
 Eindhoven University of Technology

MASTER

Controller Design for a Quad-Copter
Disturbance Rejection in Dynamic Wind Regimes

Albers, T.A.C.J.M.

Award date:
2018

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/a944e630-bd0a-4667-8550-e4ed1b248464

Master Thesis
Systems & Control

Controller Design for a Quad-Copter:

Disturbance Rejection in Dynamic Wind Regimes

CST 2018.102

Eindhoven University of Technology
Department of Mechanical Engineering

Control Systems Technology

Student: T.A.C.J.M. Albers
Thesis supervisor: Dr. D.J. Guerreiro Tomé Antunes

Committee: Dr. Ir. A.G. de Jager
Dr. A. Saccon
Dr. D.J. Guerreiro Tomé Antunes

Eindhoven, October 26, 2018

ii

iv

Abstract

Quad-copters are becoming increasingly more popular and used in many applications. However, currently
available quad-copters have limited capabilities in dynamic wind regimes, which limit their applicability
to simple tasks, such as crop growth monitoring and package delivery. In this project the design of a
testbed to control a fully autonomous drone under wind conditions is carried out and research is con-
ducted to improve the flight behavior of quad-copters in dynamic wind regimes. The developed testbed
comprises a TBS quad-copter frame with a Pixhawk as flight management unit, four Tiger Air Gear
motor, propeller and ESC sets and a Marvelmind Indoor Positioning System is used to measure the
position of the quad-copter during flight. The software designed during this project is based on the PX4
flight stack. However, a new flight control software is developed in Simulink, which provides easy pro-
gramming and adjusting of the quad-copter flight software. Moreover, drivers are developed in order to
integrate the hardware components. A GUI is developed in order to analyze flight data easily. Further-
more, the non-linear dynamic models of a quad-copter are linearized around an equilibrium point and
controllers are synthesized. System parameters are estimated based on reconstructing the quad-copter
in Solidworks and experiments. Algorithms are developed to calibrate sensors available on the Pixhawk.
A madgwick filter and Kalman filter are utilized to filter measurements and obtain unmeasured state
estimates. As a result, the testbed is capable of performing flights based on Simulink software and the
developed mathematical models.

To enhance the control capabilities in dynamic wind regimes, wind models in the form of Navier-Stokes
equations and Dryden Turbulent wind models are analyzed. However, the complexity of the Navier-
Stokes equations make the Navier-Stokes equations unsuitable for a model-driven approach to cope with
wind regimes. The Dryden Turbulent wind models are based on the low frequency wind components
where noise is added to create a stochastic behavior. The simplicity of the Dryden Turbulent wind model
makes it suitable for simulation purposes. A solution to cope with dynamic wind regimes is found in
the form of disturbance rejection. The novelty of this project is developing controllers based on Internal
Model Principle (IMP) methods and Repetitive Control (RC) methods in order to reject wind influences
on the quad-copter. The IMP method is based on a model, which rejects a disturbance generated by an
exogenous system. The controlled quad-copter is simulated in the hovering state influenced by different
wind regimes disturbing the quad-copters’ flight. The simulator results show improved flight control
during various wind regimes. Noteworthy is the IMP, which even under turbulent wind flows provides
an improved flight performance. Although the IMP methods and RC methods show improved flight
result in simulation, they are not implemented on the testbed. However, experimental results with the
quad-copter hovering are discussed and this project resulted in an easy to program quad-copter, which
allows students to conduct their research in future quad-copter projects. Moreover, the experiments con-
ducted in simulation involving IMP method and RC method control structures can be further extended
to practical experiments involving a fan, or ideally a wind tunnel.

iii

iv

Preface

This thesis is the final deliverable of my career as a student at the TU/e. Over the past five years, during
my pre-master and master I had the privilege to meet and cooperate with extraordinary people from
around the world. During my master career at the TU/e I got involved in various challenging projects,
from internships abroad involving structural dynamics on NASA launch vehicles to developing 3D ball
position estimation for Tech United to developing drone software during my master thesis project. All
projects challenged my perseverance and knowledge and my ability to search for creative solutions. All
projects helped me develop my personal skills and knowledge in an enjoyable way.

First of all, I would like to thank Duarte Antunes and Alex Andrien, who have both been of great
help during my master thesis project. During this master graduation project you provided the freedom
to let me develop the project as it is now. The positive attitude during our weekly meetings helped
throughout the entire project.

Secondly, I would like to thank Annelore Visker, Amin Talaeizadeh and Chiel Kengen, with which I
discussed and talked a lot about the project. Most importantly, with you guys I walked to the canteen
to grab a cup of coffee. Those simple walks through Gemini helped me get inspired and look for different
approaches for all the challenges this project brought me.

Thirdly, I would like to thank all my friends and family. During my master thesis a lot of long days of
hard working behind a laptop were not uncommon. You ensured that during my master thesis project,
I still experienced relaxed times.

Lastly, I would like to say special thanks to my girlfriend Carola, which always supported me in times
when I needed support. Most importantly, you helped me put everything in perspective in times where
I could not find proper solutions to existing problems.

Thank you all for making this thesis possible and helping me through this process.

Tom Albers,

Eindhoven, November 14, 2018

v

vi

Table of Contents

1 Introduction 1
1.1 Historical background . 1
1.2 Motivation and overall aim . 1
1.3 Literature survey . 2

1.3.1 Controller design for quad-copters . 2
1.3.2 Navigation and controller design in wind fields . 3
1.3.3 Computational fluid dynamics . 4
1.3.4 Quad-copter disturbance rejection . 5

1.4 Specific goals, approach and contribution . 7
1.4.1 Specific goals . 7
1.4.2 Approach . 8
1.4.3 Contribution . 8

1.5 Organization of the report . 9
1.5.1 Part I: Hardware, software and control . 9
1.5.2 Part 2: Wind disturbance rejection . 10

I Hardware, Software and Control 11

2 Hardware 12
2.1 Frame . 12
2.2 Processing unit . 13

2.2.1 Magnetometer . 16
2.2.2 Gyroscope . 16
2.2.3 Accelerometer . 16
2.2.4 Battery sensor . 16

2.3 Indoor Positioning System . 17
2.4 Motors and electronic speed controllers . 19
2.5 Wireless communication . 20
2.6 Radio Controller . 22

3 Software 24
3.1 Q-ground control and PX4Pro flight stack . 24
3.2 Simulink . 26

3.2.1 Configuration and timing tools . 29
3.2.2 Boot process alternation . 30
3.2.3 Quad copter software . 31
3.2.4 Ground station software . 32

3.3 Configuring remote control . 33
3.4 Wireless communication . 34
3.5 Indoor Positioning System driver . 35

3.5.1 GPGGA message . 36
3.5.2 GPRMC message . 37
3.5.3 GPVTG message . 37
3.5.4 GPZDA message . 38

3.6 Matlab Graphical User Interface . 38

4 Mathematical model, state estimation and control 40
4.1 Mathematical model . 40

4.1.1 Reference frame . 40
4.1.2 Non-linear quad-copter model . 41
4.1.3 Linearized quad-copter model . 42
4.1.4 Motor mixing matrix . 42
4.1.5 Propulsion model . 43
4.1.6 Sensor Calibration . 46

4.2 State estimation . 50
4.2.1 Quaternions . 50
4.2.2 Madgwick filter . 51
4.2.3 Kalman filter . 59

4.3 Controller design . 61

vii

II Wind disturbance rejection 64

5 Wind field modeling 65

5.1 Computational Fluid Dynamics . 65

5.1.1 Navier-Stokes equations . 65

5.1.2 Numerically solving Navier-Stokes equations . 67

5.1.3 Boundary conditions . 70

5.1.4 Stability analysis . 71

5.2 Dryden Turbulent Model . 72

6 Disturbance rejection 73

6.1 Continuous time case Internal Model Principle . 73

6.1.1 Controller, observer and feedforward design . 74

6.1.2 Exogenous System . 75

6.1.3 Disturbance rejection . 76

6.2 Discrete time Internal Model Principle . 78

6.2.1 Controller, observer and feedforward design . 78

6.2.2 Exogenous System . 79

6.2.3 Disturbance Rejection . 80

6.3 Repetitive Control . 83

7 Experiments and results 86

7.1 Simulation . 86

7.2 Windless conditions . 88

7.3 Shear wind . 89

7.4 Wind gust . 90

7.5 Dryden wind . 91

7.6 Dynamical reference . 92

7.7 Experimental results . 93

8 Conclusion, Remarks and Future work 94

8.1 Conclusion . 94

8.1.1 Hardware, Software and Control . 94

8.1.2 Wind disturbance rejection . 95

8.2 Future work . 96

8.2.1 Hardware, Software and Control . 96

8.2.2 Wind disturbance rejection . 97

Bibliography 98

Appendices 102

A Pixhawk Pinouts 103

B Tiger Air gear 350 User Manual 105

C Boot process Pixhawk 107

D Basic Logged Data Reading 109

E Setup Raspberry Pi 111

E.1 Configuration Raspberry Pi . 111

E.2 Setup Serial 2 Network . 111

E.3 Setup Access Point . 112

F Com0Com 117

G CombyTCP 118

viii

H GPS Driver Installation 119
H.1 Driver Header file . 121
H.2 Driver file . 122
H.3 GPS Module . 132

I Marvelmind Configuration 138
I.1 Modem Configuration . 138
I.2 Hedgehog Configuration . 139
I.3 Beacon Configuration . 142

J Measurement and least squares fit results motors 145

K Ellipsoid fit 149

L Inverse thrust mapping 152

M Solidworks quad-copter model 154

N Wind conditions and Disturbances 156

O Position error in windless conditions 157

P Position error in shear wind conditions 158

Q Position error in gust wind conditions 159

R Position error in Dryden wind conditions 160

S Position error tracking challenging reference 161

ix

List of Figures

2.1 Team Black Sheep Discovery quadcopter frame with DJI F450 Flamewheel arms. 12
2.2 Pixhawk board layout. 13
2.3 3DR Power Module . 17
2.4 Marvelmind Indoor Positioning System. 17
2.5 Square pyramid structure representing stationary beacons and hedgehog installation. . . . 18
2.6 Pixhawk hedgehog connection . 19
2.7 Tiger Motor Air Gear 350 multi rotor driving equipment set. 19
2.8 Principles of a BLDC motor . 20
2.9 3D Robotics Telemetry transmitter/receiver. 21
2.10 Raspberry Pi 3 Model B V1.2 . 21
2.11 Raspberry Pi GPIO. 21
2.12 FrSky Receiver module. 22
2.13 The FrSky Taranis X9D Plus Radio Control Unit. 23

3.1 PX4Pro firmware architecture. 26
3.2 Boot process Pixhawk flight stack. 30
3.3 Simulink Software block diagram. 31
3.4 Simulink Ground Station Software block diagram. 32
3.5 Communication block diagram from Pixhawk to pc. 35
3.6 Matlab GUI for configuration, evaluation and visualization of the flight data. 38

4.1 Schematic representation of the quad-copter. 40
4.2 Power, current and thrust measurements for motor one with four different propellers. . . . 44
4.3 Least squares fit of second and third order polynomials, including the error. 45
4.4 Sensor calibration, from ellipsoid to orb. 46
4.5 Fitting ellipsoids on measurement data to obtain offset, scaling and rotation parameters. . 47
4.6 Magnetometer compensation for motors magnetic fields. 48
4.7 Gyroscope calibration results. 49
4.8 Measurement data and angle estimation quad-copter utilizing gyroscope measurements. . 52
4.9 Measurement data and angle estimation quad-copter utilizing gyroscope and accelerometer

measurements. 53
4.10 Inclination of Earths magnetic field. 53
4.11 Measurement data and angle estimation quad-copter utilizing gyroscope, accelerometer

and magnetometer measurements. 54
4.12 Obtained dip angle θdip and magnitude ‖m‖2 from magnetometer measurements. 55
4.13 Stationary state accelerometer and gyroscope measurements. 57
4.14 Stationary state gyroscope for x-axis only. 57
4.15 Stationary state accelerometer for x-axis only. 58
4.16 Madgwick Adaptive Filter algorithm flow. 58
4.17 Sensor measurements in steady-state conditions and corresponding PDF. 61

5.1 Finite Element Discretization. 68
5.2 Finite Volume Discretization. 69
5.3 Simple body in a flow . 70

6.1 Block diagram of a Internal Model Principle controller. 73
6.2 Block diagram of a Repetitive Control Filter. 83
6.3 Examples of Repetitive Control filters. 84
6.4 Examples of Repetitive Control filter N = 4. 84

7.1 Wind conditions and resulting disturbance force applied to the quad-copter. 87
7.2 Euclidean error in windless conditions. 88
7.3 Euclidean error in shear wind conditions. 89
7.4 Euclidean error in wind gust conditions. 90
7.5 Euclidean error in Dryden wind conditions. 91
7.6 Euclidean error in dynamical conditions. 92
7.7 Results of experiments on testbed with a feedback controller. 93
7.8 Marvelmind sampling delay. 93

B.1 User manual Tiger Air Gear 350 page 1-2. 105
B.2 User manual Tiger Air Gear 350 page 3-4. 105

x

B.3 User manual Tiger Air Gear 350 page 5-6. 106

F.1 Overview of the com0com software. 117

G.1 Overview of the combyTCP software. 118

J.1 Measurement and least squares fit results motor 1. 145
J.2 Measurement and least squares fit results motor 2. 146
J.3 Measurement and least squares fit results motor 3. 147
J.4 Measurement and least squares fit results motor 4. 148

M.1 TBS Quad-copter reconstructed in Solidworks. 154

N.1 Wind conditions in simulation. 156
N.2 Disturbance moments and forces resulting from wind in simulation. 156

O.1 System dynamics for various controllers in hovering mode without wind. 157

P.1 System dynamics for various controllers in hovering mode in shear wind conditions. 158

Q.1 System dynamics for various controllers in hovering mode in wind gust conditions. 159

R.1 System dynamics for various controllers in hovering mode in Dryden wind conditions. . . 160

S.1 System dynamics for various controllers tracking challenging reference without wind. . . . 161

xi

List of Tables

2.1 Distances between motors on the quad-copter in millimeters. 12
2.2 Connecting the hedgehog to the Pixhawk. 19
2.3 Connecting the Raspberry Pi to the Pixhawk. 22
2.4 Connecting the FrSky X8R radio receiver to the Pixhawk. 22

3.1 RC Joystick scaling values. 31
3.2 Bitwise Exclusive Or operation. 32
3.3 Remote Control mixer page. 33
3.4 Remote Control switches functionality. 33
3.5 GPGGA message format. 36
3.6 GPRMC message format. 37
3.7 GPVTG message Format. 37
3.8 GPZDA message format. 38

4.1 Motor distances to center of mass. 43
4.2 Motor distances to center of mass. 43
4.3 Least square fit of PWM to thrust utilizing a second order polynomial. 45
4.4 Least square fit of PWM to thrust utilizing a third order polynomial. 45
4.5 Calibration results for magnetometer and accelerometer. 47
4.6 Current calibration results for magnetometer. 48
4.7 Calibration results for gyroscope. 49
4.8 Mean values µ and standard deviations σ of the accelerometer and GPS measurements. . 61
4.9 System parameters of the quad-copter. 61
4.10 Control gains controller design quad-copter. 63

6.1 Various signals with their characteristic polynomial, exogenous system matrix representa-
tion and eigenvalues. 76

6.2 Various signals with their characteristic polynomial, exogenous system matrix representa-
tion and eigenvalues represented in discreet time. 80

7.1 List of parameters used in simulation. 86
7.2 Windless RMSE results. 88
7.3 Shear wind RMSE results. 89
7.4 Wind gust RMSE results. 90
7.5 Dryden wind RMSE results. 91
7.6 Dynamical flight RMSE results. 92

A.1 Pixhawk pin numbers and signal. 104

I.1 Modem configuration Table 1. 138
I.2 Modem configuration Table 2. 139
I.3 Hedgehog configuration Table 1. 139
I.4 Hedgehog configuration Table 2. 140
I.5 Hedgehog configuration Table 3. 141
I.6 Beacons configuration Table 1. 142
I.7 Beacons configuration Table 2. 143
I.8 Beacons configuration Table 3. 144

xii

Listings

3.1 GPGGA example message format. 36
3.2 GPRMC example message format. 37
3.3 GPVTG example message format. 37
3.4 GPZDA example message format. 38
C.1 Pixhawk boot alternation file. 107
D.1 Example Matlab code for reading and plotting the .bin file. 109
D.2 Matlab function to read complete .bin file data. 109
D.3 Matlab function get element type. 109
E.1 Ser2Net installation script. 111
E.2 Raspberry Pi Access Point configuration script. 112
H.1 C make file to compile the GPS driver. 119
H.2 GPS driver type definition declared in the header file. 120
H.3 Marvelmind driver header file. 121
H.4 Marvelmind driver file. 122
H.5 Including Marvelmind header to gps file. 132
H.6 Additional baudrates added to the gps file. 132
H.7 Configuration sequence of the GPS driver. 133
H.8 Debugging information about GPS drivers made available in NSH terminal. 133
H.9 GPS driver loop. 134
H.10 NSH Terminal driver status update request. 135
H.11 Request GPS command information. 135
H.12 NSH Terminal Marvelmind command. 136
K.1 Matlab code for fitting an ellipsoid on data. Obtained from [1]. 149
M.1 Mass properties results quad-copter in Solidworks. 155

xiii

xiv

xv

Chapter 1

Introduction
1.1 Historical background

The origin of Unmanned Aerial Vehicle (UAV) can be traced back to the Military and Government
sector, according to a news article from Business Insider [2]. Over the past few years, however, UAVs
found their application in the civilian and commercial sector. For example, what was initially a hobby
project around 2006 for F. Wang, grew to an 8-billion dollar valued company in 2015 [3] named Da-Jiang
Innovations (DJI). Nowadays, the market value for UAV powered solutions is estimated at 127 billion
US dollar, according to an article of PricewaterhouseCooper (PwC) [4]. This includes UAV applications
in a wide variety of fields of interest, such as infrastructure, agriculture, transportation, security, media
and entertainment, insurance, telecommunication, and mining [4],[5].

A specific class of UAVs are the so called multi-rotor drones. The drones are categorized based on
the number of rotors varying from three to eight and in some cases even more. The multi-rotor drones
have helicopter like behavior, in the sense that the drone is able of vertical take-off and of hovering
at fixed positions. This makes the multi-rotor drones ideal for all the tasks referred above and [4].
This master graduate project focuses on four rotor drones. Throughout the remainder of this report, a
multi-rotor drone will be referred to as drone or quad-copter.

1.2 Motivation and overall aim

UAVs have an increasingly more important role in nowadays society, such as monitoring dangerous sit-
uations and package delivery. New applications and services are becoming available that benefit from
deploying UAVs in all weather conditions. These situations demand the ability of flying in extreme wind
conditions. However, UAVs are small flying objects. Therefore, UAVs are sensitive to wind gusts and
turbulent fluctuations. This does not only limit to global difficult wind conditions, but also to local fast
changing winds, such as in urban environments, where wind can change after every building or tree.
Apart from urban environments, more situations exists where UAVs are influenced by fast changing
winds. An example is inspecting offshore turbines where fast wind changes can be caused by the rotating
turbine blades and vortices generated by sunlight heating the sea. This motivates this thesis where the
influence of wind disturbances on quad-copters is investigated.

The overall goal of this thesis is to conduct a study on how to compensate for wind disturbances for
quad-copters. Both model driven and data-driven approaches are researched, and experimental results
are desired. Therefore, an important part of this thesis is setting up the experimental testbed. In
particular assembling a quad-copter, integrating the indoor GPS and generating wind. The following
section surveys research performed relevant to this thesis: quad-copters, quad-copters controller design,
quad-copter control in wind flows, airflow modeling, disturbance rejection specifically on quad-copter
and disturbance rejection in general.

1

1.3 Literature survey

Due to the nature of this thesis, a literature study is conducted varying over a range of topics. Firstly,
literature about controller design for quad-copters is discussed. Additionally, the proposed solutions for
controlling a quad-copter in wind fields are also addressed. Furthermore, work done on airflow analysis
on quad-copters is treated varying from wind tunnel experiments to software simulations. A broader
view will be given on airflow analysis by treating computational fluid dynamics and wind field modeling.
Apart from airflow analysis, wind can also be seen as a disturbance acting on the quad-copter. Therefore,
general disturbance rejection methods will also be considered. In fact, disturbance rejection solutions
relying on the Internal Model Principle (IMP), Repetitive Control (RC) and Iterative Learning Control
(ILC) and their applicability to quad-copter disturbance rejection methods will be discussed.

1.3.1 Controller design for quad-copters

In [6] a controller is proposed based on the well known Proportional Integral Derivative (PID) structure.
First, a non-linear model is developed from which a linear system is extracted. After obtaining a linear
model, the PID controller is proposed and evaluated in simulation. As a result, a linear model is obtained
for a quad-copter and the linear PID controller stabilizes the quad-copter in flight. Although the article
shows proper tracking results, the results were only validated in simulation. Yet the simplicity makes
the PID controller a suitable controller.

In [7] a linear controller is proposed based on the Ziegler-Nichols rules. First a feedback linearization is
applied to the angular motion of the quad-copter. After feedback linearization, three linear controllers
were synthesized and compared for performance. The first controller is a Proportional Derivative (PD)
controller tuned by making use of the Ziegler-Nichols rules. The second controller is a PID controller,
also tuned making use of the Ziegler-Nichols rules. The third controller is a PD controller tuned by using
a genetic algorithm. The paper tests the robust performance of all controllers in simulation by adding
zero-mean white-noise. As a result the linear PD controller tuned based on the Ziegler-Nichols rules
shows improved performance over the PID controller tuned based on Ziegler-Nichols rules and the PD
controller is tuned by a genetic algorithm.

In [8], a comparison between a sliding mode controller, a backstepping controller and a traditional PID
controller is made. Stability for the backstepping controller and the sliding mode controller is guaranteed
by using Lyapunov equations. All three controllers are tested in a simulation where the performance is
measured and analyzed. Both the backstepping controller and switching mode controller show improved
performance over the PID controller in case of angle control and height control. However, position control
of the switching mode controller shows average results compared to the PID and backstepping controller.
Each controller shows the ability to control the linear translations. However, it is recommended to carry
out further research.

The article [9] compares quad-copter controller design and in particular a backstepping controller design
with a sliding mode controller design. The sliding mode controller shows average results, due to the
switching nature of the controller. The switching nature of the sliding mode controller introduces high
frequency, low amplitude vibrations, which results in drift. The backstepping controller provides bet-
ter performance during the experiments. Although results seem promising, the controllers are partially
tested in simulation and partially on a test-bench, which is fixed to the world such that the quad-copter
can not fly away unexpectedly.

2

In [10], a backstepping-like feedback linearization method is proposed to control and stabilize a
quad-copter. Stability is guaranteed by using Lyapunov stability theorem. The proposed controllers are
divided into three sub-controllers which control the quad-copters angles, the height of the quad-copter
or the position of the quad-copter. In simulation, the controllers are tested against other non-linear
controllers and a PID controller. During simulation the rise time, max overshoot and settling time of
all controllers are compared. On the experimental setup, all controllers are evaluated in executing two
different tasks. First a takeoff is commanded resulting in hovering in a fixed position. The second task
is taking off and following a reference. As a result, the paper has tested their newly non-linear proposed
controller in both a simulator and an experimental setup against other controllers. The newly proposed
non-linear controller shows satisfactory results. However, testing conditions might have slight changes,
which could have effected sensors and controller performances.

In [11], an angle and height backstepping controller is proposed. Lyapunov equations are used to prove
stability of the quad-copter. However, additional stability analysis is conducted in case angles reach a
specific state in which the height becomes uncontrollable. Furthermore, position control is not consid-
ered in [11]. Additionally, an experimental testbed was proposed and the controllers were both tested in
simulation and on the testbed. As a result, controller design succeeded to control the quad-copter on the
experimental setup. The controller is capable of letting the quad-copter take-off and bring in hovering
mode.

This concludes the literature study on controller design for quad-copters. During the controller lit-
erature study various controllers have been discussed ranging from, PID, backstepping, sliding mode and
non-linear controllers. However, all these papers do not treat the effect of wind on the hardware and the
effect on the controllers. The following section will discuss solutions provided in the literature focused
on controller design in wind fields.

1.3.2 Navigation and controller design in wind fields

In the previous section, literature focused on controller design is discussed. However, varying wind fields
are rarely treated in the literature. Therefore, this section will be focused on work already done on
navigation and controller design in the presence of wind fields.

In [12], a navigation and control architecture for multi-rotors in urban wind fields is proposed. The
article uses Lyapunov equations to estimate drag coefficients of the drone in a windless environment.
The navigation calculates a trajectory, accounting for wind. The trajectory is fed into a backstepping
controller which controls the drones on position level. The research shows the wind can be estimated.
The estimator tracks the simulated wind closely. However, the procedure is only performed in simulation
and complex wind regimes, such as turbulence, is not taken into account.

In [13], navigation in urban environments with changing winds is discussed. This report emphasizes
reference generating at which an optimal control problem is presented. The optimal control limits the
distance between the drone and generated reference. The article combines a pursuit algorithm with a
line-of-sight guidance law in which position and angle errors are kept close to zero. The algorithm is
tested in simulation under influence of windless conditions and slowly changing wind. As a result, a way
point navigation system using a line-of-sight guidance law is developed to keep the quad-copter close to
the trajectory under windy conditions.

In [14], a drone is equipped with a backstepping controller. The position of the drone is obtained
by using an external vision system. By using integrators, the drone is navigated to the desired reference
under the influence of airflow. The wind is generated by a mechanical fan. In contrast to this report, an
integrator is used to compensate for a constant unknown wind disturbance.

3

Another solution to compensate for wind is by designing an observer, which uses the internal sensors
to estimate wind gusts. In [15] an observer based on Global Positioning System (GPS) velocities data
and accelerations measured by the IMU were used to estimate the wind gust. The solution shows good
results in estimating wind gusts in simulation, but is not tested on an experimental setup. However, a
frozen Dryden turbulence model is used to simulate wind gusts. Despite the accuracy obtained in the
simulation, the algorithm was only evaluated in a Monte Carlo simulation. Furthermore, the observer
was primarily proposed for a flying wing and the ability of observing wind based on the sensors could
result in energy harvesting from the wind.

In [16] the wind is estimated by using a recursive Bayesian filter. The whole system uses input/output
feedback linearization controller, which estimates a parametric model of the wind field. Furthermore, a
Dryden turbulence model is used to simulate wind applied to the quad-copter. Moreover, the research
incorporates aerodynamic effects on the vehicle, such as blade flapping and drag as well. Experiments are
conducted in simulation. The used recursive Bayesian filter also uses wind measurements in all directions
by mounting Pitot tubes. The velocity estimate of the Pitot tubes is compared to the velocity estimates
from a GPS and IMU, which results in wind estimations.

Various solutions have been researched on wind field estimation on drones. Most proposed solutions
are limited to simulations and make use of simple control strategies such as using integrators. However,
under influence of complex wind fields recursive Bayesian filters are proposed. In the section below, a
literature study is carried out on Computational Fluid Dynamics, which can be extended to wind field
modeling in specific environments to airflow effects on specific hardware parts of the drone.

1.3.3 Computational fluid dynamics

In the previous section, the controller design literature surveyed is studied focused on quad-copters and
wind fields. However, most articles only provide results on a simulation basis, where wind is modeled
in various different ways. This sections main focus is on Computational Fluid Dynamics, a well-known
method for aerodynamic simulations and airflow analysis through complex structured environments.
Furthermore, literature about modeling wind regimes will be discussed. Lastly, this section will provide
literature on airflow analysis on quad-copters in wind tunnels and in simulations.

Various research has been carried out on airflow modeling [17], [18]. In [17] multiple solutions to Com-
putational Fluid Dynamics (CFD) are explained, including the advantages and disadvantages of each
method. Turbulence models used these days and new promising turbulence models are treated as well. In
[18] various CFD algorithms are compared, such as Reynolds Averaged Navier-Stokes (RANS), a hybrid
RANS, Large-Eddy Simulations (LES) and Detached-Eddy Simulations (DES). All methods are numer-
ically tested and compared. The results show that each model has its own optimal working conditions.
Compared to this project, these articles are only limited to indoor airflow, while the UAV is influenced
by outdoors wind conditions.

Due to the complexity of CFD algorithms, for simulation purpose it would be beneficial to explore
simpler, realistic wind models. The following section treats different ways of modeling the wind com-
pared to real wind.

1.3.3.1 Wind field modeling

The CFD algorithms described above involve complex Navier-Stokes equations and solvers. However,
simpler ways of modeling the wind exist and this section will explore literature about other wind models.

In [19] a Computational Fluid Dynamics is designed to simulate wind flow during take-off of a heli-
copter emergency medical service from a rooftop in Amsterdam. The flow dynamics are simulated by
using 2 CFD applications of a flow solver called RANS and the hybrid RANS-LES solver. Furthermore,
as turbulence models are the Dryden turbulence models used. The Dryden turbulence models are based
on the military graded wind models defined in [20], [21] and [22]. In the simulator, experienced helicopter
pilots land the helicopter on a rooftop under turbulent wind conditions. As a result, the experienced
pilots rated the turbulence models as ”realistic” and sometimes even as ”very realistic”, despite the
simulator being fixed to the ground.

4

In [23] a model for a wind-gust disturbance is proposed, in order to simulate the pointing accuracy
of an antenna and the results are compared against field data. The used method is a so called Dav-
enport Spectrum. The Davenport spectrum can be seen as a white-noise signal filtered through a low
frequency bandpass filter. The Davenport wind model is applied to a model in three different manners,
wind forces acting on the dish, wind torque acting at the drives and wind acting on the rate input. For
all three cases a controller is proposed. Furthermore, the closed-loop pointing accuracy of the antenna
is compared over all three controllers. As a result, all three models showed errors that matched field data.

Both [19] and [23] utilize different approaches to model the wind. While [19] uses a CFD including
Dryden turbulence models, [23] utilizes a Davenport filter, which acts as a band-pass filter allowing low
frequencies to pass through. However, airflow analysis is also conducted on quad-copters. The following
section will be focused on airflow analysis applied to drones.

1.3.3.2 Airflow analysis on quad-copters

Besides airflow situations in closed environments, airflow analysis is also performed around a drone. In
[24] only the airflow of the rotors is analyzed. The focus is on relating spacing of the rotors to the
efficiency of various parts, such as the fuselage and arms. The simulation uses solving 3-Dimensional
unstable Navier-Stokes equations, by using a spacial 5th order accurate scheme with double time steps
and a Detached-Eddy Simulations (DES) is taken as turbulence model. The article is only limited to
simulations and does not involve any type of external airflow.

In 2016 the National Aeronautics and Space Administration (NASA) conducted wind tunnel tests on
five different multi-rotor drones and an isolated rotor [25]. The experiment is originally intended to get a
better understanding of the performances of multi-rotor drones in general. During the experiment, each
drone is in its whole tested on a test rig. After that, the bare frame is tested and only one propeller
is tested. The tests are conducted by varying the pitch, yaw, airspeed values and varying the speed of
the motors. During the tests, the lift, drag, moments, thrust hover power and isolated rotor electrical
efficiency are measured. The contribution of the experiments is to obtain a large data set for various
drones and flight conditions, in order to design, analyze and enhance drone modeling and performance.
However, during the experiment high frequent vibrations are measured. The vibrations occurred during
full frame tests and single propeller tests, which concludes to vibrations resulting from imbalanced pro-
peller motor configurations.

This concludes the literature survey about airflow analysis. In the following section, the wind fields
will be treated as a disturbance and the focus of the literature will be on disturbance rejection.

1.3.4 Quad-copter disturbance rejection

Although many solutions are available to estimate or model the wind, effectively the wind disturbance
manifests itself as three forces and moments acting on the quad-copter over three different axis. Either
an observer needs to be designed for estimating the wind, or the wind should be treated as a disturbance.
In case of the latter, a disturbance rejection method can be deployed in the control strategy to reject
disturbances applied by the wind on the quad-copter. The following articles are aimed at disturbance
rejection on quad-copters in general, not only focused on wind.

In [26] both an PID and backstepping controller is designed for a quad-copter. The PID controller
is a conventional controller designed to stabilize the angles of the quad-copter. The backstepping con-
troller contains an additional integral term. Both controllers are evaluated in simulation and on a testbed,
which is a gimball fixed to the world at which four propellers control the angles of the gimball. Perfor-
mance between both controllers is compared based on reference tracking in normal flight, during windy
conditions and under parameter uncertainties. Windy conditions are generated by applying an airflow
to the testbed by using a wind machine. Furthermore, parameter uncertainty is achieved by adding an
additional weight to the quad-copter resulting in a shifted center of gravity. As a result, the integral
backstepping controller shows better performance over the PID controller in the sense that the backstep-
ping controller achieves smoother motion and slightly better tracking performance during normal flight.
In case of a wind disturbance, both controllers show similar performance. Both controllers stabilize the
quad-copter in a robust and efficient manner.

5

A non-linear controller is designed in [27], while rejecting a constant force disturbance. The solution con-
sists of a backstepping controller, which asymptotically stabilizes the closed-loop system. The constant
force disturbance is estimated through the use of a projector operator. Although reference tracking re-
sults seem promising, the full state is measured using external hardware, namely a Vicon motion capture
system. Furthermore, only a constant force is considered as disturbance.

Although solutions exist specifically designed for quad-copters, the following section treats disturbance
rejection in a more general approach, where the main topic is about Internal Model Principle.

1.3.4.1 Internal model principle

In previous section the main focus is on disturbance rejection methods for drones. In this section, In-
ternal Model Principle will be treated. The Internal Model Principle application applies to disturbance
rejection for general control systems and it is not focused on quad-copters in particularly (although some
articles are focused on quad-copters).

Internal Model Principle (IMP) can be used to reject different kinds of signals, such as periodic sig-
nals, constant signals or ramps. In [28] an IMP controller is designed in combination with a linear
feedback controller and an observer. The IMP controller can be suited with various filter designs which
can be used to minimize the tracking error over time. The book, however, only shows the design proce-
dure on a theoretical basis by using for linear time-invariant (LTI) state space system and does not use
a quad-copter as a base or provides a practical base at all.

In [29], IMP are used to allow autonomous vertical landing on a deck of a ships, which oscillates in
the vertical direction due to high sea states. The results show that an exogenous system can be success-
fully used to counteract oscillating patterns. However, the control strategy is only applied in vertical
direction to counteract a ships deck movement, and not in multiple degrees of freedom.

