
Formation Control Algorithms With
Limited or No Communication

Master of Science Thesis
University of Turku
Department of Future Technologies
Turku Intelligent Embedded &
Robotic Systems
2020
Cassandra McCord

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin
OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Future Technologies

CASSANDRA MCCORD: Formation Control Algorithms With Limited or No Communi-
cation

Master of Science Thesis, 39 p.
Turku Intelligent Embedded & Robotic Systems
July 2020

Formation control refers to a collective behaviour of multi-agent systems where indi-
vidual agents come together to form a pattern, often geometric. These formations can
enable multi-agent systems to function more effectively in a broad range of applications.
Many formation control algorithms require centralized decision making, communication
between agents or a centralized decision maker and other factors that increase per-agent
cost and reduce the robustness and scalability of multi-agent systems. To this end, we
introduce two algorithms that operate using local decision making and limited or no
communication. The first algorithm is a communication-free and index-free algorithm
based on polar indicator distributions. The second is a progressive assignment algorithm
using limited, situated communication that deterministically assigns agents a position
in the objective formation along a convex spiral directed path graph. We also present
an extension of the second algorithm for 3-dimensional formation definitions. The first
algorithm is demonstrated in a physical experiment using ground-based agents while the
second one is simulated using micro air vehicles (MAVs) in a physics-based simulator.

Keywords: Multi-Agent Systems,Mobile Robots, Formation Control, Distributed Con-
trol, Progressive Formation Control, Robot Operating System, Pattern Configuration,
Index-Free Control

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Structure . 2

2 Formation Control 3

2.1 Objective Formation Definition . 3

2.2 Level of Communication . 5

2.3 Decision Making . 5

2.4 Indexing . 6

2.5 Considerations . 7

3 Robotics Hardware and Software 8

3.1 Robotics Hardware . 8

3.1.1 Vehicles . 8

3.1.2 Processing . 9

3.1.3 Sensors . 10

3.2 Software and Simulation tools . 11

3.2.1 ROS . 11

3.2.2 PX4 . 13

3.2.3 Gazebo . 13

i

4 Communication-free Formation Control 15

4.1 Overview . 15

4.2 Motivation . 15

4.3 Formulation . 16

4.4 Position Assignment . 17

4.5 Collision Avoidance . 18

4.6 Control Inputs . 19

5 2D Minimal Communication Formation Control 21

5.1 Overview . 21

5.2 Motivation . 21

5.3 Formulation . 22

5.4 Locally Convex Directed Path Graph . 23

5.5 Position Assignment . 24

5.6 Collision Avoidance and Control Inputs 25

6 3D Minimal Communication Formation Control 26

6.1 Overview . 26

6.2 Formulation . 26

7 Implementation and Results 28

7.1 Communication-free Formation Control 28

7.1.1 Implementation . 28

7.1.2 Results . 29

7.2 2D Minimal Communication Formation Control 31

7.2.1 Implementation . 31

7.2.2 Results . 31

7.3 3D Minimal Communication Formation Control 33

7.3.1 Implementation . 33

7.3.2 Results . 35

8 Conclusion 39

References 40

List of Figures

2.1 Objective formation definition types . 4

3.1 Example agents . 9

3.2 Reproduced diagram of ROS basic concepts [28] 12

4.1 Polar indicator distribution . 16

5.1 Locally Convex Path . 23

7.1 Example agent and environment . 29

7.2 Results of experiment . 30

7.3 ROS/Gazebo implementation architecture. 32

7.4 2D Simulation . 34

7.5 Final 2D configuration in Gazebo . 35

7.6 3D Simulation . 37

7.7 Final 3D configuration in Gazebo . 38

iv

1 Introduction

Formation control refers to a collective behaviour of multi-agent systems where individ-

ual agents come together to form a pattern, often geometric. These formations can enable

multi-agent systems to function more effectively in a broad range of applications includ-

ing satellites and search-and-rescue [1]. Formation control systems can also be used to

model collective behaviours found in nature, such as insect swarms and bird formations.

1.1 Motivation

The primary goal of this thesis is to explore formation control algorithms that operate

under limited communication situations and allow for arbitrary patterns to be achieved.

Since for many applications of formation control all agents involved are equivalent, or

anonymous, distributed algorithms are of particular interest.

Multi-agent systems by definition consist of multiple agents. The costs, both monetar-

ily and in terms of power usage, of each agent is magnified across the entire system. Thus,

there is incentive to minimize the per-agent costs. Communication hardware can have a

significant effect on these costs, so minimizing communication between agents reduces

costs. Moreover, even though ubiquitous connectivity is becoming a trend across multiple

domains, including robotics, interaction models based on local behaviour observation can

bring increased robustness and scalability to multi-agent systems.

To this end we introduce two algorithms that operate under conditions with reduced

the absence of communication between agents. The first one, described in chapter 4,

1

CHAPTER 1. INTRODUCTION 2

describes an algorithm where agents do not communicate at all. The second, described

in chapter 5 and modified in chapter 6, uses one way broadcast communication between

agents.

1.2 Structure

The structure of this thesis, flowing from abstract to concrete, is as follows

Chapter 2 and 3 give an overview of the field of Formation Control and the common

types of algorithms used therein. We also explore hardware and software consider-

ations, in particular with respect to the choices used for our own project.

Chapters 4 to 6 offer an in depth formulation of our proposed algorithms, starting with

a entirely communication-free algorithm, followed by a progressive assignment

based algorithm with limited communication in two dimensions, and finally an ex-

tension of the progressive assignment algorithm into three dimensions.

Chapter 7 covers the implementation and results of our proposed algorithms. We dis-

cuss aspects of implementation including difficulties encountered and suggestions

for future improvements. We also provide rough comparisons of the algorithms

presented.

2 Formation Control

Many applications either require or benefit from the cooperation of multiple agents.

We are primarily concerned with static formation for the purposes of this thesis, rather

than formation tracking. Static formation refers to achieving some objective formation.

Once the objective formation has been achieved it is considered a success. Formation

tracking instead focuses on maintaining a formation as it moves through space, although

it may implicitly include the initial achievement of the formation.

We can classify formation control algorithms based on a number of parameters [2]:

how the objective formation is defined, how much or how little agents are allowed to

communicate, where decisions related to the formation are made, and whether the agents

are indexed or not. Each algorithm can then be described as a combination of these

parameters. For instance, chapter 4 describes a communication-free, anonymous (index-

free), decentralized formation control algorithm, whereas chapters 5 and 6 describe a

displacement-based, limited communication, decentralized and indexed algorithm.

2.1 Objective Formation Definition

The objective formation definition refers to how the overall structure of the formation is

specified. The three main approaches to this are position-, distance- and displacement-

based [2].

This list is not exhaustive and sometimes it can be difficult to categorize an algorithm

strictly into one of these categories [3]. For instance, bearing-based algorithms, which

3

CHAPTER 2. FORMATION CONTROL 4

Positional

(0, 0)

(1, 3)

(2, 1)

(a) Positional-based

Distance

√5

√5
√10

(b) Distance-based

Displacement

(2, 1)

(-1, 2)

(1, 3)

(c) Displacement-based

Figure 2.1: Objective formation definition types

can be used to form regular polygons by maintaining a constant angle between neighbors,

could be categorized as displacement-based except that there is no requirement on how

close or far the agents are.

Position-based By far the most flexible of the approaches. Each agent is assigned an

absolute position in the formation. Necessitates that all agents have a common

frame of reference for both position and orientation.

