints for the Wyner-Ziv scheme,

[249] considers a system in which compressed signals from receiver are decompressed sequen-

tially, using the previously decompressed signals as side information. As with the point-to-point

case, a uniform quantization noise level is shown to be asymptotically optimal at high SQNR.

In [49], an aggregate fronthaul capacity constraint is instead considered (i.e. shared fron-
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thaul), and optimal compression shown to be achieved by transform coding using the conditional

Karhunen Loeve transform (KLT), and allocating rates by waterfilling on the conditional eigen-

values. A similar scheme is implemented under individual fronthaul constraints with sequential

decompression in [165], and then adapted to account for uncertainties in CSI.

4.3 Massive MIMO Uplink Signal Compression

Figure 4.5: Single cell C-RAN uplink network topology

Whilst it is apparent that performing full MIMO detection at the receiver, i.e. a decode

& forward strategy, would enable the cut-set bound to be fully achieved in the architecture

in Figure 4.5, the use of compress & forward analysis has previously drawn interest within

industry, e.g. [30], as a potential alternative in situations where for practical implementation

reasons it is not desirable to implement full MIMO detection at the receiver. Furthermore, it

serves as a useful starting point for analysing transform coding MIMO C-RAN systems, and to

the analysis in Section 4.4 and the following chapter.

4.3.1 The Limits of Sample & Forward

Before considering more sophisticated compression schemes, it is insightful to provide a more

theoretical motivation for their use, by establishing a sum capacity upper bound for the sample

& forward case where the received signals are individually quantized using a set of M equal

resolution scalar quantizers. This bound is based on compressing the signal at each antenna
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independently using the optimal Gaussian scalar compression,

ỹm = Qm(ym) (4.26)

where the total available fronthaul bits, R, are shared equally between all antennas, rm = R/M .

Since the Gaussian scalar compression model provides a lower bound on quantization noise, it

can be used to find an upper bound on the performance achieved by other sample & forward

scalar compression schemes (e.g. conventional fixed-rate scalar quantization). The compressed

signal can be represented by the Gaussian test channel,

ỹ = y +ψ, (4.27)

where ψ ∼ CN
(
0,Ψ

)
. The compression noise covariance matrix, Ψ, is diagonal and from (4.9)

has [
Ψ
]
m,m

= E
[
|ym|2

] 1

2R/M − 1
, (4.28)

giving

Ψ =
(
ρDH + IM

) 1

2R/M − 1
(4.29)

where DH is a diagonal matrix containing the channel strengths for the M BS antennas,[
DH

]
m,m

=
[
HH†

]
m,m

.

The compressed sum capacity under Gaussian compression is given by

CSUM = I
(
ỹ; x

)
(4.30)

= H
(
Hx + η +ψ

)
−H

(
η +ψ

)
(4.31)

= log2 det
(
IK + ρH†

(
Ψ + IM

)−1
H
)

(4.32)

An upper bound for this sum capacity,

CSUM < CUB
SF , (4.33)

can be found using three steps (see Appendix 2.1):

1. Upper bounding the capacity using

log2 det
(
IK + A

)
≤ log2 det

(
A
)

+ log2(e) Tr
(
A−1

)
(4.34)

2. Lower bounding the quantization noise covariance as

Ψ <
(
ρDH + IM

)
2−R/M (4.35)

3. Taking the limit as ρ→∞.
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This results in

CUB
SF =

RK
M

+ log2 det
(
H†D−1

H H
)

+ 2−R/M log2(e) Tr
((

H†D−1
H H

)−1
)

(4.36)

≈ RK
M

+ ε, (4.37)

and is tight at high SNR. The third term in (4.36) decays rapidly with R, and therefore the

sum capacity bound increases approximately linearly with the fronthaul capacity, R, at gradient

K/M . For a massive MIMO system, where M/K � 1, the capacity therefore increases slowly

with the available fronthaul. This is illustrated in Figure 4.6 for the i.i.d Rayleigh channel with

K = 8 users.

Figure 4.6: Sum capacity upper bound under sample & forward for different antenna ratios,
i.i.d Rayleigh fading, K = 8.

From the bound it can be concluded that in massive MIMO systems sampling/quantizing the

signals at each antenna and forwarding them over fronthaul results in poor fronthaul efficiency3,

and a system that operates far from the cut-set bound. This is illustrated in Figure 4.7 for i.i.d

Rayleigh fading with K = 8 and M = 32 (also showing that the bound becomes tight at high

SNR).

3This analysis assumes sampling of narrowband MIMO signals. However, a similar bound is easy to demon-
strate for the case of OFDM signals with time domain sampling. In this case the matrix of channel strengths,
DH, is replaced by a matrix containing the average received signal power for each antenna.
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Figure 4.7: Sum capacity under sample & forward for different SNRs, i.i.d Rayleigh fading,
K = 8, M = 32.

4.3.2 Transform Coding for the Massive MIMO Uplink

Transform coding is a widely used signal compression method, attractive for both its simplicity

and performance. Its idea is to transform a set of correlated variables to a new signal basis,

in which scalar compression of the transformed variables is more efficient [72]. This is best

achieved when the signal exhibits sparsity – the underlying dimensionality of the signal is less

than the original number of measurements, and a new signal basis can therefore be found in

which the signal information is contained in a reduced number of variables.

The uplink signals of massive MIMO systems are characterised by their sparsity, having

M measurements of K user symbols, where M � K. The previous section has shown that

compressing all M signals results in poor fronthaul efficiency. Transform coding is therefore an

intuitively good strategy for compressing uplink massive MIMO signals.

Transform coding has previously been proposed for single receiver massive MIMO signal

compression in [39] & [161], but was applied in a fairly heuristic manner to the time domain

samples. Here, it is proposed to apply transform coding to the multi-antenna signal on a

subcarrier level4, using a linear transform (or spatial filter), F ∈ CM×K , to produce a K-

dimensional signal, z ∈ CK ,

z = F†y. (4.38)

4This follows since the signals on each subcarrier are generally independent in OFDM. The FFT can in fact be
considered as part of the transform coding itself; optimal transform coding applied across space and time would
incorporate the FFT to perform time domain decorrelation, before applying decorrelating in the spatial domain.

127



CHAPTER 4. TRANSFORM CODING FOR UPLINK MIMO C-RAN

This is then compressed using a set of K Gaussian scalar compressors,

z̃i = Qi(zi), (4.39)

producing the compressed signal z̃ ∈ CK ,

z̃ = z + δ, (4.40)

where δ ∼ CN (0,Φ) with Φ = diag(φi) a diagonal matrix. MIMO detection may then be

performed directly on z̃.

The covariance of the received signal is

E
[
yy†

]
= ρHH† + IM (4.41)

= ρUΛU† + IM , (4.42)

where U ∈ CM×M are the eigenvectors and diagonal Λ ∈ CM×M the ordered eigenvalues, λi, as

in (2.84). Since only K of these eigenvalues are non-zero, the user data signal lies entirely within

the subspace spanned by the first K eigenvectors, U1:K ∈ CM×K (the other subspace containing

only noise). If the columns of F, fi, span this subspace then the transform is information-lossless,

I(z; x) = I(y; x). (4.43)

If F is constrained to be semi-orthogonal,

F†F = IK , (4.44)

then the transformed signal can be written

z = F†Hx + ηF, (4.45)

where ηF ∼ CN
(
0, IK

)
is uncorrelated receiver noise.

With average bit rate ri at scalar compressor i, the quantization noise variance is

φi =
ρf †i HH†fi + 1

2ri − 1
, (4.46)

where the rates are allocated subject to the total fronthaul constraint,

K∑
i=1

ri = R. (4.47)

The massive MIMO transform coding scheme then effectively implements the Gaussian vector
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test channel in Section 4.2.2, with

Ψ =
[
F UK+1:M

]

φ1

. . .

φK

∞


[

F†

U†K+1:M

]
, (4.48)

where UK+1:M are the eigenvectors corresponding to the noise subspace, the contents of which

are discarded (modelled by infinite quantization noise).

Two transform coding schemes are now analysed. The first scheme known to maximise the

sum capacity, whilst a second scheme, which uses a uniform quantization noise (UQN), is shown

to be near-optimal and useful for providing analytical insights.

Sum Capacity Maximising Transform Coding

The mutual information maximising compression scheme – amongst all potential compression

schemes – for a Gaussian vector source is shown in [226] to use transform coding. However,

the application of this optimal transform coding scheme to massive MIMO systems has not

previously been studied in detail. A simplified derivation (that does not prove global optimality)

of this scheme is now provided, along with some observations specific to the C-RAN fronthaul

problem.

Intuitively, the best signal basis for scalar compression has components of z that are statis-

tically independent. Using the first K eigenvectors as a transform, F = U1:K , produces a signal

with diagonal covariance

E
[
zz†
]

= Λ1:K + IK . (4.49)

This transform is known as the Karhunen-Loeve transform (KLT) and is well known to be

optimal in rate-distortion compression, finding wide use in transform coding applications [72].

The optimality of the KLT for transform coding under a sum capacity measure is shown in

[226]. Since the outputs of the KLT are independent, the sum capacity can be expressed in the

familiar eigenchannel form of (2.85),

CSUM =
K∑
i=1

I(z̃i; x) (4.50)

=
K∑
i=1

log2

(
1 +

ρλi
1 + φi

)
. (4.51)

where each channel is degraded by the quantization noise,

φi =
ρλi + 1

2ri − 1
, (4.52)

leading to

CSUM =

K∑
i=1

log2

(
1 + (1− 2−ri)

ρλi
ρλi2−ri + 1

)
(4.53)
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Asymptotically, at high SNR

lim
ρλi→∞

K∑
i=1

log2

(
1 + (1− 2−ri)

ρλi
ρλi2−ri + 1

)
=

K∑
i=1

ri = R, (4.54)

whilst as the scalar compression rates increase,

lim
ri→∞

K∑
i=1

log2

(
1 + (1− 2−ri)

ρλi
ρλi2−ri + 1

)
=

K∑
i=1

log2

(
1 + ρλi

)
. (4.55)

These two limiting cases correspond to the cut-set bound – it is asymptotically achieved by

transform coding with the KLT at high SNR, under any rate allocation. This is because

receiver noise decreases relative to quantization noise as SNR increases, so that at high SNR

quantization noise becomes the only factor limiting performance. Figure 4.8 compares sum

capacity to fronthaul capacity for different SNRs, where all quantities are normalised by dividing

by the sum capacity of the respective uncompressed MIMO channel.

Figure 4.8: Normalised sum capacity of massive MIMO system under transform coding with
varying SNR, i.i.d Rayleigh channel, K = 8, M = 64.

However, in the fronthaul-limited region, increasing the SNR to move towards the cut-set

bound brings diminishing returns, and decreases in energy efficiency. At lower SNRs both

receiver noise and quantization noise degrade performance, and appropriate rate allocation is

required to maximise capacity. The optimal rate allocation under the fronthaul constraint can

be shown using Lagrange multipliers to be the simple waterfilling solution,

ri =

[
R
|S|

+ log2(λi)−
1

|S|
∑
j∈S

log2(λj)

]+

, (4.56)

where [a]+ = max(a, 0) and S is the set of i for which ri > 05.

5This is found by starting with |S| = K, allocating rates as in (4.56) and iteratively removing the indices
corresponding to the smallest remaining eigenvalues from S until

∑
ri = R
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At low fronthaul rates, only a subset of the eigenchannels are compressed, an effect that is

more pronounced when there is a large channel eigenvalue spread. This results in a MU-MIMO

uplink that is degraded (rank deficient) at low fronthaul capacities. On the other hand, at

higher fronthaul rates (when all eigenchannels are compressed) the allocated rates are

ri =
R
K

+ log2(λi)−
1

K

K∑
j=1

log2(λj), (4.57)

resulting in quantization noise

φi =
ρλi + 1

λi

λ
2R/K − 1

, (4.58)

where λ =
(∏K

i=1 λi
)1/t

is the geometric mean of the eigenvalues. When the fronthaul capacity

is sufficiently large that λi/λ2R/K � 1, and at high SNR such that ρλi � 1, this simplifies to6

φi ≈ ρλ2−R/K , (4.59)

i.e. the quantization noise is approximately uniform across all eigenchannels.

In contrast to the sample & forward method, for a given SNR, ρ, fronthaul efficiency increases

as the number of antennas increases, as shown in Figure 4.9. This is because as the number of

antennas increases the magnitude of the eigenvalues increases7, boosting the SNR, ρλi, of each

eigenchannel. However, this increase in sum capacity is limited by the fronthaul capacity in the

fronthaul-limited region.

6This is actually a lower bound on φi that becomes tight as ρ and R increase, see Figure 4.10.
7See (4.71).

131



CHAPTER 4. TRANSFORM CODING FOR UPLINK MIMO C-RAN

Figure 4.9: Comparison of sum capacity of massive MIMO with transform coding and sample
& forward compression with varying number of antennas, M , i.i.d Rayleigh channel, K = 8,
ρ = 10 dB.

4.3.3 Transform Coding with a Uniform Quantization Noise Level

Whilst the sum capacity maximising scheme is known, a uniform quantization noise (UQN)

level,

φi = ∆, ∀i (4.60)

is attractive from an analysis perspective, since it is modelled by a simple uniform increasing

in the noise power the MIMO system experiences – the sum capacity under transform coding

with a UQN is simply

CSUM = log2 det
(
IK +

ρ

1 + ∆
H†FF†H

)
(4.61)

= log2 det
(
IK +

ρ

1 + ∆
H†H

)
(4.62)

=

t∑
i=1

log2

(
1 +

ρλi
1 + ∆

)
. (4.63)

The allocated compression rates are

ri = log2

(
1 +

ρf †i HH†fi + 1

∆

)
, (4.64)

where the minimum ∆ can be found that satisfies the fronthaul constraint,
∑
ri = R, can be

found using, for example, a simple bisection algorithm as shown in Algorithm 2.
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Algorithm 2 Bisection algorithm for finding UQN level, ∆

inputs: H,F,R
initialise ∆min, ∆max

while
∣∣∑

i ri −R
∣∣ ≥ ε do

∆ =
∆min + ∆max

2

ri = log2

(
1 +

ρf†i HH†fi+1
∆

)
if
∑

i ri > R then

∆min = ∆

else
∆max = ∆

end if
end while
outputs: ∆, ri

At all but low fronthaul rates

ri ≈ log2

(ρf †i HH†fi + 1

∆

)
, (4.65)

and the UQN level is approximately given by,

∆ ≈
( K∏
i=1

(
ρf †i HH†fi + 1)

)1/K
2−R/K . (4.66)

Thus whilst the sum capacity can be expressed solely in terms of H, ρ and ∆, it also depends on

the transform used, F, through the dependence of the UQN compression noise level in (4.66).

Applying Hadamard’s inequality8 the KLT minimises ∆ in (4.66), giving

∆ ≈
( K∏
i=1

(
ρλi + 1

))1/K
2−R/K . (4.67)

This is approximately equal to that achieved by the optimal rate allocation in (4.59) when

all ρλi � 1, and hence the UQN rate allocation also approximately maximises sum capacity.

This is shown in Figure 4.10, which compares the eigenchannel quantization noise with KLT

transform under waterfilling and UQN rate allocations, for the i.i.d Rayleigh fading channel

with K = 8, M = 64, ρ = 10 dB. Under waterfilling at low rates some of the eigenchannels

are not compressed (ri = 0), and therefore have infinite quantization noise variance. At higher

rates, UQN and waterfilling give the same quantization noise and the approximation in (4.59)

is tight.

Figure 4.11 shows the sum capacity achieved under both waterfilling and UQN rate al-

8Hadamard’s inequality [91] for positive-semidefinite matrices states that the product of the diagonal entries
of a matrix is lower bounded by the determinant of the matrix. Here,

∏
i

(
ρf†i HH†fi + 1

)
≥
∏

i

(
ρλi + 1

)
, with

equality when F = U1:K .
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Figure 4.10: Scalar quantization noise variances under waterfilling and UQN rate allocations,
i.i.d Rayleigh fading channel, K = 8, M = 64, ρ = 10 dB. Coloured lines show the quantization
noises on different eigenchannels.

locations, for a range of SNRs. At all SNRs, the performance difference between UQN and

waterfilling is negligible, and the sum capacity comes close to the cut-set bound. For instance

with ρ = 0 dB, a fronthaul capacity of 40 bpcu achieves sum capacity of 35 bpcu, a fronthaul

efficiency of 87 %, and with ρ = 10 dB a fronthaul capacity of 60 bpcu can achieve sum capac-

ity of 57 bpcu, a fronthaul efficiency of 95 %. Transform coding significantly outperforms the

sample & forward scheme at all fronthaul rates and SNRs.
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Figure 4.11: Sum capacity under transform coding with KLT transform and waterfilling & UQN
rate allocations, i.i.d Rayleigh fading channel, K = 8, M = 64.

4.3.4 Massive MIMO with Limited Fronthaul

The work so far has established that transform coding can be an efficient fronthaul compression

technique for massive MIMO C-RAN systems. However, as Figure 4.9 shows, in the fronthaul-

limited region, the sum capacity improvements available from increasing the number of BS

antennas is fundamentally limited by the fronthaul capacity. Thus a key question remains: if

an uplink MIMO C-RAN system has limited fronthaul capacity, what, if any, are the benefits of

deploying a large number of BS antennas?

A simple analysis of massive MIMO under transform coding with UQN rate allocation

provides some answers to this question. The key insight used is that under the UQN rate

allocation the effect of compression is simply to uniformly increase the effective noise level seen

in the MIMO system. Since this increase in noise level does not modify the MIMO channel in any

way, a number of the benefits of favourable propagation, outlined in Section 2.5.1, are preserved

under UQN fronthaul compression. Specifically, as the number of antennas is increased:

• Linear processing achieves the available sum capacity at any fronthaul rate and SNR.

• The user transmit power required to achieve a given service level reduces.

• The variations in per-user capacity due to fast fading disappear.

As a consequence, when operating in the fronthaul-limited region with practical linear pro-

cessing both the user mean and outage capacities are significantly improved by increasing the

number of BS antennas. This is shown in Figure 4.12 with K = 8, fixed fronthaul capacity

R = 24 bpcu and MMSE detection for mean and 10% outage capacities.

The underlying claims are now explored in more detail.
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Figure 4.12: Mean and outage user capacities with varying number of BS antennas, M , fixed
fronthaul capacity R = 24 bpcu, i.i.d Rayleigh fading, K = 8.

Optimality of Linear Processing

In the previous section the achievable MIMO sum capacity under transform coding was studied,

where it was assumed that optimal non-linear detection (MMSE-SIC) was used. However, non-

linear methods do not scale well to MIMO systems with large numbers of users, and hence linear

methods are desirable in practice.

Since the only effect of compression under the UQN rate allocation is to increase the system

noise level, the optimality of linear processing, at any SNR and fronthaul rate, follows directly

from the reasoning provided in Chapter 2. This linear detection can be performed directly on

z̃,

x̂ = Wz̃, (4.68)

using, for example, MMSE detection with

W(MMSE) =
1

1 + ∆

(
H†H +

1 + ∆

ρ
IK

)−1
H†F. (4.69)

Using (2.106), the per-user capacity under MMSE detection is given by

C(MMSE)

k = − log2

([(
IK +

ρ

1 + ∆
H†H

)−1
]
k,k

)
. (4.70)

Figure 4.13 compares the sum capacities achievable under optimal detection and MMSE detec-

tion for different numbers of BS antennas, at both high and low SNR. In the massive MIMO
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regime (M ≥ 32) the performance penalty from using linear detection is negligible at all fron-

thaul rates.

Figure 4.13: Sum capacity under non-linear and linear detection for different numbers of an-
tennas, i.i.d Rayleigh fading, K = 8. Top figure: ρ = 10 dB, bottom figure: ρ = −10 dB.

Transmit Power Reduces

When operating the MIMO system in the fronthaul-limited region the system capacity is fun-

damentally bounded by the fronthaul capacity, irrespective of the number of BS antennas. As

(4.50) shows, the performance depends on the channel eigenvalues, λi, and SNR, ρ. Since the

eigenchannel magnitudes scale with the number of receive antennas,

K∑
i=1

λi = ‖H‖2 ≈M
K∑
k=1

pkβk, (4.71)
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the user transmit power can be scaled ∼ 1/M whilst approximately maintaining a given level of

performance. This is shown in Figure 4.14, where under a fixed fronthaul capacity doubling the

number of BS antenna enables the user transmit power to be reduced by ∼ 3 dB. This indicates

that in the fronthaul-limited region deploying more antennas can be used to improve the energy

efficiency of the network.

Figure 4.14: Sum capacity scaling with SNR for different numbers of antenna under a fixed
fronthaul capacity, i.i.d Rayleigh fading, K = 8. Top figure: R = 32 bpcu, bottom figure:
R = 64 bpcu.

Fast Fading Disappears

In the fronthaul limited region, the average user capacity cannot exceed

E
[
Ck
]
≤ R
K
, (4.72)

but for a given channel realisation the individual user capacities may vary around this quantity.

Since favourable propagation characteristics hold under UQN compression, channel hardening

eliminates fast fading as M increases and, assuming operation close to the cut set bound, leads

to

Ck →
R
K
. (4.73)

Thus, the users benefit from having near-deterministic individual capacities when many BS

antennas are deployed. This is illustrated in Figure 4.15 for a fixed fronthaul rate of R = 24
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bpcu, where MMSE detection is used and SNR is backed off as 1/M .

Figure 4.15: User capacity CDF for different numbers of antennas under a fixed fronthaul
capacity R = 24 bpcu, i.i.d Rayleigh fading channel, K = 8.

