
Aalto University

School of Science

Degree Programme of Computer Science and Engineering

Niroj Pokhrel

Drone Obstacle Avoidance
and Navigation

using Artificial Intelligence

Master’s Thesis
Espoo, April 20, 2018

Supervisor: Professor Alex Jung
Instructor: Enrique Ramirez M.Sc. (Tech.)



Aalto University
School of Science
Degree Programme of Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Niroj Pokhrel

Title:
Drone Obstacle Avoidance and Navigation using Artificial Intelligence

Date: April 20, 2018 Pages: xii + 102

Professorship: Embedded System Code: SCI3024

Supervisor: Professor Alex Jung

Instructor: Enrique Ramirez M.Sc. (Tech.)

This thesis presents an implementation and integration of a robust obstacle avoid-
ance and navigation module with ardupilot. It explores the problems in the cur-
rent solution of obstacle avoidance and tries to mitigate it with a new design.
With the recent innovation in artificial intelligence, it also explores opportunities
to enable and improve the functionalities of obstacle avoidance and navigation
using AI techniques. Understanding different types of sensors for both naviga-
tion and obstacle avoidance is required for the implementation of the design and
a study of the same is presented as a background. A research on an autonomous
car is done for better understanding autonomy and learning how it is solving the
problem of obstacle avoidance and navigation. The implementation part of the
thesis is focused on the design of a robust obstacle avoidance module and is tested
with obstacle avoidance sensors such as Garmin lidar and Realsense r200. Image
segmentation is used to verify the possibility of using the convolutional neural
network for better understanding the nature of obstacles. Similarly, the end to
end control with a single camera input using a deep neural network is used for
verifying the possibility of using AI for navigation. In the end, a robust obstacle
avoidance library is developed and tested both in the simulator and real drone.
Image segmentation is implemented, deployed and tested. A possibility of an end
to end control is also verified by obtaining a proof of concept.

Keywords: artificial intelligence, drones, obstacle avoidance, autonomous
navigation, computer vision, deep neural network, ardupilot

Language: English

ii



Acknowledgements

This thesis is developed in collaboration with Nokia Networks and Depart-
ment of Machine Learning for Big Data Group of Aalto University of School
of Science. I would like to thank Nokia for providing opportunity and sup-
port to undertake this project. I am especially grateful towards my supervisor
Professor Alex Jung who incited an interest in Machine learning when I was
taking his course on Basics in Machine Learning in Aalto University. His
insight and feedback helped in structuring and developing the thesis. The
motivation and constant support from my advisor Enrique Ramirez helped
me overcome several hurdles.

Espoo, April 20, 2018

Niroj Pokhrel

iii



List of Figures

2.1 Navigation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Optical Flow sensor with CMOS image, gyroscope and ultrasonic[34] 9
2.3 Obstacle Avoidance Unit with corresponding components . . . 12
2.4 Garmin Lite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Velodyne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Rplidar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Intel Realsense R200 [53]. . . . . . . . . . . . . . . . . . . . . 14
2.8 Intel Realsense R200 internals as provided in [53]. . . . . . . 14
2.9 Polar Obstacle Density [20] . . . . . . . . . . . . . . . . . . . 15
2.10 Vertical Field Histogram [10] showing the formation of polar

obstacle densities in front of the vehicle. . . . . . . . . . . . . 16
2.11 Aritificial Intelligence Unit showing different components in-

volved for developing an intelligent system. . . . . . . . . . . . 17
2.12 Nvidia Jetson TX2 model [52] . . . . . . . . . . . . . . . . . . 20
2.13 Single Neuron[38] . . . . . . . . . . . . . . . . . . . . . . . . 21
2.14 Sigmoid Function . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.15 Tanh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.16 ReLU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.17 Multilayer Perceptron [38] . . . . . . . . . . . . . . . . . . . . 24
2.18 Convolutional Neural Network Internal [38] . . . . . . . . . . 25
2.19 Convolutional Neural Network [38] . . . . . . . . . . . . . . . 27
2.20 Training and deploying deep learning with DIGITS [17] . . . 28
2.21 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . 30

3.1 Autonomous Car architecture [45] . . . . . . . . . . . . . . . . 33
3.2 Training End to End FCNN for autonomous driving [9] . . . . 36
3.3 Deploying End to End FCNN for autonomous driving [9] . . . 37

4.1 Four rotors in Quadrotor [58] . . . . . . . . . . . . . . . . . . 39
4.2 Thrust on four rotors [58] . . . . . . . . . . . . . . . . . . . . 40
4.3 Ascend and Descend [58] . . . . . . . . . . . . . . . . . . . . 41
4.4 Turning Left and Turning Right [58] . . . . . . . . . . . . . . 41

iv



4.5 Move Forward and Move Backward [58] . . . . . . . . . . . . 42
4.6 Move Left and Move Right [58] . . . . . . . . . . . . . . . . . 43
4.7 Different Software Components . . . . . . . . . . . . . . . . . 44
4.8 Apm planner 2 home screen [61] . . . . . . . . . . . . . . . . . 45
4.9 Apm planner 2 creating mission interfaces [61] . . . . . . . . 45
4.10 UpBoard [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.11 Raspberry Pi [3] . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.12 Pixhawk [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.13 Mavlink Packets [1] . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 High Level Architecture of Obstacle Avoidance System . . . . 55
5.2 Main Modules of Obstacle Avoidance Library . . . . . . . . . 55
5.3 Sensor Interfaces and Implementation for Garmin lidar lite . . 56

6.1 Different regions of interest around the obstacle . . . . . . . . 63
6.2 State diagram of sensor fusion algorithm . . . . . . . . . . . . 64
6.3 Simulate obstacle avoidance with Garmin Lidar . . . . . . . . 64
6.4 Ardupilot sitl with mavproxy for simulating quadrotor drone. . 65
6.5 Integrate obstacle avoidance with Garmin Lidar . . . . . . . . 66
6.6 Measurement of relative altitude with GPS amidst tall buildings. 67
6.7 Update rate of different sensors. . . . . . . . . . . . . . . . . . 67
6.8 Distance measured with garmin lidar from same distance but

different reflective surfaces. . . . . . . . . . . . . . . . . . . . . 68
6.9 Integrate obstacle avoidance with Realsense(r200) . . . . . . . 69
6.10 Segmentation of depth image for calculating polar histogram . 71
6.11 Flow chart for calcualating POD and avoiding obstacles . . . . 72
6.12 Simulate obstacle avoidance with Realsense(R200) in gazebo . 73
6.13 POD for obstacles on the right as bright and error on the left 74
6.14 POD for obstacles on the right and left . . . . . . . . . . . . . 74
6.15 POD for obstacles on the left and middle . . . . . . . . . . . . 74
6.16 POD for obstacles only in the middle . . . . . . . . . . . . . . 74
6.17 Noisy data from Realsense camera r200 module. . . . . . . . . 75
6.18 Obstacle Avoidance Architecture with AI . . . . . . . . . . . 77
6.19 Flow Chart of image segmentation . . . . . . . . . . . . . . . 78
6.20 Fully convolutional neural network for image segmentation [46] 79
6.21 Learning rate in different epochs generated from DIGITS . . . 79
6.22 Training and validation error in different epochs generated

from DIGITS . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.23 Test input data from [16] . . . . . . . . . . . . . . . . . . . . 81
6.24 Output from the model for test input data . . . . . . . . . . . 82
6.25 Image facing Left [30] . . . . . . . . . . . . . . . . . . . . . . 84

v



6.26 Output of gazebo for image facing left . . . . . . . . . . . . . 85
6.27 Image facing right [30] . . . . . . . . . . . . . . . . . . . . . . 85
6.28 Image facing right response in Gazebo . . . . . . . . . . . . . 86
6.29 Image facing middle [30] . . . . . . . . . . . . . . . . . . . . . 87
6.30 Image facing middle response in Gazebo . . . . . . . . . . . . 88

vi



List of Tables

4.1 Mavlink Packet Field Description [1] . . . . . . . . . . . . . . 48

6.1 State Transition Table . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Comparison between Garmin lidar and R200 . . . . . . . . . . 89

vii



Abbreviations and Acronyms

UAV Unmanned Aerial Vehicle
AI Artificial Intelligence
ML Machine Learning
GPS Global Positioning System
SLAM Self-localizing and Mapping
GPU Graphical Processing Units
IMU Inertial Measurement Units
Lidar Light Detection and Ranging
Radar Radio Detection and Ranging System
Sonar Sound navigation and ranging
UHF Ultra-high frequency
ASIC Application Specific Integrated Circuit
NED North East Down
ECEF Earth Centered Earth Fixed
VFH Vertical Field Histogram
VCP Vehicle Center Point
POD Polar Obstacle Density
SAD Sum of Absolute Difference
ReLU Rectified Linear Unit
CNN Convolutional Neural Network
MLP Multi-Layer Perceptron
SVM Support Vector Machine
ESC Electronic Speed Controller
RC Radio Controller
PWM Pulse Width Modulation
GCS Ground Control Station
MAV Micro Aerial Vehicle
PID Proportional Integration Differentiation
EKF Extended Kalman Filter
SITL Software In The Loop
RTL Return To Launch

viii



DIGITS Deep learning GPU Training System
SGD Stochastic Gradient Descent
DNN Deep Neural Network
GIS Geographic Information System
RGB Red Green Blue
CIFAR-10 Canadian Institute for Advanced Research-10
BSD Berkeley Software Distribution
LMDB Lightning Memory-Mapped Database
HDF5 Hierarchical Data Format 5
FCNN Fully Convolutional Neural Network
CMOS Complementary Metal Oxide Semiconductor
IDA* Iterative Deeping A*
CUDA Compute Unified Device Architecture
CSI Camera Serail Interface
USB Universal Serail Bus
HDMI High-Definition Multimedia Interface
RL Reinforcement Learning
DRL Deep Reinforcement Learning
CC Companion Computer
VTOL Vertical Take Off and Landing
GPL General Public License
UML Unified Modeling Language
SDK Software Development Kit
API Application Programming Interface
SGD Stochastic Gradient Descent

ix



Contents

Abbreviations and Acronyms vii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objective and Scope . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research Problems . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6
2.1 Navigation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Inertial Measurement Units (IMU) . . . . . . . . . . . 7
2.1.2 Global Positioning System (GPS) . . . . . . . . . . . . 7
2.1.3 Optical Flow . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Bayes Algorithm and Probabilistic Model . . . . . . . . 9

2.2 Obstacle Avoidance Unit . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Light Detection and Ranging (Lidar) . . . . . . . . . . 12
2.2.2 Radio Detection and Ranging System (Radar) . . . . . 13
2.2.3 Sound navigation and ranging (Sonar) . . . . . . . . . 13
2.2.4 Depth Camera . . . . . . . . . . . . . . . . . . . . . . 13
2.2.5 Polar Histogram/Vertical Field Histogram . . . . . . . 15

2.3 Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 General Introduction to AI . . . . . . . . . . . . . . . . 17
2.3.2 GPU Computing Platform . . . . . . . . . . . . . . . . 19
2.3.3 Neural Network . . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Convolutional Neural Network . . . . . . . . . . . . . . 24
2.3.5 Deep Learning with Nvidia DIGITS . . . . . . . . . . . 26
2.3.6 Caffe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.7 Reinforcement Learning (RL) . . . . . . . . . . . . . . 29
2.3.8 Deep Reinforcement Learning (DRL) . . . . . . . . . . 30
2.3.9 AI for drone navigation . . . . . . . . . . . . . . . . . . 30

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

x



3 Case Study: Autonomous Cars 32
3.1 Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Lidar vs Vision-based system . . . . . . . . . . . . . . . . . . 35
3.5 Lateral and Longitudinal Driving . . . . . . . . . . . . . . . . 35
3.6 Fully convolutional neural network (FCNN) based control . . . 36
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Quadrotor and Flying Principle 38
4.1 Flying Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Hardware Components . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Software Components . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Mavlink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Kalman Filter for Navigation . . . . . . . . . . . . . . . . . . 50
4.6 Obstacle Avoidance in ardupilot . . . . . . . . . . . . . . . . . 51
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Methodology and System Design 53
5.1 Current solution . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 High level architecture . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Sensor Module . . . . . . . . . . . . . . . . . . . . . . 54
5.2.2 Mavlink Communication module . . . . . . . . . . . . 56
5.2.3 Sensor Fusion Module . . . . . . . . . . . . . . . . . . 56

5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4 Datasets Used . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Implementation 60
6.1 Obstacle Avoidance with Garmin Lidar Lite . . . . . . . . . . 60

6.1.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.1.2 Simulation Environment . . . . . . . . . . . . . . . . . 63
6.1.3 Integration with real drone . . . . . . . . . . . . . . . . 65
6.1.4 Observations and Results . . . . . . . . . . . . . . . . . 65

6.2 Obstacle Avoidance with RealSense Camera . . . . . . . . . . 69
6.2.1 Librealsense module . . . . . . . . . . . . . . . . . . . 70
6.2.2 Polar Histogram Algorithm . . . . . . . . . . . . . . . 70
6.2.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.4 Interfacing with real drone . . . . . . . . . . . . . . . . 73
6.2.5 Observations and Results . . . . . . . . . . . . . . . . . 75

6.3 Camera as an obstacle avoidance sensor . . . . . . . . . . . . . 76

xi



6.3.1 Fully Convolutional Neural Network for image segmen-
tation (FCNN) . . . . . . . . . . . . . . . . . . . . . . 77

6.3.2 Training of Aerial Drone Dataset . . . . . . . . . . . . 78
6.3.3 Deploying to Jetson . . . . . . . . . . . . . . . . . . . . 81
6.3.4 Observations and Results . . . . . . . . . . . . . . . . . 81

6.4 Navigation using AI . . . . . . . . . . . . . . . . . . . . . . . . 83
6.4.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . 83
6.4.2 Observations and Results . . . . . . . . . . . . . . . . . 87

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Discussion 90
7.1 Software architecture . . . . . . . . . . . . . . . . . . . . . . . 90
7.2 Obstacle Avoidance . . . . . . . . . . . . . . . . . . . . . . . . 91
7.3 Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . 92
7.4 Thesis planning and implementation . . . . . . . . . . . . . . 93
7.5 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8 Conclusions 95

xii



Chapter 1

Introduction

Applications and uses of UAVs (Unmanned Aerial Vehicles), also colloquially
known as drones, are drawing a lot of interest in the recent years. UAVs have
potential to bring revolution in various fields like logistics and defense, to
name a few. However, a number of research works are still needed to realize
robust, smart, and truly autonomous drones. Some of these challenges are
concerned with obstacle avoidance and autonomous navigation. Given the
recent innovation and research outcomes in artificial intelligence (AI), this
thesis explores opportunities to enable and improve functionalities in UAVs
using AI techniques. In particular, the use of computer vision techniques is
explored which can solve many current issues related to obstacle avoidance
and autonomous navigation. Further, in order to enable rapid prototyping
and research with various modules and techniques, this thesis also proposes
new software architecture for drones with enabling components for obstacle
avoidance and navigation.

1.1 Motivation

In the recent years, we have witnessed a rapid development in the field of
sensors technology and the advent of high computation power. This has un-
leashed several possibilities which were previously deemed impossible. The
enabling method for such possibilities has been AI. To put it simply, AI
is defined as a search problem where an intelligent agent is trying to find
the best possible solution in a given search space of possible solutions. The
performance of AI-driven solution has even started to come on par with the
solutions crafted by humans [21]. Current trends in AI sort of followed imme-
diately after the development of high-speed internet alongside the massive
and faster storage. Datasets containing billions of data and terabytes of

1



CHAPTER 1. INTRODUCTION 2

memory can be easily found on the internet. These datasets are collected
and used to train AI models. Besides the availability of the data, the increas-
ing availability of the computational power also played a major role in the
resurgence of AI. Computation power of a processor which looked like it was
flattening out in mid-2000 due to excessive heat production saw over a new
leaf with the development of parallel computing [7]. Parallel computing is
facilitated by Graphical Processing Units (GPUs). They have massive paral-
lel architecture but were only used predominantly for graphics processing in
the past. Now they have proved invaluable for the highly parallelizable task
such as AI.

AI has already shown its application in the highly diverse field ranging
from agriculture, healthcare, finance, geography to robotics and self-driving
cars. One such application area which can benefit hugely from the advance-
ments in the AI is the UAV.

UAVs have been proliferating in their use in the recent years. Their
advent followed closely with the development of autonomous cars. Unlike
a car which runs on the road and has two axes of control, the drone uses
air as a medium to fly and thus has to maintain the altitude as well and
has three axes of control. When flying autonomously, drone needs to know
where it is and how is it going to reach its destination. Such a process of
mapping itself to its environment is known as localization. Global Positioning
System (GPS) is used for localizing while flying outdoors. In the absence
of GPS, other Self Localization and Mapping (SLAM) techniques are used.
Navigation is nothing but the process of localizing and moving from one
point to another. The process involves estimating position, velocity, and
direction by fusing input from different sensors using probabilistic models.
The input of sensor readings from GPS, Inertial Measurement Units (IMU),
magnetometers and barometers are used for localization and estimation. The
process of estimation itself is being done commonly using probabilistic models
such as Extended Kalman Filter (EKF) and its variants. Quality of estimates
depends on the quality of the sensor reading. As no sensor can provide 100%
reliable measurements at all condition, it is common to rely on the readings
from multiple sensors for navigation. For example, GPS is only good in
outdoor scenarios and its quality drops significantly in the absence of a direct
line of sights to satellites. Navigation, when the GPS data is questionable,
can be aided with computer vision techniques. Such computer vision model
can be developed by training end to end neural networks, as has been shown
in the works like that of [9] and [57]. The use of end to end networks removes
the need for handcrafting features which tend to be application-specific and
not widely applicable.

Another avenue where the AI techniques could be of use in the UAV



CHAPTER 1. INTRODUCTION 3

application is that of obstacle avoidance. The presence of obstacles in the
environment can create additional difficulty in navigation for drones. The
drone has to estimate the position of the obstacles in its surrounding and
maneuver accordingly to prevent the crash. The process of avoiding obstacles
can be considered to consist of two steps: detection and avoidance. The
detection step is to realize the presence of obstacles in its planned path
and stopping the drone from taking the collision course. Avoidance step
involves planning an alternate path for avoiding obstacles. The use of range
sensors can help in detecting the obstacles in the path of the drone. However,
avoidance steps require additional information regarding the nature of the
obstacles which will allow the drone to maneuver around the obstacles. The
nature of obstacles can be identified by using the AI-driven detection or
segmentation algorithms for identifying the regions and sizes of the obstacles
from the images. With the use of Convolutional Neural Network (CNN),
quite an accurate detection and segmentation model can be developed. Such
model helps in accurately identifying the nature of an obstacle which will
help in avoidance step of obstacle avoidance system.

As outlined above, AI techniques can be of a great resource for UAVs
in the application for navigation and obstacle avoidance. Therefore it is of
great interest to the research and development community to have a generic
software framework for drones where they can easily experiment and test
with different AI-driven navigation and obstacle avoidance modules. One
of the most commonly used software frameworks is Ardupilot[60]. While
Ardupilot has support for obstacle avoidance module, it still has some seri-
ous shortcomings. Ardupilot framework provides easy integration to flight
controller at the expense of flexible code and algorithm modifications. Thus,
it is difficult to tailor the Ardupilot according to the need of researchers
and developers. Besides an exploration of the use of AI techniques to solve
challenges of drones related to navigation and obstacle avoidance, this thesis
also addresses the problem in software frameworks for drones like Ardupilot
by building a modular software framework which can be easily extended to
support different algorithms and sensors.

