222 research outputs found

    Exploitation of Dynamic Communication Patterns through Static Analysis

    Full text link
    Abstract not provide

    Scalable Applications on Heterogeneous System Architectures: A Systematic Performance Analysis Framework

    Get PDF
    The efficient parallel execution of scientific applications is a key challenge in high-performance computing (HPC). With growing parallelism and heterogeneity of compute resources as well as increasingly complex software, performance analysis has become an indispensable tool in the development and optimization of parallel programs. This thesis presents a framework for systematic performance analysis of scalable, heterogeneous applications. Based on event traces, it automatically detects the critical path and inefficiencies that result in waiting or idle time, e.g. due to load imbalances between parallel execution streams. As a prerequisite for the analysis of heterogeneous programs, this thesis specifies inefficiency patterns for computation offloading. Furthermore, an essential contribution was made to the development of tool interfaces for OpenACC and OpenMP, which enable a portable data acquisition and a subsequent analysis for programs with offload directives. At present, these interfaces are already part of the latest OpenACC and OpenMP API specification. The aforementioned work, existing preliminary work, and established analysis methods are combined into a generic analysis process, which can be applied across programming models. Based on the detection of wait or idle states, which can propagate over several levels of parallelism, the analysis identifies wasted computing resources and their root cause as well as the critical-path share for each program region. Thus, it determines the influence of program regions on the load balancing between execution streams and the program runtime. The analysis results include a summary of the detected inefficiency patterns and a program trace, enhanced with information about wait states, their cause, and the critical path. In addition, a ranking, based on the amount of waiting time a program region caused on the critical path, highlights program regions that are relevant for program optimization. The scalability of the proposed performance analysis and its implementation is demonstrated using High-Performance Linpack (HPL), while the analysis results are validated with synthetic programs. A scientific application that uses MPI, OpenMP, and CUDA simultaneously is investigated in order to show the applicability of the analysis

    Runtime MPI Correctness Checking with a Scalable Tools Infrastructure

    Get PDF
    Increasing computational demand of simulations motivates the use of parallel computing systems. At the same time, this parallelism poses challenges to application developers. The Message Passing Interface (MPI) is a de-facto standard for distributed memory programming in high performance computing. However, its use also enables complex parallel programing errors such as races, communication errors, and deadlocks. Automatic tools can assist application developers in the detection and removal of such errors. This thesis considers tools that detect such errors during an application run and advances them towards a combination of both precise checks (neither false positives nor false negatives) and scalability. This includes novel hierarchical checks that provide scalability, as well as a formal basis for a distributed deadlock detection approach. At the same time, the development of parallel runtime tools is challenging and time consuming, especially if scalability and portability are key design goals. Current tool development projects often create similar tool components, while component reuse remains low. To provide a perspective towards more efficient tool development, which simplifies scalable implementations, component reuse, and tool integration, this thesis proposes an abstraction for a parallel tools infrastructure along with a prototype implementation. This abstraction overcomes the use of multiple interfaces for different types of tool functionality, which limit flexible component reuse. Thus, this thesis advances runtime error detection tools and uses their redesign and their increased scalability requirements to apply and evaluate a novel tool infrastructure abstraction. The new abstraction ultimately allows developers to focus on their tool functionality, rather than on developing or integrating common tool components. The use of such an abstraction in wide ranges of parallel runtime tool development projects could greatly increase component reuse. Thus, decreasing tool development time and cost. An application study with up to 16,384 application processes demonstrates the applicability of both the proposed runtime correctness concepts and of the proposed tools infrastructure

    Toward Reliable and Efficient Message Passing Software for HPC Systems: Fault Tolerance and Vector Extension

    Get PDF
    As the scale of High-performance Computing (HPC) systems continues to grow, researchers are devoted themselves to achieve the best performance of running long computing jobs on these systems. My research focus on reliability and efficiency study for HPC software. First, as systems become larger, mean-time-to-failure (MTTF) of these HPC systems is negatively impacted and tends to decrease. Handling system failures becomes a prime challenge. My research aims to present a general design and implementation of an efficient runtime-level failure detection and propagation strategy targeting large-scale, dynamic systems that is able to detect both node and process failures. Using multiple overlapping topologies to optimize the detection and propagation, minimizing the incurred overhead sand guaranteeing the scalability of the entire framework. Results from different machines and benchmarks compared to related works shows that my design and implementation outperforms non-HPC solutions significantly, and is competitive with specialized HPC solutions that can manage only MPI applications. Second, I endeavor to implore instruction level parallelization to achieve optimal performance. Novel processors support long vector extensions, which enables researchers to exploit the potential peak performance of target architectures. Intel introduced Advanced Vector Extension (AVX512 and AVX2) instructions for x86 Instruction Set Architecture (ISA). Arm introduced Scalable Vector Extension (SVE) with a new set of A64 instructions. Both enable greater parallelisms. My research utilizes long vector reduction instructions to improve the performance of MPI reduction operations. Also, I use gather and scatter feature to speed up the packing and unpacking operation in MPI. The evaluation of the resulting software stack under different scenarios demonstrates that the approach is not only efficient but also generalizable to many vector architecture and efficient

