
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

8-2021

Toward Reliable and Efficient Message Passing Software for HPC Toward Reliable and Efficient Message Passing Software for HPC

Systems: Fault Tolerance and Vector Extension Systems: Fault Tolerance and Vector Extension

Dong Zhong
dzhong@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

 Part of the Computer and Systems Architecture Commons, Digital Communications and Networking

Commons, and the Hardware Systems Commons

Recommended Citation Recommended Citation
Zhong, Dong, "Toward Reliable and Efficient Message Passing Software for HPC Systems: Fault Tolerance
and Vector Extension. " PhD diss., University of Tennessee, 2021.
https://trace.tennessee.edu/utk_graddiss/6500

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F6500&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=trace.tennessee.edu%2Futk_graddiss%2F6500&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=trace.tennessee.edu%2Futk_graddiss%2F6500&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=trace.tennessee.edu%2Futk_graddiss%2F6500&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=trace.tennessee.edu%2Futk_graddiss%2F6500&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Dong Zhong entitled "Toward Reliable and

Efficient Message Passing Software for HPC Systems: Fault Tolerance and Vector Extension." I

have examined the final electronic copy of this dissertation for form and content and

recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor

of Philosophy, with a major in Computer Science.

Jack Dongarra, Major Professor

We have read this dissertation and recommend its acceptance:

Jack Dongarra, George Bosilca, Michael Jantz, Yingkui Li

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Toward Reliable and Efficient Message Passing Software for HPC Systems:

Fault Tolerance and Vector Extension

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Dong Zhong

August 2021

© by Dong Zhong, 2021

All Rights Reserved.

ii

To my parents Zhong Yuan and Yanxiong Tuo,

my brothers Geng Zhong and Lei Zhong for their love, trust, and support.

iii

Acknowledgments

I would like to thank my advisor, Dr. Jack Dongarra, for giving me the opportunity to join

Innovative Computing Laboratory (ICL) as a graduate research assistant. I appreciate the

unconditional support and professional guidance. It is a great privilege to work with him,

and his experience and wisdom will always be the guidance for my future work and life.

I would also like to thank my co-advisor and group leader Dr. George Bosilca for

his guidance, motivation, and support during my graduate study. His comprehensive and

thorough approach to thinking through a research problem inspired me to think more before

taking action. His kindness, patience, and encouragement made my study and research a

pleasant experience, and I feel lucky to be in this great group. He introduced me to the

high-performance computing field and has been guiding me through my whole Ph.D. study.

I could not have finished this dissertation without his help.

I would like to thank my committee members Dr. Michael Jantz and Dr. Yingkui Li for

serving on my dissertation committee. I appreciate the invaluable guidance and insightful

comments they gave to me on my research and studies. I would like to thank all professors

and staff at UT and ICL for their inspiring and amazing assistance.

I would like to express my appreciation to my current and former colleagues at ICL,

including Dr. Thomas Herault, Dr. Aurelien Bouteiller, Dr. Wei Wu, Dr. Chongxiao Cao,

Dr. Reazul Hoque, Dr. Thananon Patinyasakdikul, Dr. David Eberius, Dr. Xi Luo, Yu Pei,

Qinglei Cao for their help and company. I also thank my friend Dr. Yunhe Feng for the

friendship and happiness. I wish them all the best.

Last but not least, I would like to express my deepest gratitude to my family. I would

not be able to achieve anything without their love and support.

iv

Abstract

As the scale of High-performance Computing (HPC) systems continues to grow, researchers

are devoted to achieving the best performance of running long computing jobs on these

systems. My research focuses on reliability and efficiency for HPC software.

First, as systems become larger, mean-time-to-failure (MTTF) of these HPC systems

is negatively impacted and tends to decrease; thus, handling system failures becomes a

primary challenge. My research aims to present a general design for the implementation of an

efficient runtime-level failure detection and propagation strategy that is able to detect both

node and process failures, targeting large-scale, dynamic systems. The strategy employs

multiple overlapping topologies to optimize detection and propagation, minimizing the

incurred overheads and guaranteeing the scalability of the entire framework. My design and

implementation are evaluating using results from different machines using benchmarks to

compare to related works. The results show that my design and implementation outperform

non-HPC solutions significantly and are competitive with specialized HPC solutions that

can manage only MPI applications.

Second, I endeavor to employ instruction-level parallelization to achieve optimal perfor-

mance. Novel processors support long vector extensions, which enables researchers to exploit

the potential peak performance of target architectures. Intel introduced Advanced Vector

Extension (AVX512 and AVX2) instructions for x86 Instruction Set Architecture (ISA). Arm

introduced Scalable Vector Extension (SVE) with a new set of A64 instructions. Both enable

greater parallelisms. My research utilizes long vector reduction instructions to improve the

performance of MPI reduction operations. Also, I use the gather and scatter feature to speed

up the packing and unpacking operation in MPI. The evaluation of the resulting software

v

stack under different scenarios demonstrates that the approach is not only efficient but also

generalizable to many vector architectures.

vi

Table of Contents

1 Introduction 1

1.1 Motivation . 2

1.1.1 Resiliency . 2

1.1.2 Long Vector Extension . 4

1.2 Contributions . 7

1.2.1 Failure Detection and Propagation in Runtime Systems 7

1.2.2 Computation Optimization in MPI 7

1.2.3 Communication Optimization in MPI 8

2 Background and Literature Review of Related Work 9

2.1 Overview . 9

2.2 MPI . 9

2.2.1 The Open MPI Library . 10

2.2.2 PMIx and PRRTE . 10

2.3 Fault Tolerance . 11

2.3.1 Failure Detection . 11

2.3.2 Reliable Broadcast . 12

2.4 Long Vector Extension . 13

3 Failure detection and propagation in HPC systems 15

3.1 A Generic HPC Failure Detection Service . 15

3.1.1 Machine Model . 16

3.1.2 Failure Model . 16

vii

3.1.3 Notations . 17

3.1.4 Detection of Process Failures . 17

3.1.5 Detection of Node/Daemon Failures 17

3.1.6 Broadcasting Fault Information . 19

3.1.7 PMIx Interface . 23

3.1.8 RDaemon# in the PRRTE Architecture 23

3.2 Experimental Evaluation . 25

3.2.1 Experimental Setup . 25

3.2.2 Accuracy . 26

3.2.3 Noise . 26

3.2.4 Comparison with SWIM . 28

3.2.5 Comparison with ULFM for Process Failures 29

3.2.6 Node Failures Detection . 33

3.3 Communication Models Coverage and Application Evaluation 35

3.3.1 Two-sided Application . 39

3.3.2 One-sided Application . 41

4 Reduction Operation Using Long Vector Extension 44

4.1 Overview . 44

4.2 Design and Implementation of Vector Based Reduction 45

4.2.1 Intel Advanced Vector Extension . 45

4.2.2 Arm-v8 Scalable Vector Extension . 47

4.2.3 Intrinsics . 47

4.2.4 Reduction Operations in Open MPI 49

4.2.5 Implementation with AVXs . 53

4.2.6 Implementation with SVE . 58

4.3 MPI Reduction Benchmark Evaluation . 58

4.3.1 Intel Xeon Architecture . 58

4.3.2 AMD Zen 2 Architecture . 62

4.3.3 Arm-v8 Architecture: A64FX . 62

viii

4.4 Performance Tool Evaluation . 64

4.5 Application Evaluation . 66

4.5.1 LAMMPS Application Evaluation . 66

4.5.2 Deep Learning Application Evaluation 68

5 Pack and Unpack Using Long Vector Gather and Scatter 71

5.1 Overview . 71

5.2 Design and Implementation in Open MPI 72

5.2.1 Memory Access Pattern . 72

5.2.2 Pack and Unpack with Gather and Scatter 74

5.2.3 Benchmark Evaluation . 78

5.3 Application Evaluation with AVX-512 Implementation 84

5.3.1 Domain-decomposed 2D Stencil . 84

5.3.2 2D Fast Fourier Transform . 86

6 Conclusions and Future Work 90

6.1 Conclusions . 90

6.2 Future Work . 92

Bibliography 93

Vita 104

ix

List of Tables

3.1 Parameters and notations. 18

4.1 Supported types and operations . 57

4.2 Supported CPU flags . 57

5.1 East-west vector data represent . 85

5.2 MPI stencil configuration and execution on 2D grid 87

x

List of Figures

3.1 Hierarchical notification of hosted processes through PMIx notification

routines. The PRRTE daemon is in charge of observing and forwarding

notifications to the node-local managed application processes. The detection

and reliable broadcast topology operates at the node level between daemons. 18

3.2 Daemons monitor one another along a ring topology to detect node failures. 18

3.3 The algorithm mends the detection ring topology when a node failure occurs

by requesting heartbeats from the closest live ancestor in the ring. 18

3.4 Binomial graph with 12 nodes with messages sent from 0 highlighted. 22

3.5 Binomial spanning tree in broadcast from node 0, redundant messages from

0 are colored in blue. 22

3.6 Resilient PRRTE architecture. The orange boxes represent components with

added resilience features. The dark blue colored boxes are new modules. . . 24

3.7 Accuracy with short detection heartbeat and timeout. 27

3.8 PRRTE with fault tolerance overhead over PRRTE and ULFM using IMB. 27

3.9 Detection latency comparison between RDaemon# and SWIM with increas-

ing number of processes (δ = 0.5s). 30

3.10 Detection and Propagation delay comparison between RDaemon# and

SWIM with varying heartbeat period. 30

3.11 Process failure detection and propagation delay compared to ULFM. 32

3.12 Process failure detection and propagation delay on Cori. 34

3.13 Single Daemon Failure detection and propagation delay compared to ULFM

with different heartbeat period. 34

xi

3.14 Single Daemon Failure Detection and Propagation delay with different number

of nodes (δ = 0.5s). 36

3.15 Multiple daemon failures at the same time (δ = 0.5s, 64 Nodes). 36

3.16 Hybrid programming model support of MPI and OpenSHMEM 38

3.17 Overhead for generating BFS running mpi test simple when using PRRTE

with fault tolerance over PRRTE (32K MPI ranks; the gray area represents

the normal variability of the benchmark). 40

3.18 Overhead for validating BFS in mpi test simple when using PRRTE with

fault tolerance over PRRTE (32K MPI ranks; the gray area represents the

normal variability of the benchmark). 40

3.19 Overhead for generating BFS running graph500 shmem one sided upon PRRTE

with fault tolerance over PRRTE (32K OpenSHMEM PEs; the gray area

represents the normal variability of the benchmark). 43

3.20 Overhead for validating BFS running graph500 shmem one sided upon PRRTE

with fault tolerance over PRRTE (32K OpenSHMEM PEs; the gray area

represents the normal variability of the benchmark). 43

4.1 AVX512-Bit Wide Vectors and SIMD Register Set 46

4.2 Arm SVE Registers . 48

4.3 Open MPI architecture. The orange boxes represent components with added

AVX-512 reduction features. The dark blue colored boxes are new modules. . 50

4.4 Integrate and automatically activate the AVX component into the Open MPI

build system . 52

4.5 Example of single precision floating-point values using : () scalar standard

C code, () AVXs 128 bits ∼ 512 bits SIMD vector of 4,8,16 values; () SVE

128 bits ∼ 2048 bits SIMD vector of different values 54

4.6 Comparison of MPI SUM with AVX-512 reduction enable and disable for

MPI UINT8 T together with memcpy . 61

4.7 Comparison of MPI BAND with AVX-512 reduction enable and disable for

MPI UINT8 T together with memcpy . 61

xii

4.8 AMD EPYC 7302 16-Core Processor: comparison of MPI BAND for MPI UINT8 T

with and without AVX2, with the memcpy operation 63

4.9 Arm A64FX: comparison of MPI SUM with SVE (Vector Length = 512bits)

reduction enable and disable for MPI UINT8 T together with memcpy . . . 63

4.10 Comparison between AVX-512 optimized Open MPI and default Open MPI

for MPI SUM reduction with PAPI instruction events overview 65

4.11 Comparison between AVX-512 optimized Open MPI and default Open MPI

for MPI SUM reduction with PAPI branch counters 65

4.12 LAMMPS chute: loop time on 24 procs for 100 steps with 259200000 atoms

with different AVX capabilities . 67

4.13 tf cnn benchmarks results using Horovod (model: alexnet) on stampede2 with

AVX-512 optimized Open MPI and default Open MPI 70

5.1 Memory layout of datatype (contiguous and non-contiguous) in MPI 73

5.2 Comparison between general memory copy and AVX/SVE gather/scatter

implementation for packing and unpacking 75

5.3 Comparison of MPI Pack with AVX-512 gather enable and disable together

with memcpy for vector datatype . 81

5.4 Comparison of MPI Unpack with AVX-512 scatter enable and disable together

with memcpy for vector datatype . 81

5.5 Comparison of MPI Pack/Unpack with SVE gather/scatter enable and disable

together with memcpy for vector datatype 83

5.6 Domain-decomposed 2D stencil. Data exchanged in east-west direction must

be packed and unpacked in communication 85

5.7 2-d Stencil results with and without AVX-512 gather pack and scatter unpack

for different radius . 87

5.8 2-d FFT results with and without AVX-512 gather pack and scatter unpack

for different number of processes . 89

xiii

Chapter 1

Introduction

The complexity and vastness of the questions posed by modern science has fueled the

emergence of an era where exploring the boundaries of matter, life, and human knowledge

requires large instruments to perform the experiments, collect the observations, and, in

the case of high-performance computing (HPC), perform the compute-intensive analysis of

scientific data. As the march of science continues, small and easy problems have already

been solved, and significant advances increasingly require tackling finer-grain problems with

compute workloads, fueling an unending need for computational platforms and larger HPC

systems.

In turn, facing hard limits on power consumption and chip frequency, HPC architects

have been forced to embrace massive parallelism as well as a deeper and more complex

component hierarchy (e.g., non-uniform memory architectures, GPU-accelerated nodes) to

maintain the growth in computing capabilities. This has stressed the traditional HPC

software infrastructure in many different ways and highlighted two critical issues in the last

two decades: fault tolerance, as an encompassing term for everything related to correctness,

completion, validation and verification of scientific results, and novel programming

models, as a means of efficiently and productively developing and running large and complex

applications on large and complex platforms.

1

1.1 Motivation

1.1.1 Resiliency

As failures become more common on large and complex systems [32], it is necessary to

develop solutions to ensure applications always complete their execution correctly and that

the delivered results are scientifically sound. Many such solutions have been explored, from

hardening the hardware itself to replicating the applications to changing the algorithms to

take advantage of natural capabilities for correctness. In the context of this dissertation,

however, we were interested in solutions at the level of the programming paradigm, or at

the level of runtime supporting the programming paradigm. Naturally, I turn my attention

toward the Message Passing Interface, the de facto parallel programming paradigm. The

MPI standard is in the process of evolving to integrate fault tolerance capabilities, as

proposed in the User-Level Failure Mitigation (ULFM) specification draft [14], and various

efforts to integrate checkpoint-restart with MPI [25]. The source of stress comes from

programming systems that are inherently hierarchical. This has brought forth a renaissance

in the field of resilience support in programming models leading to a variety of research to

handle fault tolerance [21, 70, 44, 17, 43].

Thus, communities with a vested interest in fault tolerance need the capability to

efficiently, quickly and accurately detect and report failures that manifest as error codes

from the programming interface or trigger implicit recovery actions. Prior works [16] have

designed a specialized failure detector for MPI that deploys finely tuned optimizations to

provide high accuracy and few false positives, while avoiding any impact on the performance

of the MPI implementation. Unfortunately, these optimizations are strongly tied to the MPI

internal infrastructure. For example, a key parameter to the performance of that detector is

the access to low-level remote memory access routines, which may not be typically available

in a less MPI-centric context. Similar concepts could be applied to other HPC networking

interfaces (e.g., OpenSHMEM), but at the expense of a significant infrastructure rewrite

for each one.

Many projects have proposed fault management techniques, either automatic, driven by

the application, or driven by an intermediary library. Most of these approaches rely on

2

their own specialized infrastructure to detect, propagate and react to failures. This leads

to a large number of partial and insufficiently maintained solutions, where no portable and

efficient support to build resilient applications or programming models exists. This lack of

portable reliable software infrastructure also makes comparing existing or proposed solutions

difficult, not only in terms of potential capabilities but also in terms of performance. Here

are some examples.

ULFM provides a set of MPI interface extensions to enable MPI programs to restore

MPI communication and continue the operation of programs after failures. ULFM repairs

the MPI infrastructure after a failure [14]. A communicator can be reconfigured after a

process failure detection, with the failed processes excluded with MPI Comm shrink. Missing

processes can be re-spawned using the MPI function, MPI Comm spawn. The specialized

failure detector provided in ULFM operates only on the MPI COMM WORLD scope and

relies on non-portable optimization to mitigate issues with accuracy, as it is executed in the

context of the MPI process.

OpenSHMEM is a one-sided partitioned global address space (PGAS) programming

model. While OpenSHMEM does not currently have a fault tolerance model, several teams

are exploring checkpoint and restart [44]. A failure detection and propagation service is

needed in runtime to provide the notification to trigger the recovery. For more exploratory

works, application developers can experiment with modulating the frequency and placement

of restart points within the application and employ the failure detector directly or through

OpenSHMEM interfaces.

EREINIT is a global-restart failure recovery model based on a fast re-initialization of

MPI [25]. This work is a co-design between MVAPICH and the Slurm resource managers

to add process and node failure detection and propagation features. It exhibits interesting

detection capabilities, but unfortunately the implementation uses an inefficient propagation

method, forcing the controller to individually send the notification and is tied to a single

resource manager (Slurm). A portable fault detection and more efficient propagation are

required to enable EREINIT to run on machines with different resource managers (Slurm,

PBS, LSF, TORQUE, etc.) and to reduce the stabilization and recovery time of EREINIT.

3

DataSpaces and FTI are persistent data storage services. Fault Tolerance Interface

(FTI) provides a fast and efficient multilevel checkpointing functionality [12]. Its interface

lets users decide what data need to be protected and when it is reasonable to do so.

The checkpointing routine then saves the marked data into a hierarchical storage using a

variety of encoding and caching strategies and staging to mitigate the cost of checkpointing.

DataSpaces is a data sharing framework that supports the complex interaction and

coordination patterns required by coupled data-intensive application workflows [71]. It

can asynchronously capture and index data, which allows for dynamic interactions and in-

memory data exchanges between coupled applications.