1.2 Objective and Scope

The first goal of this thesis is to build modular software architecture for
UAVs with enabling components like obstacle avoidance. Such architecture
should be easily extendable and simple but powerful enough to support any
custom modules for obstacle avoidance and navigation. The modularity of
the architecture should support both additions of new sensors and avoidance



CHAPTER 1. INTRODUCTION 4

algorithms. One should be able to easily collect data, preprocess the data
and analyze the data using an implementation of the said architecture. Such
a processing pipeline for the input data is crucial for decision making for
obstacle avoidance. After building such architecture, the test of the over-
all functionality of the system can be done with both simulation and field
experiments with a real drone.

The second goal of the thesis is to explore the possibilities of using AI for
obstacle avoidance. Such a scoping is possible due to our developed software
architecture which provides support for varieties of new sensors and custom
obstacle avoidance algorithm. Semantic segmentation techniques are to be
explored in this thesis for the obstacle avoidance algorithm. The semantic
segmentation is used as a proof of concept for verifying how AI can be used in
obstacle avoidance. The developed semantic segmentation can be tested with
aerial drone dataset [51] to verify the functionalities. The obstacle avoidance
architecture discussed in the first goal should be able to support input from
the developed segmentation model, as a further proof-point. The develop-
ment of AI-driven capabilities in drone will help in better understanding the
nature of obstacles and thus find better avoidance route.

The final goal of this thesis is to explore, implement, and test AI-agent
driven techniques for the navigation of the drone. This can be tested using
the forest trail dataset [57] using an end to end deep learning model for pose
estimation and flying the drone across the forest trails.

In summary, the objective of this work is to develop a modular software
architecture for drones which allows rapid prototyping and research on differ-
ent components of the drones. With this, we explore and report different AI-
driven obstacle avoidance and navigation algorithm for drones. An in-depth
study of the application of artificial intelligence techniques for functionalities
in drones is out of the scope of this thesis. Due to the limitation of time and
complexity, many open problems and topics are not explored. However, this
thesis will pave a path for anyone who wants to dive deeper into applications
of AI in drones and use our software architecture to experiment easily and
quickly with their research propositions.

1.3 Research Problems

The research problems for the thesis are formulated based on the three goals
defined in section 1.2. Firstly, building a modular software architecture re-
quires a thorough understanding of quadrotors. This is done through research
on different sensors and algorithms used for the estimation and control of the
drones. In addition to this, understanding flight kinematics and communi-



CHAPTER 1. INTRODUCTION 5

cation protocols used for controlling a drone also facilitate the development
of such software architecture.

For the second goal, which explores possibilities of using AI for obstacle
avoidance, understanding of AI, in general, is required as the first step. The
research on current trends in deep learning such as the convolutional neural
network which is indispensable for developing state of art computer vision
technology is done next. Furthermore, research on autonomous cars is also
an invaluable resource for finding out the popular trends for solving the
problems of obstacle avoidance and navigations.

Finally, developing an AI agent for navigation requires further research on
AI on top of the basic knowledge. For the scope of this thesis, research is con-
ducted on end to end convolutional neural network and deep reinforcement
learning for developing such intelligent agents.

In summary, there are several fields to explore, study and research. The
sources of such information are research papers, online documentation, source
codes, books, websites, and manuals.

1.4 Structure of the Thesis

Rest of this thesis explains what steps from knowledge gathering to imple-
mentation and testing were undertaken for attaining the predefined scopes
and objectives discussed in section 1.2. Chapter 2, 3 and 4 summarizes
research undertaken for understanding various components. Chapter 2 pro-
vides basic background where different topics needed to understand this the-
sis is presented with an introduction to navigational unit, obstacle avoidance
unit and AI. Then, follows a chapter on a case study of autonomous cars to
comprehend underlying technology currently used in autonomous cars. Un-
derstanding quadrotor and flying principle through discussion of hardware
components, software components and controller is discussed in chapter 4.
The design of the system, the methodology, and datasets used are discussed
in chapter 5. The description of the implementation, experimentation, and
results of different sensors integration to the obstacle avoidance library is dis-
cussed in chapter 6. It also includes discussion about the possibility of using
image segmentation for obstacle avoidance and using end to end deep neural
network for navigation. Chapter 7 provides a discussion of the achievements
and outcomes of the thesis and finally, chapter 8 concludes the thesis.



Chapter 2

Background

Understanding UAV requires understanding different components associated
with it. As discussed in section 1.2, different goals of this thesis are developing
a software architecture, obstacle avoidance system and navigation system for
quadrotor drone. This requires an understanding of different peripherals
associated with it. On a functional level, three components listed below
were explored in detail. This section introduces different sensors, algorithms,
devices, and software associated with each of them.

1. Navigation Unit

2. Obstacle Avoidance Unit

3. Aritificial Intelligence

2.1 Navigation Unit

Navigation unit comprises of sensors and controllers which is required by the
UAV for flying. It consists of fundamental parts required for navigating from
one point to another. Fusing the input from sensors such as IMU, GPS, mag-
netometer, and barometers are useful for estimating the position, velocity,
acceleration, and orientation of the vehicle. This information is used by the
UAV to provide the corresponding input to the controller for navigating to
its destination. The control command is converted to the thrust which is
applied to the motors by controllers such as proportional-integral-derivative
(PID). This section introduces sensors such as IMU, GPS, and optical flow.
It also introduces simple probabilistic model such as Bayes algorithm that
can provide a good estimation. The foundation built with Bayes algorithm
will be useful later when discussing Kalman filter and extended Kalman filter

6



CHAPTER 2. BACKGROUND 7

which is more robust at estimation compared to Bayes algorithm and cur-
rently used in many flight controllers. The navigation unit is summarized in
figure 2.1.

Figure 2.1: Navigation Unit

2.1.1 Inertial Measurement Units (IMU)

IMU is a device that helps in estimating relative position, velocity, and ac-
celeration of moving vehicles using gyroscopes and accelerometers. IMU is
of two types: gimballed and stripped down. Gimballed IMU keeps mass in
the horizontal position and is free to move in any direction. Stripped down
IMU has fixed system connection which calculates orientation. The gyro-
scope is used to measure changes in position and is built with technologies
such as fiber optic, a ring laser, hemispherical resonator, and MEMS. Simi-
larly, the accelerometer is used to measure external forces including gravity.
The force is calculated based on the deflection of the mass. Despite being es-
sential equipment for measuring motion, IMU inherits several problems such
as random drift caused by measuring errors leading to short or long-term
drift. Nevertheless, the problem of drift can be mitigated by fusing data
from sensors like GPS using an appropriate filter such as Kalman filter [5].
It is commonly used in devices which requires estimating motions such as
planes, cars, smartphones, robots, and drones.

2.1.2 Global Positioning System (GPS)

GPS is a satellite-based navigation system consisting of 24 satellites orbiting
the earth. These satellites revolve around the earth every 12 hours trans-
mitting signals containing a set of three values. Three values are a unique



CHAPTER 2. BACKGROUND 8

number assigned to each satellite, position of the satellite in space and time of
transmission of the signal. GPS receiver on the earth calculates its distance
with respect to these satellites based on the signals received. For estimating
the position on the surface of the earth with triangulation, signals from three
or more satellites are needed. The number of signals from satellites increases
to four or more for calculating elevation as well. However, the downside of
GPS is its stringent requirement for the receiver to maintain a line of sight
with the satellites which makes it useless for working in indoor environment,
forest, and city with high structures[18]. Despite some shortcomings, GPS
is popular and useful in outdoor robotics and drones, GIS data collection,
surveying and mapping.

2.1.3 Optical Flow

To overcome shortcomings of GPS which require a direct line of sight to the
satellites, visual odometry sensors such as optical flow can be used to estimate
velocity and position using camera and range sensor. Optical flow camera has
an ultrasonic sensor, Complementary Metal Oxide Semiconductor (CMOS)
image sensor, and gyroscope as shown in figure 2.2. The ultrasonic sensor is
used for scaling the distances whereas gyroscope is used for angular rate com-
pensation. The CMOS image sensors enable optical flow sensors to operate
indoor and outdoor environments with low light conditions. Furthermore,
the distance measured by the ultrasonic sensor is also used for scaling optical
flow values for calculating velocity. The calculation of the flow can be done
using various methods such as phase correlation, block based, differential and
discrete optimization methods.

Optical flow calculates the flow or motion of different points of interest
in consecutive frames of video or images. One of the popular block-based
method commonly used for flow calculation is the sum of absolute differences
(SAD) [34]. SAD algorithm serves as the first step and measures a similarity
between different image blocks. For calculating flow, these different image
blocks will be the reference block of pixels of the current and preceding frame.
The position of the match between these reference frames is selected and used
for calculating flow value. Furthermore, subpixel refinement can also be done
for better accuracy using bilinear interpolation.

Another prominently used differential based algorithm is Lucas-Kanade
[67]. It uses affine model and image patches for flow field. It is less sensitive
to noise but is a local method. Once the flow is calculated from the images,
it can be used to estimate translational velocity. Translational velocity is
calculated from two-dimensional flow field after scaling it to current scene
and compensating angular rate. Thus, using optical flow gives an accurate



CHAPTER 2. BACKGROUND 9

estimate of position and velocity. Optical flow is used for high estimation
accuracy and in the absence of GPS signals.

Figure 2.2: Optical Flow sensor with CMOS image, gyroscope and
ultrasonic[34]

.

2.1.4 Bayes Algorithm and Probabilistic Model

Drones cannot directly observe the real world; thus there is a need to esti-
mate the motion so that they can localize themselves and move towards the
destination. By getting feedback and reading from sensors, a drone can esti-
mate its position against the known surroundings. State estimation is done
based on position and velocity of the drone and map of the environment
where the drone is operating. The estimation can be done in one of three
ways which are control based, odometry based and velocity based. In control
based estimation, robot estimates motion from the control commands issued
to it. Similarly, odometry based are used for the systems with distance sen-
sors such as wheel encoders, whereas, velocity based state estimation is used
in the absence of wheel encoders. There are several algorithms and filters
used for controlling and navigating the drones, and one of the basic filters is
Bayes filter which is discussed in succeeding paragraphs.

Before jumping into the Bayes algorithm, it is required to understand how
Bayes formulates sensor and motion model. Robot perceives its environment
through its sensors and can be defined as in equation 2.1.

z = h(x) (2.1)

where,
z is sensor reading
h is sensor model (observation function)
x is world state
Equation 2.1 shows how we can get output based on the current world state



CHAPTER 2. BACKGROUND 10

and sensor model. However, we can get the world state as well if we know
the sensor reading by inverting the sensor model as shown in equation 2.2.

x = h−1(z) (2.2)

Similarly, based on the motion, state of the drone can be estimated. Belief
state will be updated based on action or control command issued to the
drone. It is defined in equation 2.3.

x
′
= g(x, u) (2.3)

where,
x
′

is current state
g is motion modeling
x is the previous state
u is executed action
The motion model is vague and prone to errors with the increase of time.
However, it has a higher frequency and can update up to 500-1000 Hz com-
pared to sensor model which has much lower update rate at 10-100Hz. Thus,
the motion model can calculate the belief state at a higher frequency which
can be corrected with sensors model. The sensor model is also not completely
accurate and is often noisy and incomplete which makes the model partially
wrong. Such a problem can be mitigated with the prior knowledge about the
environment where the robot is operating, thus improving the estimate. This
information can be used to verify the belief and estimates calculated from
sensor and motion model. Thus, the estimation is done more in the proba-
bilistic sense rather than trying to find the exact position [65]. Probabilistic
models is represented as shown in equations 2.4 and 2.5.

Probabilistic sensor models = p(z|x) (2.4)

Probabilistic motion models = p(x
′ |x, u) (2.5)

As shown in equation 2.6, input from different sensors can be fused which is
also known as multi-modal models and is used to improve the accuracy of
the estimation.

p(x|zvision, zultrasound, zIMU) (2.6)

Understanding Markov assumption is also necessary for understanding
the probabilistic models and is defined by two statements.

1. Sensor observations depend only on current state

p(zt|x0:t, z1:t−1, u1:t) = p(zt|xt) (2.7)



CHAPTER 2. BACKGROUND 11

2. Current state depends on current action and previous state

p(xt|x0:t−1, z1:t, u1:t) = p(xt|xt−1, ut) (2.8)

With Markov assumption, the probabilistic state estimation estimates state
of the dynamic system given the sequence of observations and actions, sensor
model, action model and prior probability of the system. Such an estimation
of the state is also called a belief.

Bel(xt) = p(xt|u1, z1, ..., ut, zt) (2.9)

In motion model, it tries to calculate the probabilistic region of interest based
on the motion. However, measurements are inaccurate which weakens the
estimation, and increases the probable region for localizing drone. Thus,
input from sensor model is used to correct the readings from motion model.
Bayes filter algorithm can be summarized in two steps [58] which is given
below.

Repeat for each time step,

1. Apply motion model

Bel
′
(xt) =

∑
xt−1

P (xt|xt−1, ut)Bel(xt−1) (2.10)

2. Apply sensor model

Bel(xt) = (zt|xt)Bel
′
(xt) (2.11)

2.2 Obstacle Avoidance Unit

Similar to the navigation unit discussed in 2.1, obstacle avoidance unit is an
integral part of a UAV. Though it is not required for a drone to fly, it en-
sures the vehicle reaches the destination safely. UAV can sense and react to
the environment both dynamic and static based on the input from this unit.
While navigation unit concerns about reaching the destination through the
shortest possible path, obstacle avoidance unit concerns about reaching the
destination with short and safest path. It comprises range sensors such as
lidar, radar, sonar and depth cameras. The input from these sensors is pro-
vided to obstacle avoidance algorithms such as thresholding or vertical field
histograms. This section introduces some of the range sensors and vertical
field histograms algorithm for obstacle avoidance. The obstacle avoidance
unit is summarized in 2.3.



CHAPTER 2. BACKGROUND 12

Figure 2.3: Obstacle Avoidance Unit with corresponding components

2.2.1 Light Detection and Ranging (Lidar)

Light Detection and Ranging is a method for measuring ranges with a light
in the form of pulsed laser. There are several lidar available commercially
such as Garmin lidar lite [29], Velodyne lidar[25] and Rplidar[54]. For this
thesis, Garmin lidar lite is used as obstacle avoidance sensor. The appli-
cation of this sensor can be found around unmanned vehicles, robot, and
drones for detecting range and proximity. The size of the device is compact
with low power consumption which can be useful for autonomous vehicles.
The communication with the sensors can be done either with I2C or PWM.
Figure 2.4, 2.5 and 2.6 shows Garmin lidar lite, Velodyne lidar and Rplidar
respectively.

Figure 2.4: Garmin Lite Figure 2.5: Velodyne Figure 2.6: Rplidar



CHAPTER 2. BACKGROUND 13

2.2.2 Radio Detection and Ranging System (Radar)

Radar uses electromagnetic waves for finding the relative coordinate of the
object in respect to its position. It works by radiating energy in UHF and
microwave range, and monitoring the echo reflected back from the objects.
The primary radar system consists of a transmitter which produces an elec-
tromagnetic signal radiated into space through an antenna. This electromag-
netic signal is either reflected back or reradiated when it strikes on objects.
The reflected signals which are received by Radar antenna are processed to
determine the position of objects[59]. The distance is calculated by multi-
plying the speed of light with the time taken by signals to travel from the
radar to the target.

2.2.3 Sound navigation and ranging (Sonar)

Unlike radar which is based on electromagnetic waves, sonar is based on
sound waves. The detection of the object is based on the propagation of
sound from target detector. There are two types of sonar, active and passive
[24]. Active sonar system transmits waves which travel back to the receiver.
However, in passive sonar system target is the source of energy propagating
to the receiver. Distance to the object is calculated by the speed of sound in
the medium multiplied by the time taken to traverse the distance.

2.2.4 Depth Camera

Depth camera provides an additional information of depth value in addition
to common Red-Green-Blue (RGB) value for each pixel. Depth information
gives drones or any other computer vision application capability to perceive
three dimensions of its environment. The process of finding the depth it-
self is usually done with stereoscopic vision in which two cameras are used.
The camera can be used for not only perceiving the obstacles in the environ-
ment where drones are operating but also for finding a safe path to navigate
through the obstacles. Several depth cameras are available in the market
such as Microsoft Kinect, Intel RealSense, and ZED stereo cameras. This
thesis uses Realsense camera which is a depth camera developed by Intel and
shown in the figure 2.7. The process of calculating depth is given by the
equation 2.12. In the equation 2.12, the baseline is the separation between
the two-identical infrared camera, the focal length is the focal length of the
camera and disparity is the differences between the images obtained from
two cameras.



CHAPTER 2. BACKGROUND 14

Depth = (Baseline ∗ FocalLength)/Disparity (2.12)

Figure 2.7: Intel Realsense R200 [53].

Figure 2.8: Intel Realsense R200 internals as provided in [53].

Figure 2.8 shows the interior of the camera which includes following com-
ponents

1. Imaging ASIC onboard camera

2. Depth capture in VGA resolution

3. Class 1 Infrared laser projector system

The R200 camera provides several video streams such as color, depth and
infrared. The difference between depth video streams and color video is based
on what each pixel represents. The pixel in color video stream encodes RGB
values whereas pixel in-depth video streams represent depth. The module
consists of infrared laser projection system, two infrared cameras, and a full
HD color imaging sensors. Per-pixel depth is calculated with stereo vision



CHAPTER 2. BACKGROUND 15

technology in assistance with the infrared laser projector and the two infrared
imaging sensors [40].

2.2.5 Polar Histogram/Vertical Field Histogram

Vertical Field Histogram is a method for finding the obstacles present on the
navigation path of drone based on the input from range sensors creating a
polar obstacle density as shown in figure 2.9. The world is modeled as a
two-dimensional histogram grid which is updated continuously with distance
data obtained from range sensors. The process of creating a world model
involves two stage of data reduction which in turn has three level of data
representations [10]. The first level of data representation involves continu-
ously updating cartesian histogram grid in real time with range data from
sensors. The second level of data representation involves constructing one-
dimensional polar histogram(H) around drone’s momentary location. The
third and last level of data representation is the command for navigating the
drone.

Figure 2.9: Polar Obstacle Density [20]

Creation of Polar histogram The polar histogram H comprises of n
angular sectors each of width α as shown in figure 2.10. An active region C∗

which is a region drone currently sees is transformed such that each sector k
is holding a value hk. This value represents polar obstacle density (POD) in
the direction of the sector k. Active region window moves with the vehicle



CHAPTER 2. BACKGROUND 16

overlying a square region of ws ∗ ws cells in the histogram grid. Contents of
active cells in the histogram grid are treated as obstacle vectors, the direction
of which is determined by the angle between the cell and the Vehicle Center
Point (VCP).

Figure 2.10: Vertical Field Histogram [10] showing the formation of polar
obstacle densities in front of the vehicle.

Steering controller The next stage computes steering direction θ. The
smooth polar histogram has peaks and valleys representing sectors with high
and low PODs respectively. Valley with POD below a certain threshold is
called as a candidate valley which can be used for navigating the drone. There
can be more than one candidate valley to choose from, and the selection of
appropriate valley is based on minimum deviation from the direction of the
target. Valley may be comprised of multiple sectors, thus after selection of
the valley suitable sector within that valley has to be chosen.

