25 research outputs found

    Formation Control Algorithms With Limited or No Communication

    Get PDF
    Formation control refers to a collective behaviour of multi-agent systems where individual agents come together to form a pattern, often geometric. These formations can enable multi-agent systems to function more effectively in a broad range of applications. Many formation control algorithms require centralized decision making, communication between agents or a centralized decision maker and other factors that increase per-agent cost and reduce the robustness and scalability of multi-agent systems. To this end, we introduce two algorithms that operate using local decision making and limited or no communication. The first algorithm is a communication-free and index-free algorithm based on polar indicator distributions. The second is a progressive assignment algorithm using limited, situated communication that deterministically assigns agents a position in the objective formation along a convex spiral directed path graph. We also present an extension of the second algorithm for 3-dimensional formation definitions. The first algorithm is demonstrated in a physical experiment using ground-based agents while the second one is simulated using micro air vehicles (MAVs) in a physics-based simulator

    Drone Obstacle Avoidance and Navigation Using Artificial Intelligence

    Get PDF
    This thesis presents an implementation and integration of a robust obstacle avoidance and navigation module with ardupilot. It explores the problems in the current solution of obstacle avoidance and tries to mitigate it with a new design. With the recent innovation in artificial intelligence, it also explores opportunities to enable and improve the functionalities of obstacle avoidance and navigation using AI techniques. Understanding different types of sensors for both navigation and obstacle avoidance is required for the implementation of the design and a study of the same is presented as a background. A research on an autonomous car is done for better understanding autonomy and learning how it is solving the problem of obstacle avoidance and navigation. The implementation part of the thesis is focused on the design of a robust obstacle avoidance module and is tested with obstacle avoidance sensors such as Garmin lidar and Realsense r200. Image segmentation is used to verify the possibility of using the convolutional neural network for better understanding the nature of obstacles. Similarly, the end to end control with a single camera input using a deep neural network is used for verifying the possibility of using AI for navigation. In the end, a robust obstacle avoidance library is developed and tested both in the simulator and real drone. Image segmentation is implemented, deployed and tested. A possibility of an end to end control is also verified by obtaining a proof of concept

    Simulation of autonomous UAV navigation with collision avoidance and spatial awareness.

    Get PDF
    The goal of this thesis is to design a collision-free autonomous UAV navigation system with spatial awareness ability within a comprehensive simulation framework. The navigation system is required to find a collision-free trajectory to a randomly assigned 3D target location without any prior map information. The implemented navigation system contains four main components: mapping, localisation, cognition and control system, where the cognition system makes execution command based on the perceived position information about obstacles and UAV itself from mapping and localisation system respectively. The control system is responsible for executing the input command made from the cognition system. The implementation for the cognition system is split into three case studies for real-life scenarios, which are restricted area avoidance, static obstacle avoidance and dynamic obstacles. The experiment results in the three cases have been conducted, and the UAV is capable of determining a collision-free trajectory under all three cases of environments. All simulated components were designed to be analogous to their real-world counterpart. Ideally, the simulated navigation framework can be transferred to a real UAV without any changes. The simulation framework provides a platform for future robotic research. As it is implemented in a modular way, it is easier to debug. Hence, the system has good reliability. Moreover, the system has good readability, maintainability and extendability.PhD in Manufacturin

    Attitude and Tension Control of a Tethered Formation of Aerial Vehicles

    Get PDF
    In this thesis we deal with the problem of formation control exploiting external constraints. In particular, we want to tether two quadrotors to each other and to a fixed point by ropes. Then, we want to control the quadrotors in order to drive the orientation of the formation, keeping the cables tautopenEmbargo per motivi di segretezza e/o di proprietĂ  dei risultati e/o informazioni sensibil

    Vision-based Autonomous Tracking of a Non-cooperative Mobile Robot by a Low-cost Quadrotor Vehicle

    Get PDF
    The goal of this thesis is the detection and tracking of a ground vehicle, in particular a car-like robot, by a quadrotor. The first challenge to address in any pursuit or tracking scenario is the detection and unique identification of the target. From this first challenge, comes the need to precisely localize the target in a coordinate system that is common to the tracking and tracked vehicles. In most real-life scenarios, the tracked vehicle does not directly communicate information such as its position to the tracking one. From this fact, arises a non-cooperative constraint problem. The autonomous tracking aspect of the mission requires, for both the aerial and ground vehicles, robust pose estimation during the mission. The primary and crucial functions to achieve autonomous behaviors are control and navigation. The principal-agent being the quadrotor, this thesis explains in detail the derivation and analysis of the equations of motion that govern its natural behavior along with the control methods that permit to achieve desired performances. The analysis of these equations reveals a naturally unstable system, subject to non-linearities. Therefore, we explored three different control methods capable of guaranteeing stability while mitigating non-linearities. The first two control methods operate in the linear region and consist of the intuitive Proportional Integrate Derivative controller (PID). The second linear control strategy is represented by an optimal controller that is the Linear Quadratic Regulator controller (LQR). The last and final control method is a nonlinear controller designed from the Sliding Mode Control Theory. In addition to the in-depth analysis, we provide assets and limitations of each control method. In order to achieve the tracking mission, we address the detection and localization problems using respectively visual servoing and frame transform techniques. The pose estimation challenge for the aerial robot is cleared up using Kalman Filtering estimation methods that are also explored in depth. The same estimation method is used to mitigate the ground vehicle’s real-time pose estimation and tracking problem. Analysis results are illustrated using Matlab. A simulation and a real implementation using the Robot Operating System are used to support the obtained results

    A Flexible, Low-Power, Programmable Unsupervised Neural Network Based on Microcontrollers for Medical Applications

    Get PDF
    We present an implementation and laboratory tests of a winner takes all (WTA) artificial neural network (NN) on two microcontrollers (ÎĽC) with the ARM Cortex M3 and the AVR cores. The prospective application of this device is in wireless body sensor network (WBSN) in an on-line analysis of electrocardiograph (ECG) and electromyograph (EMG) biomedical signals. The proposed device will be used as a base station in the WBSN, acquiring and analysing the signals from the sensors placed on the human body. The proposed system is equiped with an analog-todigital converter (ADC), and allows for multi-channel acquisition of analog signals, preprocessing (filtering) and further analysis

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways
    corecore