I believe it is critical to level the field and provide a resilient, efficient and portable

fault detector and propagator, integrated into one of the most widely-used parallel execution

runtimes, that also allows other libraries and programming models to build on and support

resilience at any scale. This runtime-level failure detector resolves the first issue and opens

the gate for efficient management of failures for an emerging field of libraries, programming

models and runtime systems operating on large-scale systems. Resilience support guarantees

a move forward in the study of efficiency and productivity. Chapter 2 introduces failure

resilience-related work, the MPI standard, the MPI reduction operation and communication

operations, and one implementation of the MPI standard - Open MPI.

1.1.2 Long Vector Extension

The need to satisfy the scientific computing community’s increasing computational demands

drives the development of larger HPC systems with more complex architectures. This

provides more opportunities to enhance various levels of parallelism. Instruction-level (ILP)

and thread-level parallelism (TLP) have been extensively studied, but data-level parallelism

(DLP) is usually underutilized in CPUs, despite its vast potential [20, 63, 34, 75, 57]. The

most widespread vector implementation is based on single-instruction multiple-data (SIMD)

extensions. Vector architectures are designed to improve DLP by processing multiple input

data simultaneously with a single instruction, usually applied to vector registers. SIMD

instructions have been gradually included in microprocessors, with each new generation

providing more sophisticated, powerful, and flexible instructions.

4

A growing body of literature focuses on employing DLP via vector execution and code

vectorization [19, 52, 56]; HPC, with its ever-growing demand for computing capabilities,

has been quick to embrace vector processors and harness this additional compute power. As

an essential factor of processors’ capability to apply a single instruction on multiple data,

vectorization continuously improves from one CPU generation to the next by using longer

registers. Different CPU vendors follow the same trend to provide new architectures and

processors with long vector extension. Intel prompted Advanced Vector Extensions (AVXs),

including AVX, AVX2, AVX512. AMD’s new Zen architecture supports the 256-bits AVX2

vector instructions. Arm launched Arm-v8 architectures with Scalable Vector Extension

(SVE) that support vector lengths up to 2048 bits.

The AVX-512 features and instructions provide a significant advantage to the 512-bit

SIMD support. It offers high degree of compiler support by including richness in designing the

instructions. Compared to previous architecture and products, it leverages longer and more

powerful registers capable of packing eight double-precision, sixteen single-precision floating-

point numbers, eight 64-bit integers, or sixteen 32-bit integers within a 512-bit vector. It

also enables processing twice the amount of data elements compared to Intel AVX2 and four

times the amount of SSE with a single instruction. Furthermore, AVX-512 supports more

features, such as operations on packed floating-point or packed integer data, new operations,

additional gather/scatter support, high-speed math instructions and the ability to have

optional capabilities beyond the basic instruction set.

The difference between an Intel scalar code and its vectorized equivalent increased

largely [59, 42, 68], highlighting the importance of employing vectorized code. The conversion

of a scalar code into a vectorized equivalent can be relatively straightforward for algorithms

and computational kernels, as it can be done transparently by a compiler with auto-

vectorization, the compiler can provide a baseline for more complex codes. Also, developers

are encouraged to offer optimized versions using widely available compiler intrinsics.

Similarly, Arm announced the new Armv8 architecture embracing SVE- a vector exten-

sion for AArch64 execution mode for the A64 instruction set of the Armv8 architecture [7, 36].

SVE is a vector extension for AArch64 execution mode for the A64 instruction set of the

Armv8 architecture [7, 36]. Unlike other SIMD architectures, SVE does not define the size of

5

the vector registers. Instead, it provides a range of different values which permit vector code

to adapt automatically to the current vector length at runtime with the feature of Vector

Length Agnostic (VLA) programming [15, 9]. Vector length constraints in the range from a

minimum of 128 bits up to a maximum of 2048 bits in increments of 128 bits.

Long vector encapsulates more elements compared to general register. Vector horizontal

reduction instructions process multiple elements concurrently, which potentiality could be

used to optimize computations. Computation-oriented collective operations like MPI Reduce

performs reductions on data along with the communications performed by collectives and

point-to-point. These communications typically require intensive CPU compute resources,

which force the computation to become the bottleneck and limit its performance. However,

with the presence of advanced architecture technologies introduced with wide vector

extension and specialized arithmetic operations, MPI libraries are required to provide state-

of-the-art design for advanced vector extension-based versions (AVX and SVE). I tackle

the above challenges and provide design and implementation for the reduction operations

most commonly used by computation intensive collectives - MPI Reduce, MPI Reduce local,

MPI ALLreduce.

As many scientific applications operate on multi-dimensional data, manipulating these

data becomes complicated because the underlying memory layout is complex. The MPI

standard proposes a rich set of interfaces to define regular and irregular memory patterns

called Derived Datatypes (DDT). DDT provides excellent functionality and flexibility by

allowing the programmer to create arbitrary (contiguous and non-contiguous) structures

from the MPI primitive datatypes. It is also useful for constructing messages that contain

values with different datatypes and sending non-contiguous data (sub-matrix and matrix with

irregular shape [13]), which eliminates the overhead of sending and receiving multiple small

messages and improves bandwidth utilization. Multiple small messages can be constructed

into a derived datatype and sent/received as a single large message. Once constructed

and committed, an MPI datatype can be used as an argument for any point-to-point,

collective, I/O, and one-sided functions. With DDT, MPI datatype engine automatically

packs and unpacks data based on the datatype, which is convenient for the user since it

hides the low-level details. However, the cost of packing and unpacking in the datatype

6

engine is high; to reduce this cost, MPI implementations need to design more powerful

and efficient pack and unpack strategies. Long vector extensions provide rich memory access

features, such as gather and scatter, which can significantly reduce the cost of non-contiguous

memory operations. Chapter 2 shows a detailed introduction and related work to long vector

extension within x86 and AArch64 architectures.

1.2 Contributions

This dissertation is divided into three parts: failure detection and propagation in runtime

systems, computation optimization in MPI, and communication optimization in MPI. Each

part is addressing one of the challenges introduced in the previous section.

1.2.1 Failure Detection and Propagation in Runtime Systems

A generic failure detection and propagation strategy (called RDaemon#) is implemented

and delivered as an infrastructure service in the context of PRRTE. The overarching goal

is to deliver a flexible and accurate failure detector while exploiting the specificities of the

HPC machine model to sustain high detection accuracy and speed while incurring a limited

amount of noise on the monitored application. The detailed design and implementation is

discussed in chapter 3.

1.2.2 Computation Optimization in MPI

I investigate the impact of the vectorization of MPI reduction operations, and propose an

implementation of predefined MPI reduction operations using vector intrinsics (AVXs and

SVE) to improve the time-to-solution of the predefined MPI reduction operations. The

evaluation of the resulting software stack under different scenarios demonstrates that the

approach is generic and efficient. Experiments conducted on varied architectures (Intel Xeon

Gold, AMD Zen 2, and Arm A64FX) show that the proposed vector extension optimized

reduction operations significantly reduce completion time for collective communication

reductions. This approach is detailed in chapter 4.

7

1.2.3 Communication Optimization in MPI

Collective operations dealing with non-contiguous data require intensive memory manage-

ment resources, which force the memory bandwidth to become the bottleneck and limit the

collectives’ performance. Long vector gather and scatter instructions can access multiple

data from different addresses simultaneously. I take advantage of this feature to improve the

packing and unpacking operation performance for non-contiguous data movement in MPI.

This optimization provides high instruction level parallelism and accelerates the packing

and unpacking procedure during communication, which results an efficient communication

scheme of message exchanging. This approach is introduced in chapter 5.

8

Chapter 2

Background and Literature Review of

Related Work

2.1 Overview

This chapter describes the background of this dissertation and reviews some related work.

In section 2.2, I introduce the MPI standard, and an open source implementation of the

MPI standard – Open MPI. Section 2.3 and section 2.4 review previous work related to

fault tolerance, long vector extensions (AVX and SVE), and optimizations in MPI.

2.2 MPI

MPI stands for Message Passing Interface, which defines a library interface to describe

the communication in HPC systems. It has been instrumental in permitting the efficient

programming of massively parallel systems, scaling along hundreds of thousands of cores.

MPI was first introduced in 1993, and at that time it mainly focused on point-to-point

communications. Later, more functionalities were added to the MPI standard, such as

collective operations, remote-memory access operations, dynamic process creation, parallel

I/O, etc. The latest version of the MPI standard [37] (MPI-4.0 draft) was published in

2020.

9

2.2.1 The Open MPI Library

Open MPI [40] is an open source, freely available implementation of the MPI standard. It

builds upon prior research LAM/MPI [69], LA-MPI [11], FT-MPI [35]. It starts as an all-new,

production quality of MPI-2 implementation that is fundamentally centered around Modular

Component Architecture (MCA) and provides both a stable platform for third-party research

as well as enables the run-time composition of independent software add-ons. Open MPI

provides a unique combination of novel features previously unavailable in an open-source,

production-quality implementation of MPI. It is designed, developed and maintained by an

active community of volunteers from academia and industry. There are three main layers in

Open MPI:

• Open MPI component (OMPI). This component contains the implementations of

MPI functions.

• PMIx Reference RunTime Environment (PRRTE). This component supports different

back-end run-time systems.

• Open Portable Access Layer (OPAL). This component glues the code of Open MPI

and PRRTE.

The Open MPI library is the foundation of my work. The reduction operation optimization

and datatype pack/unpack operation optimization introduced in this dissertation are

implemented in Open MPI.

2.2.2 PMIx and PRRTE

PMIx interface [24] – an abstract set of interfaces by which not only applications and tools

can interact with the resident system management stack (SMS), but also the various SMS

components can interact with each other. Many communication libraries, resource managers

and job scheduling systems are currently employing PMIx in production, and many more

are under development. Meanwhile, the Slurm batch scheduler and job starter ships with

native PMIx support, meaning that an application interoperates with Slurm through PMIx.

10

The PRRTE runtime serves as the demonstrator and reference implementation for the

PMIx specification. Technically, it is a fork of the Open RTE runtime, and thus inherits

most of its capabilities to launch and monitor MPI jobs. Thanks to a well documented, and

recently standardized PMIx interface, PRRTE has increased its capabilities, outgrown the

MPI world it was originally designed for, and is currently capable of deploying a wide variety

of parallel applications and tools. Although PRRTE provides rudimentary support for

clients’ fault detection and reporting, detection of failed nodes is unstable, and the reporting

broadcast topology itself is not resilient, allowing process fault detection and propagation, at

best. The current work expands on the existing capabilities of PRRTE by adding advanced

failure detection and reporting methodologies that can efficiently operate despite the failure

of the runtime daemon.

2.3 Fault Tolerance

2.3.1 Failure Detection

The areas of failure detection have been extensively studied. Chandra and Toueg [26]

proposed the first unreliable failure detector oracle that could solve consensus and atomic

broadcast problems for unreliable distributed systems. Many implementations [27, 51, 49]

based on this oracle are using all-to-all heartbeat patterns where every node periodically

communicates with all other nodes. However, these implementations, due to the commu-

nication patterns employed, are inherently not scalable beyond systems with only a few

hundred nodes. An optimized version, the gossip-style protocol [74, 62, 41, 29], in which

nodes randomly pick peers to monitor and exchange information with, is another popular

approach for failure detection in unstructured systems where the group membership is not a

priori established or varies dynamically and rapidly. Unfortunately, gossip methods perform

poorly with large numbers of simultaneous node crashes, and given the random nature of

the communication pattern, the time to detect a failure is not strictly bounded producing

non-deterministic detection time. Furthermore, the gossip methods have the disadvantage

11

of generating a large number of redundant detection and gossip messages that decrease the

scalability.

Recently, Bosilca proposed a deterministic failure detector for HPC systems based

on network overlays [16], where each participant only observes a single peer following

a recoverable ring topology. The results demonstrate the efficiency of the algorithm;

however, the implementation performed at the application level in ULFM can only detect

MPI process failures. The implementation employs multiple optimization techniques and

shortcuts that are only possible due to its tight and deep integration within the MPI library

and the availability of its highly optimized communication primitives. This resilient PRRTE

work avoids these limitations and has the capability to detect both process and node failures

with a smaller observation topology, and is not limited to MPI applications only.

2.3.2 Reliable Broadcast

Gossip-style [31, 29] dissemination mechanisms emulate the spread of gossip in society.

Initially, members are inactive except for one member which is aware of an event of interest.

It propagates this information by randomly pinging other members, until it pings someone

who already was already notified. Notified members use the same strategy to gossip the

information. Gossip-style is resilient to process failure and spreads quickly in the group;

however, in the worst case, some members may never get notified.

Regarding deterministic reliable broadcast algorithms, a fully connected topology can

handle a large number of failures but has scalability issues since it generates too many

messages. At the other extreme, a mendable ring topology might be good for scalability

(as each process only has 2 neighbors) but offers poor propagation latency and suffers in

scenarios with multiple node failures. Circulant k-nomial graphs [6, 66] provide a balance

between the previous two methods. Among circulant graphs, the binomial graph (BMG)

has the lowest diameter, which minimizes the number of hops for a dissemination to reach

all processes and the smallest fault diameter, which guarantees the number of hops in the

dissemination path will remain scalable even when some processes on the delivery path

have failed. In this work, I expand on these properties to maintain the efficiency of the

12

dissemination by integrating elements of the architecture hierarchy to design a multi-level

propagation strategy that reduces the cost of propagation on typical HPC systems.

2.4 Long Vector Extension

In this section, I survey related work on techniques taking advantage of advanced hardware

and architectures.

Petrogalli [60] gives instructions on how SVE can be used to replace and optimize

some commonly used general C functions. A later work [48] explores the usage of SVE

multiple vector instructions to optimize matrix multiplication in machine learning such as

GEMM algorithm. Another work [10] leverages the characteristics of SVE to implement

and optimize stencil computations, ubiquitous in scientific computing. This finding shows

that SVE enables easy deployment of optimizations like loop unrolling, loop fusion, load

trading or data reuse.

Mellanox’s InfiniBand [39] explored the use of hardware scatter gather capabilities to

eliminate CPU memory copies selectively, and offload data scatter and gather onto the

supported Host Channel Adapter. Lim [53] explored matrix matrix multiplication based on

blocked matrix multiplication improves data reuse by data prefetching, loop unrolling, and

the Intel AVX-512 to optimize the blocked matrix multiplications. Dosanjh et al. [33] took

advantage of using AVX vector operation for MPI message matching to accelerate matches

demonstrating the efficiency of long vectors. The proposed algorithm took advantage of the

AVX vector operation to accelerate matches and demonstrated that the benefits of vector

operation are not only restricted to computational intensive operations but can positively

impact MPI matching engines. They also presented an optimistic matching scheme that uses

partial truth in matching elements to accelerate matches. Kim [50] presented an optimal

implementation of single-precision and double-precision general matrix-matrix multiplication

(GEMM) routines based on an auto-tuning approach with the Intel AVX-512 intrinsic

functions. The implementation significantly diminished the search space and derived optimal

parameter sets, including the size of submatrices, prefetch distances, loop unrolling depth,

and parallelization scheme. Bramas [18] introduced a novel quicksort algorithm with a

13

new Bitonic sort and a new partition algorithm that has been designed for the AVX-512

instruction set, which showed superior performance on Intel Skylake in all configurations

against two standard reference libraries.

Michael [47] presented a pipeline algorithm for MPI Reduce that used a Run Length

Encoding scheme to improve the global reduction of sparse floating-point data. Wu [77]

proposed GPU datatype engine that offloads the pack and unpack work to GPU to

take advantage of GPU’s parallel capability and provide high efficiency in-GPU pack and

unpack. Also, Chu [28] analyzed the limitations of the compute-oriented CUDA-Aware

collectives and proposed alternative designs and schemes by combining the exploitation

GPU’s compute capability and their fast communication path using GPUDirect RDMA

feature to alleviate these limitations efficiently. Luo [54] presented a new hierarchical

autotuned collective communication framework in Open MPI called “HAN”. HAN selects

suitable homogeneous collective communication modules as sub-modules for each hardware

level, uses collective operations from the sub-modules as tasks and organizes these tasks

to perform efficient hierarchical collective operations. Hofmann [47] presented a pipeline

algorithm for MPI Reduce that used a Run Length Encoding scheme to improve the global

reduction of sparse floating-point data. Patarasuk’s work [58] investigated implementations

of the allreduce operation with large data sizes, derived a theoretical lower bound on this

operation’s communication time and developed a bandwidth optimal allreduce algorithm on

tree topologies. Shan [67] proposed using idle threads on a many-core node to accelerate the

local reduction computations and utilized the data compression technique to compress sparse

input data for reduction. Both approaches (threading and exploitation of sparsity) helped

accelerate MPI reductions on large vectors when running on many-core supercomputers.

14

Chapter 3

Failure detection and propagation in

HPC systems

This chapter presents the design and implementation of an efficient runtime-level failure

detection and propagation strategy for large-scale, dynamic systems that is able to

detect both node and process failures. Multiple overlapping topologies are used to

optimize detection and propagation, minimizing the incurred overhead and guaranteeing

the scalability of the entire framework. The resulting framework has been implemented in

the context of a system-level runtime PRRTE, providing efficient and scalable capabilities

of fault management to a large range of programming and execution paradigms. Section 3.2

shows the experimental evaluation of the resulting software stack on different machines

and programming models demonstrating that the solution is at the same time generic and

efficient. Section 3.3 demonstrates that my design and implementation supports different

programming models and covers different kinds of applications including one-sided and two-

sided.

3.1 A Generic HPC Failure Detection Service

This section describes the design of a generic failure detector (called RDaemon# in the

remainder of this dissertation) that implements and delivers an infrastructure service in

the context of PRRTE. The overarching goal is to deliver a flexible and accurate failure

15

detector while exploiting the specificities of the HPC machine model to sustain high detection

accuracy and speed, while incurring a limited amount of noise on the monitored application.

3.1.1 Machine Model

I consider a machine model representative of a typical HPC system. The machine is a

distributed system comprised of compute nodes with an interconnection network. Each node

can host runtime daemons and one or more application processes. Daemons and processes

have unique identifiers (e.g., a rank) that can be used to establish communication between

any given pair. Messages take an unknown, but bounded, amount of time to be delivered

(i.e., the network is pseudo-synchronous [26]). The identity and number of daemons and

processes participating in the application is either known a priori or is established through

explicit operations that do not require group membership discovery.

3.1.2 Failure Model

The detection strives to report crash failures, which occur when a compute entity stops

emitting messages unexpectedly and permanently. A crash failure may manifest as the

ultimate effect of a variety of underlying conditions, such as an illegal instruction performed

because a processor is overheating, an entire node or cabinet losing power, or a software

bug that manifests by interrupting a process unexpectedly or rendering some processes

permanently non-responsive. The detection also distinguishes between two sub-types of crash

failures: application process failures and node failures. Application process failures1 may

impact any number of hosted application processes without necessarily being concomitant

with the failure of other processes, even hosted on the same node. Node failures are

considered congruent with the observation of a daemon process failure. When a daemon

failure occurs, all hosted application processes on that node also undergo a process failure.