2.3 Artificial Intelligence

This thesis explores how AI can be used to assist obstacle avoidance and nav-
igation which requires understanding different components of AI and how it
can be used in UAV. In this section, the general concept of AI, search prob-
lems, neural network, convolutional neural network, reinforcement learning



CHAPTER 2. BACKGROUND 17

and deep reinforcement learning is introduced. It also discusses a software
tool caffe and digits (Nvidia Deep Learning GPU Training System) for im-
plementing the convolutional neural network. Finally, it summarizes current
research ongoing on AI for drones. The architecture for AI used in this thesis
is summarized in 2.11.

Figure 2.11: Aritificial Intelligence Unit showing different components in-
volved for developing an intelligent system.

2.3.1 General Introduction to AI

Artificial intelligence has established itself as an integral part of robotics.
The definition of AI can differ depending on its usability and field, but as
defined in [50], it is designing of an intelligent agent which can interact with
the environment and take action to maximize its success where an agent acts
rationally to get the best outcome. AI can also be described as a search
problem where an agent is trying to find the best possible solution out of
several choices. Thus, local search problems such as hill climbing, adversarial
search problems such as minimax and alpha-beta pruning and uninformed
search such as A* or IDA* are part of the AI. Due to its vast nature, it has
found applications in several fields such as speech recognition, handwriting
recognition, machine translation, robotics, recommendation system, spam
filtering, face detection, face recognition and autonomous driving. Some of
the concepts of Artificial Intelligence is discussed in succeeding paragraphs.

Intelligent Agents An agent is capable of perceiving and taking action to
attain some goals in an environment. AI tries to define a rational agent which
can maximize its reward under different constraints such as limitations of
computation power. Based on complexity, an agent can be of different types
such as simple reflex agent, model-based reflex agent, goal-based agent and
utility-based agent [56]. A simple reflex agent has no memory and selects an
action based on current state only. This type of agent can work efficiently



CHAPTER 2. BACKGROUND 18

only in the fully observable environment. A model-based agent has some
memory and is operable in the partially observable environment. Goal-based
agent understands its goals and knowledge of its environment which it uses
to attain that goal. Finally, the utility-based agent has a utility function for
measuring the performance of the agent. All the above agents can be gener-
alized as learning agents who have four components learning, performance,
critic and problem generation.

Environment The environment is where an agent performs an action. It is
of several types such as fully observable or partially observable, deterministic
or stochastic, episodic or sequential, static or dynamic, discrete or continuous,
single agent or multi-agent and known or unknown.

Search Agents AI can be generalized as a search problem so an agent
in AI is basically a search agent. Such agent is goal oriented and tries to
identify series of actions to attain the defined goal. Search problem can be
defined with an initial state, state space, action space, transition model, a
test of goal and cost of the path. The initial state is where search agents
start its search. Set of states that can be reached from the initial state is
state space. Set of actions available to the agent is known as action space.
Transition model defines if an agent can go from one state to another and
what actions are required for such transition. Test of goal checks whether
the defined goal is reached or not. Cost of the path is the total cost incurred
to reach the goal.
Search can be Uninformed search or Informed search based on whether search
agent has knowledge of the domain it is searching. In uninformed search,
an agent has no information regarding searching criteria, thus, must search
entire state space in a brute force manner. Some examples of such searches
are breadth-first search, depth-first search, depth-limited search, iterative
deepening and uniform cost search. However, an agent can have a knowledge
of the domain through a heuristic function. The heuristic function measures
the closeness of state to its goal. Such search is known as informed search
and greedy best-first search, A* search, and Iterative Deeping A* (IDA*)
search are some examples. All the searches discussed earlier are trying to
find the best path by applying optimization globally. However, search can
be local and local search is useful for optimizing complex problems.

Local Search The real-world problems are usually much complex and are
not suitable to apply the generic global search approaches discussed above,
instead, a search can be done locally by iteratively improving the utility.



CHAPTER 2. BACKGROUND 19

Local search tries to keep a single current state and tries to improve it without
maintaining a search tree. Thus, it has less memory and performs better
in large state spaces. Some examples of local searches are hill climbing,
simulated annealing, local beam search and genetic algorithms.

Adversarial Search Adversarial Search is used in multiagent competitive
environments such as games. In games, there usually is an adversary not
under the control of the agent acting to minimize the utility. Two popular
adversarial searches are minimax and alpha-beta pruning. In minimax, there
are usually two players one of them is trying to maximize its utility whereas
the other one who is adversary is trying to minimize it. Alpha-beta pruning
is like minimax but has better performance as it keeps track of two bounds
for pruning the search space. Alpha is the largest value for maximum across
visited state spaces and beta is the lowest value for minimum across visited
children.

2.3.2 GPU Computing Platform

Graphics Processing Unit (GPU) is used for processing graphics. Processing
of videos and images are highly parallel in nature such as mean subtraction
from image involves subtraction of mean value from entire pixels of the im-
age. For that reason, GPU was created to be a highly parallel system with
hundreds of cores running thousands of threads. This support for the highly
parallel system is realized to be highly efficient for computing parallel task
such as training Neural network. Thus, GPU saw a rise in its demand re-
cently with increased uses of AI. This thesis is using Jetson TX2 as a GPU
computing device which is shown in figure 2.12.

Jetson TX2 is one of the dominant embedded AI computing device devel-
oped by Nvidia which has 8 GB memory and 59.7 GB/s memory bandwidth.
GPU architecture is Nvidia Pascal with 256 Compute Unified Device Archi-
tecture (CUDA) cores. In addition to that, it has quad core 64-bit arm, eight
processors. For interfacing the video, it has Camera Serial Interface (CSI),
Universal Serial Bus (USB), High-Definition Multimedia Interface (HDMI)
and gigabit ethernet port. It can support processing of up to 6 HD videos.
Furthermore, it includes latest technology for deep learning and computer
vision which makes it an ideal candidate for embedded AI computing. In ad-
dition to reliable hardware resources, it comes with a platform that enables
smooth implementation of Artificial intelligence. The difficulty to start devel-
oping AI is very low with Jetson hardware and software resources. The SDK
includes deep learning (tensorRT, cuDNN, Nvidia Digits workflow), com-



CHAPTER 2. BACKGROUND 20

puter vision (Nvidia visionworks, OpenCV), GPU compute (Nvidia Cuda,
Cuda libraries) and multimedia[52].

Figure 2.12: Nvidia Jetson TX2 model [52]

2.3.3 Neural Network

The neural network is a network of neurons arranged in several layers and
dimensions. The fundamental part of any neural network is a neuron. Each
neuron has a set of inputs, weights, biases and activation functions. The
structure of the neuron is defined and shown in figure 2.13.

Input For the first layer, an input of a neuron will be data, but for hidden
layers, it will be the output of the neuron in preceding layer.

Weights After receiving the inputs, neuron computes the weighted sum
by assigning a parameter known as weight for multiplying with each input
variable. Weights are an important parameter because the activation of a
neuron depends on its value. Learning in the neural network means finding
proper value for these weights parameters. During the first step of training,
the weights should be initialized with some small random value but not zero.

Bias The weights are used for computing linear weighted sum of input;
however, there might be a need for thresholding this value depending on the
applications and data. Bias is a constant and is used to threshold the output
of weighted sum. It can be positive or negative depending on which direction
thresholding is needed. It is also another learnable parameter and is learned



CHAPTER 2. BACKGROUND 21

over the course of training. The initialization of bias can be zero during
training. Each neuron possesses a single bias to shift its weighted sum up or
down.

Activation Function The summation of the weighted sum and bias mod-
els a linear system. However, most of the real-life systems are nonlinear. In
such a scenario, activation function provides a mechanism for representing a
nonlinear system. The output of summation is fed into activation function
which does the nonlinear transformation.

Output of Neuron It is the output of the activation function. For the
hidden layers, this output is fed as input to succeeding layers. However, in the
output layer, output calculates the weighted sum and provides a classification
or regression data as per the application [38].

Figure 2.13: Single Neuron[38]

Activation Function

As discussed above, one of the fundamental parts of a neuron is its acti-
vation function, in the absence of which neural network cannot represent
anything more than a linear system[37]. The performance of neural network
and training duration can be largely influenced by choice of the activation
function[38]. Some of the popular activation functions are discussed below.

Sigmoid It is also known as logistic function and is represented by equation
2.13. Parameter a which is a slope is important. When it approaches infinity,
logistic sigmoid approaches threshold function, and when it approaches zero,
the function has a large linear region between the threshold. It is continuous



CHAPTER 2. BACKGROUND 22

and continuously differentiable.

f(v) = 1/(1 + e−av) (2.13)

The problem with sigmoid function is that it saturates and kills the gradients.
Furthermore, the output from the sigmoid functions are not zero-centered.
Output value ranges from [0, 1]. Sigmoid function is shown in figure 2.14.

Figure 2.14: Sigmoid Function

Tanh The symmetric version of sigmoid function is tanh function which is
represented by equation 2.14.

tanh(x) = (ex − e−x)/(ex + e−x) (2.14)

This activation function overcomes the problem of sigmoid of not being zero
centered. However, the problem of saturation persists. The value of such a
function range from [-1, 1]. Tanh function is shown in figure 2.15.

ReLU It is getting more popular with deep neural network and is defined
by equation 2.15.

f(x) = max(0, x) (2.15)

ReLU helps in accelerating the convergence of stochastic gradient descent
when compared with sigmoid and tanh. Implementation is quite straightfor-
ward which is done by simply thresholding a matrix of activation at zero.
However, it can be fragile during training and die. ReLU function is shown
in figure 2.16.



CHAPTER 2. BACKGROUND 23

Figure 2.15: Tanh

Figure 2.16: ReLU

Multilayer Perceptron

A single neuron can be used by itself for modeling some simple system.
By stacking such neurons into multiple layers, a complex system can be
represented, and such a network of neurons is known as multilayer perceptron.
The first layer is called input layer, and no computation is done in this layer.
The final layer is output layer which only does linear combinations of input
from an earlier layer and has no nonlinear component. All the layers in
between are the hidden layer. Each neuron in the hidden layer has the
architecture like the one shown in figure 2.17.

Backpropagation

With no training, all the parameters such as weights and biases have random
values or zeroes. Such a system does not represent anything. For making a
neural network useful, it needs to undergo training so that all the parameters



CHAPTER 2. BACKGROUND 24

Figure 2.17: Multilayer Perceptron [38]

such as weights and biases are properly updated to model the system. The
first step of training is to initialize these parameters. The network will be
incapable of representing much if all the weights in the network are initialized
to zero. With zero initialization, the weighted summation of input will be
zero, and all the neurons in each hidden layer will be learning the same thing
[49]. Also, the choice of initialization affects the performance and time of
convergence of training of a neural network.

During an initial phase of training, excitation of neurons is random gen-
erating random output. For the supervised learning where labeled data is
available, the difference between what is expected and what is generated can
be observed. This difference between the expected output and real output
is a loss. The losses over all the training examples are averaged by defin-
ing a cost function which is used to update the parameters of the network.
In a neural network, least square cost function is popular, where the sum of
squared difference between the expected output and real output is calculated.
Once a cost is calculated, weight is adjusted such that it will start favoring
expected outcome. The process of updating weights and biases starts from
output layer with stochastic gradient descent (SGD) method [37]. The pro-
cess does not stop in the outermost layer but proceeds to the earlier layer
until it reaches the first hidden layer. The name backpropagation is thus
coined as the algorithm starts from the last layer and propagates backward
to the first layer.

2.3.4 Convolutional Neural Network

Convolutional neural networks are used for image classification [43][42]. The
way we store the image in the memory leads to loss of spatial information.
Spatial information is lost because images are flattened and represented as
an array of pixels in one-dimensional memory. When this representation is
fed to the machine, it just sees a bunch of pixels. As a result, all the spatial



CHAPTER 2. BACKGROUND 25

information present in the image is lost. CNN tries to preserve this spatial
information by using filters which convolve with multiple pixels in a small
window of 3x3, 5x5 or 7x7 sizes. Convolution is used for searching spatial
features in images such as contours, lines, circles, honeycomb or any subtle
features [19].

Comparison with Multilayer Perceptron (MLP)

Convolutional Neural Network is a variant of the multilayer perceptron. How-
ever, unlike generic MLP, CNN has sparse connectivity and shared weights
[22]. MLP has fully connected layers which means output from a layer is
connected to all neurons in the subsequent layer, but CNN only has spatially
contiguous connections. The learning parameters are weights in MLP, but
CNN has two-dimensional filters. Each of these filters is used to convolve im-
ages creating a two-dimensional output. The number of filters can be more
than one generating three-dimensional output. Same weights of the filter are
used to convolve entire image in contrast to MLP which has different weights
for different input.

Like MLP, CNN has repetitive blocks of neurons creating 3D volumes
of neurons. As shown in figure 2.18, a convnet has 3 dimensions. Different
operations are happening in various stages of CNN which can be repeated
over. Different operations of the convolutional neural network are described
in the succeeding paragraphs.

Figure 2.18: Convolutional Neural Network Internal [38]

Input When dealing with images, the input will be Red-Green-Blue (RGB)
pixels. Thus, the total size of input will be height ∗ width ∗ 3. Taking
an example of Canadian Institute for Advanced Research-10 (CIFAR-10)



CHAPTER 2. BACKGROUND 26

datasets which has 32 ∗ 32 size images, the total number of input in a single
image will be 32 ∗ 32 ∗ 3.

Conv Conv layer is a convolutional layer where spatial features are ex-
tracted by convolving a part of an image with a filter. The weights of
such filters are learnable parameters. However, the number of filters each
conv layer has can vary with each filter trying to learn distinctive charac-
teristics of an image. The output of conv layer will be three dimensions
height∗width∗ (numOfFilters). Padding can be done for keeping the same
dimension along height and width. Taking an example of CIFAR-10, if we
have 12 filters with proper padding in first conv layer receiving CIFAR-10
input, then the output will be 32 ∗ 32 ∗ 12.

Relu Relu is an activation function popular in deep learning which is al-
ready discussed in section 2.3.3. The function is applied for each element
from the output of CONV layer. There is no change in the size of output in
this layer.

Pool If the same size of input is continued, the number of parameters will
increase by many folds. The mechanism used to decrease the parameters for a
deeper network is called pooling which helps in reducing the size of the input.
Pooling also helps in improving the performance of the layer and decreasing
the training time. It is due to this layer all the subtle features which are
identified in initial stages gets dropped when size is decreased resulting in
more specific features of an image getting identified in later stages. The
common way of pooling is max pooling where the maximum value is selected
from a window of fixed sizes such as 2 ∗ 2 or 3 ∗ 3. If 2 ∗ 2 is used in CIFAR-
10 datasets, the size of the image will decrease to 16 ∗ 16 ∗ 12. This layer,
however, doesn’t decrease the depth.

Fully connected Layer CNN extracts features from the images and uses
them to classify. The process of features extraction and representation hap-
pens before the fully connected layer which is used for classification. It is the
last layer of CNN and uses Softmax or SVM for doing actual classifications
[48].

2.3.5 Deep Learning with Nvidia DIGITS

Nvidia’s Deep Learning GPU Training System (Digits) [17] is an interactive
platform for training deep neural network. It provides the facility of visual-



CHAPTER 2. BACKGROUND 27

Figure 2.19: Convolutional Neural Network [38]

izing each step of deep learning. The platform is used for processing data,
configuring the deep neural network, monitoring the training progress, visu-
alizing the trained sets, monitoring the performance of the network in real
time and managing multi GPU training. Performance of deep neural network
can be monitored in real time.

Dataset Creation Dataset can be created and uploaded using Digits. Ad-
ditionally, it provides information about the dataset such as how many train-
ing samples are available and what kind of data they are.

Network Configuration It provides facility to select standard networks
such as LeNet, Alexnet or GoogleNet. These default networks can be used for
training or can be modified according to the need. Options for setting solver
parameters are available such as training epochs, the interval of snapshots,
interval for validation run, batch size, type of solvers such as Stochastic
Gradient Descent (SGD), ADAGRAD or NAG and learning policy and rate.

Training Results It provides real-time monitoring of training performance
and accuracy. The model can be discarded or modified if performance is poor
but can be retained if we are getting satisfactory results.

Monitor Overfitting and Underfitting It provides the graph of train-
ing and validation loss for each epoch. If the loss continues to decrease for
training set while increasing for validation set, then the network has overfit-
ted. However, if the loss is not increasing, but accuracy is also not improving,
then the network is underfitting.

Deployment It provides an easy method to download the network and
transfer to the deployment device which can be mobile, server or laptops
[17]. In this thesis, deployment device used is Nvidia Jetson. Figure 2.20
summarizes the process of training and deploying using Nvidia DIGITS.



CHAPTER 2. BACKGROUND 28

Figure 2.20: Training and deploying deep learning with DIGITS [17]

2.3.6 Caffe

Different frameworks are available for training and deploying deep neural
networks such as Theano, Tensorflow, Torch, and Caffe. Each framework
has their share of strengths and weaknesses, and it is out of the scope of this
thesis to analyze each of them. For this thesis, Caffe is used as deep learning
framework due to its low learning curve, wide acceptability, and permissive
Berkeley Software Distribution (BSD) license [35]. It is developed in Berkeley
Vision and Learning Center and is written in pure C++ with CUDA support
which has the command line, Python and Matlab interfaces. In addition to
providing deep learning framework, it also has an implementation for pre-
processing and deployment. There are reference models, and examples as
a part of the framework and plethora of trained models are available in
model zoo[12]. Such models ease in developing the application through early
prototyping, easy training and easy deploying.

For providing input, Caffe has support for LevelDB or Lightning Memory-
Mapped Database (LMDB) database, Hierarchical Data Format 5 (HDF5)
and raw image files. It also supports in-memory computation for python
and C++ language. Data preprocessing such as creating LevelDB/LMDB
from raw images, shuffling data to generate training and validation sets and
generating mean-image can also be done with Caffe. It also includes data
transformations tools such as image cropping, resizing, scaling, mirroring and
mean subtraction.

The model definition which includes defining network architecture and



CHAPTER 2. BACKGROUND 29

training parameters in Caffe is done with the protobuf model format. The
format is developed by Google which is strongly typed and human readable.
Several loss functions are available for both classifications such as softmax
and hinge loss, linear regression such as Euclidean loss and attributes/multi-
classification such as sigmoid cross entropy loss. The available layer types
are convolutional, pooling and normalization. Similarly, many activation
functions such as ReLU, Sigmoid and Tanh are available.

After training, Caffe generates .caffemodel which can be quickly deployed.
Furthermore, it provides support for detection with regional CNN and seg-
mentation with fully connected CNN. The platform is easily extendable for
python and C++ to add a new layer or loss function.

2.3.7 Reinforcement Learning (RL)

Reinforcement learning is another variant of learning where drone tries achiev-
ing some task by trial. Unlike supervised learning, reinforcement learning
does not have any labeled data. In the absence of labeled data and cost func-
tions, reinforcement learning uses reward function. The reward is a quantita-
tive measurement of the outcome of an action performed. As shown in figure
2.21, reinforcement learning has several components such as agent, environ-
ment, action, reward, and observation. An agent is always trying to learn to
achieve some goals. An environment is where such action is performed and
can be observed by the agent. An action is a task performed by an agent
to attain its goal. A reward is a scalar feedback signal indicating the perfor-
mance level by the agent at any time step t. Observation is a state of the
environment an agent can observe [6]. The agent always tries to get the best
outcome by maximizing its reward function. The reward is cumulative, and
an agent tries to maximize its cumulated reward. At each time step, there is
an interaction between the agent and the environment. The agent executes
an action, receives observation and scalar reward, whereas, the environment
gets action, emits observations and rewards. RL agent has no information
about the environment, but it learns about it through a continuous process
of actions, observations, and rewards. The goal of an agent is to find the
policy that maximizes the utility function. The policy is a series of actions
and utility function governs the rewards function. Agent continually inter-
acts with the environment which is unknown initially to learn more about it.
For doing so, an agent must balance and perform two sets of opposing steps
which are exploration and exploitation.