Correlated Channels

The above principles hold under any channel conditions that provide favourable propagation

conditions. This is illustrated in Figure 4.16 for correlated Rayleigh fading with a uniform

linear array and K = 8 users spaced at approximately equal angles over a 2π/3 sector (one

sector in a three sector cell), with equal pathloss. Linear processing improves as the number of

antennas increases, but a larger number of antennas are required compared to the i.i.d case for

it to become optimal, since favourable propagation occurs more slowly in this channel.

Similarly, the user mean and outage capacities improve as the number of BS antennas is

increased, although the performance is not as good as in the i.i.d case, as shown in Figure 4.17.
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Figure 4.16: Sum capacity under non-linear and linear detection for different numbers of an-
tennas, correlated Rayleigh fading, ρ = 10 dB, K = 8.

Figure 4.17: Mean and outage user capacities with varying number of BS antennas, M , fixed
fronthaul capacity R = 24 bpcu, correlated Rayleigh fading, K = 8.
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4.3.5 Transform Coding with Imperfect CSI

The analysis provided so far assumes that the MIMO system has access to perfect CSI, when in

practice this CSI must be estimated. Assuming that uplink pilots and MMSE channel estimation

is used to estimate the channel matrix, the transform coding method can be adapted for the

case of imperfect CSI using the additive channel estimation error model outlined in Section

2.4.2.

Transform Coding with UQN Rate Allocation

Under the additive channel error model, the received signal is

y = Ĥx + Ex + η (4.74)

= Ĥx + ν. (4.75)

where Ĥ is the estimated channel, E the channel estimation error, and ν is equivalent noise

with

EE

[
νν†

]
= Ω = IM + ρ

K∑
k=1

pkCk, (4.76)

where Ck is the channel estimation error covariance for user k, and the expectation EE[.] is taken

with respect to symbols, receiver noise and channel estimation error. A whitening transform

can be used to whiten this equivalent noise9

y̌ = Ω−1/2y = Ȟx + ν̌, (4.77)

where Ȟ = Ω−1/2Ĥ is the ‘whitened’ channel matrix. The decorrelating transform is then

applied to the whitened signal,

z = F†y̌. (4.78)

The first K eigenvectors of the whitened channel matrix, F = Ǔ1:K , decorrelate the whitened

signal in the sense that

EE

[
zz†
]

= ρΛ̌1:K + IK (4.79)

where Λ̌ = diag(λ̌i) are the eigenvalues of Ȟ. However, for a given channel estimate the signal

components are not perfectly decorrelated, and the true instantaneous signal covariance

E
[
zz†
]

= ρF†Ω−1/2HH†Ω−1/2F + F†Ω−1F (4.80)

6= ρΛ̌1:K + IK (4.81)

is unknown to the receiver, due to the imperfect CSI knowledge.

9This requires the singular value decomposition of an M×M matrix, which has complexity O
(
M3). However,

this can be reduced to O
(
K3) using the fact that only the component lying in the K-dimensional signal subspace

is required – for example, by taking a projection of y and Ω into the channel subspace. Full details are omitted
here for space.
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Applying scalar compression to the elements of z, gives

z̃ = F†Ȟx + ν̌ + δ. (4.82)

This compression model assumes that the instantaneous scalar variances σ2
i = E[|zi|2] are known.

When a quantizer is designed for a source with differing statistics to the true source it is

mismatched, and compression performance is degraded. This mismatch is complicated to model,

and therefore for tractability it is assumed here that these scalar variances are known to the

receiver. This could be achieved in practice by estimating the variance from a block of received

symbols. It is known that when the assumed and true source statistics are close the performance

loss due to mismatch is small [74].

The UQN rate allocation and quantization noise level can then be found using the bisection

algorithm with

ri = log2

(
1 +

σ2
i

∆

)
. (4.83)

This method can be easily generalised for scenarios where inter-cell users with unknown

channels but known channel covariances introduce inter-cell interference, similar to how multi-

cell signal processing is performed in [15].

Sum Capacity Under Imperfect CSI

By the reasoning in Section 2.4.2, the expected sum capacity of the transform coded MIMO

uplink under imperfect CSI, is given by

EE

[
CSUM

]
= EE

[
log2 det

(
IK +

ρ

1 + ∆
Ȟ†Ȟ

)]
(4.84)

= EE

[
log2 det

(
IK +

ρ

1 + ∆
Ĥ†
(
IM + ρ

K∑
k=1

pkCk

)−1
Ĥ
)]
. (4.85)

The capacity is now limited by three factors – quantization noise through ∆, channel estimation

error through Ck & receiver noise through ρ.

The sum capacity has a monotonic relationship with SNR, ρ – increasing the user transmit

power increases the sum capacity at any fronthaul rate and for any quality of CSI. However,

since the channel estimation error and quantization noise components both scale with ρ, at high

SNR

lim
ρ→∞

EE

[
CSUM

]
= EE

[
log2 det

(
IK +

1

1 + ∆
Ĥ†
( K∑
k=1

pkCk

)−1
Ĥ
)]
, (4.86)

the capacity is limited by both quantization noise and channel estimation error, and the fron-

thaul efficiency that is achievable therefore depends on the quality of CSI available to the system.

Figure 4.18 shows this for i.i.d Rayleigh fading for transmit SNR ρ = 10 dB and a range of

different uplink channel estimation pilot SNRs, ρCSI (cf. Section 2.4.2). With good quality CSI

(large ρCSI), the behaviour is similar to the perfect CSI case, but when the CSI is of poor quality

the fronthaul utilisation is poor. For example, 40 bpcu of fronthaul capacity gives a capacity

of 39 bpcu for ρCSI = 20 dB, but only 22 bpcu for ρCSI = 0 dB. At high fronthaul capacities the

quantization noise vanishes and it is the channel estimation error that limits performance.
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Figure 4.18: Sum capacity scaling with varying estimated CSI quality, i.i.d Rayleigh fading
channel, ρ = 10 dB, K = 8, M = 64.

The impact of imperfect CSI is more significant at high SNR, ρ, as shown in Figure 4.19,

since at low SNR the channel estimation error is small compared to receiver noise.
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Figure 4.19: Sum capacity scaling with varying SNR, ρ, i.i.d Rayleigh fading channel, ρCSI = 15
dB, K = 8, M = 64.

4.4 Distributed MIMO Uplink Signal Compression

The application of transform coding to the distributed MIMO C-RAN topology shown in Figure

4.2 is now investigated. In this topology, there are now L receivers, each equipped with M

antennas, that receive the uplink transmissions from all K users,

yl = Hlx + η. (4.87)

The receivers independently compress their received signals for transmission over individual

fronthaul links with capacity R bpcu, using a linear transform and a set of scalar compressors

with appropriately allocated compression rates,

z̃l = F†lyl + δl. (4.88)

The uplink user symbols are then jointly detected using the set of L compressed signals.

Achieving efficient transform coding compression in a distributed MIMO setting requires

more than simply replicating the single receiver scheme, because the received uplink signals

at the L receivers are dependent. These dependencies must be accounted for through the use

of global CSI if the transform coding is to achieve good fronthaul efficiency. Unfortunately,

the problem of finding the L transforms and rate allocations that maximise sum capacity is

non-convex, and – unlike the single receiver case – has no closed form solution.

This sections begins by showing the limitations of using transform coding with a UQN rate

allocation in a distributed MIMO setting, before briefly outlining the successive convex approx-

imation approach to jointly finding the optimal transforms and rate allocations for all receivers.

A reduced complexity scheme that uses the KLT and globally calculated rate allocation is then
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derived and analysed.

4.4.1 Transform Coding with a Uniform Quantization Noise Level

The transform coded signal at receive l is given by

z̃l = F†lHlx + F†lη + δl, (4.89)

with diagonal quantization noise covariance, δl ∼ CN
(
0,Φl

)
. Placing no restriction on the

number of antennas at each receiver (so that M may be less than or greater than K), the data

signal component now lies in a t = min(M,K)-dimensional subspace. It can now be assumed

without loss of generality that z̃l has t components, i.e. F ∈ CM×t is semi-orthogonal.

Assuming the compressed signals are jointly used to detect the symbols under MMSE-SIC

symbol detection, the sum capacity is given by

CSUM = I
(
z̃1, . . . , z̃L; x

)
(4.90)

= log2 det
(
IK + ρ

L∑
l=1

H†lFl

(
Φl + It

)−1
F†lHl

)
(4.91)

= log2 det
(
IK + ρ

L∑
l=1

H†l
(
Ψl + IM

)−1
Hl

)
, (4.92)

where Ψl is a non-diagonal quantization noise covariance matrix with a similar structure to

(4.48).

In [248] it is shown that at high signal-to-quantization-plus-noise (SQNR), i.e when R and

ρ are sufficiently large that

ρHlH
†
l � Ψl + IM , (4.93)

then a uniform quantization noise level is approximately optimal. The sum capacity is then

CSUM = log2 det
(
IK + ρ

L∑
l=1

H†lHl

∆l + 1

)
, (4.94)

where ∆l at each receiver can be simply found using the bisection approach in Algorithm 2 to

give
t∑
i=1

log2

(
1 +

ρλl,i + 1

∆l

)
= R, (4.95)

where λl,i are the t non-zero eigenvalues of HlH
†
l .

This scheme is attractive for its simplicity, but the high SQNR assumption is of limited

interest since it describes the region where the impact of quantization noise is small; when the

system operates with limited fronthaul capacity the high SQNR condition is not fulfilled.

A sum capacity upper bound can be established to assess the limits of performance un-

der UQN compression in this fronthaul-limited region. This uses the lower bound on UQN

145



CHAPTER 4. TRANSFORM CODING FOR UPLINK MIMO C-RAN

quantization noise
t∑
i=1

log2

(ρλl,i
∆l

)
≤ R =⇒ ∆l ≥ ρλ̄l2−R/t, (4.96)

where λ̄l is the geometric mean of the λl,i. Using this quantization noise lower bound, which is

tight at high SNR, similarly to Section 4.3.1 an upper bound on capacity can be found,

CUB
SUM =

RK

t
+ log2 det

( L∑
l=1

λ̄−1
l H†lHl

)
+ 2−R/t log2(e) Tr

(( L∑
l=1

λ̄−1
l H†lHl

)−1
)

(4.97)

≈ RK

t
+ ε, (4.98)

where the approximation holds since the third term rapidly decays with R. This effectively

limits the fronthaul efficiency that can be achieved, as shown in Figure 4.20. In the i.i.d Rayleigh

channel with a total fronthaul capacity of 80 bpcu, a sum capacity of 40 bpcu is achieved with

ρ = 10 dB, and no more than 48 bpcu can be achieved at any SNR. For non-degraded MIMO

Figure 4.20: Distributed MIMO sum capacity under UQN compression, ρ = 10 dB, i.i.d Rayleigh
fading channel, K = 8, L = 4 M = 16.

operation, it is required that ML ≥ K, and hence necessarily

RK
t
≤ RL (4.99)

If an overall excess of antennas is deployed in the network in order to capture the benefits of

channel hardening, ML � K, then RK/t � RL, and the sum capacity increases very slowly

compared to the fronthaul capacity.

It should be noted that at low SNR the bound is loose and gives little information about

the performance of UQN (sitting above the cut-set bound at some low SNRs). However, recall
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that in 4.3.2 the local rate allocation was shown to result in poor fronthaul efficiency even in a

single receiver setting at low SNR.

Thus, overall, whilst UQN transform coding compression is quasi-optimal in a setting with a

single receiver and an excess of antennas, it performs poorly when these antennas are distributed

between multiple receivers. Fundamentally, this is because transform coding with the UQN rate

allocation does not account for dependencies between the signals received at different receivers.

It can exploit local sparsity – reducing the number of signal components from M to K when

M � K – but does not exploit the joint sparsity that exists at a network level when ML� K.

This can be seen in Figure 4.20, where UQN does not fully utilise the fronthaul, but does

improve on sample & forward by accounting for local signal correlations.

4.4.2 Optimal Transform Coding for the Distributed MIMO Uplink

The sum capacity maximising transform coding scheme is found by optimising the quantization

noise covariances, Ψl, subject to the fronthaul rate constraints, I(z̃l; zl) ≤ R,

maximise
Ψl

log2 det
(
IK + ρ

L∑
l=1

H†l
(
Ψl + IM

)−1
Hl

)
subject to log2 det

(
ρHlH

†
l + IM + Ψl

)
− log2 det

(
Ψl

)
≤ R ∀l.

(4.100)

This is also the optimal point-to-point compression scheme – outperforming all compression

schemes that do not make use of Wyner-Ziv-type distributed source coding. Unfortunately

both its objective function and constraint are non-convex in the Ψl, making finding a global

maximum infeasible.

In [248], a method for finding a stationary point to the problem using successive convex

approximation (SCA) is outlined. The full method is omitted here for space, but the basic idea

is to convert the problem into a sequence of convex problems, by:

• replacing the objective function with a concave lower bound. This involves exploiting

parallels between the sum capacity expression and MMSE detection.

• replacing the constraint with a convex upper bound.

• solving the resulting convex approximation of the problem using numerical methods, e.g

the interior point method.

• updating the bounds such that at the current solution they are equal to the original

functions, and re-solving, repeating until convergence.

This method finds a stationary point to the point-to-point compression sum capacity maximi-

sation problem, and is referred to herein as SCA-P2P. Figure 4.21 shows the benefits of jointly

optimising the quantization noise in a system with K = 8 users, L = 4 distributed receivers

each equipped with M = 8 antennas, and SNR ρ = 10 dB. In the fronthaul-limited regime, a

significant capacity improvement over UQN compression is experienced – for a fronthaul capac-

ity of 60 bpcu, a sum capacity of 48 bpcu can be achieved, compared to 34 bpcu under UQN

compression.
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Figure 4.21: Distributed MIMO sum capacity with optimal point-to-point compression, ρ = 10
dB, i.i.d Rayleigh fading channel, K = 8, L = 4 M = 8.

However, the computational complexity of SCA-P2P is high due to the need to repeatedly

solve convex problems using numerical solvers – prohibiting its use in large networks.

4.4.3 Transform Coding with Jointly Optimised Rate Allocation

As a more tractable alternative to jointly optimising the full quantization noise covariance

matrix at all receivers, the optimisation can be a carried out over only the rate allocation,

whilst using a fixed transform. The transforms can be separately calculated at each receiver

using only local CSI (e.g the KLT), whilst the compression rates are allocated centrally at the

CP using global CSI. This simplifies the optimisation problem from optimising L separate t× t
complex covariance matrices under non-convex constraints to optimising Lt real valued scalars

with simple linear constraints. Furthermore, from a practical perspective only t scalar values

need to be transferred from the CP back to each receiver compared to t(t+1)/2 complex values

each for the full covariance matrix, reducing signalling overheads.

A similar idea to this was previously investigated in [123] for maximising minimum user ca-

pacity under fixed-rate scalar quantizers, and shown to achieve good compression performance.

However, the proposed solution involves numerically solving a large number of convex feasibility

problems using the interior point method, leading to high computational complexity. With this

in mind and in the interest of maximising fronthaul efficiency, here maximisation of the sum
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capacity under either MMSE-SIC or MMSE detection is considered,

maximise
rl,i

CSUM or
K∑
k=1

C(MMSE)

k (4.101)

subject to

t∑
i=1

rl,i ≤ R. (4.102)

These problems have non-convex objectives, and hence cannot be directly solved to find the

global maximum. However, inspired by the approach in [248], a successive convex approximation

approach can be used to find a stationary point. It is shown here that this problem can be

solved by iteratively updating the MMSE detection matrices and performing a rate allocation,

where both problems have closed form solutions, and hence the use of computationally intensive

numerical solvers is avoided.

Sum Capacity Maximisation

The basis of the successive convex approximation approach in [248] is to exploit the relationship

between Gaussian capacity and MMSE detection,

CSUM = log2(ρ) + log2 det
(
C−1
e

)
(4.103)

where Ce is the error covariance matrix under MMSE detection,

Ce = ρ
(
IK + ρ

L∑
l=1

H†lFl

(
IM + Φl

)−1
F†lHl

)−1
(4.104)

= E
[∥∥x− L∑

l=1

Wlz̃l
∥∥2]

(4.105)

= ρ
(
IK −

L∑
l=1

WlF
†
lHl

)(
IK −

L∑
l=1

WlF
†
lHl

)†
+

L∑
l=1

Wl

(
IM + Φl

)
W†

l (4.106)

where Wl is the MMSE detection matrix,

Wl = CeH
†
lFl

(
It + Φl

)−1
, (4.107)

and Fl ∈ CM×t is a fixed (pre-selected) transform. In the numerical results provided here the

local KLT as defined in Section 4.3.2 is used as the transform at each receiver, but the method

is valid for any Fl ∈ CM×t that is unitary/semi-orthogonal. Note that the formulation of the

error matrix here involves the inversion of K×K matrix. This is equivalent (through the matrix

inverse lemma) but preferable to the conventional MMSE error matrix formulation that would

involve the inversion of a Lt× Lt matrix, since Lt ≥ K.

Using this relationship, the successive convex approximation rate allocation procedure (SCA-

RA) finds a stationary point to the optimal rate allocation problem by:
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1. Replacing the maximisation with an equivalent non-convex minimisation.

maximise
rl,i

CSUM =⇒ minimise
rl,i

log2 det
(
Ce

)
. (4.108)

2. Approximating the non-convex objective function with a convex upper bound,

using the identity

log2 det
(
Ce

)
≤ log2 det

(
A
)

+ Tr
(
ACe

)
−K (4.109)

which achieves equality when

A = C−1
e . (4.110)

3. Finding the rate allocation that minimises this upper bound, for a fixed MMSE

detection matrix. Substituting in (4.106), and removing the components that do not

depend on rl,i, the optimisation separates into L rate allocation optimisations,

minimise
rl,i

Tr
(
W†

lAWlΦl

)
subject to

t∑
i=1

rl,i ≤ R.
(4.111)

Since Φl is diagonal,

Tr
(
W†

lAWlΦl

)
=

t∑
i=1

ql,i
2rl,i − 1

, (4.112)

where

ql,i =
(
ρf †l,iHlH

†
l fl,i + 1

)
×
[
W†

lAWl

]
i,i
. (4.113)

Fixing the Wl, and formulating the Lagrangian, this has a simple closed form solution

(see Appendix 2.2),

rl,i =
[

log2

(
γl + ql,i +

√
ql,i
√
ql,i + 2γl

)
− log2(γl)

]+
(4.114)

where γl ∈ R+ is found such that the fronthaul constraint is met, using a similar bisection

approach to Algorithm 2.

4. Updating the convex approximation, so that it has equality with the non-convex

objective at the current rate allocation. Using the updated rate allocation from step

3, the updated quantization noise covariance matrices, Φl, can be calculated, and an

updated convex problem formed by updating Ce as in (4.106), A as in (4.110), and Wl

as in (4.107). By substitution these steps can be absorbed into the simple updates,

φ?l,i =
[
Φ?
l

]
i,i

=
ρf †l,iHlH

†
l fl,i + 1

2rl,i − 1
, (4.115)
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and

q?l,i =
(
ρf †l,iHlH

†
l fl,i + 1

)
× ρ

(1 + φ?l,i)
2
f †l Hl

(
IK + ρ

L∑
j=1

H†jFj

(
IM + Φ?

l

)
F†jHj

)−1
H†l fl.

(4.116)

5. Repeating steps 3 & 4 until convergence. The rates allocated in step 3 meet the

constraints of the new updated convex problem calculated in step 4, but do not generally

minimise it. Solving for a new rate allocation with the updated ql,i therefore monotonically

decreases the objective function, and when applied iteratively this procedure converges

monotonically towards a sum capacity maximising (stationary point) rate allocation.

The full algorithm is shown in Algorithm 3.

Algorithm 3 SCA-RA Sum Capacity Maximising Rate Allocation

inputs: Hl,Fl, ρ,R
initialise rl,i

initialise φl,i ←
ρf †l,iHlH

†
l fl,i + 1

2rl,i − 1

initialise Ce ← ρ
(
IK + ρ

∑L
l=1

∑t
i=1

H†l fl,if
†
l,iHl

1+φl,i

)−1

while ∆CSUM ≥ ε do

for l = 1 : L do

ql,i ←
(
ρf †l,iHlH

†
l fl,i + 1

) f †l HlCeH
†
l fl

(1 + φl,i)2

rl,i ←
[

log2

(
γl + ql,i +

√
ql,i
√
ql,i + 2γl

)
− log2(γl)

]+
γl :

∑t
i=1 rl,i = R

end for

φl,i ←
ρf †l,iHlH

†
l fl,i + 1

2rl,i − 1

Ce ← ρ
(
IK + ρ

L∑
l=1

t∑
i=1

H†l fl,if
†
l,iHl

1 + φl,i

)−1

CSUM ← log2(ρ)− log2 det
(
Ce

)
end while
outputs: rl,i, φl,i

The computational complexity of the optimal rate allocation method is dominated at each

iteration by the matrix inversion, with overall complexity O
(
K3Nit

)
, where Nit iterations are

required for convergence. Since the SCA-RA method does not require the use of any numerical

solvers, its execution time was found to be many orders of magnitude shorter than SCA-P2P.

A further discussion on computational complexity is provided in Section 4.4.6.

Fixing the transform incurs a performance penalty over SCA-P2P, since the algorithm has

the freedom to optimise the number of bits allocated to each dimension of the signal subspace,

but not the freedom to optimise the signal compression basis. However, numerical results

indicate that this performance loss is small, and most of the benefits over UQN compression are
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maintained. For example, Figure 4.22 compares the performance for K = 8, L = 8,M = 4 at low

SNR, ρ = 0 dB. This indicates that the main benefit of jointly optimising the quantization noise

covariance matrices comes from jointly determining how much quantization noise to introduce

onto different signal dimensions, rather than from finding the optimal signal basis.

Figure 4.22: Distributed MIMO sum capacity with KLT and optimal SCA rate allocation, i.i.d
Rayleigh fading channel, K = 8, L = 8 M = 4, ρ = 0 dB.