My work observes both types of failures. I will discuss in the following sections how this

distinction helps improve the scalability of the failure detection algorithm.

1Note that application process failures are crash failures; this work does not deal with other types of
application failures like incorrect code or dataset corruption resulting in wrong results or silent errors.

16

3.1.3 Notations

Table 3.1 summarizes some of the notations to describe the algorithm. The daemon is

the infrastructure process deployed on each node to launch and monitor the execution

of application processes on that node. The failure detector employs heartbeats between

daemons and timeouts to detect node failures.

3.1.4 Detection of Process Failures

As illustrated in Figure 3.1, the failure detector employs two distinct strategies to detect

process failures on one hand and node failures on the other.

To detect process failures that are not congruent with a node failure, the detection

leverages the direct observation of application processes that can be performed by the node-

local daemon. Since a process failure does not impact the execution of the runtime daemon

managing that process, that daemon can execute localized observation operations, which are

dependent upon node-local operating system services. For example, the Open RTE Daemon

Local Launch Subsystem (ODLS) monitors SIGCHLD signals to detect discrepancies in the

core-binding affinity with respect to the user-requested policy. That same signal also permits,

from the node-local daemon, an extremely fast and efficient observation of the unexpected

termination of a local application process. As a substitute, or in complement, a daemon may

also deploy a watchdog mechanism [24] to capture non-terminating crash failures that may

arise from software defects, such as live-locks, deadlocks and infinite loops.

3.1.5 Detection of Node/Daemon Failures

Resilient PRRTE’s algorithm for node/daemon failure detection has two components: a

node-level observation ring, and a reliable broadcast overlay network between daemons.

All N daemons are arranged to a logistic ring topology, as illustrated in Figure 3.2.

Thus, initially, each daemon d observes its predecessor d− 1 mod N and is observed by its

successor d+ 1 mod N . The predecessor periodically sends heartbeat messages to d (with

a configurable period δ). At the same time, d sends heartbeat messages to its own observer.

For each node, a daemon emits heartbeats m1, m2, ... at time τ1, τ2, ... to its observer o.

17

Table 3.1: Parameters and notations.

Symbol Description

N Number of Daemons (or nodes)
Daemon Runtime environment process; one per node
Process Application process; a node may host

multiple application processes
δ Heartbeat period between daemons
η Timeout for assuming a daemon failure

Reportedi Set of failed daemon and processes identifiers
known at process/daemon i

Daemon

Process_0 Process_1 Process_2 Process_3

Figure 3.1: Hierarchical notification of hosted processes through PMIx notification
routines. The PRRTE daemon is in charge of observing and forwarding notifications to

the node-local managed application processes. The detection and reliable broadcast
topology operates at the node level between daemons.

Figure 3.2: Daemons monitor one another
along a ring topology to detect node failures.

Figure 3.3: The algorithm mends the
detection ring topology when a node failure
occurs by requesting heartbeats from the
closest live ancestor in the ring.

18

Let τ ′i = τi + t. At any time t ∈ [τ ′i , τ
′
i+1), o knows that d is alive if it has received the

heartbeat message mi or higher. Otherwise, o suspects that d has failed and initiates the

propagation of the failure of d .

When the observer detects that its predecessor has failed, it undergoes two major steps.

First, it needs to reconnect the ring topology, as illustrated in Figure 3.3. Daemon o tries

to observe the predecessor of d (the daemon it previously observed). It sets d-1 as its new

predecessor and then sends a request to d-1 to initiate heartbeat emission. Of course, it is

possible that d-1 has also failed, which will be detected at the next timeout. In order to

speed up the reconnection process, o may skip over daemons that have already been reported

as failed in the past (i.e., daemons whose identifier is in Reportedo because they have been

observed and reported by another daemon). Each time a daemon is marked as failed, all the

processes it managed are also marked as failed. After getting the list of all those affected

processes and nodes, the observer component calls the propagation component to broadcast

the fault information to other daemons and then notify its local processes.

3.1.6 Broadcasting Fault Information

Considering that the observation topology is static, it does not provide automatic or

probabilistic dissemination of fault information. Thus, to complete the reporting of failures,

failures identified by an observer must be broadcasted to inform all other daemons and

application processes. An important aspect when considering a runtime that tolerates

node/daemon failures is that the propagation algorithm itself needs to be resilient to failures.

For broadcasting fault information between daemons, the algorithm uses the scalable and

fault-tolerant BMG topology [6]. BMG has good fault-tolerant properties such as optimal

connectivity, low fault-diameter, strongly resilience and good optimal probability in failure

cases. Note that unlike prior works, the propagation Algorithm 1 is not a flat BMG between

application processes, but rather, it consists of an inner BMG overlay between daemons and

an outer star overlay from each daemon to its locally managed processes.

Figure 3.4 shows an example of the execution of the BMG broadcast with 12 nodes. For

simplicity, the local stars connecting each daemon to its local processes are not represented.

19

Algorithm 1 Two-Level Reliable Broadcast Algorithm.

N . Number of nodes (value from environment)
Eid . Identifier of a process observed as failed (input parameter)
Reportedi . Set of identifiers of previously reported failures, local to daemon i (initially
empty)
msg . Message containing the set of process identifiers to report (initially empty)
Hosted{Did} . Set of
process identifiers managed by the daemon Did (initially empty, obtained from environment)

1: procedure StartPropagation(Eid) . Daemon i starts the propagation
2: if (Eid /∈ Reportedi) then Add Eid to msg
3: if Eid is a daemon then
4: Obtain Hosted{Eid}
5: add Hosted{Eid} to msg

6: ReliableBroadcast(i, N,msg)
7: Add msg to Reportedi

1: procedure ReliableBroadcast(i, N,msg) . Daemon i sends error messages to all
its neighbors

2: for k ← 0 to log2N do . Neighbors in the BMG
3: i sends msg to ((N + i + 2k) mod N)
4: i sends msg to ((N + i - 2k) mod N)

5: for all lp ∈ Hosted{i} do . Local application processes
6: i sends msg to lp

1: procedure Forwarding(msg) . Triggered when daemon or process j receives msg;
decides if the message needs to be forwarded and notified locally

2: if msg 6⊂ Reportedj then
3: if j is a daemon then
4: ReliableBroadcast(j,N,msg)

5: Add msg to Reportedj

20

1. In this example, daemon 0 is the initial reporter, and its observer component starts

the propagation by calling the StartPropagation reliable broadcast algorithm.

2. This prepares a broadcast message containing the identifier of the failed process (or

daemon) and the associated application processes, when relevant. Daemon 0 issues the

message to its neighbors in the BMG topology.

3. Upon receiving a broadcast message, a daemon considers if the message needs to be

forwarded. If the message carries a list of processes that are already known to have

failed, then the daemon already triggered the propagation and no further action is

needed. Thus, every daemon forwards the message once, ensuring that all edges of the

BMG carry exactly one message per detection.

The propagation message issued at each daemon is ordered so that the messages sent first

are part of a binomial spanning tree rooted at the emitter. Figure 3.5 shows the spanning

tree for a broadcast originating from node 0; the redundant messages (colored in blue) are

extra messages that provide reliability and ensure that any node in the BMG can always be

reached within O(log2N) steps (given that less than 2log2N failures strike; with more failures,

statistically rare scenarios can degenerate in a linear propagation time). The advantages of

this new broadcast algorithm are:

1. Sequence ordering brings higher parallelism. messages to node {10, 11, 7} can arrive

from any redundant forwarding path rather than only from the 0-rooted spanning tree.

This may decrease the apparent height of the tree, and reduce the average notification

latency.

2. Limited network degree: the maximum degree for every daemon is logarithmic, which

avoids hot-spot effects that are common in randomized gossip algorithms.

3. Deterministic number of messages: the total number of messages is exactly the number

of links in the BMG topology, that is, O(Nlog2N) messages overall. In contrast,

random march gossip algorithms have to balance between the probability of not

reaching every participant and the number of messages.

4. The number of heartbeats and propagation messages is dependent upon the number

of nodes, not the number of managed application processes. In manycore systems, this

21

seq:3
seq:1

se
q:5

se
q:8

seq:2
seq:4

seq:6
seq:7

01

2

3

4

5 6 7

8

9

10

11

Figure 3.4: Binomial graph with 12 nodes
with messages sent from 0 highlighted.

0

1

seq:1

2

seq:3

4

seq:5 seq:8

8

seq:7 seq:6

10

seq:4

11

seq:2

35 9 6

7

Figure 3.5: Binomial spanning tree in
broadcast from node 0, redundant messages
from 0 are colored in blue.

22

can significantly reduce the effective cost of the algorithm when compared to a flat

topology between application processes.

3.1.7 PMIx Interface

RDaemon# is implemented as a set of components in PRRTE. PRRTE is developed

and maintained by the PMIx community as a demonstrator and enabler technology that

demonstrates and exercises the features of the PMIx interface [24]—an abstract set of

interfaces by which not only applications and tools can interact with the resident system

management stack (SMS), but also the various SMS components can interact with each

other. Many communication libraries, resource managers and job scheduling systems are

currently employing PMIx in production, and many more are under development.

For example, Open MPI has now substituted Open RTE with a shim layer over PMIx;

therefore, it can be launched and monitored by PRRTE. Similarly, OpenSHMEM uses

PRRTE as the default launcher. Meanwhile, the Slurm batch scheduler and job starter

ships with native PMIx support, meaning that an application that interoperates with Slurm

through PMIx can be ported over PRRTE without effort.

RDaemon# leverages the interfaces specified by PMIx [23] to interoperate with the

client application, communication library, or programming language, as well as with the

SMS. To the best of my knowledge, RDaemon# is the first implementation to populate

the PMIx interfaces with a truly resilient implementation. An important feature of the

interface is the PMIx Event Notification [22], which performs the local propagation of failure

information from the daemon to the client processes.

3.1.8 RDaemon# in the PRRTE Architecture

While a full depiction of the architecture and feature set of PRRTE is out of the scope of

this paper, some are relevant to my implementation effort. PRRTE is based on a Modular

Component Architecture (MCA) which permits easily extending or substituting the core

subsystem with experimental features. As shown in in Figure 3.6, within this architecture,

23

Figure 3.6: Resilient PRRTE architecture. The orange boxes represent components with
added resilience features. The dark blue colored boxes are new modules.

24

each of the major subsystems is defined as an MCA framework with a well-defined interface

and multiple components implementing that framework can coexist.

Two new frameworks and four components are added to PRRTE daemons. The

proc failure component is in charge of detecting the failure of locally hosted processes

(using SIGCHLD signals from the operating system). The BMG component implements a

broadcast algorithm in a reliable way; this component abides by the normal interface for

a daemon broadcast and can reliably broadcast any type of information. The detector

component emits heartbeats and monitors timeouts. Last, the error ppg component

prepares the content of the reliably broadcast messages (i.e., the list of failed processes). In

order to populate the list of failed processes in node failure cases, the list of processes hosted

by a particular daemon needs to be obtained (line 5 of procedure StartPropagation

in Algorithm 1). This information is queried from the key-value store of PMIx. Note,

however, that multiple daemons querying that information could cause a storm of network

activity within the SMS in order to fetch this information or require its replication (memory

overhead). Fortunately, when a given daemon is observed by a single other daemon, there

is a single initiator to the propagation routine, and this potential non-scalable usage of the

PMIx key-value store can be avoided.

3.2 Experimental Evaluation

3.2.1 Experimental Setup

Experiments are conducted on two different machines: (1) ICL’s NaCl is an Infiniband

QDR Linux cluster comprising 66 Intel Xeon X5660 compute nodes, 12 cores per node; (2)

NERSC’s Cori is a Cray XC40 supercomputer with Intel Xeon “Haswell” processors and

the Cray “Aries” high speed inter-node network, 32 cores per node. My RDaemon# is

based upon PRRTE (#71ef547) with external PMIx (#21d7c9). It is compared with

ULFM revision #77f9157, which is based on the same base version of Open MPI to

evaluate RDaemon# in MPI workloads. Each experiment is repeated 30 times and the

average is used here. Intel MPI Benchmark (IMB v2019.2) [1] is used for MPI performance

25

measurements for point-to-point (P2P) and collective communications (one MPI rank per

core). All experiments use the map-by node, bind-to core binding policy, which puts

sequential MPI ranks on adjacent cores. The only exception is the IMB P2P experiment

where it uses the map-by node, bind-by node policy to set communicating MPI ranks on

different nodes.

3.2.2 Accuracy

The first experiment explores the accuracy of RDaemon#’s detector. The accuracy

experiment is conducted by (1) Starting with a large value for the detection timeout η;

(2) Verifying that no failure is detected when there is no injection and that all injected

failures are reported; (3) If the previous test is accurate, decrease η (and accordingly the

heartbeat period δ) until false positive detection is noticed. The constant ratio is η = δ ∗ 2.

This methodology exposes the behavior in normal deployment (100ms period) as well as

the behavior at the limit for very short η timeout values (in the order of milliseconds).

Figure 3.7 presents the results on NaCl 64 nodes. In heavily communicating benchmarks

(IMB point-to-point and collective tests), all tests succeed until the heartbeat period is

lower than 20 milliseconds. To further investigate, the heartbeat message is neither delayed

by communication congestion nor compute pressure, but daemons need some time to launch

the processes when starting the job, which causes heartbeat delay and false detection during

job startup.

3.2.3 Noise

I also investigate the noise overhead incurred on an MPI application by the heartbeat

emission and management from RDaemon#. Figure 3.8 illustrates the overhead incurred

with P2P and collective communications running IMB. In order to contextualize the incurred

overhead, the band of natural variability of the benchmark without an active failure detector

is shaded in gray (average±σ), and, for clarity, error bars are plotted for δ = 1ms, the only

cases where the variability exceeds the natural variability of the benchmark at sometime.

PingPong benchmark uses the -multi mode of IMB with one rank per core on 2 nodes.

26

20 30 40 50 100
Heartbeat period (ms)

40
60
80

100

200
La

te
nc

y
(m

s)
RDAEMON# daemon
 failure notification latency
RDAEMON# false
 positive present
Heartbeat
Timeout

Figure 3.7: Accuracy with short detection heartbeat and timeout.

4 32k 4M
-4.0%

-2.0%

0.0%

2.0%

4.0%
PingPong

4 32k 4M

PingPing

Ov
er

he
ad

4 32k 4M
Message Size

-4.0%
-2.0%
0.0%
2.0%
4.0%
6.0%
8.0%

Bcast

4 32k 4M

Reduce

4 32k 4M

AllReduce ULFM
RDAEMON#

 = 0.1s
 = 0.01s
 = 0.001s

IMB std

Figure 3.8: PRRTE with fault tolerance overhead over PRRTE and ULFM using IMB.

27

This ensures that all cores are active with the communication pattern and thus compete

for resources with RDaemon# activities. Collective benchmarks run on 64 nodes using all

cores. Each message size sets the number of repetitions for the test to last at a minimum

20 seconds so that multiple heartbeat emissions occur during the experiment. Overhead

is calculated by using the maximum latency result, normalized by the non-fault tolerant

performance:

Overhead =
(RDaemon# −PRRTE)

PRRTE
(3.1)

From the graph we can see that the latency performance and bandwidth performance are

barely affected, with the heartbeat period ranging from milliseconds to seconds. Notably,

when δ ≥ 10ms, it has trivial influence on the system, as illustrated by the fact that the

average overhead is within the band of natural variability of the benchmark. When δ = 1ms,

the incurred noise varies in a band that increases the PingPong latency by up to three percent.

In collective communication, the noise overhead is less than eight percent, which, at four

percent, is slightly higher than the standard deviation of the benchmark itself. In a general

comparison with ULFM (normalized to its performance without failure detection active),

we can see that RDaemon# achieves a similar level of incurred noise for a given heartbeat

period and communication pattern.

3.2.4 Comparison with SWIM

This section compares the failure detection latency and scalability of RDaemon# with

SWIM [29]—a random probing-based failure detection protocol with gossip membership

updates. To decrease the chance of false detection, SWIM uses a suspicion mechanism. When

a node does not reply to a probing in time, the initiator then judges this node as suspicious

(but not yet failed). It then broadcasts this suspicion information within a subgroup: if

any node in the subgroup receives an acknowledgment before the timeout, it declares the

suspected node as alive; otherwise it declares a failure. In order to improve the efficiency

of multi-cast, SWIM uses the infection-style dissemination mechanism and piggybacks the

information to be disseminated in the detection’s pings and acknowledgment messages. For

28

the SWIM implementation, it uses Go-Memberlist (#a8f83c6), and a go-MPI interface is

used to replicate the MPI detection benchmark.

Figure 3.9 compares the scalability of the two detectors with regard to the number of

deployed processes with η = 1s, δ = 0.5s. SWIM tests only up to 256 members; after that

limit, some nodes exceed the maximum connection backlog set in the operating system for

listen operations on TCP sockets, causing an application crash during initialization. For

RDaemon#, tests run up to 768 processes on 64 nodes. As the number of processes increases,

latency of RDaemon# remains almost the same. For 4K processes, the stabilization of

RDaemon# is still below the range of the heartbeat period and timeout. SWIM latency

shows a linear increase when the number of processes increase, which becomes the bottleneck

when scaling up (assuming the limits on maximum connection requests issue can be solved).

Figure 3.10 compares single node failure detection and propagation latency between

RDaemon# and SWIM with different heartbeat period settings. All tests set η = δ ∗ 2.

The experiment uses 64 nodes in both cases; RDaemon# deploys on all 768 cores, while

SWIM uses only 256 cores because it cannot deploy with more processes, as discussed above.

We can clearly see that for RDaemon# the detection latency is between (δ, η), and the

last notification happens very soon after the detection, demonstrating the efficiency of my

propagation algorithm (variability in the results comes from the randomness of when the

node failure happened with respect to the heartbeat period). However, for SWIM, even

considering the advantage of managing a smaller number of processes, the latency is still

more than 10 ∗ δ, because after the initial timeout declares a suspicion, the gossip protocol

and confirmation mechanism have to be executed before the failure is reported.