CHAPTER 2. BACKGROUND 30

Figure 2.21: Reinforcement Learning

2.3.8 Deep Reinforcement Learning (DRL)

The deep reinforcement learning tries to leverage the concept of a deep neu-
ral network with reinforcement learning. By representing the utility function
as a deep neural network, deep reinforcement learning tries to solve com-
plex problems. Much research is ongoing such as [55] and [39] for using deep
reinforcement learning to fly drones autonomously. It is different from super-
vised learning in that we do not have labeled datasets for training so that we
can find errors and then back propagate them. Thus, the concept of policy
gradient comes along. The rewards can be (0, +1, -1) which will modulate
our gradient to 3 possible values. For zero reward, our weights remain the
same.

2.3.9 AI for drone navigation

There is much ongoing research on using AI and auto navigation in drones.
Few of the recent articles focused in the thesis are [55], [39], [30], [13] and
[28]. The authors in [55] and [39] have used imitation learning for controlling
the drones and avoiding the obstacles. Similarly, authors in [28], [13] and
[30] have used feed-forward deep neural network for controlling the drones
and avoiding the obstacles. The authors in [28] discuss creating a dataset
from 11,500 crashes which are then used to train standard deep network. The
network outputs binary classification and provides the information about how
to prevent a crash. It is a simple self-supervised model which is also effective
in an extremely cluttered environment. The authors in [13] provide a method
of using a single forward facing camera which is fed into the trained CNN
model for depth estimation. The trained model was tested in both real and



CHAPTER 2. BACKGROUND 31

simulated environment with satisfactory results. Similarly, authors in [30]
trained the drone to perceive forest trails with a single monocular camera
using the deep neural network. Furthermore, the dataset used to train the
drone is freely available for download, and it is the same dataset used in
this thesis for experimentation. Through imitation learning and recurrent
neural network, authors in [39] are trying to train the UAV to fly across
the simulated room in a cluttered environment. Authors in [55] also used
a similar approach with forward-looking camera and imitation learning to
navigate in a forest and controlled indoor environment.

2.4 Summary

The chapter introduced the fundamental background for this thesis. It pre-
sented the basic components, sensors and algorithms explored during the
course of this thesis. The navigation unit is required for the drone to navi-
gate from one point to another. Similarly, obstacle avoidance unit is required
for safely navigating in the cluttered environments. The thesis will later pro-
vide integration of some obstacle avoidance sensors such as Garmin lidar lite
and Realsense camera r200. A short introduction to AI is also provided and
current research on the field on a drone is also summarized. AI will be used
later in this thesis for better understanding the nature of an obstacle through
image segmentation and navigation. Understanding of current research and
solutions in autonomous cars can help us understand autonomy in drones
as well. Autonomous cars have already solved many complex problems of
navigation and obstacle avoidance. Next chapter will explore in more details
how autonomy works in cars.



Chapter 3

Case Study: Autonomous Cars

Both automobile and technology companies such as Tesla, Google, Uber,
Nissan, BMW, Ford, and Mercedes are all developing autonomous cars [47].
Many of these autonomous cars today have level 4 autonomy where an au-
tonomous vehicle has complete control. These autonomous cars can be a
huge source of inspiration and knowledge for applying similar technology for
drones. Thus, the thorough understanding of architecture and applications
for autonomous cars is one of the research focus of this thesis.

As defined by National Highway Traffic Safety Administration of US,
autonomous driving has five levels of autonomy [23]. The levels are differ-
entiated based on the degree of control and autonomy the vehicle has. The
first level, also known as level 0, is a level where the car has no control on
its own and is entirely controlled by the driver. The degree of control by an
autonomous system increases from level 1 to level 4, and the autonomous
system finally takes complete control in level 4. Such a vehicle operating
in level 4 has the responsibility of all activities related to driving and exe-
cuting functionalities such as safety-critical functions, parking, starting and
stopping. The ability to perceive the environment in real time based on the
input from multiple sensors enables vehicle of such autonomy. Some popular
sensors used in autonomous cars are lidars, GPS, IMU, cameras, sonars, and
radars. These sensors are used in localizing the vehicle and making real-time
decisions for navigation. The task of autonomous driving, however, requires
a high computation power to process a massive volume of sensor data.

As provided in [45], any autonomous system can be considered to have
three components as shown in figure 3.1.

1. Sensing

2. Perception

32



CHAPTER 3. CASE STUDY: AUTONOMOUS CARS 33

3. Decision Making

Figure 3.1: Autonomous Car architecture [45]

Sensing is merely the collection of data. Making meaning out of those
collected data is perception. Finally, making a decision on what actions to
take based on the semantics obtained from perception is decision making.

3.1 Sensing

Sensing is the collection of data from the sensors. As discussed earlier, an
autonomous car is equipped with several sensors such as GPS, IMU, Lidar,
Camera, Radar, and Sonar. However, each of the sensors has their strengths
and shortcomings. GPS has good accuracy but has a lower sampling fre-
quency whereas, IMU has a much higher frequency but its accuracy degrades
with time. These shortcomings can be mitigated by fusing two together so
that they can complement each other to provide accurate and real-time up-
date required for autonomous driving. The accuracy of such system can be
within the range of one meter [8]. This only applies to the scenario where the
vehicle has a direct line of sight to the satellite. GPS signals get noisy in cities
and forests, and no signals will be received in tunnels. This shortcoming can
be overcome by using LIDAR or camera. Sensing in an autonomous vehicle
is of two types: internal sensing and external sensing. Internal sensing is
measuring vehicle’s internal states, and external sensing refers to sensing the
environment in which vehicle is navigating.

3.2 Perception

Sensing state accumulates data from the sensors, but collected data has no
meaning until it is processed and semantic is drawn out of it. Understanding
meaning of the data happens in the perception where vehicle processes the



CHAPTER 3. CASE STUDY: AUTONOMOUS CARS 34

data from different sensors and try to perceive its environment. The first
task of an autonomous car is to understand its surrounding and figure out
where it is and where it must go. Such a process of mapping its location
with respect to the environment is known as localization. It is achieved by
data fusion from different sensors such as GPS, IMU, and Lidar. The parti-
cle filter is used to create a map out of Lidar data which can give real-time
localization with 10 cm accuracy [45] even in an environment with many
obstacles. Another important task autonomous vehicle must perceive is de-
tecting the objects. Computer vision based technologies such as CNN are
used for detecting objects near the vicinities of the vehicle. Furthermore,
both dynamic and static objects should be tracked once detected. The vehi-
cle should keep track of moving objects such as pedestrians, other vehicles or
any other objects in the environment for safe driving. For such purposes, ap-
proaches using deep learnings are more effective than conventional computer
vision approach for object tracking[45]. Tracking is done through series of
temporal readings. Sensor fusion can also be used in this process to corrobo-
rate that the data from various sensors conclude to the same decision either
about detection, localization or tracking[8].

3.3 Decision Making

After the vehicle is localized, objects are detected and tracked then an au-
tonomous system can make informed decisions. Usually, the process of mak-
ing a decision is based on Markov chains and probabilistic models. An au-
tonomous vehicle must make some important decision regarding motion pre-
diction, path planning, and obstacle avoidance. While driving on the high-
way, autonomous vehicle not only has to predict its movement but also of
other vehicles. The difficulties of prediction increases in multi-lane highways
and intersection of the roads. After predicting the motion of other vehicles,
the vehicle has to plan the path for itself for full maneuverability [8]. The
process of path planning involves generating a set of trajectories which are
obstacle free and is not on a collision course with any other vehicles. The
optimal path from the generated path is selected for steering. The problem
of path search can be done either using brute force to search all possible
paths or use probabilistic models. The task of planning the path also has
to incorporate avoiding the obstacles in the vicinity of the car. There are
two types of obstacle avoidance based on when the process of avoiding takes
place. They are proactive and reactive. The first level of avoiding takes place
with the proactive system which is based on prediction and metrics consid-
ered are time to collide and the minimum distance to obstacles. In this level



CHAPTER 3. CASE STUDY: AUTONOMOUS CARS 35

of obstacle avoidance, obstacles are avoided by replanning the path. The
second level of obstacle avoidance is reactive which use sensors such as sonar
and radar. The data from such sensors are directly fed into the main control
unit without going through the entire processing pipeline. The action taken
at this level is more severe actions such as braking and moving sideways. It
overrides current control for driving the cars to avoid obstacles.

3.4 Lidar vs Vision-based system

The state of the art solution for an autonomous vehicle is based on one
of the two approaches: Lidar-based autonomous driving and camera-based
autonomous driving [45]. Considering performance lidar based system is
better in which lidar creates millions of data points in a second within a
range of 200m. The lidar streams laser beam, measure reflection time from
the surfaces and determines vehicle’s distance from various objects in the
environment. However, the cost of good Lidar system is prohibitively high
costing up to several tens of thousands of dollars. Furthermore, raindrops
and dust will create a lot of noises which will be inevitable while driving. An
alternative to such a system is the vision-based autonomous system which
is more economical. Instead of relying on particle filter like the one used
in Lidar, it uses visual odometry which is based on feature description. To
extract depth information, it uses stereo images. From the extracted features,
key features are used to compare with the known map to localize itself in the
world.

3.5 Lateral and Longitudinal Driving

Lateral and longitudinal driving is the way autonomous vehicle operates while
driving. The lateral guidance keeps the car in current lane whereas longitu-
dinal guidance tries to keep a safe distance to other cars in the front.
The crucial factors to keep in mind for autonomy are lateral and longitudinal
control, functional distributions, conflict resolutions, fault propagation and
isolation of system failures and cognitive complexity.

Main features of autonomous architecture should be service-oriented com-
munication, a dynamic operating system which is real-time with fault tol-
erance with required safety and security[31]. Such design also provides a
continuous connection to the backend to collect the data and use it for learn-
ing various mistakes and making decisions.



CHAPTER 3. CASE STUDY: AUTONOMOUS CARS 36

3.6 Fully convolutional neural network (FCNN)

based control

Autonomous cars can be formulated as a single problem of driving with the
fully convolutional neural network where FCNN issues steering command
based on input from the front camera mounted on the car. As given in
the PilotNet[9], Nvidia has trained a car to mimic a behavior of the driver.
The training of PilotNet is done with images generated from three cameras
mounted in front of the car and facing left, center and right. Input also con-
tains corresponding steering commands issued by a human driver to drive
the car. In contrast to an earlier approach where problems such as lane de-
tection, pedestrian detection, and traffic signal detection are done in parallel
and are trained explicitly to do so, PilotNet learns essential features embed-
ded in the image based on the action taken by the driver. The research has
shown that the module learns features such as lane markings, edges of the
roads and bushes lining implicitly. End to end learning will eliminate the
need for hand coding rules for an autonomous vehicle. The figure 3.2 shows
the block diagram used by [9] for training. They have used three cameras
and recorded steering wheel angle as input. Left camera and right camera
are used to get center shifts so that vehicle can recover from drifts.

Figure 3.2: Training End to End FCNN for autonomous driving [9]

Once training is done, network is deployed with a FCNN controlled au-
tonomous car with a single center camera mounted on it. The deployed model
issues steering wheel control command to keep the car on lane and to drive
towards its destination. The process of deploying is shown in figure 3.3.



CHAPTER 3. CASE STUDY: AUTONOMOUS CARS 37

Figure 3.3: Deploying End to End FCNN for autonomous driving [9]

3.7 Summary

Sensing, perception and decision making are three most important steps of
autonomous cars. Sensing collects sensor data, perception analyze those data
and decision-making step makes an informed decision based on the analysis.
Lidar-based system and Vision-based system are currently the most popular
approaches for autonomy. Current trends and research are going in the di-
rection of an end to end control of cars with the fully convolutional neural
network. In such a system, the task of driving is considered to be a sin-
gle problem of estimating steering commands instead of dividing the task of
driving into subtasks such as lane detection and pedestrian detection. After
understanding basics of different sensors and knowledge of autonomous cars,
next chapter will introduce autonomy in quadrotors and different components
associated with it.



Chapter 4

Quadrotor and Flying Principle

Chapter 2 discussed the foundation of different sensors for navigation and
obstacle avoidance and chapter 3 discussed how state of art autonomous cars
use autonomy. This chapter dives into understanding different components
of quadrotors and how state of art flight stack available in the market han-
dle the task of navigation. The chapter starts by introducing physics and
kinematics required for flying a quadrotor. Then chapter presents brief in-
troduction about hardware components and various software components of
quadrotor for ardupilot flight stack. The drones are programmable due to the
availability of different software stacks as well as properly defined mavlink
communication between them. Mavlink is the protocol used by component
developed for this thesis to communicate with flight controller. Kalman filter
which is a state estimation and sensor fusion algorithm and used in state of
the art solution is also discussed in this chapter.

4.1 Flying Principle

This section introduces the aerodynamics of quadrotor drones. By under-
standing these principles, the concept of how force and thrust interplay to
make a drone fly and change directions is understood. Flying is moving
against the gravity which has to be compensated. Quadrotor has four wings
which are powered by motors and are capable of rotating in clockwise or
counterclockwise and producing enough thrust for quadrotor to fly. Motors
and actuators on the drone produce forces and torques which induce linear
and angular acceleration respectively. Force is a vector quantity which can
be easily calculated using vector arithmetic. Gravity, thrust, and friction
are some of the few forces which need to be considered for quadrotors. The
application of these force on a body causes it to accelerate. Force on a lever

38



CHAPTER 4. QUADROTOR AND FLYING PRINCIPLE 39

Figure 4.1: Four rotors in Quadrotor [58]

induces a torque. Torque results in angular acceleration α given by equation
4.1 and 4.2.

Jα = Γ (4.1)

Γ = rF (4.2)

Each of the propellers induces force and torque. Total thrust towards vertical
direction is sum of all the forces applied in each propeller which is given by
equation 4.3 and shown in figure 4.2.

Fthrust = F1 + F2 + F3 + F4 (4.3)

Attitude changes when opposite motors generate unequal thrust. This in-
duces torque and which is given in equation 4.4 and induced angular accel-
eration is given by equation 4.5.

Γ = (F1 − F3) ∗ r (4.4)

α = J−1Γ (4.5)

Each propeller induces torque due to rotation and the interaction with the
air and are additive in nature. The resulted torque is given in equation 4.6.

Γ = Γ1 − Γ2 − Γ3 − Γ4 (4.6)



CHAPTER 4. QUADROTOR AND FLYING PRINCIPLE 40

Figure 4.2: Thrust on four rotors [58]

In summary, thrust on the rotors compensates for gravity. When enough
thrust is provided by actuators to compensate the gravity, quadrotor can
hover. When the force applied to each actuator is not equal, it induces
torque in the drone. For loitering on a fixed position in the air, thrust should
compensate the gravity, and total torques on all four rotors should sum to
zero.
However, when thrust in the drone increase and is more than that of gravity,
then drone can gain altitude and rise as shown in figure 4.3. In the same
way, when thrust is decreased to be less than gravity, the drone can descend.
However, if the different amount of thrust is provided to the four arms of the
drone, the drone will rotate due to induction of torque. So, to prevent that
from happening while ascending and descending, it is better to apply equal
thrust in all the arms of the drone.
The generation of torque by the applications of unequal amount of thrust in
different arms of the drone can be used for moving drone sideways, forward
and backward. When the thrust of the motor is increased in the front and
back rotor while maintaining or decreasing thrust on the left and right, the
drone will turn left. Similarly, when the thrust on the motor is increased on
the left and right while maintaining or decreasing the thrust on the front and
back, the drone will turn right. This process is illustrated by figure 4.4.
For the drone to move forward, thrust on the motor on the back must be the
highest, thrust on the motor on the sides has to increase while the thrust on
the motor in front is decreased. Similarly, for the drone to move backward,



CHAPTER 4. QUADROTOR AND FLYING PRINCIPLE 41

Figure 4.3: Ascend and Descend [58]

Figure 4.4: Turning Left and Turning Right [58]



CHAPTER 4. QUADROTOR AND FLYING PRINCIPLE 42

Figure 4.5: Move Forward and Move Backward [58]

thrust on the motor in front must be the highest, thrust on the rotor on
the sides has to increase while thrust on the rotor in the back is decreased.
Figure 4.5 summarizes this process. As shown in figure 4.6, for the drone to
move left thrust on the motor on the right must be the highest, thrust on
motor in the front and back have to increase while the thrust on the motor
in the left is decreased. Similarly, for the drone to move right, thrust on the
motor in left must be the highest, thrust on the rotor in the front and back
have to increase while thrust on the rotor in the right is decreased.

4.2 Hardware Components

Hardware components comprise of all the mechanical and electronic com-
ponents needed to build a quadrotor which may vary and differ from one
manufacturer to another. However, there are few fundamental components
needed by any drones for flying. Some of these are frames, motors, elec-
tronic speed controller (ESC), propellers, battery, flight controller, Radio
Controller (RC) Transmitter/Receiver and other optional parts. The frame
is a structure that holds all other components together. It is designed to
be strong, rigid but lightweight. Motors are used to rotate propellers and
can be brushless or brushed dc motors. ESC is used to control the speed of
the motor. Propellers are the wings of quadrotors, and when they rotate,



CHAPTER 4. QUADROTOR AND FLYING PRINCIPLE 43

Figure 4.6: Move Left and Move Right [58]

they generate enough thrust for lifting the vehicle[44]. Quadrotor can have
additional components such as camera, sonar, radar, and lidar depending on
the use cases.

4.3 Software Components

Software components programmatically define a controller for flying a quadro-
tor. For designing a controller for the drone, it is of vital importance to
understand fundamental software components of the drone. Various opera-
tions such as braking, changing the route, and bringing the drone back to
base can be performed in a system with obstacle avoidance and autonomous
navigation. Thus, a thorough understanding of software stack is needed for
implementing such system. The basic architecture of different software com-
ponents in high level is shown in figure 4.7. The main software components
of automated drones are flight controller, software on companion computer
and a remote client in the form of ground control station. The flight con-
troller is both a hardware and software component which has a real-time
operating system and is used mainly for navigations. Companion computer
complements flight controller by performing accessory activities such as col-
lision avoidance, computer visions, and payload maintenance. Similarly, the



CHAPTER 4. QUADROTOR AND FLYING PRINCIPLE 44

Figure 4.7: Different Software Components

remote client can be radio controller or ground control station for remotely
controlling the drone.

Ground Control Station (GCS) Ground control is a remote station
for programmatically controlling the drone through the built-in user inter-
face. Few functionalities of a ground control station are controlling drones
in flight, uploading and downloading missions, sending commands and up-
dates, receiving telemetry, displaying the map and monitoring live streams.
There are many open sources ground control stations such as apmplanner2,
mavproxy, QGroundControl and UgCS. Apmplanner2 was a preferred GCS
for this thesis as it has better performance in Linux environment where the
thesis is done. Besides, it is an open source GCS for any mavlink based
autopilots such as PX4/pixhawk and APM[61]. The figure 4.8 and 4.9 are
screenshots from apmplanner2.

