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Abstract

The goal of this thesis is to design a collision-free autonomous UAV navigation system

with spatial awareness ability within a comprehensive simulation framework. The naviga-

tion system is required to find a collision-free trajectory to a randomly assigned 3D target

location without any prior map information. The implemented navigation system contains

four main components: mapping, localisation, cognition and control system, where the

cognition system makes execution command based on the perceived position information

about obstacles and UAV itself from mapping and localisation system respectively. The

control system is responsible for executing the input command made from the cognition

system. The implementation for the cognition system is split into three case studies for

real-life scenarios, which are restricted area avoidance, static obstacle avoidance and dy-

namic obstacles. The experiment results in the three cases have been conducted, and the

UAV is capable of determining a collision-free trajectory under all three cases of envi-

ronments. All simulated components were designed to be analogous to their real-world

counterpart. Ideally, the simulated navigation framework can be transferred to a real UAV

without any changes. The simulation framework provides a platform for future robotic

research. As it is implemented in a modular way, it is easier to debug. Hence, the sys-

tem has good reliability. Moreover, the system has good readability, maintainability and

extendability.
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Chapter 1

Introduction

1.1 Background

Starting with the Industrial Revolution in the 18th century, automation systems were de-

signed to assist or replace human beings to perform tedious and physically demanding

labor tasks, throughout this constant innovation and evolution, it continuously improves

human well-being and increases living standard by reducing the amount of human work

required and provides a wide range of affordable products and amenities in contempo-

rary society. They are no longer a vision for the future but a reality of the present. In

general, automation can be defined as the technology by which a process is performed

with minimal human assistance [12], and it uses various control mechanism to ensure the

instruction is executed, relevant applications range from a simple gravity food dispenser

to sizeable industrial control systems (as shown in Figure 1.1). Advanced automation

system represents a level of capability and performance that surpass in many ways, the

abilities of humans to accomplish the same activities [13].

1
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(a) Gravity food dispenser [14] (b) KUKA industrial robots being used at a

bakery for food production [15]

Figure 1.1: Autonomous systems with differenct automation level

Within the scope of automation systems, UAV (Unmanned Aerial Vehicles) has at-

tracted significant interest in a wide range of applications and became a major research

topic in recent years. Although different terms are used to distinguish UAVs from bal-

listic vehicles, cruise missiles and artillery projectiles in military applications [16], UAV

can be used to describe any aerial devices with no human pilot onboard, either guided

autonomously or by remote control. The shape does not restrict UAV; it could be a fixed-

wing aeroplane, a helicopter, a robotic bird or any device moving in the air. Figure 1.2

demonstrates an example of existing UAVs in different shapes. There are a number of

terms may be used interchangeably to describe UAV, popular ones include UAS (Un-

manned Aerial System), RPA (Remotely Piloted Aircraft), MAV (Micro Aerial Vehicle),

drone, etc.

Figure 1.2: Different types of UAV [1]
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Compared to manned aircraft, UAVs were originally used for missions that are ”dull,

dirty or dangerous” for humans [17]. Arguably, the first military use of aerial devices

came from the Chinese invention of the kites around 300 BC when they were used to

lift men into the air to spot enemy armies and to follow their movement [18]. Similarly,

the first recorded use of modern UAV was also built for the military purpose, serving as

a balloon carrier loaded with explosives by the Australian military to drop bombs over

the city of Venice, Italy [19]. Although kites and balloons would not be considered as

aerial vehicles today, they have led to further advancement. The United States began

developing UAV technology during the First World War and created the first pilotless

aircraft, Kettering Bug, which could be controlled with the use of radio wave after launch

and served as a great precursor of modern UAV.

Although many of these notable drones were built for the military purpose, the tech-

nology continues to advance and receive more attention in civilian applications. In 2010,

France-based company Parrot unveiled its AR 1.0 at the Internation Consumer Electron-

ics Show (CES) in Las Vegas. The quadcopter’s abilities were beyond what anyone had

seen before and changed the future of civil UAVs. The UAV was demonstrated with iOS

application-based controller by creating its own Wi-Fi network, then manoeuvred using

the accelerometers of the iPhone combined with a video feed from the UAV’s forward-

facing camera. The user could also take photo and videos from the video feed, which

introduced the concept of aerial photography to the masses, though the flight time, max-

imum flying altitude, and photo quality were all minimal. However, the technology con-

tinued to thrive and led to the modern consumer UAV precursor. In 2018, the China-based

manufacturer DJI introduced its Phantom Pro V2.0 [20], with a high-quality camera at-

tached to the gimbal with significant improvements in image quality over the parrot prede-

cessor. Moreover, it features an intelligent navigation system to compensate the external

effect (e.g. wind) to improve its flight stabilisation, in addition with an InfraRed (IR) sens-

ing system for multiple direction obstacle sensing and avoidance, it sparked the consumer

and commercial UAV craze.
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(a) The Australian baloon [21] (b) Kettering Bug pilotless aircraft [22]

(c) Parrot AR 1.0 [23] (d) DJI Phantom 4 Pro V2.0 [20]

Figure 1.3: History and development of UAV systems

1.2 Motivation

The ability of an autonomous vehicle could catapult the productivity and quality of vari-

ous human activities. In 2019, iRobot announced its intelligent lawnmower Terra (Figure

1.4a), It only requires wireless beacons to be placed around the perimeter of a lawn, com-

pared to the traditional automatic lawn mowing systems which require the user to define

their working boundaries by laying down wires [24]. However, user is still required to

teach the TERRA where to go and where to avoid with the assistant of a companion

app, to define a grass heigh and make adjustments as needed. Another excellent example

for the autonomous systems would be the state-of-art self-driving cars. In March 2018,

Britain had officially started the ”UK Autodrive Trails,” with 40 self-driving pods taking

to the pavements and street [25]. They were capable of travelling up to 15 miles per hour
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and lasting up to 60 miles off one charge within a pre-defined route in the city of Milton

Keynes (Figure 1.4b).

During the last few years, the ongoing trend towards the integration of robotic systems

into UAV application is intensifying, with the high levels of connectivity through matured

cellular, Bluetooth, wifi, and radio protocols in conjunction with smartphone ubiquity

and increasingly comingled hardware and software has resulted in rapid advancement in

UAV capabilities. In December 2016, Amazon had completed the first trial of its futuris-

tic UAV-based delivery plan (Figure 1.4c) [26], to utilise UAV technology fly individual

packages autonomously to customers. The system was designed to find the target lo-

cation safely, and the UAV was able to operate autonomously from take-off to landing

and return within 30 minutes after the order has been placed. More recently, in the 2018

PyeongChang Winter Olympics, Intel used more than 1200 purpose-built UAVs fly si-

multaneously above the stadium for the Opening Ceremony (Figure 1.4d) [27]. Each

UAV features built-in LED lights create over 4 billion colour combinations based on

RGBW (Red, Green, Blue and White) LED, which together formed a larger-than-life

choreographed snowboarder and Olympic Rings illuminated the night sky, transformed

UAV technology into an entirely new form of entertainment and created a memorial ex-

perience at the most-watched event in the world.

However, there are still various aspects that can be improved for the currently de-

ployed automation system, for instance, most of the available autonomous cleaning so-

lutions have a minimal perception of the working area as the Terra requires user to set

up the boundaries for every new working environment through Wi-Fi [28], which could

also jeopardise the working process when there is only limited signal. Additionally, the

working area is covered using a random rather than a systematic and optimised method,

which reduces the working efficiency. Furthermore, the self-driving pods could only work

within a public environment, which will be rather tedious and impractical for the deploy-

ment stage, to get access to a full map of all possible working area.

For most of today’s deployed UAV systems are teleoperated and semi-automatic,
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(a) The iRobot Terra robot lawn mower [24] (b) The self-driving pod in Milton Keynes [25]

(c) Amazon delivery drone [26] (d) UAV light show at PyeongChang Winter
Olympics 2018 [27]

Figure 1.4: Example applications of autonomous system
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which still rely on humanitarian assistance [28]. For example, Intel used the traditional

centralised solution, and the UAV is required to have the ability to communicate their

flight status (speed, height, etc.) with ground control station or neighbouring aircraft, and

operated by taking command from them. Although Intel was able to control over 1200

UAVs by a single pilot with the assistance of sophisticated software, it will be more dif-

ficult and computationally expensive for the pilot to keep track of every single aircraft

within the increasingly crowded airspace [28, 6]. As a result, the UAV system needs to

have an autonomous navigation system to operate without any human assistance. Ad-

ditionally, most people use the term automatic and independent interchangeably; it is

increasingly tempting to distinguish them as the level of automation improves. Generally,

the difference between them is the degree of human intervention. An automatic UAV

does not have the level of intelligence or independence that an autonomous UAV has. For

example, a genuinely autonomous UAV would decide on target location and route as well

as control during the flight. An automatic UAV would follow orders about goal and direc-

tion, and may only adopt some distance-keeping guidance to avoid the collision. However,

there are still various aspects that can be improved for the currently deployed automation

system, for instance, most of the available autonomous cleaning solutions have a minimal

perception of the working area as the Terra requires user to set up the boundaries for every

new working environment through Wi-Fi [28], which could also jeopardise the working

process when there is only limited signal. Additionally, the working area is covered using

a random rather than a systematic and optimised method, which reduces the working effi-

ciency. Furthermore, the self-driving pods could only work within a public environment,

which will be rather tedious and impractical for the deployment stage, to get access to a

full map of all possible working area.

Motivated by this, this thesis will concentrate on ensuring the UAV can navigate it-

self safely in an unknown environment in a proper manner. Successful application of

autonomous UAVs have consequences and implication in various field, such as recon-

naissance, communication, goods delivery, weather forecast, etc.
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1.3 Aims and objectives

This thesis aims to design and implement a simulation framework to test algorithms for

an autonomous UAV navigation system, featuring spatial awareness and collision-free

ability. Where spatial awareness is the UAV’s ability to acknowledge its location and

orientation during the navigation process. Collision-free navigation indicates that the

UAV must avoid any obstacles while reaching a randomly assigned target location. To be

more specific, the objectives are listed as follows:

• To implement static obstacle avoidance, the UAV should be able to avoid static ob-

stacles while approaching to a randomly assigned target location within an unknown

3D environment.

• To implement dynamic obstacle avoidance, the UAV should be able to avoid the

dynamic obstacle and plan its trajectory regarding the movement of the dynamic

obstacle.

• To implement spatial awareness, the UAV should be able to avoid a restricted rect-

angular area defined by the user without any map data, it should exit the restricted

area by searching the shortest path about the UAV’s current position, target location,

and the geometric shape of the restricted area.
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1.4 Challenge faced

Autonomous navigation is described as the process of generating a map representation

of the UAV’s immediate working environment, detecting potential hazard relative to the

UAV’s movement, and navigating within the immediate working environment to a target

location. It takes input information from both mapping and localisation system in con-

junction with the cognition system to execute a mission [29]. For humans, the ability

to navigate intentionally is imminent. For a mobile UAV, however, navigation is in dy-

namic real-world is an extraordinarily complex and challenging task. Such environments

are characterised by their complex structure, the dynamics of both humans and moving

objects, and the complexity of various flight mission. Modern UAVs aim at higher levels

of autonomy and performing flight stabilisation [30]. A fully autonomous system should

be able to gain sensory information from the local environment, classifying the types of

objects that they detect, reasoning about the evolution of the environment, navigate it-

self to the target through its operating environment without cooperative communication

from either ground control station or neighbouring aircrafts, obey the relevant rule of the

airspace, such as maintaining as much as possible the planned trajectories with a mini-

mum separation from other UAVs or obstacles in spite of uncertainties and unexpected

situations [31]. An autonomous navigation system roughly includes the following five

interrelated competences [29, 28, 32]:

• Perception: to obtain, represent and interpret sensory information to recognise ob-

jects, places, and events that occur in the or the UAV itself in the real world. In this

way, the UAV can prevent damage, known where it is, know how the environment

is.

• Mapping: to construct a spatial representation of an environment model with an

appropriate sensing system. The map allows the UAV to make appropriate decisions

and avoid damage.

• Localisation: the strategy to estimate the UAV’s position within the spatial map



CHAPTER 1. INTRODUCTION 10

that occurs simultaneously during navigation, to assist the UAV plan and execute

movements, and build a correct map of the environment.

• Path planning: the process of generating a trajectory towards a goal location from

a specific starting point, without colliding to any obstacles detect from the map-

ping system, within a minimum distance, time or any other constraint required by

the mission. Moreover, the UAV should also be able to avoid any dynamic obsta-

cles that the mapping system failed to detect before the navigation task, such as

extruding people, animals or any change of the environment.

• Path execution: to determine and adapt motor actions to environmental changes,

ensure planned movement is executed, despite unexpected uncertainties (such as

wind disturbance).

Due to the behaviour, the type of flight mission, and the complexity of the manoeu-

vres required, it is necessary to increase the level of robustness and accuracy for the au-

tonomous navigation system. Designing such a robust autonomous navigation system in

this complicated situation is accomplished by combining a variety of technologies from

different disciplines and has posted a variety of challenges, the remainder of this sec-

tion lists some of the critical challenges currently facing for designing a collisions free

autonomous navigation system for UAV.

1.4.1 Perception

The degree of a successful autonomous navigation system is highly linked to their ability

to perceive. Human beings use the combination of their five senses to perceive their

environment, comprehend the situation by fusing their environmental perceptions with

relevant contextual information and mission goals, and determine the best action by the

predictions based on their perception and comprehension of the situation [33] [29]. To

sum up, Perception, Comprehension, and Prediction.
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For an autonomous UAV navigate at least on the same level of a human pilot, the air-

craft should be able to recognise the working environment, classifying the type of object

that they detect, reasoning about the evolution of the environment and planning complex

motions that obey the relevant rule of the airspace [31]. An excellent sensory system is

a crucial element to achieve this. Moreover, besides the imperfection of current sensor

technology, there are some challenges to complete human-level situational awareness for

autonomous systems.

• Perception: Situational awareness for UAV is typically defined with a particular

mission, and it is vital for the UAV to determine the required information by rea-

soning the associate flight mission goals. This will result in UAVs ignore relevant

percept as they are only programmed to detect or interpret only particular environ-

mental aspect [33] [29].

• Comprehension: Human comprehends by reasoning the environmental with their

goal and associated history information about this particular goal. A similar level

of comprehension ability is a key element to achieve human-like UAV situational

awareness, which requires that UAV integrate a large amount of sensory informa-

tion and prioritise the perceived data with regards to flight mission. Current sit-

uational awareness system cannot comprehend the same level as a human pilot as

they rely upon their supervisors to prioritise the importance and meaning of sensory

information received [33] [29].

• Prediction: Human makes predictions by perceiving and comprehending the par-

ticular situation. Consider the example of human try to cross the street. Firstly,

people would start by observing both directions of the street for any in-coming traf-

fic, in the case of approaching vehicle, they will try to estimate the time required for

the vehicle to reach the point where they stand, and then decide to cross the street

if the estimated time to cross the street is shorter than the previous estimation. Cur-

rently implemented systems have only limited prediction ability.
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For an autonomous navigation system, a difficult situation may be indistinguishable

to the UAV, and some problems can occur when the UAV has only limited spatial aware-

ness. Therefore, it is essential for the UAV to choose the appropriate sensor based on

the given function required, process the sensor data with noise, determined the necessary

trade-off between safety and efficiency, and be prepared for any other uncertainties. Finn

summarised that the sensors might be roughly divided into two classes, ’proprioceptive’

sensor and ’exteroceptive’ sensor [29].

Proprioceptive sensors (i.e. radar, laser, IMU), provide the internal information about

the UAV’s motion, may measure cursing speed (odometer), acceleration (accelerometer),

rotation angle (gyroscope), steering angle, ground level, and provide the UAV’s position

and orientation data with respect to some absolute frame of reference [34] [35] [36]. They

provide measurements of UAV’s internal factors that are affected both by the environment

and UAV’s behaviour.

While exteroceptive sensors (i.e. LADAR, EO and IR) are responsible for recognising

a place or a situation or be converted to map representation of the environment, they

perceive external factors that are not under the control of the UAV [29].

In most case, the sensor reading is imprecise and unreliable due to the noise, or any

system error from the sensory system, compared to human’s comprehensive sensing abil-

ities [33]. For this thesis particularly, a comprehensive UAVs perception system is neces-

sary for the following reasons:

• To estimate the UAV’s current position and orientation.

• To estimate the UAV’s velocity and acceleration.

• To estimate static obstacle’s position within the navigation environment.

• Identify any moving obstacle and predict its moving trajectory.
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1.4.2 Mapping

Mapping is crucial to autonomous navigation for several reasons: (1) to localise the UAV

itself and the target location; (2) to plan a path between the UAV’s current position and the

target location; (3) to support UAV’s collision avoidance. Besides providing an intuitive

visualisation of the explored space, it allows further analysis which assists the develop-

ment of other types of high-level navigation tasks, such as dimension evaluation, object

recognition, etc. Proper mapping will improve the accuracy and robustness of localisation

[37].

For certain types of navigation task, it is sufficient for the navigation system to get ac-

cess to the map information before the mission, such as warehouse sorting UAV illustrated

in figure 1.5. However, it will be impractical and tedious to build a full map to navigate in

a large and unknown environment such as goods delivery. Furthermore, the environment

is not always static, and this can be due to objects that either change position or its shape

in time. As a result, the UAV must create its own map. Interestingly, the map building

process requires knowing the UAV’s location, and the location estimation requires a map,

which led to another critical aspect: Simultaneous Localisation And Mapping (SLAM),

which raised two challenges. The first one is the map errors relative to the real environ-

ment due to the limited range of observation or imperfection of the sensory system. The

latter is the dynamic environment modelling due to the change in the object’s position or

shape.

The mapping system should be able to distinguish between the free and occupied

space of the immediate working environment; Identify the moving obstacles and keep

a record their historical trajectories; update the map information to keep track of new

entered obstacles; and if possible, predicting the moving obstacles’ future position from

the recorded historical movement.
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Figure 1.5: Warehouse sorting robot [2]

1.4.3 Localisation

Autonomous UAV navigation systems need a robust localisation system to avoid catas-

trophic control actions; it is the process of determining the UAV’s position, velocity and

orientation information relative to a reference frame, without any prior external infor-

mation to the localisation system, except for the instantaneous sensing of the working

environment [38].

Global Positioning System (GPS) is the most common outdoor localisation solution

for navigation systems to estimate their position [39, 30]. It provides geological location

and time information to a GPS receiver device anywhere on or near the earth. High-end

GPS receiver could reach the accuracy within a few centimetres, and millimetre accuracy

level if it is in a long-term measurement, but this is expensive to be used in civil appli-

cations. Furthermore, as it is stated in the US government information about the Global

Positioning System [40], The committed accuracy of the broadcasted GPS signal in space

only has a global average User Range Error (URE) of 7.8m within 95% probability. More-

over, URE is not user accuracy, and the actual received signal is additionally depended on

server factors including satellite geometry, signal blockage, atmospheric conditions, and

receiver design features (quality). The accuracy is worse if the device is not in an open

sky, such as indoor usage, or the device is near a bridge or trees, which will cause uncer-

tainty and a potential hazard if the UAV localisation system is solely depended on GPS.



CHAPTER 1. INTRODUCTION 15

Therefore, an additional localisation solution is preferable when the UAV is undertaking

tasks in these scenarios.

Figure 1.6: URE and actual user accuracy [3]

1.4.4 Path planning

Path planning refers to the process of determining a sequence of waypoints from a specific

starting position to a target location while avoiding obstacles and impediments detected

from the mapping system to minimising (or eliminating) potential hazards to the sur-

rounding objects or the UAV itself [29]. It is one of the essential responsibilities for an

autonomous system, random movement, which does not have a specific navigation plan,

may be useful for a particular task, such as mobile cleaning robot, surveillance and explo-

ration robot [41]. However, for most of the scientific or industrial autonomous navigation

system, it is almost pointless for the UAV to move without a purposeful manner. Hence,

path planning plays a vital role in the success of the autonomous UAV navigation system,

and also serves as a baseline for the related applications of an autonomous navigation

system.

To be more specific, the planner should be able to make the appropriate decision by

predicting action into the future based on the characteristics of the UAV, its current and

potential behaviour, the goal of the flight mission, with respect to the environment. Then

evaluate the possible outcomes according to a cost function with selected criteria [42] [29]

[43]. The evaluation function should bring the optimised high value for plans that meet
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mission goals by representing the UAVs’ objectives and constraints [29]; this normally

involves some form of search through a set of potential plans until the optimised one is

found.

For this thesis mainly, the path planning system should be able to find the optimal

flight trajectory to the target location in a dynamic and complex environment, in a way

that the trajectory avoids or minimises the hostile threat, while subject to system constraint

(such as limited time, fuel, etc.) and satisfies the task requirement. Moreover, apart from

avoiding obstacles that may cause physical damage to the UAV (obstacle avoidance),

The UAV should also be able to avoid any dynamic obstacles that the perception system

failed to detect at the first place (collision avoidance). Lastly, the path planning system

should also avoid some predefined region that will not physically cause damage to the

UAV, such as military restricted fly zone or any area that UAVs are prohibited.

(a) Mobile cleaning robot [44] (b) Real time planned path by the cleaning robot [44]

Figure 1.7: Example of path planning for autonomous navigation system

1.4.5 UAV control

In building autonomous UAV systems, the navigation system must implement means of

controlling the vehicle in an uncertain environment throughout the mission [45]. It in-

volves the process of combining the outputs of perception, mapping, localisation, path

planning, and collision avoidance and translating them into actuator commands for UAVs’

mobility and payload response [29]. Therefore, the UAV should have the capability of

self-governance in the performance of control function in a very unstructured environ-
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ment. Autonomous UAV control is described as a higher level of autonomy, with regards

to detect and respond to anticipated events and condition, compared to automatic con-

trol, which only provides the necessary standard control operation. It should act as a

replacement of a human pilot to ensure robust and constant operation for UAV within an

unfavourable working environment for an extensive flight duration [46].

The specific behaviours will vary with the operational requirement. In this thesis,

the UAV should be able to perform the essential flight operation such as taxi, take-off,

climb, cruise, glide, landing, etc. Besides, the UAV is also required to have the ability to

perform actions required by the particular flight mission, such as manoeuvre, reconnais-

sance, combat, health condition monitoring, payload management, etc. [46]. The control

methods for these action varies depending on the vehicle’s dynamics of each type of UAV;

different control methods need to be applied for a fixed-wing and rotary-wing UAV. It de-

pends on the task of determining the type of the UAV, and different control methods need

to be investigated for that specific type of UAV.

1.4.6 Simulation framework

To test algorithms on real UAVs, it cost researchers both financially and timely to get ac-

cess to expensive hardware and to train safety-pilots. Furthermore, most of the navigation

data occurring on real UAVs, are hard to replicate, and often cause harm or destruction

to the UAV, which brings up the revolution to simulate the behaviours of the UAV navi-

gation system. Craighead summarises the following qualities on an excellent simulation

framework [47].

• Variety of hardware that can be simulated (both sensors and UAVs)

• Graphical simulation accuracy

• Physical simulation accuracy

• Cross-platform capabilities
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• Openness of source code (for future development and addition of new or custom

simulations by the user).

A well-implemented simulation system facilitates the development of the navigation

system, but it also raises the question of how well the simulation system represents in

the real world. Ideally, the simulated navigation system should be migrated to a real

UAV with minimum efforts. The simulation framework should be a tool that enables the

development of algorithms, to be deployed on a real UAV later on.

1.4.7 Conclusions

There are still numerous system constraints for developing such a robust autonomous

UAV navigation system, such as UAVs physical constraint (speed and acceleration); sys-

tem integration (hardware and software); system uncertainty (system error and malfunc-

tion); environment uncertainty (e.g. air turbulence and other extreme weather conditions);

flying efficiency (time and energy); limited onboard computational capability. Apart from

the technical challenges, problems like government regulation on the UAV operation,

public privacy concern will also prevent the commercial deployment of UAV related ap-

plications. This thesis will focus on the technical challenges faced to both designs and

demonstrate autonomous navigation algorithms for UAV, featuring collision-free navi-

gation and spatial awareness. The necessary components to simulate autonomous UAV

navigation system are concluded as follows :

• A comprehensive simulation framework, to simulate UAV and environment dynam-

ics, ideally, the system should be analogue to its real-world counterpart and easy to

be transferred to a real UAV.

• Mapping system, the system deals with the perception and mapping challenges,

it should transfer the input data from perception units into a map representation,

where the map should contain sufficient information about the obstacles location

and size with respect to the working environment and UAV itself.
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• Localisation system, the system deals with the perception and localisation chal-

lenge; it should retrieve an accurate estimation of the UAVs position and orien-

tation within the world coordinate system. This system complies with the spatial

awareness objective identified in Chapter 1.3.

• Cognition system, the cognition system should make an appropriate decision based

on the input information from mapping and localisation systems, then make the

appropriate command to navigate the UAV to the target location by avoiding any

potential collision; it should comply with the static/dynamic obstacle avoidance

objectives identified in Chapter 1.3.

• Control system, the control system should execute the decision made from the cog-

nition system, to drive the UAV from point A to point B with a desired orientation.



Chapter 2

Literature review

In this thesis, autonomous navigation can be described as the process of determining a

sequence of waypoints between a start position and a target location, whereby executing

the sequence of waypoint the UAV can avoid the potential collision with its surrounding

obstacles and reach to the target location with a speedy manner. This process mostly

replies the UAV’s knowledge of both its own and obstacles position concerning the work-

ing environment.

In order to complete the scheduled flight mission, as it is described in Chapter 1.4.1,

the autonomous navigation system requires inputs from proprioceptive and exteroceptive

sensors for the SLAM process. Where the proprioceptive sensors are responsible for the

UAV’s awareness of its internal states, such as position, orientation, navigation velocity,

as well as the start and target position (localisation). On the other hand, exteroceptive

sensors are responsible for the process of observing the UAV’s immediate working envi-

ronment at a given time or period, then display the environment in a map representation

(mapping). With the inputs from both proprioceptive and exteroceptive sensors, after in-

ternal processing of localisation and mapping, the cognition should produce a sequence of

waypoints for the UAV to reach the target location, where the waypoints should eliminate

(or minimise) potential collision with the detected obstacles from the mapping system.

Finally, the control system takes inputs from the cognition system and drive the UAV to

20
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its target position.