3.2.5 Comparison with ULFM for Process Failures

This section compares RDaemon# with the other extreme on the spectrum of general versus

specialized—ULFM. The ULFM implementation also has two main components: process-

level detection ring and propagation overlay with all launched processes. The detection ring

is built at Byte Transfer Layer (BTL) level, which provides the portable low-level transport

abstraction in Open MPI. ULFM’s current implementation provides several mechanisms

to ensure the timely activation and delivery of heartbeats:

29

25 26 27 28 29 210 211 212

Number of processes

1

2

3

4

5
La

te
nc

y
(s

)

RDAEMON#

SWIM

Figure 3.9: Detection latency comparison between RDaemon# and SWIM with increasing
number of processes (δ = 0.5s).

0.0
3
0.0

5 0.1 0.2 0.3 0.4 0.5

Heartbeat period (s)

0

1

2

3

4

5

La
te

nc
y

(s
)

RDAEMON#

SWIM
Heartbeat
Timeout

Figure 3.10: Detection and Propagation delay comparison between RDaemon# and SWIM
with varying heartbeat period.

30

1. Using a separate, library-internal thread to send the heartbeats in order to be separated

from the application’s communication. This also mitigates the drift in heartbeat

emission dates (which would cause false positive detection) in compute-intensive

applications. The receiver then needs to poll the BTL engine to check the aliveness of

its successor.

2. Using RDMA put to raise a flag in the receiver’s registered memory. By using the

hardware accelerated put operations, ULFM avoids the problem of actively polling

the BTL engine.

3. Using in-band detection directly from the high-performance network fabric to report

unreachable error directly to the propagation component.

The propagation overlay is also built at the BTL level. Reliable broadcast messages are

sent using the same active message infrastructure employed to deliver short MPI messages

and matching fragments; a different tag is employed to avoid disrupting the MPI matching,

however. Because the propagation happens at the application process level, all MPI

processes are part of the reliable broadcast algorithm; thus, the lower bound for reaching all

processes is log2(Number of Processes).

In contrast, RDaemon#’s process failure detection is implemented at the daemon level.

This mechanism doesn’t pressure the application communication resources, and can continue

processing heartbeats without the need for RDMA hardware. The broadcast overlay in

RDaemon# is built at the daemon level which decreases the number of participants to the

number of nodes—a potentially large saving in many-core systems. This helps reduce the

total messages transferred and forwarded compared to ULFM. The the lower bound for a

full propagation is log2(Number of Nodes).

Figure 3.11 compares the latency of process failure detection and propagation between

ULFM and RDaemon#. For process failures (as opposed to node failures), both

RDaemon# and ULFM rely on non-heartbeat–based detection. ULFM uses the shared-

memory transport (SM BTL) between co-hosted processes, and this BTL features a very

rapid (almost instantaneous) in-band reporting of the endpoint failure. For RDaemon#,

the daemons detect process failures with operating system signals. So, this process failure

31

2 4 8 16 32 64
Number of Nodes (ppn1 and ppn12)

1

2

3

4

5

6

La
te

nc
y

(m
s)

log(Nodes)
RDAEMON#_PPN1
RDAEMON#_PPN12

log(Processes)_PPN1
log(Processes)_PPN12
ULFM_PPN1
ULFM_PPN12

Figure 3.11: Process failure detection and propagation delay compared to ULFM.

32

experiment does not measure the effectiveness of the heartbeat mechanism (and timeout).

Instead, we stress the broadcast component exclusively.

Experiments are conducted on NaCl up to 64 nodes using all 12 cores on each node.

The process mapping results in ULFM perform a large part of the propagation between

co-hosted processes (using the SM BTL transport) and employ InfiniBand communication

for inter-node messages. RDaemon# uses TCP to broadcast between daemons, and each

daemon uses a PMIx notification to distribute the error information to all hosted processes.

We can see that my implementation is slightly slower than ULFM for process failure

case, but it greatly reduces the complexity. The detection and propagation time is less

than 5 milliseconds despite using TCP. For ULFM the detection and propagation delay

increases from 2 milliseconds to 3 milliseconds as the number of processes increases. For

both RDaemon# and ULFM the latency increase trend fits a ∗ log2(N) + b, which can be

easily scaled up to hundreds of thousands of nodes, but for ULFM the trend follows the

number of processes rather than the number of nodes.

To further validate the logarithmic trend of RDaemon# scalability, the experiments

scale the evaluation on the larger Cori system (with more processes per node). We can see

in Figure 3.12 that with 4K processes the detection and propagation latency is about 10

milliseconds, and the scalability trend remains logarithmic with the number of nodes (not

processes).

3.2.6 Node Failures Detection

The detection latency is compared for full-node failures. In RDaemon#, node failures result

in the loss of a daemon. For ULFM, they result in the loss of multiple consecutive processes

in the ring topology. In both cases, the node failure is detected by the absence of heartbeats

before the timeout expiration.

Figure 3.13 presents the behavior observed when injecting a single daemon failure under

different heartbeat period settings. Experiments are conducted on 64 nodes with 764

processes. For RDaemon#, after synchronizing, a node crash is injected by ordering a

process to kill its host daemon. For ULFM, all application processes on the target node

33

4 8 16 32 64 128
Number of Nodes (ppn 32)

4

6

8

10

12

La
te

nc
y

(m
s)

RDAEMON#

log(Num of nodes)
RDAEMON#avg

Figure 3.12: Process failure detection and propagation delay on Cori.

0.0
3

0.0
5 0.1 0.2 0.3 0.4 0.5

Heartbeat period(s)

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y(

s)

RDAEMON# Notified
RDAEMON# Detected
ULFM
HeartBeat
Timeout

Figure 3.13: Single Daemon Failure detection and propagation delay compared to ULFM
with different heartbeat period.

34

commit suicide as a group. The heartbeat period setting starts from 30 milliseconds to 0.5

seconds for both RDaemon# and ULFM. For all heartbeat periods, it sets η = δ ∗ 2. From

the figure, we can see that the detection latency in all cases lands in the interval [δ, η].

Figure 3.14 shows performance of single node failure detection and propagation with a

fixed heartbeat period δ = 0.5s and an increasing number of total nodes. After a node

crash, all processes hosted on this node are affected. The observer node fetches and packs

the information of all affected processes and then distributes the packed message. From

the figure we see that RDaemon# can detect and propagate a node failure between (0.5s,

1s) for every number of nodes tested.

The last experiment (presented in Figure 3.15) investigates the effect of multiple

concurrent node failures. The experiment is similar to the single node failure case, except

for the number of processes that inject failures. I first consider the worst-case scenario,

in which failures strike contiguous nodes. In this case, the daemon that detects the first

failure undergoes the ring-mending operation, which enacts a linear number of timeouts

before all failures are notified. Note that ULFM exhibits the same behavior, even for single

node failures. In the map-by-slot binding policy, consecutive ranks fail simultaneously with

a node failure. From a fault tolerance perspective, daemons on the detection ring should

be ordered to avoid setting nodes with a correlated chance of failure sequentially (e.g.,

avoid choosing predecessor and successor from the same cabinet). This is easier to achieve

when the detection infrastructure is split from the MPI ranking. To study the average

behavior, failures are also injected at random nodes. In this case, detection and propagation

are independently conducted by different observer nodes and neatly overlap resulting in a

marginal increase in the overall detection latency for reporting all failures.

3.3 Communication Models Coverage and Application

Evaluation

Nowadays, more and more systems in HPC feature a hierarchical hardware design; shared

memory nodes with several multi-core CPUs are connected via a network infrastructure.

35

2 4 8 16 32 64
Number of Nodes (ppn12)

0.5

0.6

0.7

0.8

0.9
La

te
nc

y
(s

)

RDAEMON#

Figure 3.14: Single Daemon Failure Detection and Propagation delay with different number
of nodes (δ = 0.5s).

1 2 3 4
Number of daemon failures

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

La
te

nc
y

(s
)

RDAEMON# adjacent daemon failures
RDAEMON# random daemon failures

Figure 3.15: Multiple daemon failures at the same time (δ = 0.5s, 64 Nodes).

36

This trend has disrupted the long status-quo in which parallel applications are written in

MPI and has promoted the emergence of multiple alternatives for programming parallel

systems. On one hand, some programming styles combine shared memory parallelization, or

GPU acceleration inside each node, and distributed memory parallelization between nodes

separated by the interconnect. On the other hand, parallel applications may alternate

between library calls that utilize different programming environments and programming

models to perform internode communication. For example, message passing and parallel

global address space models may coexist in the same application. Consequently, the runtime

environment needs to handle cooperation between different programming models. Together,

failure detection and management techniques need to be expanded across different models.

This section investigates application support of RDaemon# with different programming

models. For example, MPI has the standard MPI Init function that must be called to

initialize the library, providing a “hook” within that function to notify others that it has

been called. In contrast, OpenMP does not have an explicit call to “init” and is instead

initialized on first use; older versions of OpenSHMEM also allow implicit initialization.

Figure 3.16 shows how to coordinate between two different models. We can see that as

both communication libraries employ the PMIx library to interface with the runtime and

job scheduling system, the different programming languages have a common interface to

exchange information. The calls into PMIx Init from each programming model enters

the same code space and offers an opportunity for coordination. The event notification

mechanism within PMIx can then be used to share the information and coordinate between

those models.

In practice, PRRTE supports different types of applications when launching a single

PRRTE Distributed Virtual Machine (DVM) (using the prte command), and then uses

the prun launcher to execute the binaries, as long as they are compiled in the following

fashion:

1. PMIx-based application use pcc for compilation;

2. MPI applications need to install MPI and RDaemon# with the same external PMIx,

then use mpicc for compilation;

37

OMPI

Ext	PMIx
--

enable-
oshmem

UCX

RDAEMON#

Ext	PMIx

Compile

mpicc oshcc

Compile pcc

Run
prte prun

Figure 3.16: Hybrid programming model support of MPI and OpenSHMEM

38

3. OpenSHMEM applications need to install OpenSHMEM and RDaemon# with

the same external PMIx, then use oshcc for compilation. In Open MPI, MPI

+OpenSHMEM programs are directly supported when compiling with OpenSH-

MEM support (using the option -enable-shmem).

To evaluate the overhead on performance from RDaemon# in MPI and OpenSHMEM

applications, I use the heavily communication-bound benchmark Graph500 [5]. Graph500

is an open specification effort to offer a standardized graph-based benchmark across large-

scale distributed platforms, which captures the behavior of common communication-bound

graph algorithms. Graph500 differs from other large-scale benchmarks such as HPL, and

HGPGMG in the way it primarily highlights data access patterns. Graph500 performs

a breadth-first search (BFS) in parallel on a large randomly generated undirected graph.

The experiments use the open source project OpenSHMEM Benchmark (OSB) suite [30]

that features both MPI and OpenSHMEM based Graph500 implementations. For the

application setting it uses scale factor = 20 and edge factor = 16 , which generates

an undirected graph with 2scale factor vertices and 2scale factor ∗ edge factor edges. The

benchmark collects the statistics of the generation of the breadth-first search tree of 64

randomly selected vertices. It also collects the statistics of the validation time, which ensures

that all connected components which generate large amounts of communications are visited.

The experiments use NERSC Cori with 1K nodes. This results in a deployment with 32K

MPI ranks, or 32K OpenSHMEM Processing Elements (PEs).

3.3.1 Two-sided Application

The mpi test simple benchmark is the baseline implementation of the BFS that uses two-

sided MPI Send, MPI Recv and MPI Allreduce. I evaluate the noise overhead incurred from

heartbeat messages with different heartbeat periods based on the point-to-point (P2P) and

collectives used in this benchmark.

Figure 3.17 shows the overhead incurred with the P2P communication during the

BFS generation phase. Presented in shaded gray, the variability of the BSF without the

heartbeat detection enabled (mean time of BFS ± σ). Overhead is calculated the same as

in equation (3.1). For comparison, I plot the overhead with error bars for different δ values. In

39

Figure 3.17: Overhead for generating BFS running mpi test simple when using PRRTE
with fault tolerance over PRRTE (32K MPI ranks; the gray area represents the normal
variability of the benchmark).

Figure 3.18: Overhead for validating BFS in mpi test simple when using PRRTE with fault
tolerance over PRRTE (32K MPI ranks; the gray area represents the normal variability of
the benchmark).

40

all cases, the variability without the detector active is comparable to the maximum spread

of the overhead when fault tolerance is enabled, and the average overhead is close to 0.

Figure 3.18 shows the overhead incurred in the MPI AllReduce during the validation phase.

Again, the application with failure detection enabled achieves the same performance, which

demonstrates that my failure detection heartbeats have minimal impact in communication-

intensive applications with both P2P and collective communications.

3.3.2 One-sided Application

For the OpenSHMEM application, it selected the implementation of graph500 shmem

one sided that is derived from the MPI-2 one-sided code base. For the communication it

uses shmem put/getmem, which are similar to MPI put/get. It also uses a shmem reduce

collective as a replacement for MPI AllReduce. Figure 3.19 and Figure 3.20 show the

overhead of those two types of communications during BFS generation and validation. Again,

for all different heartbeat periods, they show similar trends in which my detector does not

stress the applications’ communication.

As a result, The algorithm is integrated within PRRTE so that the detection service

can be employed by a wide variety of clients through a well specified and popular interface

(PMIx). The process and node failure detection strategy presented in this work depend on

heartbeats and timeouts. My design and implementation takes into account the intricate

relationships and trade-offs among system overhead, detection efficiency, and risks: low

detection time requires frequent emission of heartbeats messages, increasing the system

noise and the risk of false positive. My solution addresses those concerns and is capable

of tolerating a high frequency of node and process failures with a low-degree topology that

scales with the number of nodes rather than the number of managed processes. The results

from different machines and benchmarks compared to related works shows that RDaemon#

outperforms non-HPC solutions significantly, and is competitive with specialized HPC

solutions that can manage only MPI applications. At the same time, I demonstrate in

application benchmarks that my detector can sustain the operation of MPI and non-MPI

applications (like OpenSHMEM) with no noticeable overhead. Thus, this runtime-level

41

failure detector opens the gate for efficient management of failures for an emerging field of

libraries, programming models, and runtime systems operating on large-scale systems.

42

Figure 3.19: Overhead for generating BFS running graph500 shmem one sided upon
PRRTE with fault tolerance over PRRTE (32K OpenSHMEM PEs; the gray area
represents the normal variability of the benchmark).

Figure 3.20: Overhead for validating BFS running graph500 shmem one sided upon PRRTE
with fault tolerance over PRRTE (32K OpenSHMEM PEs; the gray area represents the
normal variability of the benchmark).

43

Chapter 4

Reduction Operation Using Long

Vector Extension

4.1 Overview

Different techniques can be roughly classified according to the level at which the hardware

supports parallelism with multi-core and multi-processor computers that have multiple

processing elements within a single machine. Different levels of parallelization, including

bit-level, instruction-level, data-level and task parallelism, are studied here.

Novel architectures and processors integrate with long vector extension. This extension

provides the possibility of further parallelization in MPI. It will be crucial for many

applications to have a highly optimized version of reduction operations, which creates a

challenge of improving the performance of the predefined MPI reduction operations. I

tackle the above challenges and provide design and implementation for vector based reduction

operations, which are most commonly used by the computation collectives - MPI Reduce

and MPI Allreduce. Multiple MPI reduction methods fully take advantage of long vector

extension capabilities to efficiently perform these operations.

This chapter describes the approach to implement long vector based reduction operations.

The new approach uses AVXs and SVE to design and implement long vector based reduction

operations, and integrate the operations in Open MPI. Section 4.2 introduces the concept

and implementation of the vector based reduction operations. Section 4.3 explains the

44

benchmark evaluation results of my design. Section 4.4 displays the performance tools and

evaluates the results of my design. Finally, section 4.5 evaluates the performance of this

implementation with HPC and machine learning applications.

4.2 Design and Implementation of Vector Based Re-

duction

4.2.1 Intel Advanced Vector Extension

Intel Advanced Vector Extension 2 (Intel AVX2) is a significant improvement to Intel

Architecture and extends the previous generation of 128-bit SIMD float-point and integer

instructions to operate on larger 256-bit YMM registers, executing twice as many operations

in the same number of cycles. In addition to these extensions it adds new data manipulation

primitives, such as broadcast, permute/variable-shift instructions and masked operations and

instructions, to fetch and store non-contiguous data elements to and from memory. Starting

from the Haswell processors family, all Intel processors and microarchitectures support these

256-bit AVX2 instructions with low latency and high throughput.

Building over AVX2, Intel Advanced Vector Extensions 512 (Intel AVX-512) provides

more powerful packing capabilities with longer vector length (512 bits instead of 256)

encapsulating eight double-precision, sixteen single-precision floating-point numbers, eight

64-bit integers, or sixteen 32-bit integers within a single vector register. The longer vector

registers can process twice the number of data elements than what the Intel AVX/Intel AVX2

could process with a single instruction and four times than that of SSE. The larger number of

vector registers (32 vector registers, each 512 bits wide, and eight dedicated mask registers),

increase the opportunities for data parallelism at the processor level, providing more compute

power for demanding computational tasks. Furthermore, some performance–impacting

restrictions have been lifted compared with prior versions. As an example, applications

using AVX and SSE instruction simultaneously suffered performance penalties, while mixing

AVX-512 instructions with any prior AVX version is supported with no penalties. Figure 4.1

displays the 512-bit registers (ZMM0-ZMM31). AVX registers YMM0–YMM15 map into

45

Figure 4.1: AVX512-Bit Wide Vectors and SIMD Register Set

46

the Intel AVX-512 registers ZMM0–ZMM15, which is similar to how SSE registers maps

into AVX registers. Therefore, in processors with Intel AVX-512 support, AVX and AVX2

instructions operate on the lower 128 or 256 bits of the first 16 ZMM registers.

4.2.2 Arm-v8 Scalable Vector Extension

Arm introduced Scalable Vector Extension (SVE) [8] on the latest Arm-v8 architecture.

As show in figure 4.2, SVE introduced 16 predicate (P) registers and 32 data (Z) registers

with the long vector extension; the new architecture supports vector length from 128 bits

up to 2048 bits. It provides a range of different values that permit vector code to adapt

automatically to the current vector length at runtime with the feature of Vector Length

Agnostic (VLA) programming. Similar to AVX, SVE also has a family of horizontal reduction

instructions which include integer and floating-point summation, minimum, maximum, and

bit-wise logical reductions.