Distance-based Each agent tries to maintain distance to nearby agents. No common

frame of reference is necessary. It can be used to model flocking behavior. Requires

at distances defined for at least 2 neighbors to be stable in 2 dimensions and 3 in 3

dimensions.

Displacement-based Each agent attempts to maintain a particular displacement from its

neighbors [1]. Agents require a common frame of reference for orientation but not

position. Each agent may have one or more displacements defined or displacements

may be symmetrically defined.

CHAPTER 2. FORMATION CONTROL 5

2.2 Level of Communication

Another factor to consider when selecting an algorithm or designing your agents is how

much communication between agents is necessary or feasible. Communication hardware

increases the cost of each agent and also increases power consumption. However, using

more communication generally makes achieving more complex behavior easier.

Communication-Free Agents do not directly communicate with each other at all. They

may still sense neighbors.

Limited Communication Agents can communicate through limited means. Commu-

nication may rely on short-range signals such as situated communication [4] or

through visual means. Communication may be one-way, such as only being able to

broadcast.

Full Communication Any agent is able to communicate with any other agent.

2.3 Decision Making

Similarly, many formation control algorithms require making decisions, such as which

position in the objective formation an agent should be assigned to. Choosing to have

a single decision-maker can simplify algorithms but is also more susceptible to failure.

Decentralization often complicates algorithm design but is more robust under failure.

Centralized One agent or an outside source of truth. Makes decisions for all agents in

play. Requires full communication.

Decentralized No single source of truth. Each agent makes decisions for itself. May

still coordinate with other agents. Consensus-based with higher communication or

local-only decision making in the absence of communication.

CHAPTER 2. FORMATION CONTROL 6

2.4 Indexing

Anonymous or index-free formation control algorithms are well suited to groups of ho-

mogeneous agents, that is that each agent is functionally equivalent to each other and can

successfully fulfill any role in the formation. In nature, homogeneous swarms are com-

mon, such as schools of fish or flocks of birds. This is contrasted with heterogeneous

formation, where each agent is not necessarily considered equivalent to every other agent.

An example of a heterogeneous swarm might be a mother duck leading her ducklings.

Indexed algorithms, however, make no assumption about the equivalency of agents. They

can be applied to both homogeneous and heterogeneous groups of agents. Agents might

be assigned a particular role or position based on some context, such as having extra ca-

pabilities or proximity to the desired position. Indices can be preassigned or assigned in

real-time.

Most current work has focused on indexed algorithms [2], [5], [6]. Some work has

been done using permutation-invariance, that is algorithms that function identically even

when agent indices are shuffled [7]–[9]. One of the first truly index-free formation control

algorithms uses indicator distributions [10].

Progressive formation control algorithms are an interesting combination of index-free

and indexed formation control [11]. Initially, all agents start out anonymous but then,

through some process, the agents receive an ID and are added to the formation. The

algorithm presented in chapters 5 and 6 is a progressive formation control algorithm.

Anonymous Also called index-free. Each agent is equivalent and can fulfill any role in

the formation.

Indexed Agents are assigned specific roles in the formation.

CHAPTER 2. FORMATION CONTROL 7

2.5 Considerations

When selecting an algorithm there are a number of factors to consider. Certain con-

straints might rule out certain classes of algorithms. Among the factors to consider are

processing power, availability of sensors and application requirements. In an ideal situ-

ation with unlimited processing power and perfect information, any objective formation

can be achieved. However, processing power, sensors, and communication hardware all

cost money and energy. In many embedded applications, the availability of energy is lim-

ited and must be carefully rationed and when a large number of agents are needed, the

cost of an individual agent becomes more significant.

3 Robotics Hardware and Software

3.1 Robotics Hardware

This is only a very brief overview of robotics hardware with a narrow focus on hardware

related to formation control and in particular hardware used throughout the development

of this thesis. Actuators and other methods of interacting with the environment, for in-

stance, are not discussed at all. We broadly discuss types of vehicles used, onboard pro-

cessing and the necessary sensors. Each of these is a component of an agent but no single

component defines the agent itself.

3.1.1 Vehicles

Each agent generally needs some method of moving around in the environment, otherwise

moving to achieve an objective formation would not be possible.

Drones Drones are unmanned aerial vehicles. They are generally divided into two cate-

gories: fixed-wing and rotary-wing. Fixed-wing drones are similar to commercial

jets and fly by thrusting forward and relying on aerodynamics to generate lift. They

require constant motion to stay aerial. Rotary-wing drones, such as helicopters,

generate lift directly by rotating large blades. They are capable of maintaining a

constant position in space. Rotary-wing drones with four or six rotors, often called

quad- or hexacopters respectively, are commonly used in embedded applications

due to their stability, maneuverability, and simpler control compared to fixed-wing.

8

CHAPTER 3. ROBOTICS HARDWARE AND SOFTWARE 9

(a) Example drone (b) Example ground vehicle

Figure 3.1: Example autonomous vehicles. 3.1b shows an agent used in section 7.1

Ground Vehicles Unmanned ground vehicles are also incredibly varied in terms of size

and function. Small radio controlled cars can be adapted into an autonomous agent

by replacing the radio control hardware. Self-driving cars are another example of

unmanned ground vehicles. Similarly, robotic vacuum cleaners are also unmanned

ground vehicles. Not all ground vehicles necessarily need wheels or follow the

same kinematics as normal cars.

3.1.2 Processing

Autonomous vehicles require processing to function. At the lowest level, they must pro-

cess sensor data and control the vehicle’s systems. On top of that, processing power is

needed to perform whatever task is necessary. Certain processes might be real-time, re-

quiring computation to be completed by strict deadlines continuously, such as the flight

controller of a drone. Failure of the flight controller may result in the vehicle catastroph-

ically failing and crashing. For this reason, low-level control of the vehicle is sometimes

relegated to separate hardware, such as the Pixhawk [12]. This allows for a better separa-

tion of concerns between the high-level application and the low-level details of controlling

the vehicle.

CHAPTER 3. ROBOTICS HARDWARE AND SOFTWARE 10

The rise of single-board computers such as the Raspberry Pi have simplified program-

ming of embedded systems, developers are no longer restricted to C/C++ and assembly.

A single-board computer is a small embedded device with strong capabilities. They usu-

ally run some flavor of Linux and allow for a large range of toolsets and applications to

be used.

Still, sometimes certain calculations can benefit from older approaches. Field pro-

grammable gate arrays, or FPGAs, allow custom logic to be implemented in hardware

resulting in faster, reliable execution and lower power consumption than general comput-

ing devices. Similarly, single-board computers running Linux have more overhead that

can interfere with real-time systems and consumes extra power.

3.1.3 Sensors

Finally, autonomous vehicles need some way of perceiving their surrounding environ-

ment. In terms of formation control algorithms, two primary forms of sensing are needed:

vision, the ability to see the shape of the environment and sense other agents located

nearby, and localization, the ability to determine where the agent itself is located in the

environment. Both forms are complex problems in their own right and are the subject of

rigorous study [13]–[16].

Localization is the problem of determining where an agent is located. This localiza-

tion can be with respect to some specific, locally defined, coordinate frame or a global

coordinate frame. Localization methods are often combined to improve accuracy [16]–

[18]. One common form of localization is the use of a GNSS (global navigation satellite

system) sensor. The most popular among these, GPS (Global Positioning System), is a

system of global positioning using satellites in orbit of earth. Since the signals used for

localization, in this case, come from space, the accuracy of this method is dependent on

certain factors of the environment [19]. Additionally, the resolution of the location, how

precisely an agent can determine its position, can vary from by an order of magnitude,

CHAPTER 3. ROBOTICS HARDWARE AND SOFTWARE 11

from tens of centimeters to tens of meters.