This chapter includes survey work for SLAM techniques and path planning algo-

rithms. Various perception methods and path planning algorithms are evaluated based

on different performance criteria.

2.1 SLAM

During an autonomous flight, UAVs are required to equipped with the necessary informa-

tion to avoid obstacles and reach the target location. However, it cannot be assumed to

have an accurate map for all potential environment before the flight. Additionally, as the

world is continuously changing, the UAV can enter a previously unmapped area. So to

ensure safe operation, autonomous UAVs must be able to use onboard sensors to construct

highly accurate maps of their observed environments.

In the early development stages, mapping and localisation are considered to be sep-

arately, but later researchers found that they are often considered as ”chicken-and-egg”

problem [48, 37]. They are interdependent, as each of them can be solved if the other

one is known accurately [37]. For example, It is relatively easy to locate and identify a

UAVs pose in a known environmental map, and it is simple to map an environment given a

UAVs pose. This concept refers to the Simultaneous Localisation And Mapping (SLAM).

It constructs a map of the environment while localising the UAV on this map.

However, simultaneously estimating the map and localising itself relative to the map

is a far more complicated process. It involves the integration of measurements from a

variety of sensor including the IMU, GPS, laser scanner, or vision-based sensor. As each

sensor has unique characteristics that lead to varying levels of effectiveness in different

environments [48]. This section includes the survey work for how these sensors affect

the UAV’s perception and localisation ability and the performance in terms of collision

avoidance and efficiency by different path planning algorithms, for an accurate and robust

autonomous navigation system.
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2.1.1 State estimation

The State estimation problem is a fundamental issue when dealing with autonomous UAV

navigation. Knowing its position in the environment enables better awareness and more

precise navigation to avoid catastrophic control actions. It involves the process of es-

timating the UAV’s state (position and orientation, linear velocity, angular velocity and

acceleration) during the movement, from either single sensor reading or fusing a different

number of sensors [30]. State estimation can be decomposed into three slightly differ-

ent problems which differ on the UAV’s knowledge of the environment both initially and

during its movement [49, 50].

• Local Localisation addresses local uncertainty of the UAV’s configuration, such as

the initial position relative to an external coordinate frame. The local position will

then be tracked over time.

• Global Localisation specifies the UAV’s unknown position in the environment,

such as buildings, trees and objects of interest, is regarded as one of the most diffi-

cult state estimations due to the high dimensionality of the parameter spaces.

• Kidnapping regards to the problem of determining the change of UAV’s position

over time, including UAV itself and any other objects within the environment. This

problem is like the Global Localisation, with the added difficulty of changing loca-

tions over time.

Generally, state estimation can be divided into the following two parts: the Attitude

Heading and Reference System (AHRS) the Inertial Navigation System (INS). As shown

in Figure 2.1. AHRS predicts the UAV’s orientation by receiving inputs of Euler angles or

rate. Then the estimated orientation data are processed in conjunction with other sensor

information to estimate the UAV’s position, velocity and acceleration [4]. Different ap-

proaches are proposed to solve the problem. Since sensor characters determine the system

architecture, it is necessary to understand the characteristics of various sensors used for

state estimation. In general, state estimation techniques are categorised as follows [4]:
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Figure 2.1: UAV state estimation with AHRS and INS [4]

• Acoustic: refers to the techniques based on the measurement of Time of Flight

(ToF) of certain types of signals such as acoustic.

• Geophysical: refers to the techniques based on external reference information to

estimate position. This types of techniques require the implemented sensors are

capable of detecting and classifying the perceived environment based on specific

features.

• Inertial/dead reckoning: refers to the techniques of estimating state with accelerom-

eters and gyroscopes.

Acoustic based techniques estimate the velocity vector of a UAV moving across the

environment. It determines the UAV’s position by measuring the ToF to a reference point

in the environment, in conjunction with the velocity measurement by transmitting acous-

tic pulse and measuring the Doppler-shifted returns from these pulses. A popular way to

implemented geophysical-based techniques is to use visual sensors; it is based on the in-

formation provided by the visual sensors of the cameras. Different approaches have been

proposed. Major difference between these approaches are the type of the visual informa-

tion used; such as horizons detection [51], landmarks tracking [52], or edges detection

[53].

Both Acoustic and Geophysical-based methods rely on the UAV’s knowledge of the

map, to estimate a location relative to an object or feature within the reference frame,
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which is highly depended on the UAV’s ability of environment perception. Survey work

for Acoustic and Geophysical-based perception methods are given in Chapter 2.1.2. On

the other hand, researchers have proposed various methods to determine the AHRS with

less environment depended on techniques (dead reckoning), such as implementing pres-

sure sensor to measure UAV’s attitude, using a magnetic compass to shows UAV’s direc-

tion relative to the geographic direction [54].

Although these techniques are capable of measuring the UAV’s position within a

global reference, there is still a lack of information about the UAV’s orientation. IMU

(Inertial Measurement Unit) has been used extensively to solve this. It is an Inertial/dead

reckoning-based device to estimate UAV’s position, orientation, velocity (both linear and

angular) and gravitational force without the need for external reference. It consists of an

accelerometer and a gyroscope. The accelerometer is responsible for the estimation of

the orientation UAV with respect to the earth, by measuring the force required to accel-

erate a proof mass. On the other hand, gyroscope was responsible for the measurement

of UAV’s angular rotation rate around an axis, and The integration will result in a drift in

the estimated Euler angle. Additionally, the slight measurement errors can compound in

significant errors with the accumulation of navigation period.

The performance of state estimation techniques is highly reliant on the type of flight

mission, and the performance can be increased by the fusion of data from multiple col-

laborative sensors [55, 34, 56]. The most important factors are the interest regions of the

working environment and the desired localisation accuracy [4].

2.1.2 Environment perception

When discussing the mapping of the environment, it is useful to review the type of en-

vironment perception sensors used for the currently deployed UAV navigation system.

Generally, the sensors used for 3D environment perception can be categorised into pas-

sive and active systems [57, 58, 11]. Where passive sensors provide image data which can

be later processed with certain algorithms to extracts 3D information from the measured
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2D images (such as a vision-based sensor), on the other hand, active sensors are capable

of providing 3D information of the environment directly from the measurements (such as

LiDAR). This chapter includes survey work done for the recent popular sensor solutions

include vision-based, LiDAR and radar sensors.

Vision-based sensors

Vision-based sensors can be used to detect information about the immediate working

environment with a specific interest range of the region. The information can be then

extracted with image processing algorithms for stabilisation, navigation and further infor-

mation collectoin [59]. For example, determine the distance to particular objects in the

2D image by using complex processing algorithms [60]; classifying the type of objects by

running feature detector and extractor [61]; distinguish motion in a scene by using optical

flow technique [62]; Exploit 3D reconstruction method for navigation and mapping [63].

Vision-based sensors play a vital role and prove to be a primary direction for autonomous

UAV navigation [62, 30, 64]. Firstly, they can provide sufficient information about the

UAV’s immediate working environment. Secondly, they are suitable for the perception

of dynamic obstacles due to their high anti-interference ability [64]. Lastly, vision-based

sensors have the advantage of lightweight, low power consumption and relatively low cost

[30].

However, there are a few challenges to apply vision-based sensor for autonomous

UAV navigation [11, 65]. The first challenge is due to the characteristic of vision-based

sensors could only detect the working environment with a specific angle, which means the

sensors are required to deliver the detected obstacles with some additional information,

where the additional information could be the size of the obstacle, the distance from the

sensor to the obstacle, or angle information at different position during the flight mission.

The second challenge is that the intensity of light has a significant impact on the sensors’

sensitivity. The captured scene contains different information about the environment with

the change of illumination. It poses a great difficulty when the UAV is working in an
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environment with frequent change of light since the perception can only extract a limited

feature with weak illumination. Furthermore, the performance of vision-based sensors

can be affected by several other factors, such as the resolution of the image, capturing

time, different structures of the obstacles from the environment.

LiDAR

LiDAR (Light Detection and Ranging) refers to the remote sensing techniques which

utilise light in the form of a pulsed laser to directly measure ranges to different points on

the surface of the object, then construct the obstacle’s 3D geometry in conjunction with

the various measurements. It provides 3D digital representations (such as point cloud)

within a given Field of View (FoV) [58]. LiDARs can be either 2D or 3D. In order to

achieve a 3D representation of the environment, as a laser beam is highly concentrated,

either the laser scanner needs to change its viewing angle periodically, or multiple laser

beams are positioned from different angle together so that they cover the given part of a

3D object.

The performance of LiDAR is heavily influenced by the range parameter, which de-

fines the maximum distance they can detect, and determines the distance to objects. The

range is profoundly affected by the reflectivity of the obstacles’ surface, as well as weather

conditions (such as humidity). Despite those disadvantages, LiDar sensors are capable of

measuring the direction and distance to an object directly, while almost other types of

sensors require significant processing of the perceived environment data.

Radar

Radar technology is frequently used to measure obstacles’ distance and velocity. Simi-

larly to the acoustic-based localisation techniques, it measures the obstacle’ distance by

emitting a radio wave which travels at the speed of light, then calculate the distance be-

tween the radar and the obstacle with the measured ToF. On the other hand, obstacles’

velocity is measured by detecting the change of frequency or wavelength with respect to
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the obstacle, which is moving relative to the radar device caused by the Doppler Effect,

whereby the obstacle’s velocity is proportional to the returned signal.

Due to the fundamental principle of how radar-based sensor works, it emits broad

wave and measure by the reflection of the wave bouncing back from objects. Radar waves

are by nature physically ”wide”, which means the device will also receive feedback from

other objects rather than the particular object that is being aimed at, that makes it relatively

less preferable if the UAV is working in a crowded environment.

The main advantage of radar-based sensors is that they are less affected by weather

and lightning condition compared to vision-based sensors and LiDAR. Another advan-

tage of radars is that they are capable of providing a direct measurement of the obstacle’s

relative velocity, which is essential for decision making in autonomous UAV navigation,

especially in the situation of dynamic obstacle avoidance. For these reasons, radar-based

perception is increasingly employed in collision avoidance and obstacle detection for au-

tonomous UAV navigation [66, 67].

Summary

This chapter listed the survey work for the types of sensor used for environment per-

ception, which includes vision-based sensor, LiDAR and radar. The vision-based sensor

can provide abundant information about the environment, which makes it suitable for

higher-level navigation tasks. As it is passive sensor, it requires rather complicated image

processing algorithms to extract the useful information for specific flight mission, and

the performance relies on the particular algorithm. LiDAR and radar are active sensors,

they may generally provide better observation capabilities, as the sensor can be more

dedicated and targeted towards the remote sensing objectives and, in addition, they may

depend less on the environment circumstances compared to vision-based sensors [57].

The main disadvantage of LiDAR and radar are their high operational cost and limitation

when operating in a crowded environment.

Based on the above considerations, as well as by the results in [11],
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Table 2.1: Sensor comparison ( [11])

Criteria LiDAR Radar Vision-based
short range very good very good good
long range medium very good poor
velocity measurement No Yes No
weather conditions poor very good poor
night condition very good very good limited

Table 2.1 illustrated the comparison for the surveyed types of sensors for environment

perception. As it is illustrated in the table, as all these properties are not often found in a

single technique, so to give a more accurate estimate of the world the UAVs, Researchers

have proposed different solutions for better environment perception includes cooperative

perception [68, 31] and multi-sensor fusion [69, 70]. Cooperative perception refers to the

process of multiple UAVs sharing perceived environment information, and multi-sensory

fusion refers to the concept of sharing the perceived environment from the same navi-

gation device. Each of these solutions requires the phase of the integration process of

combining (or fusion) different source of sensory information into a single observation.

The advantage of multi-sensor fusion is the reduction of uncertainty, rejection of noise,

toleration of sensor failure, increase in resolution and the extension of the sensor coverage,

which enables more accurate and robust estimation of the environment [64, 71]. Popular

fusion algorithms include Kalman Filter, Extended Kalman Filter (EFK) and Unscented

Kalman Filter (UFK) [69, 72].

2.1.3 Navigation techniques

Successful autonomous navigation relies on the UAV’s spatial awareness ability, to lo-

calise itself and be aware of the dynamic situation within the working environment. Ei-

ther through a pre-loaded map or constructing a new map during the flight mission. Both

ways require the UAV to obtain an accurate mapping system; it refers to the process of in-

tegrating the perceived environment from sensory system and represents them in a spatial
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model. This process can be described by the question ”What does the environment look

line in which to operate”, central issues relate to environmental representation and inter-

pretation of data from sensors. It plays an essential role in navigation for three principal

reasons. Firstly, a comprehensive map representation assists high-level tasks such as path

planning and obstacle avoidance, which are fundamental requirements of autonomous

UAV navigation. Secondly, the map provides an intuitive visualisation of the UAV’s im-

mediate surrounding, which allows further analysis of the explored space (such as object

recognition). Thirdly, the proper mapping improves the precision and robustness for the

navigation task. This section includes the survey work for different mapping techniques

used for UAV navigation.

Map-using-based navigation

Map-using based methods rely on UAV’s prior knowledge of the working environment

before navigation. Those maps may contain different level of details, ranging from a

complete 3D CAD model of the surrounded environment to a simple graph of intercon-

nections between the key elements from the environment. The main idea for map-based

navigation is to represent the environment with a sequence of landmarks which are ex-

pected to be encountered during navigation, the task then is to search and identify the

landmarks observed in an image. Once they are identified, the UAV can use the pro-

vided map to estimate the UAV’s position (self-localisation) by matching the observation

against the predefined landmark description in the database. The process can be divided

into four steps [73]:

1. Acquire sensory information.

2. Detect landmarks, extracting edges, smoothing, filtering, and segmenting regions.

3. Matching, identify observation and compare with the database for possible matches

according to defined criteria.
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4. Localisation, calculate the UAV’s location from the observed landmarks and the

database.

Map-based navigation system predefines the spatial layout of the environment in a

map, which enables the UAV to navigate with detour behaviour and movement planning

ability [64]. One of the key classification criteria in this approach depends on the level of

details provided by the map [74]. The primary challenge for this method is the matching

criteria; it requires a sufficient map database which is generally constrained by prior land-

mark knowledge and will cause a significant effect on the UAV’s localisation. Atiya used

a method based on online image recognition [75]; the extracted features stay invariant

in regards to UAV’s movement. This method is sufficient for the UAV to match online

images with the environment for the self-locating step. Landmark tracking algorithms de-

termine the UAV’s position, and extract landmarks from the live image and re-organised

them into consecutive scenes. The landmark can be natural features from the environ-

ment or artificial ones defined by the user. In both cases, the UAV needs to be aware of

the extracted features of the landmarks in order to track them.

A well-known example of this method is the view sequenced route proposed by Mat-

sumoto [76]. It finds the route by extracting features from a sequence of images, and

then use a matching algorithm to self-localise. During the navigation, the UAV will first

construct a sequence of images, then associate each image with a motion to a correspond-

ing target location where the sequence of motion forms the trajectory. Another technique

derived from this is the object recognition which comprehends the environment instead of

memorising. It provides the ability to recognise command objects such as desk and doors

which can be used as a landmark, then represents objects by categorising their functions

which are described by the objects’ surface for example, a desk is characterised by a

work surface and some surfaces that correspond to the support structure (legs). In this

case, the UAV utilises symbolic commands such as ”go to the corner”, which advise UAV

the landmark is a corner and the path points straight ahead. The UAV builds a 2D map

which stored the projections of the observed landmark. After the location of the landmark



CHAPTER 2. LITERATURE REVIEW 31

is projected into the map, the UAV will then generate a trajectory and employs odometry

to reach the target.

Map-building-based navigation

Map-Using-based approach requires the UAV to obtain prior information about the envi-

ronment before navigation. However, it is not always easy to generate a map, especially

with correct metrical information. Furthermore, most available maps come on external

storage devices are costly expensive and by far more extensive than the onboard memory

storage available. Moreover, most existing maps are also very likely to be inaccurate and

contain systematic errors which could reduce the reliability and jeopardise its safe opera-

tion [77]. Therefore, many researchers have proposed the method for the UAV to explore

the working environment and construct the map simultaneously.

Moravec was the first using map-building approach [78]. This method uses an interest

operator to extract images characteristics. These features were then correlated to generate

their 3D coordinate. The environment was represented occupancy grid with two squared

meter cell, along with coordinate information of the extracted features. Although this

approach can provide obstacles’ position within the environment, it did not represent the

environment with a meaningful model. Occupancy grid-based strategies usually require

a significant amount of computational capacity and cause delays if the UAV is working

within a complicated environment [36].

As an alternative, topological representation has been used extensively for map-based

navigation. The map is simplified with only vital information remains, such as nodes

linked by links where nodes represented the most dominant characteristic of the work-

ing environment, and links represent direction, time and other relationships between the

nodes an excellent example of the topological map the London underground map. How-

ever, topological maps lack some details such as scale, a distance which could potentially

cause efficient navigation for the UAV. Thrun went one step further with a remarkable

contribution; He proposed a method by integrating the best of occupancy grids and topo-
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logical maps for navigation [79]. The system first constructs an occupancy map with

neural networks and Bayesian integration technique, where the occupancy map is then

transformed into a topological map. Hornung has proposed a solution of representing 3D

environment models by classifying the occupied, free and unknown space [8]. The envi-

ronment is described with octree representation, where the octree contains eight children

segmentation, which allows the system to store and update the 3D models efficiently.

Mapless navigation

Map-less navigation refers to the navigation system that does not need knowledge of the

environment to operate. It operates by observing and extract elements from the environ-

ment, such as optical flow; sonar; object features; appearance; object recognition; or any

other vital environmental features can be used to navigate. It is not required for the UAV

to obtain the absolute (event relative) position of those objects within the environment.

However, the navigation process is constrained by those elements.

Optical-flow-based method As an animal or a UAV moves, the image of the visual

environment moves on its retina, the changing pattern of apparent motion between the

observer and the scene is called optical flow. This optical flow contains several vital

sources of information [80]. For example, a car’s position can be estimated by analysing

the associated camera images, once the position is estimated, the relative motion can be

calculated by comparing the according to image at a different frame. Hultqvist proposed

a solution to detecting and localising overtaking vehicles by using 1D optical flow [62].

It works by tracking and evaluating the optical parallel to the vehicle’s motion, and then

estimate its motion based on those features. The system was concluded to be capable

of detecting overtaking vehicles and their dynamic position relative to the sensor itself.

Santos-Victor et al. have developed an optical-flow-based system to emulate the flying

behaviour of the bee [81]. The system contains two cameras mounted on each side of the

UAV and measures velocities by calculating the differences in optical flow perceived from
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each side. While the UAV is moving along the centre of a corridor, the UAV continues

if both velocities are equal, and moves to the side with slower velocity if there is any

difference. The limitation of this approach is that the walls need to be well textured for

the system to perceive enough optical flow data.

Apperance based method This approach is based on recognising the previously recorded

image, the UAV then self-localise and operate by comparing current received image with

old ones. The process can be divided into two steps [74]. Firstly, extract prominent

features from the environment and stored them as templates where the templates contain

specific position information, which is then linked with the appropriate control command.

Secondly, during the navigation process, the UAV has to recognise the environment and

self-localise by matching the current image with the stored template. Zhou et al. proposed

an appearance-based method by utilising multi-dimensional histograms [82]. The his-

togram contains various features extracted from a pre-recorded image, which consists of

colour, texture, gradient and edge density. The matching and self-localising are achieved

by constructing a new multi-dimensional histogram from the current image and compare

them with the stored one. Storing those feature in a histogram bring two main advantages:

it requires less computation capacity, and the correlation process is more efficient than full

images.

Object recognition based method For the previously discussed appearance-based ap-

proaches, in most cases, the UAV reaches its target by only having limited sequences of

images or a few pre-defined images of target goal that it can use to track and pursue.

Kim and Nevatia have proposed an alternative method which utilises symbolic naviga-

tion approach instead of the appearance-based method to self-localise by memorising the

environment [83] [84]. For this method, the UAV manoeuvres itself by taking symbolic

commands such as ”go to the door on the left” or ”take the main exit” etc. The system

then extracts information from those commands to recognise the environment and the tra-

jectory it needs to follow to reach the target. For example, a command such as ”go to



CHAPTER 2. LITERATURE REVIEW 34

the corner behind you” contains the information that the landmark is a corner, and the

trajectory command is going to the opposite direction the UAV is facing. The UAV builds

an occupancy grid map called a squeezed 3D space into 2D space map or s-map. Which

is a 2D projection of landmarks as they are recognised. After the location of the target

landmark is transferred to the s-map, the UAV calculates the trajectory and self-localising

with a GPS-like path planner and employs odometry to approach the target.

Conclusions

This section discussed different mapping techniques used for the navigation system. The

reviewed solutions are classified into three categories: mapping-using, map-building and

mapless. The primary challenge for this map-using-based method is to find an appropri-

ate algorithm for environment representation and define the dynamic matching criteria.

For the map-building system, the UAV build the whole map by itself and simultaneously

self-localise within the environment during map construction. An efficient map building

system should have the appropriate combination of the sensory system to perceive suffi-

cient data from the environment in the navigation process and build a map in regards to

obstacles that need be avoided and safe zones for flight [36]. Map-less navigation refers to

the UAVs that operate without environment information. The main limitation for current

mapless navigation is that there is no global environment representation, and most of the

techniques can only be achieved in an indoor environment [85] [36].

2.2 Path planning

This section includes the survey work has been taken out for path planning algorithms. A

comparison table is given at the end the section includes the performance of various path

planning algorithm concerning their operational and computational aspects.
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2.2.1 A star algorithm

A∗ can be viewed as an extension of Dijkstra algorithm; it was first published in 1968

and corrected in 1972 by Harte [42] [86], it is a tree search algorithm that guarantees

to find the existed optimal path from a given initial node to a goal nod. It reduces the

pathfinding problem to a graph searching by fitting the graph into the space, then uses

a heuristic function h(n) to estimate the lowest cost path from the start point to the goal

point in addition with the local path cost g(n), therefore to construct a total cost func-

tion f (n) = h(n)+g(n). The algorithm finds the optimal path by continually updating the

lowest cost path and propagate path data to the successor node. The algorithm’s complete-

ness, the time complexity is highly related to the heuristic function because it determines

which node to be expanded nextly, larger estimates usually result in fewer nodes being

expanded. Thus, the trade-off between speed and accuracy can be used to adjust the al-

gorithm according to the system requirement. However, A∗ will only be admissible if it

provides a lower bound to the shortest path distance and it is consistent, which is not al-

ways the case in practice since then it is possible for the heuristic function to overestimate

the distance to the goal.

2.2.2 Voronoi diagram

Voronoi diagram is constructed from the known threat, and it partitions a plane into sub-

planes based on the distance to points in a specific subset of the plane. The set of points

is called Voronoi seed1 which is specified in advance. It constructs a corresponding re-

gion where all consisting points within the region are closer to the seed than any others;

this region is called Voronoi cell. The boundary between each Voronoi cell forms a set

of lines that are called Voronoi edge, where all points on edge are equidistant from the

corresponding Voronoi seeds. An example of a Voronoi diagram with a finite set of points

{p1, ...., pn} in Euclidean plane is given in Figure 2.2. Where the dot represents the seed,

and its corresponding Voronoi cell consists of all the points where their distance to the site

1also called Voronoi site or Voronoi generator
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is less or equal to the length to any other sites. Each cell is obtained from the intersection

of half-space, and hence it is a convex polygon where the line segments of the VD are all

the points in the plane that have the same distance to their adjacent seeds. The vertice is

the point of having the same distance to three or more seeds [5].

The properties of the VD make it an accessible mechanism for constructing a roadmap

for path planning algorithms [87, 88], to use the obstacles’ location as Voronoi seed and

the Voronoi edge as the flight path which maximises the UAVs’ distance from the closest

obstacle. However, the experiment result showed the VD roadmap algorithm complete

with information beforehand on a 2D map, but it has some limitation within a dynamic

environment [88].

Figure 2.2: A Voronoi diagram of 11 points in the Euclidean plane [5]

2.2.3 State-space-based algorithm

For a UAV within working airspace, the dimension of the system is determined by the

dynamic characteristics of the vehicle, which consists of velocity, position, orientation

and angular rate. Each of those characteristics can be divided into sub-elements along x,

y, z axis, therefore for a total of 12 variable, which is known as the state space [89]. State

space-based algorithms work by decomposing the vehicle’s state space into grids, and

search for the optimal path satisfies system requirement (such as safety, time-efficient,

etc.) within the grid. However, it is sophisticated to solve a real-time implementation due
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to the high dimensionality of the state space; many implemented algorithms may reduce

the set of states to represent the UAV’s physical dynamics characteristics.

For example, Yu [6] proposed a rolling optimisation algorithm based on reduced state

space. In order to solve a 2D example of state space, the turning angle for each UAV is

delimited to 45◦ when flying horizontally. As it is shown in the right part of Figure 2.3,

it is not possible for the UAV to reach the red marks for the next move, there are three

green marks achievable for each UAV, hence 3N states for N UAVs, which constructs the

possible future states for the next interval.

Figure 2.3: Top view for a collision case [6]

2.2.4 Geometric based algorithm

Geometric based approach involves generating the position and orientation trajectories in

Cartesian space, This types of algorithms solve the problem by purely pursuing geometric

law and it is the most flexible types of algorithm surveyed in this thesis, as the algorithm

properties such as completeness, optimality, and etc. are totally depended on the shape of

the Cartesian spatial curves. An example algorithm is the point of closest approach [7].

Figure 2.4 shows the geometry for two UAVs flying in a 2D horizontal plane, to anal-

yse the conflict detection, the miss distance vector ~rm is defined [90]:

~rm = ĉ× (~r× ĉ) (2.1)
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Where ~rm is the relative distance vector from UAV ’B’ to UAV ’A’ and ĉ is the unit

vector of~c of the relative velocity vector~c. The miss vector ~rm and relative motion vector

~c are orthogonal:

~rm×~c = 0 (2.2)

The Point of Closest Approach can be derived with the relation between ~rm and~r:

~rm =~r+~c · τ (2.3)

The Time of Closest Approach τ can be derived with equation ( 2.2) and ( 2.3):

τ =−~r ·~c
~c ·~c

(2.4)

Figure 2.4: Relative motion of two UAVs in a horizontal plane [7]

From equation 2.4, it is known that τ < 0 when the two UAVs are getting further.