Capacity Maximisation under Linear Detection

Under MMSE detection, the capacity of user K is

Ck = log2(ρ)− log2(ek) (4.117)

where ek =
[
Ce

]
k,k

is the MMSE error covariance for symbol k. The sum user capacity max-

imisation can be written

maximise
rl,i

K∑
k=1

Ck =⇒ minimise
rl,i

K∑
k=1

log2(ek), (4.118)

and the convex upper bound,

log2(ek) ≤ log2(ak) + akek − 1, (4.119)

which has equality when ak = 1/ek, can be used to approximate the non-convex problem as

minimise
rl,i

Tr
(
W†

l ÃWlΦl

)
, (4.120)
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where Ã = diag(ak). The rate allocation that maximises sum capacity under linear detection

is therefore found using an identical procedure to that under optimal detection, but replacing

ql,i with

q̃l,i =
(
ρf †l,iHlH

†
l fl,i + 1

)
×
[
W†

l ÃWl

]
i,i
. (4.121)

As seen in Figure 4.23, linear detection results in some sum capacity loss compared to

optimal detection, but the joint rate allocation ensures improved capacity scaling compared to

local UQN compression.

Figure 4.23: Distributed MIMO sum capacity with KLT and optimal SCA rate allocation, i.i.d
Rayleigh fading channel, ρ = 10 dB, K = 8, L = 4 M = 8.

Sparse Rate Allocation

An interesting feature of the SCA rate allocation when operating in the fronthaul-limited region

is that when there are an overall excess of receive antennas, ML� K, the SCA rate allocation

tends to be sparse – many of the rl,i are zero or near-zero, and only a subset of the available

signal components at each receiver are compressed. This effect is most pronounced at high

SNR, and as shown in Figure 4.24.

This was previously observed in [123], but not investigated in detail. Here, from Algorithm

3 the specific mechanism that produces the sparse rate allocation can be identified:

• When the factor ql,i is small, zl,i will be allocated a small number of compression bits as

in (4.114).

• With a small number of compression bits, rl,i, allocated, z̃l,i will contain a larger amount

of quantization noise, (4.115).
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Figure 4.24: Average (mode) number of signal components allocated rl,i ≥ 0.1 bpcu at different
fronthaul capacities, i.i.d Rayleigh fading channel, K = 8, M = 8, L = 4.

• When the MMSE combining matrix is updated, z̃l,i will then have a smaller weighting in

the MMSE estimate due to its high quantization noise.

• This low MMSE weighting will reduce ql,i at the next stage, (4.116).

• Applied iteratively, this will lead to some of the signal components being allocated zero

(or near-zero) rates. The final rate allocation sparsity pattern depends on the available

fronthaul capacity, SNR & channel realisation.

The SCA-RA algorithm can be interpreted as implictly performing dimension reduction on

the transformed signal, in response to the joint sparsity of the received signals when ML� K.

The explicit use of dimension reduction for signal compression is the subject of Chapter 5, where

this idea is explored in more detail.

4.4.4 Distributed MIMO with Limited Fronthaul

Having showed that transform coding with locally calculated KLT transforms and a jointly

optimised rate allocation significantly outperforms transform coding with a local rate allocation,

some further insights into the scheme’s performance in distributed MIMO networks are now

provided using numerical examples.
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High SNR Behaviour

As the SNR is increased the overall fronthaul efficiency increases, as shown in Figure 4.25. As

seen above, in the fronthaul-limited region the SCA-RA scheme will tend to select a reduced

number of signal components and allocate the compression bits to these. At high SNR, when

the selected components contain relatively less noise, the performance is limited mainly by

quantization noise, improving fronthaul efficiency. However, unlike the single receiver case, the

SCA-RA scheme will generally not fully achieve the cut-set bound at high SNR.

Figure 4.25: Fronthaul utilisation, K = 8, M = 8, L = 4.

In a dense distributed MIMO deployment, as simulated here, operation in the high SNR

regime (where each user is received by at least one receiver with high SNR) is a realistic as-

sumption due to the reduced pathloss/macro-diversity provided by distributing receivers [234].

Performance as Network Density Increases

Figure 4.26 shows the mean user throughputs achieved in a 100 MHz channel, assuming over-

heads of 20%, i.e.

mean user spectral efficiency = 0.8×mean user capacity. (4.122)

Fixing the number of antennas per receiver, M , overall ratio of antennas to users, ML/K =

4, and applying power control such that the total average received power for each user is

kept constant (i.e. halving the transmit power of each user when the number of receivers is

doubled10), the joint rate allocation ensures that good performance is maintained as the density

of receivers and users is increased, by accounting for dependencies in the received signals.

The overall throughput benefits over local UQN compression and sample & forward com-

pression are significant. For example, with 8 receivers each equipped with 8 antennas and

separate 2 Gbps fronthaul connections, the SCA-RA scheme provides an additional 100 Mbps

of throughput for each of 16 users relative to UQN compression.

10If the user transmit power is instead kept constant as the network density increases, the effective SNR of the
transformed signals is increased, and user capacities increase.

155



CHAPTER 4. TRANSFORM CODING FOR UPLINK MIMO C-RAN

Figure 4.26: Mean user throughputs in 100 MHz channel for different user & RRH densities,
i.i.d Rayleigh fading channel, M = 8. Solid line: K = 8, L = 4, ρ = 10 dB, dot-dash line:
K = 16, L = 8, dashed line: K = 32, L = 16.

Benefit of Adding Antennas at the Receivers

Since boosting the SNR of the transformed signal improves fronthaul efficiency, increasing the

number of antennas at each receiver allows either the user transmit power to be reduced or the

user capacities & fronthaul efficiency to be increased (by the same reasoning as in Section 4.3.4),

as shown in Figure 4.27. However, as the SNR increases the capacity benefit of increasing the

number of antennas diminish, the user capacities being limited by the fronthaul capacity, as

seen in the top subfigure.
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Figure 4.27: Distributed MIMO mean user throughputs in 100 MHz channel with varying
numbers of receiver antennas, i.i.d Rayleigh fading channel, K = 8, L = 4. Top: per-receiver
fronthaul throughput 1.5 Gbps, bottom: per-receiver fronthaul throughput 3 Gbps.

4.4.5 Transform Coding with Imperfect CSI

Applying the transform to the received signal under imperfect CSI as in Section 4.4.6, the

expected sum capacity under imperfect CSI is

EE

[
CSUM

]
= EE

[
log2 det

(
IK + ρ

L∑
l=1

Ȟ†lFl

(
It + Φl

)−1
F†l Ȟl

)]
, (4.123)

where, under the same assumptions as in Section 4.3.5,

[
Φl

]
i,i

=
σ2
l,i
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(4.124)

with
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†
lΩ
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The MMSE detection matrix is
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and the rate allocation method can be immediately adapted to the case of imperfect CSI using

ql,i = σ2
l,i ×

[
W†

lAWl

]
i,i
. (4.128)

Figure 4.28 shows the performance of the SCA-RA scheme with differing levels of CSI quality.

When the channel estimates are good, the scheme performs close to the perfect case CSI, as

expected, but when CSI is poor the fronthaul efficiency is reduced. When the CSI is poor the

benefits of using the joint rate allocation instead of the local UQN compression also reduce.

Figure 4.28: SCA-RA with imperfect CSI, i.i.d Rayleigh fading channel, K = 8, L = 4 M = 8,
ρ = 10 dB.

4.4.6 Practical Aspects

This section considers the computational complexity and fronthaul signalling overheads associ-

ated with the scheme.

Computational Complexity

The SCA-RA algorithm uses CSI from all receivers, and therefore must be performed centrally

at the CP. When the number of users is large, the computational complexity of Algorithm 3

is dominated by the matrix inversion required at each iteration, and scales as O
(
K3Nit

)
. In

general, the number of iterations, Nit, required for full convergence was found through testing to

vary depending on the parameters R, K, L, M and ρ. However, since the algorithm converges

monotonically, a fixed number of iterations can be used to maximise performance under a

computational complexity constraint. Numerical results indicate that, initialising SCA-RA

using the UQN rate allocation, Nit ∼ 6 is generally sufficient to capture most of the benefits of

jointly optimising the rate allocation, as shown in Figure 4.29.
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Figure 4.29: SCA-RA with limited number of iterations, ρ = 10 dB, i.i.d Rayleigh fading
channel, K = 8, L = 4 M = 8.

This rate allocation must be performed once for each coherence block, and therefore the

overall computational loads depends on the coherence times and bandwidths of the channels.

The complexity of performing symbol detection under linear detection is O
(
KLt

)
.

The calculation of each KLT requires the singular value decomposition of HlH
†
l to be com-

puted, which has complexity O
(
MK2

)
. This can be performed locally at the receiver, to reduce

overheads, or at the CP to minimise computation at the distributed radio heads – see below.

Fronthaul Signalling Overheads

Since the rate allocation is performed at the CP but compression performed at the distributed

receivers, there are various fronthaul signalling overheads associated with the SCA-RA scheme.

Assuming the uplink channel matrices, Hl, are initially obtained at the distributed receivers

through channel estimation then the CP and receivers have the following requirements:

• The CP requires knowledge of the L composite transformed channels F†lHl in order to

perform rate allocation and then symbol detection. If the composite channel is known

then the original channel matrix does not need to be known to the CP.

• The receivers require knowledge of their local transform, Fl, and rate allocation, rl,i in

order to perform compression.

As mentioned above, there are two options:

1. The L KLTs can be calculated locally at their respective receivers, and the composite

channel, F†lHl, transferred to the CP. The composite channel has tK values whilst the

channel matrix has MK values, and hence for M > K = t this reduces the amount of
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CSI transferred from each receiver to the CP. Only the t scalar values, rl,i, need to be fed

back to each receiver.

2. The L KLTs can be calculated at the CP, and then transferred back over fronthaul to

the receivers. The CP then requires the original channel matrix, MK values, whilst the

Mt values for the Fl need to be transferred back to each receiver, along with the t rate

allocation values.

The first option results in lower overheads in both forward and reverse directions, but requires

the receivers to have more computational power.

All of these overheads occur once per coherence block, and therefore the proportion of

fronthaul capacity that must be reserved depends on the coherence times and bandwidths

(reducing proportionally as the coherence block grows). In practice there may be opportunities

for reducing overheads – here it is assumed that each user has a channel to each receiver, but

for users far from a receiver the channels are very weak, and hence the effective channel matrix

size and channel rank t is reduced.

Further investigation is required to study methods for reducing overheads and the implica-

tions for the achievable capacity of the system, including the channel coherence block size in

real mobile channels, and methods for compressing the CSI and their impact on performance.

Practical Scalar Compression

This analysis has considered only the information-theoretic Gaussian scalar compression model.

Whilst this is a commonly used tool for compression analysis in communication systems, it

represents an approximation of real-life systems, since:

• the symbols used in practical communication systems come from non-Gaussian alphabets,

and therefore whilst signals being compressed share the same second-order statistics, they

are not truly Gaussian distributed. Designing and analysing optimal compression schemes

for the true signal distributions is intractable when each signal consists of linear combi-

nations of symbols coming from, for example, QAM alphabets. Thus in practice the

Gaussian approximation (which by the central limited theorem is a reasonable approxi-

mation when the signal being compressed is the sum of many non-Gaussian symbols) can

be used and some performance degradation due to quantizer mismatch accepted. Simi-

larly, the resulting capacity expressions – as with all MIMO capacity analysis – are only

approximations of the achievable performance when QAM symbols are used.

• the Gaussian scalar compression scheme upper bounds the performance of real life com-

pression schemes, as discussed in Section 4.2.2. Thus real compression schemes will suffer

from either a user data throughput penalty at a given fronthaul throughput, or a fron-

thaul throughput penalty at a given user data throughput. However, using, for example,

entropy coded scalar quantization the rate penalty is small for each compressor, and thus

under a sparse rate allocation the overall penalty is expected to be small. The entropy

coding stage has complexity O(1) per scalar [180], but for minimal complexity fixed-rate

scalar quantization could instead be used – at the expense of a larger performance penalty.
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Since only approximate expressions are possible without making the above assumptions, future

work should use bit-level simulations to benchmark the actual performance that can be achieved

under the proposed scheme.

4.5 Conclusion

Limited capacity fronthaul connections based on wireless point-to-point or ethernet links will

play an important role in enabling dense & flexible C-RAN deployments in future wireless

networks. However, their use depends on the availability of bespoke data compression techniques

for efficiently reducing the amount of data that must be transferred over fronthaul. This chapter

has investigated the use of transform coding for compressing the multi-antenna received signals

on the MIMO C-RAN uplink, giving particular attention to cases where the MIMO capacity is

fundamentally limited by the available fronthaul capacity.

Massive MIMO

The first half of this chapter focuses on uplink signal compression for a single massive MIMO

receiver. It is shown that due to the large number of antennas, individually compressing the

received signal at each antenna gives very poor performance when the fronthaul capacity is

limited – each signal must be compressed at very low resolution, resulting in high levels of

quantization noise that limit the MIMO capacity. Transform coding, however, is shown to form

a natural partner to massive MIMO – using a linear decorrelating transform to exploit the

inherent sparsity in the received signal, reducing the number of signal components that need to

be compressed.

Using the Karhunen-Loeve transform (KLT) in conjunction with a set of optimal Gaussian

scalar compression codebooks, it is shown that transform coding uses the available fronthaul

capacity very efficiently, especially at higher SNRs; at lower fronthaul capacities, where perfor-

mance is limited by quantization noise, increasing the fronthaul capacity increases the achievable

MIMO sum capacity by almost the same amount. For example, numerical results presented here

show that if a receiver with 64 antennas, 8 users and SNR of 0 dB has 32 bits with which to

compress its received signal (per subcarrier), a mean sum capacity of over 28 bits per channel

use can be achieved.

This chapter shows that even at lower fronthaul capacities, where the MIMO capacity is

unavoidably limited by quantization noise, many of the benefits associated with deploying a large

number of antennas are present under transform coding – the effects of fast fading disappear,

linear processing becomes optimal and the array gain enables transmit power to be reduced. The

scheme is adapted for the case of imperfect CSI, with numerical results showing the importance

of having good quality channel estimates.

As well as serving as a useful introduction into the use of transform coding in MIMO C-

RAN networks, these findings suggest that transform coding can be an effective strategy for

compressing the large quantity of sampled data produced on the massive MIMO uplink for

transfer over fronthaul – capturing the channel hardening properties and energy efficiency gains

of massive MIMO even when fronthaul capacity is limited. The complexity of performing
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transform coding compression is low – requiring only the application of a linear transform,

and then entropy-coded quantization of the transformed variables. The most computationally

intensive task is calculating the KLT, which has complexity O
(
MK2

)
and is only required once

per coherence block.

However, with a single remote MIMO receiver, compressing the received signal and forward-

ing it to the CP for detection is not the optimal strategy – the symbol detection can instead be

performed at the receiver, and the decoded user streams transferred over fronthaul (in which

case the fronthaul can be utilised perfectly when the sum of the user capacities match the

fronthaul capacity). The results in this chapter suggest that the transform coding ‘compress

& forward’ strategy could be a viable alternative to ‘detect & forward’ for massive MIMO,

and may be attractive to implement depending on the desired split of functionality between

the remote unit and the CP. This is an important area for further investigation, with energy

efficiency being a key consideration – the signals under detect & forward are not degraded by

quantization noise, meaning for a given capacity lower user transmit power is required compared

to compress & forward – this must be traded off against the computational resources required

at the remote receiver.

Distributed MIMO

The second half of this chapter considers uplink signal compression for distributed MIMO.

Here the multi-antenna signal at each receiver is compressed using transform coding before

being transferred to the CP over its own fronthaul link. Since joint symbol detection must be

performed at the CP using the full set of received signals, the compress & forward strategy is

attractive in this context, with transform coding representing a low complexity solution.

First, this chapter shows that for efficient fronthaul utilisation the transform coding schemes

must be jointly optimised across all receivers to account for correlations/dependencies between

the received signals – an upper bound is established for the sum capacity achieved when there

is no co-ordination between receivers. Whilst a procedure for jointly optimising the transforms

and sets of scalar compression rates across all receivers has previously been established, it

requires intensive numerical solutions, and is not a practical scalable solution for real time

implementation.

A solution is proposed in which each receiver applies the KLT to its received signal, be-

fore compressing the transformed signal using a set of scalar compressors with optimised rate

allocations. These rate allocations are jointly optimised across all receivers in order to max-

imise the sum capacity achieved under joint MMSE-SIC or MMSE detection. The solution to

this optimisation has an iterative structure, but benefits from the availability of closed form

expressions at each iteration, meaning – unlike prior work – numerical solvers are not required.

The complexity is O(K3) at each iteration, and a small number of iterations (3-6) are required

for a good solution, with the optimisation performed once per coherence block. Furthermore,

numerical results show that this approach suffers only a small performance penalty compared

to the optimal transform coding scheme (which has significantly higher complexity).

The proposed scheme using transform coding with joint rate allocation represents a scalable

solution for efficient distributed MIMO signal compression. Numerical examples demonstrate
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that with 4 remote receivers, each equipped with 8 antennas and 1.5 Gbps fronthaul capacity, a

total mean user throughput of over 420 Mbps could be simultaneously supplied to 8 users within

a 100 MHz channel – an improvement of 100 Mbps per user compared to the case where the

compression rates are not jointly optimised. As in the single receiver case, deploying additional

antennas at each receiver is shown to provide array gain and improve energy efficiency. The

importance of having good quality CSI is demonstrated.

The findings of this chapter point to some important areas for further development. Firstly,

the analysis provided here is all based on the Gaussian scalar compression model, a theoretical

model which – whilst widely used – only approximates the performance of practical entropy-

coded quantization schemes. Investigating the complexity trade-offs of different practical com-

pression schemes and validating the proposed solution using bit level simulations is therefore

the next development step. Secondly, the results in this chapter have demonstrated that in

the fronthaul-limited region transform coding utilises the available fronthaul capacity most ef-

fectively at high SNR. Whilst this is a reasonable operating assumption for dense distributed

MIMO deployments, the higher transmit power brings diminishing performance returns in this

region, reducing the energy efficiency of the system – this should be characterised to determine

appropriate operating conditions & power control schemes.

Whilst discussed briefly in this chapter, a full investigation into the signalling overheads

related to the transfer of CSI over fronthaul is required, assessing the impact of mobility and

channel coherence times – in practice this will impact the fronthaul data throughput that can

be achieved. Additionally, the impact of wider aspects of fronthaul signalling that are beyond

the scope of this work should be considered, such as latency requirements and the impact of

fronthaul outage (e.g. due to blockage of wireless links).

A particularly interesting insight provided by this chapter is that when there are an overall

excess of antennas and the system operates with limited fronthaul capacity the jointly optimised

rate allocations tend to be sparse – only a subset of the signal components at each receiver are

compressed. This solution structure points towards an alternative approach to signal com-

pression for distributed MIMO networks, based on dimension reduction: this is the subject of

Chapter 5.
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Chapter 5

Dimension Reduction for

Distributed MIMO C-RAN

Recent research into large scale distributed MIMO systems has demonstrated the benefits of

a cellular architecture in which the total number of BS antennas exceeds the number of users

being actively served [152], [210]. However, in such systems the high dimensionality of the BS

signals – both those received on the uplink, and those precoded for transmission on the downlink

– becomes problematic when the distributed remote radio heads (RRH) are connected to the

central processor (CP) via fronthaul connections with limited capacity [98].

Dimension reduction is a widely-used data processing strategy in which the underlying

sparsity of a high dimensional signal is exploited to produce a low dimensional representation

that can be more easily stored, transferred and processed [56]. This idea has recently been

extended to cases where the high dimensional signal is distributed between a number of distinct

nodes – such as in a network of sensors [188] – distributed dimension reduction.

Somewhat surprisingly, the explicit application of distributed dimension reduction to dis-

tributed MIMO networks has previously received very little research attention. Considering

a MIMO C-RAN architecture in which multiple users are served by multiple geographically

distributed multi-antenna remote radio heads (as in Section 4.4), this final research chapter

investigates the use of dimension reduction-based signal compression for both the uplink and

downlink signals.

Low complexity dimension reduction-based schemes for uplink signal compression and down-

link signal precoding are proposed, taking closely related ‘dual’ forms:

• On the uplink, each remote receiver applies a linear dimension reduction filter to its multi-

antenna received signal to produce a reduced dimension signal representation. This is then

quantized and forwarded over fronthaul to the CP, as shown in Figure 5.1. The CP uses

the ensemble of reduced dimension signals to jointly detect the user symbols.

• On the downlink, each remote transmitter receives a low dimension signal over fronthaul,

which it then beamforms using a larger number of antennas. The signal precoding takes

place in two stages: at the CP, an inner precoder takes the user symbols and produces

the low dimensional signals, which are then quantized and transferred over fronthaul to

the transmitter, which perform the outer precoding, as shown in Figure 5.2.
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Figure 5.1: Block diagram of proposed dimension reduction uplink fronthaul compression
scheme (single receiver shown).

The chapter begins by investigating the design of appropriate dimension reduction filters

for the distributed MIMO uplink. Here, it is chosen to design the filters under a joint mutual

information criteria, such that the information that the set of reduced dimension signals jointly

provide about the user symbols is maximised. It is shown that the optimal filter for any given

receiver is a truncated version of the conditional KLT (T-CKLT) – a transform found in other

distributed dimension reduction applications [62] – where here the (statistical) conditioning is

performed with respect to the other reduced dimension signals. Whilst the problem of finding

the optimal set of dimension reduction filters is non-convex, a stationary point is shown to be

found using a block coordinate ascent procedure where the filters are iteratively updated at

each receiver in turn.

It is shown analytically that the proportion of information in the received signals that is lost

due to dimension reduction decreases as SNR increases, whilst numerical examples show that it

is possible to produce a good signal representation with a significantly reduced dimension. It is

then shown using numerical examples that for a fixed signal dimension, increasing the number

of antennas at each receiver is beneficial – providing both an array gain and decreasing the

eigenvalue spread of the reduced dimension channel.