4.2.3 Intrinsics

Intrinsics are built-in functions providing a more user-friendly access to the ISA functionality

using C/C++ style coding instead of assembly language. There is a clear lack of portability

at this level, as each vendor defines its own set of intrinsic functions, with either full support

on some compilers or compiler-agnostic header files. Access to these intrinsics empowers

programmers by providing direct access to low-level instructions and enabling algorithm

design and implementation where the compiler will perform the complex task of register

allocation and instruction scheduling wherever possible. Using intrinsics allows developers

to obtain performance close to the levels achievable and feasible with assembly. The cost of

writing and maintaining programs with intrinsics is considerably less than writing assembly

code, and the compilers provide considerable help. The major drawback of intrinsics is their

limited portability. Each set of intrisics are only portable among a specific architecture (x86

and AArch64) of processors. In summary, the intrinsic functions provide the capability for

SIMD instructions to be manipulated faster, more proficiently and more effectively. The

following AVX-512 and SVE intrinsic functions are relevant to this work:

47

Figure 4.2: Arm SVE Registers

48

m512i mm512 loadu si512 (void const* mem addr)

Load 512-bits of integer data from memory into a register. The mem addr does not need

to be aligned on any particular boundary. Generally, this instrinsic is converted into:

vmovdqu32 zmm, m512.

m512i mm512 〈op〉 epi32 (m512i a, m512i b) Apply 〈op〉 between packed

32-bit integers in “a” and “b”, and store the results in a destination, 32-bits of integer data

is used as an example here. Generally, this instrinsic is converted into:

vp 〈op〉 m512, m512, m512.

m512i mm512 storeu si512 (void const* mem addr,

m512i a) Store 512-bits of integer data from “a” into memory. mem addr does not need

to be aligned on any particular boundary. Generally, this instrinsic is converted into:

vmovdqu32 m512, zmm.

svint32 t vsrc = svld1(Pg, void const* mem addr) Load data from memory into

an SVE long vector with predicate registers.

svint32 t vsrc = svst1(Pg, void const* mem addr, svint32 t a) Store data from

“a” into memory. Data length adapts automatically to the current vector length at runtime.

svint32 t sv 〈op〉 x (svbool t pg, svint32 t a, svint32 t b) Apply 〈op〉 with the SVE

reduction intrinsic between the packed 32-bit integers in “a” and “b”.

4.2.4 Reduction Operations in Open MPI

Advanced reduction operation with AVX, AVX2, AVX-512 support is implemented in a

component in Open MPI, based on a Modular Component Architecture [38, 78] that

facilitates extending or substituting Open MPI core subsystems with new features and

innovations. Long vector reduction optimization is added in a specialized component that

implements all predefined MPI reduction operations with vector reduction instructions, as in

Figure 4.3. From a practical standpoint, the module that extracts the processor feature flags

and checks related capabilities, selecting at runtime the best set of functions supporting the

49

OMPI with AVX512

Grpcomm

direct

Datatype

Extend Copy

Coll

Reduction

Op

AVX512_OP

…

…

RM

Applications

OS

Figure 4.3: Open MPI architecture. The orange boxes represent components with added
AVX-512 reduction features. The dark blue colored boxes are new modules.

50

most advanced ISA (AVX-512, AVX2 or AVX/SSE), or reverts to the default basic module

if the processor has no support for such extensions, as shown in Figure 4.4.

To be more specific, the code explicitly checks CPUID – an instruction allowing software

to discover the processor details, determine processor type and list the supported features

such as SSE/AVXs.

To be noted, the computational benefits of my component and modules can be extended

depending on the scope of reduction operation or general mathematics and logic operations.

This advanced operation module/code-snippet can be easily adapted to other computational-

intensive software stacks.

Vector instructions can be integrated in applications in several manners: (a) automatic

vectorization support provided by the compiler; (b) explicitly calling vector instructions from

assembly or via intrinsic functions; or (c) adapting intrinsic functions into programming

models or languages for applications to use. The first strategy by using auto-vectorization,

relies entirely on the compiler capabilities but is portable and “future-proof”, which means

that it can adapt code to any generation of processors with a simple re-compilation of

the code. However, to effectively use automatic vectorization, programmers must follow

strict guidelines and restrictions for vectorizable code that are dependent on the target

architecture and provide compile-time options that are largely dependent on a specific

compiler’s capability and efficiency. Programmers also need to be aware of the specifics of

the instructions that are supported by a processor. Additionally, compilers have substantial

limitations in the analysis and code transformation phases, which prevents an efficient

identification of SIMD parallelism in real applications in many cases [55]. The second

method allows more control over the very low-level instruction stream; however, the use

of intrinsics is time-consuming and error-prone for application programmers and users. This

work adopts the third approach to integrate the use of AVX-512 features in the Open MPI

stack. Intrinsics and compile flags in the programming model (Open MPI) provide long

vector support for applications to use.

A reduction is a typical operation encountered in many scientific applications and consist

of applying the same, arithmetic, logic or bit-wise operation on each data element of the

input buffers. As such, reduction operations have large amounts of data-level parallelism

51

Check feature flag
CPUID.1H:ECX.OSXSAVE = 1?

Check enable state

Check supported
flags:

SSE, AVX2, AVX512

OS provide processor
extended state management

Yes

States
enabled

AVX-512,
AVX2,
SSE

Element-wise
 MPI reduction

No

 AVX2,
SSE SSE

SSEAVX-512 AVX2

Figure 4.4: Integrate and automatically activate the AVX component into the Open MPI
build system

52

and should benefit from SIMD support. A reduction operation performs element by element

on the input buffers, which is traditionally translated into code that executes as a sequential

operation, but could possibly be vectorized under particular circumstances or with a specific

compiler or specific constraints. Sometimes it may suffer from dependencies across multiple

loop iterations.

Figure 4.5 illustrates the difference between a scalar operation and a vector operation

with AVXs and SVE instructions of different vector lengths. In this example, a vector

instruction processes multiple elements simultaneously, as compared to executing the

additions sequentially. A scalar processor would have to perform one load, one computation

and one store instruction for every element. With some code reordering, the load and stores

can be rearranged to maximize the use of available registers, but overall the performance of

the code is defined by the amount of data being fetched from the memory and the depth of the

arithmetical instructions. A vector processor performs one load, one computation, and one

store for multiple elements. More specifically, AVX-512 SIMD-vector can process up to eight

double-precision floating-point numbers or 16 integer values. It also allows the computation

of those elements by executing a single instruction. AVX-512 reduction instructions perform

arithmetic horizontally across active elements of a single source vector and deliver a scalar

result. Arm SVE supports vector lengths up to 2048 bits, allowing more extensive reduction

operations with more elements in a long vector.

4.2.5 Implementation with AVXs

Intel AVX-512 intrinsic provides arithmetic reduction operations for integer and float-point

and also supports logical and bit-wide reduction operations on integer types. This gives

the chance to create AVX-512 intrinsic-based reduction support in MPI, which will highly

increase the performance of MPI local reduction. Additionally, AVX-512 can perform

scatter reduction operations with the support of a predicate register, which behaves in a

vectorized manner. This could lift the restriction of a contiguous memory layout for reduction

operations and allow for non-contiguous data sets, but such operations are not needed for

the predefined MPI reduction operations.

53

float a _mm512 a

float b _mm512 b

a op b _mm512 (a op b)

op

=

_mm128 a

_mm128 b

_mm128 (a op b)

_sv2048 a

_sv2048 b

_sv2048 (a op b)

_sv128 a

_sv128 b

_sv128 (a op b)

Figure 4.5: Example of single precision floating-point values using : () scalar standard C
code, () AVXs 128 bits ∼ 512 bits SIMD vector of 4,8,16 values; () SVE 128 bits ∼ 2048
bits SIMD vector of different values

54

Algorithm 2 AVX based reduction algorithm

types per step . Number of elements in vector
left over . Number of elements waiting for reduction
count . Total number of elements for reduction operation
in buf . Input buffer for reduction operation
inout buf . Input and output buffer for reduction operation
sizeof type . Number of bytes of the type of the in buf / inout buf

1: procedure ReductionOp(in buf, inout buf, count)
2: types per step = vector length(512) / (8 × sizeof type)
3: #pragma unroll
4: for k ← types per step to count do
5: mm512 loadu si512 from in buf
6: mm512 loadu si512 from inout buf
7: mm512 reduction op
8: mm512 storeu si512 to inout buf
9: Update left over

10: if (left over 6= 0) then
11: Update types per step >>= 1
12: if (types per step ≤ left over) then
13: mm256 loadu si256 from in buf
14: mm256 loadu si256 from inout buf
15: mm256 reduction op
16: mm256 storeu si256 to inout buf
17: Update left over

18: if (left over 6= 0) then
19: Update types per step >>= 1
20: if (types per step ≤ left over) then
21: mm llddqu si128 from in buf
22: mm llddqu si128 from inout buf
23: mm128 reduction op
24: mm storeu si128 to inout buf
25: Update left over

26: if (left over 6= 0) then
27: while (left over 6= 0) do
28: Set case value
29: Switch(case value) : {8 Cases}
30: Update left over

55

The optimized reduction operation employs and applies multiple methods to investigate

how to achieve the best performance on different processors, as shown in algorithm2. In

the algorithm’s for-loop section, it explicitly uses 512 bits long vector to load and store for

memory operations rather than using the memory copy (memcpy) function provided by the

standard library, because some compilers may not perform the best assembling techniques

when using ZMM registers for load and store. Once the elements are loaded in registers, the

corresponding vector operation is used to perform the reduction on the entire vector register.

The algorithm repeats this pattern with a full 512 bits until the remainders cannot fulfill

a 512 bits vector. Then, it falls back to use a lesser vectorization technique, such as using

YMM registers to process elements that fit in the 256 bits registers, then 128 bits operations

and finally, where necessary, executing a few operation on the remaining few elements.

It is noticed that during the last part of the reduction operation and depending on the

number of elements on which to apply the operation, significant execution time is often

spent in the epilogue, that deals with the remaining few elements that cannot fill a full

vector register. Intel provides AVX mask intrinsics for mask operations that can vectorize

the remainder loop. Still, significant overhead is involved in creating and initializing the

mask and executing a separate and additional code path, which can result in lower SIMD

efficiency. The vectorized remainder loops can be even slower than the scalar executions

due to the overhead of masked operations and hardware. Typically, the compiler can

determine if the remainder should be vectorized based on an estimate of the potential

performance benefit. When trip count information for a loop is unavailable, however, it

will be difficult for the compiler to make the right decision. Therefore, for the remainder,

Duff’s device [76] is used to manually implement a loop unrolling approach by interleaving

two syntactic constructs of C: the do-while loop and a switch statement, which helps the

compiler to optimize the device correctly. Table 4.1 shows the variety of data types and

abbreviations for MPI reduction operation handle names that are supported in the optimized

reduction operation module, which matches the combination of types and operations defined

by the MPI standard. Table4.2 lists the supported x86 instruction set architectures and

related CPU flags from legacy SSE to the latest AVX-512 instruction sets, together with the

corresponding op avx support values that can be used to select which AVXs to use if they

56

Table 4.1: Supported types and operations

Types uint8 - uint64 float double

MAX X X X
MIN X X X
SUM X X X
PROD X X X
BOR X — —
BAND X — —
BXOR X — —

Table 4.2: Supported CPU flags

Instruction Sets CPU flags and
op avx support value

AVXs AVX512BW (0x200) AVX512F (0x100)
AVX2 (0x020) AVX (0x010)

SSE SSE4 (0x08) SSE3 (0x04)
SSE2 (0x02) SSE (0x01)

57

are supported by the hardware. To be noted, this work mainly focuses on the “Fundamental”

feature instruction set with flag AVX512F, available on Knights Landing processors and Intel

Xeon processors. It contains vectorized arithmetic operations, comparisons, type conversions,

data movement, data permutation, bitwise logical operations on vectors and masks, and

miscellaneous math functions. The AVX-512BW (Byte and Word) support offers basic

arithmetic operations and masking for 512- bit vectors of byte-size (8-bit) and word-size

(16-bit) integer elements. This is similar to the core feature set of the AVX2 instruction set,

but with more comprehensive and more extended registers, and more functional supports

for float-pointing and integer.

4.2.6 Implementation with SVE

The SVE instruction based reduction is implemented with Arm C language extension

(ACLE) using intrinsic functions. As shown in algorithm3. ACLE uses a variable vector

length, which can be accessed at runtime by calling the function svcntb() | svcnth() |

svcntw() | svcntd() to determine the number of 8, 16, 32 and 64-bit elements in the vector.

As previously mentioned, Open MPI uses a modular architecture, and I added another

reduction module in the operation framework enabled only on Arm architectures with SVE

support. The code is compiled using Arm HPC compile 20.0, enabling SVE extensions using

the flag -march=armv8-a+sve. As with AVX reduction, the SVE implementation also

supports different data types and abbreviations for MPI reduction operations, as defined by

the MPI standard.

4.3 MPI Reduction Benchmark Evaluation

4.3.1 Intel Xeon Architecture

Experiments are conducted on a local cluster, which is an Intel(R) Xeon(R) Gold 6254

(AVX512F) based server running at 3.10 GHz. This work is based upon Open MPI master

branch, git commit hash #75a539 [4]. Each experiment is repeated 30 times, and the average

results are presented here.

58

Algorithm 3 Arm SVE based reduction algorithm

types per step . Number of elements in vector
left over . Number of elements waiting for reduction
count . Total number of elements for reduction operation
in buf . Input buffer for reduction operation
inout buf . Input and output buffer for reduction operation

1: procedure ReductionOp(in buf, inout buf, count)
2: #svcnt*: Count the number of 8,16,32,64-bit elements in a vector
3: types per step = svcntb | svcnth | svcntw | svcntd
4: #pragma unroll
5: for k ← types per step to count do
6: svld1 from in buf
7: svld1 from inout buf
8: sv#op sign#size z
9: svst1 to inout buf

10: Update left over

11: if (left over 6= 0) then
12: while (left over 6= 0) do
13: Set case value
14: Switch(case value) : {8 Cases}
15: Update left over

The experiments use a single node with one process for all tests, because the optimization

aims to improve the performance of the computation part of reduction operations rather than

the communication part.

This section compares the performance of the reduction operation with two implemen-

tations. For Open MPI default reduction operation base module, it performs element-wise

computation across two input buffers. For each loop iteration, it processes two elements.

The new implementation uses AVX-512 vector instructions to execute reduction operations

on the same inputs. But for each iteration, it deals with two vectors, which contain all the

elements within the vectors, representing a vector-wise operation. The reduction benchmark

uses the MPI Reduce local function call to perform the local reduction for all supported MPI

reduction operations utilizing an array of different sizes.

Predefined MPI operations are compared, the arithmetic SUM and the logical BAND

using input buffers with sizes in the rage from 1KB to 128MB. For the experiments, I

59

minimized the potential impact of preloaded caches by flushing the L1 and L2 cache after

each test to ensure the experiments are not reusing data from the cache (especially for buffers

size below the cache size).

Figure 4.6 and Figure 4.7 show the time-to-completion for the MPI SUM and MPI BAND

for the same MPI predefined type (MPI UINT8 T). Different shapes of symbols (stars,

circles, arrows) represent flier data that extend beyond the whiskers. It should be noted

that the default compiler on the platform failed to generate auto-vectorized code, despite

my best efforts (i.e. providing all the documented optimization flags). The optimization

uses intrinsics which give the code complete control of the low-level details at the expense

of productivity and portability.

Results demonstrate that, when using AVX-512 enabled operation, performance can be

improved seven times faster compared with the default, element-wise operation. As expected,

the improvement is dependent on the number of elements in the reduction buffer, with a

small number of elements producing a small improvement that increases once the buffer

size becomes larger than 4KB, where the performance improvement becomes considerable.

For the sake of completeness, the MPI operations are compared with the memory copy

(memcpy) operation, under the assumption that the vendor provided implementation of

memcpy is highly optimized for the target architecture, providing an upper bound. To make

a fair comparison, I list the complete execution sequence of reduction operations and memory

copy operations. In terms of memory accesses, the MPI reduction operation needs two loads

from both input buffers, the computation between these two elements, followed by one store

to save the results into memory. The memcpy operation needs only one load from the source

buffer and one store to the destination buffer. The result shows that even with an additional

computation included, the optimized AVX-512 reduction operation achieves a high level of

memory bandwidth comparable to memory copy. When the reduction buffer size increases,

the implementation achieves similar performance as memory copy, which indicates that this

approach is capable to take full advantage of all the available memory bandwidth.

60

Figure 4.6: Comparison of MPI SUM with AVX-512 reduction enable and disable for
MPI UINT8 T together with memcpy

Figure 4.7: Comparison of MPI BAND with AVX-512 reduction enable and disable for
MPI UINT8 T together with memcpy

61

4.3.2 AMD Zen 2 Architecture

AMD’s new Zen architecture supports all the x86 vector instructions such as SSE and AVX2.

However, the data paths are only 128 bits wide, and as a result 256-bit wide operations are

carried out as two independent 128-bit operations. Thus, 256-bit operations will use up

twice as many hardware resources to complete (registers and compute units). Thus, the

peak throughput is four SSE/AVX-128 instructions or two AVX-256 instructions per cycle.

The Zen 2 architecture doubles the physical registers’ width, execution units, and data

paths to 256 bits. This improvement doubles the peak throughput of AVX-256 instructions

to four per cycle, or in other words, up to 32 FLOPs/cycle in single precision or up to

16 FLOPs/cycle in double precision.

Benchmark experiments are conducted on an EPYC 7302 processor-based cluster, which

is based on the Zen 2 microarchitecture with a base frequency of 3.0 GHz, supporting AVX

and AVX2 instructions.

Figure 4.8 shows the result of the MPI SUM operation on buffers with various sizes

ranging from 1KB to 128MB. AVX2 reduction operations perform about five times faster

than the default operations in Open MPI for all the tested sizes. When compared

with the memory copy operations, the optimized operations achieve almost the same

memory bandwidth, which implies that the computation is totally overlapped with memory

operations.

4.3.3 Arm-v8 Architecture: A64FX

Performance evaluation experiments of SVE based reduction operation are conducted on the

new A64FX processor, which supports vector lengths of 256 bits and 512 bits. Figure 4.9

shows the results of the MPI SUM operation from the Open MPI default implementation,

the SVE optimized implementation and the memory copy operations. Under all tested

reduction buffer sizes, the SVE optimized operation is five times faster than element-wise

operation, and obtains a similar memory bandwidth compared to the memory copy operation.

62

Figure 4.8: AMD EPYC 7302 16-Core Processor: comparison of MPI BAND for
MPI UINT8 T with and without AVX2, with the memcpy operation

Figure 4.9: Arm A64FX: comparison of MPI SUM with SVE (Vector Length = 512bits)
reduction enable and disable for MPI UINT8 T together with memcpy

63

4.4 Performance Tool Evaluation

To evaluate the performance, the AVX-512 enabled Open MPI reduction operation is

analyzed using Performance API (PAPI) [72] – a tool that can expose hardware counters,

allowing developers to correlate these counters with the application performance. PAPI is

a portable and efficient API to access hardware performance monitoring registers/counters

found on most modern microprocessors. These counters exist as a small set of registers

that count “events”, which are occurrences of specific signals and states related to the

processor’s function. Monitoring these events facilitates correlation between the structure of

the executed code and, indirectly, the source or object code with the efficiency of executing

this code on the underlying architecture. This correlation has a variety of uses in performance

analysis and tuning.