Therefore, it is essential to analyse the conflict detection when τ > 0; it is considered to

be a potential collision when ~rm < rsa f e, where rsa f e is the pre-defined minimum protected

distance for two UAVs navigate without collision.
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Figure 2.5: Relative motion of two UAVs in a horizontal plane [7]

As it is illustrated in figure 2.5, it is most efficient for both UAVs heading left in

order to increase the miss distance to avoid the potential conflict; otherwise, it will take

a longer distance to avoid the conflict if heading for the right.Vector sharing resolution

was introduced to resolve UAV’s manoeuvre in the line of miss distance vector [7]. This

method gives each UAV a direction unit vector ~UA and ~UB to follow. The slower UAV

takes more sharing due to its better manoeuvrability.

2.2.5 Markov decision process

Markov Decision Process (MDP) is a mathematical decision-making model for stochastic

problems where the effect of an action taken in a state depend only on the current state.

In the MDP framework, the mapping from state s to a stochastic action a is known

as control policy. The reward function R(s,a) determines an instantaneous reward for the

path planner’s action a taking at each state s, e.g. a positive reward for good actions and

negative reward for bad actions. Markov assumption is referred to the property that the

next state s(t +1) only depends probabilistically on the previous state sand action a. The

ultimate goal of the path planner is to act in such a way that it maximises the long-term

reward. A MDP model can be defined by the following tuple [91]:

• S : set of all possible states.
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• A : set of all possible actions.

• R : reward function. R(s,a)

• T : probabilistic transition function, description of each action’s effect on each

state. T (s,a,s′)

The MDP algorithm can be described as various optimal with probabilistic complete-

ness. However, it has been proved that the MDP based algorithm tends to have colossal

state/action spaces, leading to the solutions intractable, which is also known as the curses

of dimensions [91].

2.2.6 Genetic algorithm

Genetic Algorithm (GA) is a powerful random search method which is adapted from the

mechanism of a natural section; it seeks an optimal solution from a population in a search

space in order to find the global solution by initialising and evolving population. It starts

by randomly selecting the first generation with a feasible solution and takes the envi-

ronment, UAV’s constraints, mission goal, and other constraints into consideration. The

algorithm then evaluates the fitness of each according to the specific optimisation criteria.

Finally, a set of individuals are selected as parents, and the mutation and crossover will

be applied to them, which the concept is that the genetic material of different members

can be combined to produce an individual that would benefit from the strengths of both

parents. This progress is repeated to create a new generation of solutions, and continue

until a pre-set value is achieved, such as a maximum number of generation, an acceptable

approximate solution, or any application-specific criterion. Due to the randomness of the

crossover operation, a genetic algorithm often suffers premature convergence [87]. There-

fore, the algorithm does not guarantee the path completeness, and high time complexity

is required.



CHAPTER 2. LITERATURE REVIEW 41

2.2.7 Rapidly-exploring random tree

Rapidly-exploring random tree (RRT) algorithm searches high-dimensional spaces by

randomly building a space-filling tree. The path planner begins at the initial location and

randomly expands a graph or tree by pushing the search tree away from previously con-

structed vertices, which allows it to search in large and high-dimensional spaces rapidly.

The vehicles are considered holonomic; neither dynamic nor kinematic constraints in the

original paper [92], But extension on this algorithm are developed for capturing these con-

straints [93], and can be immediately extended to allow for moving obstacles. It is proven

to be complete in the probabilistic sense, and to produce a trajectory that is feasible given

the dynamic constraints of the vehicle. However, there is no proof of the convergence rate

or optimality [94].

2.2.8 Potential-field-based approach

The potential fields algorithm is another dominant type of representation used in path

planning. This method treats the UAV as a point under the influence of the force field

generated by the target node and obstacle in the area. Obstacles generate repulsive forces

that repel the vehicle and target node generate attractive forces. These methods are char-

acterised with low computation but incomplete [95]. Much of the effort of adapting poten-

tial fields have been spent in overcoming the algorithm’s incompleteness. The modified

potential-field-based algorithms tested to satisfy the navigation goal can be roughly di-

vided into two categories, harmonic function-based approach, and approaches involving

solving the optimal navigation distance. The modification requires segmentation of the

working environment into an occupancy grid map with M points, where the segmentation

scale as O(MD) with the dimension D of the environment. A single navigation function

produces a trajectory for every possible starting point in the configuration space [89].
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2.2.9 Summary

Categorising the types of algorithms is not a trivial task for this project. However, it will

facilitate the choice of the appropriate algorithm by distinguishing algorithms in various

aspects: 2D or 3D path planner; global or local path; path planner with or without differ-

ential constraints, etc. Table 2.2 lists the performance of various path planning algorithm

surveyed concerning their operational and computational aspects.

UAV modeling Many algorithms have modelled the UAV as a node (point) vehicle

within the airspace, which the UAV is usually represented by node and sphere in two

dimensional and three-dimensional space respectively. For most of the small UAV appli-

cations, the node modelling method is sufficient to provide enough details for a trajectory

because UAVs do not operate in a crowded space. Another approach is to model the UAV

with its real shape, geometric information along with coordination data. Which is a much

more complicated problem for the path planner to cope with, with additional geomet-

ric and kinematic properties need to be considered, such as air dynamics caused by the

geometric model.

algorithm optimality Constantly keeping a safe distance from the obstacle is a typical

requirement for autonomous UAV. Much work has been carried out to realise this goal.

Such as multi-layer buffer zone for collision avoidance [96]; Voronoi diagram algorithm

advocates creating a path which maximises the distance between the UAV and obstacle

[87, 88]. However, taking the safest route could potentially be caused the UAV operating

on an inefficient path when the flight mission has the time or energy constraints. This

thesis will examine the trade-off between safety and efficiency optimality for the surveyed

algorithms; the algorithm is described as various optimal if it can adjust between safety

optimality and efficiency optimality.

Weighted route Some region of the world is more desirable for UAV to fly in that oth-

ers, for example, as described in section 1.4.3, it is preferable for the path planner to



CHAPTER 2. LITERATURE REVIEW 43

avoid the lousy GPS signal coverage area to achieve more accurate localisation infor-

mation. Moreover, it also can be used to deal with uncertainty like air turbulence, bad

weather, or the military restricted fly zone as listed in the objective for this project.

2D or 3D environment Path planning in a two-dimensional environment may be useful

for certain types vehicle or navigation missions, but it is not sufficient for a UAV operating

in the airspace, this thesis will examine whether the algorithms support path planning in

a three-dimensional environment.

Differential constraints In real-world, UAV operates with its system constraints, such

as maximum vehicle velocity and acceleration. In a practical case, the time has to satisfy

the equation of the vehicle’s motion, the velocity and acceleration should be constrained

with respect to the vehicle’s specification. Furthermore, the problem becomes even more

sophisticated if it is modelled in a general vehicle rather than a noded vehicle, which adds

kinematics and dynamics constraints to this model, and it will not be sufficient to model

the vehicle by a point but with more variables to represent the vehicle’s location in three

dimensional space [89].

Algorithm completeness In this thesis, the path planning algorithm is considered to be

completed if it guarantees to find a trajectory from initial point to goal point, a statement

need to be returned by the algorithm is there is no possible trajectory. Furthermore, Go-

erzen introduced the notation of resolution completeness and probabilistic completeness

depends on the type of algorithm [89]. The former one is related to the discretisation

of the solution, the completeness increases with the increase of the discretisation, and

it reaches the exact completeness when the discretisation reaches the continuum limit.

The latter one means the algorithm will reach exact completeness with infinite computing

time.
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Real time planning It is desirable for the path planning algorithm to compute the tra-

jectory in real-time, to allow the UAV to react in a dynamics environment, and any mal-

function encountered during the flight.

Static/Dynamic environment Given the often uncertain nature of the real-world prob-

lem, another critical problem when planning a path is to the ability to operate with moving

obstacles. The algorithm should be capable of operating in a dynamic environment.

Time complexity It is crucial for the path planner operate with low computational abil-

ity, to provide a faster algorithm and more rapid update for the solution, therefore a more

reliable and real-time computation without lags. This thesis will compare the time com-

plexity expressed using big O notation; each parameter is explained below [89]:

• N denotes the complexities of describing the obstacles space, and represent the

number of bits need to define this space.

• M denotes the discretisation level.

• D denotes how many dimensions for the modelled environment.

• O() denotes the algorithm is bounded from above.

• (N2) represents the performance of the algorithm is directly proportional to the

square of the size of the input data set.
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Table 2.2: Path planning algorithm comparison

UAV
Model

Weighted
Route

Algorithm
Optimality

2D/3D Differential
Con-
straints

Algorithm
Completeness

Real-time
Planning

S/D Time
Comlexity

VD node no safety 2D no yes no S O(N logN)≤
T ≤ 0(N2)

RRT both no efficiency both yes probabilistic
complete

no SD O(N logN)≤
T ≤ 0(N2)

Dijkstra node yes various both yes yes no SD O(M logN)≤
T ≤ 0(N2)

A* node yes various both yes yes no SD O(M logN)≤
T ≤ 0(N2)

NN both yes various both yes various yes S T > O(N2)

MDA node yes various both yes probabilistic
complete

yes unkown unkown

GA both yes various both yes no yes S T > O(N2)

State space both yes various both yes resolution
complete

no unkown unkown

Geometric
approach

both yes various both no depends on al-
gorithm

yes SD various

Potential
field

both various non-optimal both no unkown various various various



Chapter 3

Methodology

This chapter explains in detail the methodological approach for the simulation framework

and the autonomous navigation system. As it is illustrated in Figure 3.1, The work starts

first with the problem definition to identify the challenge faced at current stage to de-

sign an autonomous navigation system for UAV, follows by the relevant literature view to

identifying the current research gap, defining the aims and objectives for the thesis. The

experiment process starts with the design and implement of a comprehensive simulation

framework include the mathematical modelling of both the UAV and the environment

and appropriate integration with the navigation system. Navigation system design con-

tains the implementation process for mapping, localisation, cognition and control system.

Lastly, the validation steps are presented with how data is collected and evaluated for the

measurable objectives defined in Chapter 1.3 for this thesis.

46
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Figure 3.1: Methodology approach overview

3.1 Problem defination and objectives

The aim of the thesis is to design a comprehensive simulation framework for autonomous

navigation system for UAV, test the algorithm’s feasibility of spatial awareness and obsta-

cle avoidance.

Where spatial awareness is one of the fundamental requirement for the UAV system, it

is the UAV’s ability to localise itself within the working environment, two experiments are

designed to test its spatial awareness ability: 1).to estimate the UAV’s position by fusing

different combination of sensor implemented with noise, to evaluate the performance of

the localisation system. 2).to avoid a restricted area, where the restricted area is a user-

defined rectangle range defined by four coordinates points within the world coordinate

system. The UAV should constantly be aware of its current location, and avoid the area if

the proposed navigation waypoint is within or near the area.

Obstacle avoidance refers to the UAV’s ability to keep a safe distance with both static

and dynamic objects to minimise potential collisions within an unknown 3D environment.



CHAPTER 3. METHODOLOGY 48

Table 3.1: Simulated autonomous navigation system issue category

Simulation-related issues Navigation-related issues

simulated UAV dynamic mapping system

simulated working environment localisation system

simulated perception system path planning system

restricted area avoidance algorithm

static obstacle avoidance algorithm

dynamic obstacle avoidance algorithm

control system

In order to do this, the UAV should be equipped with an appropriate perception system to

represent the detected objects within the environment. A path planning system is therefore

required to determine an appropriate sequence of waypoints to the target location without

colliding with the detected obstacles. Additionally, for the dynamic obstacle avoidance,

the UAV should be able to predict the obstacle’s future range of position based on its

historical movement. Lastly, a control system is required to execute the commands to

manoeuvre the UAV to a specific location with the desired orientation.

Several issues need to be solved to simulate such a sophisticated navigation system;

they are categorised into the simulation-related and navigation-related issue, as it is shown

in Table 3.1.

3.2 Simulation framework design

The simulation framework is developed based on Rotors simulator package developed

by Autonomous Systems Lab at ETH Zurich [9], which is based on the integration of

Gazebo and ROS (Robot Operating System). ROS provides libraries and tools to facilitate

software development for the UAV autonomous navigation system. On the other hand,

Gazebo is responsible for simulation, a well-designed simulator to design UAV and test

navigation algorithms. It provides a robust physics engine, high-quality graphics, and
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convenient programmatic and graphical interfaces.

For this thesis particular, Gazebo is responsible for the simulation framework; it pro-

vides simulated UAV dynamics, sensors, as well as the working environment for the au-

tonomous UAV. ROS is responsible for the implementation of the actual navigation sys-

tem. Instead of receiving perception information from actual sensors, it processes the

simulated sensory information about the UAV’s state and the environment from Gazebo,

then converts and provides ROS compatible map and localisation information for the cog-

nition system to make the appropriate operation command. Lastly, send the command to

the control system to perform particular behaviour depends on the flight mission.

The design of the simulation framework can be split into three tasks. Firstly, the

assembly of the UAV which consists of a body and a fixed number of rotors with motor

dynamics. Secondly, A simulated environment for the UAV to work within, it should con-

tain several static and dynamic obstacles for the evaluation of obstacle avoidance and path

planning ability. Lastly, A simulated perception system, which requires the modelling and

sensor characteristics and noise models, provide necessary original information for map-

ping and localisation system. Both the UAV and environment models are described in

Simulator Description Format (SDF), which provides a solution to describe the object

and the environment with their corresponding properties, such as kinematic and dynamic

attributes, surface properties, joint friction, etc. For the perception simulation, Gazebo

sensor plugins were used to extract the desired features from the simulated environment

and UAV.

Figure 3.2 illustrates the necessary blocks for the simulation framework. This thesis

focus on the left and middle blocks. The structure of the simulation framework is designed

to match the real UAVs as close as possible to test real UAV on the right block.
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Figure 3.2: Simulation Framework overview

3.3 Navigation system design

The design of the navigation system is split into two low-level and high-level tasks, where

the low-level task serves as a fundamental function for the implementation of high-level

navigation task, such as path planning, restricted area avoidance, static and dynamic ob-

stacle avoidance.

For the low-level tasks, firstly, the UAV is required to have a map representation of

the UAV’s immediate working environment, it should contain sufficient information about

the obstacle’s location and size with respect to the environment, and provide a world co-

ordinate frame to allow the UAV to localise itself within. The mapping system received

the input information from the simulated perception units. As it is described in Chapter

2.1.2, vision-based perception is chosen for this system due to its ability of providing rich

information about the obstacle and the environment compared to LiDAR-based percep-

tion, while radar-based sensors are heavily influenced by the number of obstacles within

the environment. Secondly, the localisation system should provide accurate information

about the UAV’s state within the environment. From the surveyed work in Chapter 2.1.1,

the performance of UAV localisation can be increased with the fusion of multiple col-

laborative sensors. Hence experiments are designed to test the state estimation ability in
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different scenarios. Lastly, a control system is required in order to drive the UAV to the

target location with the desired orientation.

Figure 3.3: Navigation system overview

The navigation system’s high-level tasks include the implementation of restricted area

avoidance, static and dynamic obstacle avoidance, all of the three tasks are integrated with

the implementation of path planning.

Firstly, Restricted area avoidance is a hybrid task of both low-level and high-level.

On the one hand, it provides a second chance to prove the UAV’s localisation ability, as

the UAV is required to constantly comparing its current odometry with the user-defined

restricted area. On the other hand, with the rapid development of UAV technology, it poses

the challenge of airspace management, and there will inevitably be a certain airspace area

that the UAV is not supposed to trespassing. Restricted area avoidance is a necessity for

modern autonomous UAV navigation. The inputs for restricted area avoidance are four

coordinates which define a rectangle shape area, the UAV is required to avoid the area if

the initially proposed waypoint is within or close the area, ideally, with a relatively short

path to avoid it while navigating to the target location.

Secondly, static obstacle avoidance, the user will need to define a 3D coordinate as

the target location, along with several static obstacles within the environment which the

UAV need to avoid during navigation, with the expected outcome of UAV reaching to the

target without colliding with any of these objects.
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Table 3.2: Navigation system input & output

Inputs Outputs
target coordinate & map UAV reaching to the target location

restricted area coordinate & map UAV reaching to the target location
by avoiding the restricted area

obstacle’s dynamic position UAV reaching to the target location
by avoiding the moving obstacle

Lastly, the input for dynamic obstacle avoidance scenario is a configuration file defines

the obstacle’s trajectory, the UAV is expected to predict the obstacle’s future movement

based on the detected historical movement, and reach to the target location without col-

liding with the moving obstacle. A summary of the system input and output for each task

is given in Table 3.2.

Due to the inherent nature between path planning, restricted area, static and dynamic

obstacle avoidance, these high-level tasks are implemented together as a cognition sys-

tem. Hence the navigation system could be divided into four sub-systems to solve the

navigation tasks described earlier, Figure 3.3 shows the logical flow between each sub-

systems, the specific function and the corresponding input& output for each sub-system

is given in table 3.3.

To implement dynamic obstacle avoidance in a real-world scenario, the navigation

system needs to classify the types of objects detected from the perception system, iden-

tify the dynamic objects by comparing the revolution between UAV’s position and obsta-

cles’ position, then chose an appropriate path by predicting the dynamic obstacles’ move-

ment based on their historical trajectory. This process normally requires the mapping

system to have segmentation and feature extractor algorithm [97, 98]. Due to the limited

time constraint, the dynamic obstacle is implemented separately as a stand-alone scenario

without the segmentation and feature extractor process. Only one dynamic obstacle is

implemented to test the algorithm’s feasibility to work within a dynamic environment.
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Table 3.3: Sub-system input, output & function

Sub-systems Input Output Function
mapping system simulated visual

sensor
octomap convert visual sensory data into

octomap

localisation sys-
tem

simulate IMU UAV pose calculate UAV’s pose based on the
IMU data

cognition system octomap, UAV
pose & all system
input Table 3.2

operation
command

make appropriate operation com-
mand, comply with identified ob-
jectives in Chapter 1.3.

control system operation com-
mand

UAV
behaviour

perform the desired UAV behaviour
base on the operation command

The moving obstacle is simulated with a second UAV by executing predefined trajecto-

ries. The obstacles’ trajectories are designed to cover different scenarios compared to the

UAV’s motion (such as obstacle moving toward or away from the UAV). The experiment

results are discussed and evaluated in Chapter 6.2. Furthermore, both restricted area and

obstacle avoidance are implemented with an ideal odometry sensor which provides the

UAV’s truth state, However, A realistic localisation system is also implemented, which is

capable of estimating the UAV’s state by fusing different sensors such as IMU, odometry

and GPS, the result is evaluated and discussed in Chapter 5.

3.4 Data collection and evaluation

This section includes the data collection and evaluation method for each of the scenarios.

Rosbag and RViz (Ros Visualisation) are used extensively for logging experiment data.

Rosbag plugin allows the user to efficiently record and playback the executed simulation

by storing ROS message data in a bag-formatted file. The recorded ROS message data

can then be analysed and visualised with various tools. RViz is a 3D visualiser for dis-

playing various sensor data and state information from ROS; it is used extensively for the
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Table 3.4: Case study data collection

Case study Data Tool
restricted area
avoidance

UAV trajectory; RA parameter; gazebo animation;
rosbag

static obstacle
avoidance

UAV trajectory; map information;
observation; operation time

gazebo animation;
RViz; rosbag

dynamic obstacle
avoidance

UAV trajectory; dynamic obstacle;
observation; operation time

gazebo animation;
RViz; rosbag

visualisation and examination for UAV’s perception system.

A mixture of qualitative and quantitative method is used to evaluate the experiment

results. It includes direct observation from both Gazebo 3D animation and RViz, in addi-

tional with numerical analysis of the experiment data from rosbag.

3.4.1 Restricted area avoidance

Restricted area avoidance is evaluated with Gazebo simulation visualisation and rosbag

package. The visualisation provides an intuitive way of observing the executed trajectory

with the defined restricted area. Another aspect of restricted area avoidance is to find

a relatively short path while exiting the restricted area; different scenarios are designed

to test the algorithm’s ability to find the exiting corner by placing the UAV at different

positions to the restricted area. The executed trajectory can be evaluated by accessing to

the recorded rosbag data.

3.4.2 Static obstacle avoidance

The primary method to evaluate static obstacle avoidance performance is by observing

the visualisation from both gazebo simulator and RViz. Where the gazebo simulator pro-

vides the actual human-readable real-world animation of the navigation process, on the

other hand, the RViz provide the sensory visualisation how the UAV is perceiving about
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the working environment, include the map resolution, UAV’s position and orientation in

relation to the map etc.

As the aim of the thesis is to provide an outdoor navigation algorithm, the primary

solution to avoid collision with obstacles is to ’go-up’ where there is a high chance of

free airspace. Two sets of the environment model are provided to test the algorithm’s

ability when the UAV is working within an outdoor and roofed environment. The recorded

operation time from gazebo simulator (or from ROS log data) is used to evaluate the

algorithm’s time efficiency. It is also noted that the UAV tend to struggle to find a valid

path when it is working in a complex environment with a lot of obstacles, and relative open

airspace with extremely small obstacles. Hence rosbag and RViz packages are chosen to

evaluate the algorithm limitation by observing the UAV’s position and orientation relative

to the map representation. Lastly, different experiments are designed to evaluate effects

caused by mapping and cognition system, which includes the map resolution size, the

calculation of the next waypoint, and the region of interest covered for obstacle detection.

3.4.3 Dynamic obstacle avoidance

For dynamic obstacle avoidance case study, the UAV is given a fixed target location and

expected to reach the target by avoiding the detected moving obstacle. It is important for

the algorithm to deal with different scenarios how the moving obstacle’s trajectory is in

relation to the UAV’s movement, such as the obstacle is moving in the same direction or

opposite direction with the UAV. Chapter 6.2 contains a detailed report of different en-

countered scenarios between UAV and the dynamic obstacle. Furthermore, the algorithm

works on the basis of predicting the obstacle’s future position range from the estimated

obstacle’s velocity, where the obstacle’s velocity is estimated by comparing its historical

displacement within a fixed time interval. Experiments are designed to evaluate how the

time interval affects the accuracy of velocity estimation. The executed UAV and obstacle’s

trajectory are evaluated by accessing to the record rosbag data.



Chapter 4

Navigation system design

4.1 Mapping System

This section includes the design and implementation of the mapping system. As it is

shown in Figure 4.1, the mapping is divided into two steps: perception and map construc-

tion.

The perception step utilises a depth camera to convert the simulated environment from

Gazebo into ROS compatible point cloud data. Because Gazebo and ROS are separate

projects that do not depend on each other, the simulated sensor from Gazebo cannot di-

rectly communicate with ROS, libgazebo ros openni kinect.so plugin is used to make the

depth camera data publish point clouds to ROS topics by defining the relevant namespace

and topics. Furthermore, the plugin also allows the user of fine-grained control over how

the environment is perceived with several parameters. Table 4.1 shows the depth camera’s

relevant parameters which can affect the mapping performance and their values. Due to

limited time constraint, depth camera is not implemented with simulated noise, therefore

with zero value for all the distortion tags.

56
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Table 4.1: Perception unit parameters for mapping system

Parameter Description
frame rate refers to the number of individual frames that comprise each

second of the recorded video, also known as FPS (frames per
second.)

max range defines the maximum distance that the depth camera can detect,
with defaul value of 10 meters.

width & height the resolution of the recorded video, with default value of
640×480.

horizontal fov Field of View is the extent of the observable environment that can
be detected by the depth camera, horizontal FoV describes how
wide the depth camera can detect horizontally, with default value
of 2 radian.

near&far clip near &far clip distance refer to the near and far plane of the view-
ing frustum, anything closer than the near clips distance or further
than the far clip distance will not be displayed. the far clip value
should not exceed the max range. the default value are 0.1 and 10
meter (s) by default.

pointcloud cutoff
min&max

similar to near&far clips, defined the viewable processed point
cloud data range. only the objects within this range are dis-
played as point cloud data, the min&max value cannot exceed
the near&far clip value.

distortion K1 K2
K3 T1 T2

defines the distortion of the depth camera.

Figure 4.1: Mapping system overview
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Figure 4.2: An octree example [8]

Octomap is used for the map construction step, and it converts the processed point

cloud data into a map representation [8] . The environment is described with octree rep-

resentation, where the octree is a node that contains eight children nodes, which is more

efficient for memory storage. It can be used to describe 3D space occupancy. The 3D en-

vironment is segmented into multiple spaces which are denoted as a node, and each space

can be further segmented into eight sub-space with the same size, denoted as octants. The

segmentation process can be applied recursively until the map reaches the desired reso-

lution to sufficiently represent more complex parts of the working environment. The left

part of Figure 4.2 shows an example of an octree, where the free cells are shaded white

and occupied cells are shade black, along with its tree representation.

To use the octomap package1, the user needs to add an octomap rosnode into the

launch file by:

<node pkg="octomap_server" type="octomap_tracking_server_node" name

↪→ ="octomap_talker" output="screen" args="$ (arg path)">

<param name="resolution" value=" (with its value)" />

<param name="frame_id" type="string" value=" (with its value)" />

1available at //github.com/OctoMap/octomap.git
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<param name="sensor_model/max_range" value=" (with its value)" />

↪→ %

<remap from="cloud_in" to="/firefly/vi_sensor/camera_depth/depth/

↪→ points" />

</node>

As it is described in the ”param name”, it will launch the octomap rosnode with user-

specified properties of map resolution, maximum range (cannot exceed the max range of

the depth camera) and the world it will listen to. Lastly, the ’remap’ line connects the

”/firefly/vi sensor/camera depth/depth /points” topic as the input topic (”cloud in”) to the

mapping system which will transfer the point cloud data into octree representation. Figure

4.3, 4.4 and 4.5 shows the visualised transformation process.

Within all the parameters, resolution can directly affect the mapping and navigation

performance, as higher resolution (smaller value) provides better detail of the environment

but requires more computational capability, and vice versa. Chapter 6.1 contains a details

report on how resolution affects the autonomous navigation.