Another form of localization comes from odometry [20]. Odometry is the process of

using sensor data to estimate movement over time. It requires a known initial position

from which it can estimate the current location. Odometry systems are often subject to

an increasingly larger error in the actual position versus projected position called drift.

However, over short spans they can be very accurate.

Vision is the perception of an environment by an agent using images. Cameras are

an obvious choice as a sensor, but LIDAR and other depth perceiving sensors are also

very useful. Using object detection algorithms, an agent can approximate the position of

nearby agents [21]. It can be used for the purpose of localization as well, using either

an a priori map or one built on the fly, as in Simultaneous Localization and Mapping

[22]–[26]. The local environment of the agent is sensed and then compared to the map to

determine where the agent is.

3.2 Software and Simulation tools

3.2.1 ROS

The Robot Operating System (ROS) is an open-source framework for writing software

to control robots. While not an operating system in the true sense, such as Windows or

Linux, it provides a cross-language communication layer that allows robotic systems to

be built in a modular and reusable way [27]. The system broadly follows the publish-

subscribe architecture pattern.

ROS is based on a few key concepts from which the rest of the system falls into place.

These concepts are messages, topics, nodes and services.

Messages Messages are essentially structured containers of data. They are predefined

and consist of a few basic types as building blocks. More complex messages can be

composited from other message types. They also generally have rich interaction in

CHAPTER 3. ROBOTICS HARDWARE AND SOFTWARE 12

Figure 3.2: Reproduced diagram of ROS basic concepts [28]

each language. For instance, in C++ the messages are represented by native objects.

These messages are the messages that get passed around from node to node through

topics.

Topics Under the publish-subscribe paradigm, topics represent the various channels that

messages pass through. Each topic is identified by a name. A message is then sent,

or published, to a particular topic, and any node listening, or subscribed, to that

topic can then receive the message. Each topic is strongly typed, that is associated

with exactly one message type. It is important to note that when a node sends a mes-

sage to a topic, it does not specify any recipients. Rather, any node subscribed to the

topic will receive it. Conversely, any node subscribed to a topic has no information

about the source of the message.

Nodes Nodes are where the bulk of the work is done. They can communicate with other

nodes by sending messages to a topic or subscribing to a topic. They may call

upon services offered by other nodes or offer services of their own. Nodes usually

perform some specified task. They may directly control some specific hardware,

collect sensor data or run calculations on data.

CHAPTER 3. ROBOTICS HARDWARE AND SOFTWARE 13

Services Services are defined by a pair of message types and advertised by a node. They

differ from topics in two main ways. First, the service is associated with a specific

node as opposed to topics which are not associated with nodes. Second, they send

information back to the node that called the service.

Services resemble remote procedure calls. Some data is sent to the node called the

request analogous to parameters and then some data is sent back called the response.

This request/response pair, along with a name are what define the service. Unlike

topics, which are many to many, only one node is allowed to advertise a given

service.

3.2.2 PX4

The PX4 Drone Autopilot is a software stack designed to allow for remote control of

multi-rotor UAVs. The system handles the low-level details of flying a UAV as well as

managing sensor data. It can receive high level instructions, such as positional or velocity-

based setpoints and transform them into a low level instructions to the motors controlling

each rotor. Additionally, the software can handle fail-safes, such as low power or loss of

communication with the base station, in a configurable and robust way. It can communi-

cate wirelessly with a base station or remote control, or with a separate onboard micro-

controller through, for example, a commonly used messaging protocol called MAVLink.

3.2.3 Gazebo

Gazebo is a 3D physics simulator with a focus on robotics [29]. It supports complex in-

teractions between multiple agents in a simulated environment and is highly extensible.

It also models vision based sensors such as cameras and LIDAR, allowing rapid develop-

ment and testing of robotics algorithms. A large number of commercially available robots

and autonomous vehicles have simulation packages and models available for Gazebo.

CHAPTER 3. ROBOTICS HARDWARE AND SOFTWARE 14

Although Gazebo works as a standalone simulator, it is often used in conjunction

with ROS. A high level of interoperability allows developers to take advantage of existing

ROS tools and libraries when developing applications using Gazebo. Gazebo can also

be used for automated testing of complex applications in realistic scenarios. The ability

to simulate multiple agents simultaneously is vital for formation control research. By

leveraging the Gazebo simulator and ROS integration, the same codebase can be used in

both simulation and practice.

RotorS

RotorS is a multi-rotor UAV simulation module for Gazebo [30]. On top of a more realis-

tic simulation, it offers a set of multi-rotor models for various drones and a suite of tools

for designing and simulating custom multi-rotor UAVs. The PX4 firmware can operate

on top of RotorS as a Software in the Loop (SITL) simulation.

4 Communication-free Formation

Control

Portions of text and figures reproduced from author’s previous work [31].

4.1 Overview

The algorithm presented in this chapter is both communication free and index-free. It

requires agents to share a global orientation frame (e.g., through a compass) but does

not require a common global reference frame. Broadly speaking, each agent has a set

of polar distributions (equation (4.1)) called the objective positions, and one for its own

current position. The agent then selects the best candidate among the objective position

distributions based on its own distribution and then moves to minimize the difference, or

error, between them.

4.2 Motivation

The motivation behind these polar distributions is that they account for errors or noise in

the agents’ sensors. Rather than utilizing individual points in space to define the positions

of all other agents, which then would have to be matched one-to-one with positions in the

objective formation configuration, the polar distributions represent a sort of probability

distribution of what an agent sees around it in terms of free and occupied space.

15

CHAPTER 4. COMMUNICATION-FREE FORMATION CONTROL 16

(a) Objective

pattern

(b) –ψ0|τ=0(θ),

–ψ0|τ>0(θ)

(c) —ψ1|τ=0(θ),

–ψ1|τ>0(θ)

(d) –ψ3|τ=0(θ),

–ψ3|τ>0(θ)

Figure 4.1: Illustration of the polar indicator distribution. Figure (a) shows a wedge

configuration of 7 agents. Figures (b), (c) and (d) show the polar indicator distribution of

the first, second and fourth (top) agents, if indexed from left to right, for τ = 0 and τ > 0.

4.3 Formulation

We will only deal with the 2D case here. The full 3D formulation is found in our previous

work [31].

Definition 4.1 (Polar Indicator Distribution). Given a set of N agents with positions

(xi, yi) ∈ R2 ∀ i = 1, . . . , N , let Ni be the set of agent i’s neighbors. Their positions

are measured from the perspective of agent i’s local frame of reference and represented

by (xij, y
i
j) ≡ (rij, θ

j
i) ∀j ∈ Ni in Cartesian coordinates or polar coordinates, respectively.

Then we define agent i’s polar indicator distribution by

ψi(θ) = α
∑︂
j∈Ni

w(rij)(θ) ∗ δ(θ − θij) (4.1)

where δ(θ) is the Dirac delta function defined in in the subset [0, 2π) ⊂ R, α > 0 is a

constant and w(r)(θ) is defined as w(r)(θ) = exp (−θQ(r)(θ)) where Q(r) > 0.

The Dirac delta function represents the bearing of a specified neighbor andQ(r) mod-

ifies it as a function of distance. Because the distribution is defined over a finite range of

R, we can easily discretize it and represent it using an array in our actual implementation.