In [30] an exogenous system is utilized to generate a reference trajectory. The goal of this research
is to follow an intruder, which has a specific dynamical movement, which can be generated by an ex-
ogenous system. If the quad-copter has arrived at the intruder, it starts to circle around the intruder,
which is handled by another exogenous system. The benefit of the control strategy in this research lies in
the fact that the controller operates on a priority base, where the stabilizing control law has the highest
priority, following the intruder the second highest priority and circling around the intruder has the lowest
priority. Furthermore, the IMP controllers are designed in such a way, that they can be placed on top
of an already existing controller.

Internal Model Principle allow various filter designs targeting specific frequencies or periodic signals.
However, building a memory from previous control inputs can improve current control inputs. This
procedure is called Repetitive Control and will be treated in the following section.

1.3.4.2 Repetitive Control

A special case of IMP, is Repetitive Control (RC) [31]. A RC incorporates the control input from previ-
ous period to update the current control input. Every time a period still contains an error, the controller
tries to improve the control action, such that over time the error is minimized. In [31], the focuses lies
mainly on servo systems which have repeatable tasks with a known period. Furthermore, the article
focuses on proving stability and an increased performance of the servo systems.

In [32], an RC is designed for a system with constraints on the input. The constraints on the input
results in unstable behavior, since the controller can not send large values anymore. A model predictive
control (MPC) framework is used to design the RC, without the cost of on-line optimization procedures.
Furthermore, by using a Fourier analysis of a reference signal or disturbance signal, the repetitive control
structure is determined.

RC enables to improve tracking behavior of dynamical systems over time. A more general disturbance
rejection method is Iterative Learning Control, which will be treated in the following section.

6

1.3.4.3 Iterative learning control

An alternative to RC, is Iterative Learning Control (ILC). In [33] it is shown that both RC and ILC can
be placed in the same framework. The article compares run-to-run base as well, which is more like an
open-loop control design optimization, where the controller is adapted after a batch is finished. Although
the framework might suggest the major difference between ILC and RC is either being designed in time
domain or in frequency domain, switching between either domains is quite simple. However, the real
difference between ILC and RC, is that RC assumes the start of each period is equal to the end of the
previous period. The start condition at ILC however is reset after each iteration.

In article [34] the difference between ILC and RC is best shown. Since the tracks on a disk in the
hard disk have the tendency to deform during spinning. Therefore, it is difficult to follow the tracks on
the disc accurately. This is where ILC comes in. Since each revolution starts at 0 and ends at 2π which
is yet again equal to 0, ILC is suitable to track the deformation of the disks since the initial condition
of each period can be reset. On the other hand, the needle, which controls the location of the laser is
designed in two stages, where mechanical vibrations act on the system and compromise performance.
Since RC attacks periodic disturbances, and is not reset after each period, the controller is suitable to
improve performance. Although ILC has a proper application for reducing tracking errors, due to the
reset nature of ILC, it is not suitable to implement in a quad-copter.

1.4 Specific goals, approach and contribution

As it is described in Section 1.2, the overall aim of this master graduate project is on conducting research
on how to compensate for wind disturbances acting on quad-copter. This section describes the specific
goals that need to be achieved, the approach to achieve the goals and where this research can contribute
to already existing literature.

1.4.1 Specific goals

The overall aim of the thesis is to research solutions to allow drones to fly safely under varying wind
regimes. In order to do so, a testbed will be developed to control a quad-copter in windy conditions. The
testbed should contain a base including sensors to measure the states of the system. Furthermore, the
hardware should provide safety features, such that during experiments, the quad-copter can be operated
safely. Additionally, the hardware should allow connecting additional devices and sensors to the need of
this and future projects.

Alongside the testbed development, software needs to be designed as well. The software needs to provide
a flexible, easy to adjust, base, such that various different control strategies and algorithms can be tested.
Furthermore, additional software is needed to analyze flight data after each flight.

Wind can be modeled by using the Navier-Stokes equations as described above. However, the Navier-
Stokes equations involve complex mathematical operations. One goal of this thesis is to research the
feasibility in using Navier-Stokes equations as a model-driven approach to counteract wind disturbances.

However, a second approach to counteract wind disturbances is to treat them as unmodeled distur-
bances. This approach treats the wind as a disturbance acting on the drone in the form of three forces
and moments. A controller design in the form of Internal Model Principle will be examined. Other
suitable disturbance rejection methods, such as Repetitive Control and Iterative Learning Control will
be investigated as well.

7

1.4.2 Approach

The hardware used in this project is mostly provided by the TU/e and consists of a Team Black Sheep
quad-copter, which will be equipped with a Pixhawk flight controller board and a Marvelmind Indoor
Positioning System. All the hardware related to the drone was already available at the TU/e and fitted
the purpose of this project. Therefore, other hardware is not considered during this research.

Furthermore, a complete solution of quad-copter software is available in the form of Q-ground control
and the MAVLink communication protocol to communicate in Simulink in real-time with a quad-copter
in flight. However, the software in Q-ground control is designed for various different kinds of robots,
resulting in a comprehensive software package hard to adjust to the users needs. Therefore, custom
software is written, which provides an easier adjustable environment, while still maintaining full control
of the quad-copter during flight.

In addition to software development, controllers and observers are synthesized as well. A Madgwick
filter is used to fuse the Inertial Measurement Unit measurement together with the magnetometer mea-
surements in order to obtain the full angular state of the quad-copter. The translational positions are
measured with the Marvelmind Indoor Positioning System and fused using the accelerometer in a linear
Kalman filter. The observed states are used in the controller. A controller is designed based on a tradi-
tional PID controller. The synthesized controller stabilizes the linearized system around near-hovering
flight modes.

In order to obtain useful information about wind, Navier-Stokes equations can be used to express wind
flow around objects. However, Navier-Stokes equations are Partial Differential Equations. In order to
make a model-driven approach, the Partial Differential Equation need to be transformed to Ordinary
Differential Equation by, for instance, using multiple Pitot tubes located in various evenly spaced loca-
tions around a drone. However, due to complexities in Navier-Stokes equations and the lack of large
amounts of Pitot tubes, this approach will only be researched on a theoretical basis.

Lastly, a data-driven approach is investigated in terms of Internal Model Principle and Repetitive Con-
trol. Both controllers are tested in simulation against a classical feedback PID controller. Simulation
consists of multiple scenarios, such as hovering flying modes, reference tracking and hovering under vari-
ous wind conditions. Desirable, after testing the controllers in simulation are implemented on the testbed
and evaluated in actual windy conditions.

1.4.3 Contribution

During this research project, a fully operational drone is developed. The drone consists of a Team Black
Sheep [35] base to which Tiger-Motors [36] are mounted. A Marvelmind Indoor Positioning System is
connected to the quad-copter in order to measure a three dimensional position. Furthermore, the Radio
Control Unit is used to generate a position reference which will be tracked by the quad-copter. Addition-
ally, the Radio Control Unit is used for safety measures during flights, such as arming and dis-arming
the quad-copter. The platform will be available for students in the future, which can use the platform
for various different research purposes, such as controller design, observer design or way path planning.

In the past a student at TU/e has developed a solution to communicate with quad-copters over MAVLink
[37], the solution was too slow to use in a control environment. Therefore, custom software is developed
in Simulink. This allows for an easy understandable and adaptable software structure. Furthermore,
necesary drivers were developed, in order to let the Marvelmind Indoor Positioning System communicate
with the custom software, in order to obtain a 3D-position measurement.

During this research project, a Graphical User Interface is developed to help and understand inter-
nally logged signals on the quad-copter. The Graphical User Interface consists of different tools, such
that configuration and evaluation of logged data is made easy. The build-in tools consist of sensor cali-
bration tools, Fast-Fourier Transforms of time-varying signals, stored parameters and reference tracking
overviews.

In the literature, various solutions are provided in order to reject wind disturbances. However, most
literature is only limited to simulation results and rather simple wind models, such as a constant wind

8

disturbance. Compared to this research, an Internal Model Principle approach is proposed capable of
improving reference tracking under complex wind disturbances. The novelty in using this type of con-
troller lies in the fact that Internal Model Principle is as of yet not used on a quad-copter in order to
reject wind disturbances. Internal Model Principle is however used to track an intruder by using a quad-
copter, under the assumption an intruder can be modeled by an exogenous system [30]. Furthermore,
this research even examines Repetitive Control as a solution to counteract wind disturbances. Both
controllers are tested safely in a simulator, which contains the quad-copter dynamics and a wind model.
As a result, a controller is proposed, which is capable of rejecting the wind. The proposed controller can
reject the wind without the need of having external hardware, such as line-of-sight guidance systems.
Furthermore, the proposed controller does not need to solve complex Lyapunov functions in order to
estimate the drag coefficients in assumable windless conditions. Lastly, the quad-copter is still capable
of flying around, compared to testbeds fixed to the real world.

1.5 Organization of the report

The organization of this report is divided in two major parts. Part I is focused on the practical setup.
This research makes use of existing hardware at the TU/e. Software is adapted to the hardware and
the needs of this master graduate project. Furthermore, a mathematical quad-copter framework is
explained, resulting in controller design, observer design and sensor calibration. Part II targets a model-
driven approach to handle changing winds. A data-driven approach in the form of disturbance rejection.
Lastly, the simulation results are part of the wind disturbance rejection part.

1.5.1 Part I: Hardware, software and control

Chapter 2, Hardware.
In this chapter the hardware used during this project will be discussed. The hardware consist of the
quad-copter frame, processing unit, various sensors, motor sets, radio controllers and additional devices.
The main focus of the chapter is to show the functionality of each part and how they are connected to
each other.

Chapter 3, Software.
This chapter describes the existing software structures and provides information about the important
parts of the software. The newly designed Simulink software is explained, which makes use of part of
the existing software. Furthermore, basic configuration of the various hardware parts is described as
well, such as communication devices and Indoor Positioning System (IPS) drivers. Lastly, the Matlab
Graphical User Interface (GUI) especially designed for this project is explained.

Chapter 4, Mathematical model, state estimation and control.
Chapter 4 describes the mathematical model of a quad-copter. Due to the non-linearities of the model,
a linear model is first obtained, resulting from standard linearization techniques. Aside from the quad-
copter models a propulsion model is considered, which involves measuring the thrust of each propeller.
Furthermore, calibration sequences are explained for the most important sensors. Chapter 4 also explains
state estimation for a quad-copter in the form of a Madgwick filter and Kalman filter. Lastly, the chapter
shows a basic cascaded PID control strategy.

9

1.5.2 Part 2: Wind disturbance rejection

Chapter 5, Wind field modeling.
In this chapter, relevant literature is described which is based on the quad-copter flight in windy con-
ditions. The chapter treats topics ranging from Computational Fluid Dynamics (CFD), Navier-Stokes
equations and their complexities, airflow analysis on quad-copters, navigation and controller design in
wind fields, wind field modeling and controller design including disturbance rejection.

Chapter 6, Disturbance rejection.
This chapter explains the basic math for designing Internal Model Principle (IMP) controllers and how
to access stability. Furthermore, IMP controllers are divided in continuous time systems and discrete
time systems. The procedure to design an IMP contains controller observer and feedforward design, ex-
ogenous systems as disturbance generation and disturbance rejection by using a driver model. A special
case of IMP called Repetitive Control (RC) is explained as well.

Chapter 7, Experiments and results.
In this chapter five different controllers are tested under various kinds of wind flows. The tested con-
trollers are plain PID feedback controller, IMP controller and various RC filters.

Chapter 8, Conclusion, Remarks and Future work.
The final chapter concludes this research and provides remarks about future improvements on experi-
mental setup side and future work on research side.

10

Part I

Hardware, Software and Control

11

Chapter 2

Hardware
In this chapter, a detailed explanation is provided about the hardware used during this master thesis
project. The provided hardware was already available at the TU/e. Therefore, no other hardware related
to the quad-copter was considered during this project. In Section 2.1 the Team Black Sheep frame will
be discussed. A short explanation about the processing unit, its internal sensors and inputs/outputs is
provided in Section 2.2. The Indoor Positioning System (IPS) is explained in Section 2.3. Additionally,
the motors and Electronic Speed Controller (ESC) are explained in Section 2.4. Furthermore, the
communication between the drone and a ground station is explained in detail in Section 2.5. Finally, the
Radio Control Unit (RC) and the Radio Control Receiver are explained in Section 2.6.

2.1 Frame

During this project the Team Black Sheep (TBS) Discovery filming rig is used as a base frame. The TBS
Discovery is a durable and crash resistant multi-rotor [38]. The frame is built out of a bottom plate,
a top plate and multiple spacers which connect the top and bottom plate. Four DJI F450 Flamewheel
arms allow the motors to be mounted to the frame. An overview of the frame can be seen in Figure 2.1,
where on the left an expanded view of the quad-copter is shown and on the right a top view of the frame
is depicted.

Figure 2.1: Team Black Sheep Discovery frame with DJI F450 Flame Wheel arms. On the left-side, an
exploded view of the quad-copter. On the right-side, a top view of the quad-copter. Figure obtained
from [38].

Distances motors in [mm]
Motor 1 Motor 2 Motor 3 Motor 4

Motor 1 / 274.74 470.37 420.69
Motor 2 274.74 / 346.49 470.37
Motor 3 470.37 346.49 / 274.74
Motor 4 420.69 470.37 274.74 /

Table 2.1: Distances between motors on the quad-copter in millimeters.

The distances between each motor of the TBS quad-copter frame including the Da-Jiang Innovations
F450 Flamwheel arms as shown on the right side of Figure 2.1, are listed in Table 2.1. The measured
distances between the motors are used to calculate the Center of Thrust (CoT). The distances between

12

each motor is obtained by reconstructing the quad-copter in Solidworks, a 3D drawing software package,
which is provided in Appendix M.

It has to be noted that the median which goes straight through the Center of Gravity (CoG) from
the front of the quad-copter to the back, lies in the middle between the left and right side motors. This
means, that if the motors on the left side generate an equal amount of thrust compared to the motors
on the right side, all generated torques cancel out. However, the median which goes from the left side
to the right side of the drone, lies not on the CoG. If motors on the front generate an equal amount of
thrust compared to motors on the back, all torques will not cancel out and the quad-copter starts to
rotate around the CoG. This concludes that the Center of Thrust (CoT) lies not perfectly on top of the
Center of Gravity (CoG). In order to overcome this problem, torques can be distributed to the motors,
such that all torques are balanced out and rotations around CoG only exist if requested via the reference.
The motor mixing, to balance the requested thrusts and torques, is explained in Section 4.1.4.

2.2 Processing unit

The processing unit used in this configuration, is a Pixhawk 2.4.8. The Pixhawk is developed from APM2
and is released in 2013 by Eidgenössische Technische Hochschule Zürich (ETH Zürich) and 3D Robotics
(3DR) [39]. The Pixhawk is a merger between the PX4 Flight Management Unit (PX4-FMU) and the
PX4 Input Output unit (PX4-IO). The PX4-FMU was developed for flight management purpose and
contains important flight sensors, such as accelerometer and magnetometer. However, the PX4-FMU
lacked the connectivity to the motors controlling the propellers. As a result, the PX4-IO was needed to
send commands to the motors. Therefore, the merge between the PX4-FMU and the PX4-IO resulted
in the Pixhawk containing important flight sensors, as well as connectivity to the motors controlling the
propellers.

(a) Pixhawk top View.

(b) Pixhawk 3-sides View.
(c) Pixhawk back View.

Figure 2.2: Pixhawk layout including indication lights, inputs/outputs, buttons, SD-card slot and mirco-
USB port. Provided by [40].

The Pixhawk consists of 14 DF-13 connection gates on top, shown in Figure 2.2a. A DF-13 male

13

connector is a connector which allows to connect a varying number of pins to a DF-13 female connector
attached to a wire. The DF-13 connector prevents connecting the cable wrongly, since it only connects
in a single way. The DF-13 connector varies is size from two pins for the buzzer to seven pins for the
Serial Peripheral Interface (SPI).

SPKT/DSM Connects to a Radio Control Unit (RC) receiver which support Spektrum DSM, DSM2
or DSM-X Satellite.

TELEM1 Connects to a radio data transmitter/receiver to obtain and send data to a ground station,
such as a laptop or tablet. TELEM1 supports high power devices up to 1A.

TELEM2 Connects to a radio data transmitter/receiver to obtain and send data to a ground station,
such as a laptop or tablet. However, TELEM2 does not support high power devices.

USB Universal Serial Bus (USB) connects to a Future Technology Devices International (FTDI) which
is a chipset supporting . Since USB and FTDI is closely related to Universal Asynchronous Re-
ceiver/Transmitter (UART) the connector can be used as UART as well. In general, USB is used
to connect devices to pc and UART is used to connect hardware to a microcontroller. A UART
connection can be connected to a USB port if a bridge and voltage levelers are used. It is however
advised not to do so.

SPI Serial Peripheral Interface (SPI) is a synchrone serial datalink between at least two devices in a
master slave configuration.

POWER Connects the 3DR power module to the Pixhawk. The power module provides the Pixhawk
power and status updates from the battery, such as Voltage and Current measurements.

SWITCH Connects to the safety switch on the quad-copter. Without the safety switch the hardware
will not be able to output signals to the motors. The safety switch contains an Light-Emitting
Diode (LED), which shows the state of the safety switch.

BUZZER Connects the buzzer to the quad-copter, which allows for audio indications of the system.

SERIAL 4/5 The serial connection port contains two different UART connections to connect various
different sensors and or devices.

GPS Global Positioning System (GPS) connects a GPS to the Pixhawk. In this project, the connector
will connect the Marvelmind IPS to the Pixhawk.

CAN Controlled Area Network (CAN) connects a CAN device to the Pixhawk.

I2C Inter-Integrated Circuit (I2C) connects multiple I2C devices to the Pixhawk, which allows for bit
level communication.

ADC 6.6V Analog Digital Converter (ADC) supplies a 5V power supply to a device and reads out
6.6V analog values.

ADC 3.3V Supplies a 5V power supply to a device and reads out 3.3V analog values. Connector
supports up to two devices or analog signals.

The Pixhawk has various communication methods embedded, such as UART, CAN, SPI and I2C. Each
communication method allows for different kinds of connections, where CAN and UART supports asyn-
chrone communication (data is send a-periodically). And where CAN and SPI and I2C supports multiple
devices on the same connection. However, SPI only operates on bit level, whereas UART, CAN and I2C
operate on byte level. In Figure 2.2, a schematic overview is shown of the Pixhawk. The pinlayout of
each connection can be found in Appendix A. More information about the various connections can be
found at [40].

The Pixhawk contains on top Light-Emitting Diode (LED) which indicate the status of the system.
In Figure 2.2a on the top left, indication LEDs for the Flight Management Unit (FMU) are placed and
on the right side are the indication LEDs for the Input Output (IO). In the middle of the Pixhawk is the
main status LED, which can be programmed and therefore will be explained in other chapters of this
report. The indications of the LEDs are:

14

FMU PWR Indicates the status of the Flight Management Unit power.

FMU B/E Indicates if the processor is in bootloader mode (flashing) or in error mode (solid).

I/O PWR Input/Output power supply status.

I/O B/E Input/Output processor is in bootloader mode (flashing) or in error mode (solid).

ACT Activity, a flashing LED indicating everything is OK.

The Pixhawk contains two buttons, an Secure Digital card (SD-card) and a micro USB connection on
the sides and front, Figure 2.2b. The micro USB connection is used to connect the Pixhawk with a
computer. This connection provides the ability to load code to the Pixhawk, either custom software or
standardized software such as autopilot. During flight the micro USB connection can not be used, since
the hardware assumes if it receives power over the micro USB connection it is probably connected to a
computer and failsafes will be shut down.

The two buttons are used to reset either the FMU or the IO board. In case of an error, where the
FMU B/E LED is on, the FMU reset button located next to the micro USB connector can be pressed
to reset the error. In case of an IO error, where the IO B/E is on, the IO reset button can be pressed
which is located on the other side than the FMU reset button and the micro USB connector.

The SD-card is located at the front of the Pixhawk. In general, the log files are stored on the SD-
card. Later on will be explained that the bootloader can be altered via the SD-card. The FMU can only
properly start up if the SD-card is present.

The back of the Pixhawk contains a rack of inputs and outputs, see Figure 2.2c. On the left, the
rack contains an RC input to connect the RC receiver to the Pixhawk. The RC works with Pulse
Position Modulation (PPM) or Serial Bus (S.Bus). The PPM is an analogue signal like Pulse Width
Modulation (PWM) and stacks several PWM like signals onto one wire. S.Bus however is a digitalized
signal which can support up to 18 channels using only one cable.

Next to the RC channel is the S.Bus output channel. This port is an output port and can there-
fore not be used as an RC input. The output channel can be used to send data from the Pixhawk to the
receiver and send it back the RC Controller.

Next to the S.Bus output channel are 8 servo pins, which can be connected to 8 different Electronic
Speed Controller (ESC). The pins send PWM signals which are transformed by the ESC to desired
angular velocity of the propellers.

The last six pins are auxiliary outputs. These outputs operate on PWM signals which can be sent
to connected devices capable of handling PWM signals.

The Pixhawk contains internal sensors which are useful during flight. In some cases, such as the ac-
celerometer and gyroscope, the sensors are redundantly installed on the board, such that sensor mal-
function during flight will not result in an immediate crash of the quad-copter. The internal sensors are
explained more extensively in the following subsections.

15

2.2.1 Magnetometer

The Pixhawk contains an onboard magnetometer based on a 14 bit ST Mirco LSM303D chip [41]. The
sensor has 3 magnetic field channels, which can be scaled between ±2/±4/±8/±12 gauss. Configuring
the magnetometer is done by the software installed on the Pixhawk, which is explained later on in the
report. The magnetometer can be sampled in normal mode at a rate of 100 kHz and in a fast mode
at 400 kHz. A temperature sensor measures the environment temperature and corrects the magnetic
channels for temperature influences. The normal operating temperature lies in the range between −40◦C
and +85◦C.

2.2.2 Gyroscope

The Pixhawk contains an onboard gyroscope based on a 14 bit ST Mirco L3GD20H chip [42]. The sensor
has 3 gyroscopic measurement channels, which can be scaled between ±245/± 500/± 8/± 2000◦C/sec
degrees per second (dps). Configuring the gyroscope is done by the software installed on the Pixhawk,
which is explained later on in the report. The gyroscope sampling frequency can be configured between
11.9/23.7/47.3/94.7/189.4/378.8/757.6Hz. A temperature sensor measures the environment temperature
and corrects the magnetic channels for temperature influences. The normal operating temperature lies
in the range between −40◦C and +85◦C.

The Pixhawk contains a secondary onboard gyroscope based on a 16 bit InvenSense MPU 6000 chip
[43]. The sensor has 3-axis gyroscope measurement channels, which can be scaled between ±250/ ±
500/ ± 1000/ ± 2000◦/sec dps. Configuring the gyroscope is done by the software installed on the Pix-
hawk, which is explained later on in the report. The gyroscope can be sampled via I2C at 400 kHz or
SPI at 1 MHz. In some cases, by configuring the chip properly, the sampling rate at SPI can be set
at 20 MHz. A temperature sensor measures the environment temperature and corrects the gyroscope
measurements for temperature influences. The normal operating temperature lies in the range between
−40◦C and +85◦C.

2.2.3 Accelerometer

The Pixhawk contains an onboard accelerometer based on a 14 bit ST Mirco LSM303D chip [41]. The
sensor has 3 linear acceleration channels, which can be scaled between ±2/±4/±6/±8/±16 gravitational
acceleration (G). Configuring the accelerometer is done by the software installed on the pixhawk, which
is explained later on in the report. The accelerometer can be sampled in normal mode at a rate of 100
kHz and in a fast mode at 400 kHz. A temperature sensor measures the environment temperature and
corrects the acceleration measurements for temperature influences. The normal operating temperature
lies in the range between −40◦C and +85◦C.

The Pixhawk contains a secondary onboard accelerometer based on a 16 bit InvenSense MPU 6000
chip [43]. The sensor has 3 linear acceleration channels, which can be scaled between ±2/± 4/± 8/± 16
G. Configuring the accelerometer is done by the software installed on the Pixhawk, which is explained
later on in the report. The accelerometer can be sampled via I2C at 400 kHz or SPI at 1 MHz. In
some cases, by configuring the chip properly, the sampling rate at SPI can be set at 20 MHz. A tem-
perature sensor measures the environment temperature and corrects the acceleration measurements for
temperature influences. The normal operating temperature lies in the range between −40◦C and +85◦C.

2.2.4 Battery sensor

On the power input connection on the Pixhawk, DF-13 input nr. 6 in Figure 2.2a, a 3DR power module,
see Figure 2.3, is connected which provides the Pixhawk with power from the battery. The power
module protects the Pixhawk from a brownout which is an unintentionally voltage drop in the power
supply which shuts the Pixhawk down during flight. It also provides stable currents of 2.25A at 5.37V to
the Pixhawk. Lastly, the power consumption of the quad-copter and the drawn current is measured and
communicated with the Pixhawk. This allows the Pixhawk to correct the magnetometer for magnetic
disturbances generated by current flow for instance generated by the motors and the ESC.

16

Figure 2.3: 3DR Power module for supplying power to Pixhawk. 3DR Power module includes status
information of battery such as voltage and current measurements. Provided by [44].

2.3 Indoor Positioning System

In order to obtain a 3D position of the quad-copter, an Indoor Positioning System (IPS) called Marvel-
mind is used. The Marvelmind IPS consists of five beacons and a modem, as is shown in Figure 2.4a.
Four beacons are used as stationary beacons and one beacon is placed on the quad-copter and configured
as a mobile beacon (hedgehog).

(a) Marvelmind kit. Provided by [45]. (b) Marvelmind beacon. Provided by [45].

Figure 2.4: Marvelmind Indoor Positioning System. Setup exists of one modem and five beacons of
which one can be setup as a hedgehog. Provided by [45].

Each beacon sends ultrasonic pulses in five different directions. On the right side of Figure 2.4b,
all transmitting directions are marked from RX1, RX2, RX3, RX4 and RX5, which covers 360 degrees
around the beacon and the top of the beacon. Only the bottom of the beacon is not able to transmit
ultrasound pulses. By picking up the pulses and measuring the time of flight, the position of the hedge-
hog can be trilaterated. However, the system has a few downsides which need to be considered during
installation and operation.

First of all, the system operates under the assumption, that the speed of sound through air will not
change during operation. The function for the speed of sound, as proposed by [46], can be seen in
Equation 2.1.

cideal =
√

γRT
M (2.1)

Where cideal ∈ R is the speed of sound in an ideal gas, γ =
Cp

Cv
∈ R+ is the ratio of specific heats where Cp

17

is the specific heat at constant pressure and Cv is the specific heat at constant volume. R = 8314.5 J
mol K

is the molar gas constant, T ∈ R+ is the temperature in Kelvin and M ∈ R+ is the molar mass.
Since most parameters are constant in Equation 2.1, the speed of sound cideal varies depending on the
temperature T . In order to prevent large fluctuations in position estimating, the Marvelmind beacons
are setup with temperature sensors to correct for temperature fluctuations. To protect the beacons even
more against temperature fluctuations, the stationary beacons should not be placed close to temperature
changing objects, such as radiators or air conditioning systems. Furthermore, installing beacons in the
vicinity of metal objects might lead to reflections of the ultrasound signal and can therefore be disturbed.

For optimal position measuring performance, the stationary beacons and the hedgehog should be in-
stalled and kept during operation in a square or rectangular pyramid like structure, see Figure 2.5. The
rectangular base of the pyramids can be seen as the square formed between the beacons on a fixed level.
The top of the pyramid represents the hedgehog which is installed on the quad-copter. The stationary
beacons can be installed on a fixed height above the ground, or on the ground. In case the stationary
beacons are installed on the ground, the hedgehog should be installed on the bottom of the quad-copter
facing downwards and in all directions horizontally. In case the stationary beacons are installed at a
fixed height, the hedgehog should be installed on top of the drone facing upwards and in all directions
horizontally. During flight position measuring is compromised if the hedgehog is close to the same plane
as the stationary beacons. The Marvelmind IPS utilizes trilateration to estimate the position of the
hedgehog, which is obtaining a position by measuring the distance to the stationary beacons. Therefore,
if the hedgehog is close to the plane of the stationary beacons, any small distance measurement error
from the hedgehog to a stationary beacon results in large position estimation error according to [45].
Therefore, it is advised to install the beacons on a fixed height instead of the ground. Furthermore,
the plane at which the stationary beacons are installed, should never be reached during flight with the
hedgehog. A full explanation of installing the stationary beacons and the hedgehog can be found in [45].

Figure 2.5: Square pyramid structure representing stationary beacons and hedgehog installation.

The Pixhawk and hedgehog are connected via the DF-13 GPS connector and the pins on the hedgehog.
The connection is established via UART communication which is supported by both devices. First of all,
the ground between both devices can be connected. To let data flow from the hedgehog to the Pixhawk,
the transmit line (TX) pin from the hedgehog needs to be connected to the receive line (RX) pin on the
Pixhawk. Data flow from the Pixhawk to the hedgehog is established by connecting the TX pin on the
Pixhawk with the RX pin on the hedgehog. Figure 2.6a shows which gate and pins on the Pixhawk are
used, whereas Figure 2.6b shows which pins are used on the hedgehog. Table 2.2 shows which pins are
connected. Since both devices have their own power cell no connection is made between the vcc at the
Pixhawk and the Bat+ at the hedgehog. Connecting the Pixhawk and the hedgehog is also explained in
[47].

18

(a) Pixhawk.
(b) hedgehog. Provided by [45].

Figure 2.6: Connecting the hedgehog to the Pixhawk using the pins on the hedgehog and the GPS pins
on the Pixhawk.

Pixhawk GPS
Pin 6 3 2

Signal GND RX TX
Signal GND USART2 TX USART2 RX

Pin 12 10 11
hedgehog

Table 2.2: Connecting the hedgehog to the Pixhawk.

2.4 Motors and electronic speed controllers

The quad-copter is equipped with Tiger Motor Air gear 350 multi rotor driving equipment set, see Figure
2.7. The set consists of:

� 4 Electronic Speed Controller (ESC).

� 2 clockwise (CW) rotating motors.

� 2 counter clockwise (CCW) rotating motors.

� 2 clockwise (CW) propellers.

� 2 counter clockwise (CCW) propellers.

Figure 2.7: Tiger Motor Air Gear 350 multi rotor driving equipment set including four ESC motors and
propellers.

19

The propellers are connected to the motors in a clockwise or counter clockwise fashion depending on
the rotation of the motor. If the motor spins clockwise the propeller is attached in counter clockwise
rotation which prevents the propeller detaching during flight. In case of the counter clockwise situation,
the propeller is attached in clockwise fashion.

The motors are brushless direct current (BLDC) motors which operate on direct current (DC). In general
BLDC motors do not require significant maintenance and have an excellent torque weight ratio, which
make BLDC motors suitable for the quad-copter propulsion system. A BLDC motor works based on the
principle of applying a current to a set of coils, which generate a magnetic field. The current is applied
in such a way that the intensity of the magnetic field varies periodically on each fixed motor point. This
periodically changing magnetic field is applied to a permanent magnet attached to the rotor which also
moves periodically. The process, which generates the proper electric current, is called commutation and
is performed by the Electronic Speed Controller (ESC). The working principle and operation of a BLDC
motor is depicted in Figure 2.8. By switching the current faster or slower the motor velocity increase or
decrease. A more detailed explanation of the principles of a BLDC motor can be found in [48].

Figure 2.8: Principles of a BLDC motor. Retrieved and adapted from [48].

As just mentioned, the ESC controls the commutating process of the current flowing through the
coils. Therefore three gates of the ESC connect to the motor. The desired velocity is provided by the
PWM signals obtained from the Pixhawk in the range of +0V and +5V. The ESC, in turn, takes the
battery voltage at +15V commutates it in order to bring the motor to the desired velocity. In Appendix
B the Tiger Air gear 350 user manual is included for additional information.

2.5 Wireless communication

The communication between the quad-copter and a ground station device is in general provided by a
radio telemetry module such as from 3D Robotics (3DR), which is shown in Figure 2.9. The downside
of those units is the fact that they are generally equipped with the European 433Mhz [49] band or the
American 915Mhz standard. However, the frequency might interfere with the Marvelmind IPS, since
the Marvelmind is equipped with 433Mhz for European devices and 915Mhz for the American variant.
Therefore standardized telemetry radio units are not used. Moreover, the data transmission from the
quad-copter to the ground pc resulted in a ground station pc incapable of accepting user commands
anymore.

20

Figure 2.9: 3D Robotics Telemetry transmitter/receiver.

The quad-copter is equipped with a Raspberry Pi 3 model B V1.2 which has a wireless local area
network (WLAN). The Raspberry Pi is set up such that it accepts UART communication from the
Pixhawk, build a wireless network and send data from to the ground station computer and vice versa.
The Raspberry Pi is shown in Figure 2.10.

Figure 2.10: Raspberry Pi 3 Model B V1.2

The rack of pins in the top left corner of Figure 2.10 are the header pins which are general purpose
input output (GPIO) pins of the Raspberry Pi. Those pins are used to supply the Raspberry Pi at least
+4.8V. Besides supplying power to the Raspberry Pi, the GPIO pins are also used to setup an UART
connection between the Pixhawk and the Raspberry Pi, over which data is communicated between each
device. The pin layout of the Raspberry Pi is shown in Figure 2.11.

Figure 2.11: Raspberry Pi header pins including general purpose input output pin layout.

21

The connection between the Raspberry Pi and the Pixhawk is made by connecting pin 2 on TELEM1
TX on the Pixhawk to pin 10 (UART0 RX) on the Raspberry Pi. And by connecting pin 3 RX on the
Pixhawk to pin 8 (UART0 TX) on the Raspberry Pi. The full connection is shown in Table 2.3.

Pixhawk TELEM1
Pin 1 2 3 6

Signal Vcc TX RX GND
Signal +5V UART0 RX UART0 TX GND

Pin 2 10 8 6
Raspberry Pi GPIO

Table 2.3: Connecting the Raspberry Pi to the Pixhawk.

2.6 Radio Controller

The last part of the hardware is the Radio Control Unit (RC) and the radio receiver. The RC provides
the user to control flight modes and safety procedures available on the quad-copter. The RC is mainly
used to arm and dis-arm the quad-copter, and provide a reference commands. The radio receiver is
connected to the Pixhawk via the S.Bus port. The S.Bus port is supported by the Pixhawk and provides
a digital connection with 16 channels over a single wire. The FrSky X8R receiver module can be seen in
Figure 2.12.

(a) FrSky X8R Receiver module. (b) FrSky X8R Receiver module scheme. Retrieved
from [50].