    Parallel architectures and runtime systems co-design for task-based programming models

    Get PDF
    The increasing parallelism levels in modern computing systems has extolled the need for a holistic vision when designing multiprocessor architectures taking in account the needs of the programming models and applications. Nowadays, system design consists of several layers on top of each other from the architecture up to the application software. Although this design allows to do a separation of concerns where it is possible to independently change layers due to a well-known interface between them, it is hampering future systems design as the Law of Moore reaches to an end. Current performance improvements on computer architecture are driven by the shrinkage of the transistor channel width, allowing faster and more power efficient chips to be made. However, technology is reaching physical limitations were the transistor size will not be able to be reduced furthermore and requires a change of paradigm in systems design. This thesis proposes to break this layered design, and advocates for a system where the architecture and the programming model runtime system are able to exchange information towards a common goal, improve performance and reduce power consumption. By making the architecture aware of runtime information such as a Task Dependency Graph (TDG) in the case of dataflow task-based programming models, it is possible to improve power consumption by exploiting the critical path of the graph. Moreover, the architecture can provide hardware support to create such a graph in order to reduce the runtime overheads and making possible the execution of fine-grained tasks to increase the available parallelism. Finally, the current status of inter-node communication primitives can be exposed to the runtime system in order to perform a more efficient communication scheduling, and also creates new opportunities of computation and communication overlap that were not possible before. An evaluation of the proposals introduced in this thesis is provided and a methodology to simulate and characterize the application behavior is also presented.El aumento del paralelismo proporcionado por los sistemas de cómputo modernos ha provocado la necesidad de una visión holística en el diseño de arquitecturas multiprocesador que tome en cuenta las necesidades de los modelos de programación y las aplicaciones. Hoy en día el diseño de los computadores consiste en diferentes capas de abstracción con una interfaz bien definida entre ellas. Las limitaciones de esta aproximación junto con el fin de la ley de Moore limitan el potencial de los futuros computadores. La mayoría de las mejoras actuales en el diseño de los computadores provienen fundamentalmente de la reducción del tamaño del canal del transistor, lo cual permite chips más rápidos y con un consumo eficiente sin apenas cambios fundamentales en el diseño de la arquitectura. Sin embargo, la tecnología actual está alcanzando limitaciones físicas donde no será posible reducir el tamaño de los transistores motivando así un cambio de paradigma en la construcción de los computadores. Esta tesis propone romper este diseño en capas y abogar por un sistema donde la arquitectura y el sistema de tiempo de ejecución del modelo de programación sean capaces de intercambiar información para alcanzar una meta común: La mejora del rendimiento y la reducción del consumo energético. Haciendo que la arquitectura sea consciente de la información disponible en el modelo de programación, como puede ser el grafo de dependencias entre tareas en los modelos de programación dataflow, es posible reducir el consumo energético explotando el camino critico del grafo. Además, la arquitectura puede proveer de soporte hardware para crear este grafo con el objetivo de reducir el overhead de construir este grado cuando la granularidad de las tareas es demasiado fina. Finalmente, el estado de las comunicaciones entre nodos puede ser expuesto al sistema de tiempo de ejecución para realizar una mejor planificación de las comunicaciones y creando nuevas oportunidades de solapamiento entre cómputo y comunicación que no eran posibles anteriormente. Esta tesis aporta una evaluación de todas estas propuestas, así como una metodología para simular y caracterizar el comportamiento de las aplicacionesPostprint (published version

    Maximizing Communication Overlap with Dynamic Program Analysis

    Get PDF
    International audienceWe present a dynamic program analysis approach to optimize communication overlap in scientific applications. Our tool instruments the code to generate a trace of the application's memory and synchronization behavior. An offline analysis determines the program optimal points for maximal overlap when considering several programming constructs: nonblocking one-sided communication operations, non-blocking collectives and bespoke synchronization patterns and operations. Feedback about possible transformations is presented to the user and the tool can perform the directed transformations, which are supported by a lightweight runtime. The value of our approach comes from: 1) the ability to optimize across boundaries of software modules or libraries, while specializing for the intrinsics of the underlying communication runtime; and 2) providing upper bounds on the expected performance improvements after communication optimizations. We have reduced the time spent in communication by as much as 64% for several applications that were already aggressively optimized for overlap; this indicates that manual optimizations leave untapped performance. Although demonstrated mainly for the UPC programming language, the methodology can be easily adapted to any other communication and synchronization API

    Automatic Energy Saving Schemes for Parallel Applications

    Get PDF
    Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This work first studies two important collective communication operations, all-to-all and allgather and proposes energy saving strategies on the per-call basis. Next, it targets point-to-point communications to group them into phases and apply frequency scaling to them to save energy by exploiting the architectural and communication stalls. Finally, it proposes an automatic runtime system which combines both collective and point-to-point communications into phases, and applies throttling to them apart from DVFS to maximize energy savings. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. Close to the maximum energy savings were obtained with a substantially low performance loss on the given platform

    Austrian High-Performance-Computing meeting (AHPC2020)

    Get PDF
    This booklet is a collection of abstracts presented at the AHPC conference

    Proceedings of the 7th International Conference on PGAS Programming Models

    Get PDF
    corecore