Experiments use PAPI’s hardware performance counters to measure two aspects: (1)

Memory operation instructions: the total number of load and store instructions. (2)

Branching instructions: the number of branch execution instructions separated into branch

instructions taken and not-taken, instructions mispredicted and instructions correctly

predicted. All these events have a significant impact on performance. Figure 4.10

shows the total number of instructions, memory access instructions for load and store and

branch instructions. Due to the stability of the results, I choose not to clutter the graphs

with additional information, such as the standard deviation. For the optimized reduction

operation, the total number of instructions is largely decreased. Also, memory access and

branch instructions have decreased compared to the default implementation in Open MPI.

The reason of all this is straightforward: longer vectors load and store more elements with

each single instruction compared to non-vector loads and stores, which means that it needs

fewer loads and stores dealing with the same amount of reduction data.

The implementation decreased the number of load and store instructions by a factor of

90X and 60X, respectively. At the same time, for branching instructions, this optimization

decreased by 60X. Cache misses of L1 and L2 caches are investigated. Because the operation

is dealing with large buffers of contiguous data, this means data access patterns are very

64

Figure 4.10: Comparison between AVX-512 optimized Open MPI and default Open MPI
for MPI SUM reduction with PAPI instruction events overview

Figure 4.11: Comparison between AVX-512 optimized Open MPI and default Open MPI
for MPI SUM reduction with PAPI branch counters

65

regular and easy to predict by even a basic prefetch algorithm. All predicted accesses would

be consumed, and cache misses would not show significant variation.

Figure 4.11 illustrates the instruction count details of branch instructions of both

AVX-512 optimized implementation and the default element-wise reduction method. By

using long vectors, the AVX-512 based reduction largely decreases the “for loop” of the

reduction operation. Consequently, the AVX-512 code has much less control and branching

instructions; therefore, there is less opportunity to mispredict the branching outcome.

4.5 Application Evaluation

4.5.1 LAMMPS Application Evaluation

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [61] is a molecular

dynamics simulation tool from Sandia National Laboratories. It provides different bench-

mark datasets representing a range of simulation styles and computational expenses for

molecular-level interaction forces. In the experimental analysis, the performance of the

optimized reduction operation is evaluated with LAMMPS granular flow benchmark using

the dataset from chute flow (in.chute.scaled). The benchmark reports the “Loop Time” as

a measure of the time required to simulate a set of molecular interactions. Benchmark runs

with 24 processes (process grid: 4x2x3) on an Intel(R) Xeon(R) Gold 6254 CPU with different

capabilities of AVX support, including single AVX, AVX2 and AVX512. The implementation

restricts the vector capabilities used for MPI reduction operations via the modular parameter

of –mca op avx support.

Figure 4.12 presents the loop time of LAMMPS chute benchmark running on 24 processes

for 100 steps with 259200000 atoms using different AVX capabilities. Different collective

operations are commonly and frequently used in LAMMPS benchmark (eg. MPI Allreduce).

Without AVX support (Open MPI MCA command option “op ∧ AVX”) for the reduction

operations as shown in red, the latency of the loop is 651.5. With the optimization of

using AVX and AVX2, the new design archives an 11% speedup of the total application’s

executing time. Enabling AVX512 support and provides an additional performance boost,

66

^A
VX

AV
X1

AV
X2

AV
X1

/A
VX

2

AV
X5

12

AV
X1

/A
VX

2/
AV

X5
12

AVX combinations

400

450

500

550

600

650
651.492

621.464

596.886
581.822

569.93 562.37

Ti
m

e

Figure 4.12: LAMMPS chute: loop time on 24 procs for 100 steps with 259200000 atoms
with different AVX capabilities

67

up to a 13.4% speedup. Tuning the switch points between the different vector instructions

provides an additional performance boost with a maximum speedup of 14.7%.

4.5.2 Deep Learning Application Evaluation

Over the past few years, advancements in deep learning have driven tremendous improve-

ments to image processing, computer vision, speech recognition, robotics and control and

natural language processing. One of the significant challenges of deep learning is decreasing

the extremely time-consuming cost of the training process. Designing a deep learning model

requires design space exploration of a large number of hyper-parameters and processing

big data. Thus, accelerating the training process is critical for research and production.

Distributed deep learning is one of the essential technologies in reducing training time. The

critical aspect to understand in deep learning is that it needs to calculate and update the

gradient to adjust the overall weights. Processes need to prepare and calculate all the gradient

data, which is usually very large. When such data and calculations are too extensive, users

need to parallelize these calculations and computations. Therefore, training needs to be

executed on distributed computing nodes working together with each node working on a

subset of the data. When each of these processing units or workers (CPUs, GPUs, TPUs,

etc.) is done calculating the gradient for its subset; they then need to communicate its

results to the rest of the processes involved.

This section investigates and experiments on Horovod [65] - an open-source component

of Michelangelo’s deep learning toolkit that makes it easier to start and speed up distributed

deep learning projects with TensorFlow. Horovod utilizes Open MPI to launch copies of the

TensorFlow program. Open MPI will transparently set up the distributed infrastructure

necessary for processes to communicate with each other. All the user needs to do is to

modify their program to average gradients using an MPI Allreduce operation. Conceptually,

AllReduce forces each participating process to share its data with all other processes and

applies a reduction operation. This operation can be any reduction operation, such as a sum,

max, or min. In other words, it reduces the target arrays in all processes to a single array

and returns the resulting array to all processes. Horovod uses a ring-allreduce approach,

which is a bandwidth optimal [58] algorithm if the tensors are large enough, but it does not

68

work as efficiently for smaller tensors. Horovod can also use a Tensor Fusion - an algorithm

that fuses tensors together before it calls ring-allreduce. The fusion method allocates a

large fusion buffer and executes the AllReduce operation on the fusion buffer. In the ring-

allreduce algorithm, each of N nodes communicates with two of its peers 2 ∗ (N - 1) times.

During this communication, a node sends and receives chunks of the data buffer. In the first

N − 1 iterations, received values are added to the values in the node’s buffer. In the second

N − 1 iterations, after each process receives the data from the previous process, it applies

the reduction and proceeds to send it again to the next process in the ring. During the

AllReduce processing phase, there are P ∗ (N - 1) reduction operations that occurred with a

big fusion buffer size, which is very computation intensive. The AVX-512 optimized reduction

operations can significantly improve the performance of the computation and reduction part

of those collective operations.

Experiments are conducted on Stampede2 with Intel Xeon Platinum 8160 nodes. Each

node has 48 cores with two sockets and it has 192GB DDR4 memory. Each core has 32KB

L1 data cache and 1MB L2. The nodes are connected via Intel Omni-Path network. We

experimented with TensorFlow CNN benchmarks using Horovod with tensorflow-1.13.1.

Figure 4.13 shows the performance comparison of the AVX-512 optimized reduction

operation and the default reduction operation in Open MPI for Horovod (with synthetic

datasets and AlexNet model) to train an application called tf cnn benchmarks [3]. Compared

to default element-wise reduction implementations with the increasing number of processes,

this design shows increasing improvements, which start at 5.45% and eventually rise to

12.38% faster than the default Open MPI on 192 processes and 1536 processes, respectively.

It can be observed that the performance benefit increases with more processes/nodes, because

of the strong-scaling nature of the application, which translates to more MPI processes to

participate in the reduction operation, the larger the data is. Because each one of them

is simultaneously using our AVXs optimized Open MPI operations, overall application

performance is improved.

69

192 384 768 1536
of Process

0

100

200

300

400

500

600

Im
ag

es
/s

ec

85.35

154.57

321.35

565.72

90.27

163.79

329.96

646.75
NO_AVX
AVX512

Figure 4.13: tf cnn benchmarks results using Horovod (model: alexnet) on stampede2 with
AVX-512 optimized Open MPI and default Open MPI

70

Chapter 5

Pack and Unpack Using Long Vector

Gather and Scatter

5.1 Overview

Hardware platforms in high performance computing are constantly getting more complex

to handle and satisfy increasing computational needs. This brings new challenges and

opportunities to the design of software and libraries, especially with regard to MPI

libraries. Numerous features and configuration options from novel architectures and

processors with long vector extension become much more important to exploit the potential

peak performance. Novel processor architectures such as the Intel AVX-512 architecture

introduced 512-bit instructions for x86 ISA. Additionally, Arm introduced SVE with a

maximum 2048 bits long vector extension for the AArch64 architecture. These new features

allow for better compliance with long vector gather load and scatter store. This work

proposes new optimized strategies by utilizing the gather and scatter feature to improve

the packing and unpacking operations for non-contiguous memory access. With these

optimizations, this work not only provides a higher-parallelism for a single node, but also

it achieves a more efficient communication scheme for message exchange. The optimization

implementation is proposed in the context of Open MPI, providing efficient and scalable

capabilities of gather and scatter usage and extending the possible implementations to a

larger range of programming and execution paradigms.

71

5.2 Design and Implementation in Open MPI

5.2.1 Memory Access Pattern

A memory operation is the most widely used operation during communication, including

point-to-point and collectives. Data need to be packed on the sender side before sending and

be unpacked on the receiver side. The datatype constructs provided by the MPI standard

create the capability to define contiguous and non-contiguous memory layouts, allowing

developers to reason at a higher level of abstraction, thinking about data instead of focusing

on the memory layout of the data (for the pack/unpack operations). MPI defines data

layouts of varying complexity, including contiguous and non-contiguous data layout, as shown

in Figure 5.1.

Contiguous type is the simplest derived type: a number of repetitions of the same

datatype without gaps in-between, as shown in Figure 5.1(a). C standard library provides

function as memory copy to manipulate the contiguous type. With the help of a modern

compiler, it is converted to assembly code which is represented as a loop of load and store

instructions using vector registers.

For non-contiguous datatype layouts, as shown in Figure 5.1, vector type Figure 5.1(b)

is the most regular and certainly the most widely used MPI datatype constructor. Vector

allows replication of a datatype into locations that consists of equally spaced blocks,

describing the data layout using block-length, stride and count. Block-length refers to

the number of primitive datatypes that a block contains, stride refers to the number of

primitive datatypes between blocks, and count defines the number of blocks that need to be

processed. A distinctive flavor of vector datatype, frequently used in computational sciences

and machine learning, accesses a single column of matrix as presented in Figure 5.1(d) and

can be represented by a specialized vector type with block-length equal one.

Datatypes other than vector expose less and less regularity and neither the size of

each block nor the displacements between successive blocks are constant. In order of

growing complexity, MPI supports INDEXED BLOCK (constant block-length different

displacements), INDEXED (different block-lengths and different displacements), and fi-

nally STRUCT (different block-lengths, different displacements, and different composing

72

(b) Vector (c) Block_index (d) Index(a) Contiguous

Figure 5.1: Memory layout of datatype (contiguous and non-contiguous) in MPI

73

datatypes). Such datatypes Figure 5.1(c) cannot be described in a concise format using only

block-length and stride.

5.2.2 Pack and Unpack with Gather and Scatter

High-performance parallel algorithms and scientific applications often need to communicate

non-contiguous data. Typically, applications need to pack the non-contiguous data into a

temporary contiguous buffer and send it to endpoint processes. The receiver performs the

unpack operation to distribute the data from the contiguous receiver buffer to the non-

contiguous data buffers. However, this approach (known as “Manual Packing/Unpacking”)

limits performance, because it needs to create multiple copies of the data and increase

its memory footprint. Also, application developers need to manage those temporary

buffers manually, leading to poor productivity. This packing/unpacking process involves

considerable time. A previous study [64] has shown that packing and unpacking data could

take 90% of the total communication overhead for non-contiguous sends. To resolve this

problem, MPI derived datatype (DDT) provides the convenience of hiding the complexity

of sending non-contiguous data from application developers. It is essential for the MPI

community to provide efficient MPI datatype communication, which could reduce or remove

the packing/unpacking overhead for non-contiguous data.

Figure 5.2 gives an overview of Optimized Open MPI transferring non-contiguous data

by using the gather and scatter feature from long vector extension in packing and unpacking,

respectively. With the default packing/unpacking scheme, data is first copied into a pack

buffer and transferred to the receiver, the receiver then unpacks data into its user buffer.

On the other hand, the gather and scatter scheme on the sender side replaces multiple

small memory copies by single gather instruction to fetch/load data from different memory

addresses. On the receiver side, it uses single scatter instruction to replace multiple small

memory copies to distribute/store data into different memory addresses.

74

MPI_PackMPI_Unpack

memcpy

memcpy

mem
cpy

me
mc
py

MPI_Pack

memcpy

memcpy

memcpy

memcpy
NETWORK

MPI_Unpack

NETWORK

Gather Scatter

(a) Pack and Unpack with memcpy (b) Pack and Unpack with Gather and Scatter

Figure 5.2: Comparison between general memory copy and AVX/SVE gather/scatter
implementation for packing and unpacking

75

AVX-512 Gather and Scatter

The detailed gather load and scatter store instructions for non-contiguous small block data

are revealed in Algorithm 4. In this optimized algorithm, the “gather pack” procedure uses

intrinsic mm512 type gather type (Src, ..., offsets, ...) to load data from different memory

addresses based on offsets to a single long vector, and then store it to destination. To

be noted, for each vector type it only needs to generate the offsets once and repeatedly

use this for all gather instructions. The “scatter unpack” procedure first loads the packed

contiguous data to a long vector and then uses intrinsic mm512 type scatter type (Dst, ...,

offsets, ...) to store the data to non-contiguous addresses. For the remaining blocks with

total size smaller than the vector length, it uses explicitly masked load and store operations

to partially load/store the data from/to memory to maintain the integrity and correctness

of the data. This highly expands the limited performance of memory operations for small

non-contiguous memory blocks.

SVE Gather and Scatter

SVE introduces new subsets of instruction that provides multiple addressing access modes

to enable gather load and scatter store for non-contiguous memory. There are two kinds of

addressing that have the same format as a base component with a displacement component:

vector plus immediate and scalar plus vector. The base is the starting point of source data,

and the displacement represents offsets of all primitive data by a common offset described

by an immediate value from the base address in each element of the vector register. In scalar

plus vector addressing, it points to the memory that is separated from common base register

by the offset in each element of the offsets vector with an option to shift the offset according

to the element size to be loaded.

In this case, it uses scalar plus vector of offsets mode, with a specified explanation as

svint32 t svld1 gather u32base offset s32(svbool t pg,

svuint32 t bases, int64 t offset)

76

Algorithm 4 Gather/Scatter based pack and unpack algorithm

vector bytes . Vector length in bytes
blocklen . Block length in bytes
threshold . Threshold to pick gather/scatter or memcpy based algorithm, calculated by
block length and vector length
blocks in vl . Number of blocks can be packed in single vector
off sets . Offsets of elements to be packed in a single vector, calculated by address, block
length and extend
load mask . Mask for partial load/store

1: procedure Gather pack(Count, Blocklen, Extend)
2: if (blocklen > threshold) then
3: for k ← 0 to Count do
4: memcpy(blocklen,Src,Dst)

5: else
6: blocks in vl = vector bytes / blocklen
7: Generate offsets
8: for k ← 0 to (Count / blocks in vl) do
9: mm512 type gather type (Src, ..., offsets, ...)

10: mm512 store type(Dst, ...)
11: update address
12: update count

13: Generate load mask
14: gather remaining blocks

1: procedure Scatter unpack(Count,Blocklen, Extend)
2: if (blocklen > threshold) then
3: for k ← 0 to Count do
4: memcpy(blocklen,Src,Dst)

5: else
6: blocks in vl = vector bytes / blocklen
7: Generate offsets
8: for k ← 0 to (Count / blocks in vl) do
9: mm512 load type(..., Src)

10: mm512 type scatter type (Dst, ..., offsets, ...)
11: update address
12: update count

13: Generate load mask
14: scatter remaining blocks

77

is a gather load (ld1 gather) of signed 32-bit integer (s32) from a vector of unsigned 32-bit

integer base addresses (u32base) plus an offset in bytes (offset). An optimized pack and

unpack algorithm is developed specialized for a vector-like datatype. Gather load and scatter

store processes multiple non-contiguous small blocks simultaneously instead of using a for

loop copy block by block. Gather load and scatter store is ideal for pack and unpack of

derived regular vector type, we generate the offsets vector once based on block length and

gaps; then, it can be repeatedly used. Less regular memory may have a repeating pattern of

memory layout; thus, if it can generate offset vectors for the repeated pattern, then it can

apply multiple gather loads and scatter stores for each repetition and apply the results to

all repetitions.

For column access pattern, SVE has a special instruction to generate offsets vector for

this particular need, as

svint32 t svindex s32(int32 t base, int32 t step)

with pattern {base, base + step, base + step*2, ...}. With gather load and scatter store, users

can copy a whole vector of data which is much more efficient compared to cherry picking

a single element per vector. To summarize, gather load and scatter store can efficiently

pack and unpack non-contiguous data by generating reasonable offset vector or vectors.

SVE optimization work is added in two components to Open MPI architecture. The

SVE Pack Unpack related component is in charge of using the high parallelization ACLE

memory copy service. The improvement includes the optimization for pack and unpack with

both contiguous data using four SVE vectors to load and store simultaneous, also taking

advantage of gather load and scatter store instructions for non-contiguous small block data

as revealed in algorithm 5.

5.2.3 Benchmark Evaluation

AVX-512 Implementation Evaluation

Experimented on a local cluster, an Intel(R) Xeon(R) Gold 6254 based server running

at 3.10 GHz. The CPU consists of 18 physical cores, which support advanced features:

78

Algorithm 5 SVE-based packing algorithm

svldN . Using N vectors to load
svstN . Using N vectors to store
svp . SVE predicate type
svcntb . vector length in bytes
blocklen . Number of bytes of a contiguous memory block
offset vector . Displacement is a vector, and each element specifies a offset

1: procedure MemcpyWithMultipleVectors(DST, SRC, blocklen)
2: full vector copies = blocklen / (svcntb × N)
3: for k ← 0 to full vector copies do
4: svldN from SRC
5: svstN to DST
6: if (remaining 6= 0) then
7: Generate svp
8: Partially ld/st using svp

1: procedure SveBasedPack(Count, blocklen, Extend)
2: if (blocklen > svcntb) then
3: for k ← 0 to Count do
4: MemcpyWithMultipleVectors(blocklen,Src,Dst)

5: else
6: Blocks per vector = svcntb / blocklen
7: Generate offset vector
8: for k ← 0 to (Count / blocks per vector) do
9: Sve gather load using offset vector

10: Generate svp
11: Processing remaining blocks

79

Intel Advanced Vector Extensions 512 (AVX-512), new instruction set extensions, delivering

ultra-wide (512-bit) vector operations capabilities, with up to 2 FMAs (Fused Multiply Add

instructions), to accelerate performance for most demanding computational tasks.