Companion Computer (CC) There are various choices of companion
computers available in the market. The choice of companion computer should
be based on the performance required for the system. The companion com-
puter which has less computing load such as rerouting the sensors data, send-
ing few commands to the drones, basic computations, and basic computer
vision can be powered by less powerful hardware. But if intensive computa-
tion and near real-time calculation is needed then much powerful companion
computers should be used. Raspberry Pi, ODroid, Intel Edison, Upboard,
BeaglePilot, and Turnkey can be one of the solutions for companion com-
puter. For this project, the choice of companion computer was Raspberry Pi,
Upboard and Nvidia Tx2 for development and it progressed chronologically
as the requirement for the computation increased.

FlightController Flight Controller as discussed above contains both hard-
ware and software stacks for running real-time operating system. Pixhawk



CHAPTER 4. QUADROTOR AND FLYING PRINCIPLE 45

Figure 4.8: Apm planner 2 home screen [61]

Figure 4.9: Apm planner 2 creating mission interfaces [61]



CHAPTER 4. QUADROTOR AND FLYING PRINCIPLE 46

Figure 4.10: UpBoard [4]

Figure 4.11: Raspberry Pi [3]



CHAPTER 4. QUADROTOR AND FLYING PRINCIPLE 47

from 3DR robotics was the choice of the hardware. It can mount differ-
ent software stacks for controlling drone. The most popular ones such as
pixhawk flight stack and APM’s ardupilot were considered for this thesis.
APM’s ardupilot was chosen for this thesis as it is more flexible, popular,
safe and supports different hardware[66]. Ardupilot has support for wide va-

Figure 4.12: Pixhawk [2]

riety of hardware such as Pixhawk, Parrot Bebop, Beagle Bone, Intel Aero,
Erle-Brain, PixRacer and Qualcomm SnapDragon. It is capable of control-
ling autonomous vehicles of different types such as helicopters, multirotor
drones, fixed-wing Vertical Take Off and Landing (VTOL) model aircraft,
rovers, boats, submarines and antenna tracker[60].

4.4 Mavlink

Mavlink is the communication protocol between different components of a
drone. It might be between payloads and flight controller, between compan-
ion computer and flight controller or between the ground control station and
flight controller. It is specifically designed for Mav(Micro Aerial Vehicle) and
is very lightweight with header only message library. It packs C-structs and
transmits through serial channels to different endpoints. It allows to check
the message content, detect lost messages while only needing six bytes over-
head for each packet. The protocol was designed for transmission speed and
safety. Understanding and implementing Mavlink is important for develop-
ing a control system for the drones. The commands and messages are sent
and received based on mavlink protocol. Basic frame of mavlink is shown in
figure 4.13 and each fields is described in table 4.1.

There are several mavlink messages. Understanding them is vital for
sending proper commands to the mav.



CHAPTER 4. QUADROTOR AND FLYING PRINCIPLE 48

Byte
Index

Content Value Description

0 Start byte of
packet

V1.0:0xFE,
V0.9:0x55

This value signifies the start
of mavlink message.

1 Length of
payload

0-255 It gives the length of pay-
load. Since it is one byte,
payload length can only be
0-255 bytes.

2 Packet Se-
quence

0-255 Each component keep
counting of mavlink mes-
sages sent. It is useful for
detecting packet loss.

3 System ID 1-255 Each drone in the network
and GCS is uniquely identi-
fied by a system id. Since
it is one byte, the number
of drones in one network is
theoretically limited to 255.

4 Component
ID

0-255 Same system such as drone
can have several compo-
nents attached to it. Each
of this component can send
mavlink messages and are
uniquely identified within a
system with a component
ID.

5 Message-ID 0-255 Mavlink has different mes-
sage type. Based on the
type of message, the pay-
load is decoded accordingly.
Message ID is an identifier
for those messages.

6 to
n+6

Data 0-255 bytes Actual mavlink message.
All the component before
this are header

n+7 to
n+8

Checksum
( low byte,
high byte)

This is for checking the
correctness of the mavlink
packet.

Table 4.1: Mavlink Packet Field Description [1]



CHAPTER 4. QUADROTOR AND FLYING PRINCIPLE 49

Figure 4.13: Mavlink Packets [1]

Mavlink messages

1. MAVLINK MSG ID REQUEST DATA STREAM This message is used
to request the stream of data from the autopilot. Requested data can
be sensors, RC channels, GPS position, status or the combination of
them.

2. MAVLINK MSG ID COMMAND LONG This message is used to give
commands to the autopilot. Several commands are supported. Types
of commands used in the mission are navigation commands, DO com-
mands and condition commands.

3. SET MODE It sets the different mode of operations for the drone. Few
supported modes for ArduCopter are

• STABILIZE The mode is manual airframe angle with a manual
throttle.

• ACRO The mode is manual body-frame angular rate with the
manual throttle.

• ALT HOLD The mode is manual airframe angle, but the throttle
is automatic.

• AUTO The mode is fully automatic waypoint control using mis-
sion commands.

• GUIDED The mode is fully automatic fly to coordinate or fly at
velocity/direction using GCS direct commands.

• LOITER The automatic horizontal acceleration with the auto-
matic throttle.

• RTL The state automatically returns to launch.

• CIRCLE This mode automatically circles a position with the au-
tomatic throttle.

• LAND

• DRIFT



CHAPTER 4. QUADROTOR AND FLYING PRINCIPLE 50

• SPORT

• FLIP

• AUTOTUNE

• POSHOLD This mode automatically a position with manual over-
ride with an automatic throttle.

• BRAKE Full brake using inertial/GPS system with no user input.

• THROW

• AVOID ADSB

• GUIDED NOGPS

There are many other mavlink messages which were implemented for properly
communicating with the drone.

4.5 Kalman Filter for Navigation

Kalman Filter is an optimal estimator which estimates states even from inac-
curate and uncertain observations. The process is recursive where processing
is done after every arrival of new measurements. The mean square error of
estimated parameter is minimized for Gaussian noises. With only mean and
standard deviation of the noise available, it can only estimate linear system.
The popularity of Kalman filter lies in its optimality characteristics, online
real-time processing, easy formulation and inversion free measurement equa-
tions. In summary, Kalman filter can optimally estimate only linear dynamic
system with additive white noise. As discussed in section 2.1.4, Kalman filter
can have motion and sensor model. The only difference is the system and
noises are modeled to be linear Gaussian. Without undergoing the thorough
derivation of Kalman filter which can be found in [64], Kalman filter can be
summarized as having two steps. At each time step, we should apply

1. Motion model which is also known as prediction step

2. Sensor model which is also known as correction step

Extended Kalman Filter (EKF) For nonlinear systems which cannot
be estimated by basic Kalman filter, the algorithm can be extended so that
Kalman filter can be applied in such system as well. It is done by approxi-
mately linearizing the non-linear system with Taylor expansion. Taylor ex-
pansion can help to linearize the nonlinear equations approximately. After
expanding and approximately linearizing the equations, Kalman filter can



CHAPTER 4. QUADROTOR AND FLYING PRINCIPLE 51

be applied, and such a system is called extended Kalman filter. Extended
Kalman Filter is used by quadcopter for estimating position, velocity and
angular orientation of the vehicle based on input from the compass, ac-
celerometers, gyroscope, GPS, barometric pressure, and airspeed. EKF is
advantageous over other filter algorithms because while fusing all available
measurements it can reject measurements with significant errors [41].

4.6 Obstacle Avoidance in ardupilot

Obstacle avoidance is one of the most critical aspects of any autonomous
vehicles. When flying in the real world, drone faces many obstacles in the
form of buildings, walls, trees, poles, wires, and other static and dynamic
objects. Without the means to locate these objects, a drone will crash into
them destroying itself and likely cause danger for others. Typical sensors
for identifying such objects are lidars, radars, sonars, and cameras. Each
of these sensors has distinct characteristics and is suitable for a different
scenario. Better results can be obtained by fusing different sensors and ex-
ploiting benefits from each one of them.
Ardupilot, the flight controller used for this thesis, has some basic support
for avoiding the obstacles as described in [62]. It requires installing obstacle
avoidance sensors and passing the data as mavlink distance sensor message
to the flight controller. The avoidance is only supported in loiter mode,
and changing the algorithm to suit custom needs is difficult. Similarly, In-
tel has developed an obstacle avoidance library [14] for its aero board using
the Realsense camera. However, it also limits the use of any other sensors or
algorithms for avoiding the obstacles. In addition, several private drone com-
panies have implemented obstacle avoidance system tailored to their specific
needs. [28] and [36] have implemented obstacle avoidance using reinforce-
ment learning, but most of them find correct path and avoid obstacle only
in the environment where they have been trained.

4.7 Summary

This chapter introduced how quadrotor can fly. Ardupilot is used for this
thesis which is one of the advance flight stack available in the market today.
There are several software components in the drone which makes the drone
programmable. Kalman filter is used as an estimator and sensor fusion al-
gorithm in ardupilot. Ardupilot also has a basic implementation of obstacle
avoidance. Now, next chapter will discuss in detail about the shortcomings of



CHAPTER 4. QUADROTOR AND FLYING PRINCIPLE 52

current avoidance system in ardupilot and how a better design can improve
such shortcomings. Also, the chapter will discuss the methodology and data
used in this thesis.



Chapter 5

Methodology and System
Design

This chapter discusses the shortcomings of current obstacle avoidance system
available in ardupilot. Then it provides a high-level architecture design show-
ing how a better design can mitigate such shortcomings. It also summarizes
the methodology used in developing such system.

5.1 Current solution

The current solution of obstacle avoidance system available in ardupilot dis-
cussed in 4.6 has limited functionalities. Following limitations were identified
in the system

Works only in loiter mode Current obstacle avoidance system provided
by ardupilot only works in loiter mode. However, we needed a system to
operate in any mode of operation.

Support for limited types of sensor The ardupilot obstacle avoidance
supports only the range based sensors but not HD or depth camera.

Extension to new sensors It is not easy to extend the current library to
new sensors and algorithm. The entire code needs to be recompiled and new
binary has to be generated.

Licensing of the library is GPL Due to General Public License (GPL)
licensing, modifying the code has legal implications if there is any intention
of using it commercially.

53



CHAPTER 5. METHODOLOGY AND SYSTEM DESIGN 54

Thus, we identified a need for building a versatile obstacle avoidance
library which can be easily extended to support different sensors and algo-
rithms as per the need. Developing a software framework for such library was
the first step in building a robust obstacle avoidance system. Such framework
requires only a few changes for addition or deletion of new sensors, hardware
or algorithms.

5.2 High level architecture

Choice of programming language for building library Initial proof of
concept was built with python. Despite being easy to use and quick to build,
it had some performance issues. Obstacle avoidance is a time sensitive task
which requires drone to take a quick action so we decided to use C++ as the
main language to build the library. The exact benchmark with performance
benefit can also be found online at [27]. After selecting the language of choice
for programming, the design of the framework was done next.

The high-level design of the system is summarized in figure 5.1. Such
a system has an interface for connecting to obstacle sensors of types range
or image and is able to read data from such sensors. The system should
have a mechanism to process the collected data to decide whether a valid
obstacle is present in the vicinity of the drone. Finally, the system should
also communicate with flight controller if it needs to send a command when
an obstacle is detected. Based on the above basic needs, obstacle avoidance
system has three modules interacting with one another. The three modules
as shown in the figure 5.2 are the mavlink communication module, obstacle
sensor module, and sensor fusion module. These three modules interact with
one another for making a smart decision regarding the presence or absence
of obstacles.

5.2.1 Sensor Module

Obstacle Avoidance sensors are connected to companion computer which
is the main computing resource for detecting and avoiding obstacles. The
sensors are connected to the companion computer through I2C, serial, PCI,
USB or CAN bus. The sensor module provides the software interface for
connecting with the obstacle avoidance sensors and accumulating data. This
module is similar to sensing discussed in section 3.1 for autonomous cars. The
module creates an abstraction for connecting to rest of the library and hides
unnecessary details such as types of sensors or hardware connectivity. Such
abstraction provides uniformity in the design of the interface for different



CHAPTER 5. METHODOLOGY AND SYSTEM DESIGN 55

Figure 5.1: High Level Architecture of Obstacle Avoidance System

Figure 5.2: Main Modules of Obstacle Avoidance Library

sensors. Each sensor implements such abstractions as a sensor interfaces in
the code. Sensor fusion module talks to sensor modules only through these
interfaces. Each sensor module is a separate thread which collects the data
from respective sensors and updates sensor fusion module with the new data.
The format of this data should be clear to sensor fusion module, and thus,
the sensor module includes metadata in the header which provides the type
of data getting updated. In addition to accumulating the data, the module
filters collected data with sensor-specific information. For example, different
sensors may have diverse ways to represent an absence of an obstacle or
minimum distance for detection, so it converts such reading to the generic
absence or minimum distance as understood by sensor fusion module. It also
has a responsibility of converting data into correct scale such as centimeter
or meter as required by sensor fusion module. The basic Unified Modeling
Language (UML) diagram for implementing a sensor is shown in figure 5.3.



CHAPTER 5. METHODOLOGY AND SYSTEM DESIGN 56

Figure 5.3: Sensor Interfaces and Implementation for Garmin lidar lite

5.2.2 Mavlink Communication module

This module serves to communicate with flight controller. Since flight con-
troller only communicates with mavlink protocol, this module performs de-
coding and encoding of mavlink messages. Rest of the modules in the obstacle
avoidance library are agnostic about mavlink protocols. Beside encoding and
decoding mavlink messages, it establishes software connection to flight con-
troller either through serial or UDP interfaces. Different information about
the drone such as current position in North East Down(NED) format or GPS
data in the Geodetic coordinate system, the current pose of the drones such
as roll, pitch, and yaw angles are provided by this module. Other useful
information such as velocities of the drone with respect to the ground or air
and mode of operation of the drone is also available. This information serves
as a basis for making a decision regarding presence or absence of obstacles
and finding the evasive maneuver. It also takes command from sensor fusion
library and converts the command into a mavlink message and send it to the
flight controller.

5.2.3 Sensor Fusion Module

Sensor fusion module is the center or brain of the entire obstacle avoidance
library. The module decides whether to stop the drone, bring it back or
move the drone around the obstacles. As shown in figure 5.2, it connects to



CHAPTER 5. METHODOLOGY AND SYSTEM DESIGN 57

both sensor module and a mavlink communication module. It implements a
factory method for creating sensor class. Sensor classes are generated based
on the configuration files. The sensor fusion itself will not access the sen-
sor implementation directly but through the sensor interfaces. For receiving
sensor data, it implements a listener method and subscribes to sensor data
from each sensor instantiated from the factory class. Once subscribed, it
keeps on collecting data from sensor class as long as it is not unsubscribed.
On the other hand, it gets telemetry data including its position, velocity,
angular acceleration and linear acceleration data from mavlink communica-
tion modules. The pose of the drone including roll, pitch, and yaw provides
information about which direction the obstacle avoidance sensor is pointing
at. Finally, the available data from different sensors and flight controller are
fused with the sensor fusion module. The fusion algorithm can be chosen
according to the need for the implementation and can be easily extended.
The input from different sensors can be fused using different filters such as
Kalman filter as described in section 4.5 or Bayes filter algorithm described
in section 2.1.4. The complexity of such fusion algorithm can vary from
simple algorithms to the complex ones. The fusion algorithm can be easily
extended by overriding it if the available implementation does not support
the complexity of the system.

5.3 Methodology

Unlike cars which can carry heavy payloads and sensors, quadrotors have
restrictions on size and weight of the sensors it can fly with. So, the first
step was selecting the sensors for the obstacle avoidance. There are many
models and types of obstacle avoidance sensors available in the market. For
the purpose of this thesis, following sensors were selected

1. Garmin Lidar Lite

2. Realsense R200 camera

3. USB HD camera

Garmin Lidar lite is compact and lightweight and is an ideal for a quadrotor.
Despite having a low angle of resolutions, it has simple interfaces and is easy
for quick development. Similarly, the concept of avoidance using depth cam-
era was verified with R200 camera. It is one of the compact depth camera
available in the market and has a low weight which comes with a Software De-
velopment Kit (SDK) for obstacle avoidance sensor development. Similarly,



CHAPTER 5. METHODOLOGY AND SYSTEM DESIGN 58

an HD camera was selected so as to test computer vision task of image seg-
mentation. After selecting the component, hardware interfaces were designed
and connected to the companion computer. Understanding the protocol to
communicate and acquire data from each of the sensors is necessary. Once
this is done, set up is ready for development. Each of the sensor development
involved two steps

1. Development in a simulator

2. Testing in real environment or drone

The cost and time required for development are hugely reduced with ap-
propriate simulation environment for testing. Deploying the software without
testing the functionalities can be highly risky leading to the damage of the
equipment and loss of time to debug the issues. Simulators used for this thesis
are ardupilot Software in the Loop (SITL) and gazebo which are summarized
in succeeding paragraphs.

Ardupilot SITL[63] It is a software in the loop simulator which can sim-
ulate quadrotor without any hardware. Ardupilot sitl is easy to use and is
compatible with the mavlink message.

Gazebo[26] It is a tool for simulating robots. It has support for a plethora
of vehicles, drones, and robots. In addition, it is easily extendable to support
new bots and sensors.

5.4 Datasets Used

Due to the limitation of time, datasets used in this thesis are open dataset
available to be downloaded from the internet. It needs a substantially large
amount of time for collecting, processing and augmenting data if it is collected
personally. Also, size of the datasets should be substantially large to ensure
that it does not overfit the model. The succeeding paragraphs introduce the
datasets used in this thesis.

Aerial Drone Datasets The aerial drone dataset is open dataset provided
by [51]. This dataset is used for separating ground terrain from the sky. The
dataset represents the First-Person View emulating vantage point of a drone
in flight. It has two classes sky and terrain. The sky is represented with blue
color and terrain is represented with green.



CHAPTER 5. METHODOLOGY AND SYSTEM DESIGN 59

Forest Trail Datasets The datasets used for testing navigation in the
forest trail with an end to end neural network is Forest Trail datasets. Like
the autonomous cars discussed in [9], training data was collected with three
cameras facing center, left and right along the trail of the forest. Cameras
are mounted on a pole of length 1m with certain lateral offset. Data collected
from such setup is used for detecting the rotation and lateral offset of the
drone. The data used in this project was from [30] and it contains video of
30 minutes from 3 cameras which are used for training.

5.5 Summary

Obstacle avoidance library available with the ardupilot is not robust and has
several shortcomings. To mitigate those shortcomings, a system is designed
for obstacle avoidance. The designed framework was implemented next and
integrated with obstacle avoidance sensors. The selection of obstacle avoid-
ance sensors for testing was not easy either. With the restrictions on weight
and size, we decided to test the system with Garmin Lidar lite, Realsense
r200 camera, and USB HD camera. The developed framework was first tested
and verified in the simulator before deploying it to the real environment. Fi-
nally, for experimenting with artificial intelligence, open datasets are used
which were introduced in this chapter. Next chapter will be discussing an
implementation of the design discussed in this chapter and interfacing with
sensors for obstacle avoidance and navigation.