CHAPTER 4. COMMUNICATION-FREE FORMATION CONTROL 17

Q(r) is defined as

Q(r) = βr2 + τ (4.2)

for β, τ ∈ R, β, τ > 0 where β varies the width of w(r) based on distance and τ intro-

duces a constant minimum width. With this definition we can expand the definition of an

agents distribution into equation (4.3) as illustrated in figure 4.1

ψi(θ) = α
∑︂
j∈Ni

exp
(︂
−
(︂
βrij

2
+ τ
)︂ (︁
θ − θij

)︁2)︂ (4.3)

4.4 Position Assignment

Each agent must autonomously assign itself a position in the formation. In some for-

mation control algorithms, such as bearing and distance based ones, all positions are

inherently equivalent and thus position assignment does not make sense. In others, posi-

tions are either explicitly assigned ahead of time, or are negotiated through some form of

communication [2].

Definition 4.2. In order to achieve this, we define a cost function for achieving a desired

position ψ∗
j for an agent in position ψi as

Dψi
(ψ∗

j) =

∫︂ 2π

0

(︁
ψi(θ)− ψ∗

j (θ)
)︁2
dθ (4.4)

from which an agent decides its objective position by minimizing

ψobji = ψ∗
j : j = argmin

j=1,...,N
Dψi

(ψ∗
j), D

obj
ψi

..= Dψi
(ψobji) (4.5)

Definition 4.3 (Formation objective). Given a pattern configuration defined by a set of N

positions, from which we can calculate their individual spherical distributions, the desired

formation shape of a group of agents is represented by the set Eψ = {ψ∗
1, . . . , ψ

∗
N} of

CHAPTER 4. COMMUNICATION-FREE FORMATION CONTROL 18

desired spherical indicator distributions. Therefore, the formation objective is to have a

permutation σ ∈ SN such that Dψi
(ψ∗

σ(i)) < δ for a constant δ ∈ R, δ > 0. The value of δ

is the minimum error allowed to assume a successful convergence to the desired position.

The set {ψi(θ)} represents the agents’ positions and {ψ∗
j (θ)} the desired positions.

Definition 4.2 does not ensure that there exists a permutation σ mapping the set of

agents into the set of formation positions. This is an initial approach to the problem and

therefore we operate under the assumption that the initial distribution of agents ensures

the existence of σ.

Our next step is to minimize the cost function of achieving convergence as defined in

definition 4.3. Here is where the value of τ comes in to play. Because of our definition

of ψi(θ) from equation (4.3), if τ is too small then the minimization problem can become

non-convex. ψi(θ) becomes comprised of several peaks with values close to zero between

them. This means that a local minimum exists where several peaks line up but others do

not. The value of τ can be adjusted to minimize this risk.

4.5 Collision Avoidance

The algorithm presented above does not consider collision avoidance. For example, when

rj → 0, the contribution of j to ψi is reduced to a constant, and in particular can lead to

a collision. This is especially true when neighbors are distributed densely over θ and ψi

becomes almost constant.

The following modification to equation (4.1) introduces collision avoidance into the

algorithm. We define two thresholds rs and rd representing the minimum distance con-

CHAPTER 4. COMMUNICATION-FREE FORMATION CONTROL 19

sidered safe and the minimum distance where the danger collision is likely.

ψi(θ) =
∑︂
j∈Ni

αj exp
(︂
−
(︂
βrij

2
+ τ
)︂ (︁
θ − θij

)︁2)︂
, αj =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α if rs < rj

rj/(rj − rd) if rd < rj ≤ rs

∞ if rd ≤ rj
(4.6)

4.6 Control Inputs

Next, we define the control input for our algorithm. We first consider a single-integrator

model (where input is given in terms of velocity) and then later expand it for double-

integrator models (acceleration based).

For a single-integrator model each agent i’s dynamics are given by pi[k+1] = pi[k]+

Tsui[k] where pi[k], ui[k] ∈ R2 denoting position and velocity respectively at time k with

sampling period Ts. ui[k] is defined in terms of radial and angular inputs (uir [k], uiθ [k])

representing speed and direction respectively. We can calculate rij[k+1] and θij[k+1] for

agent i using trigonometry to define a cost function.

rij[k + 1]2 = rij[k]
2 + T 2

s uir [k]
2 − 2Tsr

i
j[k]uir [k] cos

(︁
θij[k]− uiθ

)︁
(4.7)

θij[k + 1] = arccos

(︄
rij[k] cos

(︁
θij[k]

)︁
− Tsuir [k] cos (uiθ [k])

rij[k + 1]

)︄
(4.8)

Definition 4.4 (Cost function). Given an agent with dynamics described by a single in-

tegrator, its position represented by ψi(θ), and its position objective by ψobji (θ), then we

define its cost function at a time step k by

Ji[k] =

∫︂ 2π

0

(︂
ψi − ψobji

)︂2
dθ + γ||ui||2 = Dobj

ψi
[k] + γuir [k] (4.9)

where γ > 0 controls the weight of the closed loop control.

CHAPTER 4. COMMUNICATION-FREE FORMATION CONTROL 20

From this this we propose a control law to minimize (equation (4.9))

uiθ [k] =
˜︁θ : ˜︁θ = argmin˜︁θ∈[0,2π)

∫︂ 2π

0

(︂
ψi

[︂
k+1 | uiθ [k] = ˜︁θ]︂− ψobji [k]

)︂2
dθ (4.10)

uir [k] = ν
Dobj
ψi

10δ +Dobj
ψi

(4.11)

where ψ is the maximum allowable error for convergence defined in definition 4.3.

The factor 10 is to encourage faster convergence of u2ir with respect to the error term from

equation (4.9).

Similarly for a double-integrator model each agent i’s dynamics are given by pi[k+] =

pi[k]Tsqi[k], qi[k + 1] = qi[k] + Tsui[k] where pi[k],qi[k] and ui[k] denote position, ve-

locity and acceleration respectively. Our control input is now ui[k] or acceleration with

components uir and uiθ representing radial and angular acceleration. We must modify the

cost function (equation (4.9)) to account for velocity into Ji[k] = Dobj
ψi

[k] + γruir [k] +

γθ |uiθ [k]|. Now we can adjust our desired angular speed from (equation (4.10)) into

qiθ [k] =
˜︁θ : ˜︁θ = argmin˜︁θ ∈ [︂

qiθ−uimax
θ

,qiθ+uimax
θ

)︂
∫︂ 2π

0

(︂
ψi

[︂
k + 1 | uiθ [k] = ˜︁θ]︂− ψobji [k]

)︂2
dθ

(4.12)

where we change the minimization interval to account for our maximum radial accel-

eration. Our control inputs then simply become uiθ = qiθ [k] − qiθ [k − 1] and uir =

qir [k]− qir [k − 1].

5 2D Minimal Communication

Formation Control

Portions of text and figures reproduced from author’s previous work [32].

5.1 Overview

The algorithm presented in this chapter uses minimal communication between agents.

It is a progressive algorithm whereby agents start as anonymous or index-free and self

assign an index. It requires agents to share a global orientation frame. Broadly speaking,

the algorithm is divided into two phases. The first phase is position assignment. Each

agent self assigns a position in turn in a deterministic manner based on a locally convex

spiral. The second phase involves each agent following its parent, the previous agent on

the spiral, while maintaining a displacement to achieve the final formation.

5.2 Motivation

This algorithm was partially inspired by Pinciroli’s progressive formation algorithm [11].