A second, simpler, scheme – the MF-GS scheme – is then proposed, where dimension reduc-

tion is achieved by matched filtering the received signal at each receiver using a subset of the

available local user channel vectors. Though sub-optimal, the MF-GS filters incur a relatively

small performance penalty relative to the T-CKLT filters, whilst providing benefits in terms

of both computational complexity and signalling overheads. Both of the dimension reduction

filter design methods are shown to be straightforward to adapt for the case of imperfect CSI.

The application of lossy signal quantization/compression to the reduced dimension signals

is then investigated for the case where a set of equal resolution (equal rate) scalar quantizers

are used. This combination of dimension reduction and scalar compression has clear parallels

to the transform coding approach investigation in Section 4.4, with the distinction that here,

good performance is achieved by exploiting the data reduction achieved from applying the

jointly designed dimension reduction transforms, as opposed to from using a fixed transform

and optimising the rate allocation.
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Figure 5.2: Block diagram of proposed two-stage fronthaul-aware downlink precoding scheme.

First, useful insights into the performance of reduced dimension compression are provided by

analysing the MIMO sum capacity under Gaussian scalar compression and MMSE-SIC detec-

tion. A high SNR approximation is derived which shows that in the quantization-noise limited

region the sum capacity scales approximately linearly with the available fronthaul capacity, with

a gradient that is inversely proportional to the signal dimension. Since dense distributed MIMO

deployments are expected to operate at high SNR, this provides a more rigorous justification

for the intuition that reducing the signal dimension is an effective way of increasing fronthaul

efficiency. Numerical results then show that, by choosing the optimal signal dimension for the

given fronthaul capacity, the use of dimension reduction with equal rate scalar quantization can

effectively match, and even outperform, the sum capacity achieved by either the P2P-RA or

P2P-SCA schemes – it is a quasi-optimal compression strategy.

The use of T-CKLT or MF-GS dimension reduction filters in conjunction with simple fixed-

rate scalar quantization and linear MMSE symbol detection is then studied, as a practical,

scalable approach to signal compression that could be used in large distributed MIMO networks.

Approximations of the user SINRs are derived, and validated using bit-level simulations. A

numerical case study is then provided for a dense MIMO deployment, showing that, for example,

under reasonable operating conditions, 16 users can be served a mean uplink throughput of 300

Mbps in a 60 MHz channel by 16 remote receivers each equipped with a 1 Gbps fronthaul

connection.

Finally, the ideas from uplink dimension reduction are adapted for a two-stage fronthaul-

aware downlink precoding scheme – establishing dimension reduction as a bidirectional ap-

proach. Exploiting the duality between the MIMO uplink and downlink, it is argued that the

T-CKLT and MF-GS methods can be used to design effective outer precoders that each trans-

mitter can use to transmit a low dimensional signal using a larger number of antennas. Having
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chosen and fixed these outer precoders, inner zero-forcing symbol precoders are then designed

by considering the effective channel provided by the concatenation of the outer precoders and

MIMO propagation channels.

For downlink signal compression, equal resolution fixed-rate scalar quantization is applied

to the low dimension signals at the output of the inner precoder. This has the effect of introduc-

ing quantization noise into the precoded signals, which is then transmitted towards the users,

degrading their performance, as captured by the derived SINR expressions. The quantization

noise characteristics depend on the user power allocations, and so to address the fact that each

user is impacted differently by quantization noise, a max-min power control scheme is proposed

to balance the user performance whilst ensuring per-transmitter power constraints are met.

Numerical results are again provided for a dense MIMO deployment and 60 MHz channel,

showing that under realistic power constraints, user mean downlink throughputs on the order

of 300 Mbps can be provided by 16 transmitters each operating with 1 Gbps fronthaul capacity,

with a clear benefit over conventional precoding demonstrated.

5.1 Chapter Overview

The chapter has the following general structure:

• Section 5.2 provides background to the use of dimension reduction in MIMO C-RAN

systems. It begins by briefly outlining the theory behind statistical dimension reduction

and compressed sensing approaches, before reviewing previous applications to distributed

MIMO networks with limited fronthaul capacity.

• Section 5.3 considers the design of dimension reduction filters for the distributed MIMO

uplink, and analyses their performance. First, the filters are optimised according to joint

mutual information criteria. The performance of the reduced dimension MIMO channel

produced is then studied, using both mathematical analysis and numerical simulations.

An alternative filter design scheme based on matched filtering is designed, and its potential

for reducing signalling overheads is analysed before, finally, an adaptation of the dimension

reduction techniques for channels with imperfect CSI is outlined.

• Section 5.4 studies the use of dimension reduction in conjunction with lossy signal com-

pression. It begins by finding new dimension reduction filters that are optimised under

a sum capacity objective that includes the impact of quantization noise under Gaussian

scalar compression. The sum capacity scaling at high SNR is then analysed, and per-

formance compared to other fronthaul compression schemes. Finally, the performance

of a practical low complexity dimension reduction-based compression scheme that uses

fixed-rate scalar quantizers and linear detection is studied using numerical examples.

• Section 5.5 applies the uplink signal compression ideas to the distributed MIMO downlink.

It begins by outlining a two stage precoding scheme, where, exploiting a duality with

the uplink, the outer precoders are designed by reversing the dimension reduction filters

designed in Section 5.3, before an inner precoder is designed under a zero-forcing criteria.
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It is then proposed to use max-min power control to account for the effects of quantization

noise, with numerical results presented.

5.1.1 Novel Contributions

The key contributions to the state-of-the-art made in this chapter are:

• Showing that the dimension reduction filters that maximise the joint mutual

information between the set of reduced dimension uplink signals and user

symbols are a truncated form of the conditional KLT, with a stationary point

found using block coordinate ascent, Section 5.3.1. To the author’s knowledge,

distributed dimension reduction under a joint mutual information criteria has not pre-

viously been studied (in a communications context or possibly beyond), and hence this

result could also have wider applicability, e.g. in sensor networks.

• Numerical results demonstrating that joint signal representations with signif-

icantly reduced dimensionality can be found that accurately preserve the key

characteristics of the full dimension signal, Section 5.3.2. For example, in a sys-

tem with 8 users, 4 remote receivers and 8 antennas per receiver, a representation using 3

or 4 dimensions per receiver is sufficient to produce a reduced dimension MIMO channel

with similar eigenvalue spread to the full channel, incurring negligible loss of information.

• An alternative dimension reduction filtering scheme based on matched filter-

ing, that can be used for significantly reducing signalling overheads between

the receivers and CP, Section 5.3.3. In this scheme, the dimension reduction filters

are constructed using a defined subset of the local user channel vectors. Assuming CSI is

initially obtained at the receivers, dimension reduction can be directly applied and only

the reduced dimension channel matrices transferred over fronthaul to the CP.

• A high SNR approximation showing that, under Gaussian scalar compres-

sion, the MIMO sum capacity in the quantization/fronthaul-limited region

scales approximately linearly with the available fronthaul capacity, and in-

versely with the signal dimension, Section 5.4.1. This approximation is found by

taking lower and upper capacity bounds at the high SNR asymptotic limit, and provides

a theoretical rationale for the use of dimension reduction-based signal compression.

• Numerical results demonstrating that the use of dimension reduction with

scalar compression can be a highly efficient fronthaul compression strategy,

Section 5.4.1. Comparisons with the SCA-P2P & SCA-RA transform coding fronthaul

compression schemes from the previous chapter show that dimension reduction-based fron-

thaul compression with optimal signal dimension selection can outperform both schemes

in terms of sum capacity/fronthaul efficiency.

• A practical distributed MIMO fronthaul compression and signal detection

scheme based on the use of dimension reduction filtering, simple fixed-rate

scalar quantizers and linear symbol detection, Section 5.4.2, Section 5.4.3.
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SINR expressions are derived and validated by bit-level simulation, with example through-

put figures for a case study dense deployment operating with imperfect CSI provided.

• A downlink ‘dual’ of the uplink reduced dimension compression scheme, in

which two-stage precoding is used to reduce the dimensionality of the signals

transferred over fronthaul, Section 5.5.1. Exploiting a simple uplink/downlink du-

ality, it is shown that outer precoders – applied at the receivers – can be designed using

the same methods as the dimension reduction filters, but applied in reverse to take a low

dimensional signal – precoded by an inner precoder at the CP – and beamform it using a

larger number of antennas.

• A downlink max-min power allocation scheme that optimises user power al-

locations to mitigate the performance degradation caused by applying quan-

tization to the inner-precoded signals before tranferring them over fronthaul,

Section 5.5.2. This is shown to be able to significantly improve the capacities of the

worst users when operating in the quantization-limited region.

5.1.2 Published Work

A matched-filtering based signal compression scheme was published in [221]. This paper mainly

contains the content of Section 5.3.3, but uses local transform coding applied at each receiver

for lossy compression, rather than the direct scalar compression considered in this chapter. The

paper includes the adaptation for channels with imperfect CSI and capacity expressions for both

MMSE-SIC and MMSE detection.

As with the other research chapters, key results in this chapter remain unpublished. Most

significantly, the T-CKLT dimension reduction filters, high SNR sum capacity scaling and down-

link two-stage precoding scheme have not been published. It is planned to write a journal paper

that brings together the uplink and downlink scheme to show the benefits of reduced dimension

signalling in C-RAN networks with limited fronthaul capacity.

5.2 Background

The potential benefits of deploying an overall excess of BS antennas in a distributed MIMO C-

RAN system are well known; increasing the number of antennas at each RRH provides diversity

and array gain, whilst increasing the number of RRHs improves uniformity of coverage through

macro-diversity. However, this growing signal dimensionality becomes an issue – on both the

uplink and downlink – when the C-RAN fronthaul network has limited capacity, as discussed

in Chapter 4.

Whilst the signals being received (or transmitted) by each of the ML antennas are distinct,

all are linear combinations of the same K user uplink (or downlink) symbols. As the overall

excess of BS antennas, ML/K, grows, the signals therefore become characterised by their

sparsity – they can be represented in a signal basis where most of the coefficients are zero.

Exploiting this sparsity to find reduced dimension representations of the transmit and receive
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signals provides a first-order reduction in the quantity of data being transferred over fronthaul,

and can potentially be used as a part of an efficient fronthaul compression scheme.

In the previous chapter it was shown that for a single remote radio head the sparse signal

basis is given by the eigenvectors of the channel matrix, U. On the uplink, projecting the

received signal into the data signal subspace using the KLT reduces the signal dimension from

M to K without loss of information, and is the first stage of the optimal transform coding

compression scheme.

In the multi-RRH setting, producing a minimum dimension representation of the signal for

signal compression is less straightforward, since each RRH only has access to a fraction of the

received signal. The application of the local KLT at each receiver can exploit any local sparsity

that exists when an individual receiver has an excess of antennas, M > K, but cannot exploit

the joint sparsity that exists between the ensemble of received signals. In Chapter 4, this joint

sparsity was instead implicitly accounted for by a joint rate allocation scheme that tended to

encode a subset of the available signal components at each receiver.

This section gives some background to the problem of distributed dimension reduction, dis-

cussing some general approaches before turning attention to previous use of dimension reduction

in MIMO C-RAN systems.

5.2.1 Distributed Dimension Reduction

The so-called ‘curse-of-dimensionality’ is frequently encountered across a wide range of sig-

nal processing applications, creating issues of scalability around signal storage, processing and

transmission. Recently, there has been a growing interest in applications where those signals

are distributed between a network of nodes, such as in sensor networks. This has led to the de-

velopment of a number of different dimension reduction techniques that aim to exploit sparsity

to reduce the signal dimensionality at each node whilst preserving the salient features of the

signal ensemble.

Two approaches to distributed dimension reduction are now briefly discussed:

• Those that use knowledge of the signal statistics, e.g. signal correlations, to calculate

reduced dimension signal approximations.

• Those based on compressive sensing, that do not use knowledge of the signal statistics

when performing dimension reduction.

Statistical Methods

In the classical ‘centralised’ principal component analysis method, the best N -dimensional rep-

resentation (in a mean squared error sense) of a vector is found by projecting it onto the N

principal eigenvectors of the signal covariance matrix [92]. This is precisely the KLT as outlined

in the previous chapter, and has found wide use beyond transform coding – for example in a

communications context it is used in [100] to reduce the complexity of space-time processing in

a single-user MIMO system.

The idea of principal component analysis was extended to the distributed setting in [62],

which considers the scenario where each node observes a different part of a correlated vector, to
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which it applies a dimension reducing transform. They investigate a number of problems relating

to finding the reduced dimension representations that permit the minimum mean squared error

approximation of the original vector.

It is shown when all but one node supplies its full observation that the optimal transform

for the remaining node is given by the N principal eigenvectors of the conditional variance of

its own signal, i.e. the basis in which the signal has the greatest variance when the correlated

observations are provided by the other nodes. This is known as the conditional KLT (CKLT).

For the case where all nodes apply dimension reduction a stationary point to the problem is

found iteratively by updating the transform at each node, for which a slightly more involved

closed form expression is provided.

A related problem is addressed in [188], but where each node is a sensor and the aim is

not to reconstruct the set of sensor observations but to linearly estimate some other correlated

quantity from reduced dimension representations of the observations. This has clear parallels to

the distributed MIMO C-RAN model, which aims to jointly estimate the user symbols from the

set of received signals. The optimal transforms here are also found in a round-robin iterative

fashion, using somewhat tedious closed-form linear expressions that depend on the transforms

at the other nodes and various cross-variance and covariance matrices.

With both of these methods the optimal transforms depend on the signals statistics at all

nodes. The transforms must therefore be computed at some node within the network that has

access to full statistical information, and then transferred to the other nodes.

Compressed Sensing

The compressed sensing (CS) approach is able to exploit sparsity in a signal to reduce the

signal dimension without requiring any a priori statistical knowledge. The key idea is that

when a full dimension signal vector is known to have a sparse representation in a certain basis

(the ‘sparse basis’), then any reduced dimension representation of the signal will preserve most

of the information in the original providing the reduced signal dimension is sufficiently large

compared to the number of non-zero elements in the sparse representation, and providing that

all potential vectors that are sparse in the sparse basis have dense representations in the sensing

(reduced dimension) signal basis [29]. This second condition is fulfilled by choosing the sensing

basis to be ‘incoherent’ with the sparse basis. For example any signal that is known to be sparse

in the frequency domain (i.e contain a small number of tones), will have a dense representation

in the time domain, since the two bases are incoherent, and a random selection of time samples

suffices for sparse signal recovery [27].

The ‘restricted isometry property’ (RIP) is often used to study the suitability of a sensing

matrix for CS [28]. With high probability, a randomly chosen sensing basis is likely to be

incoherent with any sparse basis, and obey the RIP [29], providing the dimension of the basis is

sufficiently large – typically ∼ 4 times the number of non-zero elements. Recovering the sparse

signal then requires numerically solving a least squares problem that includes a `1 regularisation

term that heavily favours sparse solutions.

The CS approach has been extended to distributed settings in [51] and [10] under a variety

of different jointly sparse signal models.

171



CHAPTER 5. DIMENSION REDUCTION FOR DISTRIBUTED MIMO C-RAN

The advantage of the CS approach over statistics based approaches is that a reduced dimen-

sion signal can be formed using random projections, with no knowledge of the signal statistics

required. However, the sparse basis must still be known for signal recovery, and a larger signal

dimension is generally required compared to the statistical approach.

5.2.2 Distributed Dimension Reduction in MIMO C-RAN

Distributed dimension reduction has been applied in a variety of forms to help reduce fronthaul

loads in both uplink and downlink MIMO C-RAN. On the uplink these have mainly focused on

compressed sensing techniques, whilst on the downlink the sparse beamforming approach has

received attention.

MIMO C-RAN Uplink

On the uplink, various efforts have considered an architecture where the numbers of BS antennas

in the network, ML, exceeds the number of active users, K.

Notably, in [175] distributed CS is applied to a network with single antennas RRHs by

applying a sensing matrix across many subcarriers to produce reduced dimension observations

at each RRH, which are then quantized and transferred across fronthaul. It is assumed that

the channels to all users are known, but that only an unknown subset of the users are actively

transmitting. Using the reduced dimension signals, the CP first jointly detects the active users

and establishes rough symbol estimates using CS methods, and then performs conventional ZF

symbol detection once the set of active users is known. The RIP is characterised for this case,

and numerical results presented that show the active users can be accurately indentified and

their symbols recovered. A related scheme is introduced in [233] that also performs user channel

estimation, and in [120] that mitigates sources of narrowband interference.

The CS approach has also been applied to networks with multi-antenna RRHs. In [245] the

results from [175] are adapted for the case where the sensing matrix is applied across the multi-

antenna signal, rather than across different subcarriers. The RIP is studied, and numerical

results presented shown for various configurations that indicate an overall signal dimension of

at least ∼ 4K is required to recover the K user symbols.

It should be noted that the benefits of using CS in the above methods is for their ability

to determine which users are actively transmitting – which could be relevant for example in a

large sensor network. If the users are scheduled to transmit in advance then CS methods need

not be directly applied.

In [128] a dimension reduction fronthaul compression scheme is proposed for multi-antenna

C-RAN with known active users. In this scheme each RRH creates a reduced dimension signal

by taking simple unweighted sums of the signals received at different antennas in different

symbol time slots or on different subcarriers (i.e. by applying a binary linear transform with

entries that are all either 0 or 1). The signal dimensionality is chosen by controlling how many

received signal measurements to combine into each dimension, and the linear combinations taken

by each receiver to not depend in any way on the signal statistics/channel realisation. Since

combining signals from orthogonal resource blocks into the same signals creates additional inter-

user performance, a parallel interference cancellation detection scheme is introduced to improve
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performance. The scheme is shown to give good compression, particularly at low fronthaul

rates, and significantly outperforms simple sample & forward compression.

Dimension reduction techniques have also been applied less directly. For example [118]

uses analogue beamforming to reduce the signal dimension prior to sampling and compression,

whilst, similarly to the findings in Section 4.4.3, the joint rate allocation in [123] was found to

tend to implicitly perform dimension reduction on the signal at reduced fronthaul capacities.

MIMO C-RAN Downlink

On the uplink of the MIMO C-RAN, each RRH receives the uplink transmissions of all users

within its coverage area. On the downlink, however, each RRH can potentially transmit pre-

coded data symbols to only a subset of users, whilst the network as a whole, by coordination of

the different RRHs, ensures every user is served. This opens up new opportunities for reducing

the downlink fronthaul traffic load.

Under linear downlink precoding, the precoding weights can equally be applied to the down-

link symbols centrally at the CP, or locally at the RRHs. When performed locally, the RRH

must have access to the downlink symbols for the users it is serving, and its required fronthaul

capacity is therefore equal to the sum capacities of those users (plus any overheads). The ‘sparse

beamforming’ approach exploits this for fronthaul load reduction, by designing joint precoding

strategies that require each RRH to only serve a subset of the users in its coverage area [48].

When the number of antennas at each RRH is greater than the number of users served by the

RRH, this can be interpreted as a dimension reduction strategy in the sense that the dimen-

sionality of the signal transferred over fronthaul is lower than the dimensionality of the transmit

signal.

A variety of sparse beamforming strategies have been proposed, e.g [90], [126] & [194],

generally making use of sparse optimisation tools to determine the user-RRH association. The

method in [48] explicitly incorporates a fronthaul constraint in the problem formulation, and

uses a successive convex approximation approach to jointly determine the precoding matrices

and user associations.

An alternative fronthaul compression strategy is to perform all symbol precoding centrally

at the CP, and then compress the precoded signals for transfer over fronthaul to the RRHs.

Dimension reduction is exploited in this context in [110], where analogue beamforming is used

in conjunction with low-dimension digital beamforming to reduce the dimensions of the signals

transferred over fronthaul.

5.3 Reduced Dimension Distributed MIMO Uplink Channels

As the excess of antennas in a finite fronthaul capacity distributed MIMO system grows, it be-

comes desirable to find reduced dimension signal representations in order to reduce the quantity

of data transferred over fronthaul.

On the uplink, the ensemble of signals at the L receivers can be expressed as a global received

signal,

yG = HGx + η. (5.1)
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From the discussion in Section 4.3.2, the portion of this signal that contains useful information

about the user symbols can be fully represented by a K-dimensional signal by applying, for

example, the KLT to yG.

However, this signal representation cannot be produced in a distributed setting where each

receiver only has access to its own received signal. When each receiver is equipped with M > 1

antennas, distributed dimension reduction can instead be performed by each receiver locally

applying a linear dimension reduction filter, Al ∈ CM×N to its received signal to produce a

signal with N < M dimensions1,

zl = A†lyl. (5.2)

At a network level this can be expressed as an NL-dimensional signal,

zG = A†GyG, (5.3)

where zG ∈ CNL is the ensemble of L reduced dimension signals and AG ∈ CML×NL is the

equivalent block-diagonal dimension reduction filter,

zG =


z1

...

zL

 , AG =


A1

. . .

AL

 . (5.4)

At each receiver, the user symbols are contained within a t-dimensional signal space, where

t = min(M,K), meaning that – unlike with the global KLT dimension reduction – any joint

representation of the received signals that uses less than Lt dimensions in total necessarily

involves information loss.

This section addresses the task of finding the filters that produce a ‘good’ joint representation

of the distributed MIMO received signals using N < t dimensions at each receiver. Specifically,

the dimension reduction filters are chosen to provide the maximum information about the user

symbols, by maximising the joint mutual information,

I
(
z1, . . . , zL; x

)
= I

(
A†1y1, . . . ,A

†
LyL; x

)
. (5.5)

A procedure for finding a stationary point to this problem is provided, before a reduced com-

plexity method based on matched filtering is developed.