Chapter 6

Implementation

This section discusses implementation and outcome of various experiments
done during the course of this thesis. The initial task was the implementation
of the design discussed in chapter 5. The core parts of the mavlink commu-
nication module and sensor fusion module were developed first and then
integrated with obstacle avoidance sensors. This chapter presents the exper-
imentation done with different obstacles avoidance sensors such as Garmin
lidar lite and Realsense r200. Furthermore, it provides the possibility of using
the camera as an obstacle avoidance sensor with image segmentation. The
possibility of navigation using end to end deep neural network is provided
next.

6.1 Obstacle Avoidance with Garmin Lidar

Lite

As discussed in 2.2.1 section, Garmin Lidar Lite provides a measurement of
the range of an object in front of it. This enables drone to detect any object
within a range of 5cm to 40m. The sensor is connected to the companion
computer through a serial interface. The development of software system was
done offline and tested with Ardupilot SITL[63] where the behavior of the
system was observed before deploying it to real drone. Only after successful
testing with the simulator, the obstacle avoidance system was integrated into
the real drone and tested with a flight. The collision is avoided by stopping
the drone before hitting an obstacle or by steering the drone away from the
obstacle.

60



CHAPTER 6. IMPLEMENTATION 61

6.1.1 Algorithm

With all the system in place, sensors and flight controller integrated, an
algorithm for obstacle avoidance was needed in sensor fusion module. For
testing and studying the behavior of the system, the algorithm used is de-
liberately kept simple. Furthermore, due to the simplicity of Garmin lidar
lite and simple nature of data obtained from it, complex algorithms were not
needed. Garmin lidar continuously samples the range measurements and has
the range data available all the time. The companion computer can read
these sampled data from serial port. The value of range reading decreases if
the drone is approaching the obstacle.
There are several regions of interest depending on the distance to the obsta-
cle. Different region of interests as shown in the figure 6.1 when a drone is
approaching the obstacle is an obstacle not visible, an obstacle in the visible
range, braking threshold and region susceptible for collision with GPS drift.
A drone can avoid hitting the obstacle by applying brake command when it
gets close to the obstacle. Depending on the speed of the drone and reaction
time required to stop the drone, the drone may get close to the obstacle
before coming to complete halt. The situation can be aggravated by GPS
drift which may cause a collision with an obstacle. Thus, the safest action
will be to navigate drone away from the obstacle and wait for human input.
This information along with the identification of different regions was used
to design a control flow for the algorithm.
Control flow is designed with a state machine. The state machine used for
controlling the drone is shown in figure 6.2. The state machine has four
states. The control is in state S1 when there is no obstacle in the range and
continues to stay in this state until an obstacle is visible. Once an obstacle is
in the range of the sensor, state of the state machine is changed to S2. The
control stays in the state S2 without issuing any command if the obstacle
is within the range but more than braking threshold. However, if the drone
moved away from the obstacle and no obstacle is visible in this state, the
state is changed back to state S1. However, if the drone approaches the ob-
stacle and reaches the braking threshold then the state is changed to S3. In
the S3 state, a brake command is issued and drone waits in this state until
it comes to complete halt. Once the drone is fully in brake mode, the state
is changed to S4 and is safely navigated away from the obstacle to prevent
unwanted collision due to GPS drift. Once in the safe position, the state is
changed back to S2 and drone wait for control from a human operator.

The state transition is summarized in table 6.1.



CHAPTER 6. IMPLEMENTATION 62

Starting
State

Ending
State

Condition Action

S1 S1 Obstacle is not visible Do nothing
S1 S2 Obstacle is in visible

range
Change state

S2 S2 Obstacle is in visi-
ble range and obsta-
cle range is more than
braking threshold

Do nothing

S2 S1 Drone move away
from obstacle and
obstacle is not visible

Change state

S2 S3 Distance is less than
or equal to brake pos

Change state and Is-
sue brake command

S3 S3 Waiting for brake
command to execute

Do nothing

S3 S4 Drone is halted Change state and Use
guided mode to move
away from gps drift
susceptible zone

S4 S4 Drone is in gps drift
susceptible zone

Do nothing

S4 S2 Drone is in safe posi-
tion

Change state and
Change mode to loiter
and let pilot take
control

Table 6.1: State Transition Table



CHAPTER 6. IMPLEMENTATION 63

Figure 6.1: Different regions of interest around the obstacle

6.1.2 Simulation Environment

We built a simulation environment for Garmin lidar lite before deploying the
implementation in the real drone. For creating such environment, the sensor,
and a drone need to be simulated. Instead of implementing a complicated
simulation of the sensor, a basic module was developed which mimic the
original one only in terms of generation of the data. The generated data was
then provided to obstacle avoidance library in the same format as original
sensor. The simulated sensor provides distance data varying it continuously
such that control flow can traverse through all the nodes and edges of the
state machine shown in the figure 6.2. On the other hand, for simulating the
drone ardupilot SITL [63], was used which is shown in figure 6.4. It provides
the behavior, location and current telemetry of the drone. Despite lacking
physics engine and sophisticated solution, it provides basic drone behavior.
These behaviors were enough for simulating the obstacle avoidance library
and testing the functionalities.

The figure 6.3 summarizes the simulator used for our purpose of test-
ing obstacle avoidance system with Garmin lidar lite. The sensor module
connects to Garmin lidar lite simulator instead of a real sensor through in-
terprocess communication whereas mavlink communication module connects



CHAPTER 6. IMPLEMENTATION 64

Figure 6.2: State diagram of sensor fusion algorithm

Figure 6.3: Simulate obstacle avoidance with Garmin Lidar



CHAPTER 6. IMPLEMENTATION 65

Figure 6.4: Ardupilot sitl with mavproxy for simulating quadrotor drone.

to software in the loop simulator through UDP interface instead of actual
flight controller. The distance measurements and reaction to the obstacles
were easily observable through the map in the SITL. Some of the behav-
ior verified through simulators were changing the mode, moving away from
obstacles, and time taken to execute brake command.

6.1.3 Integration with real drone

For the integration with a real drone, the obstacle avoidance library is left in-
tact, but the simulator is replaced with Garmin lidar lite which is connected
serially to the companion computer. The mavlink communication module in
the obstacle avoidance library now connects to the flight controller through
USB interface instead of UDP connection to the SITL. Besides these changes,
rest of the system is same as the simulation. The figure 6.5 shows the inte-
gration interfaces for different components.

6.1.4 Observations and Results

Simulation helped fix several bugs The development of simulation en-
vironment proved useful. Many of the software bugs were detected and fixed
during simulation phase. The functionality of the framework was tested with



CHAPTER 6. IMPLEMENTATION 66

Figure 6.5: Integrate obstacle avoidance with Garmin Lidar

simulated data. The simulation helped verify how sensor fusion algorithm
reacted with different distance measurements and the reaction of drones for
different commands such as braking and RTL. Once drone behaved as ex-
pected and changed its state for different distance measurements as stated in
table 6.1 then it was considered ready for deployment. The integration steps
itself was straightforward and only needed connecting sensor hardware and
drones to proper port and changing few lines in a configuration file.

Simulation do not represent entire environment Despite the simple
nature of Garmin lidar lite, simulating a sensor behavior was not accurate.
GPS readings, attitude pose readings and Garmin lidar readings were free
of noises in the simulation environment. However, it was a lot noisy during
execution.

GPS quality can change In our early test flight, we realized that GPS
is not completely reliable and drifts near tall trees and buildings. The figure
6.6 shows the variation of relative altitude measured with GPS when flying
in the vicinity of tall buildings. We had few crashes due to this. Thus, to
prevent such scenario we improvised our algorithm to account for GPS drift.

Different sensors have different frequency of sampling The obsta-
cle avoidance library was getting information regarding the distance from
Garmin lidar lite which had sampling frequency configurable from 30 Hz to
500 Hz. However, we were getting location related data such as GPS and
attitude from flight controller with a substantially lower frequency in the
range of 2-10 Hz. The difference between the sampling of Garmin lidar and
readings from ardupilot is summarized in the figure 6.7. This necessitated
appropriate sensor fusion algorithm to predict the missed readings.



CHAPTER 6. IMPLEMENTATION 67

Figure 6.6: Measurement of relative altitude with GPS amidst tall buildings.

Figure 6.7: Update rate of different sensors.



CHAPTER 6. IMPLEMENTATION 68

Garmin lidar is sensitive to the reflective surfaces The distance mea-
sured by Garmin lidar lite was precise and accurate in a closed environment
with white reflective surfaces. However, the performance degraded with other
reflective surfaces. Also, due to the low resolution of just 1cm, measuring
rough surface was difficult, and it was easy to miss the target. Trials which
were done in front of trees and uneven surfaces resulted in several crashes
as it was not able to detect them until it was very close. The distance
measurements readings collected from same distance but different reflective
surfaces are shown in figure 6.8. Nevertheless, the performance of the device
was good on the smooth surface. The drone could detect the obstacle and
prevent crashing of the drone.

Figure 6.8: Distance measured with garmin lidar from same distance but
different reflective surfaces.



CHAPTER 6. IMPLEMENTATION 69

6.2 Obstacle Avoidance with RealSense Cam-

era

Garmin Lidar lite was a very basic range sensor with a single entry for a
narrow field of view. To obtain a large view, the next sensors we tested was
Realsense camera r200 which was discussed in chapter 2.2.4. Development
for r200 incorporated all the lessons learned from the previous development
of Garmin lidar lite. Furthermore, it used the same framework discussed in
section 5.2 which was already verified with Garmin lidar. The only mod-
ification required to our unified framework was an addition of r200 sensor
modules. The sensor module implements the polar histogram algorithm and
calculates the polar obstacle density. The calculated polar obstacle density
is fed into the sensor fusion module which analyses the data after fusing
with input from other sensors and makes a decision about the presence of
obstacles. If any obstacles are observed on the path of the drone, then the
command is issued to the flight controller for braking, landing or returning
to home. In addition to finding an obstacle, large field of vision of Realsense
camera assists sensor fusion algorithm to find the escape route as well. The
architecture of interfacing Realsense camera to the companion computer on
the drone is shown in figure 6.9. Interface for connecting Real sense camera

Figure 6.9: Integrate obstacle avoidance with Realsense(r200)

to the companion computer is USB3.0. Depth data is streamed continuously
after the connection is established with companion computer. Furthermore,
USB connection is also used for controlling and configuring the camera as
per the need. The process of obtaining depth streams and changing the
settings is done easily by using an SDK provided by Intel and available in
[15]. The sensor module of our obstacle avoidance library subscribes to depth
streams from the SDK. The subscribed streams are updated to the sensor



CHAPTER 6. IMPLEMENTATION 70

module which calculates polar obstacle density and provides the calculated
information to sensor fusion module. Different modules used for obtaining
depth streams and avoiding obstacles are described in detail in the following
sections.

6.2.1 Librealsense module

The module is an open source SDK provided by Intel and hosted on Github at
[15]. It is a cross-platform library with functionality such as native streaming
of depth, infrared and color images, synthetic streaming of rectified images,
calibration and support for hardware configurations, multi-camera capture
and motion tracking. The SDK simplifies the complicated process of access-
ing Realsense hardware for starting the stream and changing the configura-
tions. For the thesis, the SDK is used for acquiring depth stream and for
changing configuration of the hardware.

6.2.2 Polar Histogram Algorithm

A separate sensor module is created in obstacle avoidance library discussed
in section 5.2 which provides support for the Realsense camera. This module
implements sensor interface and is configurable to instantiate from factory
method in sensor fusion algorithm. As discussed in section 5.2, sensor mod-
ule also implements sensor specific filtering or calculations. Polar histogram
algorithm defined and used in this section is specific to the Realsense camera
and is implemented by the sensor module. The algorithm was discussed in
detail in section 2.2.5. The algorithm is used to generate a polar obstacle
density in front of the drone. The polar obstacle density is fed to sensor fu-
sion module which makes a decision of the presence or absence of obstacles.
Based on the decision, a mavlink message is sent to the drone either to stop
it or to take appropriate actions.
The implementation was inspired by the obstacle avoidance library devel-
oped for Intel Aero board[14]. The depth image received from the Realsense
camera is used as an input for range values required to build polar obstacle
density. The first step is selecting the vertical sweep regions on either side of
the center of a depth image. The process of selecting window with a height
twice the size of vertical sweep strips off some part of the image along ver-
tical axis while keeping constant width. The window is then divided into
many vertical segments based on the number of histograms bin needed. The
number of histograms bin is selected based on whether fine-grained detail of
obstacle is needed or some coarse detail of obstacle is enough. The second
step is selecting the lowest pixel value for each segment within the vertical



CHAPTER 6. IMPLEMENTATION 71

regions as closest obstacle distance. This ensures that each bin in the seg-
ment measures the lowest distance to an obstacle in that region. To get
output in terms of angle, each bin is converted to angles. The entire process
of dividing the frames and creating vertical segments is summarized in figure
6.10. Similarly, the high level flowchart of the algorithm is shown in figure

Figure 6.10: Segmentation of depth image for calculating polar histogram

6.11.

6.2.3 Simulation

The simulation was done using gazebo [26]. The simulator instantiates ve-
hicle as well as an environment where testing is done. For using the Re-
alsense camera and ardupilot sitl, plugins such as gazebo-realsense [33] and
gazebo-sitl [32] are needed. The [14] provides the foundation for building
such simulation environment; however, the obstacle avoidance library used
for testing was developed by ourselves. The images from the Realsense cam-
era is obtained from the vehicle in the gazebo simulator as shown in figure
6.12. After setting up the environment and starting the simulator, test of
the reaction of the drone is done by subscribing depth image data from the
gazebo-realsense camera which are processed with obstacle avoidance library.
The obstacle avoidance library issued an appropriate command based on the
presence of obstacles in the simulator. The behavior of the drone is visible
in the gazebo with the help of gazebo-sitl.



CHAPTER 6. IMPLEMENTATION 72

Figure 6.11: Flow chart for calcualating POD and avoiding obstacles



CHAPTER 6. IMPLEMENTATION 73

Figure 6.12: Simulate obstacle avoidance with Realsense(R200) in gazebo

6.2.4 Interfacing with real drone

The interfacing is done as shown in figure 6.9 by connecting r200 module to
companion computer. Companion computer needs librealsense library [15]
for the module to operate correctly. Once the set up is done, companion
computer is ready to receive depth images from r200 modules. Obstacle
avoidance library in the companion computer receives these depth images
through librealsense Application Programming Interfaces (API). Calculation
of polar obstacle density in the sensor module starts after receiving depth
images. Forty-eight bins or segments of polar obstacles are created for ana-
lyzing the presence of obstacles. Figures 6.13, 6.14, 6.15 and 6.16 shows the
polar obstacle densities when obstacles were presented in different position
in relation to the drone. All these obstacle densities were observed for the
indoor position. Figure 6.13 shows the presence of obstacles on either end,
but obstacles were present only on the right side, and small obstacles shown
on the left is a false positive. Similarly, obstacles present on two corners is
shown in figure 6.14, obstacles present on left and middle is shown in the
figure 6.15 and figure 6.16 shows obstacles in the middle.



CHAPTER 6. IMPLEMENTATION 74

Figure 6.13: POD for obstacles on the right as bright and error on the left

Figure 6.14: POD for obstacles on the right and left

Figure 6.15: POD for obstacles on the left and middle

Figure 6.16: POD for obstacles only in the middle



CHAPTER 6. IMPLEMENTATION 75

6.2.5 Observations and Results

Gazebo has better simulation environment Compared to the simu-
lation environment shown in figure 6.4, the simulation environment in the
gazebo shown in figure 6.12 is more robust and realistic. Despite using the
same simulation backend environment of ardupilot sitl [63], it provides an ad-
ditional benefit of rendering the behavior in three dimensions. Additionally,
it models the sensors more realistically which provides proper data rendered
from gazebo environment and is close to real life scenario. Using such sim-
ulator to test the algorithm to verify the functionalities is useful. It helped
in debugging the algorithm and making modifications until desired reactions
were observed in the simulator. Eventually, the algorithm performed well
in the gazebo simulator, and the drone was successfully able to avoid the
obstacles by both stopping and going around it.

Noise in the real world is a lot more than gazebo simulation Depth
images in the real world, however, were different from those in the simulator.
The depth data observed were noisier, and polar histogram often showed
false positive readings for obstacles. Testing for obstacles was done for both
indoor and outdoor. Comparatively the performance of the camera was much
better inside the room than outside. The depth images from outdoor were
noisier which made it difficult for identifying obstacles. The figure 6.17 shows
an image from a real device.

Figure 6.17: Noisy data from Realsense camera r200 module.

Larger field of view at the expense of lower obstacle range Field of
view is increased with realsense camera [15] unlike Garmin lidar lite. How-



CHAPTER 6. IMPLEMENTATION 76

ever, it does not provide the obstacle range provided by the Garmin Lidar.
The obstacle range reduces to 3-5m indoor and 8-10m outdoor.

Unified architecture helped in faster development The unified archi-
tecture helped in the faster development of avoidance system for the realsense
camera as it just required small enhancement in the architecture. R200 sen-
sor modules were added to the obstacle avoidance library while reusing most
of the sensor fusion algorithms and all of the communication module.

Comparison to the open source avoidance library [14] Opensource
implementation of collision avoidance library is available in [14] which is easy
to build and deploy. However, this opensource library has the limitation of
supporting Realsense camera only, has fixed sets of algorithms and is specific
to Intel aero board. However, our implementation is flexible to use in different
architecture.

6.3 Camera as an obstacle avoidance sensor

The architecture of autonomous cars has proactive and reactive avoidance
system which was discussed in section 3.3. The proactive system incorpo-
rates avoidance during the path planning phase whereas reactive system acts
as the last line of defense in preventing a crash. The implementation of
basic algorithms with Garmin lidar and polar histogram with Realsense are
reactive obstacle avoidance system. For boosting the system with proactive
capabilities, obstacle avoidance library needs a better understanding of its
surroundings such that avoidance of obstacles is done during path planning.
However, clear attributes of obstacles such as size, distance from the drone
and relative position are needed. The problem of better understanding ob-
stacles can be mitigated to some degree by using camera empowered with AI
in an existing system. The AI algorithm can be a simple search problem as
discussed in section 2.3.1 to CNN discussed in 2.3.4 section to reinforcement
learning problem as discussed in 2.3.7 and 2.3.8 sections.
Image segmentation is used in this thesis for better understanding nature of
an obstacle. The segmented image gives the location of various objects in the
image. This information despite not having information about depth values
of obstacles can be useful for augmenting with range sensors using sensor
fusion. The prior work has been done for obstacle avoidance using image
segmentation in [11]. For verifying the concept and testing the framework,
image segmentation is done with the open source aerial drone datasets from
Nvidia [51]. The segmentation module developed can find the regions of



CHAPTER 6. IMPLEMENTATION 77

ground terrain and sky. This differentiation is used for obstacle avoidance by
redirecting the drone towards the sky. The flow chart for image segmentation
pipeline is shown in figure 6.19. The obstacle avoidance library used is same
as that of Garmin lidar and Realsense. The output from AI component is
provided to sensor fusion module. The basic architecture of the segmentation
module for obstacle avoidance is shown in figure 6.19. The figure shows that
segmentation module implements sensor interfaces and updates its result to
sensor fusion module.