Figure 2.12: FrSky Receiver module.

In Figure 2.12b on the right side the S.Bus port is shown. From top to bottom, the pins are ground,
power and signal. The pins are connected to the RC IN on the Pixhawk, see Figure 2.2c, where the top
pin is ground, the middle pin is power and the bottom pin is signal. The connection is also shown in
Table 2.4. In [50] a more extensive explanation of wiring the FrSky X8R radio receiver to the Pixhawk
and its capabilities is provided.

Pixhawk RC IN
Pin - + s

Signal Ground Power Signal
Signal Ground Power Signal

Pin - + s
FrSky X8R Radio receiver

Table 2.4: Connecting the FrSky X8R radio receiver to the Pixhawk.

The radio receiver is wireless connected to the FrSky Taranis X9D Plus RC. Via the RC various com-
mands can be sent to the quad-copter such as switching flight modes, throttling and applying references
to the angles.

22

Figure 2.13: The FrSky Taranis X9D Plus Radio Control Unit.

In general, joystick J3 is used as throttle, joystick J4 is used to rotate the quad-copter around the
yaw axis, joystick J2 is used to move forward and backward and joystick J1 is used to move left or
right. Via the MENU, PAGE, EXIT, +, - and ENT buttons, the controller can be configured via various
different menus on the LCD display. Furthermore, switches SA through SH can be configured to put
the quad-copter into specific operation modes, such as start logging data, configuration mode or various
different controller schemes.

Examples of such controller schemes are normal hover mode, where thrust and the angles are con-
trolled, altitude hold, where joystick J3 controls height, or position hold, where J3 controls height, J4
controls the rotation around the quad-copter, J2 controls in forward movement and J1 control sideways
movement. A brief explanation of all the buttons and joysticks can be found in [51]. A better explanation
of configuring and operating the FrSky Taranis X9D Plus will be explained in Section 3.3.

23

Chapter 3

Software
In the previous chapter, the hardware related to this master thesis project is discussed. In this chapter,
the software which enables the quad-copter to fly autonomously is discussed. The software to control the
quad-copter is based on Q-ground control, Matlab Simulink and custom made software. This chapter
describes all the software components and configuration of the software components. In Section 3.1 the
modules present in the Q-ground control flight stack are discussed. Section 3.2 discusses the designed
software and configuration of the Pixhawk and Simulink. Section 3.3 provides information on configura-
tion of the Radio Control Unit (RC), such that all the functionality of the quad-copter can be accessed
via the RC. In Section 3.4, the configuration of the Raspberry Pi and the additional software packages
are discussed, such that data can be transmitted between the ground station pc and the quad-copter.
Furthermore, Section 3.5 explains the data messages broadcast by the Marvelmind IPS, which are used
in the developed driver to obtain position updates. Lastly, Section 3.6 discusses, the Graphical User
Interface (GUI), which helps analyzing logged flight data of the quad-copter.

3.1 Q-ground control and PX4Pro flight stack

Q-ground control is a software platform to load and configure firmware on various types of flight machines,
such as helicopters, flying wings and quad-copters. Q-ground control loads the so called Px4Pro firmware
on the flight controller, in case of this project a Pixhawk described in Section 2.2. An overview of all the
software components available in the firmware is shown in Figure 3.1. The software architecture consists
of five major different parts:

Storage The storage part contains three different storage modules able of storing data or parameters
in various different locations depending on the needs of the software.

Database The first storage module is a database maintained on the SD-card where mission data
and flight specific data is stored. Examples of flight specific data are configured flight missions
and Geofence, which is a software solution to contain the quad-copter inside a virtual box
defined by Global Positioning System (GPS) locations.

Parameters The second storage module stores parameters on the Electrically Erasable Pro-
grammable Read-Only Memory (EEPROM) of the Flight Management Unit, which is in
this project the Pixhawk. In general, the parameters are set during configuration. After each
boot sequence, the parameters are stored in the EEPROM, which provides rapid access to the
parameters during flight.

Logging The third storage module stores mostly flight data to the SD-card. If desired, the data
can be requested and via Micro Air Vehicle Communication Protocol (MAVLink) and shown
on a user device, such as a computer or tablet. Examples are sensor data, or RC inputs.

External Connectivity The firmware has also the ability to communicate with external devices. This
allows for parameter tuning during configuration without re-uploading the firmware, or to visualize
various signals of the quad-copter during flight. The external communication can be handled by
two different modules:

MAVLink is a Micro Air Vehicle Communication Protocol (MAVLink) which allows communica-
tion with drones. MAVLink is an efficient communication protocol which uses at least 8 bytes
overhead [52].

FastRTPS or Fast Real Time Publish Subscribe (FastRTPS) is a communication protocol which
is designed and maintained by Object Management Group (OMG). FastRTPS is a standard
widely used in aerospace, defense and Internet of Things (IoT) applications. FastRTPS is
also adopted for the Robot Operating System (ROS) robotics toolkit which is widely used for
open source robotics projects. FastRTPS can also be used for offboard applications, such as
robotics and simulator tools.

24

Drivers The drivers are a collection of software modules which allow for connectivity between various
hardware parts and the main board. Examples of such drivers are for instance GPS and Inertial
Measurement Unit (IMU) drivers. Some hardware parts are not used, such as cameras and are
therefore not explained.

GPS allow for the configuration and connectivity of various different GPS units. This project
makes use of the Marvelmind IPS which needs a custom driver which is explained in Section
3.5.

RC Input configures and processes RC data. Configuration holds information about the hard-
ware connection between the RC and the main board, described in Chapter 2. Furthermore,
depending on the communication structure of the RC, the driver converts it to usable data.

IMU Drivers The Inertial Measurement Unit (IMU) driver handles the configuration and data
processing of the IMU.

Message Bus The message bus is the center of all software. The message bus is called Ubiquitous
Object Request Broker (uORB) which is an asynchronous publish/subscribe messaging Application
Programming Interface (API). uORB consists of message structures in which modules, for instance
drivers, can publish their data. Every module subscribed to the message can obtain the data from
the uORB bus. This procedure is regardless of update frequency and a full visual graph of all topics
and connections to subscribers and publishers can be found at [53]. More general information about
uORB can be found in [54].

Flight Control The Flight Control part holds the complete control structure as how it is originally
designed in Q-ground control. The flight control part hold state machines, state estimators and
various different controllers, such as rate control, angle control and position control. The modules
included in the flight control part are:

� State Machine

� Autonomous Flight

� Position Controller

� Attitude & Rate Controller

� Output Driver

� Sensors Hub

� Position & Attitude Estimator

All five different parts are shown in Figure 3.1, where the relation between each part is shown. The most
important part of the software, as can be seen in the Figure 3.1, is the message bus uORB, which allows
for data flow between all the different publishers and subscribers.

25

Figure 3.1: PX4Pro firmware architecture. Retrieved from [55].

The software as presented above can be uploaded to the Pixhawk via Q-ground control. The Q-
ground control allows for initial sensor calibration and hardware setup for devices connected to the
Pixhawk. Detailing the Q-ground control software is out of scope and will not be treated in this thesis.
Furthermore, multiple tutorials exist on-line on how to setup and calibrate a quad-copter using Q-ground
control.

3.2 Simulink

The flight control part shown in Figure 3.1 is replaced with software designed in Simulink. The most
important reason for replacing the flight control part by Simulink custom software is the nature of this
project. In fact one of the main objectives is to provide software to control the quad-copter autonomously,
and another main objective is to provide algorithms to counteract wind disturbances. To test these algo-
rithms, the flight controller must be modified. Moreover, it is hard to understand exactly what kind of
controllers are used in the standard Q-ground control software. As a beneficial side effect, Simulink al-
lows for an easy to understand visual programming scheme, which will ease the future uses of the software.

Before the quad-copter software can be programmed, additional installed software is needed. This can
all be found in the manual [56]. Additional software needed consists of the Pixhawk toolchain, CMake
and Q-ground control. A full description on how to install the necessary software can be found in the
manual [56].

Despite the software packages, Simulink requires multiple toolboxes in order to operate properly. In

26

the list below, the additional toolboxes are shown. All these toolboxes are necessary, except for the
Aerospace Blockset. The Aerospace blockset is used in an example software provided by Matlab. There-
fore, it is adviced to install the Aerospace blockset, such that those examples can run as well.

� Matlab R2016a/R2016b

� Simulink

� Embedded Coder

� Matlab Coder

� Simulink Coder

� Aerospace Blockset

� Simulink Control Design

After installing various software parts, additional Pixhawk target blocks are provided in the Simulink li-
brary. Those blocks allow connectivity between the Simulink software, various Q-ground control software
and the hardware. The following blocks are provided by Mathworks Pilot Support Package (PSP)

input rc This block provides access to the RC signals sent to the quad-copter receiver, which are
obtained by the Pixhawk. Various functions can be bounded to the signals, which are explained in
Section 3.3. The block provides settings for sample time and tickboxes for selecting specific output
signals. The block supports up to 8 channels and various info about the RC connectivity, such as
the Received Signal Strength Indicator (RSSI) and failsafes.

PWM output Is the block that outputs Pulse Width Modulation (PWM) values to the motors. Setting
up this block only consists of setting the PWM update rate, which can be set to {50, 125, 250, 300, 400}Hz.
Furthermore, the block supports up to 8 motors, which means multi-copters with different motor
configurations, such as hexa-copters and octa-copters are supported as well. Moreover, one input
of the block, called ARM output, is boolean valued and enables/disables all outputted Pulse Width
Modulation (PWM) values to the motors.

Speaker Tune Is a block that outputs tunes to the speaker. In general, the speaker can be used as
system indication. The block has 12 pre-defined tunes and custom tunes can be played as well. A
trigger input activates the selected tune.

RGB LED The RGB LED block manipulates the main Red-Green-Blue (RGB) LED on the Pixhawk.
The main usage is system indication. The block can be switched between 15 different colors and 7
different modes.

sensor combined Is a block that obtains data from most of the sensors, such as magnetometer, ac-
celerometer, gyroscope and barometer. The px4io service needs to be running in order to let the
block provide valid signals.

vehicle attitude The vehicle attitude block provides signals from the vehicle attitude uORB topic.
The attitude is based on sensor measurements, the selected observer, which can be an extended
Kalman Filter or an SO (3) attitude estimator and the sensor calibration. Due to the uncertainties
of this block, an attitude observer is designed separately in Simulink and this block is not used.

vehicle gps The vehicle gps block provides signals obtained from the vehicle gps position topic. GPS
modules communicate on the NMEA 0183 protocol, which is a GPS specific message structure
to send data from a GPS module to other devices, provided by the National Marine Electronics
Association (NMEA). Each GPS module sends specific messages, which are following the NMEA
0183 protocol. Depending on the content of the messages, the uORB topic will be published by
the GPS driver and obtained by the Simulink block. The block provides a position timestamp,
altitude, longitude, latitude, GPS timestamp, velocity, fix type and number of satellites. However,
the availability of the information depends on the installed GPS module.

battery measure This block monitors the health of the connected battery. If the battery status uORB
topic is published, the block provides information about voltage, low pass filtered voltage, current,
electric charge and a timestamp.

27

binary logger provides the ability to log data to the SD-card. The block has two inputs. One input is
used to provide data to the block, which needs to be stored. The other input is a trigger input used
to start and finish logging. If the input is not brought back to zero, the log file is still considered
open and data will be corrupted. All data is stored to binary files on the SD-card.

ExamplePrintFcn The ExamplePrintFcn block provides an example of printing data in the PX4 Nuttx
console terminal. The Nuttx console terminal is a Real-Time Operating System (RTOS) designed
for devices with limited space. However, this function is not always working in conjunction with
floating numbers. Furthermore, in order to work, the PX4 serial console shell should be activated
via the rc.txt file. The Serial console shell can not be active on the main USB gate, since
Simulink will otherwise not upload any code. Therefore, the serial console shell should communicate
over a different UART connection which can be connected to a FTDI connector. However, this
functionality only works when the quad-copter is connected to the pc using a USB cable. Only
then, the command prompt of the quad-copter can be entered.

Read ADC Channels The Pixhawk contains three Analog Digital Converter (ADC) connections,
which supports analog signals of 3.3V, 3.3V and 6.6V respectively. The Read ADC Channels
block provides these signals into Simulink. Sonar sensors could be for instance connected to ADC
gate, which provides the quad-copter from additional distance measurements.

uORB Write This block provides the ability to publish data to an existing uORB Topic with properly
defined structure elements. In this software version, only a maximum of five structure elements are
accessible.

uORB Read / Function-Call Trigger can be used in two different ways. Either this block reads
data from a uORB topic continuously, provided the topic exist and is well structured and defined.
Or the block is triggered if new data is published on the topic. In this case, the block responds in
an asynchronous fashion. The block can only operate in one of those fashions.

Serial The serial block can be used to read serial data form any of the Universal Asynchronous Re-
ceiver/Transmitter (UART) ports or the Universal Serial Bus (USB) port available on the Pixhawk.
Although this is a direct approach, it is advised to let the drivers handle communication to known
devices, such as the GPS and the IMU, since drivers handle configuration of the devices better.
The block can be configured as either a send block or a receiving block.

Read uORB Function Trigger Data This block will grab data affiliated with the uORB Topic which
is driving the asynchronous subsystem this block is located. The uORB Topic name will automat-
ically be determined based on call-backs.

Software installation on Linux is also provided. Although it is beneficial to run the Pixhawk Simulink
toolbox on a Linux distribution since it supports uploading code better than in windows, it is not treated
in this report, since it is out of scope. One last remark on the software, a better package is developed
during this graduation project, which allows easier installation and it supports newer versions of Matlab.
More information can be found at [57].

28

rc.txt

3.2.1 Configuration and timing tools

Configuring Matlab Simulink, in order to control the quad-copter can be done following Matlabs tutorial
[56]. However, some topics deserve additional attention. Most of the settings are applied via the model
configuration panel in Simulink. The most important aspects of the code generation can be found in the
Subsection ”Hardware Implementation” in the ”Simulink configuration panel”.

One of the most important aspects in real-time software design, is timing. The Matlab Simulink PSP
contains a few tools to improve and or analyzing software loop times. Aside from the fixed step size
configurable in the solver menu, additional settings can be configured to improve or analyze timing.

Base rate task priority During startup, various threats are spawned, such as the base-rate thread.
The base-rate threat tries to let the model run at the configured sample rate. Depending on the
priority of the base-rate threat, the model runs on-time or might have issues being finished after
the deadline. Increasing the priority results in less processes interrupting the model. However,
increasing the priority too high results in other process stop running on the Pixhawk, which might
lead to a lack of sensor updates. It is a powerful tool to tune, in order to meet timing requirements,
but tuning might lead to no performance at all.

Hard Real-Time constaints Hard real-time constraints can be set in the Hardware Implementation
Tab. This setting makes sure deadlines are met in the software. Although this suggests timing
improvement, it also means software shuts down after task over-runs occurs to many times. A task
over-run means software takes longer to process then the deadline is scheduled. The software will
be stopped regardless of the results or the progression and a new iteration is started. The Real-
Time constraint helps find a proper sample rate, such that the control loop software is on-time,
although it should never be used during flight.

External mode options External mode allows users to examine execution on-line, which facilitates
debugging and interactive testing. In external mode, the signal would not only be displayed in
Simulink. After a run is completed, the data is logged, such that off-line analysis can be applied.
Although this seems to be an excellent form of tuning controllers, it can not be used during flight.
External mode relies on a wired connection between the Pixhawk and the PC. Furthermore, the
software needs to be started via the play button in Simulink. This means external mode can
not rely on a wireless connection. Therefore, external mode is not suitable to use during flight.
However, for tuning procedures, which do not involve flight, external mode is an ideal solution to
tune parameters.

Rate Transition The rate transition block, provided by Simulink, can be used to lower the sampling
rate of particular software parts. The rate transitions spawns new threads, which contains the
software located after the rate transition block. Software parts running on different sample rates,
and therefore run in different threats, are generally shown in different colors in Simulink after code
generation. The most important beneficial property of this block is computational heavy software
parts can be placed in slower threats, and therefore reduce limitations on important control loops,
which needs to run on higher frequencies.

29

3.2.2 Boot process alternation

In order to load software designed in Simulink, the bootprocess of the Pixhawk needs to be altered. The
bootprocess of the Pixhawk progresses through multiple files for spawning processes. The bootprocess
of the Pixhawk starts with the file rcS located in ROMFS/px4fmu_common/init.d folder. First, the file
is reset and all global general parameters are loaded. Examples are disarming the quad-copter, storing
specific file locations, and setting up necessary hardware, such as mounting the SD-card.

After loading and configuring global parameters, the bootprocess searches for rc.txt file located on
the SD-card in the folder /etc. If the file exists, the boot process programmed in the rcS file will be
terminated and the boot process programmed in rc.txt continue.

If the rc.txt file does not exist, the boot process continues booting following the procedure programmed
in rcS. The next step is starting basic processes, such as uORB, dataman and the RGB-LED for system
indication and loading hardware specific parameters, such as number of battery cells. If the config.txt

file is located on the SD-card in the /etc folder, parameters can be altered before the boot processes
progresses. This allows disabling processes or changing hardware configurations regardless of configura-
tion settings.

After loading the parameters and starting the processes, the file which the boot sequence looks for
is extras.txt, which is located on the SD-card in the /etc folder. The extras.txt file allows of start-
ing custom processes. A full overview of the boot process is presented in the block diagram of Figure
3.2. More information about the boot process can be found in [58].

Start

Initialize

Load global
parameters

rc.txt
exists?

Boot from
rc.txt

Set specific
parameters

config.txt
exists?

run con-
fig.txt

Start
booting

processes

extras.txt
exists?

run ex-
tras.txt

Finish
boot

process

Stop

yes

no
yes no

no

yes

Figure 3.2: Boot process Pixhawk flight stack.

The boot process can be altered or manipulated in two different fashions. The first one is writing
a complete custom boot procedure in the rc.txt file. The second procedure holds writing commands
in the config.txt and extras.txt files, in order to maintain most of the boot process, but change it
where necessary. This project utilizes the first method and a complete custom boot procedure is written.
Running Simulink software on the Pixhawk only needs a few specific modules and therefore it is more
effective to only load the few needed processes instead of shutting down all other processes. The boot
procedure used in this project can be found in Appendix C, which is abbreviated from [56].

30

rcS
ROMFS/px4fmu_common/init.d
rc.txt
/etc
rcS
rc.txt
rc.txt
rcS
config.txt
/etc
extras.txt
/etc
extras.txt
rc.txt
config.txt
extras.txt

3.2.3 Quad copter software

The quad-copter control system design is based on standard control schematics, as provided in Figure
6.1. A state machine, controlling the decision making of the quad-copter, is not present in the control
scheme, since those functionalities are controlled via the RC by the user. Furthermore, the control scheme
consists of sensors, various filters, controllers, a motor mixer and outputs to the motors. Alongside the
control loop is the data processing scheme. In this part of the software, all the important data is captured
and, if desired, communicated to the ground station. Furthermore, the quad-copter logs all the data if
enabled on the RC.

Flight Control

Data Processing

Sensors

RC Filter

Filter

Controller Motor Mixer Motors

Data Preparation

Logging

Communication

Figure 3.3: Simulink Software block diagram.

The sensor block consists of data measurements of the IMU, magnetometer, battery, GPS and if
connected or provided, a sonar for distance measurements. The block RC only contains the RC input
block which allows the user to control the quad-copter. Within the RC block, some conditions are set
depending on the RC inputs, such that the quad-copter can fly in various different modes. The mode
switching of the quad-copter is explained in Section 3.3.

The inputs, both the sensors and the RC block, are filtered. First of all, the RC joysticks are nor-
malized between {−1, 1} in case of all joysticks, except for the throttle, which is normalized between
{0, 1}. After normalizing the received values, the signals are amplified to pre-configured values, which
can be seen in Table 3.1. In case of the RC block, a low pass filter is used to remove high frequent noise
from the joysticks. The filter is set with a cut-off frequency of 10Hz.

Joystick Roll Pitch Yaw Thrust X Y Z
[rad] [rad] [rad] [N] [m] [m] [m]

Min − 1
4π − 1

4π −π −0.2760 −1 −1 0
Max 1

4π
1
4π π −39.8720 1 1 1

Table 3.1: RC Joystick scaling values.

The filters on sensor side consists of removing any offset present in the measurement, and scaling
the measurement with calibrated values. Furthermore, a Madgwick filter is used to obtain angles and a
Kalman filter is used to filter and estimate the translational states. Both filters will be further explained
in Chapter 4, which also explains the sensor calibration.

After filtering, the RC and estimated states are inputted in the control part. Depending on the mode

31

selected by the user, either the desired angles and thrust obtained from the RC, or desired angles and
height, or desired location are set as reference. The control loop also contains a ramp, which after pre-
arm mode slowly outputs the control outputs, such that the Electronic Speed Controller (ESC) do not
disable. This is mostly important during altitude hold control, in which a large thrust is needed to keep
the quad-copter in a fixed height.

The motor mixing distributes the body torques and forces to thrust forces which should be generated by
the motors. The motor forces are transformed to PWM values. In case configuration mode is selected,
the motor mixing block arranges the thrust provided by the RC to the selected motor. After motor
mixing, the inputs are sent to the motors via the motors block. This block accepts PWM values as input
to the specific configured motors and a boolean arming command.

Alongside the control loop is the data processing loop. Within this loop the data preparation block
gathers most significant signals from the control loop. The gathered data is placed in either a bus,
which contains all signals, or a parameter bus, which contains only system parameters. The data can be
stored on the SD-card, via the logging block. This only happens, when logging is enabled via the RC.
Furthermore, the Communication block sends pre-selected data over UART to the Raspberry Pi and to
the ground station. Received information enters the software via this block as well.

3.2.4 Ground station software

The ground station software allows the user to visualize data from the quad-copter in the ground sta-
tion. The communication flow is shown in Figure 3.4. Data is obtained on a computer via a virtual
Communication port (COM port). The virtual COM port is more extensively explained in Section 3.4.
Serial Send and Serial Receive block are used to accept data from the COM port port in Simulink.

COM Port Simulink COM Port

Figure 3.4: Simulink Ground Station Software block diagram.

Messages to the quad-copter are sent on a sentence based message approach. Each sentence starts
with $Drone, such that each start of a sentence can be recognized between all other sentences. Further-
more, data is added to the sentence, based on user requirements. In general this means status updates
over specific signals, such as states or battery status, should be used. The sentence is finished with
an Astrix followed by a Cyclic Redundancy Check (CRC). The CRC checksum is based on a bitwise
Exclusive Or (XOR) operation of the payload of the message.

The bitwise XOR operations starts with the first two bytes in the message, which are the first two
bytes after $Drone. Every following two bytes are compared against previous operation. If only one
bit is set, the new checksum gets a set bit. If both or none bits are set, the checksum bit is set to zero.
This process is repeated until the last two bytes of the payload are reached. Afterwards, the $Drone
is placed in front and the Astrix and CRC is placed at the end. An example of two bytes added to the
CRC checksum in a XOR fashion is shown in Table 3.2.

Byte 1 Byte 2
Bit 1 2 15 16

Previous checksum 0 1 0 1
New Bytes 0 0 1 1

New checksum 0 1 1 0

Table 3.2: Bitwise Exclusive Or operation.

Received data is evaluated via the CRC checksum present at the end. If new data matches the
CRC checksum at the end, the data will be further processed and in most cases only visualized. If the
CRC checksum does not match, sended data will be discarded. Although the communication is mainly
designed to send and receive status data and even though a CRC checksum is used, it is not good

32

practice to use the communication inside the control loop, due to lost and mis-interpreted messages.
More information about the CRC checksum can be found in [59] and [60].

3.3 Configuring remote control

The Radio Control Unit (RC) is used as a state machine, in which the user can select various software
routines. Initial configuration of the RC can be found in various documentation, such as [51], [61] and
[50], which explains how to bind the RC and the receiver. This documentation also explains how to setup
fail safes and receiver number in case of multiple receiver usages. This section only explains configuration
after the initial setup.

Various buttons, switches, levers and joysticks are binded to the functionality in the software. The
user in this case functions as a state machine and provides the quad-copter with references. An overview
of all buttons, switches, levers and radio buttons can be found in Figure 2.13. In the mixer page of the
FrSky Taranis X9D Plus RC the inputs can be bounded to specific radio channels. In total, the Simulink
block supports up to 8 channels, therefore only 8 inputs can be bounded for functionality. An overview
of the binds are shown in Table 3.3.

Mixer Page
Channel Weight Source Name

1 100 I AIL Roll
2 100 I RUD Yaw
3 100 I ELE Pitch
4 100 I THR Throttle
5 100 SA Arm-Config
6 100 SC F Modes
7 100 SD F Modes
8 100 SB Optional

Table 3.3: Remote Control mixer page.

Aileron (AIL) controls the roll movement and is bounded by J1. The Rudder (RUD) controls the yaw
movement, which is bounded by J4. The Eleron (ELE) controls the pitch movement, which is bounded
by J2 and Throttle (THR) controls the throttle which is bounded by J3. Both joysticks are variable
in position (up, down, left, right) and moving a lever in a specific direction variates a value on the
bounded channel in the Simulink software. Therefore, each lever contains two variable channels, which
control two references. The switches SA, SB, SC and SD have three different positions and are used to
activate/deactivate programmed functionality. The specific functions of the switches are shown in Table
3.4.

SA

Up Dis-Arm
SC SD SB

None None None

Middle Arm

SC SD SB
Up None Manual None

Middle Recording Semi-Auto None
Down Recording Auto None

Down Config Auto-recording

SB SD
None Up Middle Down

SC
Up M1 M2 None

Middle M3 M4 None
Down None None None

Table 3.4: Remote Control switches functionality.

The switch SA is set as the leading switch, which enables, disables the quad-copter and the function-
ality of all other switches instantly. The modes of the quad-copter are

Dis-Arm Is a state in which the quad-copter is dis-armed. In this state, the quad-copter is safe to
approach and move around by hand although it is advised to dis-arm the quad-copter with the

33

hardware switch and disconnect the battery. In this state, the motors will not spin, and all
functionality of the other switches are disabled.

Arm In armed state, the quad-copter is activated and the motors are clear to spin. In this situation,
it is not advised to approach the quad-copter or move it around by hand. Switch SC enables and
disables recoding data. Switch SC also backups configured parameters. Switch SD manages the
following functionality:

Maunal Flight In manual flight, the throttle joysticks controls thrust directly and the roll, pitch
and yaw joysticks generate references for the angles of the quad-copter. The activated control
scheme is the angle controller.

Semi-auto flight In semi-auto flight, the angles are controlled in the same manner as during
manual control. However, the thrust is not controlled by the thrust stick anymore. Instead,
the throttle stick is used to generate a desired altitude. The activated control scheme is the
altitude-hold controller.

Auto flight In auto flight all joysticks are generating a reference on position level, except for the
yaw joystick, which still generates a reference for the yaw angle. The throttle stick relates
to the altitude, z-position, the pitch joystick relates to the x-position, which is forward and
backward movement. The roll joystick is connected to the y-position, which is a sideways
movement. The activated control scheme is the position-hold controller.

Config In config mode, the quad-copter is armed and starts recording automatically. Depending on the
state of switches SC and SD, motors 1, 2, 3 or 4 are enabled or disabled. This allows to help find
the rotation direction of the motors during installation. Or test motor health separately.

Switch SB is not used in this configuration. Since the Simulink software allows for 8 channels, this switch
is open to additional functionality.

3.4 Wireless communication

The wireless communication is performed by the Raspberry Pi 3 model B V1.2. This Raspberry Pi is
equipped with a WiFi network card, which can be used as an access point. This handles most of the
difficult communication problems, such as packet loss and connectivity.

The data from the Pixhawk is transfered to the Raspberry Pi via a UART connection, which is de-
scribed in Section 2.5. The data obtained from the UART connection is sent over WiFi to the ground
station computer using Serial to Network software (ser2net). ser2net allows serial data to be commu-
nicated over a network. On the ground station computer COMbyTCP connects the network port to a
virtual COM port, which is provided by COM0COM software. On one side of the virtual COM port
a Transmission Control Protocol/Internet Protocol (TCP-IP) connection is established. The other side
of the virtual COM port is provided to Simulink ground station software as COM port. The overall
connection acts as a COM port, such as any other USB-device, bridged over a network. An overview of
data flows through software packages can be seen in Figure 3.5.

34

Pixhawk Raspberry Pi PC

Simulink

com0com

combyTCP

NetworkNetwork

Ser2Net

GPIOUART

Figure 3.5: Communication block diagram from Pixhawk to pc.

Setting up the Raspberry Pi to transmit data obtained from the general purpose input output (GPIO)
pins starts with loading basic Raspbian software. Since multiple tutorials on how to install Raspbian on
a Raspberry Pi are available on-line, this part is not covered here. After installation, the SD-card should
be resized, such that more space can be used by the software. After that, enabling Secure Shell (SSH)
is needed in order to connect to the raspberry Pi via a terminal. Furthermore, enabling serial commu-
nication allows data flow over the GPIO pins. Lastly, the IP-addresses are fixed, such that a connection
to the Raspberry Pi over a network can always be established. This process, and the commands to do
so are provided in Appendix E.1.

After the installation and configuration of Raspbian on the Raspberry Pi, the ser2net software package
can be installed. Furthermore, the Raspberry Pi can be transformed into an access point. Configuration
and installation of the ser2net software is done via a script provided in Appendix E.2. In Appendix E.3
a script is provided for setting the Raspberry Pi up as an access point. Since the access point software
might drop the network connection at all, it is best to first install the ser2net software.

On computer side, the software packages are available on the internet and easy to install. Starting
with com0com, which can be found at [62], after unzipping, installing and starting the software, a screen
shows which COM port can be setup as virtual COM port. It might take a while before the COM port
are available, since the computer installs drivers to let the COM port function. An overview of the
software and the configuration can be found in Appendix F. CombyTCP can be downloaded from [63].
The software can be started without installation. On the network side, the IP address of the Raspberry
Pi and the port number can be setup. In the COM port properties side, the virtual COM port from the
com0com software can be setup. The communication can be further configured according to the settings
setup in the ser2net software, such as Baud rate, Parity, number of data bits, number of stop bits and
handshake. An overview of the software and sample configuration can be found in Appendix G.

3.5 Indoor Positioning System driver

The Marvelmind mobile beacon (hedgehog) can be configured to communicate locations directly to
robots. In order to let the Marvelmind hedgehog communicate with the robot, either a driver for the
Marvelmind protocol is needed, or a driver which accepts the generalized GPS protocol, called NMEA
0183. The protocol is maintained by the National Marine Electronics Association (NMEA). The protocol
is designed to let various different devices communicate on a sentenced based communication, which only
allows American Standard Code for Information Interchange (ASCII) characters [64].

The communication protocol is designed for various different devices of which GPS is one of. The sen-
tences sent over the communication lines follow a specific sentence format. The start is always marked

35

with an $-sign followed by two characters, which are called ”Talker Identifiers”. The talker identifiers
differentiate between various devices. All GPS messages are marked with GP, which let the receiver know
a GPS messages is send. The talker identifiers are followed by message identifiers, which are three charac-
ters, a few examples are treated in [65] and [66]. Furthermore, each message has a fixed format and values
are delimited by commas. The end of a sentence is marked with an Astrix followed by the CRC checksum.

Explaining various different messages is out of scope and is not explained in this report, only the messages
which Marvelmind hedgehog is able to send are explained. The full architecture can be found in [64].
The Marvelmind hedgehog is able to broadcast four different NMEA 0183 messages. The GPS NMEA
0183 messages broadcast by the hedgehog are explained in the following subsections.

The designed drivers handles the NMEA 0183 messages broadcasted by the Marvelmind. In Appendix
H the installation of the IPS driver is explained. In Appendix I is the configuration provided for the
Marvelmind during this project.

3.5.1 GPGGA message

The GGA message is the so called Global Positioning System Fix Data. The message contains most
information about the location, quality of the position measurement and timestamps. An example
message format is shown in Listing 3.1 and Table 3.5. For controlling the quad-copter on position level,
this message contains the most important information. During configuration of the hedgehog, the GGA
message needs to be enabled.

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 | | | | | | | | | | | | | | | |
3 $GPGGA,hhmmss.ss,llll.ll,a,yyyyy.yy,a,x,xx,x.x,x.x,M,x.x,M,x.x,xxxx*hh

Listing 3.1: GPGGA example message format.

1 Talker and message identifiers
2 Time (UTC)
3 Latitude
4 N or S (North or South)
5 Longitude
6 E or W (East or West)
7 GPS Quality Indicator

0 - fix not available
1 - GPS fix
2 - Differential GPS fix

8 Number of satellites in view, 00 - 12
9 Horizontal Dilution of precision
10 Antenna Altitude above/below mean-sea-level (geoid)
11 Units of antenna altitude, meters
12 Geoidal separation, the difference between the WGS-84 earth

ellipsoid and mean-sea-level (geoid), ”-” means mean-sea-level below ellipsoid
13 Units of geoidal separation, meters
14 Age of differential GPS data, time in seconds since last SC104

type 1 or 9 update, null field when DGPS is not used
15 Differential reference station ID, 0000-1023
16 Checksum

Table 3.5: GPGGA message format.

36

3.5.2 GPRMC message

The RMC message is the so called Recommended Minimum Navigation Information. The message
contains most information about the 2D location, velocity over ground, date stamp and information
about magnetic variation. An example message format is shown in Listing 3.2 and Table 3.6. Although
it is available and contains velocity information, for controlling the quad-copter on position level this
message is not necessarily needed since it only contains a 2D position measurement.

1 1 2 3 4 5 6 7 8 9 10 11 12 13
2 | | | | | | | | | | | | |
3 $GPRMC,hhmmss.ss,A,llll.ll,a,yyyyy.yy,a,x.x,x.x,xxxx,x.x,a*hh

Listing 3.2: GPRMC example message format.

1 Talker and message identifiers
2 Time (UTC)
3 Status, A = data valid, V = data invalid
4 Latitude
5 N or S (North or South)
6 Longitude
7 E or W (East or West)
8 Speed over ground, knots
9 Track made good, degrees true
10 Date, ddmmyy
11 Magnetic Variation, degrees
12 E or W (East or West)
13 Checksum

Table 3.6: GPRMC message format.

3.5.3 GPVTG message

The VTG message is the so called Track Made Good and Ground Speed. The message contains informa-
tion about velocity in knots and kilometers per hour. Since the velocity is expressed in a single value, the
direction is included, which can be expressed in degrees and magnetic direction. An example message
format is shown in Listing 3.3 and Table 3.7. Although it is available and contains velocity information,
for controlling the quad-copter on position level this message is not necessarily needed.