5.3.1 Maximum Mutual Information Distributed Dimension Reduction

The reduced dimension signal at receiver l is given by

zl = A†lHlx + ηA (5.6)

where

E
[
ηAη

†
A

]
= A†lAl. (5.7)

1It is assumed here for simplicity that each receiver uses the same signal dimension. Many of the ideas can
be immediately generalised to the case where different signal dimensions are used.
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Without loss of generality, attention may be restricted to semi-orthogonal filters,

A†lAl = IN , (5.8)

since, using the QR decomposition, any non-orthogonal filter with linearly independent columns,

Ãl ∈ CM×N , can be written

Ãl = AlTl, (5.9)

where Tl ∈ CN×N is invertible and hence by the data processing inequality [47] does not affect

the mutual information. The filtering operation thus amounts to taking the projection of the

received signals onto a subspace which has the columns of Al as a basis.

Each reduced dimension signal can be expressed as the output of an equivalent reduced

dimension MIMO channel,

zl = Glx + η, (5.10)

and joint mutual information is therefore

I
(
z1, . . . , zL; x

)
= log2 det

(
IK + ρ

L∑
l=1

G†lGl

)
(5.11)

= log2 det
(
IK + ρ

L∑
l=1

H†lAlA
†
lHl

)
. (5.12)

Finding a globally optimal set of dimension reduction filters is infeasible, since the optimi-

sation

maximise
A1,...,AL

log2 det
(
IK + ρ

L∑
l=1

H†lAlA
†
lHl

)
subject to A†lAl = IN , ∀l,

(5.13)

is non-convex. However, a block coordinate ascent (BCA) approach can be used to find a

stationary point, by maximising in turn over a single Al whilst holding the others constant.

This is based on the mutual information expansion

I(z1, . . . , zL; x) = I(zl; x|zcl ) + I(zcl ; x), (5.14)

where zcl = {z1 . . . zl−1, zl+1 . . . zL} is the ensemble of reduced dimension signals from all re-

ceivers except receiver l. Only the first term in (5.14) is dependent on Al, and can be expanded

I(zl; x|zcl ) = H
(
zl|zcl

)
−H

(
zl|x, zcl

)
(5.15)

= H
(
zl|zcl

)
−H

(
ηA

)
(5.16)

The second term here is independent of Al, and the optimal transform at receiver l therefore

maximises the conditional entropy of zl given zcl ,

H
(
zl|zcl

)
= log2 det

(
IN + ρA†lHlQlH

†
lAl

)
+ log2(2πe)N (5.17)
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where (see Appendix 3.1)

Ql =
(
IK + ρ

∑
i 6=l

H†iAiA
†
iHi

)−1
. (5.18)

The optimal dimension reduction filter at receiver l is then the solution to

maximize
Al

det
(
IN + ρA†lHlQlH

†
lAl

)
subject to A†lAl = IN .

(5.19)

Using Poincare’s separation theorem [14] it can be shown (see Appendix 3.2) that the opti-

mal filter corresponds to the N principal eigenvectors of HlQlH
†
l (those corresponding to the

maximum eigenvalues). These are the eigenvalues of the conditional variance of yl given zcl ,

E
[
yly
†
l

∣∣zcl ] = IM + ρHlQlH
†
l , (5.20)

and hence the optimal transform is a truncated form of the conditional KLT (T-CKLT herein)

as outlined in [62].

A stationary point to (5.13) may accordingly be found using a BCA procedure [162], itera-

tively updating the Al in turn, as shown in Algorithm 4. Here the Al are initialised using the

first N outputs of the local KLT filters2.

Algorithm 4 T-CKLT block-coordinate ascent (BCA) dimension reduction filter design

inputs: Hl ∀l
Al ← N principal eigenvectors of HlH

†
l ∀l

for j = 1 : jmax do

for l = 1 : L do

Ql ←
(
IK + ρ

∑
i 6=l H

†
iAiA

†
iHi

)−1

Al ← N principal eigenvectors of HlQlH
†
l

end for
end for
outputs: Al ∀l

At each sub-iteration, I(z1, . . . , zL; x) monotonically increases, and hence Algorithm 4 con-

verges to a stationary point of (5.13).

The main computations required at each sub-iteration are:

• Inversion of Ql, complexity O
(
K3
)
.

• Calculation of HlQlH
†
l , complexity O

(
MK2

)
.

• Singular value decomposition O
(
M3
)
.

Assuming a deployment withK > M , the algorithm has computational complexityO
(
jmaxK

3L
)
.

Simulations indicate that, when initialised using the KLT, a small number of iterations (jmax ≤
2The local KLT can easily be shown to be the optimal dimension reduction filter in a single receiver setting

by setting L = 1, which leads to Ql = IK .
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3) are typically required to converge to within a practical tolerance of the maximum. This is il-

lustrated in Figure 5.3, for two different system sizes and the simulation configuration described

in Section 2.5.2. More extensive simulations (not shown) indicate that jmax does not scale with

L, and hence the computational complexity of using the T-CKLT BCA method for finding the

filters scales linearly with the number of receivers deployed. Whilst convergence to a stationary

point, rather than global optimum, of the original problem is achieved, further simulations (also

not shown) using different initialisations suggest that the variation between local maxima is not

significant.

Figure 5.3: Convergence of T-CKLT BCA algorithm, ρ = 15 dB, M = 8. Solid line: K = 8, L =
4, dashed line: K = 16, L = 8.

The filters rely on global CSI, and must therefore be calculated at the CP and fed back to

the receivers, incurring fronthaul overheads (see Section 5.3.3).

Dimension Reduction at High SNR

Rewriting the channel matrix to include user power scalings, Hl = H̄lPl, at high SNR (providing

the inverse exists)

H̄lP
1/2QlP

1/2H̄†l ≈
1

ρ
H̄lP

1/2
(∑
i 6=l

P1/2H̄†iAiA
†
iH̄iP

1/2
)−1

P1/2H†l (5.21)

=
1

ρ
H̄l

(∑
i 6=l

H̄†iAiA
†
iH̄i

)−1
H̄†l (5.22)

and the receive filters are independent of the individual user transmit powers. This is a useful

result since it implies that at high SNR the receive filters may be chosen independently of the

user power control coefficients.
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5.3.2 Reduced Dimension Channels

With a reduced signal dimension N < t the signal representations produced by the T-CKLT

BCA procedure can only approximate the original received signals. Fundamentally, for dimen-

sion reduction to be of any use in distributed MIMO networks, the dimension reduction filters

must be able to capture a significant proportion of the information present in the full received

signal in a lower dimensional signal representation. If not, then the dimensionality of the data

can more simply be reduced by deploying fewer antennas at each receiver, and the use of di-

mension reduction techniques is unnecessary. This section therefore considers two questions:

• How well do the reduced dimension signals approximate the original received signals &

how many signal dimensions are required for a good approximation?

• With a fixed signal dimension at each receiver are there any benefits to increasing the

number of antennas deployed?

Clearly, finding complete answers to these questions involves mathematical analysis with specific

channel models that, due to the complicated structure of the distributed MIMO user channels,

is challenging and beyond the scope of this work. However, some general insights can be found

using simple analysis and numerical examples.

In analysing the performance, parallels with the well known MIMO antenna selection prob-

lem are noted, and following a similar method to [71] the total information lost due to dimension

reduction can be considered

L = I
(
yl, . . . ,yL; x|z1, . . . , zL

)
. (5.23)

Defining a matrix Al ∈ CM×(M−N) that spans the complementary subspace to Al, i.e. A†lAl =

0, the signal component discarded at receiver l during dimension reduction is A
†
lyl and the

corresponding equivalent channel is Gl = A
†
lHl. Similarly to [71], it can then be shown that

L = log2 det
(
IK + ρ

L∑
l=1

G
†
lGl

(
IK + ρ

L∑
i=1

G†iGi

)−1)
. (5.24)

This is monotonic in ρ, and can be upper bounded (where the inverse exists)

L ≤ lim
ρ→∞

log2 det
(
IK + ρ

L∑
l=1

G
†
lGl

(
IK + ρ

L∑
i=1

G†iGi

)−1)
(5.25)

= log2 det
(
IK +

L∑
l=1

G
†
lGl

( L∑
i=1

G†iGi

)−1)
. (5.26)

This bound is independent of ρ, implying that at high SNR dimension reduction causes a

constant performance loss that depends only on the channel and reduced dimension filters. In

contrast, the joint mutual information increases with ρ,

I
(
z1, . . . , zL; x

)
> log2 ρ+ log2 det

( L∑
l=1

G†lGl

)
, (5.27)
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and as a result the proportion of information lost due to dimension reduction vanishes as ρ→∞,

as shown in Figure 5.4 for a system with K = 8, M = 8 & L = 4. This scaling holds for any Al

at high SNR, but L is minimised (to a stationary point) by the T-CKLT BCA method. Figure

5.4 shows the results for a configuration with 8 users and 4 receivers each with 8 antennas (i.e.

t = 8), all randomly distributed within a 200 m × 200 m area – representing a dense urban

deployment. The T-CKLT method is able to represent almost all of the received information

for signal dimension N ≥ 2. This contrasts with the use of random filters, as used in the

compressed sensing approaches, which incur considerable information loss.

Figure 5.4: Reduced dimension mutual information scaling with ρ, K = 8, M = 8, L = 4
(t = 8). Solid line: T-CKLT filters, dot-dash line: random semi-orthogonal filter.

The reduced dimension channel has the eigendecomposition,

L∑
l=1

GlG
†
l = ΘΓΘ† (5.28)

where Θ ∈ CK×K are eigenvectors, and Γ = diag(γi) contains the ordered eigenvalues. This

is useful to consider since the eigenvalues can be used to bound the joint mutual information

captured about individual user symbols, as in (2.117),

log2

(
1 + ργmin

)
≤ I

(
z1, . . . , zL;xk

)
≤ log2

(
1 + ργmax

)
. (5.29)

For γmin > 0 a full rank channel is required, meaning the total signal dimension must be greater
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than the number of users, N ≥ K/L. Using Poincare’s separation theorem it is straightforward

to show that the eigenvalues are upper bounded by the respective eigenvalues of HG, γi ≤ λG,i.

Thus for poorly chosen dimension reduction filters the reduced dimension channel eigenvalue

spread, κ = γmax/γmin may be large. However, the T-CKLT method will tend to act at each

stage to increase the smaller eigenvalues, since the Ql matrix weights the eigenvectors of HlQlH
†
l

towards the signal space of the weaker channel eigenvalues. Figure 5.5 shows the CDF of the

reduced dimension channel eigenvalue spread using T-CKLT dimension reduction and using

random dimension reduction filters. For any signal dimension, the T-CKLT method produces

Figure 5.5: Reduced dimension channel eigenvalue spread, K = 8, M = 8, L = 4 (t = 8). Top:
T-CKLT filters, bottom: random semi-orthogonal filters.

much smaller eigenvalue spreads than random filtering. However, with the minimum signal

dimension, N = K/L (= 2), optimal filtering will still often produce a poorly conditioned

channel, whilst for N > K/L the eigenvalue spread will be close to that of the full dimension

channel. This indicates that the total number of signal dimensions needs to be larger than K

to achieve a good representation of the received signal.

Benefit of Additional Antennas

When the full dimension signals are used, adding more antennas to each receiver provides array

gain and channel hardening. For the reduced dimension case where N is fixed, the benefits of

deploying additional antennas are less clear.

With random dimension reduction filtering, it is straightforward to see that deploying addi-

tional antennas has no benefit – in a random signal coordinate basis, the received information
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will be shared equally (on average) between all signal dimensions. However, the signal does

become more concentrated in some specific signal basis as the number of antennas is increased3.

The optimised dimension reduction filter chooses the optimal signal basis and can therefore

extract some array gain as M increases. This is illustrated in the example in Figure 5.6 with

fixed N = 3, where a doubling of the number of antennas provides a 3 dB array gain. This indi-

cates that with a fixed signal dimension, additional receive antennas can be used to reduce the

user transmit power. Similarly, a channel hardening effect can also be observed as M increases,

Figure 5.6: Array gain under dimension reduction, N = 3, K = 8, L = 4. Solid line: T-CKLT,
dot-dash line: random filtering (all M).

as shown by the eigenvalue distributions in Figure 5.7. This again contrasts with the random

filtering case, which does not benefit from channel hardening.

Figure 5.7: Channel hardening under dimension reduction, M = 8, K = 8, L = 4. Solid line:
T-CKLT, N = 4, dashed line: T-CKLT, N = 3, dot-dash line: random filtering, N = 3 (all
values of M).

3This follows from Weyl’s inequality [91], since adding an additional antenna increases at least some of the
local channel eigenvalues, with none decreasing

eig
(
H†l Hl

)
i
≤ eig

(
H†l Hl + hM+1h

†
M+1

)
i
.
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5.3.3 Matched Filter-based Distributed Dimension Reduction

Other distributed dimension reduction strategies aside from the optimal T-CKLT method are

also capable of exploiting CSI to capture the benefits of having an excess of receive antennas. As

alluded to earlier, for example, antenna selection can be seen as a simple dimension reduction

strategy, and is known to be effective in the single receiver setting [71]. Whilst antenna reduction

can also be applied in a distributed setting, this section proposes a novel dimension reduction

scheme that more directly exploits the characteristics of distributed MIMO networks.

The physical distribution of users and receivers in a distributed MIMO system means that

each receiver has strong channels to some users and weak channels to others. If each receiver

filters its signal in the ‘direction’ of a subset of N users, using a set of matched filters, then its

reduced dimension signal will capture array gain and diversity for at least those N users. With

each receiver focusing on subsets of users to which it has good channels – with the user subsets

for all receivers jointly selected at the CP – a good joint signal representation can be expected.

This approach is attractive from a signalling overhead perspective, since only the indices of

the selected user vectors are required by the receivers to reconstruct the filters (assuming each

receiver already has access to its own CSI), compared to the T-CKLT filters which must be

calculated centrally and fed back. This approach has certain similarities to the downlink sparse

beamforming [48], with the distinction that here the reduced dimension signals contain uplink

signal components from all users, not just the selected users (since the matched filtering does

not generally eliminate all inter-user interference4).

The channel matrix associated with the N selected user vectors at receiver l is

H
(Sl)
l =

[
hl,Sl(1) . . . hl,Sl(N)

]
. (5.30)

where Sl is the set of indices of the selected vectors. This reduced channel matrix will generally

not have orthonormal columns, and therefore an equivalent semi-orthogonal filter may instead

be defined based on the QR decomposition

H
(Sl)
l = AlTl (5.31)

where Al has orthonormal columns and Tl is upper triangular. Using Al as a receive filter

captures the same information as matched filtering with H
(Sl)
l .

The receive filter Al has columns

Al =
[
al,1 . . . al,N

]
(5.32)

which can be calculated sequentially using the Gram-Schmidt procedure

al,i =
Pl,ihl,Sl(i)

‖Pl,ihl,Sl(i)‖
(5.33)

4The matched filtering here is not being used for detection in the manner described in 2.3.1, but rather to
produce a good joint signal representation from which the user symbols can later be jointly detected.
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where Pl,i is an orthogonal projection matrix

Pl,i = IM −
∑
j<i

al,ja
†
l,j . (5.34)

The joint mutual information can be expressed in terms of these column vectors as

I
(
z1, . . . , zL; x

)
= log2 det

(
IK + ρ

L∑
l=1

N∑
i=1

H†lal,ia
†
l,iHl

)
. (5.35)

Finding the optimal sets of user vectors for all receivers is a combinatorial problem with
(
K
N

)L
combinations, and hence an exhaustive search is prohibitive. Inspired by the antenna selection

scheme in [65], a more tractable approach is to instead use a greedy algorithm to select the user

matched filtering vectors one at a time, maximising the mutual information at each selection

stage.

MF-GS Greedy Selection Algorithm

If after n stages of the greedy algorithm the partially constructed set of MF vectors at receiver l

is S(n)
l and z

(n)
l is the partially constructed reduced dimension signal, with z(n) = {z(n)

1 . . . z
(n)
L },

then the joint mutual information is

I
(
z(n); x

)
= log2 det

(
IK + ρ

L∑
l=1

|S(n)
l |∑
i=1

H†lal,ia
†
l,iHl

)
. (5.36)

This can be expanded using the conditional mutual information

I
(
z(n); x

)
= I

(
z(n); x

∣∣z(n−1)
)

+ I
(
z(n−1); x

)
, (5.37)

with the increase in mutual information at stage n

I
(
z(n); x

∣∣z(n−1)
)

= log2

(
1 + ρa†l,iHlQn−1H

†
lal,i

)
(5.38)

where al,i is the filter vector selected at stage n, and

Qn−1 =
(
IK + ρ

L∑
l=1

|S(n−1)
l |∑
i=1

H†lal,ia
†
l,iHl

)−1
. (5.39)

Substituting (5.33), the joint mutual information is maximised at stage n by choosing the user

vector at receiver l that maximises

al,i = arg
hl,k

maximize
k/∈S(n−1)

l

h†l,kPl,iHlQn−1H
†
lPl,ihl,k

‖Pl,ihl,k‖2
. (5.40)
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The Qn−1 matrix can then be updated using a rank-1 update [170]

Qn = Qn−1 −
Qn−1H

†
lal,ia

†
l,iHlQn−1

1/ρ+ a†l,iH
†
lQn−1Hlal,i

. (5.41)

This greedy selection can be carried out in a round-robin manner, selecting a MF vector for

each receiver in turn, as shown in Algorithm 5. This is referred to herein as the matched-filter

Gram-Schmidt (MF-GS) filter design algorithm.

Algorithm 5 MF-GS Algorithm

inputs: Hl ∀l
Q← IK

Pl ← IM ∀l
Sl[1 : N ]← 0 ∀l
for n = 1 : N do

for l = 1 : L do

k? ← arg
k

maximize
k/∈Sl

h†l,kPlHlQH†lPlhl,k

h†l,kPlhl,k

a←
Plhl,k?

‖Plhl,k?‖
Sl[n]← k?

Q← Q−
QH†laa†HlQ

1/ρ+ a†H†lQHla

Pl ← Pl − aa†

end for
end for

outputs: Sl ∀l

The MF-GS dimension reduction design method requires only matrix multiplications, and

the computational complexity is dominated by calculation of HlQH†l . The overall complexity

order is O
(
K2LMN

)
, and fewer overall computations are required compared to the T-CLKT

BCA method since no matrix inversions or eigenvalue decompositions are required. Ideas from

[65] can be applied to further reduce computational complexity. The method also has the

advantage of producing the same first n outputs for any N , and can therefore be used to find

dimension reduction filters for various values of N with minimal additional computation.

Figure 5.8 compares the performance of the MF-GS method to the T-CKLT method and

a simple greedy antenna selection algorithm adapted from [65] (not shown here). The MF-GS

method significantly outperforms antenna selection, and comes close to the performance of the

T-CKLT method. Comparing to Figure 5.5, all methods significantly improve performance

compared to using a reduced number of antennas or a random dimension reduction filter.

Whilst the MF-GS filters produce less accurate signal representations than the T-CKLT

filters, they have the benefit of reducing signalling overheads since only the N indices of the se-

lected user vectors need to be fed back to each receiver for local filter reconstruction, as opposed

to the full Al matrix. Assuming local CSI is initially obtained at the receivers using uplink pi-
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Figure 5.8: Performance of different dimension reduction schemes, K = 8, L = 4. Solid line:
T-CKLT, dot-dash line: MF-GS, dotted line: antenna selection.

lots, the signalling overheads under MF-GS distributed dimension reduction are dominated by

the transfer of CSI to the CP. When the channel changes regularly due to fading, these CSI

overheads can themselves be reduced by adapting the MF-GS method.

Extension for Block Fading Channels

For block fading channels, the channel matrix realisations are randomly drawn according to the

channel statistics, and then assumed to be constant for all transmissions within a coherence

block. The ergodic, or average, mutual information (over multiple coherence blocks) is then

defined

E
[
I
(
z1, . . . , zL; x

)]
= E

[
log2 det

(
IK + ρ

L∑
l=1

H†lAlA
†
lHl

)]
. (5.42)

For good performance, the dimension reduction filters, Al, should vary with the random channel

realisation, Hl. With both the T-CKLT and MF-GS methods, this means filter design must

be performed at the CP at each channel coherence interval, requiring full CSI be transferred to

the CP (KM coefficients per receiver). However, once dimension reduction has been applied at

the receivers, any processing of the reduced dimension signals only requires knowledge of the

reduced dimension channel matrices Gl (KN coefficients per receiver).

In the MF-GS scheme the filters are parameterised by the set of indices of the selected

MF vectors, Sl. The set of users that is selected can be expected to be strongly influenced by
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the path-loss, or slow fading characteristics, of the user channels. Since the path-loss changes

slowly relative to the fast fading channel realisation, rather than choosing the optimal Sl for

each individual channel realisation, Sl can instead be fixed for a group of coherence blocks over

which the slow fading characteristics remain approximately constant. The receive filters may

then be updated locally at each receiver at each coherence interval using local knowledge of

Hl, and only the reduced channel matrices Gl need to then be transferred to the CPU for any

processing, rather than full CSI.

Adapting the original MF-GS algorithm, the Sl can be found by greedily selecting the indices

that maximise the average joint mutual information, i.e. at stage n

k? = arg max
k

E
[

log2

(
1 +

ρh†l,kPl,iHlQn−1H
†
lPl,ihl,k

h†l,kPl,ihl,k

)]
(5.43)

where hl,k, Pl,i and Qn−1 are all random quantities that vary with the channel realisations. The

Sl can be chosen for arbitrary channel distributions using a sample of Ns channel realisations,

H
(i)
l , taken from different coherence blocks over which the channel slow fading statistics stay

approximately constant. For example, the channel realisation samples could be obtained using

pilots on sufficiently separated subcarriers in an OFDM symbol. The fading MF-GS algorithm

(F-MF-GS) is shown in Algorithm 6.