This work is based upon the Open MPI master branch, git commit hash #406bd3a [4].

Each experiment is repeated 30 times; here presents the average. All experiments are

conducted on a single node. This section compares the performance of MPI pack and

unpack operations with two implementations. The Open MPI default version uses general

memory copy method during pack and unpack operation for non-contiguous datatypes. It

uses a for loop to copy all the blocks for a non-contiguous datatype.

In the new implementation, on the sender side, it uses the AVX-512 vector gather feature

for packing operations; on the receiver side, it uses AVX-512 scatter feature for unpacking.

Pack and unpack benchmark uses the official test to self in the Open MPI repository to

perform packing and unpacking operations for a vector datatype with different message sizes.

Comparing the packing and unpacking performance speedup separately reveals the benefits

of gather load and scatter store. Experiments use a vector datatype with primitive datatype

MPI INT constructed with blocklength = 2, gap = 1, count = 1024, which means it packs

two of three integers per block. Figure 5.3 displays the performance comparison between the

Open MPI default packing algorithm and the AVX-512 gather packing algorithm. The

X-axis shows the size of the packed buffer; Y-axis shows the actual bandwidth, which

means the higher the better. By using gather, the optimized packing strategy achieves

2.3 ∼ 3.5 times speedup. I also compare the algorithms together with memory copy for

contiguous data, which indicates the peak memory bandwidth. We can see that even for

non-contiguous data, when the message size is increased to 512KB, it achieves 41% of the

peak bandwidth. Figure 5.4 presents the performance comparison between the Open MPI

default unpacking algorithm and the AVX-512 scatter unpacking algorithm. We can see

that by using scatter feature, the optimized unpacking strategy achieves 3.4 times speedup.

Comparing to memory copy bandwidth, the scatter method achieves 35%. We can see that

unpacking acquires less efficiency than packing when compared to peak bandwidth from

memory pack, as reading from non-contiguous addresses is more efficient than writing to

non-contiguous addresses. Also, compared to contiguous memory copy, gather and scatter

80

Figure 5.3: Comparison of MPI Pack with AVX-512 gather enable and disable together with
memcpy for vector datatype

Figure 5.4: Comparison of MPI Unpack with AVX-512 scatter enable and disable together
with memcpy for vector datatype

81

operations require the hardware to do more work than contiguous SIMD loads and stores

and are likely to access more cache lines/pages (depending on the specific access pattern).

This will cause higher instruction overheads. To be noted, for the memory copy operation

it only copies 2/3 of the total unpacked buffer.

SVE Implementation Evaluation

The implementation is evaluated on a cluster with Fujitsu’s Arm SVE based processor

A64FX, which is the first processor of the Armv8-A SVE architecture. Each processor

hosts 4 Core Memory Group (CMG). A CMG consists of 13 cores, a L2 cache (8MiB, 16

way) and a memory controller.

The new processor supports enhanced SIMD and predicate operations including:

1. 512 bits SVE vectors for 512-bits wise load/store and unaligned load-crossing cache

line.

2. Enhanced gather load and scatter store, enabling the return of up to two consecutive

elements in a “128-byte aligned block” simultaneously.

3. Predicate operations by predicate register and predicate execution unit.

The pack/unpack operations have been highlighted as a major bottleneck for most

applications using non-contiguous datatypes. This work focuses on the low-level pack/unpack

routines, and any performance improvements on these routines will automatically transfer

to MPI non-contiguous communications.

Figure 5.5 presents the performance of pack and unpack using the SVE gather and scatter

feature with different vector length for a non-contiguous buffer. The green and yellow line

indicates the performance using vector length 256 bits and 512 bits respectively with the

gather and scatter strategy. Compared to the blue line which is not using gather scatter

feature, we can see that that optimized algorithm is 2× faster which validates the Gem5

simulated results.

82

Figure 5.5: Comparison of MPI Pack/Unpack with SVE gather/scatter enable and disable
together with memcpy for vector datatype

83

5.3 Application Evaluation with AVX-512 Implemen-

tation

5.3.1 Domain-decomposed 2D Stencil

Stencil computation is an important and fundamental algorithm used in a large variety of

scientific simulation applications. Stencil codes are most commonly found in the codes of

computer simulation in the context of scientific and engineering HPC applications. It involves

a large number of iterations in which the value of every element in a matrix is updated using

values of its neighbors.

A 2D five-point stencil is a stencil made up of the point itself together with its four

“neighbors”. Each point has four neighbors: up, down, left and right; as shown in Figure 5.6,

we can see that the global domain is represented by an N*N two-dimension matrix, which

gets partitioned into multiple blocks (one per process) of roughly equal size. After each

computation step, the boundary regions of these partitions have to be exchanged with its

four neighboring processes before the next time-step can be started. For easy explanation, it

assumes matrices are stored in “Row Major” order where data exchanged in the north-south

direction is a contiguous pattern. In contrast, the data exchanged in the east-west direction

is a non-contiguous pattern. There are two ways to handle the communication: the first one

is to send and receive the data in multiple small chunks, which can be inefficient due to the

constant overhead associated with each send operation; the second method is that the data

has to be packed into a consecutive buffer and sent in one piece. On the receiver side, this

process has to be reversed (the data has to be unpacked) after such data is received.

We can see that AVX-512 enabled Open MPI can speed up the packing and unpacking

procedure for east-west direction communication, which uses gather and scatter to pack and

unpack the boundary regions. The east-west boundary can be represented with a vector

datatype, as shown in Figure 5.6. This particular vector type is constructed as shown in

table 5.1.

This section investigates the performance benefit of AVX-512-enabled Open MPI against

default Open MPI. The application benchmark is based on the Stencil MPI implementation

84

Table 5.1: East-west vector data represent

Blocklen Radius
Stride Number of Columns for each partitioned data set
Count Number of Rows for each partitioned data set - 2

MPI_TYPE_VECTOR(count, blocklength, stride,
 oldtype, newtype)
count = 3, blocklength = 1, stride = 5

Radius = blocklength = 1

Sender: Gather_pack

Receiver: Scatter_unpack

Figure 5.6: Domain-decomposed 2D stencil. Data exchanged in east-west direction must be
packed and unpacked in communication

85

from Parallel Research Kernels (PRK) [2, 73] – a suite of simple kernels for the study

of the efficiency of distributed and parallel computer systems, including all software and

hardware components that make up the system. They cover a wide range of common parallel

application patterns, especially from the area of HPC. This stencil implementation uses a for

loop with a memory copy function to pack the chunks for the non-contiguous data from the

east-west boundary. I optimized this packing implementation with the vector representation

described above.

Experiments are conducted on the same Intel Xeon Gold6254 based cluster with 16

processes, processes are arrange as 2*8 in x/y direction. Table 5.2 shows the experiment

configuration for this stencil application. The stencil is a five point stencil using single

precision execution for 100 iterations. The experiments demonstrate the effectiveness

of AVX-512 enabled Open MPI with three tests, each using a different radius. As

demonstrated in Figure 5.7, experiments compared the performance of two implementations.

The gather and scatter optimized implementation decreases the packing and unpacking

cost for communication during each computation step. Consequently, it improves collective

operation that drives up the overall application performance by 10% for all three cases.

5.3.2 2D Fast Fourier Transform

The Fast Fourier Transform (FFT) is one of the most significant algorithms for exascale

applications across various disciplines in science and engineering. Applications range from

image analysis and signal processing to solving partial differential equations through spectral

methods. Also, there are diverse parallel libraries that rely on efficient FFT computations,

particularly in particle applications ranging from molecular dynamics computations to N-

Body simulations. Thus, for all these applications, it is essential to have access to a fast

and scalable implementation of a FFT algorithm and an implementation that can take

advantage of efficient communication libraries and components and maximize these benefits

for applications.

A FFT on multidimensional data can be performed as a sequence of one-dimensional

transforms along each dimension. For example, a two-dimensional FFT can be computed

by performing 1D-FFTs along both dimensions. With multiple MPI processes, after each

86

Table 5.2: MPI stencil configuration and execution on 2D grid

Number of ranks 16
Grid size 1000

Radius of stencil 1, 2, 3
Tiles in x/y-direction 2/8

Type of stencil Star
Data type Single precision

Number of iterations 100

Figure 5.7: 2-d Stencil results with and without AVX-512 gather pack and scatter unpack
for different radius

87

process computes the 1D-FFT, a matrix transpose needs to be performed among MPI

processes using MPI ALLtoall operation. Also ND-FFTs can be computed by performing

1D-FFTs in all N dimensions. This subsection examines the performance of the gather

pack and scatter unpack approach, it measures the performance (running time) of a

micro-benchmark: 2D-FFT Benchmark with code version [45]. More details about the

implementation can be found in this paper [46]. In this implementation, a vector type

is used for all to all communication. The results compare the performance of this all to all

collective between MPI default and the proposed optimized design.

Figure 5.8 shows the performance comparison of the 2D-FFT Benchmark completion

time between the AVX-512 enabled pack and unpack operation and the default operation in

Open MPI. The X-axis shows the number of processes. The number of elements in each

dimension is 8000. Optimized implementation achieves 8% performance speedup under all

three cases for the entire completion time.

88

Figure 5.8: 2-d FFT results with and without AVX-512 gather pack and scatter unpack for
different number of processes

89

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The scientific computing community’s increasing computational need demands more powerful

HPC systems, and the increasing scale and complexity of these HPC systems brings new

challenges to the design of parallel tools and libraries.

As the scale of those systems grows, the mean-time-to-failure is negatively impacted

and diminished, which presents issues designing failure detection and propagation strategies

to ensure the correct completion of long computing jobs. Thus, the first challenge is to

provide resilience and reliability. It is critical to integrate a resilient, efficient and portable

fault detector and propagator into one of the most widely used parallel execution runtimes,

allowing other libraries and programming models to build on and support resilience at any

scale. Resilience provides the foundation to run long computing jobs on such systems, which

prompts the investigation of the potential performance benefits on those systems.

The second challenge is to provide high performance software uses for complex and novel

hardware architectures from different vendors on modern HPC systems. For instance, Intel

released Advanced Vector Extension with Haswell processor that supports the 256-bit AVX2

instructions. Knights Landing processor extends this feature to more advanced 512-bit wide

SIMD registers. Arm promoted its new Arm-v8 architecture with a Scalable Vector Extension

equipped with vector length from 128 bits to 2048 bits.

90

To achieve reliability and high performance for libraries and software, first, a multi-level

failure detection algorithm is designed, which operates within the runtime infrastructure to

monitor both node and process failures. Then, the algorithm is implemented as a component

in the PRRTE, which is a fully fledged runtime that is used in production to deploy,

monitor and serve multiple HPC networking stack clients. I then compare this generic

failure detection service with the fully dedicated MPI detector from ULFM Open MPI

on one hand, and with the Scalable Weakly-Consistent Infection-style Membership (SWIM)

protocol on the other hand, the latter stands as a state-of-the-art detector for unstructured

peer-to-peer systems. There is a performance trade-off in generality, but a satisfactory level

of performance can be achieved in a portable and reusable component that can satisfy the

needs of a variety of HPC networking systems.

Second, I pragmatically demonstrated the benefits of Intel AVX, AVX2, AVX-512 and

Arm SVE vector operations in the context of MPI reduction operations. It assesses

the performance advantages of different features introduced by AVX and extended the

investigation and analysis to a fully-fledged implementation of all predefined MPI reduction

operations. To further validate the performance improvements, experiments are conducted

with different applications: (1) LAMMPS benchmark with variety AVXs support shows a

speedup from 14% to 34% with different AVX capability combinations (2) Experiments with

a deep learning application, using distributed model Horovod, calculates and updates the

gradient to adjust the weights using an MPI Allreduce. The new reduction strategy achieved

a significant speedup across all ranges of processes with a 12.38% improvement with 1536

processes.

Last, I present the benefits of using the gather and scatter feature from long vector

extension. This work evaluates the performance advantages of the gather and scatter feature

to load and store non-contiguous data. A new packing and unpacking strategy is introduced

in the datatype engine under OPAL level in Open MPI using intrinsics to speed up the

communication for a non-contiguous datatype. MPI to self benchmark results demonstrate

the efficiency of the new pack and unpack algorithm. Both AVX-512 and SVE based

implementations achieve considerable performance speedup with vector datatype (blocklen =

2, gap =1). To further validate the performance improvements, experiments are conducted

91

with two applications: five-point stencil and 2D-FFT. The proposed design outperforms

default Open MPI by 10% and 8%, respectively.

6.2 Future Work

To further improve and explore my research with resilient and performance advantages from

long vector extension. I am considering the following two possible directions.

• The resilience research designs and implements failure detection and propagation

strategy in runtime systems. However, the current detection and propagation algorithm

treats all processes and nodes as participants. Features that can indicate the scope

of detection and propagation can be added. With this new feature, it can support

partial detection, which means only a subgroup of nodes are involved. This feature

will decrease the overhead cost of detection and provide resilience as needed.

• Another aspect of my research is extending the long vector usage to more components

and modules in Open MPI and, further, out the scope of MPI to other libraries.

It is essential to utilize those new features in different programming models and

applications.

92

Bibliography

93

[1] (2019a). Intel MPI Benchmarks User Guide. https://software.intel.com/en-us/

imb-user-guide. 25

[2] (2019). Parallel Research Tools. https://github.com/ParRes/Kernels. 86

[3] (2019b). TensorFlow benchmarks. https://github.com/tensorflow/benchmarks. 69

[4] (2021). Open MPI main development repository. https://github.com/open-mpi/ompi.

58, 80

[5] Ang, J., Barrett, B. W., Wheeler, K. B., and Murphy, R. C. (2010). Introducing the

graph 500. 39

[6] Angskun, T., Bosilca, G., and Dongarra, J. (2007). Binomial graph: A scalable and

fault-tolerant logical network topology. In Stojmenovic, I., Thulasiram, R. K., Yang,

L. T., Jia, W., Guo, M., and de Mello, R. F., editors, Parallel and Distributed Processing

and Applications, pages 471–482, Berlin, Heidelberg. Springer Berlin Heidelberg. 12, 19

[7] ARM (2018). Arm Architecture Reference Manual Armv8, for Armv8-A architecture

profile. 5

[8] ARM (2020). Porting and Optimizing HPC Applications for Arm SVE Version 2.1. 47

[9] Armejach, A., Caminal, H., Cebrian, J. M., González-Alberquilla, R., Adeniyi-Jones, C.,

Valero, M., Casas, M., and Moretó, M. (2018). Stencil codes on a vector length agnostic

architecture. In Proceedings of the 27th International Conference on Parallel Architectures

and Compilation Techniques, PACT ’18, pages 13:1–13:12, New York, NY, USA. ACM. 6

[10] Armejach, A., Caminal, H., Cebrian, J. M., Langarita, R., González-Alberquilla, R.,

Adeniyi-Jones, C., Valero, M., Casas, M., and Moretó, M. (2019). Using Arm’s scalable

vector extension on stencil codes. The Journal of Supercomputing. 13

[11] Aulwes, R. T., Daniel, D. J., Desai, N. N., Graham, R. L., Risinger, L. D., Taylor,

M. A., Woodall, T. S., and Sukalski, M. W. (2004). Architecture of la-mpi, a network-

fault-tolerant mpi. In 18th International Parallel and Distributed Processing Symposium,

2004. Proceedings., pages 15–. 10

94

https://software.intel.com/en-us/imb-user-guide
https://software.intel.com/en-us/imb-user-guide
https://github.com/ParRes/Kernels
https://github.com/tensorflow/benchmarks
https://github.com/open-mpi/ompi

[12] Bautista-Gomez, L., Tsuboi, S., Komatitsch, D., Cappello, F., Maruyama, N., and

Matsuoka, S. (2011). FTI: High performance fault tolerance interface for hybrid systems.

In Proceedings of 2011 International Conference for High Performance Computing,

Networking, Storage and Analysis, SC ’11, pages 32:1–32:32, New York, NY, USA. ACM.

4

[13] Blackford, L. S., Choi, J., Cleary, A., D’Azeuedo, E., Demmel, J., Dhillon, I.,

Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., and Whaley, R. C.

(1997). ScaLAPACK User’s Guide. Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA. 6

[14] Bland, W., Bouteiller, A., Herault, T., Hursey, J., Bosilca, G., and Dongarra, J. J.

(2013). An evaluation of user-level failure mitigation support in MPI. Computing,

95(12):1171–1184. 2, 3

[15] Boettcher, M., Al-Hashimi, B. M., Eyole, M., Gabrielli, G., and Reid, A. (2014).

Advanced SIMD: Extending the reach of contemporary SIMD architectures. In 2014

Design, Automation Test in Europe Conference Exhibition (DATE), pages 1–4. 6

[16] Bosilca, G., Bouteiller, A., Guermouche, A., Herault, T., Robert, Y., Sens, P.,

and Dongarra, J. (2016). Failure detection and propagation in hpc systems. In SC

’16: Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, pages 312–322. 2, 12

[17] Bouteiller, A., Bosilca, G., and Venkata, M. G. (2016). Surviving errors with

openshmem. In Gorentla Venkata, M., Imam, N., Pophale, S., and Mintz, T. M.,

editors, OpenSHMEM and Related Technologies. Enhancing OpenSHMEM for Hybrid

Environments, pages 66–81, Cham. Springer International Publishing. 2

[18] Bramas, B. (2017). A novel hybrid quicksort algorithm vectorized using avx-512 on intel

skylake. International Journal of Advanced Computer Science and Applications, 8(10). 13

[19] Callahan, D., Dongarra, J., and Levine, D. (1988). Vectorizing compilers: A test

suite and results. In Proceedings of the 1988 ACM/IEEE Conference on Supercomputing,

95

Supercomputing ’88, pages 98–105, Washington, DC, USA. IEEE Computer Society Press.