Figure 4.3: The simulated real world environment
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Figure 4.4: The environment represented in point cloud

Figure 4.5: The environment represented in octomap

4.1.1 Sensor range and mounting position

Figure 4.6: A depth camera with its available sensing range in 2D
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Figure 4.6 shows a 2D horizontal overview of the Field of View (FoV) in the camera’s

first-person perspective, with a maximum distance of d and viewing angle of θ . However,

as the camera is not mounted by the edge of the UAV and the sensor will constantly

perceiving data about the UAV itself, A cutoff value c (point cloud cutoff in Table 4.1) is

introduced to eliminate the unnecessary sensory information, any objects detected within

the cutoff range will be ignored. As it is illustrated in Figure 4.7, the UAV is represented

by a rectangular with width of w, with horizontal FoV of of θ and cut-off value c. The

shaded area represents the cutoff range that will not be displayed, which results in a

minimum viewing width of wmin. The ideal value for wmin should be equal to the widthw

of the UAV for the sensor to perceive sufficient information from the environment while

neglecting the UAV itself. Hence the ideal cutoff value c can be calculated with given

horizontal FoV angle θ and UAV width w, by the following equations.

wmin = w = 2× c× tan
θ

2

c =
w
2
× cot

θ

2

(4.1)

Figure 4.7: Available sensor range with compensated cutoff value in 2D
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4.2 Localisation system

One of the essential aspects to allow stable and robust navigation is the access to an accu-

rate knowledge of the state of itself, it normally consists of UAV’s position and orientation

with respect to the working environment. While IMU measurement is available on all of

today’s UAVs, it measures acceleration and angular velocity by using a combination of

accelerometers and gyroscopes. Mostly, the acceleration measurement is integrated into

velocity then further integrated into position information where the orientation estima-

tion is calculated straight from the angular velocity measurement. IMU measurements

are normally available as high rate with low delay. However, the measurements are cor-

rupted with noise and time-varying bias [9]. This chapter includes the implementation

process of fusing an IMU sensor with a generic odometry sensor to achieve for UAV’s

state estimation. Experiment results are evaluated and discussed in Chapter 5.

4.2.1 IMU model

The IMU is assumed to consist of a certain bias (ba for acceleration, bω for angular veloc-

ity) and additive, zero-mean Gaussian noise η . Thus, the IMU model for angular velocity

(θ ) and acceleration (a) are given in Equation 4.2 and 4.3. Where am is the measured

acceleration in m/s2, ωm is the measured angular velocity in degrees/sec. The biases

(ba,bω ) are modelled as time-derivative, with zero mean Gaussian stochastic process in

Equation 4.4 and 4.5. A plugin is used to attach the simulated IMU sensor to the UAV

by including imu plugin macro xacro file in the UAV’s description file with the correct

namespace to connect to the UAV and sensor noise parameters. The parameters are iden-

tified on a real IMU sensor, ADIS16448 by Analog Devices2. As it is shown in Table 4.2,

the IMU plugin will take the noise parameter as input and output sensor msgs/Imu data

type with the measured orientation3angular velocity, linear acceleration, and their noise

2datasheet available at https://www.analog.com/en/products/adis16448.html
3ADIS16448 does not provide straight orientation measurement, the orientation is calculated based on

the angular velocity,hence the associated value will be set to -1
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Table 4.2: IMU system inputs & outputs

Input Output

parameter value unit

gyroscope noise density 0.0003394 rad/s/sqrt(Hz) orientation

gyroscope random walk 0.000038785 rad/s/s/sqrt(Hz) orientation
covariance

gyroscope bias correlation time 1000.0 s angular velocity

gyroscope turn on bias sigma 0.0087 rad/s angular velocity
covariance

accelerometer noise density 0.004 m/s2/sqrt(Hz) linear velocity

accelerometer random walk 0.006 m/s2/s/sqrt(Hz) linear velocity
covariance

accelerometer bias correlation time 300.0 s

accelerometer turn on bias sigma 0.1960 m/s2

covariance respectively.

a = am−ba−ηa (4.2)

ω = ωm−bω −ηω (4.3)

ḃa = ηbω
(4.4)

ḃω = ηba (4.5)
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4.2.2 Generic odometry sensor

An odometry sensor is used to mimic any generic on-or off-board tracking system such as

GPS. The plugin is responsible for publishing nav msgs/Odometry messages type. This

means position, orientation, linear and angular velocity of the UAV are directly provided

by a Gazebo plugin. The noise parameter of the odometry sensor can be set in the UAV

description file with odometry plugin macro xacro definition. As it is shown in Table

4.3, the noise parameters are available as normal or uniform distribution for both pose

(position and orientation) and velocities (linear and angular), the implemented odometry

sensor is simulated with noise model of the normal distribution as the standard deviation

of additive white gaussian noise, with the corresponding unit. The position noise value is

implemented based on the standard deviation of daily worst site 95th percentile position

error for 2016 [99]. The noise for linear velocity is based on the GPS accuracy analysis

in [100]. Although it is possible to use GPS to determine the orientation and angular

velocity, it is not generally used for on Earth or in the air. GPS provides the orienta-

tion typically through its onboard compass or other types of sensor, the orientation noise

is chosen based on a low-cost gyroscope ADxRS450 provided by Analogue Devices 4,

Similarly to the implemented IMU, the orientation is also calculated based on the angular

velocity measurement, therefore, no noise for the orientation measurement.

4.2.3 Sensor fusion

Robot localisation package is used to fuse the simulated IMU and odometry sensor data to

achieve UAV’s state estimation [101], which is implemented as nonlinear state estimator

for any UAV moving in 3D space. It provides two types of Kalman Filter techniques:

Extended Kalman Filter (EFK) and Unscented Kalman Filter (UKF). EKF is generally

faster, and UKF is slower but more accurate for nonlinear transformations. However,

EKF is proved to perform as good as UKF for robot localisation problem [102], only

EFK is implemented for the localisation system.

4datasheet available at :https://www.analog.com/en/products/adxrs450.html#product-overview
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Table 4.3: Odometry system inputs & outputs

Input Output

parameter value unit

noise normal position 0.37/0.37/0.36 m position

noise normal quaternion n/a rad position
covariance

noise normal linear velocity 0.0012/ 0.0012/
0.003

m/s orientation

noise normal angular velocity 0.00026 in rpy rad/s orientation
covariance

noise uniform position n/a m linear
velocity

noise uniform quaternion n/a rad linear
velocity
covariance

noise uniform linear velocity n/a m/s angular
velocity

noise uniform angular velocity n/a rad/s angular
velocity
covariance
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The package is capable of fusing any arbitrary number of sensors, and functions when

the UAV is equipped with multiple IMUs or multiple odometry source to track the the

UAV’s state in 15 dimensions [x,y,z,roll, pitch,yaw,x′,y′,z′,roll′, pitch′,yaw′,x′′,y′′,z′′].

Different ROS message type is supported, including the sensor msgs/ Imu and nav msgs/

Odometry from IMU and odometry model respectively. More importantly, it supports

continuous estimations, which means the localisation system will continue to estimate

the UAV’s state via IMU when there is no external odometry data. Finally, the package

also provides navsat transform node, which aids in the integration of GPS data when

transferring the simulate navigation system into a real UAV.

EKF model

The EKF algorithm can be divided into two parts: predict and update. In the predict

part, the EKF estimates the UAV’s states base on the sensor measurements along with

their uncertainties. Once the system receives the next sensor measurement, the previous

precited state is then will be compared with the sensor measurement and updated with a

weighting factor (Kalman Gain), with more weight given to the sensors with lower noise

parameter. The process is recursive, and it operates in real-time with only the present

sensor measurement and previous calculated UAV’s state and its covariance matrix.

xk = f (xk−1)+wk−1 (4.6)

zk = h(xk)+ vk (4.7)

Equation 4.6 and 4.7 shows the mathematic model for the predicted UAV’s state and

sensor measurement. where xk and zk are the predicted state and predicted measurement

at time k respectively. f () and h() are nonlinear function for state transition and sensor

measurement. w and v are normally distributed process noise and measurement noise

with subnote denoting the time sequence (k− 1 and k). However, f ()and h() can only
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be applied to the covariance with the computation of a partial derivative (the Jacobian)

matrix. The Jacobian is evaluated with the predicted state at each time step. This process

essentially linearises the non-linear function around the current estimate.

x̂k = f (xk−1) (4.8)

P̂k = FPk−1FT +Q (4.9)

Equation 4.8 and 4.9 shows the linearised estimation model for UAV’s state and sensor

measurement respectively. These two equations carry out a prediction step that projects

the current state estimate and error covariance forward in time. The estimated error co-

variance P is projected via F , which is the Jacobian of f (), and then perturbed by the

process noise covariance Q (As it is given in Table 4.4).

K = P̂kHT (HP̂kHT +R)−1 (4.10)

xk = x̂k +K(z−Hx̂k) (4.11)

Pk = (I−KH)P̂k(I−KH)T +KRKT (4.12)

After predicting the UAV’s state and sensor measurement, the algorithm now needs to

determine the Kalman Gain to update and correct those predicted values. As it is shown

in Equation 4.10, the Kalman Gain is calculated with the estimate covariance matrix P̂k

(where P̂0 is the initial noise covariance described in Table 4.4), along with observation

model matrix H and measurement covariance R from the sensor. Equation 4.11 and 4.12

gives the model for the updating UAV’s state and error covariance with Kalman Gain,

where I denotes the identity matrix. In standard EKF formulation, H should be a jacobian

matrix of the observation model function h(). In robot locolisation package, H is simpli-



CHAPTER 4. NAVIGATION SYSTEM DESIGN 68

fied into an identity matrix under the assumption that each sensor produces measurement

of the estimated state [101].

Effect of noise covariance

The performance of EKF localisation is significantly affected by the selection of the as-

sumed covariance matrices Q, R. P̂0 is coupled with the presumed initial state and affects

the initial convergence of the filter. In many situations, the effect of P̂0 is not significant.

The Q and R can be considered as the weighting factors between the estimation and the

measurement equation. The ratio is represented as the Kalman Gain equation (Equation

4.10) where larger Q is equivalent to less confidence of these state equations and more

correctness with the measurement update. Likewise, Larger R is equivalent to less confi-

dence in the measurement and less correctness with the measurement update.

For this thesis particularly, the value of measurement noise R is calculated from the

combined sensor noise from IMU and generic odometry sensor (Give in Table 4.2 and

4.3), it is represented using ”standard deviation” (σ ) of the measured value from true

values during the calibration. Hence, the performance of the filter will mainly rely on the

choice of the process noise covariance. Higher Q value results in more weight to the noisy

measurement and the estimation accuracy are compromised. On the other hand, lower Q

results in better estimation accuracy but with a time lag required. Choice of the process

noise is based on the trade-off between estimation accuracy Vs time lag.

<node pkg="robot_localization" type="ekf_localization_node" name="

↪→ ekf_se" clear_params="true">

<rosparam command="load" file="$ (find robot_localization)/params/

↪→ ekf_template.yaml" />

</node>

To utilise robot localisation package for state estimation with EKF, the above code

is added to the simulation launch file. Where the first line states the simulation to in-

clude the robot localization node within its EFK mode, the second line includes the
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Table 4.4: Sensor fusion configuration parameters

Parameter Description
frequency The frequency that the node will output a state estimation. The filter

will not work until it receives at least one message from any one of the
inputs. It will then run continuously at the frequency specified here, re-
gardless of whether it receives more measurements. set with the default
value of 30Hz.

sensor
timeout

The period, in seconds, after which we consider a sensor to have timed
out. In this event, we carry out a predicted cycle on the EKF with-
out correcting it. This parameter can be thought of as the minimum
frequency with which the filter will generate new output. Defaults to
1/ f requency if not specified.

imu/odom
config

A 1× 12 boolean matrix defines which sensor reading will be used
as input for the filter, and it allows the user to control over which
values from each measurement are fed to the filter. it is ordered as
[x,y,z,roll, pitch,yaw,x′,y′,z′,roll′, pitch′,yaw′,x′′,y′′,z′′]

imu/odom
differential

When measuring the UAV’s pose from two sensors, the filter will face
the problem of switching between each measurement when both sensors
are under report of covariance. When the differential mode is enabled,
all pose measurement will be converted to velocity data by differentiat-
ing the pose. This mode has no effect on velocity measurement. Set to
false.

imu/odom
relative

When this mode is enabled, the first measurement is treated as ”zero-
point” for all future measurement. set to True

process
noise
covariance

the process noise matrix, the matrix represents the noise the fil-
ter adds to the total error after each prediction step, ordered as
[x,y,z,roll, pitch,yaw,x′,v′,v′,roll′, pitch′,yaw′,x′′,y′′,z′′]

initial noise
covariance

This represents the initial value for the state estimate error covariance
matrix, Setting a diagonal value (variance) to a large value will result in
rapid convergence for initial measurements of the variable in question,
ordered as [x,y,z,roll, pitch,yaw,x′,y′,z′,roll′, pitch′,yaw′,x′′,y′′,z′′]
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Table 4.5: Filter input state from imu &odometry sensor (T:True F:False)

x y z roll pitch yaw x′ y′ z′ roll′ pitch’ yaw′ x′′ y′′ z′′

imu
config

F F F F F F F F F T T T T T T

odom
config

T T T F F F T T T T T T F F F

ekf template.yaml file which contains the configuration file describes how the sensor fu-

sion process is implemented. Necessary parameters within the ekf template.yaml file and

their descriptions are given in Table 4.4. Succesful configuration leads to the node publish

a nav msgs/Odometry type of message on firefly/odometry/filtered topic, which contains

the UAV’s state estimation in 15 dimensions. The yaml file links the output data from IMU

and odometry sensor by specifying the output topic from firefly/vi sensor/ground truth/

odometry and firefly/vi sensor/imu respectively.

In robot localisation, there are two general rules about the sensor choice for fusion:

• If the odometry provides both position and linear velocity, fuse the linear velocity.

• If the odometry provides both orientation and angular velocity, fuse the orientation.

The above snippet holds true most of the time because most odometry sources approx-

imate the absolute position by integrating velocity. However, in this thesis particularly,

the odometry sensor is implemented to mimic GPS, It can be treated as a combination of

single GPS with a gyroscope, and the orientation is provided by angular velocity measure-

ment from the gyroscope. Hence, the odometry sensor provides position, linear velocity

and angular velocity measurement for the EKF filter. On the other hand, the IMU pro-

vides its angular velocity and linear acceleration measurement. The integration state is

given in Table 4.5. Other combinations of filtered results are evaluated and discussed in

Chapter 5.1.
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4.3 Cognition system

This section includes the design and the implementation for the cognition system, along

with selected objectives to support the aim of achieving collision-free navigation and

spatial awareness. Where the experiment results are evaluated and discussed in Section 6.

The remainder of the section is structured as follows:

• Section 4.3.1: implementation for spatial awareness, include the the design process

for the UAV to avoid an restricted area.

• Section 4.3.2: implementation for navigation with static obstacles

• Section 4.3.3: implementation for navigation with dynamic obstacles

4.3.1 spatial awareness - restricted area avoidance

To avoid a restricted area, the UAV needs prior information about the size, location of the

restricted area. Secondly, the UAV needs to identify potential intrusion with the restricted

area and determine an appropriate trajectory to the target while avoiding the restricted

area. However, it is futile and a waste of computer resource to run the recursive function

for the whole navigation process. A condition is given to the algorithm to make sure these

steps are only executed when the UAV is relatively close to the restricted area. Figure 4.8

shows the flowchart of the method the implemented restricted area avoidance algorithm.

It contains three main steps::

1. Constructing a bounding box with received restricted area coordinate.

2. Check whether the trajectory conflicts with the restricted area.

3. Find the exit solution if the trajectory conflicts with the restricted area.
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Figure 4.8: Flowchart of the methodology implemented for restricted area avoidance

Step 1 Figure 4.9 shows a rectangular shape restricted area with both sides aligned to

x, y-axis with maximum and minimum coordinate of (xmax,ymax) and (xmin,ymin). Thus,

the geometric shape of the restricted area can also be represented by four bounding lines

(xboundary
min ,xboundary

max ,yboundary
min ,yboundary

max ) respectively. As it is shown in Figure 4.10, the

size of the restricted area will be automatically increased by e after receiving instruction

from the user, to compensate the error from odometry sensor and the rotor control. where

e consist the distance the UAV has travelled during the response time er, the odometry

sensory distance error es, and the rotor control error ec. Due to the time constraint, system

error for the implemented system is set to be two meters by default.

e = ec + es + er (4.13)
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Figure 4.9: A user defined rectangle restricted area

Figure 4.10: Resize restricted area by introducing a buffer-zone
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Step 2 As the UAV will only start to check the restricted area when the UAV’s current

odometry is approaching any one of the four restricted boundaries, therefore it is safe to

assume the trajectory will not conflict with the restricted area when both the UAV’s posi-

tion and target lies on the same side of any of the bounding line. With the following two

conditions. 1): both the current odometry and target coordinates are located outside of the

rectangle. 2): they are located on the same side of the rectangle. As it is shown in Figure

4.11, the trajectory is considered to be safe, and the UAV will continue to navigate when

any one of the following four scenarios are met, where (xc,yc) and (xt ,yt) are coordinate

for UAV’s current position and target respectively.

• xc ≤ xboundary
min AND xt ≤ xboundary

min

• xc ≥ xboundary
max AND xt ≥ xboundary

max

• yc ≤ yboundary
min AND yt ≤ yboundary

min

• yc ≥ yboundary
max AND yt ≥ yboundary

max

Figure 4.11: Determine whether the trajectory is blocked by the restricted area
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For any others cases where the current odometry point and target points do not both

reside on the same side of the rectangle, the UAV will determine which one of the four

boundaries the trajectory will potentially intrude and corresponding exit strategy will be

given. To find out which boundary the trajectory will potentially collide into, the UAV

will first derive the line function the current point and target point by:

y− y1

x− x1
=

y2− y1

x2− x1
(4.14)

Derive Equation 4.14 to get the solution for x and y on the line:

x =
x2− x1

y2− y1
x+

x1y2− x2y1

y2− y1
(4.15)

y =
y2− y1

x2− x1
x+

x2y1− x1y2

x2− x1
(4.16)

After getting the line function (potential trajectory) between the UAV and

the target. With Equation 4.15 and 4.16 and the given rectangular information

(xboundary
min ,xboundary

max ,yboundary
min ,yboundary

max ), it is possible to find out the four intersection

points(x1,y1),(x2,y2),(x3,y3),(x4,y4) between the trajectory and the four boudning lines,

where (x1,y1) are the insection point between the trajectory and yboundary
min bounding line

and the rest are illustrated in Figure 4.12. The trajectory will be identified as potential

collision if the insection points are within the boundaries by checking the following con-

ditions.

• yboundary
min ≤ y1 ≤ yboundary

max

• yboundary
min ≤ y3 ≤ yboundary

max

• xboundary
min ≤ x2 ≤ xboundary

max

• xboundary
min ≤ x4 ≤ xboundary

max
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Figure 4.12: Intersection points between the potential trajectory and the bounding box

Step 3 After the trajectory is determined to be in potential collision with the restricted,

the UAV needs to find the appropriate exit strategy to avoid the restricted area. As it is

shown in Figure 4.13, there are two scenarios of how the trajectory conflicts with the

restricted rectangle area, the trajectory intersects with two parallel boundaries or two ad-

jacent boundaries. The different exit strategy will be given according to how the trajectory

is intersected with the restricted area.
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Figure 4.13: Two scenarios for the trajectory intersects with the bounding box

Figure 4.14 illustrated the scenarios when the trajectory intersects with two parallel

boundaries (xboundary
min and xboundary

max ). In order to exit the restricted area, the algorithm will

calculate and compare the distance of d1 and d2 from the UAV to xboundary
min and xboundary

max

boundaries respectively, the algorithm will move only in x axis according to the short-

est distance’s direction. If the two distances are happened to be equal, the algorithm

will repeat the previous step by comparing the distance from target to xboundary
min (d3) and

xxboundary
max (d4) boundaries and chose the exit corner respectively. Additionally, the de-

sired yaw will be changed to either 0 or 180 degrees for the sensor to get a view of the

surrounding environment for path planning and collision avoidance.

NOTE: There are two unique scenarios that the line function method could not solve

the problem they are when x1 = x2 and y1 = y2, which the denominator of the function

is zero and will lead the program to crash. In order to cope with this, the algorithm will

compare the x1,x2,y1,y2 coordinate value at the beginning, and treat them as the two

parallel boundaries cases, with the only exception it is only required to compare which
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corner is close to the current point, and select the more intimate way to exit the restricted

area.

Figure 4.14: Exit strategy for parallel boundaries

For the scenarios where the trajectory intersects with two adjacent boundaries, the

algorithm will always choose to exit the rectangle by moving towards to the insection

point between those two adjacent boundaries (Figure 4.15) for a fast exit, along with

appropriate yaw angle to obtain sensory information for the mapping system.
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Figure 4.15: Exit strategy when intersect with two adjacent boundaries
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4.3.2 Static obstacle avoidance

This section contains the implementation steps for static obstacle avoidance. Figure 4.16

gives an overview of the implementation for the static obstacle avoidance. As it is illus-

trated, the algorithm will start by comparing its current odometry with the target coor-

dinate. It hovers at the desired if the detected odometry from the localisation system is

within one-meter range of the desired position in both x,y,z axis. Then it will search for

the corresponding next intermediate waypoint to keep a safe distance from the restricted

area if the UAV is within the safe distance from the restricted area proposed in Chap-

ter 4.3.1. When the UAV is relatively far from the restricted area, the navigation system

will search for a next intermediate waypoint based on the UAV’s current location and the

target location, and either transfer the waypoints to the control system to execute the nav-

igation command or re-calculate for a collision-free waypoint based on the feedback from

the collision checking system. The following paragraph includes the implementation of

how to determine the UAV’s next waypoint and avoid the obstacle (s) when a potential

collision is detected. The task can be roughly broken down into three main steps.

• Calculate next waypoint according to the UAV’s current odometry and pre-defined

target.

• Check potential collision for the initially proposed waypoint.

• Find an alternative waypoint if the initially proposed waypoint is in a potential

collision.
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Figure 4.16: Flowchart for the implemented static obstacle avoidance

Calculate next waypoint

The next waypoint is calculated based on the target coordinate and UAV’s state informa-

tion, which are the UAV’s coordinate in x, y, z-axis and yaw angle (where the camera is

facing). For example, to calculate the next waypoint in x-axis, the algorithm starts by cal-

culating the difference between the target point and current odometry in x-axis. The UAV

will stay at the current x-axis value if the difference is less a buffer distance, to compen-

sate the system errors. Ideally, the buffer distance should be determined by the total errors

from both localisation, mapping and control system, due to limited time constraint, the

buffer distance is set to be 0.5 meter. After finding the difference between the UAV and

the target location, the algorithm will increase or decrease the UAV’s odometry by one

meter according to the difference, the choice of the next waypoint step size is discussed

and evaluated in Chapter 6.1. The pseudo-code is given as follows:

• di f fx = targetx− currentx
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• nextx = currentx +0 if |di f fx| ≤ 0.5

• nextx = currentx +1 if di f fx > 0.5

• nextx = currentx−1 if di f fx < 0.5

Likewise, to get the next waypoint value in y and z-axis. In order for the camera on

UAV to get a map for its surrounding environment, as it is shown in Figure 4.17, the next

yaw is calculated by:

nextyaw = arctan(
targety−nexty

targetx−nextx
) (4.17)

Figure 4.17: Calculation for the yaw angle

Collision checking

After finding a suggested waypoint to the target, it is essential to find out whether there

are any obstacles between UAV’s current and the suggested next waypoints. Which can
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be done by running an iterator to traverse all leaf node within a given axis-aligned bound-

ing box, the UAV will execute the suggested waypoint if there is no obstacle within the

searched bounding box. Otherwise, it will search for an alternative route if the bounding

box is occupied or unknown. Hence, the problem now lies in how to select an appropriate

bounding box from the UAV’s current odometry and next waypoint.

Figure 4.18 shows a 2D representation of the UAV model, it is represented by a rect-

angle with its maximum length l and width w, to achieve collision-free navigation, the

bounding box region needs to have at least UAVl length and UAVw width in order for the

UAV to pass if the UAV is travelling without changing the yaw angle. However, for the

cases when the UAV changes its heading direction, the size of the bounding box will

be constrained by the diagonal length of the UAV’s 2D model. Thus, to constructed a

squared shape bounding box with the length of
√

UAVl
2 +UAVw

2. Lastly, the bounding

box should also contain the compensation from UAV’s system error in each axis, which

includes the error from localisation, mapping, and control system. Therefore to calculate

the length bbxl of the bounding box in 3D by:

UAVdiagonal =

√
UAVl

2 +UAVw
2 +UAVh

2

bbxl =UAVdiagonal + em + el + ec

(4.18)

Figure 4.18: Determining the minimum length required for the bounding box- 2D

overview
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where em, el and ec denote maximum system error from mapping and localisation and

control system respectively, UAVl , UAVw and UAVh denote the length, width and height of

the 3D model of the UAV. Therefore, the minimum and maximum of the bounding box

in x axis can be calculated by Equation 4.19, and the maximum and minimum value of

the bounding box in y and z axis can be determined by the same method, due to limited

time constraint, the length of the cubical bounding box is set to be a fixed distance with

a minimum length of bbxl , the impact of the choice of the fixed distance is evaluated and

discussed in Chapter 6.1.

bbxx
min = nextx if nextx < currentx

bbxx
min = currentx if nextx > currentx

bbxx
max = nextx +

bbxl

2
if nextx > currentx

bbxx
max = currentx +

bbxl

2
if nextx < currentx

(4.19)

ALternative waypoint searching

After any potential collision is detected, it is essential to find an alternative collision-free

waypoint to reach the target by avoiding the obstacle. Which is achieved by dividing the

UAV’s near-space into six bounding boxes in both positive and negative direction of x,

y, z-axis respectively, with the minimum length bbxl derived from Equation 4.18 in order

for the UAV to pass. Hence to find an obstacle-free bounding box to avoid the detected

obstacle while navigating to the target. Figure 4.19 shows a 2D overview of the four

bounding boxes in the x-y panel. As it is illustrated, the bounding box is always axis

aligned regardless of the coordinate from current odometry and target. This is because

the UAV’s sensor now needs to be pointed to the obstacle instead of the target for a better

perception of the obstacle rather than the full environment.
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Figure 4.19: 2D overview of the bounding box division based on the UAV’s current loca-

tion

As the working environment for the UAV is outdoor, it is reasonable to assume the

UAV is more likely to avoid collision by going over the obstacle. Hence, the bounding

box in the positive z-axis is chosen by default to be iterated, and the UAV will travel in

a positive direction with a fixed step of one meter until pass the maximum height of the

obstacle if the bounding box is determined to be safe. For the cases when the ’up’ space

is occupied, the algorithm will order each bounding box that will be checked based on the

target location and UAV’s current location, then check each bounding box in a particular

order to search for available safe space to avoid the obstacle. The process is broken down

into the following steps.