Algorithm 6 F-MF-GS Receive Filter Design for Fading Channels

inputs: H
(i)
l ∀l, i

Q(i) ← IK ∀i
P

(i)
l ← IM ∀l, i
Sl[1 : N ]← 0 ∀l
for n = 1 : N do

for l = 1 : L do

γk ←
1

Ns

∑
i

log2

(
1 +

ρh
(i)†
l,k P

(i)
l H

(i)
l Q(i)H

(i)†
l P

(i)
l h

(i)
l,k

h
(i)†
l,k P

(i)
l h

(i)
l,k

)
∀k /∈ Sl

k? ← arg max
k

γk

Sl[n]← k?

a(i) ←
P

(i)
l h

(i)
l,k?∥∥P(i)

l h
(i)
l,k?

∥∥ ∀i

Q(i) ← Q(i) −
Q(i)H

(i)†
l a(i)a(i)†H

(i)
l Q(i)

1/ρ+ a(i)†H
(i)†
l Q(i)H

(i)
l a(i)

∀i

P
(i)
l ← P

(i)
l − a(i)a(i)† ∀i

end for
end for
outputs: Sl ∀l

The performance degradation compared to the full MF-GS method is small, as shown in

Figure 5.9.

The adapted MF-GS method for fading channels reduces the signalling overheads even com-
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Figure 5.9: Channel eigenvalue spread under dimension reduction, K = 8, M = 8, L = 4. Solid
line: MF-GS, dashed line: F-MF-GS, Ns = 4.

pared to the case where no dimension reduction is used since only the reduced dimension chan-

nels, Gl, need to be transferred over fronthaul, rather than full dimension channels, Hl. Figure

5.10 illustrates the saving for the case where Ns = 4 channel matrix measurements are taken

from 4 different coherence blocks within the operating frequency bandwidth and used to choose

the Sl. The selected indices are held constant over Nc = 32 coherence blocks, meaning that for

the 28 remaining coherence blocks dimension reduction can be performed at the receivers, with

only the reduced dimension channels transferred over fronthaul.

Figure 5.10: Illustration of reduced CSI signalling overheads facilitated by F-MF-GS dimension
reduction scheme.

Assuming each element in Hl, Al and Gl is represented using nb bits, Table 5.3.3 shows the

signalling overheads per coherence block associated with the different schemes. The proportion

of fronthaul capacity that must be devoted to signalling overheads then depends on the channel

coherence block size – channels with high mobility and rich multipath content having higher

overheads due to the more frequent CSI updates that are required.
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Average Signalling Overheads (bits per coherence block)

Filter Design Scheme RRH to CP CP to RRH

No Dimension Reduction Hl MKnb - -

T-CKLT Hl MKnb Al MNnb

MF-GS Hl MKnb Sl N log2K

F-MF-GS Hl/Gl
1

Nc

(
MNs+N(Nc−Ns)

)
Knb Sl

1

Nc
N log2K

The overheads are illustrated in Figure 5.11 for a system with M = 8,K = 8, coherence

block length of 100 symbols and nb = 20 bits.

Figure 5.11: Average signalling overheads associated with different dimension reduction
schemes, channel coherence block size 100 symbols, K = 8, M = 8, nb = 20 bits.

5.3.4 Dimension Reduction with Imperfect CSI

Practical systems must estimate CSI using transmitted pilot signals, and hence suffer from

imperfect CSI. Under the MMSE channel estimation model, it is straightforward to extend the

dimension reduction filter design methods to account for this. As in Section 4.3.5, a whitening

transform is first applied,

y̌l = Ω
−1/2
l yl

= Ȟlx + ω̌l,
(5.44)

before dimension reduction

zl = A†l y̌l. (5.45)

Treating the signal through the CSI errors as noise, the average joint mutual information can

be lower bounded

EE

[
I
(
z1, . . . , zL; x

)]
≥ EE

[
log2 det

(
IK + ρ

L∑
l=1

Ȟ†lAlA
†
l Ȟl

)]
. (5.46)
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This has the same form as (5.11), and is maximised by applying the T-CKLT BCA algorithm

to the whitened channel estimates Ȟl = Ω
−1/2
l Ĥl. For spatially correlated user fading channels,

this whitening transformation, Ω
−1/2
l , can be seen as a weighting that causes the receive filters

to favour signal subspaces which (on average) contain lower channel estimation error.

The MF-GS algorithm may similarly be applied using the modified channel vectors, ȟl,k =

Ω
−1/2
l ĥl,k. The CP only requires knowledge of the transformed channel, Ȟl, and hence no

additional signalling overheads are required compared to the perfect CSI case.

As before, a reduced dimension estimated channel can be defined

Ĝl = A†lΩ
−1/2
l Ĥl. (5.47)

The performance of the reduced dimension channel with imperfect CSI is interference limited,

and therefore the bound stops growing at high SNR due to the CSI errors,

lim
ρ→∞

log2 det
(
IK + ρ

L∑
l=1

Ĝ†l Ĝl

)
= log2 det

(
IK +

L∑
l=1

Ĥ†l

( K∑
k=1

pkCl,k

)−1/2
AlA

†
l

( K∑
k=1

pkCl,k

)−1/2
Ĥl

)
. (5.48)

This constrasts with the perfect CSI case, where increasing the SNR increases the joint mutual

information. As the quality of the channel estimates increases (the Cl,k decrease) the joint

mutual information lower bound increases as shown in Figure 5.12.

Figure 5.12: Joint mutual information lower bound under T-CKLT dimension reduction, K =
8,M = 8, L = 4.
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5.4 Reduced Dimension MIMO Uplink with Lossy Compression

So far it has been shown that lossy distributed dimension reduction can exploit the joint sparsity

of the received signals in a distributed MIMO network with an excess of receive antennas to

produce reduced dimension signal representations that accurately preserve the salient features.

However, before these signals can be transferred over finite-capacity fronthaul, lossy signal

compression must be applied to encode them using a finite number of bits.

In contrast to the previous chapter, where the use of transform coding with a jointly op-

timised rate allocation was studied, this section considers a simple compression scheme where

the reduced dimension signals are directly compressed using N equal-resolution scalar compres-

sors/quantizers. Since this lossy compression stage does not adapt to the signal statistics, all

improvements in fronthaul utilisation come from the distributed dimension reduction stage.

First, the use of Gaussian scalar compression is considered. A block coordinate ascent

algorithm for finding the sum capacity maximising dimension reduction filters is derived, before

the sum capacity scaling in the high SNR regime is analysed. Comparing dimension reduction

to the optimal point-to-point compression outlined in Chapter 4, it is argued that at high

SNR dimension reduction is a quasi-optimal point-to-point compression strategy for maximising

fronthaul efficiency.

A practical dimension reduction compression strategy for distributed MIMO networks is

then proposed, which uses the dimension reduction filters from Section 5.3 in conjunction with

simple fixed-rate scalar quantization.

5.4.1 Sum Capacity under Gaussian Scalar Compression

Applying Gaussian scalar compression directly to the reduced dimension signals using a simple

uniform rate allocation, ri = R/N , produces compressed signals

z̃l = Glx + η + δl (5.49)

with quantization noise δl ∼ CN
(
0,Φl

)
, where

Φl =
(
ρDl + IN

) 1

2R/N − 1
(5.50)

with Dl = diag
(
‖gl,i‖2

)N
i=1

and gl,i = H†l fl,i.

Comparing with Section 4.2.2, it is clear that – like the transform coding scheme investigation

in Section 4.4 – the reduced dimension compression scheme is a specialised case of Gaussian

vector point-to-point compression. However, here efficient compression is achieved by optimising

the dimension reduction filters applied at the receivers, in contrast to the transform coding

approach where a fixed transform is used in conjunction with optimised rate allocation.
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Sum Capacity Maximising Dimension Reduction

The maximum fronthaul efficiency is achieved by maximising the sum capacity under MMSE-

SIC detection with respect to the transforms,

maximise
A1,...,AL

log2 det
(
IK + ρ

L∑
l=1

H†lAl

(
IN + Φl

)−1
A†lHl

)
(5.51)

subject to A†lAl = IN ∀l. (5.52)

This is a non-convex problem and hence it is not possible to find a global maximum, but a block

coordinate ascent may again be used to find a stationary point. Here the filter columns, al,i,

are updated in turn using the mutual information expansion

CSUM = I
(
z̃1, . . . , z̃L; x

)
(5.53)

= I
(
z̃l,i; x

∣∣z̃cl,i)+ I
(
z̃cl,i; x

)
(5.54)

where z̃l,i is component i at receiver l and z̃cl,i is the set of all other NL− 1 components. Only

the first term depends on al,i, and can be shown to be

I
(
z̃l,i; x

∣∣z̃cl,i) = log2

(
1 +

(
2R/N − 1

) ρf †l,iHlTl,iH
†
l fl,i

f †l,i
(
ρHlH

†
l + 2R/NIM

)
fl,i

)
(5.55)

where

Tl,i =
(
IK + ρ

∑
j 6=l

G†j
(
IN + Φj

)−1
Gj + ρ

∑
u6=i

gl,ug
†
l,u

φl,i + 1
.
)−1

(5.56)

The optimal al,i is then the solution to

maximise
al,i

ρa†l,iHlTl,iH
†
lal,i

a†l,i
(
ρHlH

†
l + 2R/NIM

)
al,i

subject to a†l,ial,j = 0, ∀j 6= i.

(5.57)

The constraint is introduced to ensure orthogonality of the columns of Al, and can be expressed

using a nullspace constraint

al,i =
(
IM −

∑
j 6=i

al,ja
†
l,j

)
al,i (5.58)

= Pl,ial,i. (5.59)

Substituting, the constrained problem is converted into an unconstrained generalised Rayleigh

quotient problem

maximise
al,i

ρa†l,iPl,iHlTl,iH
†
lPl,ial,i

a†l,iPl,i

(
ρHlH

†
l + 2R/NIM

)
Pl,ial,i

, (5.60)
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that can be solved as a generalised eigenproblem [139],

Pl,iHlTl,iH
†
lPl,i = ζPl,i

(
HlH

†
l + 2R/N/ρIM

)
Pl,i, (5.61)

where ζ is the largest generalised eigenvalue. Using the BCA procedure a stationary point

can be found by updating each basis vector in turn, repeating cyclically. Since at each update

the Rayleigh quotient has a unique maxima, the Rayleigh quotient block coordinate ascent

algorithm (RQ-BCA) converges monotonically towards a stationary point [162].

Figure 5.13 compares the sum capacity achieved by the RQ-BCA dimension reduction filters

for different values of N to that achieved by the SCA-P2P method adapted from [248], for a

single channel realisation. Remarkably, the envelope of the dimension reduction capacity curves

closely matches the capacity curve of the SCA-P2P compression scheme, and at low fronthaul

capacities actually outperforms it. As the dimension reduction scheme is a specific case of point-

to-point vector compression this is surprising, but is nonetheless entirely feasible – the SCA-P2P

scheme finds a stationary point to the point-to-point compression sum capacity maximisation

problem, rather than the global maximum.

Figure 5.13: Sum capacity under RQ-BCA dimension reduction filters for different signal di-
mensions, ρ = 15 dB, K = 8,M = 8, L = 4 (single channel realisation).

This result suggests that dimension reduction-based compression can be a quasi-optimal

strategy for efficiently utilising the fronthaul network in a distributed MIMO network with an

excess of receiver antennas. This observation is consistent with the findings of the previous

chapter, where a sparse rate allocation was found to be produced when the rate allocations at

different receivers are jointly optimised. Further evidence of this is now provided by analysing

the performance of dimension reduction compression at high SNR.
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Sum Capacity Scaling at High SNR

Some useful insights can be gained about the performance of dimension reduction-based signal

compression scheme by considering the capacity scaling in the high SNR limit – i.e. for the

scenario where there is no receiver noise, and capacity is limited only by quantization noise. In

this region, the capacity is given by

CSNR
SUM = lim

ρ→∞
CSUM (5.62)

= log2 det
(
IK +

(
2R/N − 1

)
Π
)
, (5.63)

where

Π =
L∑
l=1

G†lD
−1
l Gl =

L∑
l=1

N∑
i=1

gl,ig
†
l,i

‖gl,i‖2
. (5.64)

Assuming Π is full rank, the high SNR limit can be simply lower bounded,

CSNR
SUM > log2 det

((
2R/N − 1

)
Π
)

(5.65)

= K log2

(
2R/N − 1

)
+ log2 det

(
Π
)
, (5.66)

whilst using the bound in (4.34) it can be upper bounded

CSNR
SUM < log2 det

(
IK + 2R/NΠ

)
(5.67)

≤ RK
N

+ log2 det
(
Π
)

+ 2−R/N log2(e) Tr
(
Π−1

)
. (5.68)

These two bounds rapidly converge as R is increased, and for practical R/N � 1 the high SNR

sum capacity is well approximated by

CSNR
SUM ≈

RK
N

+ log2 det
(
Π
)
, (5.69)

as shown in Figure 5.14 for a network with K = 8,M = 8, L = 4.

The sum capacity therefore increases approximately linearly with the per-RRH fronthaul

capacity,
∂CSNR

SUM

∂R
≈ K

N
, (5.70)

scaling most quickly when a small signal dimension is used. For example, with the minimum

signal dimension, N = K/L, adding 1 bpcu of total fronthaul capacity (shared between L

fronthaul connections) increases the sum capacity by 1 bpcu, and performance stays within a

gap of the cut-set bound5

CSNR
SUM ≈ RL+ ε . (5.71)

Clearly, no practical distributed MIMO system operates at infinite SNR; however, the ap-

proximation is reasonable whenever the quantization noise is much greater than the receiver

5It can be shown using Hadamard’s inequality that ε = log2 det
(
Π
)
≤ 0 when N = K/L. For N > K/L,

log2 det
(
Π
)

may be a positive number.

193



CHAPTER 5. DIMENSION REDUCTION FOR DISTRIBUTED MIMO C-RAN

Figure 5.14: Asymptotic high SNR sum capacity scaling under T-CKLT dimension reduction,
K = 8,M = 8, L = 4. Blue lines: N = 2, orange lines: N = 4.

noise, Φl � IN and is therefore a good approximation at practical high SNRs when operating

in the fronthaul-limited region, as illustrated in Figure 5.15 for ρ = 15 dB. The assumption of

moderately high SNRs is reasonable for dense MIMO C-RAN deployments [234].

Figure 5.15: Sum capacity scaling under T-CKLT dimension reduction, ρ = 15 dB,K = 8,M =
8, L = 4. Blue lines: N = 2, orange lines: N = 3, yellow lines: N = 4.

At finite SNR, the quantization noise decreases as the fronthaul capacity increases until
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performance is limited instead by receiver noise. When Φl � IN ,

CSUM ≈ log2 det
(
IK + ρ

L∑
l=1

G†lGl

)
(5.72)

= log2 det
(
IK + ρ

L∑
l=1

H†lHl

)
− L, (5.73)

and the sum capacity is limited by the information lost from applying dimension reduction.

Thus under dimension reduction signal compression two operating regimes can be identified:

• In the quantization noise-limited region the sum capacity increases approximately linearly

with the fronthaul capacity. For a given fronthaul capacity the sum capacity (and fronthaul

efficiency) is greater when dimension reduction is applied more aggressively – small N –

since this results in lower quantization noise.

• In the receiver noise-limited region the sum capacity is limited by the lossy dimension

reduction. Here the use of a larger signal dimension can be beneficial since it preserves

more of the information from the original signal.

In practice there is a gradual transition between the two regimes, and for a given fronthaul

capacity the maximum achievable sum capacity can be found by comparing sum capacities for

different values of N . This yields the performance curves in Figure 5.13.

The combination of dimension reduction filtering and scalar compression can achieve high

fronthaul efficiency, as shown in Figure 5.16 for two different network configurations. The RQ-

BCA, T-CKLT & MF-GS filters all outperform the SCA-RA transform coding scheme at many

fronthaul capacities. Whilst only the RQ-BCA dimension reduction filters explicitly account for

the effects of quantization noise, the T-CKLT dimension reduction filters achieve effectively the

same performance. The use of simple dimension reduction schemes based on antenna selection or

random filtering give worse performance, but still provide a capacity gain over UQN compression

by using a reduced signal dimension to reduce quantization noise.
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Figure 5.16: Sum capacity performance under different dimension reduction schemes, ρ = 15
dB. Top: K = 8,M = 8, L = 4, bottom: K = 8,M = 4, L = 8.

5.4.2 Practical Reduced Dimension Compression using Fixed-Rate Quantiz-

ers

Whilst the study of system sum capacity provides some important insights, in cellular dis-

tributed MIMO systems the individual user capacities that can be provided are often of more

significance (the sum capacity may be shared unevenly between users). Whilst sum capacity

maximising dimension reduction filters can be found as in Section 5.4.1, this approach cannot

easily be modified to account for specific per-user capacity criteria. Here, it is elected to instead

use filters designed under the joint mutual information criteria in Section 5.3, since these have

been shown to provide good reduced dimension signal representations. Furthermore, in practi-

cal systems the use of fixed-rate scalar quantization – rather than entropy coded quantization

– is attractive for its simplicity. The user capacities achieved by dimension reduction under

fixed-rate scalar quantization and linear MMSE detection are therefore now considered.

In the proposed scheme, dimension reduction is applied to the received signals,

zl = A†lyl, (5.74)
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before the reduced dimension signals are quantized using N pairs of equal resolution fixed-rate

scalar quantizers, each allocated b quantization bits,

z̃l,i = Q
(
<(zl,i)

)
+ jQ

(
=(zl,i)

)
. (5.75)

Following the discussion in Section 4.2.2, using Gaussian scalar Lloyd-Max quantizers, the

quantized signals can be modelled using an additive quantization noise model,

z̃l = zl + δl, (5.76)

where δl has unknown distribution but known covariance

E
[
δlδ
†
l

]
= Φl ≈

π
√

3

2

(
ρDl + IN

)
2−b. (5.77)

This approximation is tight at higher quantization resolutions (b ≥ 8), and is therefore valid

for the case of interest where the R fronthaul capacity bits are shared between a small number

of quantizers6. Comparing to (5.50), the use of fixed-rate quantizers (rather than entropy

coded) increases the quantization noise by a factor of approximately π
√

3
2 . Achieving the same

quantization noise level therefore requires an extra 1.4N bits of fronthaul capacity for each

receiver – when N is small, simpler fixed-rate quantization is competitive with entropy-coded

quantization.

The user symbols are detected using linear detection,

x̂ =
L∑
l=1

Wlz̃l, (5.78)

where Wl are the MMSE detection matrices

Wl = CeG
†
l

(
IN + Φl

)−1
, (5.79)

with Ce the MMSE error covariance matrix,

Ce = ρ
(
IK + ρ

L∑
l=1

G†l
(
IN + Φl

)−1
Gl

)−1
, (5.80)

and user symbol mean squared errors ek =
[
Ce

]
k,k

.

Practical systems use QAM constellations rather than Gaussian symbols, leading to a quan-

tizer mismatch when the Lloyd-Max quantizers are designed for Gaussian sources (see Section

4.4.6). However, the outlined quantization noise model remains a good approximation, as veri-

6Here the quantization noise components are modelled as being uncorrelated, i.e. diagonal Φl. Whilst this is
true under the Gaussian vector test channel model, it is not strictly true for fixed-rate quantization – consider
the case where two near-identical sources are quantized at low resolution. However, at higher resolution, the
quantization intervals become very small and the quantization noise correlation becomes negligible for non-
identical sources. For example, the work in [140] approximates the quantization noise correlation as decaying
with 2−2b, whilst the correlation noise power decays with 2−b. Much prior work, e.g. [163], [123], therefore
negates quantization noise correlation.
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fied in Figure 5.17, which compares the analytical user symbol mean squared error expression

to numerical simulations using both Gaussian and 64QAM symbol alphabets. The analytical

Figure 5.17: User symbol mean squared error after MMSE detection, T-CKLT dimension re-
duction, fixed-rate scalar quantizers, K = 8,M = 8, L = 4. Solid line: analytical expression,
dashed line: Gaussian symbols, dot-dash line: 64QAM symbols.

expression approximates the simulated MSE for both Gaussian and QAM symbols, becoming

tighter at higher quantizer resolutions. The mean squared error behaves as expected, initially

decreasing with SNR before becoming limited by quantization noise and approaching an error

floor.

User Capacities

The SINR for user k is given by,

SINRk =
ρ

ek
− 1, (5.81)

and the user capacities

Ck = log2

(
1 + SINRk

)
(5.82)

are achievable – since treating the non-Gaussian quantization noise as Gaussian provides a

capacity lower bound [196]. Figure 5.18 shows the user mean and 10 % outage capacities for

T-CKLT and MF-GS dimension reduction filters and varying signal dimensions and quantizer

resolutions. At low fronthaul capacities, a small signal dimension gives the best mean capacities,

but will tend to perform poorly in terms of outage capacity. This can be explained by reference

to Figure 5.8, since the dimension reduction filters will tend to produce a larger eigenvalue

spread when N is small.

Benefit of Additional Antennas

Increasing the number of antennas at each receiver improves the per-user mean and 10% outage

capacities, as shown in Figure 5.19. This is consistent with the results from Section 5.3.2, which

showed that for fixed N the mutual information and eigenvalue spread of the reduced dimension

channel increase with M .
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Figure 5.18: User mean and 10 % outage capacities under fixed-rate scalar quantization with
varying signal dimensions and quantizer resolutions, ρ = 15 dB, K = 8,M = 8, L = 4. Top:
T-CKLT dimension reduction filters, bottom: MF-GS dimension reduction filters.