5

[20] Caminal, H., Caballero, D., Cebrián, J. M., Ferrer, R., Casas, M., Moretó, M., Martorell,

X., and Valero, M. (2018). Performance and energy effects on task-based parallelized

applications. The Journal of Supercomputing, 74(6):2627–2637. 4

[21] Cao, C., Herault, T., Bosilca, G., and Dongarra, J. (2015). Design for a soft error

resilient dynamic task-based runtime. In 2015 IEEE International Parallel and Distributed

Processing Symposium, pages 765–774. 2

[22] Castain, R. H. (2017a). RFC0002:PMIx Event Notification. 23

[23] Castain, R. H. (2017b). RFC0015:Job Control And Monitoring APIs. 23

[24] Castain, R. H., Hursey, J., Bouteiller, A., and Solt, D. (2018). Pmix: Process

management for exascale environments. Parallel Computing, 79:9 – 29. 10, 17, 23

[25] Chakraborty, S., Laguna, I., Emani, M., Mohror, K., Panda, D. K., Schulz, M., and

Subramoni, H. (2018). Ereinit: Scalable and efficient fault-tolerance for bulk-synchronous

mpi applications. Concurrency and Computation: Practice and Experience, 0(0):e4863. 2,

3

[26] Chandra, T. D. and Toueg, S. (1996). Unreliable failure detectors for reliable distributed

systems. J. ACM, 43(2):225–267. 11, 16

[27] Chen, W., Toueg, S., and Aguilera, M. K. (2002). On the quality of service of failure

detectors. IEEE Transactions on Computers, 51(1):13–32. 11

[28] Chu, C., Hamidouche, K., Venkatesh, A., Awan, A. A., and Panda, D. K. (2016). CUDA

Kernel Based Collective Reduction Operations on Large-scale GPU Clusters. In 2016 16th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid),

pages 726–735. 14

96

[29] Das, A., Gupta, I., and Motivala, A. (2002). Swim: scalable weakly-consistent infection-

style process group membership protocol. In Proceedings International Conference on

Dependable Systems and Networks, pages 303–312. 11, 12, 28

[30] D’Azevedo, E. F. and Imam, N. (2015). Graph 500 in OpenSHMEM. In

Gorentla Venkata, M., Shamis, P., Imam, N., and Lopez, M. G., editors, OpenSHMEM

and Related Technologies. Experiences, Implementations, and Technologies, pages 154–

163, Cham. Springer International Publishing. 39

[31] Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis,

H., Swinehart, D., and Terry, D. (1987). Epidemic algorithms for replicated database

maintenance. In Proceedings of the Sixth Annual ACM Symposium on Principles of

Distributed Computing, PODC ’87, pages 1–12, New York, NY, USA. ACM. 12

[32] Di Martino, C., Kalbarczyk, Z., and Iyer, R. (2016). Measuring the Resiliency of

Extreme-Scale Computing Environments. In Principles of Performance and Reliability

Modeling and Evaluation, pages 609–655. Springer. 2

[33] Dosanjh, M. G. F., Schonbein, W., Grant, R. E., Bridges, P. G., Gazimirsaeed, S. M.,

and Afsahi, A. (2019). Fuzzy Matching: Hardware Accelerated MPI Communication

Middleware. In 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (CCGRID), pages 210–220. 13

[34] Espasa, R., Valero, M., and Smith, J. E. (1998). Vector architectures: past, present

and future. In Proceedings of the 12th international conference on Supercomputing, pages

425–432. 4

[35] Fagg, G. E. and Dongarra, J. J. (2000). Ft-mpi: Fault tolerant mpi, supporting dynamic

applications in a dynamic world. In Dongarra, J., Kacsuk, P., and Podhorszki, N., editors,

Recent Advances in Parallel Virtual Machine and Message Passing Interface, pages 346–

353, Berlin, Heidelberg. Springer Berlin Heidelberg. 10

[36] Flur, S., Gray, K. E., Pulte, C., Sarkar, S., Sezgin, A., Maranget, L., Deacon, W.,

and Sewell, P. (2016). Modelling the ARMv8 Architecture, Operationally: Concurrency

97

and ISA. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’16, pages 608–621, New York, NY, USA.

ACM. 5

[37] Forum, M. P. I. (November 15,2020). MPI: A Message-Passing Interface Standard

Version 4.0 (draft). 9

[38] Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M.,

Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R. H., Daniel, D. J.,

Graham, R. L., and Woodall, T. S. (2004). Open MPI: Goals, concept, and design of a

next generation MPI implementation. In Proceedings, 11th European PVM/MPI Users’

Group Meeting, pages 97–104, Budapest, Hungary. 49

[39] Gainaru, A., Graham, R. L., Polyakov, A., and Shainer, G. (2016). Using InfiniBand

Hardware Gather-Scatter Capabilities to Optimize MPI All-to-All. In Proceedings of the

23rd European MPI Users’ Group Meeting, EuroMPI 2016, pages 167–179, New York,

NY, USA. ACM. 13

[40] Graham, R. L., Woodall, T. S., and Squyres, J. M. (2006). Open mpi: A flexible high

performance mpi. In Wyrzykowski, R., Dongarra, J., Meyer, N., and Waśniewski, J.,

editors, Parallel Processing and Applied Mathematics, pages 228–239, Berlin, Heidelberg.

Springer Berlin Heidelberg. 10

[41] Gupta, I., Chandra, T. D., and Goldszmidt, G. S. (2001). On scalable and efficient

distributed failure detectors. In Proceedings of the Twentieth Annual ACM Symposium

on Principles of Distributed Computing, PODC ’01, pages 170–179, New York, NY, USA.

ACM. 11

[42] Hammarlund, P., Martinez, A. J., Bajwa, A. A., Hill, D. L., Hallnor, E., Jiang, H.,

Dixon, M., Derr, M., Hunsaker, M., Kumar, R., Osborne, R. B., Rajwar, R., Singhal, R.,

D’Sa, R., Chappell, R., Kaushik, S., Chennupaty, S., Jourdan, S., Gunther, S., Piazza,

T., and Burton, T. (2014). Haswell: The fourth-generation intel core processor. IEEE

Micro, 34(2):6–20. 5

98

[43] Hamouda, S. S., Herta, B., Milthorpe, J., Grove, D., and Tardieu, O. (2016). Resilient

x10 over mpi user level failure mitigation. In Proceedings of the 6th ACM SIGPLAN

Workshop on X10, X10 2016, pages 18–23, New York, NY, USA. ACM. 2

[44] Hao, P., Pophale, S., Shamis, P., Curtis, T., and Chapman, B. (2015). Check-pointing

approach for fault tolerance in openshmem. In Revised Selected Papers of the Second

Workshop on OpenSHMEM and Related Technologies. Experiences, Implementations, and

Technologies - Volume 9397, OpenSHMEM 2015, pages 36–52, New York, NY, USA.

Springer-Verlag New York, Inc. 2, 3

[45] Hoefler, T. (2012). MPI Derived Datatype (Benchmark) Page: 2D FFT Benchmark.

http://unixer.de/research/datatypes/. 88

[46] Hoefler, T. and Gottlieb, S. (2010). Parallel zero-copy algorithms for fast fourier

transform and conjugate gradient using mpi datatypes. EuroMPI’10, page 132–141, Berlin,

Heidelberg. Springer-Verlag. 88

[47] Hofmann, M. and Rünger, G. (2008). MPI Reduction Operations for Sparse Floating-

point Data. In Lastovetsky, A., Kechadi, T., and Dongarra, J., editors, Recent Advances in

Parallel Virtual Machine and Message Passing Interface, pages 94–101, Berlin, Heidelberg.

Springer Berlin Heidelberg. 14

[48] Iliescu, D. A. (2018). Arm Scalable Vector Extension and application to Machine

Learning. 13

[49] Kawazoe Aguilera, M., Chen, W., and Toueg, S. (1997). Heartbeat: A timeout-free

failure detector for quiescent reliable communication. In Mavronicolas, M. and Tsigas,

P., editors, Distributed Algorithms, pages 126–140, Berlin, Heidelberg. Springer Berlin

Heidelberg. 11

[50] Kim, R., Choi, J., and Lee, M. (2019). Optimizing parallel gemm routines using

auto-tuning with intel avx-512. In Proceedings of the International Conference on High

Performance Computing in Asia-Pacific Region, HPC Asia 2019, pages 101–110, New

York, NY, USA. Association for Computing Machinery. 13

99

http://unixer.de/research/datatypes/

[51] Larrea, M., Fernandez, A., and Arevalo, S. (2000). Optimal implementation of the

weakest failure detector for solving consensus. In Proceedings 19th IEEE Symposium on

Reliable Distributed Systems SRDS-2000, pages 52–59. 11

[52] Levine, D., Callahan, D., and Dongarra, J. (1991). A comparative study of automatic

vectorizing compilers. Parallel Computing, 17(10):1223 – 1244. Benchmarking of high

performance supercomputers. 5

[53] Lim, R., Lee, Y., Kim, R., and Choi, J. (2018). An implementation of matrix–matrix

multiplication on the intel knl processor with avx-512. Cluster Computing, 21(4):1785–

1795. 13

[54] Luo, X., Wu, W., Bosilca, G., Pei, Y., Cao, Q., Patinyasakdikul, T., Zhong, D., and

Dongarra, J. (2020). Han: a hierarchical autotuned collective communication framework.

In 2020 IEEE International Conference on Cluster Computing (CLUSTER), pages 23–34.

14

[55] Maleki, S., Gao, Y., Garzar’n, M. J., Wong, T., and Padua, D. A. (2011). An evaluation

of vectorizing compilers. In 2011 International Conference on Parallel Architectures and

Compilation Techniques, pages 372–382. 51

[56] Mitra, G., Johnston, B., Rendell, A. P., McCreath, E., and Zhou, J. (2013). Use of simd

vector operations to accelerate application code performance on low-powered arm and intel

platforms. In 2013 IEEE International Symposium on Parallel Distributed Processing,

Workshops and Phd Forum, pages 1107–1116. 5

[57] Molka, D., Hackenberg, D., Schöne, R., Minartz, T., and Nagel, W. E. (2012). Flexible

workload generation for hpc cluster efficiency benchmarking. Computer Science - Research

and Development, 27(4):235–243. 4

[58] Patarasuk, P. and Yuan, X. (2009). Bandwidth optimal all-reduce algorithms for clusters

of workstations. J. Parallel Distrib. Comput., 69(2):117–124. 14, 68

[59] Pentkovski, V., Raman, S. K., and Keshava, J. (2000). Implementing streaming simd

extensions on the pentium iii processor. IEEE Micro, 20(04):47–57. 5

100

[60] Petrogalli, F. (2018). A sneak peek into SVE and VLA programming. 13

[61] Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics.

Journal of Computational Physics, 117(1):1 – 19. 66

[62] Ranganathan, S., George, A. D., Todd, R. W., and Chidester, M. C. (2001). Gossip-style

failure detection and distributed consensus for scalable heterogeneous clusters. Cluster

Computing, 4(3):197–209. 11

[63] Röhl, T., Eitzinger, J., Hager, G., and Wellein, G. (2016). Validation of hardware

events for successful performance pattern identification in high performance computing.

In Knüpfer, A., Hilbrich, T., Niethammer, C., Gracia, J., Nagel, W. E., and Resch,

M. M., editors, Tools for High Performance Computing 2015, pages 17–28, Cham. Springer

International Publishing. 4

[64] Schneider, T., Gerstenberger, R., and Hoefler, T. (2012). Micro-Applications for

Communication Data Access Patterns and MPI Datatypes. In Recent Advances in

the Message Passing Interface - 19th European MPI Users’ Group Meeting, EuroMPI

2012, Vienna, Austria, September 23-26, 2012. Proceedings, volume 7490, pages 121–131.

Springer. 74

[65] Sergeev, A. and Balso, M. D. (2018). Horovod: fast and easy distributed deep learning

in TensorFlow. arXiv preprint arXiv:1802.05799. 68

[66] Shamis, P., Graham, R., Venkata, M. G., and Ladd, J. (2011). Design and

implementation of broadcast algorithms for extreme-scale systems. In 2011 IEEE

International Conference on Cluster Computing, pages 74–83. 12

[67] Shan, H., Williams, S., and Johnson, C. W. (2018). Improving mpi reduction

performance for manycore architectures with openmp and data compression. In 2018

IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance

Computer Systems (PMBS), pages 1–11. 14

101

[68] Sodani, A., Gramunt, R., Corbal, J., Kim, H., Vinod, K., Chinthamani, S., Hutsell, S.,

Agarwal, R., and Liu, Y. (2016). Knights Landing: Second-Generation Intel Xeon Phi

Product. IEEE Micro, 36(2):34–46. 5

[69] Squyres, J. M. and Lumsdaine, A. (2003). A component architecture for lam/mpi. In

Dongarra, J., Laforenza, D., and Orlando, S., editors, Recent Advances in Parallel Virtual

Machine and Message Passing Interface, pages 379–387, Berlin, Heidelberg. Springer

Berlin Heidelberg. 10

[70] Subasi, O., Martsinkevich, T., Zyulkyarov, F., Unsal, O., Labarta, J., and Cappello,

F. (2018). Unified fault-tolerance framework for hybrid task-parallel message-passing

applications. The International Journal of High Performance Computing Applications,

32(5):641–657. 2

[71] Sun, Q., Romanus, M., Jin, T., Yu, H., Bremer, P.-T., Petruzza, S., Klasky, S., and

Parashar, M. (2016). In-staging data placement for asynchronous coupling of task-based

scientific workflows. In Proceedings of the Second Internationsl Workshop on Extreme

Scale Programming Models and Middleware, ESPM2, pages 2–9, Piscataway, NJ, USA.

IEEE Press. 4

[72] Terpstra, D., Jagode, H., You, H., and Dongarra, J. (2010). Collecting performance

data with papi-c. In Müller, M. S., Resch, M. M., Schulz, A., and Nagel, W. E., editors,

Tools for High Performance Computing 2009, pages 157–173, Berlin, Heidelberg. Springer

Berlin Heidelberg. 64

[73] Van der Wijngaart, R. F. and Mattson, T. G. (2014). The parallel research kernels. In

2014 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–6. 86

[74] van Renesse, R., Minsky, Y., and Hayden, M. (1998). A gossip-style failure detection

service. In Davies, N., Jochen, S., and Raymond, K., editors, Middleware’98, pages 55–70,

London. Springer London. 11

[75] Watson, W. J. (1972). The ti asc: a highly modular and flexible super computer

architecture. In AFIPS ’72 (Fall, part I). 4

102

[76] Wikipedia contributors (2020). Duff’s device — Wikipedia, the free encyclopedia.

[Online; accessed 2-May-2020]. 56

[77] Wu, W., Bosilca, G., vandeVaart, R., Jeaugey, S., and Dongarra, J. (2016). GPU-

Aware Non-contiguous Data Movement In Open MPI. In Proceedings of the 25th

ACM International Symposium on High-Performance Parallel and Distributed Computing,

HPDC ’16, pages 231–242, New York, NY, USA. ACM. 14

[78] Zhong, D., Bouteiller, A., Luo, X., and Bosilca, G. (2019). Runtime level failure

detection and propagation in hpc systems. In Proceedings of the 26th European MPI

Users’ Group Meeting, EuroMPI ’19, New York, NY, USA. Association for Computing

Machinery. 49

103

Vita

Dong Zhong was born in Zizhou, Shaanxi, China, on March 21, 1991. He received his

Bachelor’s degree in computer science from Tongji University (2012) and Master’s degree in

information science and electronic engineering from Zhejiang University (2015) in China.

After finishing his Master’s degree he was enrolled in the Ph.D. program in Computer

Science at the University of Tennessee, Knoxville. During his studies, he worked as a graduate

research assistant at the Innovative Computing Laboratory (ICL) under the supervision of

Dr. Jack Dongarra and Dr. George Bosilca. His research interests involve distributed

computing, parallel programming paradigms, including Open MPI, PMIx and PRRTE,

failure detection and notification and long vector extension analysis and usage of Arm SVE

and Intel AVXs.

Dong Zhong is expected to receive his Doctor of Philosophy degree in Computer Science

in August 2021.

104

	Toward Reliable and Efficient Message Passing Software for HPC Systems: Fault Tolerance and Vector Extension
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgments
	Abstract

	Table of Contents
	1 Introduction
	1.1 Motivation
	1.1.1 Resiliency
	1.1.2 Long Vector Extension

	1.2 Contributions
	1.2.1 Failure Detection and Propagation in Runtime Systems
	1.2.2 Computation Optimization in MPI
	1.2.3 Communication Optimization in MPI

	2 Background and Literature Review of Related Work
	2.1 Overview
	2.2 MPI
	2.2.1 The Open MPI Library
	2.2.2 PMIx and PRRTE

	2.3 Fault Tolerance
	2.3.1 Failure Detection
	2.3.2 Reliable Broadcast

	2.4 Long Vector Extension

	3 Failure detection and propagation in HPC systems
	3.1 A Generic HPC Failure Detection Service
	3.1.1 Machine Model
	3.1.2 Failure Model
	3.1.3 Notations
	3.1.4 Detection of Process Failures
	3.1.5 Detection of Node/Daemon Failures
	3.1.6 Broadcasting Fault Information
	3.1.7 PMIx Interface
	3.1.8 RDaemon# in the PRRTE Architecture

	3.2 Experimental Evaluation
	3.2.1 Experimental Setup
	3.2.2 Accuracy
	3.2.3 Noise
	3.2.4 Comparison with SWIM
	3.2.5 Comparison with ULFM for Process Failures
	3.2.6 Node Failures Detection

	3.3 Communication Models Coverage and Application Evaluation
	3.3.1 Two-sided Application
	3.3.2 One-sided Application

	4 Reduction Operation Using Long Vector Extension
	4.1 Overview
	4.2 Design and Implementation of Vector Based Reduction
	4.2.1 Intel Advanced Vector Extension
	4.2.2 Arm-v8 Scalable Vector Extension
	4.2.3 Intrinsics
	4.2.4 Reduction Operations in Open MPI
	4.2.5 Implementation with AVXs
	4.2.6 Implementation with SVE

	4.3 MPI Reduction Benchmark Evaluation
	4.3.1 Intel Xeon Architecture
	4.3.2 AMD Zen 2 Architecture
	4.3.3 Arm-v8 Architecture: A64FX

	4.4 Performance Tool Evaluation
	4.5 Application Evaluation
	4.5.1 LAMMPS Application Evaluation
	4.5.2 Deep Learning Application Evaluation

	5 Pack and Unpack Using Long Vector Gather and Scatter
	5.1 Overview
	5.2 Design and Implementation in Open MPI
	5.2.1 Memory Access Pattern
	5.2.2 Pack and Unpack with Gather and Scatter
	5.2.3 Benchmark Evaluation

	5.3 Application Evaluation with AVX-512 Implementation
	5.3.1 Domain-decomposed 2D Stencil
	5.3.2 2D Fast Fourier Transform

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	Bibliography
	Vita