1 1 2 3 4 5 6 7 8 9 10
2 | | | | | | | | | |
3 $GPVTG,x.x,T,x.x,M,x.x,N,x.x,K*hh

Listing 3.3: GPVTG example message format.

1 Talker and message identifiers
2 Track Degrees
3 T = True
4 Track Degrees
5 M = Magnetic
6 Speed Knots
7 N = Knots
8 Speed Kilometers Per Hour
9 K = Kilometres Per Hour
10 Checksum

Table 3.7: GPVTG message Format.

37

3.5.4 GPZDA message

The ZDA message is the so called Time and Date message. The message contains information about
local time zone and date stamp. Since the Marvelmind does not cross timezones during usage, it is not
needed to broadcast this message. An example message format is shown in Listing 3.4 and Table 3.8.

1 1 2 3 4 5 6 7 8
2 | | | | | | | |
3 $GPZDA,hhmmss.ss,xx,xx,xxxx,xx,xx*hh

Listing 3.4: GPZDA example message format.

1 Talker and message identifiers
2 Local zone minutes description, same sign as local hours
3 Local zone description, 00 to +/- 13 hours
4 Year
5 Month, 01 to 12
6 Day, 01 to 31
7 Time (UTC)
8 Checksum

Table 3.8: GPZDA message format.

3.6 Matlab Graphical User Interface

In order to configure, evaluate and visualize the logged data, a Matlab Graphical User Interface (GUI) is
designed. The bin-files are loaded using Matlab code presented in Appendix D, which is obtained from
[56]. Depending on the pressed buttons, the GUI loads sub windows, in which either data is visualized,
or software runs such that specific calibration sequences are performed. The Matlab GUI is shown in
Figure 3.6.

Figure 3.6: Matlab GUI for configuration, evaluation and visualization of the flight data.

The GUI can be divided in six different parts loading data is the first part and setting the data struc-
ture is the second part. Both parts are shown on the left hand side of Figure 3.6. The measurement can
be placed in folders inside the GUI directory. The GUI looks for three files called RawSensorData_*.bin,
SettingsP1_*.bin and SettingsP2_*.bin, where * is a wild-card for any kind of name or character set.

38

RawSensorData_*.bin
SettingsP1_*.bin
SettingsP2_*.bin

If all three files are present, the data can be loaded into the GUI. The structure definition part divides var-
ious sizes of vectors from the loaded bin-files. If accidentally the data size changes, it can be adopted here.

The middle top part of the GUI holds the sensor subsection. This section provides options to visu-
alize various sensor signals, starting by raw sensor data, filtered data and 3D data, for instance in case
of the magnetometer. Furthermore, a calibration option is present as well, which allows fast calibration
based on the loaded data.

The right top part contains options to configure the Madgwick filter and Kalman filter, which are
explained in further detail in Subsections 4.2.2 and 4.2.3. Furthermore, state estimation data can be
shown as well in plain 2D data or as 3D data in case of positions and angles. In addition, the state data
section has the ability to show any kind of signal in Fast-Fourier-Transform (FFT) plot.

The middle bottom section of the GUI contains options regarding references, controllers and outputs.
The first options shows all obtain RC inputs, varying from raw roll, pitch, yaw command to Received
Signal Strength Indicator (RSSI) and failsafe. The reference option visualizes the references inputted
to the control structure. In case of a cascaded control structure, the reference might be obtained from
another state. The error data shows the error data inputted to the control structure. This option mainly
focuses on what each part of the controller contributes to the control action, such as Proportional Inte-
gral Derivative (PID) errors and feedforwards. The last option shows the requested torques and forces
generated by the controllers. Furthermore, the resulted PWM values can be visualized. The status of the
third order solver provided in Appendix L can be seen as will to debug thrust to PWM transformations.

The last section of the GUI provides system status information. System status information can be
found on the right bottom side of the GUI and provides information options for parameters and internal
clocks to analyze timing during operation. Lastly, the section provides an option called system mode
which shows the flight modes during flight, such as angle control, altitude-hold control or position control.

39

Chapter 4

Mathematical model, state
estimation and control
Previous chapters explained the hardware and software side of this master thesis project. This Chapter
provides a mathematical model of the quad-copter and addresses its control. In Section 4.1, the non-
linear mathematical model is discussed. The non-linear model will be linearized around near hovering
flight modes. Furthermore, Section 4.1 describes the propulsion model and sensor calibration. In Section
4.2, state estimators are discussed. The state estimation algorithms consists of a Madgwick filter for
the angular states and a Kalman filter for the translational states. Lastly, in Section 4.3 a controller
will be synthesized based on the linearized model near hovering flight modes. The linearized model is
discretized. A feedback controller is designed based on pole placement.

4.1 Mathematical model

In various works in the literature, a quad-copter model is already provided [27], [26], [6] and [9]. Therefore,
a full first principles (e.g. Lagrange or Newton Euler) derivation of the mathematical quad-copter model
will not be explained here. Only key elements, such as frame rotations, are discussed. Figure 4.1 shows
a mathematical representation of a quad-copter in which a body fixed frame and earth fixed frame is
chosen. Depending on the frame selection both the mathematical model and its dynamics, as the sensor
fusion filters and their state estimators vary in structure.

M1

F1

M2

F2

M3

F3

M4

F4

OB

OI

−→e I1

−→e I2

−→e I3

−→e B3

−→e B2

−→e B1

Fz

m I

T1

T3 T2

T4

Figure 4.1: Schematic representation of the quad-copter.

4.1.1 Reference frame

The North-East-Down reference frame (NED frame) is the most commonly used rotation frame in avia-
tion. According to this convention, the positive x-axis points north, the positive y-axis points east and
the positive z-axis points down. Any rotation around this frame can be described by three independent
Euler angles rotating around x, y and z. The rotation around x is described by Rx (φ), see Equation
(4.1), where φ ∈ R is the rotation in radians. The rotation around x is also known as the roll rotation.
The rotation around y is given in Equation (4.2), where θ ∈ R is the rotation in radians, also known as
the pitch rotation, and a rotation around z is given as Equation (4.3), where ψ ∈ R is the rotation in

40

radians, also known as the yaw rotation.

Rx (φ) =

1 0 0
0 cos (φ) − sin (φ)
0 sin (φ) cos (φ)

 (4.1)

Ry (θ) =

 cos (θ) 0 sin (θ)
0 1 0

− sin (θ) 0 cos (θ)

 (4.2)

Rz (ψ) =

cos (ψ) − sin (ψ) 0
sin (ψ) cos (ψ) 0

0 0 1

 (4.3)

The full rotation from body fixed frame −→e B to earth fixed frame −→e I , as depicted in Figure 4.1, can
therefore be expressed as three independent rotations φ, θ and ψ around the three independent axes x,
y and z. Equation (4.4) describes the rotation in matrix form. The rotation frame is an element of the
special orthogonal group SO (3) =

{
R (λ) ∈ R3×3 : RT (λ)R (λ) = R (λ)RT (λ) = I3,detR (λ) = 1

}
.

R (λ) = Rz (ψ)Ry (θ)Rx (φ)

=

cψcθ cψsφsθ − cφsψ sφsψ + cφcψsθ
cθsψ cφcψ + sφsψsθ cφsψsθ − cψsφ
−sθ cθsφ cφcθ

 (4.4)

where s and c represent sin and cos respectively and φ, θ and ψ are the angles around the x, y and z-axis
respectively.

4.1.2 Non-linear quad-copter model

The quad-copter model is represented as a non-linear rigid body expressed with Newton-Euler equations.
The equations of the quad-copter dynamics are as follows:

ṗ = v

v̇ = g−→e I3 −
1

m
R (λ)T−→e B3

λ̇ = Q (λ)ω

ω̇ = J−1Sskew (ω) Jω + J−1τ

(4.5)

where p =
[
x y z

]T ∈ R3 is the position of the center of mass of the quad-copter with respect to
the origin of the earth fixed frame OI , v ∈ R3×1 is the velocity of the quad-copter, T ∈ R is the thrust
generated by the quad-copters propellers F1, F2, F3 and F4 in body fixed frame and g ∈ R and m ∈ R
are the gravitational acceleration acting on the quad-copter and the mass of the quad-copter receptively.

The angular velocities are expressed as ω =
[
ωx ωy ωz

]T ∈ R3, R (λ) ∈ SO (3) is the rotation matrix

as described in Subsection 4.1.1. Furthermore, λ =
[
φ θ ψ

]T ∈ R3×1 are the rotations angles around

the x, y and z-axis from body fixed frame −→e B to earth fixed frame −→e I . The torques applied to the

quad-copter by the propellers are expressed as τ =
[
τx τy τz

]T ∈ R3. J ∈ R3×3 denotes the inertia
matrix. The matrix Sskew (ω) is a skew symmetric matrix given by:

Sskew (ω) =

 0 ωz −ωy
−ωz 0 ωx
ωy −ωx 0

 (4.6)

Lastly, the Q (λ) matrix maps angular velocities to angular rate of change, which can be written as
follows:

Q =

1 sin (φ) sin(θ)
cos(θ) − cos (φ) sin(θ)

cos(θ)

0 cos (φ) sin (φ)
0 − sin (φ) 1

cos(θ) cos (φ) 1
cos(θ)

 (4.7)

41

4.1.3 Linearized quad-copter model

For the sake of simplicity, the non-linear quad-copter model proposed in (4.5) is linearized around an equi-

librium point referred to as hovering mode. This equilibrium point is characterized by p =
[
x y z

]T ∈
R3, v = 0, R (λ) = I, which means all velocities are 0, all angles are kept at 0, and all angular velocities
are set to 0, ω = 0, assuming the inertia matrix is of a diagonal form J = diag (Jxx, Jyy, Jzz). The
linearized decoupled models become:

φ̇ = ωx

ω̇x =
1

Jxx
τx

ẋ1 = x2

ẋ2 = − T
m
θ

θ̇ = ωy

ω̇y =
1

Jyy
τy

ẏ1 = y2

ẏ2 =
T

m
φ

ψ̇ = ωz

ω̇z =
1

Jzz
τz

ż1 = z2

ż2 =
1

m
T

(4.8)

It can be seen, that all the system consists of multiple double integrators, where the input for the x and
y dynamics depends on the angles θ and φ and the thrust T generated for holding altitude in z direction.
This means the quad-copter model can also be written as four linear time-invariant (LTI) decoupled
systems as described by:

ẋ1 = x2

ẋ2 = −T
∗

m
θ

θ̇ = ωy

ω̇y =
1

Jyy
τy

ẏ1 = y2

ẏ2 =
T ∗

m
φ

φ̇ = ωx

ω̇x =
1

Jxx
τx

ψ̇ = ωz

ω̇z =
1

Jzz
τz

ż1 = z2

ż2 =
1

m
T

(4.9)

where T ∗ is the thrust. In near hovering modes the thrust is equal to the gravitational acceleration and
the mass T ∗ = −gm of the quad-copter, to keep it in z-position.

4.1.4 Motor mixing matrix

The motor mixing matrix distributes the requested control forces to the necessary motors. The motor
mixing matrix depends on the positioning of the motors in relation to the center of mass. The trans-

formation from control inputs
[
f τx τy τz

]T
to motor inputs

[
fm1 fm2 fm3 fm4

]T
utilizing the

motor mixing matrix Mm is described by:
fm1

fm2

fm3

fm4

 = M−1
m

f
τx
τy
τz

 (4.10)

where Mm ∈ R4×4 is the motor mixing matrix, f ∈ R is the control thrust, τx ∈ R is the roll control
moment, τy ∈ R is the pitch control moment, τz ∈ R is the yaw control moment and fmi ∈ R is the motor
force for motor i. The motor mixing matrix is obtained by redesigning the quad-copter in Solidworks,
see Appendix M. Within Solidworks, distances can be measured from each motor to the center of mass,
the results are shown in Table 4.1.

42

Distance to center of mass
X Y Z

[mm] [mm] [mm]
Motor 1 165.87 212.64 53.33
Motor 2 109.79 175.86 53.33
Motor 3 109.79 175.86 53.33
Motor 4 165.87 212.64 53.33

Table 4.1: Motor distances to center of mass.

The motor mixing matrix Mm structure is depending on the configuration of the drone. Provided
the configuration as is depicted in Figure 4.1, the motor mixing matrix can be described as:

Mm =

T1 T2 T3 T4

−R1 −R2 R3 R4

P1 −P2 −P3 P4

Y1 −Y2 Y3 −Y4

 (4.11)

where Ti is the thrust constant for motor i, Ri is the roll constant for motor i, Pi is the pitch constant
for motor i and Yi is the pitch constant for motor i. Provided the measured distances in Table 4.1, the
motor mixing constants can be obtained. The thrust constant is a an equal contribution of all motors.
Therefore Ti is set at 1 for all motors. The roll constant Ri, which transforms motor force fi to roll
torque τx is obtained by taking the Y distance of the motor to the center of mass in meters. The pitch
constant Pi, which transforms motor force fi to pitch torque τy is obtained by taking the X distance of
the motor to the center of mass in meters. The yaw constant Yi, which transforms motor force fi to yaw
torque τz is obtained by taking the X-Y distance of the motor to the center of mass in meters. This is
can be described by:

Yi =
√
X2
mi

+ Y 2
mi

(4.12)

The results of constructing the motor mixing matrix is provided in Table 4.2. Due to inconsistencies in
the Solidworks model compared to the real test-bed, the motor mixing matrix is slightly adjusted for
improved control.

Motor mixing constants
T R P Y

Motor 1 1 0.212 0.165 0.2686
Motor 2 1 0.175 0.109 0.2062
Motor 3 1 0.175 0.109 0.2062
Motor 4 1 0.212 0.165 0.2686

Table 4.2: Motor distances to center of mass.

4.1.5 Propulsion model

The thrust generated by the propellers can be controlled by sending Pulse Width Modulation (PWM)
to the Electronic Speed Controller (ESC). In order to request the desired thrust, a mapping between
the thrust and the PWM is experimentally obtained. The ESC accepts PWM values between 1000 and
2000 pulses, which corresponds to a duty-cycle between 50% and 100%. The experiments conducted,
increment the PWM with steps of 100 pulses, which results in 11 different thrust measurements. The
thrust is measured in terms of grams thrust, which is converted to newtons by multiplying by 9.81

1000 . In
the process, the power and current are measured as well. The experiments were conducted with four
different propellers per motor. The power, current and thrust measurements are shown in Figure 4.2 for
motor 1 for each propeller. In black, is the average of the measurements shown, which is later used to
make a least squares fit. Measurement data of motor 2, 3 and 4 are presented in Appendix J.

43

(a) Power measurement motor 1. (b) Current measurement motor 1. (c) Thrust measurement motor 1.

Figure 4.2: Power, current and thrust measurements for motor one with four different propellers.

In order to analytically obtain a PWM value for a requested thrust a data fit is carried out. In fact,
second order and third order polynomials are used and compared to obtain a relation between PWM
and thrust. The advantage of utilizing a second order polynomial is the relative easy inverse mapping
from desired thrust to PWM. However, a third order polynomial results in a better fit. Therefore, both
order polynomials will be compared.

Both polynomials can be expressed as Equation (4.13) where n defines the order of the polynomial.
Furthermore, given m measurements, X ∈ Rm×n where each column contains PWM measurements
xi =

[
pwmn

i . . . pwm0
i

]
. T̃ ∈ Rm×1 is the estimated thrust and T ∈ Rm×1 is the measured thrust. The

vector B ∈ Rn×1 contains the polynomial parameters of the fit. The unknown vector B =
[
bn ... b0

]T
can be obtained from Equation (4.14), where the parameters are depending on the PWM measurements
X and the actual measured thrust T .

T̃ = XB (4.13)

B =
(
XTX

)−1
XTT (4.14)

T =
[
pwmn ... pwm0

] bn...
b0

 (4.15)

In order to quantize the error between the least squares fit thrust and the actual measured thrust, an error
function is created based on the absolute value of the difference between the measured and estimated
thrust, see Equation (4.16), where T is the measured thrust, T̃ is the estimated thrust and E is the
absolute value of the difference between the measured and the estimated thrust.

Ei =

√(
T̃i − Ti

)2

(4.16)

Ē =
1

n

n∑
i=1

Ei (4.17)

In Figure 4.3 in blue, a second order polynomial and its error function is plotted and in red, a third order
polynomial and its error function is plotted over the average measurements of the 4 propellers for motor
1. The black line is the averaged thrust measurement for motor 1. As can be seen in the lower plot, the
error for the second order polynomial fit is on average 0.2206 N and for the third order polynomial fit is
on average 0.0814 N.

44

Figure 4.3: Least squares fit of second and third order polynomials, including the error.

Although the second order polynomial approximates the PWM to thrust relation closely, a third
order polynomial shows a better fit compared to the second order polynomial. In Table 4.3 are the
fitting results shown of the second order polynomial fit. In Table 4.4 are the fitting results shown of the
third order polynomial fit. The quality of all fits is shown in column Ē and a third order polynomial fit
shows on average 2.5 times better fitting results compared to a second order fit. Therefore, a third order
fit will be used on the quad-copter to approximate the thrust, despite the complexity involved in finding
an inverse mapping.

Second order polynomial fit constants
Motor b0 b1 b2 Ē
M1 −1.3605 −0.0035 4.6206e−6 0.2206
M2 −2.3054 −0.0023 4.3465e−6 0.2334
M3 −1.1023 −0.0039 4.7844e−6 0.2186
M4 −1.4868 −0.0037 4.9622e−6 0.2429

Table 4.3: Results of fitting a second order polynomial fit to all thrust measurements of all four different
motors. Ē is the average absolute error of the least squares fit.

Third order polynomial fit constants
Motor b0 b1 b2 b3 Ē
M1 28.6596 −0.0670 0.4809e−4 −0.9659e−8 0.0814
M2 30.4836 −0.0716 0.5182e−4 −1.0550e−8 0.0790
M3 28.6231 −0.0668 0.4782e−4 −0.9564e−8 0.0794
M4 31.7552 −0.0740 0.5309e−4 −1.0696e−8 0.0859

Table 4.4: Results of fitting a third order polynomial fit to all thrust measurements of all four different
motors. Ē is the average absolute error of the least squares fit.

During flight, a desired thrust, obtained from the controllers is mapped back to the corresponding
PWM values. The polynomial to solve is presented in Equation (4.18), where Tdesired is the desired
thrust for the specific motor and pwm is the PWM related to the desired thrust. The full algorithm to
convert desired thrust to PWM, can be found in Appendix L.

Tdesired = b3pwm3 + b2pwm2 + b1pwm + b0 (4.18)

45

4.1.6 Sensor Calibration

An important aspect, before sensors can be used is sensor calibration. The quad-copter contains an ac-
celerometer, magnetometer and a gyroscope. Simple calibration methods exist, such as a four parameter
calibration and a six parameter calibration [67],[68]. However, this project utilizes fitting an ellipsoid to
measurement date. The calibration can be thought of as raw measurement data representing an ellipsoid,
offset from the origin. Ideally, the measurements should represent a perfect orb with its center at the
origin. By fitting an ellipsoid on the measured ellipsoid, scaling parameters and offset parameters can
be obtained, resulting in a transformation from the measured ellipsoid to the desired orb. An example is
depicted in Figure 4.4. In Subsection 4.1.6.1 the results of fitting an ellipsoid on the accelerometer and
magnetometer data is discussed.

Figure 4.4: Sensor calibration, from ellipsoid to orb. Provided by [68].

Furthermore, the magnetometer needs additional calibration such that disturbances generated by the
motors can be rejected. This calibration uses a least squares fit to correct for disturbances, which are
related to the current. The calibration procedure is discussed in Subsection 4.1.6.2.

Fitting an ellipsoid is only useful for sensors which measure a reference vector in a specific direction
without too much dynamical interference. The reference vector measured by the accelerometer is the
gravitational acceleration vector. The reference vector measured by the magnetometer is the earth’s
magnetic field vector. However, the gyroscope measures angular velocity which only contains system
dynamics and no reference vector. Therefore, calibrating the gyroscope is performed by integrating the
measurement data and fitting the start and final measured angles to the number of rotations. Calibrating
the gyroscope is discussed in Subsection 4.1.6.3.

4.1.6.1 Fitting an ellipsoid

Fitting an ellipsoid is based on [1]. Within this section fitting an ellipsoid is only highlighted. The code
used to fit an ellipsoid to measurement data, for instance the accelerometer and magnetometer data,
is provided in Appendix K. The Matlab code is obtained from [1]. Measurement data is obtained by
rotating the accelerometer or magnetometer around all axis multiple times.

46

(a) Accelerometer calibration. (b) Magnetometer calibration.

Figure 4.5: Fitting ellipsoids on measurement data to obtain offset, scaling and rotation parameters.

In Figure 4.5, calibration results of the magnetometer and accelerometer are shown. The results
of the Matlab function are a vector ”center”, a vector ”radii” and a matrix ”evecs”. The offset V is
obtained as the ”center” vector result obtained from the Matlab function. Measured data is corrected
by removing the offset and scaling the measurements as provided by Equation (4.19). In Equation
(4.19), Y ∈ R3×1 contains uncalibrated measurement data from the accelerometer or the magnetometer,
W ∈ R3×3 contains the scaling parameters, V ∈ R3×1 contains the offset and Ỹ ∈ R3×1 is the calibrated
sensor measurement.

Ỹ = W (Y − V)

W = ¯(radii) (evecs) (radii)
−1

(evecs)
T

V = center

(4.19)

The parameters ai obtained through the ellipsoid fit method are provided in Table 4.5.

Accelerometer Magnetometer
ax ay az Mx My Mz
m
s2

m
s2

m
s2 µT µT µT

Scaling Wi

1.0152 -0.0044 -0.0051 1.0278 -0.0553 -0.0198
-0.0044 1.0023 0.0161 -0.0553 0.9976 0.0167
-0.0051 0.0161 0.9836 -0.0198 0.0167 0.9828

Offset Vi 0.1221 0.0028 -0.0298 0.0436 0.0715 0.0063

Table 4.5: Calibration results for magnetometer and accelerometer.

4.1.6.2 Current corrections

By fitting an ellipsoid to the measurement data, the accelerometer data can be calibrated. However, the
magnetometer is only partially calibrated. Since the magnetometers principles works on earth magnetic
field, it also picks up magnetic disturbances around it. One of the major disturbances are the quad-copter
motors. By utilizing current measurements, which is related to the generated torques by the motors, the
magnetic field disturbance generated by the motors can be compensated.

47

Figure 4.6: Magnetometer compensation for motors magnetic fields.

Figure 4.6 shows the results of calibrating the magnetometer under influence of disturbances gener-
ated by the rotating motors. During the calibration the quad-copter is mounted to a fixed object, such
that it can not move in any direction. While the quad-copters thrust is slowly increased, current mea-
surements and magnetometer measurements are taken. Since the magnetometer measurements do not
contain any of the dynamics of the quad-copter, the change in values can be fully addressed to magnetic
field disturbances generated by the rotating motors.

In order to compensate for magnetic disturbances generated by the motors, a first order polynomial
is fitted to the magnetometer measurements by utilizing a least squares fit procedure. This relates a
change in magnetometer measurement to the measured current. The first order polynomial is of the
form:

mi,j = aicj + bi (4.20)

Where mi,j is a single magnetometer measurement of a single axis, cj is a single current measurement.
Furthermore, ai and bi are the parameters relating the current to the magnetometer measurement. The
same relation can also be written in matrix form:mi,1

...
mi,n

 =

c1 1
...

...
cn 1

[aibi
]

Mi = CBi

(4.21)

Where Mi ∈ Rn×1 are the obtained magnetometer measurements for axis i, Bi ∈ R2×1 contains the first
order polynomial parameters for axis i and C ∈ Rn×2 contains the current measurements of orders 1 and
0, where order 0 results in a column filled with ones. Provided Equation (4.21), the parameters B can
be obtained utilizing a least squares fit:

Bi =
(
CTC

)−1
CTMi (4.22)

The parameters ai and bi are obtained through the least squares fit method are provided in Table 4.6.

Magnetometer axis
Mx My Mz

Rate µT
A 0.0044 -0.0061 -0.0077

Offset µT -0.1945 -0.3763 0.1067

Table 4.6: Current calibration results for magnetometer.

48

The magnetometer corrections M̃i,j are calculated as in Equation (4.23), where Mi,j is the magne-
tometer measurement of axis i, Cj is the current measurement and ai is the obtained rate parameter, the
obtained offset bi is not used in correcting the magnetometer measurements. Results of the corrections
are shown in the bottom part of Figure 4.6.

M̃i,j = Mi,j − aiCj (4.23)

4.1.6.3 Gyroscope

The gyroscope is calibrated by rotating the sensor multiple times around its axis. By integrating the
sensor data, angles are obtained, which should match the number of rotations. By evaluating the angle
results of the gyroscope with the actual rotated angles, the magnitude of each gyroscope axis can be
calibrated. Since small fluctuations in angle rotations leads to wrongly calibrated axis, it is better
practice to rotate the gyroscope multiple rounds. In Figure 4.7, the gyroscope is rotated 10 times around
each axis. The integrated angles are evaluated over this movement, which means each rotation starts at
0 radians and ends at 10× 2π radians.

Figure 4.7: Gyroscope calibration results.

Gyroscope axis
ωx ωy ωz
rad
s

rad
s

rad
s

Bias -0.0174 0.0010 0.0172
Amplitude 0.9627 0.9934 1.0174

Table 4.7: Calibration results for gyroscope.

In Table 4.7 the calibration results can be seen. The bias is obtained by averaging the measurements
before dynamics start. Although the bias is presented here as a parameter, during pre-arm conditions,
the bias will be calculated as the average of gyroscope measurements for an axis over a fixed time interval.
Furthermore, the amplitude is close to zero, which leads to the conclusion that the gyroscope is already
calibrated closely to the actual angular velocities. Furthermore, temperature and environment influences
the measurement results of the gyroscope, therefore it is advised to recalibrate the gyroscope on a regular
basis.

49

4.2 State estimation

Various filters can be used to estimate the rotational states of a quad-copter, such as a complementary
filter [69], various Kalman filters, Mahoney filter [70] or a Madgwick filter [71]. The nature of the Tech
United field results in magnetic disturbances due to the presence of ferromagnetic materials, such as
concrete reinforcement present in the floor and the drone cage existing of metal pipes. Therefore, the
Madgwick filter is chosen since it is able to reject magnetic disturbed measurements obtained by the
magnetometer.

4.2.1 Quaternions

The core of the filter propagates the attitude estimation based on a quaternion representation. Angles
can be expressed in Euler/Tait-Bryant angles, quaternions, or rotation matrices, where quaternions and
rotation matrices do not contain singularity problems. In control structures quaternions and Euler repre-
sentations are easier to understand. The Madgwick filter utilizes quaternions. Most of the mathematics
related to quaternions can be found in [72]. This section provides only a brief introduction to quaternion
based math.

A quaternion is represented as:

q =

q0

q1

q2

q3

 =

cos
(
θ
2

)
ex sin

(
θ
2

)
ey cos

(
θ
2

)
ez cos

(
θ
2

)
 (4.24)

where θ ∈ [0, 2π] is an angle and
[
ex ey ez

]T
is a vector with unity norm around which is rotated.

The adjoint, the norm, the inverse of a quaternion q and a normalized quaternion q̂ are defined as:

q̄ =
[
q0 −q1 −q2 −q3

]T
‖q‖ =

√
q2
0 + q2

1 + q2
2 + q2

3

q−1 =
q̄

‖q‖
q̂ =

q

‖q‖

(4.25)

Moreover, a multiplication between two quaternions q and p is defined as:

q · p =

[
q0p0 − qT1:3p1:3

q0p1:3 + p0q1:3 − q1:3 × p1:3

]

=

q0p0 − q1p1 − q2p2 − q3p3

q0p1 + q1p0 − q2p3 + q3p2

q0p2 + q2p0 − q3p1 + q1p3

q0p3 + q3p0 − q1p2 + q2p1

 (4.26)

A rotation of a vector z can then be described as:[
0
z

]
= q−1 ·

[
0
z

]
· q (4.27)

The rotation can be seen as performing half the rotation such that the vector is rotated to an intermedi-
ated vector. This operation is performed by pre-multiplying with the quaternion. In order to rotate from
the intermediate vector to the final vector, the vector is post multiplied by the inverse of the quater-

nion. To illustrate the procedure, in Equation (4.28) is a vector z =
∣∣1 0 0

∣∣T rotated θ = 1
2π radians

around an axis
[
ex ey ez

]T
=
[
0 0 1

]T
. The intermediate vector is provided in Equation (4.28) as

50

[√
2

2

√
2

2 0
]T

which is further rotated to the final vector z̃ =
∣∣0 1 0

∣∣T .

z̃ = q ·
[
0
z

]
· q−1 =

√

2
2
0
0√
2

2

 ·

0
1
0
0

 ·

√

2
2
0
0

−
√

2
2

=

0√
2

2√
2

2
0

 ·

√

2
2
0
0

−
√

2
2

 =

0
1
0
0

(4.28)

The quaternions can be further extended into matrix representations [72]. This will be out of scope
of this research.

Lastly, a quaternion q is related to the cosine direction matrix R. The cosine direction matrix R provides
the ability to transform quaternions to Euler angles, where Equation (4.4) relates the cosine direction
matrix to the roll φ, pitch θ and yaw ψ angles. The quaternion q to cosine direction matrix R is described
by:

Rq (q) =

q2
0 + q2

1 − q2
2 − q3

3 2q1q2 + 2q0q3 2q1q3 − 2q0q2

2q1q2 − 2q0q3 q2
0 − q2

1 + q2
2 − q3

3 2q2q3 + 2q0q1

2q1q3 + 2q0q2 2q2q3 − 2q0q1 q2
0 − q2

1 − q2
2 + q3

3

 (4.29)

4.2.2 Madgwick filter

The Attitude Heading Reference System used in the drone is a Madgwick filter with Magnetic distur-
bance rejection [71] and [73]. The algorithm utilizes a gradient descent method to fuse accelerometer,
magnetometer and gyroscopic data. By integrating the gyroscope data, the bias of the angle grows. The

gyroscope measurements
[
ωx ωy ωz

]T
are incorporated in the quaternion derivative by:

q̇k =
1

2
q̂k−1 · Sω

qk = q̂k−1 + q̇k∆t
(4.30)

where q̂k−1 is the quaternion at time k − 1, q̇k is the quaternion derivative at time k, qk is the new

quaternion at time k and Sω =
[
0 ωx ωy ωz

]T
is the gyroscope measurement vector. At time

k = 0 an initial quaternion is used q̂0 =
[
1 0 0 0

]T
. However, since an addition has taken place,

the new quaternion is not of unity norm, therefore, the new quaternion will be normalized to q̂k. For
demonstration purpose, measurements where obtained while rotating the drone around its x, y and z
axis from initial conditions to 1

2π to − 1
2π and back to initial conditions. The results of integrating the

gyroscope measurements are depicted in Figure 4.8. In the lower part of Figure 4.8, quaternions are
transformed to Euler angles and as can be seen, drift in all angles φ, θ and ψ is present.

51

Figure 4.8: Measurement data and angle estimation quad-copter utilizing gyroscope measurements. The
quad-copter is rotated from initial conditions to 1

2π to − 1
2π and back to initial conditions for each axis

separately.

In order to compensate for drift, a gradient descent algorithm is utilized, where accelerometer and
magnetometer data corrects for small perturbations in the quaternion derivative. The gradient descent
method utilizes a cost function, which needs to be minimized. The cost function f consists of an
error between a measured vector S and an expected measurement vector E, which is rotated from
earth fixed frame to body frame using the quaternion obtained from previous time step k. In case

of the accelerometer, the expected vector Eacc =
[
0 G

]T
is the gravitational acceleration provided

as G =
[
0 0 9.81

]T
, which is rotated to body frame by post- and pre-multiplying with previously

obtained quaternion q̂k and its conjugate. The cost function f is described as:

f
(
q̂k, Ê, Ŝk

)
= q̂−1

k · Ê · q̂k − Ŝk (4.31)

where f ∈ R4×1 is the error function, Ŝk ∈ R4×1 is the normalized sensor measurement, q̂k ∈ R4×1 is
previous obtained quaternion and Ê ∈ R4×1 is the measurement vector in earth fixed frame. The cost
function to minimize is described by:

min
q̂∈R4

f
(
q̂k, Ê, Ŝk

)
(4.32)

where f
(
q̂k, Ê, Ŝk

)
is described by Equation (4.31). In order to solve the optimization problem, a

gradient descent algorithm is implemented due to its simple implementation and computability [73].
Therefore, the gradient of the cost function is obtained and is described by:

∇f
(
q̂k, Ê, Ŝk

)
= JT

(
q̂k, Ê

)
f
(
q̂k, Ê, Ŝk

)
(4.33)

where J
(
q̂k, Ê

)
= ∂f

∂q̂ ∈ R4×4 is the Jacobian of f
(
q̂k, Ê, Ŝk

)
and ∇f

(
q̂k, Ê, Ŝk

)
∈ R4×1. The gradient

of the cost function is incorporated in the quaternion derivative, described by:

q̇ =
1

2
q̂k−1 · Sω − β

∇f
‖∇f‖ (4.34)

where ∇f
‖∇f‖ is the normalized gradient of the cost function f , β is a parameter tunable by the user such

that convergence is faster or slower reached, Sω is the gyroscope measurement and q̂k−1 is previously
obtained quaternion. The gradient descent algorithm utilizing the accelerometer can be described by:

q̂k =

q̂0

q̂1

q̂2

q̂3

 Ŝacc,k =
1√

a2
x + a2

y + a2
z

0
ax
ay
az

 =

0
âx
ây
âz

 Êacc =

0
0
0
1

 (4.35)

52

where the cost function facc and its Jacobian Jacc can be described as:

facc

(
q̂k, Êacc, Ŝacc,k

)
=

0

2 (q1q3 − q0q2)− âx
2 (q0q1 − q2q3)− ây
1− 2

(
q2
1 + q2

2

)
− âz

 Jacc

(
q̂k, Êacc

)
=

0 0 0 0
−2q̂2 2q̂3 −2q̂0 2q̂1

2q̂1 2q̂0 2q̂3 2q̂2

0 −4q̂1 −4q̂2 0

(4.36)

In Figure 4.9 the integrated gyroscope measurements are corrected by using the accelerometer. As
depicted in the lower part of Figure 4.9, the drift for angles φ and θ is minimized by incorporating
accelerometer measurements. However, the yaw ψ is not corrected.