Signal Compression under Imperfect CSI

Using the dimension reduction filters for imperfect CSI in Section 5.3.4, the fixed-rate quanti-

zation method can be readily extended for the case of imperfect CSI at the receivers. Under the

same assumptions for quantizing signals with imperfect CSI as used in Chapter 4, the MMSE

estimation error (averaged over possible error realisations) is

Ce = EE

[
(x̂− x)(x̂− x)†

]
= ρ
(
IK + ρ

L∑
l=1

Ĝ†l
(
IN + Φl

)−1
Ĝl

)−1
, (5.83)

where the quantization noise power for dimension i at receiver l is

E
[
|φl,i|2

]
= ρa†l,iΩ

−1/2HH†Ω−1/2al,i + a†l,iΩ
−1al,i. (5.84)
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Figure 5.19: User mean and outage capacities under fixed-rate scalar quantization with MF-GS
dimension reduction filters, K = 8, L = 4, N = 3, b = 10 bits (R = 30 bpcu).

5.4.3 Example: Dense Deployment

Inspired by the cell-free MIMO concept, an example use of dimension reduction-based com-

pression in a dense distributed uplink MIMO C-RAN deployment is now considered. Here,

K = 16 users are simultaneously served by L = 16 receivers, all randomly distributed within

a 200 m × 200 m service area7 – representing, for example, a dense urban deployment. Each

receiver applies MF-GS dimension reductionfilters to its multi-antenna received signal to pro-

duce N = 2 signal observations8 (per subcarrier). These observations are then quantized using

b-bit fixed-rate quantizers, such that each receiver uses R = 2b bpcu of fronthaul capacity.

The system operates in a 60 MHz bandwidth, with spectral efficiency

mean user spectral efficiency = 0.8×mean user capacity, (5.85)

with the 20 % loss (compared to ideal Nyquist rate signalling) used to account for signalling

overheads.

Figure 5.20 shows the capacity for different qualities of channel estimation, assuming each

receiver has M = 4 antennas and uses b = 8 bit quantizers. This corresponds to a fronthaul

load of 960 Mbps per receiver – well within what can be provided by mmWave point-to-point

7Equivalent, on average, to deploying a receiver every 50 m.
8In practice, the F-MF-GS scheme, which gives similar performance, could be used instead to reduce signalling

overheads
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links.

The benefits of having accurate CSI are clear – with poor quality CSI the capacity is severely

limited due to channel estimation errors, whilst with higher quality CSI the effects of quantiza-

tion noise become more significant (resulting in better fronthaul utilisation). At higher SNRs,

mean user throughputs of 300 Mbps can be achieved, corresponding to a total cell throughput

of ∼ 5 Gbps within the 60 MHz channel.

Figure 5.20: Mean user throughputs in dense distributed MIMO deployment with MF-GS
dimension reduction and different channel estimation qualities, N = 2, b = 8 bits, K = 16, L =
16,M = 4.

Figure 5.21 shows the effects of increasing the quantizer resolutions and of increasing the

number of antennas at each BS, in a system with good quality CSI (ρCSI = 20 dB). At low

SNR, the effect of the quantizer resolution is minimal, since the system is primarily noise-

limited, whereas at high SNR the system becomes fronthaul-limited and a substantial increase

in throughput can be gained from adding more fronthaul capacity. The array gain provided by

increasing the number of receiver antennas can be used to decrease the user transmit power in

the noise-limited region (low SNR), or to increase user throughput at high SNR.
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Figure 5.21: Mean user throughputs in dense distributed MIMO deployment with MF-GS
dimension reduction, ρCSI = 20 dB, N = 2,K = 16, L = 16. Solid line: per-receiver fronthaul
throughput 960 Mbps, dot-dash line: fronthaul throughput 1200 Mbps, dashed line: fronthaul
throughput 1440 Mbps.

5.5 Two-Stage Reduced Dimension Precoding for the Distributed

MIMO Downlink

So far in this thesis the fronthaul compression efforts have focused on the uplink. However,

exploiting the duality between MIMO uplink and downlink, the dimension reduction method

is straightforward to adapt for the distributed MIMO downlink – establishing it as a general

signalling approach for networks with an excess of antennas and limited fronthaul.

On the downlink, dimension reduction can be applied using two-stage precoding, following

the process of the uplink compression method in reverse:

• In the first (inner) precoding stage, the CP precodes the user symbols to produce L

reduced dimension signals with N < M dimensions

zl = WlP
1/2s. (5.86)

• The reduced dimension precoded signals are then quantized using N fixed-rate scalar

quantizers for transfer over finite-capacity fronthaul

z̃l = zl + δl (5.87)

• In the second (outer) precoding stage, each transmitter beamforms its compressed signal

from M antennas using N beamforming vectors

xl = Alz̃l. (5.88)
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Each user then receives the simultaneous transmissions from all L transmitters

yk =
L∑
l=1

hTl,kAl

(
WlP

1/2s + δl
)

+ η (5.89)

from which it decodes its intended symbol.

The proposed precoding has parallels to the sparse precoding approach, in that each of the

transmitters only transmits into a reduced subspace of its available channel space. However,

unlike with sparse precoding – where each transmitter explicitly transmits data to only a subset

of the active users – here each transmitter serves all users with its precoded signal (but may

transmit more power towards certain users due to the precoding).

5.5.1 Two-Stage Precoder Design

For tractability, here the outer precoders are designed first, followed by the inner precoders. The

effects of quantization noise are then accounted for, and power control schemes investigated.

Outer Precoder Design

The outer precoding stage takes the N -dimension quantizated signal produced by the inner

precoder and beamforms it from M antennas. If the N beamforming vectors at receiver l are

constrained to be orthonormal then the outer precoding matrix Al is semi-orthogonal, and

preserves the power of the reduced dimension signal

PT = E
[
x†lxl

]
(5.90)

= E
[
z̃†lA

†
lAlz̃l

]
= E

[
z̃†l z̃l

]
. (5.91)

The inner precoder can then be thought of acting on a set of L reduced dimension channels,

Gl = HlAl. (5.92)

The Al may then be chosen to maximise the capacity of an equivalent reduced dimension

channel that exists between the z̃l and received signals, y. For simplicity, it is assumed here

that the distributed MIMO network is subject to a network power constraint of LPT (rather

than individual transmitter power constraints, PT ), shared equally between the user streams.

Then by uplink-downlink duality,

CEQ = log2 det
(
IK +

LPT

K

L∑
l=1

HlAlA
†
lH
†
l

)
. (5.93)

Comparing to (5.11), outer precoding matrices can be found in an identical manner to the uplink

dimension reduction filters, using the T-CKLT or MF-GS methods – but applied in reverse –

to produce reduced dimension channels with the same properties. This is attractive from an

implementation perspective when the same users are being served by a TDD system on both

uplink and downlink, since the uplink dimension reduction filters can potentially be re-used for
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downlink precoding, reducing signalling overheads and computation.

Inner Precoder Design

Since the outer precoding stage at each transmitter preserves the power of its signal, the inner

precoders can simply be designed to act on the equivalent reduced dimension channels, Gl.

Here for simplicity the effects of quantization are ignored whilst initially designing the inner

precoding stage.

Restricting attention to ZF precoding, which eliminates all inter-user interference and is

optimal at high SNR, there are two possible strategies:

1. Using the Moore-Penrose pseudo-inverse, with

Wl = G†l
( L∑
j=1

GjG
†
j

)
. (5.94)

To meet per-transmitter power constraints, power control must then be performed. This

method is attractive from the perspective of computational complexity, but is sub-optimal

and can result in some transmitters transmitting at well below their power constraint.

2. Choose the precoding matrices under multiple per-transmitter power constraints (ZF-

MPC). This is more computationally expensive since no closed-form solutions exist and

the precoding matrices must therefore be found numerically as described in Section 2.5.2.

However this method better utilises the power available in the network, for improved user

performance9.

The outputs of the precoders are then quantized using N fixed-rate scalar quantizers with

resolution b bits, producing

z̃l = zl + δl (5.95)

where E
[
δlδ
†
l

]
= Φl, with quantization noise power on component i

φl,i =
[
Φl

]
i,i
≈ e†iWlPWlei

√
3π

2
2−b, (5.96)

where ei is the unit vector consisting of (N − 1) zeros with a single one in position i. The

received signal is

yk =

L∑
l=1

gTl,k
(
WlP

1/2s + δl
)

+ η, (5.97)

where gl,k = A†lhl,k is the reduced dimension channel between user k and transmitter l, and

9Note that when NL = K, the matrix inverse is unique and the standard ZF and ZF-MPC matrices are
therefore identical.
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the SINR at user k is given by

SINRk =

ρk

∣∣∣ L∑
l=1

gTl,kwl,k

∣∣∣2
L∑
l=1

gTl,kΦlgl,k + 1

. (5.98)

Here, for space reasons, only the perfect CSI case is considered, but this analysis is readily

extended to include the effects of both quantization noise and imperfect CSI by incorporating

CSI errors into the SINR as outlined in Section 2.4.2.

Figure 5.22 shows the mean capacity achieved using standard Moore-Penrose ZF, and for

inner ZF precoders designed under per-transmitter power constraints (ZF-MPC). In both sce-

narios, power control is applied such that all users have the same received signal strength, with

a per-transmitter power constraint of 24 dBm in a 20 MHz channel – the 3GPP-defined trans-

mit power of a ‘local area’ small cell [76]. For comparison, conventional (single-stage) ZF-MPC

precoding with quantization is also shown, where the number of antennas at each transmitter

is reduced so that the fronthaul load is the same as under two-stage precoding case.

Figure 5.22: Mean downlink user capacities under two-stage precoding with T-CKLT outer
precoder design and ZF/ZF-MPC inner precoder design. PT = 24 dBm, B = 20 MHz, receiver
noise figure 5 dB, K = 8, L = 4,M = 8.

Overall, similar behaviour is seen to the uplink compression scheme in Figure 5.18 – increas-

ing the quantizer resolution increases the user capacity until capacity levels off due to loss from

dimension reduction, at which point increasing N is beneficial. The two-stage precoding signif-

icantly outperforms single-stage precoding, whilst, here, the benefit of using the more complex

inner precoder design is relatively small.

5.5.2 Quantization-aware Power Allocation

Designing the inner ZF precoder to produce the same received signal strength at all users

does not result in equal user SINRs, since the received user signals contain different amount
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of quantization noise. Since the received quantization noise depends on the user powers, as

shown in (5.96) & (5.98), the user power allocations can be chosen to account for the effect of

quantization noise and improve performance – an idea previously applied in an uplink context

in [12] and [123].

Following some tedious manipulation, it is straightforward to show that the SINR of each

user can be expressed in the form

SINRk =
ρk

ak +

K∑
j=1

bk,jρj

. (5.99)

From this it can be seen that the SINR of any user can be improved by reducing the powers

allocated to the other users – at the expense of reducing their SINRs. Max-min power allocation

can therefore be used to improve the performance of the users worst affected by quantization

noise, solving

maximise
ρ1,...,ρK

min
k

SINRk

subject to Tr
(
WlPW†

l

)
≤ PT ∀l.

(5.100)

This can then be solved using standard geometric programming as described in Section 2.4.3.

The max-min power allocation results in all users receiving an equal SINR – increasing the

SINR of the worst users whilst decreasing that of the best users. This has the effect of reducing

the variability of the user capacities, as shown in Figure 5.23 for both standard ZF (top) and

ZF-MPC (bottom) precoders.

At lower quantizer resolutions, where user capacity is limited by quantization noise, max-min

power control significantly improves the performance of the worst users, with little variation in

user capacities. Comparing the top and bottom figures, here the use of max-min power control

has a much bigger impact on performance than the choice of precoder – indicating that when

computational resources are limited it is better to use them for power control than for precoder

optimisation. As the quantizer resolution increases, the impact of quantization noise reduces,

and max-min power control has a much smaller impact.
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Figure 5.23: Performance of two-stage precoding with and without quantization-aware max-min
power control, MF-GS outer precoder design, PT = 24 dBm, B = 20 MHz, noise figure 5 dB,
K = 8, L = 4,M = 8, N = 3. Top: standard ZF inner precoder, bottom: ZF-MPC inner
precoder design. Blue line: b = 8 bpcu, orange line: b = 10 bpcu, yellow line: b = 12 bpcu.

5.5.3 Example: Dense Deployment

Numerical mean user throughput results are now presented for the same dense distributed

MIMO example considered in Section 5.4.3. In this example, MF-GS outer precoder design is

used in conjunction with the lower-complexity standard ZF inner precoding and quantization-

aware max-min power control. For reference, conventional single-stage precoding using a re-

duced number of antennas is also shown. Perfect CSI is assumed in all cases. The mean user

throughputs within the 60 MHz channel are shown in Figure 5.24.

The use of two-stage precoding provides a mean throughput benefit compared to conven-

tional single-stage precoding of around 40 Mbps per user – 640 Mbps of total additional through-

put. At low transmit power, the use of additional transmit antennas increases the throughput,

but these gains reduce at higher power as quantization noise becomes the limiting factor10.

Using b = 8 bit quantizers and practical transmit powers (e.g. 25 dBm), 16 transmitters each

equipped with 1 Gbps of fronthaul capacity are capable of providing the 16 users with an average

throughput of 320 Mbps within the 60 MHz channel – representing an overall fronthaul efficiency

of around 35%. When 1.5 Gbps of fronthaul capacity is available a mean user throughput of

480 Mbps can be achieved, for a total throughput of over 7.5 Gbps.

10The diversity/reliability benefits of increasing the number of transmit antennas are not shown in this figure.
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Figure 5.24: Mean user downlink throughputs in dense distributed MIMO deployment with
MF-GS outer precoders, B = 60 MHz, receiver noise figure 5 dB, N = 2,K = 16, L = 16. Solid
line: per-transmitter fronthaul throughput 960 Mbps, dot-dash line: fronthaul throughput 1200
Mbps, dashed line: fronthaul throughput 1440 Mbps.

5.6 Conclusion

When the remote radio heads in a distributed MIMO network are connected to the CP via

finite-capacity fronthaul links, exploiting the benefits of deploying an excess of antennas is

challenging due to the corresponding increase in fronthaul data. This chapter investigates the

use of distributed dimension reduction to reduce the amount of data that must be transferred

over fronthaul whilst trying to preserve the benefits of having additional antennas – an area

that has previously received little research attention.

Here, linear dimension reduction is applied across the multiple antennas at each of the radio

heads. This combination of MIMO channel and dimension reduction at each radio head can be

described by an equivalent reduced dimension MIMO channel, reducing the dimensionality of

the distributed MIMO system seen by the CP – and of the signals that must be transferred over

fronthaul. This approach can be used both on the uplink – by applying a dimension reduction

filter to each received signal – and on the downlink – by beamforming reduced dimension

signals using a larger number of antennas – making it a bidirectional approach to fronthaul

data reduction.

Distributed Dimension Reduction

The first part of the chapter addresses the problem of finding uplink dimension reduction filters

that best preserve the benefits of having additional antennas, to produce a reduced dimension

MIMO system with similar properties to the full system. It is shown that on the uplink the

dimension reduction filters that jointly capture the maximum information about the uplink

symbols are a truncated form of the conditional KLT (T-CKLT), found using an iterative block
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co-ordinate ascent procedure. A combination of analysis and numerical results are then used

to demonstrate that with these filters, it is possible to significantly reduce the dimensionality

of the MIMO system without sacrificing much performance, such that using a large number of

antennas is beneficial even when the channel dimension is fixed.

From a practical implementation perspective, the downside of this optimal filter design

method is that the filters must be jointly calculated at the CP using full CSI at every coherence

interval – resulting in significant fronthaul signalling overheads. An alternative approach is

therefore also proposed, in which the dimension reduction filter for each receiver is instead

calculated using a defined subset of the local user matched filtering vectors. In fading channels,

these filters can be updated locally at the receiver for each coherence interval, with only the

reduced dimension CSI required at the CP for symbol detection – reducing signalling overheads

at the cost of some loss in performance. Both dimension reduction methods are shown to be

straightforward to adapt for the case of imperfect CSI.

As a relatively understudied area, the findings of this chapter raise more questions and

research opportunities than there is scope here to address. For example, here the dimension

reduction filters are designed under a joint mutual information criteria – which has a clear

connection to sum capacity – but many other criteria are possible, perhaps aiming to improve

performance under more specific user quality of service metrics. Practical dimension reduction

schemes like the F-MF-GS scheme that can achieve good performance with reduced signalling

overheads are also an interesting area where there is scope for further development. Different

applications of dimension reduction, for example applied across time or frequency blocks as well

as antennas, could also be an area of practical research.

From an theoretical perspective, analysing the performance of dimension reduction under

specific fading models poses an interesting technical challenge, and may yield more precise

insights into the benefits of adding antennas at each receivers and fading diversity providing.

Numerical investigations into the performance of dimension reduction using more complex chan-

nel models and different system configurations would complement this by providing some more

practical insights.

This chapter has also demonstrated that for the downlink, outer precoders/beamformers

can be found by simply applying the dimension reduction filters in reverse – exploiting the

duality between the uplink and downlink. This enables reduced dimension fronthaul signalling

on the downlink using two-stage precoding, and establishes the bidirectionality of the dimension

reduction approach. Under TDD operation, the same filters can then be used on both uplink

and downlink, reducing signalling overheads. Further work here could investigate other outer

precoding design strategies, for example explicitly optimising them under per-transmitter power

constraints (rather than the simpler total power constraint used here).

Dimension Reduction-based Signal Compression

This chapter also considers the use of dimension reduction in conjunction with lossy data com-

pression, to enable specific fronthaul capacity constraints to be met. On the uplink, a simple &

practical scheme is proposed in which the outputs of the reduced dimension channels are com-

pressed using a set of scalar quantizers with equal rate allocations, and forwarded to the CP
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for joint symbol detection. On the downlink, a two-stage precoding is proposed where the inner

precoder generates low dimension signals, which are quantized and transferred over fronthaul

to the remote transmitters, where the outer precoders are applied.

A theoretical justification for dimension reduction-based signal compression is provided by

showing that, at high SNR, the distributed MIMO sum capacity in the quantization noise-

limited region scales approximately linearly with the fronthaul capacity, and inversely with the

signal dimension. In this region, choosing a small signal dimension enables this simple signal

compression scheme to achieve very efficient fronthaul utilisation – coming within a fixed gap of

the cut-set bound. At higher fronthaul rates, the quantization noise reduces and it is beneficial

to increase the signal dimension.

Numerical examples show this dimension reduction-based signal compression can achieve

similar – and often better – performance than the optimal transform coding scheme and the

joint rate allocation scheme outlined in Chapter 4. Whilst this initially appears somewhat

surprising, there is actually a strong parallel between the joint dimension reduction scheme and

the joint rate allocation scheme – the former exploits the sparsity in the network to produce a

reduced dimension compressed signal representation, whilst the latter tends to produce a sparse

rate allocation, resulting in the compressed signal also having a reduced dimension.

An alternative low complexity uplink compression scheme is proposed that uses matched

filter-based dimension reduction in conjunction with low complexity fixed-rate scalar quantiz-

ers (instead of entropy-coded scalar quantizers). Numerical results are provided for a dense

deployment with 16 users and 16 remote receivers operating under imperfect CSI in a 60 MHz

channel, where mean user throughputs of over 300 Mbps are achieved when each receiver has a

fronthaul capacity of 1 Gbps, and over 400 Mbps with 1.5 Gbps fronthaul capacity.

This is extended to the downlink using two-stage precoding, where the inner precoding

stage uses a ZF precoder matched to the reduced dimension channels, quantization applied

prior to the fronthaul. It is shown that when operating in the fronthaul-limited region the

use of user max-min power allocation is very effective for mitigating the effects of quantization

noise, considerably improving the capacities of the worst users. Numerical results for the dense

deployment show that similar user throughputs can be achieved on the downlink as on the

uplink.

The findings presented in this chapter suggest that dimension reduction is a promising

low complexity bidirectional fronthaul data compress/reduction strategy. Future work should

look to build on these results and investigate the use of dimension reduction in a range of

different propagation environments and system configurations. This should include a thorough

investigation into other important practical aspects such as the signalling overheads and latency

constraints, the latter being particularly important in downlink networks.
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Conclusion

Multi-user MIMO technology is set to play an important role in enabling fifth generation and

future wireless systems to achieve the high spectral efficiencies and area capacities required to

meet the growing demand for mobile data services. The past decade has seen the development

of two particular architectures – massive MIMO & distributed MIMO C-RAN – that have the

potential to unlock the benefits of MU-MIMO on a much larger scale than previously seen in

cellular systems. This PhD, and the research outlined in this thesis, has contributed to the

development of scalable & energy efficient commercial MU-MIMO systems by focusing on two

distinct practical challenges associated these architectures: PAPR reduction for the massive

MIMO downlink, and fronthaul data compression/reduction for distributed MIMO C-RAN

systems.

The research outlined in this thesis has focused on the development of novel signal processing-

based solutions to the above problems, with an emphasis on low complexity practical methods

that are appropriate for use in commercial systems. Along with the proposed solutions, this

research has uncovered a variety of useful insights and potential directions for future work. A

brief summary of these is now provided.

PAPR Reduction for Massive MIMO

The high peak-to-average power ratio of precoded MIMO-OFDM downlink signals necessitates

the use of a large power backoff at the transmitting power amplifiers, reducing energy efficiency

and increasing the amplifier peak power requirements. Chapter 3 focuses on the challenge of

PAPR reduction for the massive MIMO downlink, aiming to reduce the PAPR of the transmitted

signals with minimal impact on link performance.