• determine the order for the bounding boxes need to be checked.

• check the bounding box in order, manoeuvre to the bounding box when an obstacle-

free space is found.

In order to select the bounding box, The UAV will first calculate the length to

the target in x and y-axis respectively. Then chose the first two bounding box from

xpos,xneg,Ypos,Yneg according to the resulting sign (positive or negative) of the length in

both x and y-axis. For the next step, the algorithm will order the two chosen bounding box
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from the previous step, based on the distance from UAV’s current position to the target lo-

cation in both x and y-axis. The order of the two bounding boxes will be evaluated based

on the future distance of the corresponding bounding box to the target location, with the

shorter distance one being evaluated first and longer distance one being evaluated second.

The remaining two bounding boxes can be put into any order lastly.

Figure 4.20: Select the appropraite bounding box

Figure 4.20 shows an example with given coordinate for current odometry and target,

with the green shaped region being the obstacle, first to calculate the length in both the x,

y-axis:

distancex = targetx−UAVx = a positive value

distancey = targety−UAVy = a positive value
(4.20)

with both distancex and distancey being positive, it can be determined that xpos and

Ypos bounding boxes will be evaluated firstly, and xneg Yneg being evaluated lastly at any

random order. The algorithm now will determine the correct order between the first two

bounding box based on the future waypoint distance to the target location:

|distancex|= a positive value

|distancey|= a smaller positive value
(4.21)

Therefore, with a smaller length to the target location, the Ypos bounding box is chosen

to be the first one.
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4.3.3 Dynamic obstacle avoidance

Figure 4.21: Flowchart for dynamic obstacle avoidance

For dynamic obstacle avoidance, the UAV is required to reach a randomly assigned tar-

get location by avoiding dynamic obstacle which the UAV has no prior knowledge of its

movement trajectory. In order to do this, the UAV needs to constantly be aware of the

position of the moving obstacle and hence chose an appropriate path by predicting the ob-

stacle’s future location based on its historical movement trajectory. This section includes

the design and implementation of a dynamic obstacle avoidance system with only one

moving obstacle. Figure 4.21 shows an overview of the methodology used for dynamic

obstacle avoidance. The algorithm starts with calculating a waypoint (as is implemented

for static obstacle avoidance in Chapter 4.3.2) according to the UAV’s current odometry

and the assigned target, then check for a potential collision based on the predicted range

of obstacle’s future position. Lastly, the algorithm will either pass the command to the

control system to manoeuvre the UAV to the proposed waypoint or calculate another one

based on the result from the collision checking system. This section will focus on the

details of implementation for the following tasks:

• obstacle trajectory estimation.
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• potential collision checking.

• alternative next waypoint searching.

Obstacle trajectory estimation

With access to information of the obstacle’s historical position, the moving obsta-

cle’s velocities (vo
x ,v

o
y ,v

o
z ) in each axis can be estimated with the obstacle’s displace-

ment (do
x ,d

o
y ,d

o
z ) by comparing the obstacle’s current position and its historical posi-

tion at t second (s) ago. Equation 4.22 illustrates the mathematical model for obsta-

cle’s velocity estimation, where (xo
now,y

o
now,z

o
now) are the obstacle’s current positions and

(xo
now−t ,y

o
now−t ,z

o
now−t) are obstacle’s historical position at t second (s) ago. The choice

of how duration t affects the performance of the dynamic ostacle avoidance algorithm is

discussed and evaluated in Chapter 6.2.


do

x

do
y

do
z

=


xo

now

yo
now

zo
now

−


xo
now−t

yo
now−t

zo
now−t




vo
x

vo
y

vo
z

=


do

x

do
y

do
z

÷


t

t

t


(4.22)
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Figure 4.22: Prediction of obstacle’s future position range

Bmin =


xo

now− xe

yo
now− ye

zo
now− ze



Bmax =


xo

now + vo
x× tu + xe + xo

a

yo
now + vo

y× tu + ye + yo
a

zo
now + vo

z × tu + ze + zo
a


(4.23)

With the estimated obstacle’s velocity in each axis, it is possible to predict the obsta-

cle’s range of position for the next tu second, where tu denotes the time required for the

UAV to reach the initially proposed waypoint. As it is shown in Figure 4.22, the algo-

rithm predicts the obstacle’s position range at time +tu based on its displacement from its

position historical position at time −t and its current position. Besides the displacement

generated by the obstacle’s movement (vo
x× tu,vo

y× tu,vo
z × tu), the range is extended with

two additional lengths [xe,ye,ze] and [xo
a,y

o
a,z

o
a], where [xe,ye,ze] accounts for the addi-

tional space required due to UAV’s rotation and system errors from mapping, localisation

and control sub-systems (as it is described in Equation 4.18 at Chapter 4.3.2) and half of

the obstacle’s length in each axis for the special scenarios when the velocity is zero in any

of the three axes, [xo
a,y

o
a,z

o
a] accounts for the additional space required due to the change
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of speed from the obstacle5. Equation 4.23 shows the minimum and maximum value for

the range of predicted obstacle’s position at time tu, assuming the obstacle is travelling in

positive in both x, y, z-axis.

Collision checking

By constructing a 3D cubical bounding box to represent the possible range of the ob-

stacle’s future position within the time interval of tu, the potential collision can be de-

tected by determining whether the initially proposed trajectory is in interference with the

constructed bounding box. The initially proposed trajectory for the next interval is rep-

resented by P1,P2, where P1 denotes the UAV’s current position, and P2 denotes the

proposed next waypoint.

P1 =


xu

now

yu
now

zu
now



P2 =


xu

next

yu
next

zu
next


(4.24)

With the given bounding box representing the obstacle’s predicted position range and

the proposed trajectory for UAV. In order to determined whether the UAV is in potential

collision with the moving obstacle, the algorithm will first check if P1 P2 are entirely on

one side of the bounding box so that it can return false quickly. This is implemented by

comparing P1,P2 value with the maximum and minimum value of the bounding box in

each axis, if both P1,P2 are greater the maximum (or smaller than the minimum) value

of the bounding box in any one of the three axes, the trajectory is considered to be reside

outside the bounding box and hence collision-free.

5increase of speed, to be more specific.
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Figure 4.23: Overview of Seperating Axis Theorem in 2D

When both P1,P2 do not reside on the same side of the bounding box, the algorithm

will apply Separating Axis Theorem (SAT) to check whether the trajectory is in the box.

The theorem states that if it is possible to draw a line to separate two polygons, then

they do not collide. Figure 4.23 shows an overview of the theorem in 2D space. Where

the box1 is the bounding box for predicted obstacle position range, P2 is the second

bounding box constructed with UAV’s trajectory P1,P2. The methodology is to find the

gap between box 1 and box2 to determine whether the gap is big enough for a line to pass

through. The example pseudo-code to evaluate the separation in the x-axis is given as

follows.

• xbox1
center =

1
2(x

box1
max − xbox1

min )

• xbox2
center =

1
2(x

box2
max − xbox2

min )

• length = xbox2
center− xbox1

center

• width1 = xbox1
max − xbox1

min

• width2 = xbox2
max − xbox2

min

• gap = length− width1
2 − width2

2

• if gap < 0, boxes are intersecting each other, potential collision detected.
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• else if gap = 0 boxes are next to each other, safe to travel

• else, there is a gap between boxes, safe to travel.

where xbox1
center,x

box2
center are the geometrical center of these two box in x-axis, length is

the distance between those two centers, width1,width2 denotes the length of each box

in x-axis. The gap is calculated by substracting half-length of box1 and box2 from the

length between them. Ideally, it is only safe for the UAV to travel if the gap is greater than

zero. However, the bounding box is constructed with the adjustment of UAV’s diagonal

length and its system error, and the algorithm will treat collision-free when the gap is

zero. Lastly, the theorem states the trajectory does not collide with the bounding box area

if there is a gap in any of the three axes, the algorithm only reports potential collision if

there is no gap in any axis.

Alternative waypoint searching

When the initially proposed trajectory is determined to be in potential collision with the

moving obstacle, before searching for an alternative waypoint, the algorithm will first to

check whether the target location is safe to travel, to cope with the special case that the

obstacle is moving around the target position. The algorithm will trigger the UAV to hover

at its current location to wait for the obstacle moving away, instead of assigning any next

waypoint. Otherwise, the algorithm will search for an alternative collision-free trajectory

by assigning a waypoint towards one of the four corners of the constructed bounding

box in 2D. The waypoint in z-axis is determined based on the relationship between the

estimated obstacle velocity vo
z and the direction from UAV towards the target location du.

The feasibility and results of the algorithm are discussed and evaluated in Chapter 6.2.
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4.4 Control System

This section describes the design and implementation of the control system, which is,

manoeuvre the UAV to the desired location with the desired orientation.

4.4.1 UAV dynamics

Figure 4.24: Forces and moments can be divided into: FT thrust force, FD-drag force, MR

rolling moment, MD the moment originating from the drag of a rotor [9]

Before the design of the control system, it is essential to find the relationship between

rotors speed and UAV’s translational speed. The forces and moments applied to the UAV

can be separated into individual ones applied on every rotor blade, along with the gravity

applied to the UAV’s CoG. The full dynamics of the UAV can be calculated by combining

all these forces and moments together. Figure 4.24 shows different forces and moments

acting on a single rotor, which leads to the following equation analysed by Martin [103].

FT = ω
2CT × eZB (4.25)

FD =−ωCD×ν
⊥
A (4.26)
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MR = ωCR×ν
⊥
A (4.27)

MD =−εCM×FT (4.28)

where:

ω is the rotor’s positive angular velocity.

CT is a constant describes the rotor thrust

CD is a constant describes the rotor drag

CR is a constant describes the rolling moment c

CM is a constant describes the rotor moment

ε is the rotor’s turning direction (+1 for counter clockwise and -1 for clockwise).

eZB is the unit vector pointing to z according to the UAV’s coordinate.

Therefore it is possible to derived the projection of the vector u onto the rotor plane

by:

u⊥ = eZB× (u× eZB) = u− (u× eZB)× eZB (4.29)

Figure 4.25: Forces and moments acting on the UAV [9]
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Figure 4.25 shows a quadrotor with four mounted rotors, represented in UAV’s own

coordinate system B and world coordinate system. W . The total forces consist of the com-

bined rotors forces Fi and gravitational force FG. In order to derive the model dynamics

for a UAV with n rotor, first to apply Newton’s Law to derive the UAV’s motion and Euler

equation:

F = m×a (4.30)

τ = J× ω̇ +ω× J×ω (4.31)

Where the linear part (equation 4.30) is expressed in the world’s coordinate system,

and the rotational part (Equation 4.31) is represented in the UAV’s coordinate system. For

each of the parameters, m is the mass of the UAV, a is the acceleration, J is the inertial

matrix, and ω is the angular velocity. Hence, for an UAV with n rotors, equation 4.30 and

4.31 can be represented by:

F = m×a =
i=0

∑
n−1

(RWB(FT,i +FD,i︸ ︷︷ ︸
Fi

))+FG (4.32)

τ = J× ω̇ +ω× J×ω =
i=0

∑
n−1

(MR,i +MD,i +Fi× ri) (4.33)

RWB is the rotation matrix derived from the UAV’s coordinate system B translation

into the world’s coordinate system W , ri is the vector from the UAV’s CoG to ithrotor’s

CoG.

4.4.2 State representation

As it is shown in Figure 4.26, the UAV’s states are represented by separating the controller

into an outer loop tracks its position, and an inner loop tracks its attitude. In the position

loop, the UAV’s velocity (v) and position (p) are represented in the world’s coordinate
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system. Meanwhile, the inner loop is tracking the UAV’s angular velocity (ω) and orien-

tation, which are represented in the UAV’s coordinate system. Combine these with IMU’s

bias states leads the state vector in Equation 4.34:

x = [pT vT q̄T bT
a bT

ω ]
T (4.34)

As the system is independent of the dynamic and model parameter of the specific

vehicle, the measurement will not be affected by the UAV’s dynamics. Furthermore,

remove the angular rate from the state vector. Hence, the model dynamic can be described

as in Equation 4.35, where g is gravity in the world coordinate system, C is the rotation

matrix computed from q̄.

ṗ = v

v̇ = g+C× (am−ba−na)

˙̄q =
1
2

q̄
⊗

[

 0

ωm −bω −nω

]

ḃa = na

ḃω = nω

(4.35)

Therefore, the UAV’s state estimation can be separated into position measurement (

pm) and attitude measurement (q̄m), which express the measured state of the IMU in the

world coordinate system. The equations are given by:

pm = p+np (4.36)

q̄m = q̄⊗δ q̄n (4.37)

where⊗δ q̄n is a small rotation error and np consists zero-mean white Gaussian. How-
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ever, the implemented model is only valid when the origin of the pose-sensor occurs at the

same time as the IMU. Additionally, the pose sensor measurements are not guaranteed to

be aligned with the world axis. However, Those misalignments still can be compensated

as they are often observable. Therefore, no prior calibration is required. The derivation

process was referred to Achtelik’s work in [104].

4.4.3 Controller mechanism

In order to control the UAV, it is essential to find out the relation between the input and

output for the system. The output T is the accumulated thrust from each rotor, and τ is the

torque applied on the UAV’s CoG, where the input is the accumulated angular velocity ω .

Hence the control system can be formulated by:

(
T
τ

)
= A×



ω0
2

ω1
2

.

.

.

ωn
2



(4.38)

For a quad-rotor UAV shows in Figure 4.25, the allocation matrix A is given by:


CT CT CT CT

0 lCT 0 −lCT

−lCT 0 lCT 0

−CTCM CTCM −CTCM CTCM


(4.39)

In this simulator, a geometric control approach proposed by Lee is chosen to directly

calculate the thrust and moments required, with different levels of commands, such as
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position, angular rate, or orientation [10]. It is possible to produce a thrust T with the same

direction of the rotor’s normal vector by looking all rotor axis-aligned same, assuming it

coincides with ZB. Therefore, only the thrust T around all three body axis xB, yB and zB

can be directly controlled. In order for the controller to work in a 3D environment, it is

necessary to move the UAV into a slopping position as a setpoint. Hence to produce thrust

in the direction of ZB and the yaw rate, which is usually called the attitude controller. A

cascaded control method is implemented because the translation change is normally much

slower than the change of the attitude. The position loop operates at a lower rate while

calculating the desired thrust and attitude. The attitude operates onboard a microcontroller

at a higher rate. As it is illustrated in Figure 4.26, the controller is separated into two parts:

an outer loop controls the UAV’s position, and an inner loop controls the UAV’s attitude.

Figure 4.26: Overview for the controller [10]



Chapter 5

Evaluation of spatial awareness

5.1 localisation with EKF

This section includes the experiment designed to evaluate the performance of the state

estimation ability from the ekf localisation node. Although orientation data is required

as input for the EKF within robot localisation package, due to the limitation of the im-

plemented position controller, which can only achieve four DoF tracking of the UAV,

namely three position variables and one heading direction, this experiment focus only on

the performance of the position estimation from different sensors combinations. In the

experiment, the UAV is designed to follow a pre-defined waypoints (Table 5.1) by us-

ing waypoint publisher file node from the Rotors simulator, where (x,y,z) indicates the

position, T is the waiting time at each waypoint, YAW is the heading direction of the UAV.

As it is shown in Table 5.2, the fusion integrates sensory information from generic

odometry sensor and IMU sensor. The odometry sensor is designed to mimic a GPS, by

providing position, linear velocity and angular velocity separately, in the actual experi-

ment, the ekf localisation node treats the odometry sensor as a single sensor and returns

unstable output. Hence the configuration for the ekf localisation node is reconfigured

as the odometry sensor providing linear velocity and imu providing linear acceleration

(Table 5.2)1. The estimated result is compared with the output trajectory from an ideal
1Imu also provides angular velocity state, to allow the proper function of the ekf localisation node, no

99
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odometry sensor without any noise implemented.

Table 5.1: Executed waypoints for EKF localisation

T X Y Z Yaw
1.0 0.0 0.0 1.0 0.0

1.0 1.0 1.0 2.0 0.0

1.0 2.0 2.0 3.0 0.0

1.0 3.0 3.0 4.0 0.0

1.0 4.0 4.0 5.0 0.0

1.0 5.0 5.0 6.0 0.0

1.0 6.0 6.0 7.0 0.0

1.0 7.0 7.0 8.0 0.0

1.0 8.0 8.0 9.0 0.0

1.0 9.0 9.0 10.0 0.0

1.0 10.0 10.0 11.0 0.0

Table 5.2: EKF sensor input states configuration (T:True F:False)

x y z roll pitch yaw x′ y′ z′ roll′ pitch’ yaw′ x′′ y′′ z′′

imu
config

F F F F F F F F F T T T T T T

odom
config

F F F F F F T T T F F F F F F

Table 5.3 lists seven different scenarios designed to test the performance of

ekf localisation node. those configuration includes:

• fuse single IMU with single odometry

• fuse single IMU with two odometries

• fuse two IMUs with single odometry

• fuse two IMUs with two odometrys

orientation data is evaluated
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As EKF works on the principle of trusting more on the input data with less noise, extra

experiments were implemented to test the ekf localisation node’s performance with the

same sensor combination but different sensor parameters. In case No.2,3,4, both IMU0,

IMU1 and odometry0, odometry1 are implemented with identical noise covariance, In

case NO.4,5,6, the IMU and odometry are implemented with different noise covariance.

The corresponding noise parameters in each axis are given in Table 5.3, where the imu in-

dicates the linear acceleration noise covariance, and odometry indicates the linear velocity

noise covariance.

Table 5.3: Sensor combination for EKF fusion

Case No Sensor combina-
tion

Noise covariance

x y z

1 1 imu 1 odometry

identical

imu0 0.004 0.004 0.004

2 1 imu 2 odometry imu1 0.004 0.004 0.004

3 2 imu 1 odometry odom0 0.0012 0.0012 0.003

4 2 imu 2 odometry odom1 0.0012 0.0012 0.003

5 1 imu 2 odometry

different

imu0 0.004 0.004 0.004

6 2 imu 1 odometry imu1 0.003 0.003 0.003

7 2 imu 2 odometry odom0 0.0012 0.0012 0.003

odom1 0.0016 0.0008 0.002

It takes approximately 18 seconds in simulation for the UAV to reach the target, in

which there are approximately 5 seconds for ROS to initialise time, to load the corre-

sponding parameters for the UAV’s sub-systems. The total simulation time is approxi-

mately 22 seconds for each scenario. The data was collected with rosbag by monitoring

two following ROS topics: 1)./firefly/ground truth/position; 2)./firefly/odometry/filtered.

The first one is provided by an ideal odometry sensor, and the second one is the estimated

odometry data from the ekf localisation node. Both topics contain the UAV’s executed

trajectory with respect to the simulation time in 3D. For each scenario, there are approx-
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imately 2000 recorded messages for both of the odometry data. Another ROS node was

written to monitor both of the odometry data and calculate the difference by substrating

the filtered odometry from the ideal odometry in each axis, to evaluate the difference

between the ideal odometry and the filtered odometry,

Table 5.4: EKF error

CASE No. max(m)
x y z

min(m)
x y z

mean(m)
x y z

standard
deviation

close
error(m)
x y z

1
2.56
1.82
1.04

-0.06
-0.53

-22.29

0.58
0.37
-0.35

0.68
0.47
0.67

0.95
0.77
-0.77

2
0.75
1.30
4.62

-1.79
-0.67
-0.54

-0.22
0.23
0.74

0.52
0.35
1.07

-1.074
0.303
2.197

3
0.67
1.76
2.03

-1.45
-0.23
-1.11

-0.28
0.41
0.27

0.55
0.50
0.52

-1.280
0.961
0.929

4
0.40
0.30
6.13

-1.85
-1.74
0.00

-0.49
-0.41
1.65

0.73
0.55
1.98

-1.705
-1.244
4.831

5
0.43
1.42
2.46

-1.57
-0.47
-0.79

-0.23
0.27
0.26

0.42
0.41
0.44

-0.872
0.826
0.426

6
1.81
2.35
1.13

-0.50
-0.03
-2.20

0.31
0.51
-0.18

0.44
0.57
0.51

-0.038
0.906
0.112

7
1.56
2.31
2.38

-0.95
-0.66
-1.94

0.23
0.51
-0.17

0.44
0.75

0.681

0.776
1.793
-1.167

The evaluated results are listed in Table 5.4; it contains the maximum, minimum and

mean error in each axis and their corresponding standard deviation. Lastly, As the imple-

mented ekf sensor fusion, both the initial noise covariance and process noise covariance

are not tuned, which could cause a delay for the coverging time between filtered odometry
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and the real one. Therefore, a close error was introduced to compare the difference be-

tween the filtered odometry and ideal dometry at 20 seconds, approximately two seconds

after the UAV reached the target. Although, in Table 5.4, one IMU and one odometry do

not give the largest close error at 20 seconds. Figure 5.1 and 5.2 shows the 2D trajec-

tory comparison between the ideal and filtered odometry over the whole simulation time,

which gives a better evaluation for the estimation to minimise the error caused by delay.

By observating Figure 5.1a, 5.1c, 5.2a and 5.2c, it can be seen the ekf localisation node

yields better performance with an increasing number of sensors, as the resulting trajectory

from case No.2,3 with more sensors are closer to the actually executed trajectory. The

combination of two IMU and two odometries gives the best estimation.

(a) 1 IMU 1 Odometry

(b) 1 IMU 2 odometry (c) 1 IMU 2 different odometry

Figure 5.1: Comparison between ideal odometry and filtered odometry in 2D

For the effect of sensor choice between identical and different sensor parameters. In

Figure 5.1b, 5.1c and Figure 5.2a, 5.2b, It clearly shows that the combination of different

sensor returns better estimation of the executed trajectory. However, in Figure 5.2c, 5.2d,



CHAPTER 5. EVALUATION OF SPATIAL AWARENESS 104

(a) 1 IMU 2 odometry (b) 1 IMU 2 different odometry

(c) 2 IMU 2 odometry (d) 2 different IMU 2 different odometry

Figure 5.2: Comparison between ideal odometry and filtered odometry in 2D

the combination of the different sensor does not yield a better estimation of the executed

trajectory, but in Table 5.4, the combination of sensors with different noise parameters

gives smaller standard deviation error in both x, z-axis. To investigate, it requires the

process of tuning the ekf localisation node with proper initial noise covariance and pro-

cess noise covariance, to minimise the odometry error caused by the delay between the

estimated position and the actually executed trajectory. This is beyond the scope of this

thesis, and further investigation is required to evaluate whether sensors with different

noise parameter yield better estimation for EKF fusion.
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Table 5.5: Restricted area tested scenarios

Case No Target Restricted Area
x y z xmin xmax ymin ymax

No.1 30 0 2 10 15 -4 4

No.2 10 3 2 5 15 -4 0

No.3 20 8 2 10 25 -4 4

No.4 25 3 2 10 15 -4 4

5.2 Restricted area avoidance with ideal odometry

For restricted area avoidance algorithm, The UAV will constantly take input from an ideal

odometry sensor without any noise implemented, and compare its current location with

the restricted area, then calculate the shortest exit strategy to avoid the area according to

the relationship between the potential trajectory and the restricted area. For the imple-

mented navigation system, the navigation system will return an error message if the target

location is within the restricted area or lies on any one of the four boundaries. The rela-

tionship between the potential trajectory and the restricted is divided into three scenarios:

• the potential trajectory insects with two parallel boundaries from the RA.

• the potential trajectory insects with two adjacent boundaries from the RA.

• the potential trajectory does not intersect with the RA, but the UAV is located on

the edge of the RA.

Table 5.5 includes the four scenarios designed to test the UAV’s ability to avoid an

user-defined restricted area. Each scenario is given with a 3D target point and a restricted

rectangle area defined by xmin,xmax,ymin,ymax, the UAV is expected to avoid the restricted

area and reach the target point from the original point with the coordinate of (0,0,0).

Case No.1 and No.4 include the scenario that the potential trajectory intersects with two

parallel boundaries of the bounding box, and the difference is the implemented shortest
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(a) two parallel boundary with equal distance to
exit the area

(b) two adjacent boundary

(c) both UAV and target lies outside of the bound-
ing box

(d) two parallel boundaries with a shorter path to
exit

Figure 5.3: Restricted Area results in 2D

path exit strategy. In case No.1, both the UAV’s location and the target is designed to

be the same, and it is equal distance for the UAV to avoid the area by taking any of the

two corners of the restricted area. In case No.4, there is a shorter path to avoid the area,

the UAV is expected to calculate the distance from its current location and take the short

path to exit the restricted area. Case No.2 covers the scenarios that the potential trajectory

intersects with two adjacent boundaries, and the UAV is expected to avoid the restricting

area by approaching to the corner where those two boundaries intersect. Lastly, case No.3

represent the scenario that the UAV is located on the boundary of the restricted area, and

the potential trajectory will not intersect with the restricted area, the ideal result would be

the UAV to keep a safe distance from the boundary.

The result of restricted area avoidance can be evaluated by recording the UAVs odom-
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etry and plot the trajectory has executed. As it is shown in Figure 5.3, the restricted area

is represented as the dashed blue line, the orange line represents the executed trajectory

in 2D, and the target is marked with the circle. The UAV had successfully reached the

target by finding the corrected exit corner when the potential trajectory intersects with two

adjacent boundaries (Figure 5.3b), and kept a safe distance from the restricted area when

the UAV is located on the edge of the restricted area, and the target location does not pose

a potential hazard (Figure 5.3c). For the scenarios when the potential trajectory intersects

with two parallel boundaries, the UAV had successfully reached the target by avoiding the

restricted area with a safe distance, and the UAV had found the correct corner to exit the

restricted by calculating and comparing the distance to each corner (Figure 5.3d).