Compared to their work, our algorithm requires only one-way communication and no ne-

gotiation between agents, allowing for lower latency during the assignment phase. Our al-

gorithm introduces a constraint on the available objective formation configurations based

on the sensing characteristics of each agent. Additionally, we are able to easily extend our

21

CHAPTER 5. 2D MINIMAL COMMUNICATION FORMATION CONTROL 22

algorithm into three dimensions as explained in chapter 6.

5.3 Formulation

In this chapter the following notation is used. [N] = {k ∈ Z+ : k ≤ N} to denote

the set of the first N positive integers. Given a set of vectors x1, . . . , xN ∈ Rn, x =

[xT1 , . . . , x
T
N] ∈ RnN denotes the stacking of vectors. Conv(q) denotes the convex hull of

q and by δConv(q) its boundary, which is a convex polygon.

We define the formation as a set of points q = [q1, . . . , qN] ∈ R2N . Given a set of

N agents with positions p(t) = [p1(t), . . . , pN(t)] ∈ R2N , our goal is to achieve a spatial

distribution equivalent to q under translation.

Definition 5.1 (Formation Objective). Given an objective point set q and a set of agents

represented by their positions p(t), we consider that the formation has been achieved at a

time t = t′ if a permutation σ : [N] → [N] exists such that

∥pi(t′)− p0(t
′) + qσ(i) − qσ(0)∥ < ε (5.1a)

∥ṗi(t′)∥ < δ (5.1b)

for constants ε, δ > 0 that represent the maximum error allowed for positions and speed.

We assume that agents are able to measure the position of any other agent in line-of-sight

up to a maximum sensing distance δs.

Thus we have two disjoint problems to solve. First, find a permutation σ : [N] →

[N] such that equation (5.1) can be fulfilled. Second, define a control law such that we

can converge to the desired formation within the limit set by ε with t = t′ < ∞. We

propose a progressive assignment algorithm that enables agents to automatically assign

themselves a unique position in the objective formation. Additionally, a fairly standard

control law derived from previous work on leader-follower formation control algorithms

with collision avoidance is proposed.

CHAPTER 5. 2D MINIMAL COMMUNICATION FORMATION CONTROL 23

(b)	Assignment	order(a)	Formation	configuration

Figure 5.1: Illustration of the position assignment via a locally convex path.

5.4 Locally Convex Directed Path Graph

A locally convex directed path graph, or convex spiral, can be defined for an objective

formation configuration q that guarantees a unique assignment of identifiers. We call a

directed path graph locally convex if each point in the path, excepting the first and last,

form a convex angle with its neighbors. Figure 5.1 shows an example of a convex spiral

generated from a set of points. The convex spiral is generated using a trivial modification

to the Jarvis march method of computing the convex hull in the plane [33].

First we chose a node as the graph root called proot. Any node that lies on δConv(q)

is suitable, for instance the leftmost node. We define two sets P = {proot} and Q = q\P

where P denotes nodes that are already part of our convex spiral and Q denotes nodes

still to be considered. plast ∈ P denotes the last node added to P and is initially proot.

Then while |R| > 0 select a node ri ∈ R such that ∀rk ̸= ri ∈ R : rk lies to the right

of the line between plast and ri. We then move ri from R to P and plast becomes ri. That

is R = R ∩ {ri}, P = P ∪ {ri}, plast = ri.

CHAPTER 5. 2D MINIMAL COMMUNICATION FORMATION CONTROL 24

5.5 Position Assignment

Next, we describe an algorithm for position assignment requiring only one-way communi-

cation between agents. Suppose we have a set ofN agents where p(t) = [pT1 (t), . . . , p
T
N(t)] ∈

R2N represents position and δs represents an agents maximum sensing range. The objec-

tive formation is defined as q = [qT1 , . . . , q
T
N] ∈ R2N . We assume the following condition

holds:

Assumption 5.1 (Distances in convex spiral). Let p(0) represent an initial distribution

of agents. Without any loss of generality, we assume the boundary of its convex hull is

the set δConv(p(0)) = {pi(0), . . . , ph0(0)} where h0 represents the number of agents in

δConv(p(0)). We assume that any agent in the convex hull boundary is able to sense its

two immediate neighbors, i.e., ∥qi − qi+1 mod h0∥ < δs ∀i ≤ h0, where δs is a lower limit

of the agents’ sensing range.

Each agent maintains a state that is either unassigned or the identifier of the position

they have been assigned to. All agents are initially unassigned. The agents periodically

broadcast their state. Situated communication can be used to locate the position of other

agents based on these broadcasts. Next, an agent must assign itself as root. This agent

must lie on δConv(p(0)). Since we assume a global reference frame, we can define the

root as the leftmost agent and then the agents must simply check to see if there are any

agents to their left or proot = argmin pix , pi ∈ p(0). Once the root node has assigned

itself, it starts broadcasting its identifier. We still need one more assumption in order to

guarantee each node on the convex spiral can self-assign.

Assumption 5.2 (Existence of a locally convex path). Let p(0) be the position ofN agents

after deployment. Given an agent in δConv(p(0)) identified as the root of the directed

path graph, and an assignment direction that uniquely identifies the second node in the

graph, then these two agents define a unique locally convex directed path graph in which

all agents are included exactly once. We assume that any two consecutive agents in the

CHAPTER 5. 2D MINIMAL COMMUNICATION FORMATION CONTROL 25

path are able to sense each other.

Assuming Assumption 2 holds, then all agents are able to self-assign a unique position

in the formation.

5.6 Collision Avoidance and Control Inputs

Given that the assignment process essentially creates a chain of leader-follower pairs, we

can easily adapt established leader-follower control laws from the literature. The down-

side to this is that small errors in the chain will compound. Additionally, convergence for

agents near the end of the chain takes significantly longer than agents near the beginning

of the chain. Another issue that arises is that we assume each agent except for the root

can sense its leader agent. If using line-of-sight based sensing then it is possible for other

agents to break line-of-sight while moving. Various solutions have been proposed, such

as using a non line-of-sight based sensing method or reducing the speed of the leader as

the follower approaches the sensing range limit or when line-of-sight is lost.

A potential is used for collision avoidance [34]:

Vij(t) =

⎧⎪⎪⎨⎪⎪⎩
(︃

min
{︃
0,

∥pij(t)∥2 −R2

∥pij(t)∥2 − r2

}︃)︃2

∥pij(t)∥ > r

∞ ∥pij(t)∥ < r

(5.2)

where R, r represent the warning and danger distance, respectively. These constants are

defined in a way such that an agent actively tries to avoid another agent when the distance

that separates them is smaller than the warning distance, and it must never be below or

equal to the danger distance.

6 3D Minimal Communication

Formation Control

Portions of text and figures reproduced from author’s previous work [32].

6.1 Overview

The extension of the previous algorithm into three dimensions relies on finding a map-

ping between the convex spiral in two dimensions and some ordering or path through the

objective formation in three dimensions. However, given the increase in complexity in

the possible shapes in three dimensions, we have not attempted to prove that such a path

exist.

6.2 Formulation

The following section is built on top of the ideas described in chapter 5. Specifically,

the position assignment process is identical. A few changes must be made to extend the

formation into three dimensions. Objective formation q must be redefined in terms of

R3N . We assume the agents are initially distributed in a plane, or, that when projected

into a plane, no agents occupy the same position. This allows us to use the position

assignment process without any significant changes.

Assumption 6.1 (Ordering). The position assignment process requires an ordering of

26

CHAPTER 6. 3D MINIMAL COMMUNICATION FORMATION CONTROL 27

the objective formation but the concept of a convex spiral does not easily extend into

three dimensions we must choose another, independent, method to specify an ordering.