Figure 4.9: Measurement data and angle estimation quad-copter utilizing gyroscope and accelerometer
measurements. The quad-copter is rotated from initial conditions to 1

2π to − 1
2π and back to initial

conditions for each axis separately.

In order to minimize the yaw ψ drift, the gradient descent algorithm is utilized to let the magnetometer
correct ψ for drift. In order to let the magnetometer correct ψ, a new cost function is setup, in the form
of fmag. However, the expected measurement vector Emag regardless of the inclination of the earths
magnetic field. The inclination of the earths magnetic field is defined as the field direction of the
magnetic field compared to the earths surface, as depicted in Figure 4.10.

Figure 4.10: Inclination of Earths magnetic field. Provided by [74].

The expected measurement vector Emag is defined, such that it is influenced by the inclination of

53

earths magnetic field.

q̂k =

q̂0

q̂1

q̂2

q̂3

 Ŝmag,k =
1√

m2
x +m2

y +m2
z

0
mx

my

mz

 =

0
m̂x

m̂y

m̂z

Êmag =

0
bx
0
bz

 =

0√

h2
x + h2

y

0
hz

 h =

0
hx
hy
hz

 = q̂k · Ŝmag,k · q̂−1
k

(4.37)

Furthermore, the cost function fmag and its Jacobian Jmag can be described as:

fmag

(
q̂k, Êmag, Ŝmag,k

)
=

0

2bz (q̂1q̂3 − q̂0q̂2)− 2bx
(
q̂2
3 + q̂2

2

)
+ bx − m̂x

2bx (q̂1q̂2 − q̂0q̂3) + 2bz (q̂0q̂1 + q̂2q̂3)− m̂y

2bx (q̂1q̂3 + q̂0q̂2)− 2bz
(
q̂2
1 + q̂2

2

)
+ bz − m̂z

Jmag

(
q̂k, Êmag

)
=

0 0 0 0

−2bz q̂2 2bz q̂3 −4bxq̂2 − 2bz q̂0 2bz q̂1 − 4bxq̂3

2bz q̂1 − 2bxq̂3 2bxq̂2 + 2bz q̂0 2bxq̂1 + 2bz q̂3 2bz q̂2 − 2bxq̂0

2bxq̂2 2bxq̂3 − 4bz q̂1 2bxq̂0 − 2bz q̂2 2bxq̂1

(4.38)

Provided Equation (4.34) the gradient can be extended with magnetometer contribution. The cost
function and its Jacobian which include accelerometer measurements and magnetometer measurement,
can be described by:

J
(
q̂k, Êacc, Êmag

)
=

 Jacc

(
q̂k, Êacc

)
Jmag

(
q̂k, Êmag

)
f
(
q̂k, Êacc, Ŝacc,k, Êmag, Ŝmag,k

)
=

 facc

(
q̂k, Êacc, Ŝacc,k

)
fmag

(
q̂k, Êmag, Ŝmag,k

) (4.39)

In Figure 4.11 is the magnetometer incorporated utilizing the gradient descent algorithm. As can be seen
in the lower part of the Figure 4.11, the ψ drift is removed. However, the ψ is orientated with respect
to earths magnetic north. Therefore, an offset is observer in the ψ angle.

Figure 4.11: Measurement data and angle estimation quad-copter utilizing gyroscope, accelerometer and
magnetometer measurements. The quad-copter is rotated from initial conditions to 1

2π to − 1
2π and back

to initial conditions for each axis separately.

4.2.2.1 Magnetic disturbance severity

Given the magnetometer disturbances, the disturbance severity needs to be determined. Two measure-
ments to validate the disturbance severity are (i) the dip angle θdip of the measurement which is the

54

inclination of earths magnetic field and (ii) the magnitude ‖m‖2 of the measurement. The magnitude
is defined as the 2-norm of the magnetometer measurement, as given in Equation (4.40). The dip angle
θdip is the angle between the horizontal frame and the magnetometer vector. First, the angle between
the gravitational acceleration vector in earth frame and the magnetometer measurement is obtained.
Since gravitational acceleration vector in earth frame is perpendicular to the horizontal frame, the dip
angle can be obtained by subtracting the obtained angle from 1

2π. The dip angle and the magnitude are
obtained by:

‖m‖2 =
√
m2
x +m2

y +m2
z (4.40)

θdip =
π

2
− arccos

(
A (q)h ·G
‖h‖

)
(4.41)

The dip angle θdip and magnitude ‖m‖2 of the magnetometer are depicted in Figure 4.12. The magne-
tometer measurements are rotated from body fixed frame to earth fixed frame, which is shown in the
top part of Figure 4.12.

Figure 4.12: Obtained dip angle θdip and magnitude ‖m‖2 from magnetometer measurements.

whereG is the gravitational acceleration vector, and A (q)h is the magnetometer measurement rotated
to earth frame. The magnetic disturbance based on magnitude λ1 ∈ [0, 1] quality is described by (4.42),
where m0 ∈ R is the expected magnetometer magnitude without any disturbance, which can be obtained
during calibration, see Section 4.1.6.1.

λ1 =
|‖m‖2 −m0|

m0
if λ1 > 1, λ1 = 1 (4.42)

The dip angle quality λ2 ∈ [0, 1] is expressed by (4.43). The expected dip angle θ0 ∈ R is subtracted from
the measured dip angle θdip ∈ R and scaled by a tunable value thdip ∈ R. Furthermore, the expected
dip angle θ0 can be obtained by transforming magnetometer measurements from body fixed frame to
earth fixed frame and obtaining the dip angle θdip and where the magnetometer is not influenced by
disturbances or drone dynamics. In Figure 4.12, the first 6 seconds of the magnetometer dip angle plot
show the expected dip angle θ0 = 0, 4π radians.

λ2 =
|θdip − θ0|
thdip

if λ2 > 1, λ2 = 1 (4.43)

Both λ1 and λ2 are averaged and used as an indication of the magnetic disturbance severity: λ is used
to indicate whether the magnetometer data should be used or not.

λ =
1

2
λ1 +

1

2
λ2 (4.44)

55

Since magnetic disturbance severity is obtained in the form of λ, it needs to be incorporated into the
quaternion. From previous estimated quaternion q̂k−1 a new state can be obtained q̂k utilizing the
gyroscope measurement Sω, quaternion derivative q̇ see Equations (4.34) and the gradient see Equation
(4.33). The new state is obtained in two different manners: (i) the magnetometer is included in the
gradient of the cost function ∇facc,mag which results in q̇MIMU and (ii) the magnetometer is excluded
in the gradient of the cost function ∇facc which results in q̇IMU . Integrating both derivatives leads to
qMIMU,k and qIMU,k, respectively as is described by:

q̇MIMU =
1

2
q̂k−1 · Sω − β

∇facc,mag
‖∇facc,mag‖

qMIMU,k = q̂k−1 + q̇MIMU∆t

q̇IMU =
1

2
q̂k−1 · Sω − β

∇facc
‖∇facc‖

qIMU,k = q̂k−1 + q̇IMU∆t

(4.45)

The current quaternion qk is obtained by averaging q̂MIMU,k and q̂MIMU,k, which are normalized quater-
nions obtained from qMIMU,k and qMIMU,k. Weighing both quaternions is based on the obtained mag-
netic disturbance severity λ and is described by:

λq̂IMU,k + (1− λ) q̂MIMU,k

w1q̂IMU,k + w2q̂MIMU,k

(4.46)

Averaging the quaternions is not a straight forward task. However, in [75] a solution is proposed for av-
eraging two quaternions. The solution proposes an optimization problem, which transforms a quaternion
into matrix form. The solution to the optimization problem, utilizing orthogonality principle and Frobe-
nius norms and Davenport’s q-method results in a matrix M in which the largest eigenvalues corresponds
to the averaged quaternion. A full abbreviation of the math can be found in [75]. As a result, averaging
two quaternions can be simplified. The eigenvalues of matrix M are defined as λ± = 1

2 (w1 + w2 ± z),

where z =

√
(w1 − w2)

2
+ 4w1w2

(
q̂TIMU,k q̂MIMU,k

)2

and w1 = λ and w2 = 1− λ. The average quater-

nion is described by:

q̄k = ±
[√

w1 (w1 − w2 + z)

z (w1 + w2 + z)
q̂IMU,k + sign

(
q̂TIMU,k q̂MIMU,k

)√w2 (w2 − w1 + z)

z (w1 + w2 + z)
q̂MIMU,k

]
(4.47)

Lastly, the obtained averaged quaternion q̄k is normalized and becomes the current quaternion q̂k.

4.2.2.2 Stationary state detection

The final part of the Madgwick filter detects the stationary state. The stationary state is defined as pre-
takeoff flight conditions at which the motors are not rotating. Due to the rotating motors and unbalances
existing in the propellers and motors, vibrations will be measured by the accelerometer and gyroscope.
Figure 4.13 depicts the stationary state between t = 0 and t = 2.3 and rotating motors after t = 2.3 in
which the system is no longer in stationary state, but still in steady state conditions. The quad-copters
motors start rotating after t = 2.3 and vibrations in the sensors are visible in the form of increased noise.
The stationary state is implemented to prevent the obtained angles from integrating gyroscope measure-
ments from drifting. The stationary state is detected, if the gyroscope and accelerometer measurements
are between threshold values.

56

Figure 4.13: Stationary state accelerometer and gyroscope measurements. Between t = 0 and t = 2.3,
the system is in stationary state. After t = 2.3

The stationary state detection based on the gyroscope measurements is obtained by taking the ab-
solute value of the gyroscope measurements and determine if they are below the threshold value thgyro.
The threshold value thgyro is obtained by obtaining the maximum absolute value of the gyroscope value.
The stationary state detection is described by:

|ωx| < thgyro

|ωy| < thgyro

|ωz| < thgyro

(4.48)

where thgyro ∈ R is the threshold value and ω ∈ R3×1 are the angular velocities measured by the
gyroscope. In Figure 4.14, the gyroscope is in stationary state. By taking thgyro = 0.005 radians per
second, the whole case is defined as stationary state. In Figure 4.13, after t = 2.3 the absolute gyroscope
measurements are no longer below the threshold value and the system is no longer in stationary state.

Figure 4.14: Stationary state gyroscope for x-axis only.

The accelerometer stationary state is active when the absolute value of the derivative of accelerometer
measurements lies below a threshold value tha. The threshold value tha is obtained as the largest absolute
derivative value app ∈ R during stationary state multiplied with a gain k ∈ R, such that tha = k × app.
The stationary state detection based in accelerometer measurements can be described by:

|ax,t − ax,t−1| < tha

|ay,t − ay,t−1| < tha

|az,t − az,t−1| < tha

(4.49)

57

where ai,t ∈ R is current accelerometer measurement for axis i and ai,t−1 ∈ R is previous accelerometer
measurement for axis i, tha = k × app is the threshold value where k ∈ [1.2, 1.5] is a tuning value. In
Figure 4.15, the accelerometer measurement for axis x is depicted and the absolute value of its derivative
in stationary state. The tha value can be configured to 0.1 and k is set to 1.2. Compared to Figure
4.13, after t = 2.3 the absolute value of the derivative of the accelerometer measurements is larger then
threshold value tha. Therefore, the system is no longer in stationary state based on the accelerometer
measurements.

Figure 4.15: Stationary state accelerometer for x-axis only.

The drone is in stationary state if all measurements of both the accelerometer and the gyroscope lie
below the specified threshold value, given by Equations (4.48) and (4.49). The algorithm flow can be
seen in Figure 4.16, where the first step detects whether the drone is in stationary state or not. The
second step determines the magnetic disturbance severity and provides a value λ ∈ [0, 1] whether the
IMU algorithm including gyroscope bias should be trusted over the MIMU algorithm including magnetic
disturbances, or vice versa.

Figure 4.16: Algorithm Flow Madgwick Adaptive Filter. Obtained from [71].

58

4.2.3 Kalman filter

The drone is equipped with an indoor GPS system from Marvelmind, which has a sampling frequency
of 13Hz. Since the control loop runs at 100Hz, a form of extrapolation, filtering or state estimation is
needed for the missing data frames. Moreover, in order to use a PID controller, the derivative of the
translational states are needed. The most commonly used filter, which estimates states based on multiple
sensors, is a Kalman filter.

A Kalman filter is based on the principles that a new state originates from past states, given Equa-
tion (4.50). Where Xt ∈ Rn are the n states of the system at time t. A ∈ Rn×n is the state transition
matrix, which links prior states Xt−1 to the new state Xt. B ∈ Rn×m which lets m number of inputs
ut ∈ Rm×1 influence n states of the system. A Kalman filter assumes Gaussian white process noise wt in
the system model, which is a zero mean signal, has a normal distribution and a standard deviation σw.

Xt = Axt−1 +But + wt (4.50)

Besides the linear model, a Kalman filter utilizes a measurement model, given by Equation (4.51), to
further improve the estimated state, where zt ∈ Rk×1 is the measurement vector at time t and C ∈ Rk×n
is the measurement matrix of the system. A Kalman filter assumes the measurements are disturbed by
a Gaussian white noise disturbance vt ∈ R which is a zero mean signal, has a normal distribution and a
standard deviation σv.

zt = Cxt + vt (4.51)

The first step in the Kalman filter process is state prediction. Given the previous state X̂k−1|k−1 and
the control input uk, the next expected state given the model matrices A and B is provided by Equation
(4.52). The covariance matrix Pk−1|k−1 ∈ Rn×n is propagated following Equation (4.53), where A is the
state transition matrix and Q ∈ Rn×n is the covariance matrix of the process noise wt.

X̂k|k−1 = AX̂k−1|k−1 +Buk (4.52)

Pk|k−1 = APk−1|k−1A
T +Q (4.53)

The second step in the Kalman filtering process, is obtaining the Kalman gain, which is a measure to shift
trust between the model prediction and the sensor measurements, provided the propagated covariance
matrix Pk|k−1, the measurement noise covariance R ∈ Rk×k and the measurement matrix C. Where

K ∈ Rn×k is the Kalman gain.

K = Pk|k−1C
T
(
CPk|k−1C

T +R
)−1

(4.54)

The last step of the Kalman filter, is updating the predicted state estimate with a measurement update.
Equation (4.55) updates the state estimate X̂k|k, using the error between the measurements z and the

expected measurement CX̂k|k−1 multiplied with the Kalman gain K, where I is an n×n identity matrix.
The covariance Pk|k−1 is updated, given Equation (4.56). After the update, the estimated state update

X̂k|k and covariance update Pk|k are stored and are used in the next iteration of the Kalman filter as

X̂k−1|k−1 and Pk−1|k−1.

X̂k|k = X̂k|k−1 +K
(
z − CX̂k|k−1

)
(4.55)

Pk|k = (I −KC)Pk|k−1 (4.56)

The estimated states of the quad-copter are the translation states in the x, y and z directions. The
Kalman filter merges the GPS measurements and the accelerometer data. The relation between the GPS
measurements and the accelerometer data, is a double integrator. Prior to the filter, the accelerometer
data is transformed to inertial frame, and the gravity component is removed. Therefore, the estimated
states X̂k|k can be expressed as the translational discrete states xk, yk and zk and their derivatives ẋk,
ẏk and żk. The state vector is expressed in Equation (4.57).

X̂k|k =
[
xk yk zk ẋk ẏk żk

]T
(4.57)

59

The discrete double integrator state space model, regarding the state vector X̂k|k, is given by:

A =

1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 B =

∆t2

2 0 0

0 ∆t2

2 0

0 0 ∆t2

2
∆t 0 0
0 ∆t 0
0 0 ∆t

C =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (4.58)

The input values of the state space model are given by the accelerometer u =
[
ax ay az

]T
. Due to the

model, the accelerometer data will be used to estimate the velocity and alter the GPS measurements,
such that a position update will be provided every 0.01 seconds.

The last part, in order to setup the Kalman filter, is to define covariance matrices. Note that, the
accelerometer data is incorporated through the input matrix B. Due to the nature of the B matrix,
as given in Equation (4.58), the accelerations are related to the velocities and the positions. Which
means that the variance present in the accelerometer data is applied to the model through the B matrix.
Therefore, the process covariance matrix Q can be obtained by obtaining the standard deviation of the
accelerometer signal and the B matrix, given in Equation (4.59). Where σax is the standard deviation
of ax measurement, σay for ay and σaz for az.

Q =

σ2
ax 0 0 0 0 0
0 σ2

ay 0 0 0 0

0 0 σ2
az 0 0 0

0 0 0 σ2
ax 0 0

0 0 0 0 σ2
ay 0

0 0 0 0 0 σ2
az

BB
T (4.59)

Since the GPS measurements are merged into the Kalman filter via the measurement matrix C, the
measurement covariance matrix R is given by Equation (4.60). σGPSx

is the standard deviation of px
GPS measurement, σGPSy

for py and σGPSz
for pz. The standard deviation can be obtained by measuring

the signal in steady state and obtaining the standard deviation.

R =

σ2
GPSx

0 0
0 σ2

GPSy
0

0 0 σ2
GPSz

CCT (4.60)

Figure 4.17 show accelerometer measurements and GPS measurements during steady-state conditions.
During steady-state conditions, the propellers of the quad-copter were rotating, however, the quad-
copter does not take-off. As a result, vibrations due to the unbalanced propellers in the quad-copter
are measured at the accelerometer and the Kalman filter takes the vibrations into account. In Figure
4.17a, the GPS measurements are shown and their respective probability density function (PDF). In
Figure 4.17b, the accelerometer measurements are shown and their respective PDF. The obtained mean
µ values and standard deviations σ are presented in Table 4.8.

60

(a) GPS measurement. (b) Accelerometer measurement.

Figure 4.17: Sensor measurements in steady-state conditions and corresponding PDF.

GPS Accelerometer
X Y Z X Y Z

Mean(µ) 0.00366 0.00322 −0.00342 −0.72961 0.21630 −0.21785
Std(σ) 0.00529 0.00481 0.00474 0.11399 0.11016 0.30639

Table 4.8: Mean values µ and standard deviations σ of the accelerometer and GPS measurements.

4.3 Controller design

Controller design is based on the LTI models represented in Equation (4.8). The system models becomes
as provided in Equation (4.61) where it is assumed the C-matrix takes the form C =

[
1 0

]
for each

degree of freedom and the D-matrix is zero.[
φ̇
ω̇x

]
=

[
0 1
0 0

] [
φ
ωx

]
+

[
0
1
Jxx

]
τx[

θ̇
ω̇y

]
=

[
0 1
0 0

] [
θ
ωy

]
+

[
0
1
Jyy

]
τy[

ψ̇
ω̇z

]
=

[
0 1
0 0

] [
ψ
ωz

]
+

[
0
1
Jzz

]
τz

[
ẋ1

ẋ2

]
=

[
0 1
0 0

] [
x1

x2

]
+

[
0
− T
m

]
θ[

ẏ1

ẏ2

]
=

[
0 1
0 0

] [
y1

y2

]
+

[
0
T
m

]
φ[

ż1

ż2

]
=

[
0 1
0 0

] [
z1

z2

]
+

[
0
1
m

]
T

(4.61)

Designing a stabilizing control law is done in three different steps. First a stabilizing control law is
designed for the angles. Then a stabilizing control law is designed for altitude control and finally, a
stabilizing control law is designed for x and y position control. The system parameters of the quad-copter
are shown in Table 4.9, which are obtained by weighing all the lose part, reconstruct the quad-copter in
Solidworks and evaluating mass distribution, which can be seen in Appendix M.

Parameter Value Parameter Value
m 1.3660 g 9.81
Jxx 0.0304 T ∗ -13.4005
Jyy 0.0309 fs 100
Jzz 0.0599

Table 4.9: System parameters of the quad-copter.

61

The discretized decoupled LTI systems with sampling frequency fs become:[
φ
ωx

]
k+1

=

[
1 0.01
0 1

] [
φ
ωx

]
k

+

[
0.001645
0.3289

]
τx[

θ
ωy

]
k+1

=

[
1 0.01
0 1

] [
θ
ωy

]
k

+

[
0.001618
0.3236

]
τy[

ψ
ωz

]
k+1

=

[
1 0.01
0 1

] [
ψ
ωz

]
k

+

[
0.0008347

0.1669

]
τz

[
x1

x2

]
k+1

=

[
1 0.01
0 1

] [
x1

x2

]
k

+

[
0.0004905

0.0981

]
Fx[

y1

y2

]
k+1

=

[
1 0.01
0 1

] [
y1

y2

]
k

+

[
−0.0004905
−0.0981

]
Fy[

z1

z2

]
k+1

=

[
1 0.01
0 1

] [
z1

z2

]
k

+

[
0.0000366
0.007321

]
T

(4.62)

By applying pole placement, the poles of each system can be placed inside the unit disc. The poles
are placed close to the edge of the unit disc at λi = {0.95, 0.97}. A feedforward steady-state gain is
calculated by:

Mi =
(
Ci (I −Ai +BiKi)

−1
Bi

)−1
(4.63)

The control inputs for each sub system can be written as:

τx = −Kφ

[
φ
ωx

]
k

+Mφrφ

τy = −Kθ

[
θ
ωy

]
k

+Mθrθ

τz = −Kz

[
ψ
ωz

]
k

+Mψrψ

Fx = −Kx

[
x1

x2

]
k

+Mxrx

Fy = −Ky

[
y1

y2

]
k

+Myry

T = −Kz

[
z1

z2

]
k

+Mzrz

(4.64)

Furthermore, in case of only angular control, the control inputs τx, τy and τz are applied to the quad-
copter. During altitude-hold control, the thrust input T is applied as well to the quad-copter. In case
of position control, all inputs are applied to the quad-copter. However, Fx and Fy are uncontrollable
due to the under actuated nature of a quad-copter. Therefore, Fx and Fy are used as references for the
angles, where Fx = θ and Fy = φ. Provided system Equations (4.9) for the coupled states, filling in the
parameters presented in Table 4.9 and discretizing both models holds:

x1

x2

θ
ωy

k+1

=

1 0.01 4.905e−4 1.635e−6

0 1 9.81e−2 4.905e−4

0 0 1 0.01
0 0 0 1

x1

x2

θ
ωy

k

+

1.323e−7

5.291e−5

1.618e−4

0.3236

 τy (4.65)

y1

y2

φ
ωx

k+1

=

1 0.01 −4.905e−4 −1.635e−6

0 1 −9.81e−2 −4.905e−4

0 0 1 0.01
0 0 0 1

x1

x2

θ
ωy

k

+

−1.345e−7

−5.378e−5

1.645e−4

0.3289

 τy (4.66)

By filling in the control laws computed before, it can be shown that the cascaded control structure
does not compromise stability of the coupled systems, since the eigenvalues still lie inside the unit disc.
Therefore, the new control inputs for the coupled systems are:

τx = −Kφ

[
φ
ωx

]
k

+Mφ

(
−Ky

[
y1

y2

]
k

+Myry

)
= −

[
MφKy Kφ

]
y1

y2

φ
ωx

k

+MφMyry

τy = −Kθ

[
θ
ωy

]
k

+Mθ

(
−Kx

[
x1

x2

]
k

+Mxrx

)
= −

[
MθKx Kθ

]
x1

x2

θ
ωy

k

+MθMxrx

(4.67)

Furthermore, control gains are implemented on the quad-copter. For each degree of freedom, integrators
are applied in order to handle model variations. Above all, feedforward terms are added to the control
input. The feedforward terms are constants which compensate for gravity in z-direction and handle the
weight distribution of the quad-copter. The final control gains can be seen in Table 4.10.

62

P I D FF
φ 1.00 0.05 0.30 0.00
θ 1.00 0.05 0.30 -0.25
ψ 1.00 0.05 0.45 0.00
X 0.80 0.10 0.60 0.00
Y 0.80 0.10 0.60 0.00
Z 0.80 0.10 0.60 -14.00

Table 4.10: Control gains controller design quad-copter.

63

Part II

Wind disturbance rejection

64

Chapter 5

Wind field modeling
Detecting wind regimes in which the quad-copter flies is a complex task. This Chapter explains the
basics of wind field modeling. Current flow models for complex objects use Navier-Stokes equations.
In Section 5.1 Computational Fluid Dynamics are considered as a model-driven solution for rejecting
wind disturbances and as a solution for modeling purposes in simulation. Challenges accompanying
Computational Fluid Dynamics, such as numerical solvers, setting up boundary conditions and stability
analysis are discussed as well. However, less complex solutions exist to model wind fields. One of the
less complex wind field models, named Dryden Turbulence model, is discussed in Section 5.2. Although
the Dryden Turbulent model provide realistic wind models, the model is only considered for simulation
purposes.

5.1 Computational Fluid Dynamics

In the following subsection, the Navier-Stokes equations will be highlighted to show the necessary func-
tions and dilemmas in simulating a wind flow around object or in contained environments. Although
various different examples are provided, which can also be found in literature, the examples are mainly
used to highlight the complexity involving in finding solutions to the Navier-Stokes equations. Since the
Navier-Stokes equations are complex and highly likely non-linear Partial Differential Equation (PDE),
the fact that solutions can only be numerically approximated, results in truncation errors. Furthermore,
due to accumulation of the errors, an unstable model might arise from the equations.

5.1.1 Navier-Stokes equations

The governing equations of fluid dynamics consists of three different equations, known as the continuity
equation, the momentum equation and the energy conservation equation. The momentum equation is
also known as the Navier-Stokes equation, which is a PDE.

The continuity equation is a mass flow conservation of fluids and gases. The continuity equation states
that ”per unit volume, the sum of all masses flowing in and out per unit time must be equal to the
change of mass due to change in density per unit time” [76]. The continuity equation is given by

∂ρ

∂t
+∇ ·

(
ρ
−→
V
)

= 0

∂ρ

∂t
+
∂ (ρu)

∂x
+
∂ (ρv)

∂y
+
∂ (ρw)

∂z
= 0

(5.1)

where ρ ∈ R represent the fluid density, t ∈ R is the time, x ∈ R, y ∈ R, z ∈ R are the 3-dimensional
directions, u ∈ R, v ∈ R and w ∈ R represents the fluid velocity in x, y and z direction. The momentum
equations are also known as the Navier-Stokes equations. A fluid or gas particle reacts on unbalanced
applied forces. The net force on a particle will result in an acceleration governing Newton’s second law of
motion, which states that ”the rate of change of momentum of a body is proportional to the unbalanced
force acting on it and takes place in the direction of the force” [76]. The moment equations contain a
pressure gradient, inertial terms, viscous terms and body force terms. The moment equations are as
follows:

∂ (ρu)

∂t
+∇ ·

(
ρu
−→
V
)

= −∂p
∂x

+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ ρfx

∂ (ρv)

∂t
+∇ ·

(
ρv
−→
V
)

= −∂p
∂y

+
∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

+ ρfy

∂ (ρw)

∂t
+∇ ·

(
ρw
−→
V
)

= −∂p
∂z

+
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

+ ρfz

(5.2)

65

The last equation is based on energy conservation and is in general derived from thermodynamics, which
states that ”the rate of change of energy inside the fluid element equals the net flux of heat into the
element and the rate of working done on the element due to body and surface forces” [77] and [78].
Essentially, the energy function can be used to apply aerodynamics on objects or in environments where
a compressible gas or liquid is flowing. It is given by:

∂

∂t

[
ρ

(
e+

V 2

2

)]
+∇ ·

[
ρ

(
e+

V 2

2

−→
V

)]
=ρq̇ +

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+

∂

∂z

(
k
∂T

∂z

)
− ∂ (up)

∂x
− ∂ (vp)

∂y
− ∂ (wp)

∂z

+
∂ (uτxx)

∂x
+
∂ (uτyx)

∂y
+
∂ (uτzx)

∂z

+
∂ (vτxy)

∂x
+
∂ (vτyy)

∂y
+
∂ (vτzy)

∂z

+
∂ (wτxz)

∂x
+
∂ (wτyz)

∂y
+
∂ (wτzz)

∂z

+ ρ
−→
f · −→V

(5.3)

where

τxx = λ∇ · −→V + 2µ
∂u

∂x

τyy = λ∇ · −→V + 2µ
∂v

∂y

τzz = λ∇ · −→V + 2µ
∂w

∂z

τxy = τyx = µ

(
∂v

∂x
+
∂u

∂y

)
τxz = τzx = µ

(
∂w

∂x
+
∂u

∂z

)
τyz = τzy = µ

(
∂v

∂z
+
∂w

∂y

) (5.4)

in all above equations,
−→
V =

[
u v w

]T
are the velocities in the

[
x y z

]T
directions, respectively. t

is the time, ρ is the density of the gas or liquid p is the pressure, fi is the body force in the particular
direction. The energy is marked with e and the temperature by T . Furthermore, k, µ and λ are the
thermal conductivity, the molecular viscosity and the bulk viscosity. In some literature the bulk viscosity
is taken as λ = − 2

3µ, which is hypothesized by Stokes but is not been definitely confirmed [77].

Although the model includes temperature changes and density changes, for aerodynamics purposes they
can be assumed constant over time. In such case the fluid or gas is assumed to be viscous incompressible
flow. For such cases, there exist numerical models, which allow to compute the flow of an incompressible
flow [79].

By discarding the energy conservation equation, and therefore excluding density changes and temper-
ature changes over time results in a model consisting of only the continuity Equation (5.3) and the
Navier-Stokes Equation (5.4). Which means four variables are calculated with only three equations, and
a constraint. One way to convert the equations and the constraint to four equations, is by applying the
Poisson effect [79], by which the Navier-Stokes equations are differentiated to their specific directions
and summed. For simplicity reasons a 2D situation will be considered. Furthermore, the bulk velocity
is set to be the negative molecular viscosity λ = −µ, the continuity equation and the 2D Navier-Stokes
equations becomes:

∂u

∂x
+
∂v

∂y
= 0

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+
µ

ρ

(
∂2u

∂x2
+
∂2u

∂y2

)
+ fx

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+
µ

ρ

(
∂2v

∂x2
+
∂2v

∂y2

)
+ fy

(5.5)

which provides two equations and a constraint for three unknowns, the flow velocities (u, v) and the
pressure p. By setting the body forces to zero fx = fy = 0 and differentiating in the direction, a

66

relation can be obtained for the pressure and flow velocities in which the continuity constraint can be
incorporated.

∂

∂x

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
+

∂

∂y

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
=

∂

∂x

(
−1

ρ

∂p

∂x
+
µ

ρ

(
∂2u

∂x2
+
∂2u

∂y2

))
+

∂

∂y

(
−1

ρ

∂p

∂y
+
µ

ρ

(
∂2v

∂x2
+
∂2v

∂y2

)) (5.6)

which can be written as:(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)(
∂u

∂x
+
∂v

∂y

)
+
∂2u

∂x2
+ 2

∂v

∂x

∂u

∂y
+
∂2v

∂y2

= −1

ρ

(
∂2p

∂x2
+
∂2p

∂y2

)
+
µ

ρ

(
∂2

∂x2
+

∂2

∂y2

)(
∂u

∂x
+
∂v

∂y

) (5.7)

By using the continuity equation and the already obtained Navier-Stokes equations, a incompressible
flow can be modeled as

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+
µ

ρ

(
∂2u

∂x2
+
∂2u

∂y2

)
+ fx

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+
µ

ρ

(
∂2v

∂x2
+
∂2v

∂y2

)
+ fy

∂2p

∂x2
+
∂2p

∂y2
= −ρ

(
∂2u

∂x2
+ 2

∂v∂u

∂x∂y
+
∂2v

∂y2

) (5.8)

The Equations in (5.8) can be numerically simulated using finite difference schemes. Those finite differ-
ence schemes can also be found in the literature [76], [77], [79] and [80].

5.1.2 Numerically solving Navier-Stokes equations

The Navier-Stokes equations can be solved in various different manners. The most common known meth-
ods are Finite Difference Method (FDM), Finite Volume Method (FVM) and Finite Element Method
(FEM). Although other methods exist, such as spectral methods, only FDM, FVM and FEM will be
highlighted in this section based on [81].

A Finite Difference Method (FDM) is based on a Taylor series of the derivative. From the deriva-
tive a forward difference scheme, a central difference scheme and a backward difference scheme can be
obtained. Provided the following derivative:

∂u (x)

∂x
= lim

∆x→0

u (x+ ∆x)− u (x)

∆x
(5.9)

Forward difference:

(
∂u

∂x

)
=
ui+1 − ui

∆x
+O (∆x)

Central difference:

(
∂u

∂x

)
=
ui+1 − ui−1

2∆x
+O

(
∆x2

)
Backward difference:

(
∂u

∂x

)
=
ui − ui−1

∆x
+O (∆x)

(5.10)

All difference schemes are obtained from [81]. Most importantly to note is the truncation error O written
at the end. In case of a central difference scheme, the truncation error is a second order truncation error,
where the forward and backward difference only have a first order truncation error. Although the above
example is with a first order Taylor series, the FDM can also be designed with higher order difference
schemes, which can all be found in [81].

A second method to solve a PDE is called Finite Element Method (FEM). A FEM discretization starts
with dividing the domain Ω in elements ei. Between each element, nodes are in place, which maintain
boundary conditions Γi.

67

Figure 5.1: Finite element discretization for one-dimensional linear problem with two local elements.(Top
left) Given domain (Ω) with boundaries (Γ1 (x = 0) ,Γ2 (x = 1)). (Top right) Global nodes (α, β =
1, 2, 3). (Bottom left) Local elements (N,M = 1, 2). (Bottom right) Local trial functions. Figure
obtained from [81].