However, in Figure 5.3a the executed trajectory is slightly different from what is ex-

pected as the UAV1 did not go straight from the original point(0,0) to (8,6) and point

(17,6) to the target(30,0). Those trajectories are determined purposely to save computer

resources in restricted area avoidance and next waypoint calculation stages. For restricted

area avoidance algorithm, the UAV is programmed to calculate the next waypoint with

respect to the restricted area, and only trigger the potential intrusion allert when it is ap-

proaching the resized area, instead of the full navigation process. By implementing this

way, it leads to a straight line between (0,0) and (8,0). For the trajectory between (17,6)

and (30,0), this is caused by how next waypoint is calculated when there is no obstacle

or restricted area. Ideally, to reach a target in an empty world, the shortest trajectory to

the target should have the unit vector of:


Dirx

Diry

Dirz

=


Dx

Dy

Dz

−


Ux

UY

Uz


√

(Dx−Ux)2 +(Dy−Uy)2 +(Dz−Uz)2
(5.1)

Where (Dx,Dy,Dz) and (Ux,Uy,Uz) are the coordinate for the target and UAV’s current
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position respectively, the UAV then should travel along the unit vector until an obstacle is

detected. For the implemented path planning algorithm, the next waypoint is calculated

by comparing UAV’s current position with the target in each axis respectively, the next

waypoint(Nx,Ny,Nz) is incremented or decremented from UAV’s current position accord-

ing to the difference in each axis (with details in Section 4.3.2).

Lastly, as it is shown in the Figure 5.3a and 5.3d, the UAV seems to go over the

safe distance when the UAV is turning left around 8 in the x-axis, which is possibly

caused by system error which is consisted of control and localisation error. Since the

UAV’s position is provided by an ideal odometry sensor for the implemented restricted

area avoidance scenarios. The control system will be evaluated as it happens only when

the UAV is involving a manoeuvre. As it is shown in Figure 4.26, the position controller

is executed by taking position and yaw command. The UAV is programmed to travel

along the boundary which it is adjacent to, by facing in the direction where the trajectory

leads to. The trajectory overshot happened around when the UAV is required to change

the yaw angle from 90 degrees to 0 degrees. It is reasonable to assume the trajectory

overshot is caused by attitude tracking component in the position control system. To test

this, change the algorithm to make the UAV travelling with a zero degree yaw angle and

plot the trajectory again.

Figure 5.4: Scenarios 1 executed path with-
out yaw

Figure 5.5: Scenarios 4 executed path with-
out yaw
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Figure 5.4 and 5.5 shows the 2D overview for the trajectory executed without yaw

implementation for case No.1 and No.4 respectively. The resulting trajectories are still

unstable, but the overshooting is much sharper than the executed trajectory with yaw

implemented, this is caused by the implemented position controller restricted the initial

attitude error less than 90 degrees to obtain the stability of the complete system, but an in-

depth explanation would be beyond the scope of this thesis. The reference and overview

of the properties of the position controller can be found in [10]. A possible solution

to overcome the instability from the position controller is to introduce an intermediate

waypoint with smaller turning angle when a sharp manoeuvre is required. However, this

restricts the flexibility of the UAV’s movement.

5.3 Non-axis-aligned restricted area

From the resulting trajectory, it can be seen that the implemented algorithm has success-

fully found a relatively short path to avoid the restricted area. However, the method is only

feasible when the restricted area is rectangle and axis aligned. This section includes the

discussion for the proposed implementation when the restricted area is not axis aligned.

Figure 5.6: Restricted rectangle with rotation

Figure 5.6 shows a rectangle restricted area (box2) which is not axis aligned. Where
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the box1 is the rectangle constructed aligned with the same axis with box1, defined by

the UAV’s position (R) and the target (d1). As it is shown in the Figure, the confliction

between potential trajectory and the restricted area can be determined by applying Sep-

arating Axis Theorem used in Section 4.3.3. However, now the algorithm needs to find

the corresponding distance projected along the axis which the restricted area is aligned to

(P̄). The methodology can be implemented as follows. Firstly, to identify any point (d2)

from the boundary which is close to the target point (d1), and find the central point for

box1 (dc1) and box2 (dc2) respectively. Therefore the vector between the centre of each

box can be calculated as:

d̄3 =

dc2
x

dc2
y

−
dc1

x

dc1
y

 (5.2)

Apply the same method to get the vector between each box to their edge:

d̄1 =

d1
x

d1
y

−
dc1

x

dc1
y

 (5.3)

d̄2 =

d2
x

d2
y

−
dc2

x

dc2
y

 (5.4)

With vector (d̄1, d̄2, d̄3 ) and the axis vector P̄, it is possible to get the the distance

projection along the axis P̄ by applying dot product:

¯d p1 = d̄1 · P̄

¯d p2 = d̄2 · P̄

¯d p3 = d̄3 · P̄

(5.5)

Hence the gap between box1 and box2 can be calculated by | ¯d p3| − | ¯d p2| − | ¯d p1|,

and the trajectory is determined to be in a potential collision in P̄ axis with the restricted

area if the result value is smaller or equal than zero. Any collision along the other axis
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can be checked by applying the same method by rotating P̄ 90 degrees. The trajectory is

concluded to be no collision with the restricted area if there is no overlap on any one of

the axes. For even more complicated restricted area shapes, it is possible to segment the

restricted area into multiple polygons and apply the same method by constructing a new

box for each side of the polygon. The trajectory can be safely concluded to be collision-

free if any of all those polygons are determined to be free of any potential collision.

5.4 Conclusions

Spatial awareness is the ability to be aware of oneself in space, and it is an organised

knowledge of objects concerning oneself regarding space and distance. This chapter in-

cludes the evaluation and discussion of the performance of estimating UAV’s state with

EKF fusion technique. Furthermore, the implementation of restricted area avoidance is

also included in this chapter, as the UAV is required to avoid the pre-defined area based

on its dynamic position within the environment rather than the detected obstacles.

For the implementation of UAV state estimation with EKF, due to the limitation of the

implemented control system, which supports four DoF tracking of the UAV with three

positions and one heading direction. UAV’s orientation estimation is not evaluated; the

experiment is focused on the performance of the position estimation by fusing a various

combination of sensors. Two types of sensor are used for the UAV state estimation, IMU

sensor and odometry sensor, where the IMU provides input state of angular velocity and

linear acceleration, odometry provides linear velocity. The UAV is programmed to exe-

cute a user-defined trajectory, and the estimated EKF filtered position data is compared

with the position data from ideal odometry without any noise implemented. From the

experiment result, it is confident that the ekf localisation node yields better performance

by increasing the number of sensors used. Since EKF works based on trusting more on

the input sensor with less noise, another set of experiment is designed to compare the

performance between fusing multiple sensors with identical and different noise parame-
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ter. Partial results supports fusing different sensor yields better performance than sensors

with identical noise parameter; further investigation is required. Improvement can be

achieved by determining the correct initial noise covariance and process noise covariance

of the sensor system, to reduce the converging time between the estimated data and the

actually executed trajectory.

For restricted area avoidance case study, an ideal odometry sensor is used to provide

the UAV with its real state. From the result, the UAV is proven to have spatial awareness

ability as it keeps a good understanding of its position during the whole navigation pro-

cess. The implemented algorithm is capable of searching for a safe trajectory by avoiding

the axis-aligned restricted area with a relatively short path with low computing require-

ment. Methodology for an irregular shaped restricted area is discussed if the restricted

area is in any other complicated shape. The resulting trajectory is constrained with the

limitation the implemented Lee position controller, which requires the initial attitude er-

ror less than 90 degrees to obtain the stability of the complete system. Possible solution

is to introduce an intermediate waypoint with smaller change of the UAV’s state. Further-

more, the restricted area is resized by increasing a fixed error distance, where the actual

distance should be identified from the system errors, which consists of the accumulation

errors from both controls, localisation systems.



Chapter 6

Evaluation of obstacle avoidance

6.1 Static obstacle avoidance case study

This section includes the experiments designed to test the performance of the UAV’s static

obstacle avoidance ability. The UAV is expected to reach a randomly assigned target

within a 3D unknown environment. There are four aspects which can affect the UAV’s

static obstacle avoidance ability: mapping (Chapter 4.1), localisation (Chapter 4.2), obsta-

cle avoidance algorithm in cognition system (Chapter 4.3.2), and control system (Chapter

4.4). For the implemented localisation system, an ideal odometry sensor is used to provide

the true position of the UAV. From the result of spatial awareness case study in Chapter

5, the control system is tested to be able to control the UAV at the desired position with

an error of (0.13,0,−0.2) meter in each axis respectively. This chapter will focus on how

the mapping system and collision avoidance algorithm affect the performance of UAV’s

static obstacle avoidance ability.

The mapping system works based on utilising a depth camera to convert the simulated

environment into point cloud data. Table 4.1 lists the depth camera’s relevant parameter

which can affect the mapping performance, such as frame rate, maximum range and hor-

izontal FoV. Where the maximum range and horizontal FoV defines how much the depth

camera can detect from the environment, and the frame rate defines the working frequency

113
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of the depth camera. With the processed point cloud representation of the working envi-

ronment, the mapping system then converts the point cloud data into octomap representa-

tion, where the 3D environment is segmented into multiple spaces, which can be further

segmented recursively into eight sub-space until the map reaches the user desired reso-

lution. Higher-resolution(low parameter value) map gives a better representation of the

complicated part of the working environment but requires more computational capacity.

The implementation of the algorithm for path planning with static obstacle avoidance

can be roughly divided into the following three steps:

• calculate the next intermediate waypoint to the target location

• construct a bounding box based on the UAV’s current location and the proposed

next intermediate waypoint and evaluate the potential hazard for the 3D area

• search for an alternative waypoint if the initially proposed waypoint is in potential

hazard

For the first step, the waypoint is calculated base on the geometry distance from the

UAV’s current location to the target location. In order for the waypoint to be evaluated for

collision checking, the maximum distance from UAV to the next intermediate waypoint is

constrained by the depth camera’s maximum range minus half length of the bounding box

bbxl described in Equation 4.18. The potential hazard for the next waypoint is evaluated

by constructing an axis-aligned bounding box area, any objects detected within the area

will trigger the algorithm to the next step, search for an alternative collision-free waypoint

to the target. Because the UAV is working in an outdoor environment, it is more likely

for the UAV to avoid the obstacle by going over it, the default implemented strategy

of searching for the alternative waypoint is to search for collision-free space above the

UAV’s current location, then dividethe UAV’s near space into five different bounding box

and order them in a special sequence based on the bounding boxes’ distance to the target

location. Lastly, the algorithm will evaluate potential hazard those bounding box in the

defined the order.
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Next waypint calculation

(a) shorter next waypoint distance results in a
smaller are that will be evaluated for collision
checking

(b) longer next waypoint distance results in a
larger are that will be evaluated for collision
checking

Figure 6.1: How next waypoint location and size of the bounding box can affect the
algorithm

The calculation for the coordinate of next intermediate waypoint impacts the con-

struction of the bounding box used for collision checking. In an open space with fewer

obstacles, longer next waypoint distance results in faster converging to the target location,

However, in a relatively crowded working environment, as it is shown in Figure 6.1, longer

next waypoint distance also results in a larger axis-aligned bounding box area that need

to be evaluated by the collision checking system, which will effectively result in a larger

unnecessary bounding box area and trigger the algorithm search for alternative waypoint.

The resulting large bounding box requires a higher amount of computational capability

when the potential trajectory between UAV and the next waypoint is not axis-aligned. A

possible solution to improve this is to manipulate the UAV’s trajectory to enable the UAV

reaching the target location in each axis separately. Therefore, the resulting bounding

box’s length in the arrived axis is only incremented with the necessary length for the UAV

to pass (Figure 6.2). Experiment on the choice of next waypoint step size is proposed

to evaluate the processing time required for bounding box iteration and UAV’s journey

duration.
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(a) going straight from UAV’s current location re-
sults in bigger bounding box requires for colli-
sion evaluation, require more processing time for
bounding box itteration

(b) UAV reach an axis first, requires less process-
ing time but longer journey duration

Figure 6.2: How different trajectory affects the bounding box selection with the same
target location

(a) when the UAV moves on both x, y axis (b) when the UAV moves only on x axis

Figure 6.3: 2D overview of constructing a bounding box for collision checking, based on
the UAV’s current position and the proposed next waypoint from Equation 4.19

Bounding box construction

As it is shown in Figure 6.3, the size of the bounding box is constrained by the geomet-

rical relationship between the position of the UAV and the proposed next waypoint, with

extended length bbxadditional from the UAV towards the next waypoint in each axis. The

additional length needs to be greater than 1
2bbxl , which works fine under the assumption

that UAV is moving on more than one axis (Figure 6.3a), the defined bounding box area

covers the minimum space required for any potential rotation of the UAV. However, as it

is shown in 6.3b, when the UAV is moving only on x-axis, the resulting bounding box

does not contain sufficient mapping information for potential hazard evaluation.
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(a) when the UAV moves on both x, y axis (b) when the UAV moves only on x axis

Figure 6.4: 2D overview of constructing bounding box by extending a fixed length of the
UAV’s current position and next waypoint

One possible solution is to extend the bounding box area with a length of 1
2bbxl at the

minimum and maximum coordinate in each axis (Figure 6.4a). However, in the experi-

ment, the resulting bounding box contains unnecessary obstacle information when is UAV

is located precisely by the edge of the obstacle, as it is shown in Figure 6.4b, the UAV is

travelling from the left toward the target at right, it avoids the obstacle by going over it

vertically. When the UAV has just avoided the obstacle at the position of top right of the

obstacle, the consequential bounding box triggers the potential hazard even it is safe for

the UAV travel towards the target, This is because the minimum additional length bbxl

contains system errors from the navigation system, which is greater than the geometric

length of the UAV. Furthermore, the potential hazard within in the bounding box area is

evaluated by leaf bbx iterator function provided by octomap, with a given minimum and

maximum coordinates, due to rounding and discretisation effects, nodes may be traversed

that have float coordinates appearing outside of the float bounding box. Although the al-

gorithm can still find an alternative waypoint after the false collision alert, the algorithm

can be improved by constructing a bounding box according to the converging status of the

UAV and its target in each axis separately.

Figure 6.5 shows the 2D overview of constructed bounding box based on the converg-

ing status in x and y-axis separately. The algorithm will first check if the UAV has arrived

at the target location by separating its axes and apply different techniques to construct the
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(a) when the UAV moves on both x, y axis (b) when the UAV moves only on x axis

Figure 6.5: 2D overview of constructing bounding box based on the converging status in
x, y axis sperately

bounding box. The algorithm considers the UAV has arrived if the difference between the

UAV’s position and the target location is less than the proposed step size from the next

waypoint calculation. For example, the UAV is considered to have arrived on its x-axis

with its current position (5.4, 6.6, 7.6) and target location (5, 6, 7) if the next waypoint is

calculated to move by 0.5 meters by each step. In Figure 6.5a, the UAV has arrived at the

target location by its y axis, the corresponding bounding box is only extended with a fixed

length towards the target in its x axis, with a minimum length of 1
2bbxl extended in both

positive and negative y In figure 6.5b, The UAV has not arrived in either x or y axis, the

bounding box is extended towards the next waypoint in both x and y axis with the length

of bbxadditional . The construction of the bounding box in z-axis is implemented in the

same approach, except that the minimum value is constrained to be 1 meter, to compen-

sate the ground land being detected as obstacle. Ideally, the constrained length should be

half of the octomap resolution. Furthermore, as the default alternative waypoint searching

strategy is to ”look up”, it is more preferable for the UAV to go up at an earlier stage than

later when the UAV is working in a crowded environment, which will cause the algorithm

triggers the collision alert and cost more computational power to search for alternative

waypoint. The choice of bbxadditional with larger values than the minimum length of bbxl

will result in a larger area that is evaluated for collision checking and bring the UAV to go

up at the early stage of the simulation.
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6.1.1 Experiment design

Figure 6.6: 3D map with static obstacles and user-defined target

This section contains the evaluation of the feasibility of static obstacle avoidance ability

of the algorithm, and how the previously discussed factors can affect the performance of

the algorithm. Figure 6.6 illustrated a 3D outdoor environment, the UAV is expected to

find a collision-free trajectory to the user-defined target (30,10,2). The experiments are

designed as follows, with the according case studies given in Table 6.1.

• evaluation of how octomap resolution can affect the performance of the algorithm

• evaluation of how next waypoint distance calculation can affect the algorithm

• evaluation of how bounding box construction can affect the algorithm

Table 6.1: Static obstacle avoidance tested scenarios

Case No octomap res-
olution (m)

waypoint step x, y,
z (m)

bbxadditional x,
y, z (m)

1 various 0.5,0.5,0.5 4, 4, 4

2 0.5 various 4, 4, 4

3 0.5 0.5,0.5,0.5 various
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6.1.2 Result evaluation

Octomap resolution

To evaluate how octomap resolution can affect the algorithm’s performance, The frame

rate of the depth camera is set to be 30 Hz, the next intermediate waypoint is calculated

with the step size of 0.5 meters in both x, y, z-axis, with resulting distance from UAV’s

current position to the next waypoint in the range of [0.5m−
√

0.75m], the bounding

box for collision checking is constructed by adding an additional length bbxadditional of 4

meters in both x, y, z-axis. For example, if the UAV is travelling from (4, 4, 4) to (4.5,

4.5, 4.5), the resulting bounding box area would be a cubical sapce with minimum value

and maximum value of (2, 2, 2) and (8.5, 8.5, 8.5). The performance of the algorithm

is evaluated by recording the total flight duration consumed for the UAV to reach the

target location with various octomap resolution, and the results are given in Table 6.2.

The results show that the algorithm’s performance improved significantly when the map

resolution changed from 0.05 meter to 0.1 meters, at the resolution of 0.05 meter with

a cubical bounding box with a length of 4 meters, there are 803 = 512000 iterations

required for collision checking, by changing the resolution to 0.1 meter, the iteration

required is 403 = 64000. This is probably due to the system halt caused by the high

amount of iteration since the performance only improves slightly by keep increasing the

map resolution until it reaches the resolution of 0.5 meters.

At the resolution of three and five meters, the algorithm failed to find a trajectory

to the target location. More precisely, the algorithm failed to find an initial waypoint at

the beginning of the simulation. This is because the perception unit in mapping system

detects the ground land and treat it as an obstacle, even the UAV is in an open space, the

resulting octomap with low resolution (large resolution number) from the ground covers

the UAV, hence no initially waypoint found at the beginning the simulation. Figure 6.7

shows the resulting bounding box with the resolution of five meters. An ideal solution

would be the improvement in the mapping system, which segments the ground land from
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the rest of the static obstacles.

Table 6.2: Algorithm performance with different octomap resolution for outdoor environ-
ment

Case No octomap resolution (m) flight duration (MM:SS)
1.1 0.05 4:57

1.2 0.1 1:05

1.3 0.15 0:53

1.4 0.2 0:51

1.5 0.5 0:48

1.6 1.0 0:48

1.7 1.5 0:48

1.8 2 0:49

1.9 3 failed

1.10 5 failed

Figure 6.7: The constructed bounding box when the UAV at its initial position with the

resolution of five meters

Next waypoint step size and bbxadditional

The sum of next waypoint step size, and additional length bbxadditional is constrained by

the maximum sensor range from the depth camera, consider the step size and additional
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length are same in x, y, z-axis. The maximum sum summax can be calculated by:

√
3summax2 = 10

summax =

√
100
3

≈ 5.77

(6.1)

The choice of next waypoint step size and additional length bbxadditional are highly

interrelated and will be evaluated together with octomap resolution of 0.5 meter, Table

6.3 shows the experiments designed and the corresponding result, The results show that

the choice of the additional length bbxadditional has minimum effects on the algorithm’s

performance, the step size of the next waypoint calculation affects significantly on the

converging time of the algorithm, However, by observing the 3D simulation, it is noted

that the UAV tends to oscillate more with the increasing the step size, this is probably

caused by the implemented control system, when the distance traversed approaching the

threshold of the maximum available range, further investigation is required to identify the

cause of the oscillation. The algorithm failed to find a trajectory when the step size is 0.1

meter, this is due to the step size is way smaller than the additional length bbxadditional and

octomap resolution, possible improvement is to reduce the additional length and construct

a smaller bounding box then look for alternative waypoint, Figure 6.8 shows where the

UAV has stuck in gazebo simulated environment and the corresponding octomap repre-

sentation.
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Table 6.3: Algorithm performance with different next waypoint step size and additional
bounding box length in outdoor environment

Case No waypoint step
x, y, z (m)

bbxadditional x,
y, z (m)

flight duration
(MM:SS)

2.1 0.1, 0.1, 0.1 4, 4, 4 failed

2.2 0.5, 0.5, 0.5 4, 4, 4 0:47

2.3 1, 1, 1 4, 4, 4 0:29

2.4 1.5, 1.5, 1.5 4, 4, 4 0:23

3.1 0.5, 0.5, 0.5 3, 3, 3 0:47

3.2 0.5, 0.5, 0.5 3.5, 3.5, 3.5 0:47

3.3 0.5, 0.5, 0.5 4.5, 4.5, 4.5 0:47

(a) simulated environment for case No.2.1, where
the algorithm failed search for a waypoint

(b) octomap for case No.2.1,where the algorithm
failed search for a waypoint

Figure 6.8: where the algorithm failed to find a solution for case No.2.1

Executed trajectory

The experiment result can be evaluated by plotting 3D scatter for the executed waypoints,

and compare the value according to the size and location of the obstacles defined in the

world file. Moreover, the executed waypoint also contains information about the UAV’s

orientation, which is difficult to represent the full information within a single plot. Rviz

(Ros Visualisation) is employed to display sensor data and state information from ROS.

It is possible to display a live representation of the UAV’s odometry (position and orien-

tation) and the mapping information within a single window. Figure 6.9 illustrates the
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3D visualisation taken from RViz. Where the UAV’s odometry is represented by the red

arrow pointing to the direction which the UAV is facing. The rest is the visualisation for

the obstacles detected by the mapping system. As it is shown in the picture, the UAV has

successfully reached the target and avoided the obstacle by going over the building. How-

ever, as described in Section 4.3.2, the algorithm’s default solution to avoid any obstacle

is to set a trajectory by going over the obstacle. Hence, it is essential to test the algorithm

when the UAV is in a roofed environment.

Figure 6.9: The executed trajectory viewed from different angle.

Figure 6.10 shows the resulting trajectory has been exected within a roofed environ-

ment. The overall trajectory is concluded to be collision-free as the UAV has successfully

detected and avoided the surrounding obstacles during the navigation. However, there are

still unexpected aspects of the experiment result. As it is shown in Figure 6.10, the trajec-
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tory went up and down while the UAV is trying to avoid the roofed area. This is caused

by how the alternative waypoint is determined, as the UAV will only check collision with

a small bounding box instead of the whole available map data.

Figure 6.10: The executed trajectory viewed from different angle in a roofed envrionment.

6.1.3 Conclusions

This chapter contains the discussion and evaluation for the performance of the static

obstacle avoidance algorithm. The algorithm starts by calculating an intermediate next

waypoint based on the UAV’s current position and the user-defined target location, then

evaluate the potential hazard for the proposed waypoint by constructing an axis-aligned

bounding, any obstacles detected within that area will trigger the algorithm search for an

alternative collision-free waypoints. Different techniques of constructing the bounding

box are discussed and evaluated, to contains minimum but sufficient areas for collision

checking. The next waypoint is calculated by separating axis, which enables the UAV



CHAPTER 6. EVALUATION OF OBSTACLE AVOIDANCE 126

to arrive on one axis separately, it minimises the size of the resulting bounding box, and

reduces the iteration required for collision checking.

From the RViz 3D visualisation and recorded experiment data, the algorithm is tested

to be able to find a collision-free trajectory in a static environment, with the corrected

parameters for octomap resolution, next intermediate waypoint calculation and additional

length to construct the bounding box used for evaluating potential hazard. Different sce-

narios were designed to investigate how these three parameters affect the performance of

the algorithm.

From the experiment result, the next waypoint calculation impacts most significantly

on the performance of the algorithm, less time is required for longer next waypoint step

size. However, the longer next waypoint calculation also causes the UAV to oscillate with

unstable trajectories. This is probably caused by the implemented position controller, with

longer distance reaching to the maximum threshold of the supported movement range.

Further study is required to investigate the cause of oscillation of the trajectory.

The octomap resolution affects the algorithm heavily at the range between 0.05 - 0.15

meters; the navigation simulation reduces significantly by increasing the map resolution.

However, the experiment results do not differ between the range of 0.15 - 2 meters. This

is probably caused by the iteration required for the potential hazard checking. Further

investigation is required to investigate if longer processing time is caused by system halt

from the high map resolution (with smaller value). With octomap resolution greater than

two meters, the algorithm failed to find any waypoint, and this is due to the implemented

depth camera detecting the land and treat it as obstacle, which covers the space of the

surrounding environment of the UAV.

Lastly, the experiment results show that the additional length extended by the bound-

ing box has minimal effects on the converging time, a possible explanation is that the

additional length is constrained by the maximum sensor range of the depth camera of

10 meters. Further investigation on how additional length affect the performance of the

algorithm can be evaluated with a longer range depth camera.
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6.2 Dynamic obstacle avoidance case study

This section includes the experiments designed to test the performance of the algorithm’s

dynamic obstacle avoidance ability. The UAV is expected to operate within a 3D unknown

environment contains a single moving obstacle, and the algorithm should find a randomly

assigned target location by avoiding the dynamic obstacle without prior knowledge of the

movement trajectory. In order to do this, the UAV needs to constantly be aware of the

position of the moving obstacle and hence chose an appropriate path by predicting the

obstacle’s future location based on its historical movement trajectory.

In a real-world, dynamic obstacle avoidance involves the process of objects segmen-

tation and classifying static and dynamic objects based on their change of detected ob-

stacles’ position, which is beyond the scope of this thesis. The implemented experiments

are desired to test the algorithm’s feasibility for avoiding a single dynamic obstacle. The

dynamic obstacle is simulated as a second UAV by executing a pre-defined trajectory, and

feeding its odometry to the navigation system, where the navigation system will deter-

mine an appropriate trajectory directly from the second UAV’s odometry data, instead of

from a comprehensive mapping system with objects segmentation. The implementation

of the algorithm can be roughly divided into three steps:

• obstacle future prediction

• potential collision checking

• alternative waypoint searching

The algorithm will first assign an initial waypoint base on only the UAV’s current po-

sition and target location, then evaluate potential collision by predicting the obstacle’s his-

torical trajectory, lastly either chose to execute the initially proposed waypoint or search

for an alternative waypoint based on the feedback from the dynamic collision checking

system. The potential collision with the moving obstacle is evaluated with Separating

Axis theorem, which has minimal effects on the performance of the algorithm. The re-
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maining of the section will explain how the obstacle’s position prediction and alternative

waypoint searching are affecting the performance of the algorithm.