Figure 6.18: Obstacle Avoidance Architecture with AI

6.3.1 Fully Convolutional Neural Network for image
segmentation (FCNN)

Convolutional Neural Network is discussed thoroughly in section 2.3.4 and
FCNN is an extension to the network discussed there. The final layer of
CNN is a fully connected layer which does the task of classifying using SVM
or softmax. The input to the fully connected layer are features extracted
from convolution layers. However, fully connected layers can be replaced
with equivalent convolutional layer by keeping the size of the filter in CNN
same as the size of the input to the fully connected layer. As it can be



CHAPTER 6. IMPLEMENTATION 78

Figure 6.19: Flow Chart of image segmentation

seen from the figure 6.20, 4096 features are extracted from the image, these
features can be fed into the fully connected layers for classification or else
replaced with a convolutional layer with 4096 filters of dimension 1x1. The
segmentation happens pixelwise by generating one probability distribution
per pixel in the image. As the input image moves down the convolutional
network, input pixels are compressed into coarse and higher-level feature
representations. The process of extracting these features is done through
deconvolutional layers[46].

6.3.2 Training of Aerial Drone Dataset

The datasets are open source and are available for downloading from [16].
The dataset is used to train fully convolutional neural network. The network
used for training is a variant of Alexnet. The number of epochs selected
was 30 with snapshots saved for each epoch. Learning rate is decreased with
increasing epochs to fine tune the network as shown in figure 6.21. Training
and validation errors were also observed and are plotted in figure 6.22. All
these figures are generated with digits framework[17].



CHAPTER 6. IMPLEMENTATION 79

Figure 6.20: Fully convolutional neural network for image segmentation [46]

Figure 6.21: Learning rate in different epochs generated from DIGITS



CHAPTER 6. IMPLEMENTATION 80

Figure 6.22: Training and validation error in different epochs generated from
DIGITS



CHAPTER 6. IMPLEMENTATION 81

6.3.3 Deploying to Jetson

Once the model was trained with a dataset, the snapshot was downloaded
which is .caffemodel, along with deploy prototxt, labels, and colors for them.
The deployment can be done using tensorrt model for deploying in Nvidia
GPUs. This module is used for testing with collected few test images. One
of those test cases is shown in figure 6.23. Figure 6.23 is the input image and
output after segmentation is figure 6.24. It can be seen that the sky is seg-
mented from the ground. However, implementing it for a real-life scenario
with near real-time computation needs much fine-tuning. Image segmen-
tation with Nvidia Jetson is a proof of concept for using AI for obstacle
avoidance on the drones.

Figure 6.23: Test input data from [16]

6.3.4 Observations and Results

Incorporating system with image segmentation proved to be tricky
Despite providing pixel level segmentation of the images, it proved difficult
to analyze and use the information directly to the obstacle avoidance unit.

Comparison with Garmin Lidar and Realsense r200 module Garmin
Lidar has a point of 1 cm resolution to detect an obstacle. Similarly, polar



CHAPTER 6. IMPLEMENTATION 82

Figure 6.24: Output from the model for test input data

histogram with r200 module can provide the depth information of obstacles
in front of the drone in a single dimension. However, with segmentation, we
can identify the obstacles up to the pixel level along two dimensions. The
nature of the obstacles can be easily found out with this information and the
intrinsic parameters of the camera.

Using already available frameworks such as DIGITS helped Most
of the cleaning and managing the datasets are taken care by the framework
and easy interface served in the faster development of the module.

Possibility for extension The experiment is a proof of concept in using
AI for obstacle avoidance, and it can be easily extended to use with custom
models and datasets. Instead of using image segmentation, any other AI
techniques can be used. For much robust implementation and outcome from
using AI module, training data can be collected and trained as per the need.

Limited to only testing offline test images Testing was limited to
offline with still images due to time constraints. Obstacle avoidance library
does include functionality for obtaining live video stream from the camera
and the functionalities currently tested can be extended to an end to end
control of the drone.



CHAPTER 6. IMPLEMENTATION 83

6.4 Navigation using AI

Navigation ensures drone can travel from one waypoint to another. The nav-
igation task requires drone to first localize itself to known map and estimate
its position and velocity. Then it must apply thrust to fly towards its desti-
nation. The obstacle avoidance library developed above can be extended for
navigation as well. Additional sensors which can assist in navigation can be
added to sensor modules. An example of such sensors is visual odometry or
optical flow sensor which was discussed in chapter 2.1.3. Sensor fusion algo-
rithm can extend or override the algorithm provided by obstacle avoidance
library for supporting navigation. The extended algorithm needs to plan the
navigation path in addition to keeping track of the obstacles. Mavlink com-
munication module must implement additional mavlink messages for sending
a command to flight controller and navigate based on the relative position or
relative attitude. Some of such commands which are used for navigation are
SET POSITION TARGET LOCAL NED and SET ATTITUDE TARGET.
The use of optical flow can also help in mitigating problem of flying in an
area with bad GPS signals such as forests, cities with tall buildings and tun-
nels. Artificial intelligence can also provide assistance for auto navigation of
the drones in such places.

6.4.1 Experiment

The usage of AI for obstacle avoidance is already discussed in chapter 6.3.
This section explains experimenting with a similar approach for auto navi-
gation of drones. The dataset is used from [30]. We have already discussed
similar approach in self-driving cars in section 3.6. The similar approach for
the drone helps in verifying the possibility of auto navigation with an end to
end neural network. The architecture of the network is resnet with 87 layers.
The output of the architecture is six softmax unit. Three out of six outputs
are for generating left, middle and right facing of the camera, whereas other
three outputs are for generating left, middle and right offsets of the drone
from the trail. In such approach, vision is used as the main sensor for lo-
calizing. Optical flow is used for estimating the position and velocity of the
drone enabling drone to fly in the absence of GPS as well. Experimentation
is done using redtail project from Nvidia [57]. The pre-trained model used is
also from the same project [57] for experimenting with auto navigation. Due
to the limitation of time, it was not possible to implement the architecture
in the real drone, but the experimentation and behavior of the drone are
observed in the Gazebo simulator. The behavior was verified for the drone
by continuously passing an image and checking out the behavior of the drone



CHAPTER 6. IMPLEMENTATION 84

in the gazebo.

Figure 6.25: Image facing Left [30]

Image facing left The input to the deep neural network for trail following
was given with figure 6.25. That produced output from a deep neural network
as [0.9458076357841492, 0.05343988910317421, 0.0007525121327489614,
0.7766426205635071, 0.08141788095235825, 0.1419394463300705]. First three
parameters from the output are angular offset denoting angular deviation
from the center whereas last three parameters are position offset denoting
position deviation from the center of the trail. It represents left facing, mid-
dle facing, right facing, left position offset, the middle position offset and
right position offsets. The output from the image shows that 94.58% prob-
ability that it is facing left, 5.3% facing middle and negligible chance that
it is facing right. Similarly, it is in 77.55% left offset and 8.1% middle and
14.19% right offsets. When this input was fed into the controller, it gave a
turn angle of -15.80. The corresponding response in the gazebo is shown in
6.26.

Image facing Right The output of the network for input figure 6.27 is [
0.003537290496751666, 0.9662114381790161, 0.030251335352659225,
0.30399036407470703, 0.02726331539452076, 0.668746292591095]. The DNN
network thinks it is facing middle and has offset towards the right. As a



CHAPTER 6. IMPLEMENTATION 85

Figure 6.26: Output of gazebo for image facing left

Figure 6.27: Image facing right [30]



CHAPTER 6. IMPLEMENTATION 86

Figure 6.28: Image facing right response in Gazebo



CHAPTER 6. IMPLEMENTATION 87

result, turn angle of 3.91-degree is issued for the controller. The images
in 6.28 which is a simulation in gazebo shows drone trying to turn left to
compensate the right offset but the angle of rotation is low.

Figure 6.29: Image facing middle [30]

Image facing middle The output of DNN when the input is figure 6.29
is [0.008007721975445747, 0.9594460129737854, 0.032546259462833405,
0.4634335935115814, 0.011919651180505753, 0.5246467590332031] The prob-
ability of the drone facing forwards is 95.9% and it has equal left and right
offset so it continues to move in the same path. Only 0.86-degree rotation
angle is calculated for the drone to rotate. The corresponding response in
gazebo is shown in 6.30.

6.4.2 Observations and Results

Model is used and tested as a proof of concept based on [57] The
module was used to test the feasibility of end to end training using deep
neural network based on [57]. Due to the limitation of time, it was not able
to be tested on real hardware but was tested only in the simulated gazebo
environment.



CHAPTER 6. IMPLEMENTATION 88

Figure 6.30: Image facing middle response in Gazebo



CHAPTER 6. IMPLEMENTATION 89

Criteria Garmin lidar lite Realsense (R200)
Measurement distance 25-30m 3-5m indoor, 8-10 m out-

door
Weight 22 gram 65 gram
Performance outdoor Same as indoor Very bad
Noise level Low Very noisy
Light condition No affect Gets affected

Table 6.2: Comparison between Garmin lidar and R200

Navigation of the drone is possible with an end to end training of
deep neural network Observing the reaction of the drone solely on the
gazebo, it was seen that the drone was reacting to the input images and was
trying to follow the forest trail.

6.5 Summary

Garmin Lidar and Realsense camera were integrated into the obstacle avoid-
ance library. The comparison between two is presented in 6.2. The test was
done in the simulator as well as the real drone. The functionalities of the
design discussed in chapter 5 was verified. The same architecture was used
for developing different obstacle sensors as well as image segmentation and
navigation. Most of the components in the architecture were reused and can
be easily upgraded with the requirements of small modifications. Further-
more, the experimentation with image segmentation and navigation using AI
proved that artificial intelligence can boost autonomy in the drone as it is
doing in autonomous cars. Next chapter will now discuss the major lesson
learned and outcome of this thesis.



Chapter 7

Discussion

The thesis has explored different aspects of drone and autonomy. Mainly
thesis has revolved around the problem of navigation and obstacle avoidance
in the drone. The possibility for the solutions of the problem using AI was
also explored. This chapter presents the outcome of the thesis, lesson learned,
achievements and mistakes made.

7.1 Software architecture

Simple and extendable architecture The architecture developed was
simple and extendable. The development of extendable architecture proved
to be useful. This allowed fast experimentation with different sensors and
algorithms. There is no need to implement an entire system for each trial
and development. This reusability allows reusing the tested framework which
prevents unwanted bugs. If the framework is well tested with one sensor then
it will be robust to use again for other sensors as well. The simplicity of the
architecture allowed the possibility to easily port it to any system.

Parameters configurable There are several parameters required by the
algorithms. Changing the parameters in the code itself proved to be expen-
sive as it required building the binaries and porting the code to the drone. It
required larger development cycle especially for fine tuning the parameters.
However, the architecture supported configurable parameter for testing. The
parameters can be easily modified in the configuration file without modifying
the code. This helped in reducing the development time.

Easy to simulate The architecture was so designed that it was easy to
interface with a simulator. The simulation proved to be useful in finding

90



CHAPTER 7. DISCUSSION 91

several typos and bugs in the software system. This was especially helpful
as testing with simulator only took few seconds compared to hours required
to prepare and test with real hardware.

Simulation is helpful but not a replacement for real test Simulation
proved to be useful but simulated environment was far from the real environ-
ment. Testing in the real environment with real hardware was required to
measure the performance of the sensor or algorithm in the real-life scenario.

Supports ardupilot flight controller for advanced obstacle avoid-
ance Ardupilot has limited support for obstacle avoidance which is miti-
gated by the development of this library. The library supports for avoidance
in a different mode of operations, supports various sensors and is capable of
using different algorithms.

7.2 Obstacle Avoidance

Weight Limitation Unlike autonomous cars or robots which does not
have much implication due to additional weights, it is difficult for the drones
to carry heavy and big sensors. Thus, a drone is primarily limited to sleek
and low weight sensors for obstacle avoidance.

Range and field of view When selecting a sensor for obstacle avoidance,
the important metrics to consider are range and field of view. The range is of
vital importance and the range required by the sensor is directly proportional
to the speed with which drone is traveling. For avoiding obstacles for the
drones traveling at high speed, it is required to sense obstacles from far away
compared to the one traveling at slow speed. Similarly, the field of view is
needed if we want to plan an escape route. If it is enough to just stop the
drone in front of the obstacle or detect the obstacle in the path of the drone,
then a narrow field of view is enough. However, for planning an escape route,
the field of view should be large.

Reaction should be in realtime The reaction of obstacle avoidance sys-
tem should be real-time to ensure prevention of the crash. However, ensuring
real-time performance was not an easy task. First of all, the operating system
we were running our software on was Ubuntu which is not a real-time OS.
Furthermore, it was difficult to ensure reactiveness of each module especially
the telemetry data obtained from the flight controller.



CHAPTER 7. DISCUSSION 92

7.3 Artificial Intelligence

Supports proactive avoidance system The obstacle avoidance system
developed are usually reactive where an action is taken when an obstacle is
detected. This ensures the current path planning is canceled and the decision
is made for rerouting. However, with the support from AI, dynamic path
planning can be done by continuously taking input regarding the obstacles
in the surroundings and can be maneuvered smoothly.

End to end training for navigation Classic computer vision problem
use feature definition, feature extraction, and control training. Instead of
that, the end to end model focuses on providing camera images as an input
and pose estimation as output so that all the processes are included in the
deep neural network.

Collection of training data is not easy Collecting entire training set
for machine learning is not an easy task. Especially with deep learning and
increased depth of neural network where it is easy for the model to overfit.
This is preventable with a large volume of data. However, collecting the
data, processing it and augmenting data itself required a huge amount of
time. Thus, we decided to use open datasets for developing proof of concept
experiments.

Development cycle is slow Depending on the size of the training data, it
took few hours to a couple of days for training the model. This required few
days to test a model and if changes in the model are required it would take
another couple of days. Thus, a shallower model was tested for functionalities
before trying deeper network.

Performance should be measured in deployment environment The
development environment is usually equipped with much powerful hardware
compared to the deployment environment. In our case, training was done
in GTX 1080 graphics card and deployment hardware was jetson which is
less powerful. This caused a reduction in throughput performance. For
segmentation with real images, it dropped from 15-20 fps for the development
environment to 2-3 fps for deployment hardware.



CHAPTER 7. DISCUSSION 93

7.4 Thesis planning and implementation

Time Management and staying focused Due to the vastness of the
topic, it was overwhelming time and again which resulted in deviating away
from the core topic of research. Thus, during the start of the thesis, the search
was too broad and diverged touching different components and technologies.
After understanding that straying into too many topics would not result
in sound output, the search was concentrated in particular issues such as
sensors and their mode of operations, obstacle avoidance algorithms and
fundamentals of artificial intelligence.

Scope of the thesis The scope of the thesis proved to be too large and un-
manageable at different period. During the start of the project, the scope and
knowledge level required for implementing was not considered thoroughly.
It required a huge amount of time for understanding the fundamentals of
quadrotor and ardupilot system alone. Implementing and testing in real
drone was not easy either. There were several components required and
procuring them was not easy. The decision to use only simulation for image
segmentation and end to end navigation and to use open datasets were made
to keep the scope manageable for the thesis.

Decision to research on autonomous cars proved fruitful Autonomous
cars had already solved many of the problems which this thesis was trying
to solve for drones. It warranted a thorough study of autonomous vehicles
undertaken for getting inspiration from previously available technology. Un-
derstanding of autonomous cars was fruitful later while designing software
architecture for navigation and obstacle avoidance for the drone.

7.5 Future Research

Both Artificial Intelligence and drone technology are getting popular in the
recent days and also the research to bring the two field together. Many prob-
lems inherent in the drones today can be solved with the use of artificial
intelligence. This thesis can serve as a guide for anyone who wants to start
with artificial intelligence on the drone, but it also has many possibilities to
improve. One of the most important ones is using reinforcement learning for
training the drone to fly. There is much ongoing research on imitation learn-
ing, and this can be a viable extension to the current thesis. Furthermore, we
are only talking about image segmentation and using monocular vision for
obstacle avoidance and navigation, but drones have many sensors build with



CHAPTER 7. DISCUSSION 94

them, and input from these sensors can also be used for predicting several
scenarios like accidents or crashing and prevent such emergency situations
intelligently. Also, for navigation and obstacle avoidance other sensors such
as sonar, radar or lidar can also be used to train for better results and perfor-
mance. Use case specific research such as agriculture or industry surveillance
can be developed by analyzing the video from the drone.



Chapter 8

Conclusions

A robust obstacle avoidance system was integrated to ardupilot and tested.
The shortcomings of available obstacle avoidance system were mitigated with
the new design. With the availability of AI and deep learning model, obstacle
avoidance system can have a better understanding of nature of obstacles.
This information can help in better analyzing the obstacles and calculating
the evasive route. End to end deep neural network model can also be used
for navigation purposes. Such model can generate a pose directly based on
input images.

95



Bibliography

[1] Mavlink micro air vehicle communication protocol. http://

qgroundcontrol.org/mavlink/start. Accessed 11.29.2017.

[2] Px4 autopiot. https://pixhawk.org/. Accessed 11.8.2017.

[3] Raspberry pi. https://www.adafruit.com/product/3055. Accessed
16.6.2017.

[4] Up bridge the gap. http://www.up-board.org/up/. Accessed 2.12.2018.

[5] A. Bork. Inertial measurement units, 2017. https://tams.informatik.
uni-hamburg.de/lehre/2014ws/seminar/ra/presentations/2014-12-

01_andreas_bork-inertial_measurement_units.pdf. Accessed 6.9.2017.

[6] Araujo dos Santos, L. Artificial intelligence. https:

//leonardoaraujosantos.gitbooks.io/artificial-inteligence/

content/reinforcement_learning.html. Accessed 10.9.2017.

[7] B. Chacos. Breaking moore’s law: How chipmakers are pushing
pcs to blistering new levels, 2013. https://www.pcworld.com/article/

2033671/breaking-moores-law-how-chipmakers-are-pushing-pcs-to-

blistering-new-levels.html. Accessed 20.12.2017.

[8] Behere, S., and Torngren, M. A functional architecture for au-
tonomous driving. In Automotive Software Architecture (WASA), 2015
First International Workshop on (2015), IEEE, pp. 3–10.

[9] Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B.,
Flepp, B., Goyal, P., Jackel, L. D., Monfort, M., Muller,
U., Zhang, J., et al. End to end learning for self-driving cars. arXiv
preprint arXiv:1604.07316 (2016).

[10] Borenstein, J., and Koren, Y. The vector field histogram-fast
obstacle avoidance for mobile robots. IEEE transactions on robotics
and automation 7, 3 (1991), 278–288.

96

http://qgroundcontrol.org/mavlink/start
http://qgroundcontrol.org/mavlink/start
https://pixhawk.org/
https://www.adafruit.com/product/3055
http://www.up-board.org/up/
https://tams.informatik.uni-hamburg.de/lehre/2014ws/seminar/ra/presentations/2014-12-01_andreas_bork-inertial_measurement_units.pdf
https://tams.informatik.uni-hamburg.de/lehre/2014ws/seminar/ra/presentations/2014-12-01_andreas_bork-inertial_measurement_units.pdf
https://tams.informatik.uni-hamburg.de/lehre/2014ws/seminar/ra/presentations/2014-12-01_andreas_bork-inertial_measurement_units.pdf
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/reinforcement_learning.html
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/reinforcement_learning.html
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/reinforcement_learning.html
https://www.pcworld.com/article/2033671/breaking-moores-law-how-chipmakers-are-pushing-pcs-to-blistering-new-levels.html
https://www.pcworld.com/article/2033671/breaking-moores-law-how-chipmakers-are-pushing-pcs-to-blistering-new-levels.html
https://www.pcworld.com/article/2033671/breaking-moores-law-how-chipmakers-are-pushing-pcs-to-blistering-new-levels.html


BIBLIOGRAPHY 97

[11] Byrne, J., and Taylor, C. J. Expansion segmentation for visual
collision detection and estimation. In Robotics and Automation, 2009.
ICRA’09. IEEE International Conference on (2009), IEEE, pp. 875–
882.