Provided the discretization in Figure 5.1, a solution can be obtained by for instance using a standard
Galerkin method which assumes that variable u(e) (x) is a linear function in the form of Equation (5.11),
which is shown in the bottom right of Figure 5.1. That is,

u(e) (x) = α1 + α2x

=
(

1− x

h

)
u

(e)
1 +

(x
h

)
u

(e)
2

= Φ
(e)
N (x)ueN (N = 1, 2)

(5.11)

Furthermore, integrating the solution over the domain sizes, between 0 and h, we obtain:

∗
Φ

(e)

N

du

dx

∣∣∣∣∣
h

0

−
[∫ h

0

dΦ
(e)
N (x)

dx

dΦ
(e)
M (x)

dx
dx

]
u

(e)
M −

∫ h

0

2Φ
(e)
N (x) dx = 0 (N,M = 1, 2) (5.12)

which is known as the variational equation or weak form of the governing. Furthermore, the first term
is known as the Niemann boundary condition. A full explanation about the boundary condition can be
found in [81]. Mainly the Niemann boundary condition acts as a Dirac delta function, since the boundary
condition is 1 if the function is applied at node N, otherwise it is 0. The final scheme is in the form of

K
(e)
NMu

(e)
M = F

(e)
N +G

(e)
N (N,M = 1, 2) (5.13)

where K
(e)
NM is the stiffness matrix, or better called, diffusion or Viscosity matrix. F

(e)
N is the source

vector and G
(e)
N is the Neumann boundary vector. The matrices can be described by:

K
(e)
NM =

∫ h
0

dΦ
(e)
N (x)

dx

dΦ
(e)
N (x)

dx dx =

[∫ h
0

dΦ
(e)
1 (x)
dx

dΦ
(e)
1 (x)
dx dx

∫ h
0

dΦ
(e)
1 (x)
dx

dΦ
(e)
2 (x)
dx dx∫ h

0

dΦ
(e)
2 (x)
dx

dΦ
(e)
1 (x)
dx dx

∫ h
0

dΦ
(e)
2 (x)
dx

dΦ
(e)
2 (x)
dx dx

]
(5.14)

=

[
K

(e)
11 K

(e)
12

K
(e)
21 K

(e)
22

]
=

1

h

[
1 −1
−1 1

]
(5.15)

F
(e)
N = −

∫ h
0

2Φ
(e)
N dx = −h

[
1
1

]
(5.16)

G
(e)
N =

∗
Φ

(e)

N
du
dx

∣∣∣∣∣
h

0

=
∗
Φ

(e)

N

du

dx
cos (θ) (5.17)

The equations holds for the local element as shown in the bottom right part of Figure 5.1. In order
to obtain the final global equations for the global nodes (α, β = 1, 2, 3), the equations can be summed,

68

which results in:

Kαβ =

K
(1)
11 K

(1)
12 0

K
(1)
21 K

(1)
22 +K

(2)
11 K

(2)
12

0 K
(2)
21 K

(2)
22

 =
1

h

 1 −1 0
−1 2 −1
0 −1 1

 (5.18)

Fα =

 F
(1)
1

F
(1)
2 + F

(2)
1

F
(2)
2

 = −h

1
2
1

 (5.19)

Gα =

 G
(1)
1

G
(1)
2 +G

(2)
1

G
(2)
2

 =

∗
Φ

(1)

1
∗
Φ

(1)

2 +
∗
Φ

(2)

1
∗
Φ

(2)

2

 dudx cos (θ) (5.20)

One last remark about FEM is that if only the elements are analyzed for a first order linear function
of u(e) (x), FEM has the same structure as a FDM. Furthermore, FEM in combination with a linear
function for u(e) (x) is not suitable for complex non-linear flow mechanics. In that case different function
schemes for u(e) (x) need to be selected, which is explained in [81] in more detail.

The last method highlighted is the Finite Volume Method (FVM). The FVM scheme can be derived
from both FEM and FDM. The FVM exists of control surfaces and control volumes. The control vol-
umes are related to each other via the control surfaces, as is shown in Figure 5.2.

Figure 5.2: Finite Volume approximations. Figure obtained from [81].

The FVM scheme depends on the global form of FEM, which is written as:

(Φα, R) =

∫ 1

0

(1)

(
d2u

dx2
− 2

)
dx = 0, 0 < x < 1 (5.21)

Integrating the function yields: ∑
CS1,2

∆u

∆x
−
∑
CV 2

2∆x = 0 (5.22)

where the limits are now set by the control surfaces between i− 1
2 and i+ 1

2 , which is explained in [81].
Furthermore, the equation can be written as

ui+1 − ui
∆x

− ui − ui−1

∆x
= 2∆x (5.23)

The equation basically subtracts control surface 1 from control surface 2, in order to obtain control
volume 2. By dividing the equation by ∆x, the function can be written as the FDM presented earlier.

More information about FDM, FEM and FVM can be found in [81]. The literature further summa-
rizes the differences between FDM, FEM and FVM as:

69

1. FDM

(a) Easy to formulate.

(b) For multidimensional problems, meshes must be structured in either two or three dimensions.
Curved meshes must be transformed into orthogonal cartesian coordinates so that finite dif-
ference equations can be written in structured cartesian mashes.

(c) Neumann boundary conditions can only be approximated, not exactly enforced.

2. FEM

(a) Underlying principles and formulations require a mathematical rigor.

(b) Complex geometries and unstructured meshes are easily accommodated, no coordinate trans-
formations needed.

(c) Neumann boundary conditions are enforced exactly.

3. FVM

(a) Formulations can be based on either FDM or FEM.

(b) Surface integrals of normal fluxes guarantee the conservation properties throughout the do-
main.

(c) Complex geometries and unstructured meshes are easily accommodated, no coordinate trans-
formations needed.

Although some numerical computations can have accurate results, such as FEM, where boundary condi-
tions are enforced compared to FDM, they still are numerical approximations, which do not necessarily
guarantee an accurate model with high computation times.

5.1.3 Boundary conditions

Besides a pressure equation and the velocity equations most likely boundary conditions are used to
simulate either a closed environment, such as a pipe or a container, or to simulate objects in flow, such
as quad-copters. Examples of such boundary conditions can be found in [78]. Figure 5.3 shows a simple
body in a flow. For simplicity reasons, the body has only a length in y-direction and has no thickness.

Figure 5.3: Simple body in a flow

Along the body lie the boundary conditions. In general, the proposed boundary conditions are as
presented in Equation (5.24). The boundary conditions holds that along the body due to the friction,
the flow velocity needs to be zero v = 0. Since a flow can not go straight through the body, the velocity
in x-direction needs te be zero as well, u = 0. Furthermore, the pressure differential at the boundary
layer needs to be zero along the body, since it otherwise results in a flow.

u, v = 0 at x = 0 and − 0.5 ≤ y ≤ 0.5

∂p

∂y
= 0

(5.24)

70

Although the suggested boundary conditions are in a simple form, the conditions become complex if
complex body geometries are used. In specialized CFD software packages, high order meshes are used
to simulate flow, and for each mesh area around a body, boundary conditions are in place. Furthermore,
the suggested boundary conditions are of a simple form, but more complex forms can be used as well
[82].

5.1.4 Stability analysis

Another important step in the process of CFD is stability analysis. Since the user sets the grid size
and the time step size, the computations might get many rounding errors, resulting in a growing error
during simulation. An example is provided at [77], where the following model PDE is used and its finite
difference scheme.

∂u

∂t
=
∂2u

∂x2

un+1
i − uni

∆t
=
uni+1 − 2uni + uni−1

(∆x)
2

(5.25)

Since the finite difference scheme is used in a Taylor’s series, a truncation error is present, since all higher
order terms of the Taylor’s series are truncated.

∂u

∂t
− un+1

i − uni
∆t

=
∂2u

∂x2
− uni+1 − 2uni + uni−1

(∆x)
2 +

[
−
(
∂2u

∂t2

)n
i

∆t

2
+

(
∂4u

∂x4

)n
i

(∆x)
2

12
+ ...

]
(5.26)

where the truncation error is provided by:

O
[
∆t, (∆x)

2
]

=

[
−
(
∂2u

∂t2

)n
i

∆t

2
+

(
∂4u

∂x4

)n
i

(∆x)
2

12
+ ...

]
(5.27)

As can be seen, all the terms in the truncation error depends on ∆t and ∆x. Which means if an accurate
model, with minimal error is desired, and therefore the truncation error should vanish, both deltas need
to be set to zero ∆t ≈ 0 and ∆x ≈ 0. However, this only increases the number of computations running
the CFD scheme.

Furthermore, during simulation the stability of the difference equation needs to be considered. Due
to all rounding errors, which are created since an approximation is made of the PDE, it might occur
the error will blow up during simulation. The round off error is provided in [77] and is defined as the
difference between the ”numerical solution from a real computer with finite accuracy” and the ”exact
solution of the difference equation”, which is given as ε = N − D. A full explanation of obtaining the
error analysis can be found in [77] and it is assumed the error satisfies the difference equation.

εn+1
i − εni

∆t
=
εni+1 − 2εni + εni−1

(∆x)
2 (5.28)

Stability is obtained, if the error becomes smaller during the progression of the solution from step n to
step n+ 1. If the error grows during progression to the solution, then the numerical solution is unstable.
This means the following conditions needs to be satisfied:∣∣∣∣εn+1

i

εni

∣∣∣∣ ≤ 1 (5.29)

Since the assumption is made that a Fourier series can approximate the errors along the x-axis and the
time-wise variation can be expressed in an exponential in t [77].

ε (x, t) = eat
∑
m

eikmx (5.30)

This results in that the grow rate of the error can be expressed as:∣∣∣∣εn+1
i

εni

∣∣∣∣ =
∣∣ea∆t

∣∣ =

∣∣∣∣∣1− 4∆t

(∆x)
2 sin2

(
km∆x

2

)∣∣∣∣∣ ≤ 1 (5.31)

71

This equation results in two different conditions, which both need to be met.

0 ≤ ∆t

(∆x)
2 ≤

1

2
(5.32)

The whole procedure of this stability analysis example can be found in [77]. This concludes that caution
is needed in CFD analysis. Although it is a powerful tool to analyze for instance wind flows around
an object, it is sensitive to minor changes in parameters and they might result in complete different
solutions.

5.2 Dryden Turbulent Model

As is described in Section 1.3.3.1, articles [15], [16] and [19] make use of a frozen Dryden turbulence model,
which contains a mean value for constant wind flow, a set of sinusoids for predictable wind changes and
a set random processes to simulate turbulence. The Dryden turbulence model can be expressed as

w(·) = w(·),0 +
∑N
n=1 a(·),n sin

(
Ω(·),ns+ φ(·),n

)
(5.33)

where w is the wind and (·) denotes a direction component, such as x, y, z, w(·),0 is the constant element
of the wind. The choice of coefficient a(·),n defines the power spectral density of the wind. Ω(·),n is
the frequency of the wind, s and φ(·),n simulates the random process of the wind. The power spectral
densities are defined as Φu (Ω) and Φw (Ω), which are the x and y directions of the wind and the z
direction of the wind, respectively.

Φu (Ω) = σ2
u

2Lu
π

1

1 + (LuΩ)
2

Φw (Ω) = σ2
w

Lw
π

1 + 3 (LwΩ)
2(

1 + (LwΩ)
2
)2

(5.34)

where σu and σw represents the turbulence intensities, Lu and Lw represents the turbulence scale lengths
in x,y direction and z direction respectively. Furthermore, the Frozen Dryden Turbulence model is based
on military specifications of wind models, [20], [21] and [22]. For low altitudes, below the 1000 feet, the
scale lengths and the disturbance intensities are defined as:

Lu
Lw

=
1

(0.177 + 0.000823h)
1.2

σu
σw

=
1

(0.177 + 0.000823h)
0.4

(5.35)

where Lw = h is the vertical scale in feet, and the turbulence can be set at σ = 0.1wh where wh is the
wind speed at height h. The amplitude is given as:

an =
√

∆ΩnΦ (Ωn) (5.36)

72

Chapter 6

Disturbance rejection
In this Chapter disturbance rejection solutions will be discussed and in particular solutions based on the
Internal Model Principle (IMP) are considered. The described Internal Model Principle (IMP) controller
design is based on [28]. In Section 6.1 the continuous time case will be considered.
The disturbance can be modeled as an exogenous system to which an IMP is designed to reject the
disturbance. In Section 6.2 the design procedure is explained for discrete time systems. Lastly, in
Section 6.3 a repetitive controller, which can be seen as a special case of an internal model principle
based controller is synthesized. The repetitive control uses a memory of the control input, in order to
minimize repetitive tracking errors.

6.1 Continuous time case Internal Model Principle

Firstly, the continuous time case will be considered for a linear time-invariant (LTI) system. For conve-
nience, this section will make use of a general system taking the following form:

ẋ = Ax+Bu

y = Cx

yc = Ccx

(6.1)

where x ∈ Rm is the state and u ∈ Rn is the input of the system, y ∈ Ro are the measurements of
the system and yc ∈ Rp are the measured states, which needs to track a specified desired reference.
Furthermore, A ∈ Rm×m is the state transition matrix, B ∈ Rm×n is the input matrix, C ∈ Ro×m the
measurement matrix and Cc ∈ Rp×m is a measurement matrix only selecting specific measurement or a
combination of them.

In the following subsections an observer is designed for the unmeasured states and a controller com-
bining feedback and feedforward is designed, which will bring the states measured in yc to the desired
reference in steady state. Furthermore, a disturbance is applied to the system generated by an exogenous
system. Although a reference can be generated as an exogenous system in order to improve tracking
performance, it is not treated in this project. A disturbance rejection based on IMP is used to cope with
the applied disturbances. Throughout Section 6.1 and Section 6.2, the control architecture depicted in
Figure 6.1 is used.

M Plant

Driver S Kv

Kx

Observer

Exo System S∗

r u y

v

x̂

d

Figure 6.1: Block diagram of a Internal Model Principle controller.

73

6.1.1 Controller, observer and feedforward design

Provided a continuous time LTI system, described by (6.1) a stabilizing control law is designed to stabilize
the system. Various methods can be used to stabilize the system, in this case pole placement is used.
The stabilizing control law is described by:

u = −Kx (6.2)

Provided the system matrices A ∈ Rm×m and B ∈ Rm×n, m poles are placed in the left half plane.
Furthermore, it is assumed that (A,B) is controllable, then K ∈ Rn×m, is the state feedback law, which
makes A−BK Hurwitz.

Since not all the states are measured, a full state observer is designed to estimate the remainder states,
which are not measured. The estimated states replace the actual states in the control law. The observer
is provided in (6.3).

ˆ̇x = Ax̂+Bu+ L (y − ŷ)

ŷ = Cx̂
(6.3)

The error (x− x̂) converges to zero if the poles of (A−LC) are in the open left half plane and the matrix
is therefore is Hurwitz. This can be achieved by designing L using for instance pole placement. It is
however assumed (A,C) is observable. The error dynamics of the observer are shown in Equation (6.4),
which is a combination of the general system (6.1) and the proposed observer (6.3).

ẋ− ˆ̇x = (A− LC) (x− x̂) (6.4)

In order to design a feedforward which converges the steady state error to the reference lim
t→∞

yc = r. An

augmented system is used to incorporate the plant model, Equation (6.1), and the observer, Equation
(6.3). The control law provided in (6.2) is extended by using the observed state and the reference and
presented in equation (6.5).

u = −Kx̂+Mr (6.5)

The augmented model, including the general state space system, the new feedback law and observer
becomes: [

ẋ
ˆ̇x

]
=

[
A −BK
LC A−BK − LC

] [
x
x̂

]
+

[
B
B

]
Mr

y =
[
C Oo×m

] [x
x̂

]
yc =

[
Cc Oo×m

] [x
x̂

] (6.6)

The steady state response can be obtained by making
[
ẋ ˆ̇x

]T
= 0, which means the system has reached

a state in which it will stay if no disturbances are applied or inputs changed. The steady state response
can be written as:

yc =
[
Cc Oo×m

](
−
[
A −BK
LC A−BK − LC

])−1 [
B
B

]
Mr (6.7)

A steady state is defined as Equation (6.8), which means over time, if the reference r does not change,
the output yc converges to the reference.

lim
t→∞

yc = r for ṙ = 0 (6.8)

This condition holds, if yc = Ir in Equation (6.7). Therefore, M should be chosen as in Equation (6.9),
which makes the steady state response shown in Equation (6.7) an identity matrix.

M =

([
Cc Oo×m

](
−
[
A −BK
LC A−BK − LC

])−1 [
B
B

])−1

(6.9)

74

The inversion of M only holds, when the matrix is full rank. The matrix is full rank if the system
(Cc, A,B) has no invariant zero at s = 0. In order to determine if the system (Cc, A,B) contains an
invariant zero, the Rosenbrock’s system matrix can be used. The Rosenbrock’s system matrix is described
by:

P (s) =

[
sI −A B
−C D

]
(6.10)

If the matrix P (s) loses rank if s = 0, then the system contains an invariant zero and the matrix M can
not be inverted. Therefore, a standing assumption is that (6.10) is invertible when s = 0.

Provided the general system from Equation (6.1), the control law in Equation (6.5) and the observer in
Equation (6.3), the LTI system and observer are stabilized. The designed observer is used in the full
state feedback law. The steady state response of the system converges to the reference provided the
designed feed forward.

Equation (6.11) is a transformed system from the one presented in Equation (6.6). The transforma-
tion provides an opportunity to prove stability of the system, since all poles of the system depends on
(A−BK) and (A− LC) matrices. Since both matrices are Hurwitz, the overall system is Hurwitz.

[
ẋ

ẋ− ˆ̇x

]
=

[
A−BK BK
Om×m A− LC

] [
x

x− x̂

]
+

[
BM
Om×o

]
r (6.11)

6.1.2 Exogenous System

Consider a linear time invariant system described by the following equations:

ẋ = Ax+Bu+Bdd

y = Cx+Dcdd
(6.12)

The system originates from the general system provided in Equation (6.1), where d ∈ Rq is the unmea-
sured disturbances acting on the system respectively. Furthermore, Bd ∈ Rm×q is the input matrix for
disturbances and Dcd ∈ Ro×q is the disturbance feed through matrix.

The disturbance is driven by a state space system provided in Equation (6.13). This type of distur-
bance is said to be generated by an exogenous system.

v̇∗ = S∗v∗

d = H∗v∗
(6.13)

v∗ ∈ Rr and d ∈ Rq are the internal uncontrollable state and the disturbance respectively. The matrices
S∗ ∈ Rr×r and H∗ ∈ Rq×r are the transition matrix and the matrix which combines the internal states
to generate a set of disturbance signals. The unknown in the exogenous system is the initial condition
v∗0 which is used as an impulse to the system.

Depending on the complexity of the disturbance the matrix S∗ can consist of various different func-
tions or a combination of the functions, such as a step function, ramp function or a sinusoidal. A small
collection of signals are shown in Table 6.1 and it has to be noted that in general, the real part of the
eigenvalues of the exogenous system lie around zero.

75

Signal form Characteristic Disturbance Disturbance Eigenvalues
Polynomial transition measurement

matrix matrix
det (sI − S∗) S∗ H∗ λi

step s 0 1 λi ∈ {0}

ramp s2

[
0 1
0 0

] [
1
0

]T
λi ∈ {0, 0}

parabola s3

0 1 0
0 0 1
0 0 0

 1
0
0

T λi ∈ {0, 0, 0}

sine s2 + ω2
0

[
0 ω0

−ω0 0

] [
1
0

]T
λi ∈ {0± ω0i}

sine with non-zero mean s
(
s2 + ω2

0

) 0 ω0 0
−ω0 0 0

0 0 0

 1
0
1

T λi ∈ {0± ω0i, 0}

exponential increase s− α for α > 0 α 1 λi ∈ {α}

Table 6.1: Various signals with their characteristic polynomial, exogenous system matrix representation
and eigenvalues.

Provided the general system from Equation (6.6), which includes the observer, the feedback law and
the feedforward law from Equations (6.3), (6.5) and (6.9) respectively the model can be extended with
the disturbance model provided Equation (6.13), which results in the augmented system: ẋˆ̇x

v̇∗

 =

 A −BK BdH
∗

LC A−BK − LC Om×r
Or×m Or×m S∗

 xx̂
v∗

+

 B
B

Or×n

Mr

y =
[
C Op×m Op×r

] xx̂
v∗

yc =

[
Cc Op×m Op×r

] xx̂
v∗

(6.14)

6.1.3 Disturbance rejection

Provided system (6.14) a disturbance rejection control law can be designed to reject the disturbance
applied to the system. The proposed driver model is provided in Equation (6.15). The proposed driver
model can be seen as a disturbance observer, which takes the output and reference into account.

v̇ = Sv +Bεy −BσMr (6.15)

In the driver model, v ∈ Rs, y ∈ Ro and r ∈ Rp are the internal model state, the measurements of the
plant and the reference, respectively. The matrix S ∈ Rs×s can be chosen freely. Some examples are
presented in Table 6.1 and ideally, the disturbance model S∗, which can be modeled as an exogenous
system described in Section 6.1.2, should be included in the driver model S. Since the Internal Model
Principle copes with disturbances, S can also be used to remove any model uncertainties. Therefore, the
disturbance S∗ is not necessarily equal to S, since S is an estimation of the disturbance. Furthermore,
the error of the system is not used to drive the disturbance rejection. Instead, the measurements and
the reference are fed separately into the driver model by Bε ∈ Rs×o and Bσ ∈ Rs×n. Bε can be chosen
up to some freedom, whereas Bσ is designed during the stability analysis. The augmented system can
be described by:

ẋaug = Aaugxaug +Baugu+Br,augr

yaug = Caugxaug
(6.16)

76

where system (6.1) is combined with the driven system (6.15) where:

xaug =

[
x
v

]
Aaug =

[
A 0

BεCc S

]
Baug =

[
B
0

]
Br,aug =

[
0

−BσM

]
yaug =

[
y
v

]
Caug =

[
C 0
0 I

] (6.17)

In order to stabilize the augmented system, a control law is proposed, described by:

u = −Kaugxaug +Mr (6.18)

where Kaug =
[
Kx Kv

]
∈ Rn×m+s is the stabilizing feedback law. The control input can be directly

implemented in the system (6.1). By rewriting the control input as a function of the reference Mr =
u + Kxx + Kvv, the control input can be implemented via the reference in the driver system (6.15).
Applying the control law to the plant model and the driver model yields:

ẋ = (A−BKx)x+B (Mr −Kvv)

v̇ = (S −BσKv) v +BεCx−Bσ (u+Kxx)
(6.19)

An error model between the plant state and the driver state is proposed in the form of (Σx− v). The
matrix Σ is later specified and provides the ability to generate an error between the driver model states
v and the plant states x. The derivative of the error can be described as:

Σẋ− v̇ =Σ (A−BKx)x+ ΣB (Mr −Kvv)

− (S −BσKv) v −BεCx+Bσ (u+Kxx)
(6.20)

By utilizing Mr = u+Kxx+Kvv, the error dynamics can be described by:

Σẋ− v̇ = (S −BσKv) (Σx− v)

+ (Σ (A−BKx)− (S −BσKv) Σ−BεC)x

+ (ΣB +Bσ) (Kxx+ u)

(6.21)

Stability of the error dynamics can be made dependable on the dynamics of (S −BσKv) if the following
conditions holds:

Σ (A−BKx)− (S −BσKv) Σ = BεC (6.22)

Bσ = −ΣB (6.23)

where the error dynamics becomes:

Σẋ− v̇ = (S −BσKv) (Σx− v) (6.24)

which can be stabilized by finding a control gain Kv which makes the matrix S−BσKv Hurwitz. Given
relations (6.22), (6.23) and provided that K = Kx +KvΣ, Equation (6.22) can be simplified to

Σ (A−BK)− SΣ = BεC (6.25)

where (A−BK) is a Hurwitz matrix, where the control gain K is designed in Subsection 6.1.1. Designing
a stabilizing control law (6.18) provided the plant model (6.12) and the driver model (6.15) holds the
following steps:

1. Compute a stabilizing control gain K, which makes (A−BK) Hurwitz.

2. Solve Σ (A−BK)− SΣ = BεC for Σ 6= 0.

3. Obtain Bσ = −ΣB.

4. Compute a stabilizing control gain Kv, which makes (S −BσKv) Hurwitz.

5. Compute the control gain for the plant Kx = K −KvΣ.

6. Compute a feed forward gain M which lets the steady state converge to the reference over time.

77

After designing a stabilizing control law the augmented system including the plant model, the driver
model and the stabilizing control law can be written as:[

ẋ (t)
v̇ (t)

]
=

[
A−BKx −BKv

BεC S

] [
x (t)
v (t)

]
+

[
B
−Bσ

]
Mr (t) (6.26)

Provided a state transformation to
[
x (t) Σx (t)− v (t)

]T
and the functions presented in the design

process of the controller the augmented system transform to the system presented in Equation (6.27).
Stability can be proven, since the eigenvalues of the system only depends on (A−BK) (S −BσKv)
which both have eigenvalues in the left plane, since both are designed to be Hurwitz.[

ẋ (t)
Σẋ (t)− v̇ (t)

]
=

[
A−BK BKv

0 S −BσKv

] [
x (t)

Σx (t)− v (t)

]
+

[
BM

0

]
r (t) (6.27)

6.2 Discrete time Internal Model Principle

The discrete time case IMP, holds the same procedure as the continuous time case, except that all
matrices should be designed to be Schur instead of Hurwitz. Before all the steps are explained, the
system should be discretized, which is done in a Zero-order-hold (ZOH) fashion for an m by m state
space model (A,B,C, 0) with a sampling frequency fs for which hs is the sampling time. The discretized
matrices are obtained by applying the ZOH approach and applying a Taylor expansion which results in
the discretized system.

A = eAhs =

m∑
i=1

Ai−1hi−1
s

B =

∫ hs

0

eAsBds =

m∑
i=1

1

i!
Ai−1Bhis

(6.28)

Only the system matrices C and D remain unchanged. The result of the discretized general system is
described by:

xk+1 = Axk +Buk

yk = Cxk

yck = Ccxk

(6.29)

The following subsections follow the same design procedures as the continuous time, except for some
slight nuances.

6.2.1 Controller, observer and feedforward design

Provided the general state space system (6.1), which is discretized following the ZOH approach in Equa-
tion (6.28) and resulted in the state space system presented in Equation (6.29), a controller, observer
and feedforward needs to be designed. Furthermore, it is assumed that (A,B) is controllable and (A,C)
observable.

A stabilizing control law can be designed based on pole placement. The control law is based on Equation
(6.30), which makes the matrix (A−BK) Schur, which means all eigenvalues lie inside the unit disc.

uk = −Kxk (6.30)

Since not all states are measured, a full state observer is designed to estimate the remainder states. The
estimated states are used in the control law. The observer is provided in Equation (6.31).

x̂k+1 = Ax̂k +Buk + L (yk − ŷk)

ŷk = Cx̂k
(6.31)

The error (xk − x̂k) converges over time to zero if the poles of (A− LC) are placed inside the unit
disc and therefore make the matrix Schur. This can be achieved by designing L using for instance pole

78

placement. The error dynamics of the observer are shown in Equation (6.32), which is a combination of
the general discretized system (6.29) and the proposed observer (6.31).

xk+1 − x̂k+1 = (A− LC) (xk − x̂k) (6.32)

In order to design a feedforward which converges the steady state error to the reference, lim
t→∞

yck = rk, an

augmented system is constructed based on the general discretized plant model (6.29), and the observer
(6.31). The control law (6.30) utilizes the estimated state obtained from the observer and the reference
with an additional feedforward term. The control law is described by:

uk = −Kx̂k +Mrk (6.33)

The steady state response can be obtained if the new state is equal to previous state,([
x x̂

]
k+1

=
[
x x̂

]
k

=
[
x x̂

]
ss

)
. The steady state is measured via the Cc matrix, therefore the

steady state response can be described by:

yck =
[
Cc Oo×m

] [x
x̂

]
ss

=
[
Cc Oo×m

](
I −

[
A −BK
LC A−BK − LC

])−1 [
B
B

]
Mrk (6.34)

In order to let the steady state response converge to the reference over time, the steady state response
should become equal to yck = rk which is achieved if M is designed properly. M can be obtained by:

M =

([
Cc Oo×m

](
I −

[
A −BK
LC A−BK − LC

])−1 [
B
B

])−1

(6.35)

The inversion of M only holds, when the matrix is full rank. The matrix is full rank if the system
(Cc, A,B) has no invariant zero at z = 1. In order to determine if the system (Cc, A,B) contains an
invariant zero, the Rosenbrock’s system matrix can be used. The Rosenbrock’s system matrix is described
by:

P (z) =

[
zI −A B
−C D

]
(6.36)

If the matrix P (z) loses rank if z = 1, then the system contains an invariant zero and the matrix M can
not be obtained.

The augmented discrete system, which includes the plant, observer, control gain and feedforward can be
written as [

x
x− x̂

]
k+1

=

[
A−BK BK
Om×m A− LC

] [
x

x− x̂

]
k

+

[
B

Om×n

]
Mrk

yk =
[
C Oo×m

] [x
x− x̂

]
k

yck =
[
Cc Op×m

] [x
x− x̂

]
k

(6.37)

6.2.2 Exogenous System

Consider a LTI discretized system described by the following equations:

xk+1 = Axk +Buk +Bddk

yk = Cxk +Dddk
(6.38)

The system originates from the general discretized system provided in Equation (6.29) and is extended
with a disturbance, d ∈ Rq is the unmeasured disturbances applied to the system respectively. Further-
more, Bd ∈ Rm×q is the input matrix for disturbances and Dcd ∈ Ro×q is the disturbance feed through
matrix.

The disturbance is driven by a discrete exogenous state space system described by:

v∗k+1 = S∗v∗k

dk = H∗v∗k
(6.39)

79

where v∗ ∈ Rr and d ∈ Rq are the internal uncontrollable state and the disturbance respectively. The
matrices S∗ ∈ Rr×r and H∗ ∈ Rq×r are the transition matrix and the matrix which combines the inter-
nal states to generate a set of disturbance signals. The unknown in the exogenous system is the initial
condition v∗0 which is used as an impulse to the exogenous system.

Depending on the desired complexity of the disturbance, matrix S∗ can be filled with various differ-
ent functions or a combination of the functions, such as a step, ramp of sinusoidal function. A small
collection of signals are shown in Table 6.2 and it has to be noted that in general, the eigenvalues of the
disturbance transition matrix S∗ lie some where on the edge of the unit disc, except for the exponential
increase.

Signal
form

Characteristic Disturbance Disturbance Eigenvalues

Polynomial transition measurement
matrix matrix

det (zI − S∗) S∗ H λi
step z − 1

[
1
]

1 λi ∈ {1}

ramp (z − 1)
2

[
1 hs
0 1

] [
1
0

]T
λi ∈ {1, 1}

parabola (z − 1)
3

1 hs h2
s

0 1 hs
0 0 1

 1
0
0

T λi ∈ {1, 1, 1}

sine z2 − 2 cos (ω0hs) z + 1

[
0 1
−1 2 cos (ω0hs)

] [
1
0

]T
λi ∈ {a± bi}

sine with
non-zero
mean

(z − 1)
(
z2 − 2 cos (ω0hs) z + 1

) 1− h2
sw

2
0 hsω0 0

−hsω0 1− h2
sw

2
0 0

0 0 1

 1
0
1

T λi ∈ {a± bi, 1}

exponential
increase

z − expαhs for α > 0
[
α
]

1 λi ∈ {α}

Table 6.2: Various signals with their characteristic polynomial, exogenous system matrix representation
and eigenvalues represented in discreet time.

The general discretized state space system including observer, stabilizing control law and feedforward
(6.37) and the exogenous disturbance system (6.39) can be combined to one augmented system. The
augmented system is described as: x

x− x̂
v∗

k+1

=

A−BK BK BdH
∗

Om×m A− LC BdH
∗

Or×m Or×m S∗

 x
x− x̂
v∗

k

+

 B
Om×n
Or×n

Mrk

yk =
[
C Oo×m Oo×r

] x
x− x̂
v∗

k

yck =
[
Cc Op×m Op×r

] x
x− x̂
v∗

k

(6.40)

Noteworthy, the state transition matrix is upper triangular, which concludes that stability is determined
by the poles on the diagonal of the matrix. Since (A−BK) and (A− LC) are Schur designed earlier
in Section 6.2.1, the stability only depends on the disturbance transition matrix S∗. In most cases, the
poles of the matrix lie on the edge of the unit disk as can be seen in Table 6.2 and have a multiplicity
larger then 1. Due to the multiplicity larger then 1 and in case of the exponential increase where the
pole can be even outside the unit disc, stability is compromised, due to the disturbance applied to the
system utilizing the exogenous system.

6.2.3 Disturbance Rejection

Designing a stabilizing control law with disturbance rejection for the discreet time case, holds the same
procedure as the continuous time case. Therefore, only a recap will be given, except at places where the
discrete time case differs from the continuous time case.