Suppose we define σ as permutation of q such that σ = (σ(q1), σ(q2), . . . σ(qn)). We

define LOS(p1, p2) as true if, and only if, there is a clear line-of-sight between p1 and p2.

We assume σ is a valid ordering if it satisfies

∥qσi − qσi+1
∥ < δs, (6.1a)

LOS(qσi , qσi+1
) (6.1b)

where δs > 0 represents the maximum sensing distance of an agent.

Position assignment then follows section 5.5. The same collision avoidance and con-

trol inputs can also be used since they work irrespective of the dimension of the input

vectors. We do not provide a methodology for finding a valid ordering in the general

case. In the case that the objective formation consists of a single three-dimensional con-

vex hull then if the triangulation of the hull boundary contains a Hamiltonian path, it is a

sufficient ordering. All platonic solids contain a Hamiltonian cycle, which implies the ex-

istence of a Hamiltonian path [35]. Thus all graphs that are isomorphic to Platonic solids

contain a Hamiltonian cycle, however not all such graphs necessarily fulfill the sensing

requirements of this algorithm.

7 Implementation and Results

Sections 7.1 to 7.3 includes figures and some text from author’s previous work [31], [32].

7.1 Communication-free Formation Control

7.1.1 Implementation

In order to implement the algorithm, we needed to build several agents capable of acting

autonomously. They needed to be able to sense the other agents in the environment.

To this end, we built several autonomous vehicles based on 1:10 Elektro-Monstertruck

"NEW1" BL, an example of such is shown in figure 7.1a. We replaced the radio control

receiver with an Arduino and Raspberry Pi connected to each other via serial. The car is

controlled via two servo motors, one for turning and one for speed. Turning is limited to

±0.35rad or ≈ ±20deg. The Arduino takes care of generating the control signals for the

servos and receives instructions from the Raspberry Pi via serial. The Raspberry Pi runs

the actual algorithm. Each iteration of the algorithm is somewhat quick but there is a bit

of overhead from reading and processing the lidar data as well as a web server we run for

monitoring and visualization. Because of this, we run the algorithm in steps rather than

real-time and then move the car some distance after each step proportional to the velocity

control input.

To sense the other agents we included a RPLiDAR A1M8 lidar component mounted

on top of each truck. This lidar has a range of 12m and a 360-degree view of the en-

28

CHAPTER 7. IMPLEMENTATION AND RESULTS 29

(a) Example agent (b) Lab environment

Figure 7.1: (a) Autonomous agent used during experiment and (b) Illustration of lab

environment where the white column is used for orienting reference

vironment in a plane. Since we require a global orientation we use knowledge of the

environment’s geometry rather than using a compass or magnetometer for orientation.

The testing environment is a typical office room with furniture shown in figure 7.1b. It

features a column and we assigned a north and east direction to the walls adjacent to the

column. This was sufficient for our purposes, though a more robust orienting method

would be recommended for field use.

Owing to the kinematic properties of the agents we constructed and the relatively

small size of the testing environment, we opted for a relatively simple objective formation

with a rather large allowed error. We use 4 agents with a square pattern as the objective

formation.

7.1.2 Results

The results of the experiment are presented in figure 7.2. The polar indicator distributions

for 3 of the positions in the objective formation are presented in figures 7.2a to 7.2c. A

rough convergence was achieved in just 5 iterations. While this test has few agents and

a relatively simple formation definition, it shows that convergence is possible in realistic

CHAPTER 7. IMPLEMENTATION AND RESULTS 30

(a) Position 0 (b) Position 2 (c) Position 3

(d) Raw lidar output (e) Initial vision (f) Final vision

Figure 7.2: (a-c) Desired vision for bottom left, top left, and top right agents respectively

(d) Raw output of the lidar. (e) Initial view from an agent. (f) Final view from an agent

after convergence with respect to δ

CHAPTER 7. IMPLEMENTATION AND RESULTS 31

scenarios. More complex formations have been achieved in simulation.

7.2 2D Minimal Communication Formation Control

7.2.1 Implementation

We performed two simulations to test the formation control algorithm. In the first one,

we used a single-integrator simulator written in python. For the second we decided to

focus on having a more realistic simulation using Robot Operating System (ROS) with

the Gazebo simulator and RotorS for simulating the flight controller.

Figure 7.3 show the simulation environment for the Gazebo simulation. It consists

of the ROS master process, the Gazebo simulator, a formation broadcaster and a set of

processes for each drone in the simulation. Each drone runs a PX4 software in the loop

simulator (SITL), MAVROS for communicating with the PX4 and the formation control

process. The formation control process consists of two threads, one for communicating

with the PX4 through MAVROS and the other for high level movement planning. PX4 is

an opens source flight controller [12]. It can be used for simulation in Gazebo on top of

RotorS (a drone simulator plugin for Gazebo) [30]. In realistic scenarios, it runs on sep-

arate dedicated hardware. The formation broadcaster broadcasts the desired formation to

each drone through ROS. It is responsible for ordering the objective configuration which

may be computationally expensive. In a real implementation, the formation definition

could be embedded if the desired formation is static, or broadcast using other means. A

few quirks of the implementation are discussed in section 7.3.

7.2.2 Results

We have compared the performance of the single integrator simulation and results ob-

tained with ROS/Gazebo in terms of convergence time and agent paths. In order to be

CHAPTER 7. IMPLEMENTATION AND RESULTS 32

PX4

MAVROS

assignment
and control

Drone
Code

mavros
interface

Drone 1

Gazebo Sim

ROS

Formation Broadcaster

...

PX4

MAVROS

assignment
and control

Drone
Code

mavros
interface

Drone 2

PX4

MAVROS

assignment
and control

Drone
Code

mavros
interface

Drone N

Figure 7.3: ROS/Gazebo implementation architecture.

CHAPTER 7. IMPLEMENTATION AND RESULTS 33

able to compare the single integrator implementation in Python with the ROS implemen-

tation, we have adjusted the time steps and speeds to match both simulations.

Figures 7.4a and 7.4b show the objective configuration and initial distribution of the

agents. We chose a line along the y-axis as the initial pattern and a 3x3 grid for the ob-

jective configuration. Rather than a random initial distribution, we have chosen a line in

order to show the efficacy of our method in a disadvantageous initial distribution. The

paths taken by both the single integrator simulation and the Gazebo drone simulation

are similar, with moments where collisions were being avoided being more clear in the

Gazebo simulation. The single integrator converges much faster, owing to the simpler

model used. This is shown in figures 7.4c and 7.4d, where instantaneous errors of indi-

vidual agents are illustrated. These errors are calculated as the norm of the difference of

the current leader-follower displacement and the objective one.

Drones have an approximate size of 55 cm by 55 cm, and the size of the area displayed

in figure 7.4a is 9 m × 9 m and 7.4b is 4 m × 25 m. For figures 7.4c and 7.4d the

size of the area displayed is 20 m × 30 m. Although, our control input to the drones

is velocity which the drone is not capable of instantaneously achieving. The maximum

speed was 1 m/s. The Gazebo simulation took 35 seconds to converge, which could be

improved with better control. The positions of the drones were sampled at 1Hz for the

single integrator simulation and 10Hz for the Gazebo simulation. Figure 7.5 shows the

final results in Gazebo. For the collision avoidance potential, we have utilized r = 1.5m

and R = 0.75m.

7.3 3D Minimal Communication Formation Control

7.3.1 Implementation

Since this is an extension of section 7.2 the implementation remains largely identical with

a few modifications to support specifying the objective formation in three dimensions. We

CHAPTER 7. IMPLEMENTATION AND RESULTS 34

(a) Objective configuration (b) Initial deployment

(c) Single integrator paths. (d) Paths in Gazebo.