[12] Caffe. Model zoo cafe. =https://github.com/BVLC/caffe/wiki/Model-
Zoo. Accessed 24.11.2017.

[13] Chakravarty, P., Kelchtermans, K., Roussel, T., Wellens,
S., Tuytelaars, T., and Van Eycken, L. Cnn-based single image
obstacle avoidance on a quadrotor. In Robotics and Automation (ICRA),
2017 IEEE International Conference on (2017), IEEE, pp. 6369–6374.

[14] Corporation, I. Collision avoidance library, 2016. https://github.

com/intel/collision-avoidance-library. Accessed 9.6.2017.

[15] Corporation, I. Intel realsense cross platform api, 2016.
https://github.com/IntelRealSense/librealsense/tree/v1.12.1. Ac-
cessed 9.6.2017.

[16] Corporation, N. Aerial drone dataset, 2017. Down-
load available: https://nvidia.box.com/shared/static/

ft9cc5yjvrbhkh07wcivu5ji9zola6i1.gz. Accessed 12.9.2017.

[17] Corporation, N. Deep learning gpu training system (digits), 2017.
https://github.com/NVIDIA/DIGITS. Accessed 14.12.2017.

[18] D. Hart. Introduction to global positioning systems gps, Feb
2007. https://aqua.wisc.edu/CPR/Default.aspx?tabid=80. Accessed
6.9.2017.

[19] DeepLearning.net. Convolutional neural networks (lenet), Dec 2015.
http://deeplearning.net/tutorial/lenet.html. Accessed 10.12.2017.

[20] Documentation. Vector field histogram, 2017. https://se.

mathworks.com/help/robotics/ug/vector-field-histograms.html. Ac-
cessed 5.3.208.

[21] Dodge, S. F., and Karam, L. J. A study and comparison of hu-
man and deep learning recognition performance under visual distortions.
CoRR abs/1705.02498 (2017).

[22] Driss, S. B., Soua, M., Kachouri, R., and Akil, M. A com-
parison study between mlp and convolutional neural network models

=
https://github.com/intel/collision-avoidance-library
https://github.com/intel/collision-avoidance-library
https://github.com/IntelRealSense/librealsense/tree/v1.12.1
https://nvidia.box.com/shared/static/ft9cc5yjvrbhkh07wcivu5ji9zola6i1.gz
https://nvidia.box.com/shared/static/ft9cc5yjvrbhkh07wcivu5ji9zola6i1.gz
https://github.com/NVIDIA/DIGITS
https://aqua.wisc.edu/CPR/Default.aspx?tabid=80
http://deeplearning.net/tutorial/lenet.html
https://se.mathworks.com/help/robotics/ug/vector-field-histograms.html
https://se.mathworks.com/help/robotics/ug/vector-field-histograms.html


BIBLIOGRAPHY 98

for character recognition. In SPIE Conference on Real-Time Image and
Video Processing (2017), vol. 10223.

[23] Editors, S. Tech alert: Nhtsa, sae define 5 levels of vehicle au-
tomation, Mar 2017. https://www.sema.org/sema-enews/2017/11/ettn-
tech-alert-nhtsa-sae-define-5-levels-of-vehicle-automation. Ac-
cessed 26.11.2017.

[24] ES310 Introduction to Naval Weapons Engineering. In-
troduction to sonar, 1998. https://fas.org/man/dod-101/navy/docs/

es310/uw_acous/uw_acous.htm. Accessed 10.6.2017.

[25] F. Corrigan. 10 top lidar sensors for uavs and so many great uses, Jun
2017. https://www.dronezon.com/learn-about-drones-quadcopters/

best-lidar-sensors-for-drones-great-uses-for-lidar-sensors/.
Accessed 15.6.2017.

[26] Foundation, O. S. R. Gazebo simulator. http://gazebosim.org/.
Accessed 25.9.2017.

[27] games, B. Python 3 programs versus c++ g++. https:

//benchmarksgame.alioth.debian.org/u64q/compare.php?lang=

python3&lang2=gpp. Accessed 10.1.2018.

[28] Gandhi, D., Pinto, L., and Gupta, A. Learning to fly by crashing.
CoRR abs/1704.05588 (2017).

[29] Garmin. Lidar-lite v3, 2017. https://buy.garmin.com/en-US/US/p/

557294. Accessed 1.4.2018.

[30] Giusti, A., Guzzi, J., Cireşan, D. C., He, F.-L., Rodŕıguez,
J. P., Fontana, F., Faessler, M., Forster, C., Schmidhuber,
J., Di Caro, G., et al. A machine learning approach to visual per-
ception of forest trails for mobile robots. IEEE Robotics and Automation
Letters 1, 2 (2016), 661–667.

[31] Grave, R. The vehicle architecture of automated driving level 2/3,
Jun 2017. http://www.embedded-computing.com/embedded-computing-

design/the-vehicle-architecture-of-automated-driving-level-2-3.
Accessed 30.6.2017.

[32] guiccbr, anselmolsm, and rchiossi. Gazebo sitl plugin.
Hosted online at https://github.com/intel/gazebo-realsense. Ac-
cessed 20.9.2017.

https://www.sema.org/sema-enews/2017/11/ettn-tech-alert-nhtsa-sae-define-5-levels-of-vehicle-automation
https://www.sema.org/sema-enews/2017/11/ettn-tech-alert-nhtsa-sae-define-5-levels-of-vehicle-automation
https://fas.org/man/dod-101/navy/docs/es310/uw_acous/uw_acous.htm
https://fas.org/man/dod-101/navy/docs/es310/uw_acous/uw_acous.htm
https://www.dronezon.com/learn-about-drones-quadcopters/best-lidar-sensors-for-drones-great-uses-for-lidar-sensors/
https://www.dronezon.com/learn-about-drones-quadcopters/best-lidar-sensors-for-drones-great-uses-for-lidar-sensors/
http://gazebosim.org/
https://benchmarksgame.alioth.debian.org/u64q/compare.php?lang=python3&lang2=gpp
https://benchmarksgame.alioth.debian.org/u64q/compare.php?lang=python3&lang2=gpp
https://benchmarksgame.alioth.debian.org/u64q/compare.php?lang=python3&lang2=gpp
https://buy.garmin.com/en-US/US/p/557294
https://buy.garmin.com/en-US/US/p/557294
http://www.embedded-computing.com/embedded-computing-design/the-vehicle-architecture-of-automated-driving-level-2-3
http://www.embedded-computing.com/embedded-computing-design/the-vehicle-architecture-of-automated-driving-level-2-3
https://github.com/intel/gazebo-realsense


BIBLIOGRAPHY 99

[33] guiccbr, anselmolsm, rchiossi, mbelluzzo, and dakerfp.
Gazebo realsense plugin, 2017. Hosted online at https://github.com/

intel/gazebo-realsense. Accessed 20.9.2017.

[34] Honegger, D., Meier, L., Tanskanen, P., and Pollefeys, M.
An open source and open hardware embedded metric optical flow cmos
camera for indoor and outdoor applications. In Robotics and Automa-
tion (ICRA), 2013 IEEE International Conference on (2013), IEEE,
pp. 1736–1741.

[35] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long,
J., Girshick, R., Guadarrama, S., and Darrell, T. Caffe:
Convolutional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093 (2014).

[36] Kahn, G., Villaflor, A., Pong, V., Abbeel, P., and Levine, S.
Uncertainty-aware reinforcement learning for collision avoidance. CoRR
abs/1702.01182 (2017).

[37] Karhunen, J. Machine learning and neural networks, 2017.
https://mycourses.aalto.fi/pluginfile.php/381754/mod_resource/

content/1/lect2-2016.pdf. Accessed 16.12.2017.

[38] Karpathy, A. Convolutional neural network for visual recogni-
tion, 2017. http://cs231n.github.io/neural-networks-1/. Accessed
20.12.2017.

[39] Kelchtermans, K., and Tuytelaars, T. How hard is it to cross
the room?–training (recurrent) neural networks to steer a uav. arXiv
preprint arXiv:1702.07600 (2017).

[40] Keselman, L., Woodfill, J. I., Grunnet-Jepsen, A., and
Bhowmik, A. Intel realsense stereoscopic depth cameras. CoRR
abs/1705.05548 (2017).

[41] Kleeman, L. Understanding and applying kalman filtering.
http://biorobotics.ri.cmu.edu/papers/sbp_papers/integrated3/

kleeman_kalman_basics.pdf. Accessed 5.3.2018.

[42] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems (2012), pp. 1097–1105.

https://github.com/intel/gazebo-realsense
https://github.com/intel/gazebo-realsense
https://mycourses.aalto.fi/pluginfile.php/381754/mod_resource/content/1/lect2-2016.pdf
https://mycourses.aalto.fi/pluginfile.php/381754/mod_resource/content/1/lect2-2016.pdf
http://cs231n.github.io/neural-networks-1/
http://biorobotics.ri.cmu.edu/papers/sbp_papers/integrated3/kleeman_kalman_basics.pdf
http://biorobotics.ri.cmu.edu/papers/sbp_papers/integrated3/kleeman_kalman_basics.pdf


BIBLIOGRAPHY 100

[43] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceedings of the IEEE
86, 11 (1998), 2278–2324.

[44] Liang, O. Build a quadcopter from scratch hardware anatomy,
Mar 2017. https://oscarliang.com/build-a-quadcopter-beginners-

tutorial-1/. Accessed 5.3.2018.

[45] Liu, S., Tang, J., Zhang, Z., and Gaudiot, J.-L. Computer
architectures for autonomous driving. Computer 50, 8 (2017), 18–25.

[46] Long, J., Shelhamer, E., and Darrell, T. Fully convolutional
networks for semantic segmentation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (2015), pp. 3431–
3440.

[47] Muoio, D. These 19 companies are racing to put driverless cars on the
road by 2020. http://www.businessinsider.com/companies-making-

driverless-cars-by-2020-2016-8?r=US&IR=T. Accessed 3.3.2018.

[48] Murphy, J. An overview of convolutional neural network archi-
tectures for deep learning. https://pdfs.semanticscholar.org/64db/

333bb1b830f937b47d786921af4a6c2b3233.pdf. Accessed 5.3.2018.

[49] Nielsen, M. A. Neural networks and deep learning, Aug 2017. http://
neuralnetworksanddeeplearning.com/chap2.html. Accessed 20.11.2017.

[50] Nilsson, N. J. Artificial intelligence: A modern approach: Stuart rus-
sell and peter norvig,(prentice hall, englewood cliffs, nj, 1995); xxviii+
932 pages, 1996.

[51] Nvidia Corp. Aerial drone dataset, 2017. Download link: https://

nvidia.box.com/shared/static/ft9cc5yjvrbhkh07wcivu5ji9zola6i1.

gz. Accessed 6.9.2017.

[52] Nvidia Developer. Nvidia jetson tx2 module, 2017. https://

developer.nvidia.com/embedded/buy/jetson-tx2. Accessed 19.11.2017.

[53] Product Datasheet. Intel realsense camera r200, Jun 2016. Down-
load link: http://www.mouser.com/pdfdocs/intel_realsense_camera_

r200.pdf. Accessed 5.3.2018.

[54] RoboPeak. Rplidar a2 360 laser scanner, 2017. https://www.elprocus.
com/radar-basics-types-and-applications/. Accessed 16.9.2017.

https://oscarliang.com/build-a-quadcopter-beginners-tutorial-1/
https://oscarliang.com/build-a-quadcopter-beginners-tutorial-1/
http://www.businessinsider.com/companies-making-driverless-cars-by-2020-2016-8?r=US&IR=T
http://www.businessinsider.com/companies-making-driverless-cars-by-2020-2016-8?r=US&IR=T
https://pdfs.semanticscholar.org/64db/333bb1b830f937b47d786921af4a6c2b3233.pdf
https://pdfs.semanticscholar.org/64db/333bb1b830f937b47d786921af4a6c2b3233.pdf
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html
https://nvidia.box.com/shared/static/ft9cc5yjvrbhkh07wcivu5ji9zola6i1.gz
https://nvidia.box.com/shared/static/ft9cc5yjvrbhkh07wcivu5ji9zola6i1.gz
https://nvidia.box.com/shared/static/ft9cc5yjvrbhkh07wcivu5ji9zola6i1.gz
https://developer.nvidia.com/embedded/buy/jetson-tx2
https://developer.nvidia.com/embedded/buy/jetson-tx2
http://www.mouser.com/pdfdocs/intel_realsense_camera_r200.pdf
http://www.mouser.com/pdfdocs/intel_realsense_camera_r200.pdf
https://www.elprocus.com/radar-basics-types-and-applications/
https://www.elprocus.com/radar-basics-types-and-applications/


BIBLIOGRAPHY 101

[55] Ross, S., Melik-Barkhudarov, N., Shankar, K. S., Wendel,
A., Dey, D., Bagnell, J. A., and Hebert, M. Learning monocular
reactive uav control in cluttered natural environments. In Robotics and
Automation (ICRA), 2013 IEEE International Conference on (2013),
IEEE, pp. 1765–1772.

[56] Salleb Aouissi, A. Artificial intelligence, 2017. https://www.edx.

org/course/artificial-intelligence-ai-columbiax-csmm-101x-4.
Accessed 10.9.2017.

[57] Smolyanskiy, N., Kamenev, A., Smith, J., and Birchfield, S.
Toward low-flying autonomous MAV trail navigation using deep neural
networks for environmental awareness. CoRR abs/1705.02550 (2017).

[58] Sturm, J., Cremers, D., and Kerl, C. Autonomous naviga-
tion for flying robots, 2015. https://www.edx.org/course/autonomous-

navigation-flying-robots-tumx-autonavx-0. Accessed 12.6.2017.

[59] T. Agrawal. Radar-basics, types applications, 2015.
https://www.elprocus.com/radar-basics-types-and-applications/

Accessed 16.9.2017.

[60] Team, A. D. Ardupilot autopilot suite. http://ardupilot.org/

ardupilot/index.html. Accessed 8.10.2017.

[61] Team, A. D. Apm planner 2 home, 2016. http://ardupilot.org/

planner2/. Accessed 2.14.2018.

[62] Team, A. D. Copter object avoidance, 2016. http://ardupilot.org/

dev/docs/code-overview-object-avoidance.html. Accessed 2.1.2018.

[63] Team, A. D. Sitl simulator (software in the loop), 2016.
http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-

loop.html. Accessed 2.1.2018.

[64] Thrun, S., Burgard, W., and Fox, D. Probabilistic robotics. MIT
press, 2005.

[65] Tong, C. H., and Barfoot, T. D. A comparison of the ekf, spkf, and
the bayes filter for landmark-based localization. In Computer and Robot
Vision (CRV), 2010 Canadian Conference on (2010), IEEE, pp. 199–
206.

https://www.edx.org/course/artificial-intelligence-ai-columbiax-csmm-101x-4
https://www.edx.org/course/artificial-intelligence-ai-columbiax-csmm-101x-4
https://www.edx.org/course/autonomous-navigation-flying-robots-tumx-autonavx-0
https://www.edx.org/course/autonomous-navigation-flying-robots-tumx-autonavx-0
https://www.elprocus.com/radar-basics-types-and-applications/
http://ardupilot.org/ardupilot/index.html
http://ardupilot.org/ardupilot/index.html
http://ardupilot.org/planner2/
http://ardupilot.org/planner2/
http://ardupilot.org/dev/docs/code-overview-object-avoidance.html
http://ardupilot.org/dev/docs/code-overview-object-avoidance.html
http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html


BIBLIOGRAPHY 102

[66] wifiguru10. Apm stack question, apm vs px4, Sep 2016. https://

discuss.ardupilot.org/t/apm-stack-question-apm-vs-px4/11497. Ac-
cessed 5.3.2018.

[67] Zhang, G., and Chanson, H. Application of local optical flow meth-
ods to high-velocity free-surface flows: Validation and application to
stepped chutes. Experimental Thermal and Fluid Science 90 , 186–199.

https://discuss.ardupilot.org/t/apm-stack-question-apm-vs-px4/11497
https://discuss.ardupilot.org/t/apm-stack-question-apm-vs-px4/11497

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Objective and Scope
	1.3 Research Problems
	1.4 Structure of the Thesis

	2 Background
	2.1 Navigation Unit
	2.1.1 Inertial Measurement Units (IMU)
	2.1.2 Global Positioning System (GPS)
	2.1.3 Optical Flow
	2.1.4 Bayes Algorithm and Probabilistic Model

	2.2 Obstacle Avoidance Unit
	2.2.1 Light Detection and Ranging (Lidar)
	2.2.2 Radio Detection and Ranging System (Radar)
	2.2.3 Sound navigation and ranging (Sonar)
	2.2.4 Depth Camera
	2.2.5 Polar Histogram/Vertical Field Histogram

	2.3 Artificial Intelligence
	2.3.1 General Introduction to AI
	2.3.2 GPU Computing Platform
	2.3.3 Neural Network
	2.3.4 Convolutional Neural Network
	2.3.5 Deep Learning with Nvidia DIGITS
	2.3.6 Caffe
	2.3.7 Reinforcement Learning (RL)
	2.3.8 Deep Reinforcement Learning (DRL)
	2.3.9 AI for drone navigation

	2.4 Summary

	3 Case Study: Autonomous Cars
	3.1 Sensing
	3.2 Perception
	3.3 Decision Making
	3.4 Lidar vs Vision-based system
	3.5 Lateral and Longitudinal Driving
	3.6 Fully convolutional neural network (FCNN) based control
	3.7 Summary

	4 Quadrotor and Flying Principle
	4.1 Flying Principle
	4.2 Hardware Components
	4.3 Software Components
	4.4 Mavlink
	4.5 Kalman Filter for Navigation
	4.6 Obstacle Avoidance in ardupilot
	4.7 Summary

	5 Methodology and System Design
	5.1 Current solution
	5.2 High level architecture
	5.2.1 Sensor Module
	5.2.2 Mavlink Communication module
	5.2.3 Sensor Fusion Module

	5.3 Methodology
	5.4 Datasets Used
	5.5 Summary

	6 Implementation
	6.1 Obstacle Avoidance with Garmin Lidar Lite
	6.1.1 Algorithm
	6.1.2 Simulation Environment
	6.1.3 Integration with real drone
	6.1.4 Observations and Results

	6.2 Obstacle Avoidance with RealSense Camera
	6.2.1 Librealsense module
	6.2.2 Polar Histogram Algorithm
	6.2.3 Simulation
	6.2.4 Interfacing with real drone
	6.2.5 Observations and Results

	6.3 Camera as an obstacle avoidance sensor
	6.3.1 Fully Convolutional Neural Network for image segmentation (FCNN)
	6.3.2 Training of Aerial Drone Dataset
	6.3.3 Deploying to Jetson
	6.3.4 Observations and Results

	6.4 Navigation using AI
	6.4.1 Experiment
	6.4.2 Observations and Results

	6.5 Summary

	7 Discussion
	7.1 Software architecture
	7.2 Obstacle Avoidance
	7.3 Artificial Intelligence
	7.4 Thesis planning and implementation
	7.5 Future Research

	8 Conclusions