6.2.1 Obstacle position prediction

To predict the obstacle’s future position, the algorithm firstly need to estimate the ob-

stacle’s velocity in each axis from its historical displacement in the past duration t, then

predict the obstacle’s future position range by constructing a cubic bounding box, with

the estimated obstacle’s velocity and the time tu required for the UAV to reach the next

waypoint with an additional length in each axis to allow the UAV’s rotation and obstacle’s

change of velocity. These two steps are highly interrelated due to the limitation of the im-

plemented position controller for the navigation system, which has no direct control of the

UAV’s velocity and thus the time tu. Lower t value yields a better representation of the

obstacle’s instantaneous velocity, which is preferable when the obstacle is accelerating,

where the resulting bounding box is larger and gives a better prediction of the obstacle’s

position range. However, when the obstacle is decelerating, the resulting bounding box

will contain unnecessary space for the collision checking, therefore slower converging to

the target location.

Table 6.4 shows the results for the experiment designed to evaluate how the dura-

tion of t affects the accuracy of obstacle velocity estimation. The moving obstacle is

simulated with a second UAV, and the obstacle is travelling only on the y-axis, with the

coordinates of [0,1,3,6,10,15,25]. They are chosen due to the limitation of no direct

control of the navigation velocity, and each distance is double compared to the last one.

To allow broader range velocity estimation. Additionally, after the obstacle arrives at

each waypoint, it will stay at the corresponding position for 1 second, where the obstacle

needs to decrease its velocity to hover at each position. The obstacle’s velocity is esti-

mated by broadcasting obstacle’s transform (position) into a tracking frame, then utilising

the lookupTwist function within ROS tf listener, to estimate the obstacle’s velocity by

comparing the tracking frame with respect to the observation world frame with various
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duration t to average. The estimated velocity is compared with the velocity measured

from an ideal odometry sensor. The accuracy of the estimated velocity is evaluated, the

difference calculated by subtracting the estimated velocity by the ideal velocity, with the

corresponding maximum, minimum, and standard deviation for each duration t used.

From the early paragraph, it states the hypothesis that when the obstacle is accelerat-

ing, shorter duration of t yields a better estimation of the obstacle’s velocity. To evaluate

this, as it is shown in the table, the maximum measured velocity from ideal odometry sen-

sor is approximately 11m/s, by observing the maximum estimated velocity for different

t, it can be seen the maximum estimated velocity starts to drop from its true value when

the duration is greater than 0.521s as it is expected. However, the estimated maximum

velocity is extremely larger than its true value when the duration is less than 0.035s, with

the maximum estimate velocity of 384.01m/s when the duration is 0.001s. A possible

explanation would be the duration t exceeds the minimum limit of the time Tp required

to process the velocity estimation. Which means the computer requires a longer time to

update the obstacle’s position, and the corresponding displacement during the time Tp is

actually larger than what is expected. Therefore the estimated velocity would be:

Ve =
v×Tp

t
when t < Tp (6.2)

Ve =
v× t

t
when t ≥ Tp (6.3)

Where v denotes the measured velocity from the ideal odometry sensor, it is possible

to estimate the Tp by substituting the maximum velocity and maximum estimated velocity

with the corresponding duration t in Equation 6.2. The results are given in Tp column in

Table 6.4, the estimated results are approximately within the range of[0.35→ 0.5]s until

the duration t is larger than 0.04s, which satisfies the hypothesis in Equation 6.2, 6.2.

Therefore, to yield a better estimation of the obstacle’s velocity, the duration t used to

average obstacle’s velocity should be within the range of [0.04→ 0.512s]. The algorithm
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will choose the duration of 0.04s to estimate the obstacle’s velocity.

Table 6.4: Velocity difference between ideal odometry sensor and estimated velocity

t (s) difference
max
(m/s)

difference
min
(m/s)

difference
SD

estimated
max
(m/s)

estimated
min
(m/s)

max
(m/s)

min
(m/s)

Tp
(s)

0.001 29.26 -373.29 44.67 384.01 -30.16 11.08 -3.23 0.035

0.002 8.53 -174.76 20.87 185.45 -9.11 11.18 -3.43 0.033

0.004 10.78 -99.43 11.74 110.34 -11.90 11.05 -3.29 0.040

0.008 8.76 -38.25 4.88 44.95 -3.11 11.17 -3.11 0.032

0.016 8.94 -28.22 4.41 34.39 -2.10 11.16 -3.18 0.049

0.032 7.97 -6.61 1.24 17.45 -1.49 10.89 -3.19 0.051

0.033 6.47 -8.84 1.41 18.32 -1.57 11.21 -3.19 0.054

0.035 8.53 -12.00 1.68 14.14 -1.63 11.15 -3.37 0.044

0.037 8.44 -10.20 1.44 13.78 -1.32 11.26 -3.15 0.037

0.04 8.87 -9.88 1.25 12.85 -1.27 11.33 -3.16 0.045

0.064 1.00 -9.64 1.30 15.45 -1.60 11.34 -3.03 0.087

0.128 2.12 -7.84 0.88 11.80 -1.25 10.91 -3.26 0.138

0.256 2.54 -8.75 0.95 12.62 -1.29 11.15 -3.39 0.290

0.384 4.73 -5.88 1.26 11.65 -1.16 11.27 -3.10 0.387

0.512 5.56 -5.13 1.37 10.92 -1.04 11.08 -3.40 0.495

1.024 8.43 -6.48 1.94 8.99 -0.75 11.19 -3.24 0.822

1.536 8.96 -7.07 2.15 6.88 -0.50 11.26 -3.12 0.938

2.048 7.89 -6.16 2.07 5.09 -0.11 10.95 -3.15 0.952

2.560 8.06 -5.31 1.87 4.49 -0.28 11.28 -3.24 1.020

3.072 8.18 -4.82 1.98 4.79 0.00 10.76 -3.10 1.369
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The potential collision is evaluated by constructing the bounding box represented the

range of obstacle’s future position. Ideally, the range is calculated by vo
e × tu, where

vo
e denotes the estimated obstacle’s velocity, tu denotes the time required for the UAV

to reach the next proposed waypoint. However, there is no direct control of velocity

for the implemented position controller. From Figure 6.11b, the maximum velocity is

approximate 1.8m/s when the obstacle UAV is travelling from 0 to 1 in y-axis. Therefore,

in dynamic obstacle avoidance, the maximum step size for waypoint calculation in each

axis is restricted to 1 meter, with approximately tu ' 0.6s.

(a) t = 0.001s (b) t = 0.04s

(c) t = 0.512s (d) t = 2.048s

Figure 6.11: Comparison between true velocity and the estimated velocity with various t

Furthermore, as it is stated in Chapter 4.3.3, the bounding box should be extended

with extra length to allow UAV’s rotation and compensate the estimation error caused

by the change of obstacle’s velocity. The experiment results in Figure 6.11b shows that

with a duration of t = 0.04s, the algorithm can sufficiently keep track of any acceleration.
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However, there is still error for the estimated velocity, to minimise the effects caused by

the estimation. The velocity vo
e used to predict obstacle’s future position should be the

addition of estimated velocity and the maximum velocity difference in Table 6.4. For

duration t = 0.04, the maximum difference is 8.87m/s occurs approximately at 18.25s of

the simulation, with the true velocity 10.51m/s and estimated velocity 1.64m/s1. The dif-

ference differs significantly because the implemented obstacle is travelling from 15 to 25,

the 10-meter displacement has reached the threshold of the maximum traversing distance

supported by the position controller, which cause instability of the obstacle UAV’s state.

Hence for the implemented obstacle UAV, the maximum traversing step is restricted to 5

meters, with maximum velocity difference of 2.20m/s.

6.2.2 Alternative waypoint searching

When the initally proposed waypoint is considered to be in potential collision with the

moving obstacle. the algorithm will search for an alternative collision-free trajectory by

assigning a waypoint towards one of the four corners of the constructed bounding box

in 2D. Figure 6.12 shows the 2D overview of the scenarios that the potential trajectory

potentially collides with the dynamic obstacle.

Figure 6.12: 2D overview of potential collision scenarios

As it is illustrated in the Figure, there are two or three corners are safe for the UAV

to travel without colliding with the obstacle, which can be determined by calculating

the distance from UAV’s current position to each of the four corners, where the shortest
1the number does not add up because the estimated velocity is taken at t = 18.17
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two are the safe options. For simplification of the algorithm, it will check if there are

two corners lie on the line between UAV’s current position and the target location, for

the special case when the potential trajectory intersects with two diagonal corners of the

square bounding box, which is relatively rare in a real-world scenario.

With the two safe options determined, the algorithm need determine the appropriate

one based on the displacement from UAV’s current position to each of these two corners,

which are denoted by [dbbx1
x ,dbbx1

y dbbx2
x ,dbbx2

y ]. Although it is possible for the UAV to

locate exactly on one or two (at the corner) of the four boundaries, this special scenario

is relatively rare. Furthermore, the accuracy for the implemented position controller is on

the level of 1×10−20, which makes it nearly possible for the UAV to locate on the bound-

ing box’s boundary, the algorithm will drive the UAV into hovering mode, to stay at its

current location, wait for change of position from the moving obstacle. The implemented

algorithm consider only for the scenarios that the UAV locates outside of the bounding

box.

Figure 6.13: Possible displacement combination for [dbbx1
x dbbx1

y ,dbbx2
x dbbx2

y ] in 2D,where

1 denotes positive value and 0 denotes negative value

Figure 6.13 shows there are eight possible combinations of how the UAV locate out-
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side of the bounding box, where 01 denotes the direction from the UAV to two of the

shortest corner, with 0 representing the negative direction and 1 representing a positive

direction. Because the UAV is located outside of the bounding box, [dbbx1
x dbbx1

y ] and

[dbbx2
x dbbx2

y ] will at least share one direction by evaluating each axis separately and max-

imum two same direction. Figure 6.14 groups the UAV’s position with respect to the

bounding box base on the number of the same direction.

(a) sharing two directions (b) sharing one direction

Figure 6.14: Classification for [dbbx1
x dbbx1

y ,dbbx2
x dbbx2

y ] base on their direction

Alternative waypoint searching: two same directions

When both dbbx1
x ,dbbx2

x and dbbx1
y ,dbbx2

y share the same direction, the algorithm will com-

pare the distance from these two corners to the target location, where the corner with a

shorter distance to the target is chosen to be the next alternative waypoint. However, when

the both the estimated velocity vo
x ,v

o
y have the opposite sign compared to the direction vec-

tor, as it is shown in Figure 6.15a, the corner with shorter distance to the target will result

in the UAV and obstacle traversing toward each other, the corner with longer distance will

be chosen to be the next alternative waypoint to minimise the potential collision.
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(a) chose the longer distance one for safety (b) chose the shorter distance one

(c) chose the shorter distance one (d) chose the shorter distance one

Figure 6.15: Determine the direction for the alternative next waypoint when the direction
to both corner share the same direction

Alternative waypoint searching: one same direction

When both dbbx1
x ,dbbx2

x and dbbx1
y ,dbbx2

y share only one same direction, the algorithm de-

termines the next alternative waypoint base on the number of the opposite direction those

two vector share with the estimated obstacle’s velocity. The prefered corner would have

two opposite direction, the second preferable choice is the one with only one opposite

sign. This is chosen to allow the UAV to travel in the opposite direction of the moving

obstacle to minimise the potential collision. Figure 6.16 illustrates the scenarios when

there is only one same direction, and the explanation of determined corner.
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Summary

The alternative waypoint is determined based on the relationship between the estimated

obstacle 2D velocity and the direction from UAV’s current position to two of the safe

corners of the bounding box. Although it is a relatively rare case when the estimated

velocity is zero in any of the 2d axes, it can be improved by repeat the described process

by only comparing the direction and estimated velocity in 1D.

For the case when the obstacle moves only in the z-axis, the algorithm will search for

the alternative waypoint with the shortest 2D distance to the target location, and avoid the

dynamic obstacle by going the opposite direction of the estimated z-axis velocity.

Furthermore, the proposed alternative waypoint searching technique only provides

a 2D coordinate, the value for next alternative waypoint in z-axis can be either imple-

mented toward the target location for fast converging or towards the opposite direction of

estimated obstacle velocity to minimise potential risk. For the implemented algorithm,

the z value for the next alternative waypoint is chosen to be the same as the UAV’s current

position.
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(a) chose the top-left corner with two opposite di-
rection compared to the obstacle

(b) chose the top-left corner with one opposite di-
rection compare to the obstacle

(c) chose the bottom-left corner with two opposite
direction compare to the obstacle

(d) chose the bottom-left corner with one opposite
direction compare to the obstacle

Figure 6.16: Determine the direction for the alternative next waypoint when only one
direction to both corner share the same direction
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6.2.3 Experiment design

Table 6.5 shows the start and finish coordinate of UAV and the moving obstacle, for the

five-set experiments designed to test the algorithm’s feasibility of dynamic obstacle avoid-

ance. The UAV is expected to find a path from the proposed start position to the target

location by avoiding the dynamic obstacle. The obstacle’s trajectory is designed to be in

different relative motions compared to the UAV’s potential trajectory, which includes:

• Case 1, the dynamic obstacle’s trajectory is perpendicular to the UAV’s potential

trajectory.

• Case 2, the dynamic obstacle’s trajectory is parallel and same direction to the UAV’s

potential trajectory.

• Case 3, the dynamic obstacle’s trajectory is parralle and opposite to the UAV’s

potential trajectory.

• Case 4, the dynamic obstacle’s trajectory is parallel to the UAV’s potential trajectory

with a turning angle.

• Case 5, the dynamic obstacle’s trajectory is opposite to the UAV’s potential trajec-

tory with a turning angle.

Table 6.5: Cases designed for dynamic obstacle avoidance with start and finish coordinate
for both UAV and moving obstacle

CASE UAV start UAV target obstacle start obstacle target
No. x, y, z (m) x, y, z (m) x, y, z (m) x, y, z (m)
1 [0, -6, 2] [0, 4, 2] [-6, 0, 2] [6, 0, 2]

2 [0, -6, 2] [0, 10, 2] [0, 0, 2] [0, 6, 2]

3 [0, -6, 2] [0, 10, 2] [0, 6, 2] [0, 0, 2]

4 [0, -10, 2] [0, 10, 2] [-3, -3, 2] [3, 3, 2]

5 [0, -10, 2] [0, 10, 2] [3, 3, 2] [-3, -3, 2]
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(a) Case.1, the dynamic obstacle’s trajectory is
perpendicular to the UAV’s potential trajectory.

(b) Case 2, the dynamic obstacle’s trajectory is
parallel and same direction to the UAV’s potential
trajectory.

(c) Case 3, the dynamic obstacle’s trajectory is
parralle and opposite to the UAV’s potential tra-
jectory.

(d) Case 4, the dynamic obstacle’s trajectory is
parallel to the UAV’s potential trajectory with a
turning angle.

(e) Case 5, the dynamic obstacle’s trajectory is
opposite to the UAV’s potential trajectory with a
turning angle.

Figure 6.17: 2D overview of the obstacle’s trajectory and UAV’s potential trajectory,
where the dashed arrow denotes the UAV’s potential trajectory and solid arrow denotes
the obstacle’s trajectory
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6.2.4 Result evaluation

This section includes the evaluation for comparison between the UAV executed trajectory

and the obstacle’s trajectory in both 2D and 3D for each dynamic obstacle avoidance case

studies.

Case 1

As it is shown in Figure 6.18, the obstacle is travelling in positive x-axis direction from

-6 to +6; the algorithm find a trajectory to avoid the obstacle by going to the opposite

direction of the obstacle’s trajectory.

(a) 2D trajectory comparison for case 1 (b) 3D trajectory comparison for case 1

Figure 6.18: Case 1, obstacle and UAV’s executed trajectory in both 2D and 3D
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Case 2 3

As it is shown in Figure 6.19, For case 2, 3, the obstacle is travelling from 0 to 6 and

6 to 0 in the y-axis, respectively. The algorithm determines the suitable corner of the

bounding box by comparing the direction between the UAV’s potential trajectory to one

of the bounding box’s corner and the obstacle’s velocity and chose the corner with a

higher number of the shared opposite direction. For case 2 and 3, both the two shortest

distance corner have the same number of opposite direction (1 for case 2 and 0 for case

3), the algorithm then chose the corner base on the distance to the corner, hence, avoid

the obstacle by going in the positive x-axis direction.

(a) 2D trajectory comparison for case 2 (b) 3D trajectory comparison for case 2

(c) 2D trajectory comparison for case 3 (d) 3D trajectory comparison for case 3

Figure 6.19: Case 2 3, obstacle and UAV’s executed trajectory in both 2D and 3D



CHAPTER 6. EVALUATION OF OBSTACLE AVOIDANCE 142

Case 4 5

As it is shown in Figure 6.20, For case 2, 3, the obstacle is travelling from [-3, -3] to [3, 3]

and [3, 3] to [-3, -3] respectively. Similarly to case 2 and 3, the UAV avoids the obstacle

by going to one of the bounding box corners with a higher number of opposite direction

compared to the obstacle’s velocity. For case 4, the obstacle is travelling in the positive

x-axis direction and positive y-axis direction, the algorithm finds a collision-free path by

going to the negative direction on both x and y axes. For case 5, the obstacle is travelling

in the x-axis direction and negative y-axis direction, the algorithm finds a collision-free

path by going to the positive direction in both x and y axes.

(a) 2D trajectory comparison for case 4 (b) 3D trajectory comparison for case 4

(c) 2D trajectory comparison for case 5 (d) 3D trajectory comparison for case 5

Figure 6.20: Case 4 5, obstacle and UAV’s executed trajectory in both 2D and 3D
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6.2.5 Conclusions

This section includes the discussion and evaluation for the performance of the dynamic

obstacle ability, where the algorithm is expected to find a collision-free trajectory within

a 3D unknown environment with one dynamic obstacle. The implemented algorithm

focuses only on the feasibility of the dynamic obstacle avoidance ability, provided with

the historical position of the dynamic obstacle.

The algorithm works on the basis of predicting the obstacle’s future range of position

by estimating the obstacle’s velocity from its historical movement trajectory within the

past duration of t. The choice of t affects the accuracy of velocity estimation. Generally,

smaller t yields a better estimation of the obstacle’s velocity where there is a change of the

obstacle’s velocity. However, when the t is extremely small, the estimated velocity differs

significantly from its real velocity, this is due to the t exceeds the minimum duration

required for the system to process data. From the experiments result, the ideal range of t

is determined to be within [0.04→ 0.512s].

The potential collision between the UAV and the dynamic obstacle is determined with

SAT techniques, which states that if there is a straight line between two polygons, these

two polygons do not intersect. These two polygons are constructed as cubical bounding

boxes with the UAV and the predicted obstacle’s future displacement in each axis.

In order to search for the alternative waypoint when the initial one could potentially

collide with the dynamic obstacle, the algorithm will propose the next alternative way-

point towards the direction of one of the four corner of the constructed bounding box in

2D, which is calculated base on the directions between the estimated obstacle’s veloc-

ity, and the displacement from the UAV’s current position. The solution in the z-axis

is configurable, either with the opposite direction of the estimated obstacle velocity for

maximum safety, or the same direction to the target location for fast converging.

From the tested result, the UAV is proven to be able to avoid the potential collision for

dynamic obstacle by predicting its future range of position from its historical trajectory.

However, there are still several aspects that can be improved.
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Firstly, the implemented algorithm is only tested within a single dynamic obstacle,

and there are no other static obstacles within the navigation environment. The obstacles

size and location can be easily acquired by searching the octomap data. For the cases

when there are more than one moving obstacles or static obstacles, it will not be sufficient

information for the UAV to predict each obstacles’ position. Which could be improved

by introducing a segmentation and feature tracking system for the received sensory data,

to classify and identify between static and dynamic objects, treat them as static obstacles

if there is a small or no change in the obstacles’ position. For the scenarios where there

is more than one dynamic obstacle, it is possible to apply the same method to check the

collision by introducing multiple bounding boxes.

Secondly, the alternative trajectory is determined by assigning a waypoint towards

one of the four corners of the bounding box constructed by the obstacle’s future range of

position, this work fine under the assumption that the UAV is only equipped with forward-

viewing perception, where the obstacle will always reside within the range between the

UAV and its target location. However, for the cases when the UAV is equipped with

panoramic-view perception. It is possible that the resulting bounding box is located in

the opposite direction from the UAV to its target location, by assigning a waypoint to-

wards the bounding box corner would result in the low converging time to the target. To

improve this, one possible solution is to determine whether the obstacle is approaching

or departing away from the potential trajectory between the UAV’s current position and

target point, calculate a relative far waypoint but safe from the obstacle’s trajectory when

it is approaching, and shorter waypoint to the target location when the obstacle is moving

away or in parallel with the potential trajectory. Furthermore, the implemented position

which has no direct control of the UAV’s velocity, the bounding box is predicted base on

the estimated UAV’s velocity, which is larger than the actual value to minimise the po-

tential collision, the performance of the algorithm can be improved by manipulating the

UAV’s velocity.



Chapter 7

Conclusion and future works

7.1 Conclusion

The goal of the thesis is to design a collision-free autonomous navigation system with

spatial awareness within a comprehensive simulation framework. While spatial aware-

ness is the UAV’s ability to acknowledge its position and orientation in relation to the

surrounding environment, collision-free navigation means the UAV is required to find a

trajectory to the target by avoiding any obstacles on the way, including both static and dy-

namic one, without any prior map information about the environment. The system should

be real-world compatible and can be easily transferred to a real UAV. The implemented

simulation framework consists of the necessary components required for the cognition

tasks, which includes mapping, localisation, cognition and control system. The cognition

system makes execution command based on the input data from mapping and localisation

system, with information about the position information of the obstacle and UAV within

a reference world frame. The mapping and localisation systems are modelled with noise

to simulate real-world scenarios. The simulation framework is implemented in a modular

way to test different strategies for control, mapping or localisation systems.

In order to test algorithms for autonomous UAV to work in a real environment, it is es-

sential to build a comprehensive simulation framework with details as close as possible to

145
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its real-world counterparts. The simulation framework is developed based on Rotors sim-

ulator package with the integration of Gazebo and ROS. ROS provides libraries and tools

to facilitate the software development for the UAV autonomous navigation, and Gazebo

is used for simulation, which includes a robust physical engine, high-quality graphics and

convenient programmatic and graphical interface.

The development of the mapping system is divided into two steps: environment per-

ception and map construction. The perception step utilises a depth camera to convert the

simulated environment from Gazebo into ROS compatible point cloud data. Octomap is

used for the map construction step, and it converts the processed point cloud data into a

map representation. The environment is described with octree representation to identify

the free, occupied and unknown subspaces.

For localisation system, an ideal odometry sensor with perfect ground truth data is

used for the high-level tasks in the cognition system. However, experiments are de-

signed to evaluate the performance of state estimation ability with EKF sensor fusion.

The experiment focuses on the performance of the position estimation by fusing different

combinations of IMU and odometry sensors. The UAV is programmed to execute a user-

defined trajectory, and the estimated EKF filtered position data is compared with an ideal

odometry sensor. The experiments results show that ekf localisation node yields better

performance by increasing the number of sensors used.

The control system is responsible for the decision made from the cognition system is

executed, which is driving the UAV to a randomly assigned target with a prefered orienta-

tion. Each rotor from the UAV is modelled with motor dynamics, which accounts for the

most critical effect for the control system. The implemented control system supports four

DoF tracking of the UAV with the position in 3D and one heading direction.

The implementation for the cognition system is split into three parts with case studies

for real-life scenarios, which are restricted area avoidance, static obstacle avoidance and

dynamic obstacle avoidance.

Firstly, restricted area avoidance is implemented to examine the UAV’s spatial aware-
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ness ability. As the UAV is required to avoid a pre-defined rectangle-shaped restricted

area by only taking input from the localisation system, the UAV needs accurate infor-

mation about its location, therefore to exit the restricted area and approach to the target.

Furthermore, As UAV adoption grows throughout the world, UAV operation is restricted

from certain areas, such as an airport. Therefore, restricted area avoidance serves a fun-

dament function for the autonomous UAV navigation system. The methodology for the

implemented algorithm contains three steps.

• Perceive the UAV’s localisation information, which includes the size and location

of the restricted area.

• Check collision between the initially proposed trajectory and the restricted area

data, However, it is futile and a waste of computer resource for the UAV to run the

recursive function for the whole navigation process. A condition is given to the

system so that the collision checker is only executed when the UAV is relatively

close to the restricted area, to allow a fast false return. The collision checking result

is compensated with the combined system error with additional buffer safe zone to

maximise UAV’s safety.

• Search for the alternative trajectory if the initial trajectory conflicts with the re-

stricted area. The algorithm will search for the shortest exit strategy to avoid the

restricted by comparing the UAV’s position and target location.

By evaluating the experiment result, the UAV has successfully avoided the area by

taking a relative shot path. However, the resulting trajectory found a limitation with the

implemented Lee position controller, which will cause an unstable trajectory if the yaw

change is too significant, which requires the initial attitude error less than 90 degrees to

obtain the stability of the complete system, possible solution is to introduce an intermedi-

ate waypoint with smaller change the UAV’ state. Methodology for other irregular shaped

restricted area is discussed and could be implemented without a large amount of algorithm

modification.
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Secondly, for static obstacle avoidance, the UAV is required to avoid any static ob-

stacles while reaching to the target without any prior map information. The algorithm is

implemented similarly as the restricted area. The UAV will check collision for the per-

ceived obstacle and search for an alternative trajectory if the initial one is determined to

be dangerous. Different criteria are used for collision checking and alternative trajectory

searching. For collision checking, instead of taking the predefined restricted area parame-

ter from the user, the UAV will construct a bounding box according to the UAV’s location

and the initially proposed waypoint. Where the size of the bounding box is the minimum

space required to allow the UAV to pass through, the bounding box space is also com-

pensated with system error to simulated the uncertainties of real-life sensors. In order to

search for the alternative trajectory, the UAV will again construct six bounding boxes but

with only the UAV’s position. The six bounding boxes are up, down, left, right, forward

and back of the UAV’s near-space. The algorithm will check the ’up’ space by default, as

the UAV is working within an outdoor environment, it is more likely to avoid the obstacle

by going over it. The algorithm will then find the safe and close bounding box to exit if

the ’up’ space is unavailable.