80

Given system (6.40), a disturbance rejection control law can be designed to reject the disturbance applied
to the system. The proposed driver model is provided in Equation (6.41). The proposed driver model
can be seen as a disturbance observer, which takes the feedback law and reference into account and tries
to recreate the disturbance in its states.

vk+1 = Svk +Bεyk −BσMrk (6.41)

In the driver model, v ∈ Rs, y ∈ Ro and r ∈ Rp are the internal model state, the measurements of the
plant and the reference, respectively. The matrix S ∈ Rs×s can be designed manually. Some examples
are presented in Table 6.2 and ideally at least S∗ ∈ S. Since the IMP copes with disturbances, S can
also be used to remove any model uncertainties. Therefore, the disturbance S∗ is not necessarily equal
to S, since S is an estimation of the disturbance. Furthermore, the error of the system is not used to
drive the disturbance rejection. Instead, the measurements and the reference are fed separately into the
driver model by Bε ∈ Rs×o and Bσ ∈ Rs×n, such that frequencies applied to the system via the reference,
will not be rejected. Bε can be chosen up to some freedom, whereas Bσ is designed during the stability
analysis.

xaug,k+1 = Aaugxaug,k +Bauguk +Br,augrk

yaug,k = Caugxaug,k
(6.42)

where system (6.29) is combined with the driven system (6.41) where:

xaug,k =

[
xk
vk

]
Aaug =

[
A 0

BεCc S

]
Baug =

[
B
0

]
Br,aug =

[
0

−BσM

]
yaug =

[
y
v

]
Caug =

[
C 0
0 I

] (6.43)

A control law for the augmented system is proposed in the form of:

uk = −Kaugxaug,k +Mrk (6.44)

where Kaug =
[
Kx Kv

]
∈ Rn×m+s is the stabilizing feedback law. By implementing the control law in

the general system (6.29) and rewriting the control law to the reference Mrk = uk +Kxxk +Kvvk, such
that the reference can be implemented in the driver model (6.41) results in:

xk+1 = (A−BKx)xk +B (−Kvvk +Mrk)

vk+1 = (S −BσKv) vk +BεCxk −Bσ (uk +Kxxk)
(6.45)

An error model can be reconstructed in the from of Σxk − vk. The matrix Σ is specified later on. The
matrix Σ relates the states of the driver model vk to the system states xk in the form of the proposed
error. By taking into account Mrk = uk +Kxxk +Kvvk, the error dynamics between the system states
xk and the driver model states vk can be described by:

Σxk+1 − vk+1 = (S −BσKv) (Σxk − vk)

+ (Σ (A−BKx)− (S −BσKv) Σ−BεC)xk

+ (ΣB +Bσ) (uk +Kxxk)

(6.46)

The stability of the error dynamics can be made dependable on the dynamics of (S −BσKv) if the
following conditions holds:

Σ (A−BKx)− (S −BσKv) Σ = BεC

Bσ = −ΣB
(6.47)

where the error dynamics become:

Σxk+1 − vk+1 = (S −BσKv) (Σxk − vk) (6.48)

The augmented system including the error dynamics Σxk − vk can be described as:[
xk+1

Σxk+1 − vk+1

]
=

[
A−B (Kx +KvΣ) BKv

0 S −BσKv

] [
xk

Σxk − vk

]
+

[
BM

0

]
rk (6.49)

81

Due to the triangular structure of the augmented system, it can be concluded that the eigenvalues of
the system only depend on A − B (Kx +KvΣ) and S − BσKv. This concludes, provided the control
gain (6.30), is related in the form of K = Kx +KvΣ. Taking the control gain relation into account, the
relations proposed in Equation (6.47) can be simplified to:

Σ (A−BK)− SΣ = BεC

Bσ = −ΣB
(6.50)

Therefore, designing a stabilizing control law (6.44) provided the plant model (6.38) including IMP
provided in the driver model (6.41) holds the following steps:

1. Compute a stabilizing control gain K, which makes (A−BK) Schur.

2. Solve Σ (A−BK)− SΣ = BεC for Σ 6= 0.

3. Obtain Bσ = −ΣB.

4. Compute a stabilizing control gain Kv, which makes (S −BσKv) Schur.

5. Compute the control gain for the plant Kx = K −KvΣ.

6. Compute a feed forward gain M which lets the steady state converge to the reference over time.

After designing a stabilizing control law the augmented system including the plant model, the driver
model and the stabilizing control law can be written as:[

x
v

]
k+1

=

[
A−BKx −BKv

BεC S

] [
x
v

]
k

+

[
B
−Bσ

]
Mrk (6.51)

Provided a state transformation to
[
x Σx− v

]T
k

and the functions presented in the design process of
the controller the augmented system transform to the system presented in Equation (6.52). Stability can
be proven, since the determinant of the system only depends on (A−BK) and (S −BσKv) which both
have eigenvalues designed inside or on the edge of the unit disc, since both are designed to be Schur.[

x
Σx− v

]
k+1

=

[
A−BK BKv

Om×m S −BσKv

] [
x

Σx− v

]
k

+

[
B

Om×n

]
Mrk (6.52)

Furthermore, by including the combining the disturbed plant model, the disturbance, the observer, the
control law, and the driver model, an augmented system can be realized, presented in Equation (6.53).

x
x− x̂
v∗

Σx− v

k+1

=

A−BK BKx BdH

∗ BKv

Om×m A− LC BdH
∗ Om×m

Or×m Or×m S∗ Or×s
Os×m −BσKx ΣBdH

∗ S −BσKv

x
x− x̂
v∗

Σx− v

k

+

B

Om×n
Or×n
Os×n

Mrk

yk =
[
C Oo×m Oo×r Oo×s

]
x

x− x̂
v∗

Σx− v

k

yck =
[
Cc Oo×m Oo×r Oo×s

]
x

x− x̂
v∗

Σx− v

k

(6.53)

From the augmented system can be concluded:

1. All states are effected by the disturbance.

2. The eigenvalues are depending on the designed control gain (A−BK), the designed observer
(A− LC), the applied disturbance (S∗) and the designed controller for the driver model (S −BσKv).

3. The state observer model, the disturbance and the disturbance observer do not depend on the
reference.

82

6.3 Repetitive Control

A special case of IMP is Repetitive Control (RC). RC is a method which is able to learn and counteract
periodic disturbance signals, such as tracking a reference or rejecting a periodic disturbance. The RC
filter is shown in Figure 6.2 where the z−1 is a delay operator of one measurement. The value N is the
number of delays incorporated in the filter and typically taken as the period of the signal which needs
to be learned.

Controller Plant

z−N

Observer

r e uc u y

−

x̂

Figure 6.2: Block diagram of a Repetitive Control Filter.

The RC filter can be written as either a transfer function or an state space model. The transfer
function is presented in Equation (6.54). The RC filter can be seen as a memory of the system, where
it stores the N last inputs to the system. Every cycle, a new control law is computed based on the
controller design and the results of previous control inputs, especially the control input of N times back.

u =
1

1− z−N uc (6.54)

The state space format is written in Equation (6.55), where x, uc and u are the internal states, the
control input provided by the controller and the control input to the plant respectively. The matrix
A ∈ RN×N holds the memory of previous inputs. The B-matrix B ∈ RN×1 is the input matrix, which
stores control inputs from the controller in the memory of the filter and keeps them N cycles. The
measurement matrix C ∈ R1×N takes the control input from the controller and the input generated N
cycles ago and combines them to the new plant input.

 xk+1

...
xk+1−N

 = A

 xk
...

xk−N

+Buc

u = C

 xk
...

xk−N

A =

[
ON−1×1 IN−1×N−1

1 O1×N−1

]
B =

[
ON−1×1

1

]
C =

[
−1 O1×N−1

]
(6.55)

Since the A matrix of the RC filter is filled mostly with either ones, zeros or minus ones, the eigenvalues
lie on the edge of the unit disc, as can be seen in Figure 6.3. The figure illustrates RC filters with length
N ∈ {1, 4, 9, 19}, where all poles lie on the edge of the unit disc.

83

(a) Bode plot. (b) Unit disc.

Figure 6.3: Examples of RC filters. On the left are the bode plots shown for RC filters sizes 1, 4, 9 and
19 respectively. On the right, the poles of the filters are shown.

The bode plot in Figure 6.3a only shows half the frequency range of the bode plot, which corresponds
to half the unit disc on the right side of Figure 6.3b. The main reason for this is, the bode plot is
drawn from low frequencies, in Figure 6.3 from 0.01Hz up to the Nyquist frequency, which is 50Hz for a
sampling rate of 100Hz. This corresponds to half the unit disc.

As an example, lets take a filter with N = 4, shown in Figure 6.4, which has poles at λi ∈ {1, i,−1,−i}.
The poles are distributed evenly around the unit disc, which corresponds to

{
0π, 1

2π, π, 1
1
2π
}

. Mapping
the locations of the poles to the frequency band, the poles are placed at {0, 25, 50, 75}Hz. Provided the
bode plot in Figure 6.4a, changes in the transfer function are indeed at the location of those frequencies.
Only the 75Hz is not shown, since it lies past the Nyquist frequency of 50Hz.

(a) Bode plot Repetitive Control filter N = 4. (b) Unit disc Repetitive Control filter N = 4.

Figure 6.4: Example of RC filters with size 4. On the left is the bode plot and on the right, the poles of
are shown.

Where the poles are located around the unit disc and how they correspond to the transfer function
is important for designing a filter which improves specific frequencies. A signal with a specific frequency
can be learned by multiple filters. As an example, lets assume a frequency of ff = 50Hz needs te be

84

learned. This means the filter should contain a pole at λ = −1 + 0i. The lowest filter which can be used
is N = 2, but every multiple of N = 2 has a pole at λ = −1 + 0i. Furthermore, the lowest filter value
N , which should filter the frequency ff for a given sampling frequency fs can be calculated as

N =
fs
ff

(6.56)

If the RC filter is supposed to filter multiple frequencies, the greatest common divider is leading the filter
design. Which means, if two different frequencies need to be filtered, for instance 15Hz and 10Hz, N is
calculated following Equation (6.56) for ff = 5, since 5 is the greatest common divider of both frequencies.

Furthermore, an RC filter is in some cases designed with various other filters, such as low pass fil-
ters, see [83]. Where a Q (s) and a L (s) filters are added to the RC, such that stability is guaranteed.
Not only additional filters can be applied, but higher order RC filters can be used as well. In [84] a
higher order RC design is proposed. For the scope of this thesis, those topics are not explained.

Provided a general discretized system and a state space RC filter of order N , which are both shown
in Equation (6.57), where the plant is defined by (Ap, Bp, Cp) and the RC by (Arc, Brc, Crc) respectively.

xk+1 = Apxk +Bpuk

yk = Cpxk

x̃k+1 = Arcx̃k +Brcũk

ỹk = Crcx̃k
(6.57)

Both system can be augmented to one system by taking uk = ỹk and combining the states into one
system. [

x
x̃

]
k+1

=

[
Ap BpCrc
O Arc

] [
x
x̃

]
k

+

[
O
Brc

]
ũk

yk =
[
Cp O

] [x
x̃

]
k

(6.58)

From the augmented system, a controller, observer and if necessary a feedforward can be designed by
utilizing pole placement. This procedure for discrete time is explained in Section 6.2.1. The proposed
controller and observer design make sure the matrices in Equation (6.59) are both Schur. Furthermore,
it is assumed the augmented system is controllable and observable.([

Ap BpCrc
O Arc

]
− L

[
Cp O

]) ([
Ap BpCrc
O Arc

]
−
[
O
Brc

]
K

)
(6.59)

85

Chapter 7

Experiments and results
In this chapter, the results of the simulations and experiments are discussed. In Section 7.1 the general
simulator parameters are discussed, such as drone weight and inertias, wind models, evaluated controllers
and a measure for evaluating reference tracking. The sections following Section 7.1 describes the results
of hovering performance under various wind conditions. In Section 7.2, windless conditions will be
considered. In Section 7.3, shear wind will be discussed. In Section 7.4, a wind gust will be considered.
In Section 7.5, Dryden Turbulent wind will be considered. In Section 7.6, however, reference tracking of
a dynamical reference in windless conditions will be discussed.

7.1 Simulation

In this section, the parameters for the simulator are discussed. In Table 7.1 a list of parameters used
during simulation is shown. These parameters are kept constant between each experiment. The drag co-
efficients are set at 1.05 in all directions, which is equal to the dynamic properties of a box. Furthermore,
the aerodynamic surface is calculated as the surface of a box with the same size as the quad-copter. The
measures of the quad-copter are 461.44mm in width by 480.64mm in length and 93.85mm in height.

Parameter Value Units Description
m 1.4 kg Mass of the quad-copter
fs 100 Hz Sampling frequency
ρAIR 1.2041 kgm−3 Density of air at 20 degrees

G
[
0 0 9.81

]T
ms−2 Gravity vector

J

0.0304 0 0
0 0.0309 0
0 0 0.0599

 kgm2 Moment of Inertia

A

0.0433 0 0
0 0.0451 0
0 0 0.2218

 m2 Aerodynamic surface

CD

1.05 0 0
0 1.05 0
0 0 1.05

 − Drag coefficient

Table 7.1: List of parameters used in simulation.

The used controllers are a simple feedback-feedforward controller with full state observer as described
in Section 6.2. The poles of the system are placed at the edge of the unit disc. The placed poles for the
feedback control gains λKi and the observer gains λLi are described by:

λKx =
[
0.90 0.93 0.96 0.99

]
λKy =

[
0.90 0.93 0.96 0.99

]
λKz =

[
0.90 0.99

]
λKψ =

[
0.90 0.99

]
λLx =

[
0.90 0.93 0.96 0.99

]
λLy =

[
0.90 0.93 0.96 0.99

]
λLz =

[
0.90 0.99

]
λLψ =

[
0.90 0.99

] (7.1)

86

The Internal Model Principle (IMP) controller is equipped with a ramp function as described in Table
6.2 in Section 6.2.2. Furthermore, the IMP controller is stacked on top of an already existing controller,
which is the feedback, feedforward controller and observer with poles as provided in Equation (7.1). The
poles of the IMP controller itself are placed at:

λSx =
[
0.90 0.99

]
λSy =

[
0.90 0.99

]
λSz =

[
0.90 0.99

]
λSψ =

[
0.90 0.99

] (7.2)

The Repetitive Control (RC) filter can unfortunately not be designed with a simple feedback, feedforward
controller with observer, due to near unobservable states. Instead, the repetitive controller is designed
by using a linear-quadratic-guassian (LQG) controller, which consists of a Kalman filter and a linear-
quadratic-regulator (LQR). Three different RC filter sizes are tested, namely N = {1, 11, 21}. The cost
matrices for the LQG controller are in all cases kept at identity.

Furthermore, the simulation consists of four different situations, in which the reference is kept con-
stant. First of all, a base line is set in which no wind is present. Next, a constant wind is added as
disturbance. In the third simulation, a gust of wind is added to the constant wind and in the last sim-
ulation, turbulence is added. The last simulation contains no wind model, but has a reference for four
different states to track. The results of the simulations are considered in the next subsections, where
each controller is evaluated based on performance during hovering. The various different wind conditions
and resulting disturbance force applied to the quad-copter in simulation can be seen in Figure 7.1.

Figure 7.1: Wind conditions and resulting disturbance force applied to the quad-copter. All moments,
forces and wind can be seen in Appendix N.

In order to assess the quality of the positioning performance of the quad-copter, the euclidean distance
is calculated between the reference and the quad-copter position. Next, the Root Mean Square Error
(RMSE) is calculated, which provides a measure over time to assess the positioning accuracy. The error
function E and the RMSE values are obtained by:

Ei =

√
(rxi − yxi)2

+ (ryi − yyi)2
+ (rzi − yzi)2

RMSE =

√√√√ 1

N

N∑
i=1

E2

(7.3)

87

7.2 Windless conditions

In the windless condition case, the quad-copter is sent to a height of 1m and all other states are kept
zero. The simulation runs for 200 seconds, however in Figure 7.2, only the first 40 seconds are depicted.
The RMSE is calculated over the full 200 seconds. The results of the simulation are shown in Figure 7.2
and Table 7.2.

Figure 7.2: Euclidean error of the five different controllers without wind. The quad-copter is send to
1 meter altitude. Furthermore, the simulation runs over 200 seconds. Only the first 40 seconds are
depicted. Additional figures are presented in Appendix O.

Controller Filter size RMSE
[m]

Linear 0.05447
IMP 0.05447
RC 1 0.06956
RC 11 0.09193
RC 21 0.10066

Table 7.2: Controller performance results in windless conditions.

The results from Table 7.2 and Figure 7.2 show that the linear controller and the IMP controller
have similar control performance. Main reason for the comparable performance is due to the fact that
the IMP controller is designed such that it rejects disturbances. This simulation, however, does not
contain disturbances applied to the quad-copter. Since no disturbance enters the system, the IMP con-
trol part is not involved in the control action. Therefore, only the linear control part handles positioning.

However, it is noteworthy that all the RC filters do not show an increased performance compared to the
linear controller. However, the RC action takes longer before steady state is reached, as can be seen in
Figure 7.2. More results can be seen in Appendix O.

88

7.3 Shear wind

In shear wind conditions, the quad-copter is send to a height of 1m and all other states are kept zero.
The simulation runs for 200 seconds. Only the first 40 seconds are depicted in Figure 7.3. However, the
RMSE is calculated over the full 200 seconds. The results of the simulation are shown in Figure 7.3 and
Table 7.3.

Figure 7.3: Euclidean error of the five different controllers in shear wind conditions. The quad-copter
is send to 1 meter altitude. Furthermore, the simulation runs over 200 seconds, however, for visibility
reasons, only the first 40 seconds are shown. Additional figures are presented in Appendix P.

Controller Filter size RMSE
[m]

Linear 0.07275
IMP 0.07014
RC 1 0.07007
RC 11 0.09588
RC 21 0.11018

Table 7.3: Controller performance results in shear wind conditions.

During the no wind condition, the linear controller and IMP controller showed similar performance.
However, during the shear wind experiment, the IMP controller shows a significant improvement over
the linear controller. As can be seen in Figure 7.3, as soon as a disturbance is introduced, the IMP
controller starts interacting, which results in improvement of the control action.

Furthermore, the smaller RC action also show a significant improvement over the linear controller. Only
the larger RC action is worse in the first 10 seconds of the simulation. This can mostly be addressed to
the delay character of the RC filter in which the control action send to the plant acts on a delay and
needs to settle.

Overall all controllers show an improvement on the linear controller. Although the improvement is
only marginal in case of an RC filter with N = 21. More results can be seen in Appendix P.

89

7.4 Wind gust

During the wind gust conditions simulation, the quad-copter is send to a height of 1m and all other
states are kept zero. The simulation runs for 200 seconds, which is also shown in Figure 7.4. The RMSE
is calculated over the full 200 seconds. The results of the simulation are shown in Figure 7.4 and Table
7.4. Subfigure 7.4a represents moving the quad-copter to the desired height under shear wind, which is
the same simulation conditions as in Section 7.3. In Subfigure 7.4b the error is shown when the wind
gust starts disturbing the quad-copter.

(a) Wind gust euclidean state error at start. (b) Wind gust euclidean state error during wind gust.

Figure 7.4: Euclidean error of the five different controllers in wind gust conditions. The quad-copter is
send to 1 meter altitude. Additional figures are presented in Appendix Q.

Controller Filter size RMSE
[m]

Linear 0.08117
IMP 0.07063
RC 1 0.07007
RC 11 0.09588
RC 21 0.11019

Table 7.4: Controller performance results in a wind gust.

The results of a quad-copter during a gust of wind is comparable to a situation where the quad-copter
is flying in shear wind. The main reason for the comparable results is that the gust of wind is applied
on top of a shear wind, which means the controller is already suppressing the shear wind. Furthermore,
a gust of wind only contains dynamics when the gust is applied, as is shown in Figure 7.1. When the
gust of wind is applied, it can be treated as a shear wind with a higher wind velocity.

Furthermore, when the wind gust is applied in Figure 7.4b, the linear controller experiences a large
euclidean error. All the other controllers are capable of keeping the error rather small. This is also
confirmed in Table 7.4. However, the RC filter with size N = 21 still maintains a large tracking error,
which is comparable during shear wind simulation. This can be fully described to the error dynamics
at the start of the simulation, in which the controller maneuvers the quad-copter to 1 meter altitude.
Within this moment, the RC filter starts to fill with delayed control input values. Therefore, does not
yet apply a proper control action. This is also confirmed in Figure 7.4a in which it is shown that the RC
action holds the highest peak at the start of the simulation. More results can be seen in Appendix Q.

90

7.5 Dryden wind

The last wind simulation experiment consists of the quad-copter flying in Dryden turbulent wind fields.
The quad-copter is send to 1 meter altitude and all other states are kept at zero. The simulation runs
for 200 seconds, which is shown in Figure 7.1 and Table 7.5. The RMSE is calculated over the full 200
seconds.

Figure 7.5: Euclidean error of the five different controllers in Dryden wind conditions. The quad-copter
is send to 1 meter altitude..

Controller Filter size RMSE
[m]

Linear 0.29001
IMP 0.27344
RC 1 0.10781
RC 11 0.27760
RC 21 0.39273

Table 7.5: Controller performance results in Dryden wind conditions. Additional figures are presented
in Appendix R.

The results show that Dryden wind conditions, which is a military graded turbulent air flow, results in
large Euclidean errors. The results of all controllers vary significantly. Most remarkable are the RC filters
of size N = 11 and N = 21 which are not able to make an improvement compared to the linear controller.

Furthermore, the IMP controller shows the best results. Although the Euclidean error grows slightly
compared to the performance during wind gust simulation and shear wind conditions simulation on the
IMP controller. The slightly growing error for the IMP controller can be addressed to the stochastic
behavior of the Dryden wind flow acting on the quad-copter.

A third remark, the RC filter of size N = 1 and the IMP controller had similar performance results
during shear wind simulation and the wind gust simulation. However, during Dryden turbulent wind
simulation the small RC filter results in a much larger error. The results can be addressed to the Dryden
turbulent wind, which behaves rather stochastically then deterministic. Therefore, there are no guar-
antees on repetitions in the disturbance signal and the RC filter is incapable of generating a proper
disturbance rejection control input. Nonetheless, the RC filter with filter size N = 1 is still capable of
improving the performance compared to the linear controller. More results can be seen in Appendix R.

91

7.6 Dynamical reference

The Dynamical reference simulation is an experiment in which no wind is applied. However, the reference
is changed into a more challenging one. The reference consists of moving to 1 meter altitude and the X
and Y references consists of a growing and shrinking circular pattern, which is depicted in Figure 7.6a.
The results of the experiment are provided in Figure 7.6b and Table 7.6.

(a) Reference for X, Y, Z and ψ states. (b) Euclidean error of the reference.

Figure 7.6: Euclidean error of the five different controllers in dynamical conditions. The quad-copter is
send to 1 meter altitude. The X and Y reference consists of a growing and shrinking circular pattern.
All other states are kept zero. Additional figures are presented in Appendix S.

Controller Filter size RMSE
[m]

Linear 0.53746
IMP 0.53746
RC 1 0.01007
RC 11 0.01926
RC 21 0.02585

Table 7.6: Controller performance results in dynamical flight conditions.

The dynamical reference experiment shows a significant difference between the RC filters and the IMP
controller and linear controller. As depicted in Figure 7.6b, the IMP controller and the linear controller
have a comparable Euclidean error profile. This can be addressed to the procedure to IMP controller
is designed. The IMP controller is designed to only reject disturbance acting on the quad-copter. If no
disturbances are applied, the IMP controller does not influence the tracking behavior of the quad-copter.

The RC filters are designed in such a way that they try to minimize the tracking error existing be-
tween the reference and the states of the quad-copter. Since a challenging reference is provided to the
system, an tracking error is generated due to the lack of the linear controller being capable of tracking
the reference properly. Since the error is a result of a deterministic signal, the RC filters can easily
learn the proper control input and reduce the error significantly. In contrast to the Dryden turbulent
wind simulation, the tracking error had a more stochastic behaviour and could therefore not be properly
learned by the RC filters.

Furthermore, all the RC filters show similar RMSE values. The RC filter with filter size N = 1 shows
improved results compared to the larger filter sizes. However, this can be seen as marginally larger. More
results can be seen in Appendix S.

92

7.7 Experimental results

Experimental results were conducted on the Tech United field. Firstly, the quad-copter is send to 1
meter altitude and all other states are kept zero. The experiment runs, for as long as the quad-copter
can maintain its position in a safe manner. Due to the length of the experiment, the RMSE value can not
be calculated, since both experiments have different run times. The implemented controller is a feedback
controller as is discussed in Section 4.3. The results of the experiments are depicted in Figure 7.7.

(a) Experimental results hovering in windless condi-
tions.

(b) Experimental results hovering in wind conditions.

Figure 7.7: Results of experiments on testbed with a feedback controller.

As can be seen in Figure 7.7, the error of the hovering maneuver in windless conditions is within 0.5
meter of the reference, consistently. During the wind experiments, the quad-copter loses altitude, and
larger errors between the reference and the state occur.

However, during the experiments, the dynamics of the quad-copter show vibrations which are not
damped. The vibrations are related to the delay present in the Marvelmind. In Figure 7.8 is an experi-
ment shown, where temporarily a sonar is connected to the quad-copter, and is measuring the distance
between the quad-copter and the ground. During the experiment, the quad-copter was moved by hand
up and down, and as can be seen, the delay in the Marvelmind is approximated at 0.5 seconds. The
delayed position measurements are used in the observer to estimate the velocity, which is used in the
controller to stabilize the position of the quad-copter. Therefore, the vibrations are present, due to the
delay, which can not be damped by a D-gain.

Figure 7.8: Marvelmind sampling delay.

93

Chapter 8

Conclusion, Remarks and Future
work
The main goal of this research was to develop a controller which rejects disturbances applied to a quad-
copter in the form of wind in various different complexities. Most commercially available software for
quad-copters is either locked, or do not allow for an easy change in software, such that different controllers
can not easily be implemented and tested. Therefore, the complete control and software architecture is
designed in this thesis, which operates on top of already existing software, allowing for easy and flexible
programming. This chapter reflects on the used hardware, designed software and the state estimators and
controller design. Furthermore, this chapter reflects also on the wind models, the proposed disturbance
rejection algorithms and the simulation results.

8.1 Conclusion

8.1.1 Hardware, Software and Control

Hardware
The hardware used in this master thesis project consists of a Team Black Sheep (TBS) quad-copter
equipped with a Pixhawk as Flight Management Unit (FMU). The Pixhawk is a device developed by
Eidgenössische Technische Hochschule Zürich (ETH Zürich) for the purpose to control quad-copters.
The development of the Pixhawk resulted in a board which contains the necessary sensors to fly the
quad-copter on angular control. Sensors included on the Pixhawk are a magnetometer, gyroscope and
accelerometer. Furthermore, the Pixhawk is equipped which different commonly used and supported
communication channels, such as Serial Peripheral Interface (SPI), Controlled Area Network (CAN)
Inter-Integrated Circuit (I2C) and Universal Asynchronous Receiver/Transmitter (UART). Although
most sensors are available on the Pixhawk, additional sensors are needed. First of all, measuring battery
health during flight, which is achieved with an 3D Robotics (3DR) power module. Secondly, measuring
the position of the quad-copter in 3D space, which is achieved by the Marvelmind Beacons and mo-
bile beacon (hedgehog). Both sensors can be connected via the existing communication channels on
the Pixhawk. The quad-copter is propelled by four Tiger Motor Air gear 350 rotor driving equipment,
which exists of four Electronic Speed Controller (ESC)s, 2 clockwise (CW) rotating motor propellers
combination and 2 counter clockwise (CCW) rotating motor propeller combination. The ESC are con-
trolled by the Pixhawk by sending Pulse Width Modulation (PWM) signals, which results in matching
Rounds per minute (RPM) on motor side. The wireless communication between the Pixhawk and the
ground station computer is maintained by a Raspberry pi, which is connected via the general purpose
input output (GPIO) pins and a UART channel. Lastly, a Radio Control Unit (RC) is connected to the
Pixhawk, such that the user has control over the quad-copter in terms of sending the quad-copter to
desired angular or translational positions. Above all, the RC is used as a failsafe device, which dis-arms
the motors in case requested by the user.

Software
Q-ground control is a software platform to control a quad-copter equipped with a Pixhawk. Q-ground
control consists of various modules, which each handle separate tasks during flight, such as storage,
external connectivity, drivers, message bus and flight control. Some of the modules are replaced with
Simulink software, such as the flight control. However, other modules were reused, such as drivers and
the Ubiquitous Object Request Broker (uORB) message bus. Only the necessary modules are booted
and all other modules are disabled by alternating the boot process. During this master thesis, a complete
new software architecture is designed, which contains Simulink Pixhawk toolbox blocks. Furthermore,
the software contains the ability to log data locally to the Secure Digital card (SD-card) for after-flight
evaluation. Furthermore, the ability to communicate pre-defined data to the ground station was designed

94

as well. The RC is configured such that it enables the user to dis-arm, arm or put the quad-copter into
configuration mode. Furthermore, a selection can be made, such that the quad-copter runs on angle
control, altitude-hold or on full position control. During the project, additional software needed to be
installed on the Raspberry pi before it could be used as a wireless communication device. Furthermore,
the Indoor Positioning System (IPS) needed a driver, before the Pixhawk was able to obtain a position.
The driver was developed based on the National Marine Electronics Association (NMEA) 0183 sentenced
based communication protocol and communication between the hedgehog and the Pixhawk was estab-
lished. Lastly, for convenience of analyzing flight data afterwards, a Graphical User Interface (GUI) was
developed which allows faster analyzing of the flight data.

Mathematical model, state estimation and control
A non-linear mathematical model is obtained via various different literature. The model is designed
based on Tait-Bryant angles in a North-East-Down reference frame (NED frame) configuration. For
convenience the non-linear model is linearized and decoupled into two 2-Degree of freedom (DOF) and
two 4-DOF systems. Furthermore, it was assumed the quad-copter flies in near hovering modes. The
propulsion model is obtained via a thrust stand, which allows to create a mapping between commanded
Pulse Width Modulation (PWM) values and generated thrust by the propellers. An algorithm for fitting
ellipsoids on experimental data is used to calibrate both magnetometer and the accelerometer. Further-
more, the magnetometer was corrected for field distortions generated by the motors. The gyroscope
is calibrated by rotating the Pixhawk a known amount of degrees and integrating the gyroscope data
allows to match the angles with the rotated degrees. State estimation is performed in two steps. Due
to complexity of the environment, such as a metal drone cage and re bar in the ground, a Madgwick
filter is used to obtain angles. The Madgwick evaluates the magnetometer data based on dip angle
and magnitude and applies the measurement accordingly to the estimator. The translational states are
obtained by fusing the IPS position data with the accelerometer data by using a Kalman filter. Lastly
a controller is designed based on a Proportional Integral Derivative (PID) controller which stabilizes
the quad copter and brings the quad copter to the desired reference. Furtermore, the controller was
evaluated over different cascaded control structures and was shown to be stable.

8.1.2 Wind disturbance rejection

Wind field modeling
A Computational Fluid Dynamics (CFD) is considered in the form of Navier-Stokes equations as a
model-driven approach to reject wind disturbances. However, a CFD consists of a Partial Differential
Equation (PDE), which needs to be solved. Solving the PDE, or in this particular case, the well known
Navier-Stokes equations involves numerical methods. A CFD consists of four important parts, which af-
fect the accuracy of wind flow modeling and simulation results. First of all, setting up relations including
Navier-Stokes equations, continuity equation and obtaining a relation between air flows and pressure.
Although, density, temperature and compressibility of gasses influences the equations as well, they can
be assumed constant over time for convenience. Finding a numerical solver, to solve the Navier-Stokes
equations, effects the accuracy of the simulation. In general an Finite Difference Method (FDM), Finite
Volume Method (FVM) or Finite Element Method (FEM) schemes can be used. Each numerical solver
has its own trade-off such as easy implementation but limited complex mesh generation for Finite Dif-
ference Method (FDM) to hard mathematical implementations but complex mesh generation for Finite
Element Method (FEM). A third important part in CFD is setting up the boundary conditions. The
boundary conditions depends on the body to which the flow is applied, as well as the environment in
which the material flows. During flight, the boundary conditions are a big unknown, especially how air
flows through the environment. Lastly, Computational Fluid Dynamics (CFD) require stability analysis.
In some cases, if Computational Fluid Dynamics (CFD) designing is improperly performed, results will
not converge to a solution. This excludes the solution of building a Computational Fluid Dynamics
(CFD) estimation scheme to estimate the wind during flight on the quad-copter. Although it might be
suitable for simulation purposes. However, easier solutions exist to model the wind in simulation, namely
Dryden Turbulent models. Due to the simplicity, yet realistic results, a Dryden Turbulent model is used
in simulation.

95

Disturbance rejection
An IMP method based controller is designed during this project. Firstly a feedback controller, feedfor-
ward and observer are designed for continuous time. A disturbance can be modeled as an exogenous
system, which can have complex internal dynamics. A disturbance rejection system is designed in which
only the disturbance is rejected and the reference tracking performance is unchanged. The IMP method
based controller design is also repeated for discrete time case. Overall, the IMP controller can be stacked
on top of already existing linear controllers. However, perfect knowledge of the plant model is needed to
design a control law involving IMP methods, such that only disturbance rejection is achieved. Further-
more, a RC method based controller is designed. By lengthening the filter size, low frequent signals can
be rejected. As a result, the RC method improves reference tracking behavior regardless of the presence
of a disturbance.

Experiments and results
Five different controllers where evaluated in five different situations. A comparison is made between a
linear controller, an IMP controller and three RC filters with varying filter sizes. The first simulation
exist of only hovering in windless conditions to lay down a benchmark for all controllers. In the second
experiment, shear wind is applied to the quad-copter. A wind gust is applied in the third simulation.
Dryden turbulence model is applied in the fourth simulation. The fifth simulation evaluates the effect
of each controller on the tracking error when a challenging reference is provided to the quad-copter.
The results of the controllers are compared by calculating the Root Mean Square Error (RMSE) of the
euclidean distance between the quad-copter and the reference. Results show an increase in performance
for the IMP method in all disturbed cases. However, the tracking error is not improved in case of undis-
turbed conditions, concluding the IMP method is focused on disturbance rejection. Furthermore, RC
filters show an increase in reference tracking compared to a linear controller or IMP controller. Further-
more, in windy conditions without turbulence all RC filter show an improvement. However, due to the
non-repetitiveness, low RC filter sizes show best performance. During turbulent wind conditions only the
small RC filter size achieves slightly better performance compared to a linear controller. Larger sized RC
filter show a decrease in tracking performance. Depending on the needs of the system such as improving
reference tracking or flying in turbulent wind fields, an IMP controller or an RC filter of size N = 1 are
the better suited options.

8.2 Future work

8.2.1 Hardware, Software and Control

Based on the first part of the report, where the focus is on hardware, software and controller design, a
few notes of improvements can be given. Mainly due to the novelty and at the time poorly documented
information, some solutions might be obsolete. First of all the Matlab Pilot Support Package (PSP) is
already updated to a newer version. The update might result to easier toolbox implementations. Most
importantly, additional functionality could possibly already be available in the PSP.

In the Simulink real-time toolbox, blocks exist which allow for asynchronous, sentenced based communi-
cation. The blocks in question, ASCII Encoders/Decoders and First In, First Out (FIFO) Read/Write
buffers, might contribute to an improved and flexible communication strategy. The blocks where not
used in this project due to a lack of C-code generation abilities. Either a S-function can be written to use
the blocks or a TLC-wrapper. Another solution to enhance the communication, is to find a solution to
enable using the MAVLink protocol. Currently, the Matlab PSP requires disabling MAVLink, in order
to allow code uploading to the Pixhawk. In addition to the communication lines, a Raspberry pi is used
to communicate between computer and quad-copter. By providing a WiFi network and letting multiple
Raspberry Pi’s communicate can enhance and extend the designed software for quad-copter to formation
flights or let the quad-copter cooperate other available ground robots.

Since the flight stack designed by Qground-control is documented during this master thesis, parts of
the flight stack can be reconsidered in re-usability in combination with the designed Simulink software.
At the time of developing software, a lack of Q-ground control documentation resulted in developing a
completely newly designed flight stack in Simulink. An important factor in re-using flight modules is the
Ubiquitous Object Request Broker (uORB) module. Since more documentation start to appear about
uORB, connections between modules can be obtained between Simulink software more directly.

96

During control structure and observer design, the decision was made to use a Madgwick and a Kalman
filter. Reasons for a Madgwick filter is the ability to assess the quality of the magnetometer data. A
kalman filter was used since the Indoor Positioning System (IPS) had a low sampling rate. In future work,
additional filters can be explored such as extended Kalman filters with quaternions angle representations.
In addition to filtering the magnetometer data properly, a hybrid automaton can be used in the form of
an extended Kalman filter, where switching sequences is determined based in dip angle and magnitude,
such that disturbed magnetometer measurements can be rejected. Additionally, sensor fusion algorithms
allowing to incorporate multiple sensors can be considered as well. Sensor fusion algorithms do not need
to be limited to various different sensors, using multiple comparable sensors in different locations can
result in improvements as well. For instance, magnetometers on the tail and the front of the quad-copter
or centered and elevated above the quad-copter.