(e) Single integrator errors. (f) Errors in Gazebo.

Figure 7.4: Simulation of a 3x3 grid formation in both

CHAPTER 7. IMPLEMENTATION AND RESULTS 35

Figure 7.5: Final 2D configuration in Gazebo

use the same process architecture specified in figure 7.3. In reality the implementations

are identical except for the Formation Broadcaster component. In the 2d case it broadcasts

the formation with a static z coordinate assigned for all positions. This means that due

to rounding errors and the properties of the collision avoidance potential, it would be

possible for two agents to pass over each other using the z axis. However this did not

happen in any of the simulations we ran.

7.3.2 Results

To demonstrate the validity of our algorithm for deploying drones into three-dimensional

configurations, we chose a pseudo-icosahedron as our objective configuration, which is il-

lustrated in figure 7.6a. Our pseudo-icosahedron is generated using vertices at (0,±1,±2)

rather than (0,±1,±ϕ) where ϕ is the golden ratio. The pseudo-icosahedron is scaled by

a factor of 20m so that the objective positions are farther than our collision avoidance

parameter r. The ordered path was generated manually. Additionally since the pseudo-

CHAPTER 7. IMPLEMENTATION AND RESULTS 36

icosahedron is an irregular platonic solid it demonstrates the flexibility of our algorithm.

The initial configuration was random as seen in figure 7.6b.

It took roughly 70 seconds to converge, with the same agent speed and collision avoid-

ance parameters used in the two-dimensional case. The 2D case converged in roughly 35

seconds but overall had shorter distance to travel and fewer agents so comparison is not

very useful. As mentioned in the 2D implementation, a better control algorithm could

reduce the time to convergence. Figure 7.7 shows a side view of the final configuration in

the Gazebo simulator. We used tho same parameters for the collision avoidance potential

as with the 2D case, r = 1.5m and R = 0.75m.

CHAPTER 7. IMPLEMENTATION AND RESULTS 37

(a) Objective configuration (b) Initial deployment

(c) Paths for 3D. (d) Errors for 3D.

(e) Paths for 2D. (f) Errors for 2D.

Figure 7.6: Simulation of an pseudo-icosahedron formation in both

CHAPTER 7. IMPLEMENTATION AND RESULTS 38

Figure 7.7: Final 3D configuration in Gazebo

8 Conclusion

Our goal was explore formation control algorithms that allow for arbitrary patterns to

be achieved and operate with limited or no communication between anonymous agents.

To this end, we introduced two algorithms plus a modification showing that arbitrary

formations can be achieved under the given constraints. Future work could focus on

improving the drawbacks of the presented approaches, including focusing on optimizing

convergence exploring alternative structures for use during assignment for the limited

communication algorithm and refining the 3d extension of the limited communication

algorithm.

39

References

[1] Z. Yang, Q. Zhang, and Z. Chen, “Formation control of multi-agent systems with

region constraint”, Complexity, vol. 2019, p. 8 481 060, Dec. 2019, ISSN: 1076-

2787. DOI: 10.1155/2019/8481060.

[2] K. K. Oh, M. C. Park, and H. S. Ahn, “A survey of multi-agent formation control”,

Automatica, vol. 53, pp. 424–440, Mar. 2015, ISSN: 00051098. DOI: 10.1016/

j.automatica.2014.10.022.

[3] C. K. Verginis, A. Nikou, and D. V. Dimarogonas, “Position and orientation based

formation control of multiple rigid bodies with collision avoidance and connectiv-

ity maintenance”, in 2017 IEEE 56th Annual Conference on Decision and Con-

trol, CDC 2017, vol. 2018-Janua, 2018, pp. 411–416, ISBN: 9781509028733. DOI:

10.1109/CDC.2017.8263699. arXiv: 1703.08217v3.

[4] K. Støy, “Using situated communication in distributed autonomous mobile robotics”,

in Proceedings of the Seventh Scandinavian Conference on Artificial Intelligence,

ser. SCAI ’01, IOS Press, 2001, pp. 44–52, ISBN: 1-58603-161-9.

[5] M. C. Park, Z. Sun, M. H. Trinh, B. D. O. Anderson, and H. S. Ahn, “Distance-

based control of k4 formation with almost global convergence”, in 2016 IEEE 55th

Conference on Decision and Control (CDC), Dec. 2016, pp. 904–909.

[6] S. A. Barogh and H. Werner, “Cascaded formation control using angle and distance

between agents with orientation control (part 1 and part 2)”, in 2016 UKACC 11th

International Conference on Control (CONTROL), Aug. 2016, pp. 1–6.

40

https://doi.org/10.1155/2019/8481060
https://doi.org/10.1016/j.automatica.2014.10.022
https://doi.org/10.1016/j.automatica.2014.10.022
https://doi.org/10.1109/CDC.2017.8263699
https://arxiv.org/abs/1703.08217v3

REFERENCES 41

[7] N. P. Hyun et al., “Collision free and permutation invariant formation control using

the root locus principle”, in 2016 ACC, Jul. 2016.

[8] S. Kloder et al., “A configuration space for permutation-invariant multi-robot for-

mations”, in 2004 ICRA, vol. 3, Apr. 2004.

[9] M. M. Zavlanos et al., “Distributed formation control with permutation symme-

tries”, in 2007 46th IEEE CDC, Dec. 2007.

[10] P. Kingston and M. Egerstedt, “Index-free multi-agent systems: An eulerian ap-

proach”, IFAC Proceedings Volumes, vol. 43, no. 19, pp. 215–220, 2010, 2nd IFAC

Workshop on Distributed Estimation and Control in Networked Systems, ISSN:

1474-6670. DOI: https://doi.org/10.3182/20100913- 2- FR-

4014.00064.

[11] C. Pinciroli et al., “Decentralized progressive shape formation with robot swarms”,

in Distributed Autonomous Robotic Systems: The 13th International Symposium,

Springer, 2018, pp. 433–445.

[12] L. Meier, D. Honegger, and M. Pollefeys, “PX4: A node-based multithreaded open

source robotics framework for deeply embedded platforms”, in Proceedings - IEEE

International Conference on Robotics and Automation, vol. 2015-June, IEEE, May

2015, pp. 6235–6240, ISBN: 978-1-4799-6923-4. DOI: 10.1109/ICRA.2015.

7140074.

[13] F. Zafari, A. Gkelias, and K. K. Leung, “A survey of indoor localization sys-

tems and technologies”, IEEE Communications Surveys Tutorials, vol. 21, no. 3,

pp. 2568–2599, 2019.

[14] P. Zhang, J. Lu, Y. Wang, and Q. Wang, “Cooperative localization in 5g networks:

A survey”, ICT Express, vol. 3, no. 1, pp. 27–32, 2017, ISSN: 2405-9595. DOI:

https://doi.org/10.1016/j.icte.2017.03.005.

https://doi.org/https://doi.org/10.3182/20100913-2-FR-4014.00064
https://doi.org/https://doi.org/10.3182/20100913-2-FR-4014.00064
https://doi.org/10.1109/ICRA.2015.7140074
https://doi.org/10.1109/ICRA.2015.7140074
https://doi.org/https://doi.org/10.1016/j.icte.2017.03.005

REFERENCES 42

[15] E. von Puttkamer, G. Weiss, and T. Edlinger, “Localization and On-Line Map

Building for an Autonomous Mobile Robot”, in, Springer, Berlin, Heidelberg, 1999,

pp. 36–48. DOI: 10.1007/10705474_3.