A clipping-based approach to PAPR reduction is investigated, producing a number of novel

technical contributions, as listed in Section 3.1.1. The key findings & insights from Chapter

3 can be summarised as:

1. The distortion introduced when precoded MIMO-OFDM signals are clipped

causes two effects. Previous analysis has generally used a simple additive error model to

describe the effects of clipping in MIMO systems, but in Section 3.3 a more rigorous statistical

model for clipping based on Bussgang’s theory is developed. This model shows that clipping
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distortion manifests itself in two effects: it attenuates & distorts the MIMO precoding to intro-

duce additional inter-user interference at the receivers, and it introduces random clipping noise

at the receivers. Although analysing the exact dynamics of this model is challenging due to its

non-linearity, this model provides some simple insights – the clipping noise will tend to be cor-

related across antennas (rather than independent as often assumed), precoding distortion will

always be produced when the per-antenna average transmit power varies, and clipping distortion

can produce a near-far effect where users close to the BS suffer more significant performance

degradation due to the presence of more distant users.

2. Iterative clipping & spatial filtering is an effective & practical strategy for PAPR

reduction, and should be designed to account for both clipping effects. Sections

3.5.2 & 3.5.3 develop a novel iterative clipping & spatial filtering scheme that exploits the large

massive MIMO nullspace to construct a least squares approximation of the clipped signal that

eliminates the clipping distortion from the received user signals. Whilst related schemes have

previously been proposed, this scheme incorporates the Bussgang model to properly account for

the attenuation & distortion of the MIMO precoding, enabling higher levels of PAPR reduction

to be achieved without sacrificing link performance. Numerical results show that over 8 dB of

PAPR reduction can be achieved, 1 dB more than comparable schemes.

3. Active constellation extension can improve the PAPR reduction achieved by

clipping & spatial filtering. Section 3.5.5 shows that the proposed iterative clipping &

spatial filtering scheme can easily be extended to include active constellation extension, enabling

greater levels of PAPR reduction to be achieved. Numerical results demonstrate that this is

particularly useful when smaller constellation sizes are used – providing up to 1 dB additional

PAPR reduction – or in smaller scale MIMO systems with fewer BS antennas – where over 2

dB additional PAPR reduction can be achieved.

4. The MIMO channel & precoding have a significant impact on the signal PAPR.

Numerical results provided in Section 3.2.3 show that under a correlated fading channel model

the PAPR of the precoded MIMO-OFDM signal is 2+ dB higher than under i.i.d fading. This

appears to be at least partially down to variation in average transmit powers across the array,

which necessarily increases PAPR and can be addressed by precoding under per-antenna power

constraints. Numerical results in Section 3.5.4 show that the proposed solution achieves similar

PAPR reduction in both scenarios, but the final PAPR under correlated fading remains higher

than with i.i.d fading (under conventional symbol precoding).

Directions for Future Work

The findings of Chapter 3 point to two interesting and useful directions for future investigation.

The first is assessing the benefits of the proposed solution in a broader range of propagation

environments and system configurations. Whilst the scheme is very effective at reducing PAPR

whilst maintaining link performance at higher capacities, it is known that operating at low SNR

or with poor quality CSI the relative impact of clipping noise on performance is reduced, and
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hence the use of conventional clipping & filtering without the spatial filtering may be sufficient

in these environments.

Further work to thoroughly investigate the impact of the precoding on PAPR in differ-

ent propagation environments is the other key area for future work. This should include a

thorough investigation into the influence of per-antenna power variations on PAPR, and could

involve the development of low complexity precoding schemes to reduce these power variations

– complemening the proposed solution to bring further PAPR reduction.

Signal Compression for Uplink Massive MIMO C-RAN

The cloud radio access network (C-RAN) architecture uses a shared central processor to perform

the baseband signal processing & network functions for multiple radio units, decreasing cost

of deployment & operation and increasing network flexibility. However, when the fronthaul

connections between the radio unit and CP have limited capacity – for example with ethernet

or wireless point-to-point links – directly transferring the raw sampled data produced by the

large number of antennas on the massive MIMO uplink rapidly becomes infeasible. The first

part of Chapter 4, Section 4.3, investigates the application of signal compression to the received

uplink signals, aiming to maximise performance under fronthaul capacity constraints.

The use of transform coding-based compression of the received uplink signals is considered,

producing a number of novel results, as listed in Section 4.1.1. The key findings & insights

from Section 4.3 can be summarised as:

1. Transform coding can exploit the underlying sparsity of uplink massive MIMO

signals to achieve efficient signal compression. The large excess of antennas used in

a massive MIMO system causes the received signals to have an inherent underlying sparsity.

Section 4.3.2 shows that the Karhunen-Loeve transform can exploit this sparsity to reduce the

signal dimension. Section 4.3.2 then shows that applying lossy compression to the transformed

signals using a set of optimal scalar lossy compressors with appropriate rate (bit) allocations

asymptotically achieve the cut-set bound at high SNR – efficiently utilising the available fron-

thaul. This means that when operating in the fronthaul-limited region, increasing the available

fronthaul capacity by a certain quantity increases the achievable sum capacity by a similar

amount – transform coding therefore represents an effective strategy for reducing the amount

of sampled data for transfer over fronthaul.

2. Transform coding can capture many of the benefits of deploying excess antennas,

even when capacity is fundamentally limited by the fronthaul Section 4.3.4 investi-

gates what the benefits (if any) are of deploying massive MIMO in scenarios where the MIMO

capacity is fundamentally limited by the capacity of the fronthaul link. It is shown using a

combination of analysis and numerical simulations that under the proposed transform coding

scheme many of the well known benefits of deploying a large number of antennas are still seen

– the effects of fast fading disappear, transmit power reduces and linear detection methods

become optimal.
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Directions for Future Work

The findings of Chapter 4 demonstrate that transform coding is an effective and practical

method for compressing the large amount of received signal data produced by a massive MIMO

receiver, making it feasible to deploy in situations where only limited capacity fronthaul con-

nections can be provided. However, these results are based on analysis that assumes the use

of Gaussian transmit symbols and an ideal lossy compression model, which represent approx-

imations of the actual constellation symbols and entropy-coded quantization methods used in

practical systems – which should be tested & validated using bit level simulations in future

work.

At a more fundamental level, it is known that with a single receiver the use of signal com-

pression is a sub-optimal strategy – perfect fronthaul utilisation can be achieved by instead

performing symbol detection at the remote receiver and transferring the decoded data streams

back over fronthaul. Transform coding achieves lower capacity compared to this detect & for-

ward case, but may still be an attractive alternative when a functional split with less processing

at the remote receiver and more complexity at the CP is desired. This is an important area for

further investigation, with signalling overheads and energy efficiency being key considerations.

Data Compression/Reduction for Distributed MIMO C-RAN

The use of low capacity fronthaul connections will play an important role in enabling dense,

flexible distributed MIMO C-RAN deployments that can achieve good coverage in areas with

high traffic demand. However, the analysis in Section 4.4.1 demonstrates that applying signal

compression at each remote receiver by replicating the single receiver transform coding scheme

from Section 4.3.2 produces poor performance, because it does not exploit the statistical de-

pendencies between the received signals.

The remainder of Chapter 4 and the whole of Chapter 5 investigate data compression strate-

gies for distributed MIMO. First, Section 4.4 proposes a transform coding solution based on

adapting the single receiver scheme from Section 4.3.2, before Chapter 5 investigates a dimen-

sion reduction-based approach for distributed networks with an overall excess of antennas. The

key technical contributions to the state-of-the-art are listed in Sections 4.1.1 & 5.1.1, with

the following key findings & insights gained:

1. Transform coding using jointly optimised rate allocations is a scalable approach

to achieving efficient data compression on the distributed MIMO uplink. Section

4.4.3 proposes a modification to the transform coding scheme used in Section 4.3.2 where each

receiver compresses its transformed signal using scalar compressors with jointly optimised rate

allocations. These rate allocations are optimised across all receivers in order to maximise the

sum capacity achieved under joint detection, accounting for the inter-receiver signal dependen-

cies. Numerical results demonstrate that the proposed scheme suffers only a small performance

penalty compared to the optimal point-to-point compression scheme – which has significantly

higher complexity. Numerical examples demonstrate that with 4 remote receivers, each equipped

with 8 antennas and 1.5 Gbps fronthaul capacity, a total mean user throughput of over 420 Mbps
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could be simultaneously supplied to 8 users within a 100 MHz channel – an improvement of 100

Mbps per user compared to the case where the compression rates are not jointly optimised.

Whilst transform coding with a joint rate allocation has been previously proposed elsewhere,

the method proposed here has the advantage of not requiring any intensive numerical solvers

– instead using an iterative approach that has closed form solutions at each iteration – and

represents a scalable solution for implementing in real time systems.

2. The inherent sparsity of a distributed MIMO network with an overall excess

of BS antennas can be effectively exploited using dimension reduction. Similarly

to the massive MIMO case, when the distributed MIMO network has an overall excess of BS

antennas, the received signals are characterised by inherent sparsity. The findings of Section

5.3 show that distributed dimension reduction can exploit this sparsity – applying a simple

dimension reduction filter at each multi-antenna receiver to produce a reduced dimension MIMO

system. When these filters are optimally designed to maximise their joint mutual information, as

described in Section 5.3.1, the dimensionality of the MIMO system can be significantly reduced

without sacrificing much performance. This enables the benefits of using a large number of

antennas to be captured whilst the dimensionality of the fronthaul data is restricted. A second

low complexity scheme, proposed in Section 5.3.3, exploits these opportunities further to also

reduce the CSI that must be transferred over fronthaul by using a set of matched filters to

perform dimension reduction at each receiver.

3. Dimension reduction plays an important role in data compression for fronthaul-

limited distributed MIMO uplink C-RAN. Section 5.4.1 shows that, at high SNR, ap-

plying lossy scalar compression to the outputs of the dimension reduction filters results in a

sum capacity that scales approximately linearly with the available fronthaul capacity, and in-

versely with the signal dimension. Choosing the minimum signal dimension then enables the

sum capacity in the fronthaul-limited region to come within a fixed gap of the cut-set bound.

Numerical results demonstrate that dimension reduction-based signal compression can achieve

similar performance to (and often better than) the joint rate allocation transform coding scheme

from Section 4.4.3.

In fact, there is a strong connection between the two proposed schemes, with Section 4.4.3

showing that the jointly optimised rate allocation will tend to be sparse in the fronthaul-

limited region – performing an implicit dimension reduction by only compressing a subset of

the available signal components. This indicates that dimension reduction plays an intrinsic role

in efficient data compression in the fronthaul-limited region.

4. Dimension reduction is an effective & low complexity bidirectional approach

to fronthaul data compression/reduction. Finally, Section 5.5.1 extends the dimension

reduction approach to the downlink of distributed MIMO systems, using a two-stage precoding

approach. Here, duality is exploited to show that the uplink dimension reduction filters can be

reversed and used as a downlink outer precoder, with an inner precoder at the CP generating

low dimension signals that are transferred over fronthaul. Numerical results provided using

simple fixed-rate scalar quantizers for lossy compression show that the dimension reduction
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approach can be employed to provide fronthaul data compression on both the uplink (Section

5.4.3) and the downlink (Section 5.5.3) – establishing it as a simple but effective bidirectional

approach to fronthaul data compression/reduction.

Directions for Future Work

As an area that has previously received very little research attention, the use of dimension

reduction in distributed MIMO networks opens up many areas for potential future research.

From a theoretical perspective, characterising the performance of these networks under specific

fading models poses an interesting challenge – one beyond the scope of this PhD. The design

of alternative dimension reduction schemes is also an area that could be further explored both

on the uplink and downlink, and poses many opportunities. For example, other dimension

reduction criteria that relate more specifically to user quality of service could be investigated,

along with dimension reduction schemes that operate across time or frequency blocks rather

than just antennas. Future work should look to build on these results and investigate the use of

dimension reduction in a range of different propagation environments and system configurations.

Further investigation into practical aspects of fronthaul signalling are also required – looking

at the trade-offs between performance and signalling overheads in mobile channels, and latency

constraints, which are particularly important in downlink networks.

Concluding Remarks

This thesis has investigated two distinct challenges associated with implementing MU-MIMO

technology on a large scale in cellular systems. Using a combination of theoretical analysis,

numerical simulation and pragmatic consideration of realistic constraints, practical solutions to

these problems have been proposed that could play a role in future wireless systems.
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Appendices

1 Clipping-based PAPR Reduction for the Massive MIMO Down-

link

1.1 Least Squares Derivation

Derivation of solution to

minimise
xLS

∥∥xLS − xCF

∥∥2
, (1)

subject to HxLS = Hx. (2)

Making the substitutions

a = xLS − xCF, (3)

b = H(x− xCF), (4)

gives a standard least norm problem

minimise
a

‖a‖2, (5)

subject to Ha = b, (6)

which is well known to be solved by the Moore-Penrose pseudo-inverse

a = H†
(
HH†

)−1
b. (7)

Re-substitution yields

xLS = xCF −H†
(
HH†

)−1
H(xCF − x). (8)

By the same method, the solution to

minimise
xBLS

∥∥xBLS − xCF

∥∥2
, (9)

subject to HxBLS = µHx, (10)

can be shown to be

xBLS = xCF −H†
(
HH†

)−1
(HxCF − µHx). (11)
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1.2 Optimal Target Symbol Scaling

Derivation of solution to

minimise
µ

∥∥W(ZF)H
(
AW − µW

)∥∥2
. (12)

Since W(ZF)H is an orthogonal projection into the channel space, which AW and W inherently

lie within, this reduces to

minimise
µ

∥∥AW − µW
∥∥2
. (13)

This can be written,

f(µ) = Tr
(
(A− µIM )WW†(A† − µ∗IM )

)
. (14)

and is minimised by setting [170]

∂f(µ)

∂µ∗
= Tr

(
(A− µIM )WW†) = 0 (15)

resulting in

µ =
Tr
(
W†AW

)
Tr
(
W†W

) =

∑K
k=1 w†kAwk∑K
k=1 w†kwk

. (16)

2 Transform Coding-based Signal Compression for Uplink MIMO

C-RAN

2.1 Upper Bound on Sample & Forward Capacity

CSFSUM = log2 det
(
IK + ρH†

(
Ψ + IM

)−1
H
)

(17)

< log2 det
(
IK + ρH†

((
ρDH + IM

)
2−R/M + IM

)−1
H
)

(18)

< log2 det
(
IK + 2R/MρH†

(
ρDH + IM

)−1
H
)

(19)

< lim
ρ→∞

log2 det
(
IK + 2R/MρH†

(
ρDH + IM

)−1
H
)

(20)

= log2 det
(
IK + 2R/MH†D−1

H H
)

(21)

≤ RK
M

+ log2 det
(
H†D−1

H H
)

+ 2−R/M log2(e) Tr
((

H†D−1
H H

)−1
)
, (22)

where (18) follows from

Ψ =
(
ρDH + IM

) 1

2R/M − 1
>
(
ρDH + IM

)
2−R/M , (23)

and (22) from the identity

log2 det
(
IK + A

)
≤ log2 det

(
A
)

+ log2(e) Tr
(
A−1

)
. (24)
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2.2 SCA - Joint Rate Allocation

Aiming to solve

minimise
ri

t∑
i=1

qi
2ri − 1

subject to
t∑
i=1

ri ≤ R.

(25)

To solve, easier to make substitution,

2ri = exi (26)

i.e xi = ri ln(2), and
t∑
i=1

xi = R ln(2). (27)

The Lagrangian is then

L =

t∑
i=1

qi
exi − 1

+ ζ
( t∑
i=1

xi −R ln(2)
)

(28)

giving

∂L
∂xi

=
qi

2− 2 cosh(xi)
+ ζ = 0 (29)

Or

cosh(xi) = 1 +
qi
2ζ

(30)

leading to

xi = ln
(
2ζ + qi +

√
qi(qi + 4ζ)

)
− ln(2ζ) (31)

Resubstituting for ri and setting γ = 2ζ,

ri =
[

log2

(
γ + qi +

√
qi
√
qi + 2γ

)
− log2(γ)

]+
(32)

where γ ∈ R+ is chosen such that the fronthaul constraint is met.

3 Dimension Reduction for Distributed MIMO C-RAN

3.1 Conditional Entropy

This can be shown by deriving the conditional distribution, but easiest to illustrate by working

backwards

I(zl; x|zcl ) = H
(
zl|zcl

)
−H

(
zl|x, zcl

)
(33)

= H
(
zl|zcl

)
−H

(
ηA

)
(34)

= H
(
zl|zcl

)
− log2(2πe)N (35)
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From standard information theory properties

I(z1, . . . , zL; x) = I(zcl ; x) + I(zl; x|zcl ). (36)

Applying the matrix determinant lemma [170], det(A + BC) = det(I + CA−1B) det(A),

I(z1, . . . , zL; x) = log2 det
(
IK + ρ

l∑
i=1

H†iAiA
†
iHi

)
= log2 det

(
IN + ρA†lHlQlH

†
lAl

)
+ log2 det

(
Q−1
l

)
(37)

where

Ql =
(
IK +

∑
i 6=l

H†iAiA
†
iHi

)−1
. (38)

By inspection of (36) and (37)

I(zl; x|zcl ) = log2 det
(
IN + ρA†lHlQlH

†
lAl

)
, (39)

and

H
(
zl|zcl

)
= log2 det

(
IN + ρA†lHlQlH

†
lAl

)
+ log2(2πe)N . (40)

3.2 Determinant Maximisation

Consider the matrix product

A†BA (41)

where B ∈ Cn×n is a Hermitian symmetric matrix, and A ∈ Cm×n, m ≤ n, a rectangular matrix

with orthonormal columns,

A†A = Im. (42)

By the Poincaré separation theorem [14], the eigenvalues of A†BA can be upper bounded

αi ≤ βi (43)

where αi and βi are the ordered eigenvalues of A†BA and B, respectively. We therefore have

det
(
A†BA

)
=

m∏
i=1

αi ≤
m∏
i=1

βi. (44)

Setting the columns of A to be the m principal eigenvectors of B achieves equality in (44). This

A is non-unique, since any

A? = AΘ (45)

where Θ ∈ Cn×n is a unitary matrix also achieves equality with the upper bound.
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[184] M. Sarajlić, L. Liu, and O. Edfors. When Are Low Resolution ADCs Energy Efficient in

Massive MIMO? IEEE Access, 5:14837–14853, 2017.

[185] H. Sari, G. Karam, and I. Jeanclaude. Transmission Techniques for Digital Terrestrial

TV Broadcasting. IEEE Communications Magazine, 33(2):100–109, 1995.

[186] A. Saul. Generalized Active Constellation Extension for Peak Reduction in OFDM Sys-

tems. In IEEE International Conference on Communications, 2005. ICC 2005. 2005,

volume 3, pages 1974–1979 Vol. 3, 2005.

[187] Louis L Scharf. Statistical Signal Processing, volume 98. Addison-Wesley Reading, MA,

1991.

[188] I. D. Schizas, G. B. Giannakis, and Z. Luo. Distributed Estimation Using Reduced-

Dimensionality Sensor Observations. IEEE Transactions on Signal Processing, 55(8):4284–

4299, 2007.

[189] M Series. IMT Vision–Framework and Overall Objectives of the Future Development of

IMT for 2020 and Beyond. Recommendation ITU, 2083, 2015.

234



CHAPTER 6. CONCLUSION

[190] Seung Hee Han and Jae Hong Lee. An Overview of Peak-to-Average Power Ratio Reduc-

tion Techniques for Multicarrier Transmission. IEEE Wireless Communications, 12(2):56–

65, 2005.

[191] Claude E. Shannon. A Mathematical Theory of Communication. Bell System Technical

Journal, 27(3):379–423, 1948.

[192] Claude E. Shannon. Communication in the Presence of Noise. Proceedings of the IRE,

37(1):10–21, 1949.

[193] C. Shepard, R. Doost-Mohammady, J. Ding, R. E. Guerra, and L. Zhong. ArgosNet: A

Multi-Cell Many-Antenna MU-MIMO Platform. In 2018 52nd Asilomar Conference on

Signals, Systems, and Computers, pages 2237–2241, 2018.

[194] Y. Shi, J. Zhang, and K. B. Letaief. Group Sparse Beamforming for Green Cloud-RAN.

IEEE Transactions on Wireless Communications, 13(5):2809–2823, 2014.

[195] Shidong Zhou, Ming Zhao, Xibin Xu, Jing Wang, and Yan Yao. Distributed Wireless

Communication System: A New Architecture for Future Public Wireless Access. IEEE

Communications Magazine, 41(3):108–113, 2003.

[196] I. Shomorony and A. S. Avestimehr. Worst-Case Additive Noise in Wireless Networks.

IEEE Transactions on Information Theory, 59(6):3833–3847, June 2013.

[197] O. Simeone, U. Spagnolini, Y. Bar-Ness, and S. H. Strogatz. Distributed Synchronization

in Wireless Networks. IEEE Signal Processing Magazine, 25(5):81–97, 2008.

[198] B. Sklar. A Primer on Turbo Code Concepts. IEEE Communications Magazine, 35(12):94–

102, 1997.

[199] D. Slepian and J. Wolf. Noiseless Coding of Correlated Information Sources. IEEE

Transactions on Information Theory, 19(4):471–480, 1973.

[200] Q. H. Spencer, C. B. Peel, A. L. Swindlehurst, and M. Haardt. An Introduction to the

Multi-User MIMO Downlink. IEEE Communications Magazine, 42(10):60–67, Oct 2004.

[201] G. L. Stuber, J. R. Barry, S. W. McLaughlin, Ye Li, M. A. Ingram, and T. G. Pratt. Broad-

band MIMO-OFDM Wireless Communications. Proceedings of the IEEE, 92(2):271–294,

2004.

[202] C. Studer and G. Durisi. Quantized Massive MU-MIMO-OFDM Uplink. IEEE

Transactions on Communications, 64(6):2387–2399, 2016.

[203] C. Studer and E. G. Larsson. PAR-Aware Large-Scale Multi-User MIMO-OFDM Down-

link. IEEE Journal on Selected Areas in Communications, 31(2):303–313, 2013.

[204] S. Sun, T. S. Rappaport, T. A. Thomas, A. Ghosh, H. C. Nguyen, I. Z. Kovács, I. Ro-
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