From the RViz 3D visualisation and recorded experiment data from rosbag package,

the algorithm is tested to be able to find a collision-free trajectory in a static environ-

ment, with the corrected parameter for octomap resolution, next waypoint calculation and

additional length required to constructed the bounding box. Different experiments are de-

signed to test how the next waypoint step size and bounding box construction can affect

the converging time to the target location. From the experiment results, the next waypoint

calculation impacts more significantly on the performance of the algorithm, less time is

required for next waypoint with longer distance. However, by increasing the step size of

the next waypoint, it causes the UAV to oscillate with unstable trajectory, which is prob-

ably caused the longer traversing distance has reached the maximum supported threshold

of the implemented control system. The octomap map resolution affects the converging

time heavily at the range between [0.05→ 0.15meters], the navigation simulation reduces
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significantly by increasing the map resolution. However, larger map resolution value does

not provide a comprehensive representation of the environment when the UAV is working

within a relatively crowded environment, the choice of map resolution should be deter-

mined according to the UAV’s working environment. Furthermore, the algorithm failed

to find an initial waypoint when the octomap resolution parameter is higher than three

meters, which is caused the mapping system detects the ground land and treat it as an ob-

stacle, and the UAV is contained by the occupied space when the resolution parameter is

higher than the UAV’s geometrical size. Lastly, the results show that the additional length

extended has minimal effects on the converging time, which is possibly caused by the

additional length is constrained by the maximum sensor range of the depth camera in the

mapping system, which is only 10 meters, further investigation is required to investigate

with a longer range depth camera.

Lastly, for the dynamic obstacle avoidance, the cognition system will first estimate

the obstacle’s trajectory by comparing the obstacle’s current position and historical posi-

tion with the past duration of t. The choice of the past duration t affects on the accuracy

of velocity estimation, where small value less than the processing time required for the

ROS node to run will result in the estimated velocity differs significantly from its true

value, and larger t do not yield a good representation when there is any rapid change of

the obstacle’s velocity. From the experiment results, the duration t is determined to be

within the range of [0.04→ 0.512] to sufficiently estimate the obstacle’s velocity. The

algorithm then predicts the obstacle’s future position range in each axis with the estima-

tion of the obstacle’s velocity and time required for the UAV to reach the next waypoint.

However, as the implemented control system operates by tracking the UAV’s position and

orientation, with no direct control of velocity, the UAV’s next waypoint size is restricted

to a fixed size. Separating Axis Theorem is used to check collision between the UAV and

dynamic obstacle. The theorem states that two polygons do not collide if it is possible to

draw a line to separate them, the polygons are constructed with the measured maximum

UAV velocity for that particular step size and the estimated obstacle velocity in each axis
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respectively, with the measured time required for the UAV to travel for that particular step

size. The maximum UAV velocity is selected due to the consequence of constructing a

larger bounding box used for collision checking, therefore, minimise potential collision

the dynamic obstacle. The algorithm evaluates and compares the gap distance between

those two bounding boxes in each axis, and triggers potential collision if there is no gap

in any of those axes.

When there is any potential collision detected between the UAV and the dynamic

obstacle, the algorithm will search for a collision-free trajectory by choosing two of the

shortest distance from the UAV to the corners of the bounding box constructed by the

obstacle’s velocity in 2D, then determines the appropriate one based on the direction

between the estimated obstacle’s velocity and the direction from UAV’s current position

toward the corresponding corner. The solution for the value in the z-axis is configurable,

either with the opposite direction of the estimated velocity for maximum safety, or the

same direction towards the target location. From the tested result, the algorithm is able

to estimate the moving obstacle’s velocity and avoid it by predicting its position. The

algorithm is sufficient when there is only one obstacle. The future work will be the full

implementation for multiple dynamics obstacles and developing a new position controller

with direct control of UAV’s velocity.

7.2 Contribution to knowledge

This thesis has presented a comprehensive simulation framework to test algorithms for the

autonomous UAV navigation system. The navigation system consists of four sub-systems:

mapping, localisation, cognition and control systems. The contribution includes the test

of sensor fusion algorithm for localisation system and design of cognition algorithms

for three case studies. Experiments are designed to evaluate the performance of state

estimation by fusing different sensor combinations, and the results are concluded that

EKF sensor fusion yields a better performance by increasing the number of sensors. For
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cognition system, three cases were designed to test the feasibility of the algorithms to

avoid a restricted area, static obstacle and dynamic obstacle. The experiments on the

three cases have been conducted, and the UAV is able to reach the target under all the

three cases of environments. All simulated components were designed to be analogous

to their real-world counterpart. Ideally, it can be transferred to a real UAV without any

changes. The simulation system provides a platform for future robotic research. As it

is implemented in a modular way, it is easier to debug. Hence, the system has good

reliability. Moreover, the system has good readability, maintainability and extendability.

7.3 Future works

The simulation framework for UAV autonomous navigation can be improved in several

aspects. For the low-level task, the depth camera in mapping system detects and treat

ground land as a static obstacle when the UAV is travelling in a low attitude, which is

inefficient and waste of computational resource for the collision checking system to con-

stantly trigger the collision alert, and caused algorithm failed to find the initial waypoint

with low-resolution map(large resolution parameter). The mapping system could be im-

proved by providing the ability to classify the ground land from the other obstacles. Fur-

thermore, the dynamic obstacles avoidance is implemented as a stand-alone scenario, with

only one dynamic obstacle and no static obstacles, which is not the case in real-world sce-

narios. Likewise, the mapping system should be able to classify the detects objects base

on certain features, identify the static and dynamic obstacles based on their change of

position. Future work on the mapping system includes segmentation and feature tracking

algorithm to classify the type of objects.

The control system can be improved with the following three aspects. The imple-

mented controller supports only four DoF tracking of the UAV’s state, namely three posi-

tions and one heading direction, which is not sufficient for the case when the UAV involves

orientation change. Secondly, the UAV tends to oscillate when there is a large change of
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its state, due to the implemented position controller requires initial attitude error less than

90 degrees. Lastly, for the implemented dynamic obstacle avoidance, the obstacle’s future

position is predicted by the estimated velocity and the duration required for the UAV to

reach the next waypoint, the implemented position controller has no direct control over

the UAV’s velocity, the duration is set a larger period to minimise the risk which could

contain unnecessary space that being check. Furthermore, with direct control of UAV’s

velocity, the dynamic obstacle avoidance could be improved by manipulating the UAV’s

velocity rather than its position.

For localisation system, an ideal odometry sensor with perfect ground truth data is

used for high-level tasks. In real-world scenarios, the sensor reading contains error and

affects the accuracy of the UAV’s state estimation. Possible improvement for localisation

system would be fusing different sensor reading to get a better estimation of the UAV’s

state. This thesis includes the experiment design to estimate UAV’s state with EKF sensor

fusion; the accuracy of the estimation could be improved by identifying the initial noise

covariance and process noise covariance of the sensor system.

For high-level tasks in cognition system, the implemented algorithm for restricted

area avoidance only works properly when the restricted area is an axis-aligned rectangle-

shaped area. The algorithm could be improved to deal with the restricted area which is

not axis-aligned (discussed in Chapter 5.3) or any other shapes.

For high-level tasks in cognition system, the implemented algorithm for restricted

area avoidance only works properly when the restricted area is an axis-aligned rectangle-

shaped area. The algorithm could be improved to deal with the restricted area that is not

axis-aligned (discussed in Chapter 5.3) or any other shapes.

For static obstacle avoidance algorithm, the experiment results indicate that the ad-

ditional length extended for collision checking system has minimal effects on the con-

verging time, which is possibly caused by the additional length is constrained by the

maximum range of the depth camera from the mapping system, which is only 10 meters.

Further investigation can be carried with a longer sensor range depth camera. Secondly,
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the experiment results indicate that the map resolution has minimal effects when the res-

olution is greater than 0.15 meter and affects significantly when the resolution is smaller

than 0.05 meter. A possible explanation is that the computational power required has

reached the maximum power the machine is able to provide when the resolution is un-

der 0.5 meter. Further study can be carried out by repeating the experiment on a real

UAV to identify how the map resolution affects the algorithm’s performance since real

UAV, where the ob-board CPU power is much lower than the machine used for simula-

tion. If there is evidence that map resolution affects significantly, it is preferable for the

navigation to adapt its mapping resolution dynamically according to the working envi-

ronment, with higher resolution for the crowded environment and low resolution for the

environment with more open space. Furthermore, the algorithm utilises the map-less-

based approach for static obstacle avoidance, which gives a better performance when the

UAV is working in an unknown environment with relatively more open airspace. When

the UAV is congested within a relatively complicated environment, the algorithm searches

for an alternative waypoint by identifying the open space of its surrounding environment.

The performance of the algorithm can be improved by switching to a map-using-based

approach for the congested scenarios.

Lastly, for the dynamic obstacle avoidance, the algorithm is tested with only one dy-

namic obstacle. The algorithm can be improved to deal with multiple dynamic obstacles,

with the improvement of segmentation and feature tracking algorithms from the mapping

system. Secondly, the algorithm searches for the collision-free trajectory by assigning a

waypoint towards one of the four corners of the bounding box by obstacle’s movement.

This technique is guaranteed to find a relatively short path to the destination when the

UAV is equipped with a forward-view perception system, where the obstacle always re-

sides within the range between the UAV and its target location. However, for the systems

that are equipped with panoramic-view perception systems, it is possible that the result-

ing bounding box is located in the opposite direction from the UAV to its target location.

Assigning a waypoint towards the bounding box corner would result in a low converging
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time to the target location. The algorithm can be improved by comparing both the obsta-

cle and UAV’s position, velocity with respect to the target location, and avoid the obstacle

by manipulating the UAV’s velocity and the corresponding two displacements.
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[77] S. Edelkamp and S. Schrödl, Route Planning and Map Inference with Global

Positioning Traces. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp.

128–151. [Online]. Available: https://doi.org/10.1007/3-540-36477-3{ }10

[78] H. P. Moravec, “The stanford cart and the cmu rover,” CARNEGIE-MELLON

UNIV PITTSBURGH PA ROBOTICS INST, Tech. Rep., 1983.

[79] S. Thrun, M. Bennewitz, W. Burgard, A. B. Cremers, F. Dellaert, D. Fox, D. Hah-

nel, C. Rosenberg, N. Roy, J. Schulte et al., “Minerva: A second-generation mu-

seum tour-guide robot,” in Robotics and automation, 1999. Proceedings. 1999

IEEE international conference on, vol. 3. IEEE, 1999.

[80] M. V. Srinivasan, “An image-interpolation technique for the computation of optic

flow and egomotion,” Biological Cybernetics, vol. 71, no. 5, pp. 401–415, Sep

1994. [Online]. Available: https://doi.org/10.1007/BF00198917

[81] J. Santos-Victor, G. Sandini, F. Curotto, and S. Garibaldi, “Divergent stereo for

robot navigation: Learning from bees,” in Computer Vision and Pattern Recogni-

tion, 1993. Proceedings CVPR’93., 1993 IEEE Computer Society Conference on.

IEEE, 1993, pp. 434–439.

[82] C. Zhou, Y. Wei, and T. Tan, “Mobile robot self-localization based on global visual

appearance features,” in Robotics and Automation, 2003. Proceedings. ICRA’03.

IEEE International Conference on, vol. 1. IEEE, 2003, pp. 1271–1276.

[83] D. Kim and R. Nevatia, “Recognition and localization of generic objects for indoor

navigation using functionality,” Image and Vision Computing, vol. 16, no. 11, pp.

729–743, 1998.

[84] ——, “Symbolic navigation with a generic map,” Autonomous Robots, vol. 6, no. 1,

pp. 69–88, 1999.

https://doi.org/10.1007/3-540-36477-3{_}10
https://doi.org/10.1007/BF00198917


REFERENCES 165

[85] B. J. a. N. Guerreiro, “Sensor-based Control and Localization of Autonomous Ve-

hicles in Unknown Environments,” Ph.D. dissertation, UNIVERSIDADE DE LIS-

BOA, 2013.

[86] P. E. Hart, N. J. Nilsson, and B. Raphael, “Correction to: ”A Formal Basis for the

Heuristic Determination of Minimum Cost Paths”,” SIGART Bull., no. 37, pp. 28–

29, dec 1972. [Online]. Available: http://doi.acm.org/10.1145/1056777.1056779

[87] Y.-h. Qu, Q. Pan, and J.-g. Yan, “Flight path planning of UAV based on heuristi-

cally search and genetic algorithms,” in 31st Annual Conference of IEEE Industrial

Electronics Society, 2005. IECON 2005., nov 2005, pp. 5 pp.—-.

[88] P. Bhattacharya and M. L. Gavrilova, “Roadmap-based path planning - using the

voronoi diagram for a clearance-based shortest path,” IEEE Robotics Automation

Magazine, vol. 15, no. 2, pp. 58–66, June 2008.

[89] C. Goerzen, Z. Kong, and B. Mettler, “A Survey of Motion Planning Algorithms

from the Perspective of Autonomous UAV Guidance,” Journal of Intelligent

and Robotic Systems, vol. 57, no. 1, p. 65, nov 2009. [Online]. Available:

https://doi.org/10.1007/s10846-009-9383-1

[90] J. Krozel and M. Peters, “Strategic conflict detection and resolution for free flight,”

in Proceedings of the 36th IEEE Conference on Decision and Control, vol. 2, dec

1997, pp. 1822—-1828 vol.2.

[91] H. Y. Ong and M. J. Kochenderfer, “Short-term conflict resolution for unmanned

aircraft traffic management,” in 2015 IEEE/AIAA 34th Digital Avionics Systems

Conference (DASC), sep 2015, pp. 5A4—-1—-5A4—-13.

[92] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,”

1998.

http://doi.acm.org/10.1145/1056777.1056779
https://doi.org/10.1007/s10846-009-9383-1


REFERENCES 166

[93] F. Kendoul, “Survey of advances in guidance, navigation, and control of unmanned

rotorcraft systems,” Journal of Field Robotics, vol. 29, no. 2, pp. 315–378, 2012.

[Online]. Available: http://dx.doi.org/10.1002/rob.20414

[94] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning: A review,”

IEEE Access, vol. 2, pp. 56–77, 2014.

[95] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,”

The International Journal of Robotics Research, vol. 5, no. 1, pp. 90–98, 1986.

[Online]. Available: https://doi.org/10.1177/027836498600500106

[96] J. van Tooren, M. Heni, A. Knoll, and J. Beck, “Development of an autonomous

avoidance algorithm for UAVs in general airspace,” in Proceedings of First CEAS

European Air and Space Conference. Citeseer, 2007.

[97] R. V. Kulkarni and G. K. Venayagamoorthy, “Bio-inspired algorithms for au-

tonomous deployment and localization of sensor nodes,” IEEE Transactions on

Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 40, no. 6,

pp. 663–675, Nov 2010.

[98] A. Nguyen and B. Le, “3d point cloud segmentation: A survey,” in 2013 6th IEEE

Conference on Robotics, Automation and Mechatronics (RAM), Nov 2013, pp.

225–230.

[99] B. Renfro, “An analysis of global positioning system (gps) standard positioning

system (sps) performance for 2016,” 2017.

[100] L. Serrano, D. Kim, R. B. Langley et al., “A gps velocity sensor: How accurate

canitbe,” A First Look, 2004.

[101] T. Moore and D. Stouch, “A generalized extended kalman filter implementation for

the robot operating system,” in Proceedings of the 13th International Conference

on Intelligent Autonomous Systems (IAS-13). Springer, July 2014.

http://dx.doi.org/10.1002/rob.20414
https://doi.org/10.1177/027836498600500106


REFERENCES 167

[102] L. DAlfonso, W. Lucia, P. Muraca, and P. Pugliese, “Mobile robot localization

via ekf and ukf: A comparison based on real data,” Robotics and

Autonomous Systems, vol. 74, pp. 122 – 127, 2015. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0921889015001517

[103] P. Martin and E. Salaun, “The true role of accelerometer feedback in quadrotor

control,” in Robotics and Automation (ICRA), 2010 IEEE International Conference

on. IEEE, 2010, pp. 1623–1629.

[104] M. W. Achtelik, “Advanced closed loop visual navigation for micro aerial vehi-

cles,” Ph.D. dissertation, ETH Zurich, 2014.

http://www.sciencedirect.com/science/article/pii/S0921889015001517


Appendix A

Appendix

A.1 Development environment setup

This section describes the setup process for the prerequisites for the experiment, which

include the integration between ROS and gazebo and the installation of rotors package.

At the end of the chapter, a brief overview is given to describe the basic usage to work

under ROS-Gazebo environment.

A.1.1 ROS Gazebo integration

The Robot Operating System (ROS) is a flexible framework for writing robot software.

It provides libraries and tools to help software developer to design complex robot appli-

cations within different robotic platforms. Currently, Ros only operates on Unix-based

operating systems.This simulation framework has only been tested under ROS kinetic un-

der Ubuntu 16.04. There are many different libraries and tools in ROS, and The most

straightforward way is to install the full configuration provided by ROS which includes

ROS, rqt, RVIZ, robot-generic libraries, 2D/3D simulators, navigation, and 2D/3D per-

ception.

$ sudo apt-get install ros-kinetic-desktop-full

168



APPENDIX A. APPENDIX 169

Gazebo is a well-designed 3D indoor/outdoor multi-robot simulator, complete with

dynamic and kinematic physics, and a pluggable physics engine. It offers the ability to

accurately and efficiently simulate the robot population in a complex environment and al-

lows users to rapidly test algorithms using realistic scenarios without access to expensive

hardware.

$ curl -sSL http://get.gazebosim.org | sh

A.1.2 Basic concept and usage

Package Software in ROS is organized in packages. A package might contain ROS

nodes, a ROS-independent library, a dataset, configuration files, a third-party piece of

software, or anything else that logically constitutes a useful module.

ROS node A node is a process that performs the computation. Nodes are combined

into a graph and communicate with one another using streaming topics, services, and the

parameter server. A robot control system usually comprises many nodes. For example,

a node takes input from the sensor and convert the data into relevant mapping data, or a

node takes position command and controls the robot’s wheel motor. It provides additional

fault tolerance as crashes are isolated to individual nodes. All running nodes are allocated

with graph resource name which that uniquely identifies them to the rest of the system.

ROS topic Topic is named buses over which nodes exchange messages. Topics have

anonymous publish/subscribe semantics, which decouples the production of information

from its consumption. In general, nodes are not aware of who they are communicating

with. Instead, nodes that are interested in data subscribe to the relevant topic; nodes

that generate data publish to the relevant topic. There can be multiple publishers and

subscribers to topics
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ROS message Node communicates with each other by publishing messages to topics.

A message is a simple data structure, comprising typed fields, Standard primitive types

(integer, floating point, boolean, etc.) are supported, as are arrays of primitive types.

Messages can include arbitrarily nested structures and arrays.

ROS service ROS uses a simplified service description language (”srv”) to describe

ROS service types. It is built directly upon the ROS message formation to enable re-

quest/response communication between nodes. The service description is stored in .srv

file of a package.

ROS bag A bag is a file format in ROS for storing ROS message data. It serves an

important role as it allows the user to store, process, analyse and visualise them.

ROS publisher ros publisher is a ROS node that broadcasting a ROS message.

ROS subscriber ros subscriber is a ROS node that broadcasting a ROS message.

Utilising Launch files Launch files are scripts which describes how the nodes should be

executed, parameters that are supposed to be set, along with other attributes of launching

multiple ROS nodes. The roslaunch package contains the roslaunch tools. The roslaunch

package introduces a simple way to launch multiple ROS nodes within a single file, as

well as identifying parameters on the Parameter Server by reading in one or more xML

configuration files (with the .launch extension) that specify the parameters to set and nodes

to launch, as well as the machines that they should be run on. These parameters will be

stored on the Parameter Server before any nodes are launched.

to launch a lauch file, entering the following command.

$ roslaunch PACKAGE_NAME LAUNCH_FILE.launch
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A.2 ROS node graph for static obstacle avoidance with

restricted area avoidance
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A.3 ROS node graph for dynamic obstacle avoidance
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A.4 Localisation results with EKF sensor fusion

A.4.1 1 imu 1 odometry

(a) x axis comparison (b) y axis comparison

(c) z axis comparison (d) Executed trajectory comparison in 2D

Figure A.1: Comparison between ideal odometry and filtered odometry from 1 imu and 1
odometry
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(a) x axis difference (b) y axis difference

(c) z axis difference

Figure A.2: difference between ideal odometry and the filtered result from 1 imu and 1

odometry
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A.4.2 2 identical imu 1 odometry

(a) x axis comparison (b) y axis comparison

(c) z axis comparison (d) Executed trajectory comparison in 2D

Figure A.3: Comparison between ideal odometry and filtered odometry from 2 identical
imu and 1 odometry
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(a) x axis difference (b) y axis difference

(c) z axis difference

Figure A.4: difference between ideal odometry and the filtered result from 2 identical imu
and 1 odometry
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A.4.3 1 imu 2 identical odometry

(a) x axis comparison (b) y axis comparison

(c) z axis comparison (d) Executed trajectory comparison in 2D

Figure A.5: Comparison between ideal odometry and filtered odometry from 1 imu and 2
identical odometry
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(a) x axis difference (b) y axis difference

(c) z axis difference

Figure A.6: difference between ideal odometry and the filtered result from 1 imu and 2
identical odometry
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A.4.4 2 identical imu 2 identical odometry

(a) x axis comparison (b) y axis comparison

(c) z axis comparison (d) Executed trajectory comparison in 2D

Figure A.7: Comparison between ideal odometry and filtered odometry from 2 identical
imu and 2 identical odometry



APPENDIX A. APPENDIX 182

(a) x axis difference (b) y axis difference

(c) z axis difference

Figure A.8: difference between ideal odometry and the filtered result from 2 identical imu
and 2 identical odometry
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A.4.5 1 imu 2 different odometry

(a) x axis comparison (b) y axis comparison

(c) z axis comparison (d) Executed trajectory comparison in 2D

Figure A.9: Comparison between ideal odometry and filtered odometry from 1 imu and 2
different different odometry
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(a) x axis difference (b) y axis difference

(c) z axis difference

Figure A.10: difference between ideal odometry and the filtered result from 1 imu and 2
different different odometry



APPENDIX A. APPENDIX 185

A.4.6 2 different imu 1 odometry

(a) x axis comparison (b) y axis comparison

(c) z axis comparison (d) Executed trajectory comparison in 2D

Figure A.11: Comparison between ideal odometry and filtered odometry from 2 different
imu and 1 odometry
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(a) x axis difference (b) y axis difference

(c) z axis difference

Figure A.12: difference between ideal odometry and the filtered result from 2 different
imu and 1 odometry
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A.4.7 2 different imu 2 different odometry

(a) x axis comparison (b) y axis comparison

(c) z axis comparison (d) Executed trajectory comparison in 2D

Figure A.13: Comparison between ideal odometry and filtered odometry from 2 different
imu and 2 different odometry
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(a) x axis difference (b) y axis difference

(c) z axis difference

Figure A.14: difference between ideal odometry and the filtered result from 2 different
imu and 2 different odometry
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A.5 Velocity estimation with different duration step

(a) Velocity comparison (b) Velocity difference

Figure A.15: Comparison between true velocity and the estimated velocity in y axis with
step duration of 0.001 s

(a) Velocity comparison (b) Velocity difference

Figure A.16: Comparison between true velocity and the estimated velocity in y axis with
step duration of 0.002 s
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(a) Velocity comparison (b) Velocity difference

Figure A.17: Comparison between true velocity and the estimated velocity in y axis with
step duration of 0.004 s

(a) Velocity comparison (b) Velocity difference

Figure A.18: Comparison between true velocity and the estimated velocity in y axis with
step duration of 0.008 s

(a) Velocity comparison (b) Velocity difference

Figure A.19: Comparison between true velocity and the estimated velocity in y axis with
step duration of 0.016 s
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(a) Velocity comparison (b) Velocity difference

Figure A.20: Comparison between true velocity and the estimated velocity in y axis with
step duration of 0.032 s

(a) Velocity comparison (b) Velocity difference

Figure A.21: Comparison between true velocity and the estimated velocity in y axis with
step duration of 0.033 s

(a) Velocity comparison (b) Velocity difference

Figure A.22: Comparison between true velocity and the estimated velocity in y axis with
step duration of 0.035 s
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(a) Velocity comparison (b) Velocity difference

Figure A.23: Comparison between true velocity and the estimated velocity in y axis with
step duration of 0.037 s

(a) Velocity comparison (b) Velocity difference

Figure A.24: Comparison between true velocity and the estimated velocity in y axis with
step duration of 0.04 s

(a) Velocity comparison (b) Velocity difference

Figure A.25: Comparison between true velocity and the estimated velocity in y axis with
step duration of 0.064 s
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(a) Velocity comparison (b) Velocity difference

Figure A.26: Comparison between true velocity and the estimated velocity in y axis with
step duration of 0.128 s

(a) Velocity comparison (b) Velocity difference

Figure A.27: Comparison between true velocity and the estimated velocity in y axis with
step duration of 0.256 s

(a) Velocity comparison (b) Velocity difference

Figure A.28: Comparison between true velocity and the estimated velocity in y axis with
step duration of 0.384 s
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(a) Velocity comparison (b) Velocity difference

Figure A.29: Comparison between true velocity and the estimated velocity in y axis with
step duration of 0.512 s

(a) Velocity comparison (b) Velocity difference

Figure A.30: Comparison between true velocity and the estimated velocity in y axis with
step duration of 1.024 s

(a) Velocity comparison (b) Velocity difference

Figure A.31: Comparison between true velocity and the estimated velocity in y axis with
step duration of 1.536 s
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(a) Velocity comparison (b) Velocity difference

Figure A.32: Comparison between true velocity and the estimated velocity in y axis with
step duration of 2.048 s

(a) Velocity comparison (b) Velocity difference

Figure A.33: Comparison between true velocity and the estimated velocity in y axis with
step duration of 2.560 s

(a) Velocity comparison (b) Velocity difference

Figure A.34: Comparison between true velocity and the estimated velocity in y axis with
step duration of 0. s
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