[16] E. Hu, Z. Deng, Q. Xu, L. Yin, and W. Liu, Relative entropy-based Kalman filter for

seamless indoor/outdoor multi-source fusion positioning with INS/TC-OFDM/GNSS,

Jan. 2018. DOI: 10.1007/s10586-018-1803-1.

[17] D. Nada, M. Bousbia-Salah, and M. Bettayeb, Multi-sensor data fusion for wheelchair

position estimation with unscented Kalman filter, Apr. 2017. DOI: 10.1007/

s11633-017-1065-z.

[18] T. Koshizen, “Improved sensor selection technique by integrating sensor fusion in

robot position estimation”, Journal of Intelligent and Robotic Systems: Theory and

Applications, vol. 29, no. 1, pp. 79–92, 2000, ISSN: 09210296. DOI: 10.1023/A:

1008123508778.

[19] J. Breßler, P. Reisdorf, M. Obst, and G. Wanielik, “Gnss positioning in non-line-

of-sight context—a survey”, in 2016 IEEE 19th International Conference on Intel-

ligent Transportation Systems (ITSC), 2016, pp. 1147–1154.

[20] S. A. S. Mohamed, M. Haghbayan, T. Westerlund, J. Heikkonen, H. Tenhunen,

and J. Plosila, “A survey on odometry for autonomous navigation systems”, IEEE

Access, vol. 7, pp. 97 466–97 486, 2019.

[21] Z. Zou, Z. Shi, Y. Guo, and J. Ye, Object detection in 20 years: A survey, 2019.

arXiv: 1905.05055 [cs.CV].

[22] L. Pan, J. Cheng, W. Feng, and X. Ji, “A robust RGB-D image-based SLAM sys-

tem”, in Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10528 LNCS,

Springer, Cham, Jul. 2017, pp. 120–130, ISBN: 9783319683447. DOI: 10.1007/

978-3-319-68345-4_11.

https://doi.org/10.1007/10705474_3
https://doi.org/10.1007/s10586-018-1803-1
https://doi.org/10.1007/s11633-017-1065-z
https://doi.org/10.1007/s11633-017-1065-z
https://doi.org/10.1023/A:1008123508778
https://doi.org/10.1023/A:1008123508778
https://arxiv.org/abs/1905.05055
https://doi.org/10.1007/978-3-319-68345-4_11
https://doi.org/10.1007/978-3-319-68345-4_11

REFERENCES 43

[23] Z. Wang, S. Huang, and G. Dissanayake, “D-SLAM: Decoupled localization and

mapping for autonomous robots”, International Symposium of Robotics Research

ISRR 05, vol. 26, no. 2, pp. 203–213, 2005, ISSN: 16107438. DOI: 10.1.1.88.

5371.

[24] S. Jung, J. Kim, and S. Kim, “Simultaneous localization and mapping of a wheel-

based autonomous vehicle with ultrasonic sensors”, Artificial Life and Robotics,

vol. 14, no. 2, pp. 186–190, Nov. 2009, ISSN: 14335298. DOI: 10.1007/s10015-

009-0650-9.

[25] Y. Zhuang, M. W. Gu, W. Wang, and H. Y. Yu, “Multi-robot cooperative local-

ization based on autonomous motion state estimation and laser data interaction”,

Science China Information Sciences, vol. 53, no. 11, pp. 2240–2250, Nov. 2010,

ISSN: 1674733X. DOI: 10.1007/s11432-010-4096-4.

[26] M. Alpen, K. Frick, and J. Horn, “A real-time on-board orthogonal SLAM for an

indoor UAV”, in Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7508

LNAI, Springer, Berlin, Heidelberg, 2012, pp. 542–551, ISBN: 9783642335020.

DOI: 10.1007/978-3-642-33503-7_53.

[27] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and

A. Y. Ng, “ROS: an open-source Robot Operating System”, ICRA workshop on

open source system, 2009.

[28] KenConley. (2009). “attatchment:ROS_basic_concepts.dia of ROS/Concepts - ROS

Wiki”. Creative Commons Attribution 3.0 http://creativecommons.org/

licenses/by/3.0/ exported to pdf.

[29] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source

multi-robot simulator”, in 2004 IEEE/RSJ International Conference on Intelligent

https://doi.org/10.1.1.88.5371
https://doi.org/10.1.1.88.5371
https://doi.org/10.1007/s10015-009-0650-9
https://doi.org/10.1007/s10015-009-0650-9
https://doi.org/10.1007/s11432-010-4096-4
https://doi.org/10.1007/978-3-642-33503-7_53
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

REFERENCES 44

Robots and Systems (IROS) (IEEE Cat. No.04CH37566), vol. 3, IEEE, 2005, pp. 2149–

2154, ISBN: 0-7803-8463-6. DOI: 10.1109/iros.2004.1389727.

[30] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “RotorS—A modular gazebo

MAV simulator framework”, Studies in Computational Intelligence, vol. 625, pp. 595–

625, Feb. 2016, ISSN: 1860949X. DOI: 10.1007/978-3-319-26054-9_23.

[31] J. Peña Queralta, C. McCord, T. N. Gia, H. Tenhunen, and T. Westerlund, “Communication-

free and Index-free Distributed Formation Control Algorithm for Multi-robot Sys-

tems”, Procedia Computer Science, vol. 151, pp. 431–438, 2019, ISSN: 18770509.

DOI: 10.1016/j.procs.2019.04.059.

[32] C. McCord, J. Peña Queralta, T. Nguyen gia, and T. Westerlund, “Distributed pro-

gressive formation control for multi-agent systems: 2d and 3d deployment of uavs

in ros/gazebo with rotors”, Sep. 2019.

[33] R. A. Jarvis, “On the identification of the convex hull of a finite set of points in the

plane”, Inf. Process. Lett., vol. 2, pp. 18–21, 1973.

[34] S. Ahmadi Barogh et al., “Formation control of non-holonomic agents with colli-

sion avoidance”, in American Control Conference (ACC), 2015. DOI: 10.1109/

ACC.2015.7170825.

[35] M. Gardner, Mathematical Games: About the Remarkable Similarity between the

Icosian Game and the Towers of Hanoi. May 1957, vol. 196, pp. 150–156.

https://doi.org/10.1109/iros.2004.1389727
https://doi.org/10.1007/978-3-319-26054-9_23
https://doi.org/10.1016/j.procs.2019.04.059
https://doi.org/10.1109/ACC.2015.7170825
https://doi.org/10.1109/ACC.2015.7170825

	Introduction
	Motivation
	Structure

	Formation Control
	Objective Formation Definition
	Level of Communication
	Decision Making
	Indexing
	Considerations

	Robotics Hardware and Software
	Robotics Hardware
	Vehicles
	Processing
	Sensors

	Software and Simulation tools
	ROS
	PX4
	Gazebo

	Communication-free Formation Control
	Overview
	Motivation
	Formulation
	Position Assignment
	Collision Avoidance
	Control Inputs

	2D Minimal Communication Formation Control
	Overview
	Motivation
	Formulation
	Locally Convex Directed Path Graph
	Position Assignment
	Collision Avoidance and Control Inputs

	3D Minimal Communication Formation Control
	Overview
	Formulation

	Implementation and Results
	Communication-free Formation Control
	Implementation
	Results

	2D Minimal Communication Formation Control
	Implementation
	Results

	3D Minimal Communication Formation Control
	Implementation
	Results

	Conclusion
	References