The Indoor Positioning System (IPS) driver is designed based on the expected sentences broadcast
by Marvelmind. This might results in receiving no data at all if the user configures the Marvelmind
wrongly. A more practical convenient solution would be to program the driver such that it can configure
the Marvelmind hedgehog once the Pixhawk is booted. Furthermore, the delay present at sampling the
Marvelmind needs to be reduced as well, in order to perform smoother quad-copter flights.

Furthermore, this master thesis project utilizes mathematical system identification approaches, where
some parameters are measured or calculated. A more robust solution, such as estimating a non-linear
model from measurement data to obtain a quad-copter model, would be a better approach.

8.2.2 Wind disturbance rejection

The forces and moments acting on the quad-copter are related to the wind via Lord Rayleigh functions.
However, a better aerodynamic model, involving complex body geometries can improve the simulator in
terms of realistic behavior.

Although an improvement in terms of controller performance is shown, the results are based on a simula-
tor. In order to validate measurement data in a proper way, the same experiments need to be conducted
in a wind tunnel, such that the desired wind and environment is controlled. This leads to evaluation
over various wind regimes instead of the fixed wind regimes generated by the fan or simulator.

The Internal Model Principle and Repetitive Control methods can be extended to non-linear control
of the quad-copter. This master thesis assumed near hovering flight modes, to which a linear model is
synthesized. If the non-linear quad-copter model is input/output feedback linearized, the control dynam-
ics still have a linear characteristic, at which an Internal Model Principle or Repetitive Control method
can be included in the control structure. Therefore, an Internal Model Principle or Repetitive Control
method can be implemented on a quad-copter coping with non-linearities as well.

During the desing process of the proposed controllers using Internal Model Principle and Repetitive
Control methods, it is assumed to have perfect knowledge of the quad-copter model. However, the sys-
tem is modeled based on literature. Furthermore, system parameters are estimated by weighing parts and
calculating inertias. In order to implement the Internal Model Principle or Repetitive Control method,
a robustness analysis against parameter uncertainty should be made.

The Internal Model Principle controller uses a driven model to compensate for wind flows acting on
the quad-copter. In case of a wind tunnel test the IMP states can be compared against the wind data in
order to obtain a correlation between both data. If a correlation exist, it might be possible to reconstruct
the wind based on the internal states of the quad-copter leading to a flying wind measurement device.

97

Bibliography

[1] Y. Petrov, “Ellipsoid fit.” https://nl.mathworks.com/matlabcentral/fileexchange/

24693-ellipsoid-fit, 2015. Mathworks.

[2] D. Joshi, “Exploring the latest drone technology for commercial, industrial and military drone uses,”
Tech Insider, 2017.

[3] L. CAMILLI, “Emerging technologies, applications, regulations, and market challenges in the con-
sumer aerial drone industry,” in Conference: San Francisco State College of Business, At San Fran-
cisco, 2015.

[4] B. Silver, M. Mazur, A. Wisniewski, and A. Babicz, “Welcome to the era of drone-powered solutions:
a valuable source of new revenue streams for telecoms operators,” 2017.

[5] R. Creutzburg, “European activities in civil applications of drones: an overview of remotely piloted
aircraft systems (rpas),” in Mobile Multimedia/Image Processing, Security, and Applications 2015,
vol. 9497, p. 949707, International Society for Optics and Photonics, 2015.

[6] A. L. Salih, M. Moghavvemi, H. A. Mohamed, and K. S. Gaeid, “Modelling and pid controller design
for a quadrotor unmanned air vehicle,” in Automation Quality and Testing Robotics (AQTR), 2010
IEEE International Conference on, vol. 1, pp. 1–5, IEEE, 2010.

[7] Z. He and L. Zhao, “A simple attitude control of quadrotor helicopter based on ziegler-nichols rules
for tuning pd parameters,” The Scientific World Journal, vol. 2014, 2014.

[8] V. K. Tripathi, L. Behera, and N. Verma, “Design of sliding mode and backstepping controllers for
a quadcopter,” in Systems Conference (NSC), 2015 39th National, pp. 1–6, IEEE, 2015.

[9] S. Bouabdallah and R. Siegwart, “Backstepping and sliding-mode techniques applied to an indoor
micro quadrotor,” in None, 2005.

[10] Y.-C. Choi and H.-S. Ahn, “Nonlinear control of quadrotor for point tracking: Actual implementa-
tion and experimental tests,” IEEE/ASME transactions on mechatronics, vol. 20, no. 3, pp. 1179–
1192, 2015.

[11] N. Jeurgens, “Implementing a simulink controller in an ar. drone 2.0,” Master’s thesis, Eindhoven
University of Technology, 2016.

[12] V. Stepanyan and K. S. Krishnakumar, “Estimation, navigation and control of multi-rotor drones
in an urban wind field,” in AIAA Information Systems-AIAA Infotech@ Aerospace, p. 0670, 2017.

[13] M. Kothari, I. Postlethwaite, and D.-W. Gu, “Uav path following in windy urban environments,”
Journal of Intelligent & Robotic Systems, vol. 74, no. 3-4, pp. 1013–1028, 2014.

[14] D. Cabecinhas, R. Cunha, and C. Silvestre, “A globally stabilizing path following controller for
rotorcraft with wind disturbance rejection,” IEEE Transactions on Control Systems Technology,
vol. 23, no. 2, pp. 708–714, 2015.

[15] J. W. Langelaan, N. Alley, and J. Neidhoefer, “Wind field estimation for small unmanned aerial
vehicles,” Journal of Guidance, Control, and Dynamics, vol. 34, no. 4, pp. 1016–1030, 2011.

[16] N. Sydney, B. Smyth, and D. A. Paley, “Dynamic control of autonomous quadrotor flight in an
estimated wind field,” in Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on,
pp. 3609–3616, IEEE, 2013.

[17] Z. J. Zhai, Z. Zhang, W. Zhang, and Q. Y. Chen, “Evaluation of various turbulence models in
predicting airflow and turbulence in enclosed environments by cfd: Part 1—summary of prevalent
turbulence models,” Hvac&R Research, vol. 13, no. 6, pp. 853–870, 2007.

[18] Z. Zhang, W. Zhang, Z. J. Zhai, and Q. Y. Chen, “Evaluation of various turbulence models in
predicting airflow and turbulence in enclosed environments by cfd: Part 2—comparison with experi-
mental data from literature,” Hvac&R Research, vol. 13, no. 6, pp. 871–886, 2007.

[19] H. Haverdings, “Helicopter emergency medical service (hems) from a rooftop in amsterdam: A
simulation perspective,” 2012.

[20] Flying Qualities of Piloted Aircraft, “MIL-F-8785C,” in Department of Defense Handbook, Wash-
ington D.C.: U.S. Department of Defense, 1980.

98

https://nl.mathworks.com/matlabcentral/fileexchange/24693-ellipsoid-fit
https://nl.mathworks.com/matlabcentral/fileexchange/24693-ellipsoid-fit

[21] Flying Qualities of Piloted Aircraft, “MIL-HDBK-1797,” in Department of Defense Handbook, Wash-
ington D.C.: U.S. Department of Defense, 1997.

[22] Flying Qualities of Piloted Aircraft, “MIL-HDBK-1797B,” in Department of Defense Handbook,
Washington D.C.: U.S. Department of Defense, 2012.

[23] W. Gawronski, “Modeling wind-gust disturbances for the analysis of antenna pointing accuracy,”
IEEE Antennas and propagation magazine, vol. 46, no. 1, pp. 50–58, 2004.

[24] S. Yoon, H. C. Lee, and T. H. Pulliam, “Computational analysis of multi-rotor flows,” in 54th AIAA
Aerospace Sciences Meeting, p. 0812, 2016.

[25] C. R. Russell, J. Jung, G. Willink, and B. Glasner, “Wind tunnel and hover performance test results
for multicopter uas vehicles,” 2016.

[26] F. Hoffmann, N. Goddemeier, and T. Bertram, “Attitude estimation and control of a quadrocopter,”
in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pp. 1072–
1077, IEEE, 2010.

[27] D. Cabecinhas, R. Cunha, and C. Silvestre, “A nonlinear quadrotor trajectory tracking controller
with disturbance rejection,” Control Engineering Practice, vol. 26, pp. 1–10, 2014.

[28] P. Hippe and J. Deutscher, Design of observer-based compensators: From the time to the frequency
domain. Springer Science & Business Media, 2009.

[29] L. Marconi, A. Isidori, and A. Serrani, “Autonomous vertical landing on an oscillating platform: an
internal-model based approach,” Automatica, vol. 38, no. 1, pp. 21–32, 2002.

[30] G. Casadei, L. Furieri, N. Mimmo, R. Naldi, and L. Marconi, “Internal model-based control for
loitering maneuvers of uavs,” in Control Conference (ECC), 2016 European, pp. 672–677, IEEE,
2016.

[31] S. Hara, Y. Yamamoto, T. Omata, and M. Nakano, “Repetitive control system: A new type servo
system for periodic exogenous signals,” IEEE Transactions on automatic control, vol. 33, no. 7,
pp. 659–668, 1988.

[32] L. Wang, “Tutorial review on repetitive control with anti-windup mechanisms,” Annual Reviews in
Control, vol. 42, pp. 332–345, 2016.

[33] Y. Wang, F. Gao, and F. J. Doyle III, “Survey on iterative learning control, repetitive control, and
run-to-run control,” Journal of Process Control, vol. 19, no. 10, pp. 1589–1600, 2009.

[34] Y. Chen, K. L. Moore, J. Yu, and T. Zhang, “Iterative learning control and repetitive control
in hard disk drive industry-a tutorial,” in Decision and Control, 2006 45th IEEE Conference on,
pp. 2338–2351, IEEE, 2006.

[35] Team Black Sheep, “Team Black Sheep Discovery base plates.” http://team-blacksheep.com/

products/product:98, 2008. [Online; accessed 3-July-2018].

[36] Tiger-Motor, “Tiger-Motor Air Gear 350 multirotor driving equipment set.” http://store-en.

tmotor.com/goods.php?id=452, 2008. [Online; accessed 3-July-2018].

[37] P. Rooijakkers, “Design and Control of a Quad-Rotor: Application to Autonomous Drone Referee-
ing,” Master’s thesis, Eindhoven University of Technology, 2017.

[38] ivc , TBS DISCOVERY Quadrotor. Durable and crash resistant multirotor optimized for dy-
namic FPV flight. Team Black Sheep, September 2014. http://www.team-blacksheep.com/

tbs-discovery-manual.pdf.

[39] ArduPilot Dev Team, “History of Ardupilot.” http://ardupilot.org/planner2/docs/

common-history-of-ardupilot.html, 2008. [Online; accessed 4-July-2018].

[40] PX4 Dev Team, “Pixhawk 1 Flight Controller.” https://docs.px4.io/en/flight_controller/

pixhawk.html, 2008. [Online; accessed 3-July-2018].

99

http://team-blacksheep.com/products/product:98
http://team-blacksheep.com/products/product:98
http://store-en.tmotor.com/goods.php?id=452
http://store-en.tmotor.com/goods.php?id=452
http://www.team-blacksheep.com/tbs-discovery-manual.pdf
http://www.team-blacksheep.com/tbs-discovery-manual.pdf
http://ardupilot.org/planner2/docs/common-history-of-ardupilot.html
http://ardupilot.org/planner2/docs/common-history-of-ardupilot.html
https://docs.px4.io/en/flight_controller/pixhawk.html
https://docs.px4.io/en/flight_controller/pixhawk.html

[41] ST, “Ultra-compact high-performance eCompass module: 3D accelerometer and 3D magnetometer,”
November 2013. https://www.st.com/resource/en/datasheet/lsm303d.pdf.

[42] ST, “MEMS motion sensor: three-axis digital output gyroscope,” March 2013. https://www.st.

com/resource/en/datasheet/l3gd20h.pdf.

[43] InvenSense Inc., “MPU-6000 and MPU-6050 Product Specification Revision 3.4,” September 2013.
https://store.invensense.com/datasheets/invensense/MPU-6050_DataSheet_V3%204.pdf.

[44] Ardupilot, “Common Power Module,” 2016. http://ardupilot.org/copter/docs/

common-3dr-power-module.html.

[45] Marvelmind, “Marvelmind Indoor Navigation System Operating manual,” January 2018. https:

//marvelmind.com/pics/marvelmind_navigation_system_manual.pdf.

[46] G. S. K. Wong, “Speed of sound in standard air,” The Journal of the Acoustical Society of America,
vol. 79, no. 5, pp. 1359–1366, 1986.

[47] Marvelmind, “Communication of Pixhawk with Marvelmind mobile beacon.,” October 2016. https:
//marvelmind.com/pics/marvelmind_pixhawk_v2016_10_11a.pdf.

[48] Electrical Technology, “Brushless dc motor: Construction, working principle
and application,” May 2016. https://www.electricaltechnology.org/2016/05/

bldc-brushless-dc-motor-construction-working-principle.html.

[49] Electronic Communications Committee, “Ecc decision (15)05. the harmonised frequency range
446.0-446.2mhz, technical characteristics, exemption from individual licensing and free carriage
and use of analogue and digital pmr 446 applications.,” July 2015. https://www.ecodocdb.dk/

download/b8797390-4577/ECCDec1505.pdf.

[50] FrSky, FrSky 2.4GHz ACCST X8R Manual, July 2017. https://www.frsky-rc.com/wp-content/
uploads/2017/07/Manual/X8R.pdf.

[51] FrSky, FrSky 2.4GHz ACCST Taranis X9D Plus Manual, Juli 2017. https://www.frsky-rc.com/
wp-content/uploads/2017/07/Manual/X9D%20Plus.pdf.

[52] Dronecode, “MAVLink Developer Guide.” https://mavlink.io/en/.

[53] Dronecode, “uORB topics graph.” https://dev.px4.io/en/middleware/uorb_graph.html.

[54] S. S. Yau and F. Karim, “Context-sensitive object request broker for ubiquitous computing envi-
ronments,” in Distributed Computing Systems, 2001. FTDCS 2001. Proceedings. The Eighth IEEE
Workshop on Future Trends of, pp. 34–40, IEEE, 2001.

[55] Dronecode, “PX4 Architectural Overview.” https://dev.px4.io/en/concept/architecture.

html.

[56] Mathworks, “Pixhawk Pilot Support Package (PSP) User Guide.” http://discuss.px4.io/

uploads/default/original/2X/d/d8a49f4c01c834a7d65472408731a80a57560356.pdf.

[57] Mathworks, “Pixhawk Support Package.” https://nl.mathworks.com/hardware-support/

pixhawk.html.

[58] Dronecode, “System Startup.” https://dev.px4.io/en/advanced/system_startup.html.

[59] M. Stigge, H. Plötz, W. Müller, and J.-P. Redlich, “Reversing crc–theory and practice,” 2006.

[60] J. F. Kurose, Computer networking: A top-down approach featuring the internet, 3/E. Pearson
Education India, 2005.

[61] FrSky, Quickstart Guide for FrSky Taranis with OpenTX, Juli 2017. https://www.frsky-rc.

com/wp-content/uploads/2017/07/Manual/Quickstart%20Guide%20for%20FrSky%20Taranis%

20with%20OpenTX.pdf.

[62] vfrolov, “com0com.” https://sourceforge.net/projects/com0com/.

100

https://www.st.com/resource/en/datasheet/lsm303d.pdf
https://www.st.com/resource/en/datasheet/l3gd20h.pdf
https://www.st.com/resource/en/datasheet/l3gd20h.pdf
https://store.invensense.com/datasheets/invensense/MPU-6050_DataSheet_V3%204.pdf
http://ardupilot.org/copter/docs/common-3dr-power-module.html
http://ardupilot.org/copter/docs/common-3dr-power-module.html
https://marvelmind.com/pics/marvelmind_navigation_system_manual.pdf
https://marvelmind.com/pics/marvelmind_navigation_system_manual.pdf
https://marvelmind.com/pics/marvelmind_pixhawk_v2016_10_11a.pdf
https://marvelmind.com/pics/marvelmind_pixhawk_v2016_10_11a.pdf
https://www.electricaltechnology.org/2016/05/bldc-brushless-dc-motor-construction-working-principle.html
https://www.electricaltechnology.org/2016/05/bldc-brushless-dc-motor-construction-working-principle.html
https://www.ecodocdb.dk/download/b8797390-4577/ECCDec1505.pdf
https://www.ecodocdb.dk/download/b8797390-4577/ECCDec1505.pdf
https://www.frsky-rc.com/wp-content/uploads/2017/07/Manual/X8R.pdf
https://www.frsky-rc.com/wp-content/uploads/2017/07/Manual/X8R.pdf
https://www.frsky-rc.com/wp-content/uploads/2017/07/Manual/X9D%20Plus.pdf
https://www.frsky-rc.com/wp-content/uploads/2017/07/Manual/X9D%20Plus.pdf
https://mavlink.io/en/
https://dev.px4.io/en/middleware/uorb_graph.html
https://dev.px4.io/en/concept/architecture.html
https://dev.px4.io/en/concept/architecture.html
http://discuss.px4.io/uploads/default/original/2X/d/d8a49f4c01c834a7d65472408731a80a57560356.pdf
http://discuss.px4.io/uploads/default/original/2X/d/d8a49f4c01c834a7d65472408731a80a57560356.pdf
https://nl.mathworks.com/hardware-support/pixhawk.html
https://nl.mathworks.com/hardware-support/pixhawk.html
https://dev.px4.io/en/advanced/system_startup.html
https://www.frsky-rc.com/wp-content/uploads/2017/07/Manual/Quickstart%20Guide%20for%20FrSky%20Taranis%20with%20OpenTX.pdf
https://www.frsky-rc.com/wp-content/uploads/2017/07/Manual/Quickstart%20Guide%20for%20FrSky%20Taranis%20with%20OpenTX.pdf
https://www.frsky-rc.com/wp-content/uploads/2017/07/Manual/Quickstart%20Guide%20for%20FrSky%20Taranis%20with%20OpenTX.pdf
https://sourceforge.net/projects/com0com/

[63] s novelli, “combyTCP.” https://sourceforge.net/projects/combytcp/.

[64] National Marine Electronics Association et al., “The NMEA 0183 Protocol,” URL: http://www.
tronico. fi/OH6NT/docs/NMEA0183. pdf, 2001.

[65] R. B. Langley, “NMEA 0183: A GPS receiver interface standard,” GPS world, vol. 6, no. 7, pp. 54–
57, 1995.

[66] I. Lita, I. B. Cioc, and D. A. Visan, “A new approach of automobile localization system using GPS
and GSM/GPRS transmission,” in Electronics Technology, 2006. ISSE’06. 29th International Spring
Seminar on, pp. 115–119, IEEE, 2006.

[67] M. Pedley, “High-precision calibration of a three-axis accelerometer.” http://cache.freescale.

com/files/sensors/doc/app_note/AN4399.pdf, 2015. Freescale Smiconductor.

[68] T. Ozyagcilar, “Calibrating an ecompass in the presence of hard- and soft-iron interference.” https:

//www.nxp.com/docs/en/application-note/AN4246.pdf, 2015. Freescale Smiconductor.

[69] I. Sa and P. Corke, “System identification, estimation and control for a cost effective open-source
quadcopter,” in Robotics and automation (icra), 2012 ieee international conference on, pp. 2202–
2209, IEEE, 2012.

[70] R. Mahony, T. Hamel, and J.-M. Pflimlin, “Nonlinear complementary filters on the special orthog-
onal group,” IEEE Transactions on automatic control, vol. 53, no. 5, pp. 1203–1218, 2008.

[71] B. Fan, Q. Li, C. Wang, and T. Liu, “An adaptive orientation estimation method for magnetic and
inertial sensors in the presence of magnetic disturbances,” Sensors, vol. 17, no. 5, p. 1161, 2017.

[72] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and rotation vectors,” 2006.

[73] S. O. Madgwick, A. J. Harrison, and R. Vaidyanathan, “Estimation of imu and marg orientation
using a gradient descent algorithm,” in Rehabilitation Robotics (ICORR), 2011 IEEE International
Conference on, pp. 1–7, IEEE, 2011.

[74] State of New South Wales, “North and south.” http://lrrpublic.cli.det.nsw.edu.au/

lrrSecure/Sites/Web/Forces_and_fields_creative_commons/7306/other/earths_magnetic_

field.html, 2008. [Online; accessed 3-July-2018].

[75] F. L. Markley, Y. Cheng, J. L. Crassidis, and Y. Oshman, “Quaternion averaging,” 2007.

[76] A. Sayma, Computational fluid dynamics. Bookboon, 2009.

[77] J. D. Anderson and J. Wendt, Computational fluid dynamics, vol. 206. Springer, 1995.

[78] J. Anderson, “Fundamentals of aerodynamics, 1991.”

[79] F. H. Harlow and J. E. Welch, “Numerical calculation of time-dependent viscous incompressible
flow of fluid with free surface,” The physics of fluids, vol. 8, no. 12, pp. 2182–2189, 1965.

[80] A. Gronskis and G. Artana, “A simple and efficient direct forcing immersed boundary method
combined with a high order compact scheme for simulating flows with moving rigid boundaries,”
Computers & Fluids, vol. 124, pp. 86–104, 2016.

[81] T. Chung, Computational fluid dynamics. Cambridge university press, 2010.

[82] B. Blocken, T. Stathopoulos, and J. Carmeliet, “Cfd simulation of the atmospheric boundary layer:
wall function problems,” Atmospheric environment, vol. 41, no. 2, pp. 238–252, 2007.

[83] M. Steinbuch, “Repetitive control for systems with uncertain period-time,” Automatica, vol. 38,
no. 12, pp. 2103–2109, 2002.

[84] R. Costa-Castelló, G. A. Ramos, J. M. Olm, and M. Steinbuch, “Second-order odd-harmonic repet-
itive control and its application to active filter control,” in Decision and Control (CDC), 2010 49th
IEEE Conference on, pp. 6967–6972, IEEE, 2010.

101

https://sourceforge.net/projects/combytcp/
http://cache.freescale.com/files/sensors/doc/app_note/AN4399.pdf
http://cache.freescale.com/files/sensors/doc/app_note/AN4399.pdf
https://www.nxp.com/docs/en/application-note/AN4246.pdf
https://www.nxp.com/docs/en/application-note/AN4246.pdf
http://lrrpublic.cli.det.nsw.edu.au/lrrSecure/Sites/Web/Forces_and_fields_creative_commons/7306/other/earths_magnetic_field.html
http://lrrpublic.cli.det.nsw.edu.au/lrrSecure/Sites/Web/Forces_and_fields_creative_commons/7306/other/earths_magnetic_field.html
http://lrrpublic.cli.det.nsw.edu.au/lrrSecure/Sites/Web/Forces_and_fields_creative_commons/7306/other/earths_magnetic_field.html

Appendices

102

103

A
p

p
e
n

d
ix

A

P
ix

h
a
w

k
P

in
o
u
ts

P
in

N
r.

1
(r

e
d

)
2
(b

lk
)

3
(b

lk
)

4
(b

lk
)

5
(b

lk
)

6
(b

lk
)

7
(b

lk
)

T
E

L
E

M
1

S
ig

n
al

V
C

C
T

X
R

X
C

T
S

R
T

S
G

N
D

T
E

L
E

M
2

V
ol

t
+

5V
+

3
.3

V
+

3
.3

V
+

3
.3

V
+

3
.3

V
G

N
D

G
P

S
S

ig
n

al
V

C
C

T
X

R
X

C
A

N
2

T
X

C
A

N
2

R
X

G
N

D
V

ol
t

+
5V

+
3
.3

V
+

3
.3

V
+

3
.3

V
+

3
.3

V
G

N
D

S
er

ia
l

S
ig

n
al

V
C

C
T

X
(#

4
)

R
X

(#
4
)

T
X

(#
5
)

R
X

(#
5
)

G
N

D
4/

5
V

ol
t

+
5V

+
3
.3

V
+

3
.3

V
+

3
.3

V
+

3
.3

V
G

N
D

A
D

C
S

ig
n

al
V

C
C

A
D

C
IN

G
N

D
6.

6V
V

ol
t

+
5V

u
p

to
+

6
.6

V
G

N
D

A
D

C
S

ig
n

al
V

C
C

A
D

C
IN

G
N

D
A

D
C

IN
G

N
D

3.
3V

V
ol

t
+

5V
u

p
to

+
3
.3

V
G

N
D

u
p

to
+

3
.3

V
G

N
D

I2
C

S
ig

n
al

V
C

C
S

C
L

S
D

A
G

N
D

V
ol

t
+

5V
+

3.
3(

p
u

ll
u

p
s)

+
3
.3

(p
u

ll
u

p
s)

G
N

D
C

A
N

S
ig

n
al

V
C

C
C

A
N

H
C

A
N

L
G

N
D

V
ol

t
+

5V
+

1
2
V

+
1
2
V

G
N

D
S

P
I

S
ig

n
al

V
C

C
S

P
I

S
C

K
S

P
I

M
IS

O
S
P

I
M

O
S

I
!S

P
I

N
S

S
!G

P
IO

G
N

D
V

ol
t

+
5V

+
3
.3

V
+

3
.3

V
+

3
.3

V
+

3
.3

V
+

3
.3

V
G

N
D

P
ow

er
S

ig
n

al
V

C
C

V
C

C
C

u
rr

en
t

V
o
lt

a
g
e

G
N

D
G

N
D

V
ol

t
+

5V
+

5
V

u
p

to
+

3
.3

V
u

p
to

+
3
.3

V
G

N
D

G
N

D
S

w
it

ch
S

ig
n

al
V

C
C

!i
o

le
d

sa
fe

ty
S

A
F

E
T

Y
V

ol
t

+
3.

3V
G

N
D

G
N

D
C

on
so

le
S

ig
n

al
+

5V
T

X
R

X
T

X
R

X
G

N
D

P
or

t
F

T
D

I
5

4
1

N
/C

N
/
C

N
/
C

R
X

(y
el

lo
w

)
T

X
(o

ra
n

g
e)

G
N

D
(b

la
ck

)
S

p
ek

tr
u

m
P

in
1(

w
h

it
e)

2(
b

la
ck

)
3
(r

ed
)

D
S

M
P

or
t

S
ig

n
al

S
ig

n
al

G
N

D
V

cc
V

ol
t

+
3.

3V
G

N
D

+
3
.3

V

T
a
b

le
A

.1
:

P
ix

h
aw

k
p

in
n
u

m
b

er
s

a
n

d
si

g
n

a
l.

104

Appendix B

Tiger Air gear 350 User Manual

Figure B.1: User manual Tiger Air Gear 350 page 1-2.

Figure B.2: User manual Tiger Air Gear 350 page 3-4.

105

Figure B.3: User manual Tiger Air Gear 350 page 5-6.

106

Appendix C

Boot process Pixhawk

1 usleep 1000
2 uorb start
3

4 usleep 1000
5

6

7 # if this line is active, Simulink will not upload code to the Pixhawk via usb
8 #nshterm /dev/ttyACM0 &
9

10 usleep 1000
11

12

13 px4io start
14 usleep 1000
15

16

17 #commander start
18

19 #usleep 1000
20

21 #mavlink start −d /dev/ttyS1 −b 115200
22

23 #usleep 5000
24

25 #dataman start
26

27 #usleep 1000
28

29 #navigator start
30

31 #usleep 1000
32

33

34 sh /etc/init.d/rc.sensors
35 usleep 1000
36

37

38 #sh /etc/init.d/rc.logging
39

40 #usleep 1000
41

42 #gps start
43 attitude estimator q start
44

45 position estimator inav start
46

47 usleep 1000
48

49

50 mtd start
51

52 usleep 1000
53

54

55 param load /fs/mtd params
56

57 usleep 1000
58

59

60 rgbled start
61

62 usleep 1000

107

63

64

65 gps start
66 usleep 1000
67

68 px4 simulink app start
69

70 usleep 1000
71 exit

Listing C.1: Pixhawk boot alternation file.

108

Appendix D

Basic Logged Data Reading

1 clear all; clc
2

3 %% Load data
4 Folder = 'Sensor Calibration';
5 file = 'Acc';
6

7 sensor file = ['LoggedData\' Folder '\RawSensorData ' file '.bin']; % Sensor Test
8 [datapts, ¬] = readdata(sensor file); % Sensor tests
9

10 %% Plot Data
11 figure(1); clf; hold on;
12 for i = 1:size(datapts,1)
13 plot(datapts(i,:))
14 end
15 grid on; axis tight;

Listing D.1: Example Matlab code for reading and plotting the .bin file.

1 %% Load the data into MATLAB from a binary log file
2 % Usage: >> [datapoints, numpoints] = readdata('datafile.log')
3 % Header information format:
4 % String "MWLOGV##"
5 % Time/Date 4 bytes (time())
6 % Number of Signals per record Logged 1 bytes (256 max)
7 % Data Type of Signals Logged 1 bytes (1−10)
8 % Number of bytes per record 2 (65535 max)
9 % Plot Data Example: plot([1:numpoints], datapoints(1,:), [1:numpoints], datapoints(2,:))

10 % MathWorks Pilot Engineering 2015
11 % Steve Kuznicki
12 function [datapts, numpts] = readdata(dataFile)
13 %%
14 datapts = 0;
15 numpts = 0;
16

17 if nargin == 0
18 dataFile = 'data.bin';
19 end
20

21 fid = fopen(dataFile, 'r');
22 % load the header information
23 hdrToken = fread(fid, 8, 'char');
24 if strncmp(char(hdrToken),'MWLOGV',6) == true
25 logTime = uint32(fread(fid, 1, 'uint32'));
26 numflds = double(fread(fid, 1, 'uint8'));
27 typefld = uint8(fread(fid, 1, 'uint8'));
28 recSize = uint16(fread(fid, 1, 'uint16'));
29 fieldTypeStr = get elem type(typefld);
30 datapts = fread(fid, double([numflds, Inf]), fieldTypeStr);
31 fclose(fid);
32 numpts = size(datapts,2);
33 end
34

35 end

Listing D.2: Matlab function to read complete .bin file data.

1 %% Load the data into MATLAB from a binary log file
2 % Usage: >> [datapoints, numpoints] = readdata('datafile.log')
3 % Header information format:

109

4 % String "MWLOGV##"
5 % Time/Date 4 bytes (time())
6 % Number of Signals per record Logged 1 bytes (256 max)
7 % Data Type of Signals Logged 1 bytes (1−10)
8 % Number of bytes per record 2 (65535 max)
9 % Plot Data Example: plot([1:numpoints], datapoints(1,:), [1:numpoints], datapoints(2,:))

10 % MathWorks Pilot Engineering 2015
11 % Steve Kuznicki
12 %% get the element type string
13 function [dtypeStr] = get elem type(dtype)
14 switch(dtype)
15 case 1
16 dtypeStr = 'double';
17 case 2
18 dtypeStr = 'single';
19 case 3
20 dtypeStr = 'int32';
21 case 4
22 dtypeStr = 'uint32';
23 case 5
24 dtypeStr = 'int16';
25 case 6
26 dtypeStr = 'uint16';
27 case 7
28 dtypeStr = 'int8';
29 case 8
30 dtypeStr = 'uint8';
31 case 9
32 dtypeStr = 'logical';
33 case 10
34 dtypeStr = 'embedded.fi';
35 end
36 end

Listing D.3: Matlab function get element type.

110

Appendix E

Setup Raspberry Pi
E.1 Configuration Raspberry Pi

The following process is done once the raspberry pi is configured. The commands below, first allow ssh
communication. Second expand the filesystem on the SD card. Third, start ssh on boot such that external
conenctivity is accepted. Fourthly, configure serial communication, such that it can communicate via
the GPIO pins. And last, the IP addresses of the raspberry pi are fixed.

1 # Startup SSH
2 sudo systemctl enable ssh
3 sudo systemctl start ssh

Resizing the SD-card.

1 sudo raspi−config

Select → 7 Advanced Options → A1 Expand Filesystem → OK → Finish → Yes.

Startup SSH on boot.

1 sudo raspi−config

Select → 5 Interfacing Options → P2 SSH → Yes → Ok → Finish → Yes.

Setup Serial communication.

1 sudo raspi−config

Select → 5 Interfacing Options → P6 Serial → No → Yes → Ok → Finish → Yes.

Fix the IP-addresses of the Raspberry pi.

1 sudo nano /etc/rc.local
2 sudo ifconfig wlan0 192.168.42.1
3 sudo ifconfig eth0 192.168.178.21

E.2 Setup Serial 2 Network

1 clear
2 ## This script turns installs and configures ser2net
3 # in order to run this script, run it under sudo
4 # sudo nano Setup Ser2Net.rc (copy past this file)
5 # sudo chmod +x Setup Ser2Net.rc
6 # sudo ./Setup Ser2Net.rc
7

8 # Update stretch and install and Ser2net
9 sudo apt−get update −y

10 sudo apt−get install ser2net −y
11

12 # Configuring USB
13 if grep −Fq "4001:raw:0:/dev/ttyACM0:19200 8DATABITS NONE 1STOPBIT" /etc/ser2net.conf; ...

then

111

14 echo "USB Terminal already configured on ttyACM0 on baudrate 19200 port 4001"
15 else
16 echo "USB Terminal configures at ttyACM0 on baudrate 19200 port 4001"
17 sudo echo "4001:raw:0:/dev/ttyACM0:19200 8DATABITS NONE 1STOPBIT" >> /etc/ser2net.conf
18 fi
19

20 # Configuring GPIO pins
21 if grep −Fq "4002:raw:0:/dev/ttyS0:115200 8DATABITS NONE 1STOPBIT" /etc/ser2net.conf; then
22 echo "USB Terminal already configured on ttyS0 on baudrate 115200 port 4002"
23 else
24 echo "USB Terminal configured at ttyS0 on baudrate 115200 port 4002"
25 sudo echo "4002:raw:0:/dev/ttyS0:115200 8DATABITS NONE 1STOPBIT" >> /etc/ser2net.conf
26 fi

Listing E.1: Ser2Net installation script.

Commands for ser2net usage:
Edit configuration file:

1 sudo nano /etc/ser2net.conf

The configuration is done in the form of:

1 <TCP port>:<State>:<Timeout>:<Device>:<Options>
2 4001:raw:0:/dev/ttyACM0:115200 8DATABITS NONE 1STOPBIT

Where Options contains information about the serial connection, such as baudrate, number of databits,
parity and number of stopbits.
Start service:

1 sudo /etc/init.d/ser2net start

Stop service:

1 sudo /etc/init.d/ser2net stop

Restart service:

1 sudo /etc/init.d/ser2net restart

Check if service is running:

1 ps axg | grep [s]er2net

E.3 Setup Access Point

1 #!/bin/bash
2

3 clear
4

5 ## This script turns a Raspberry pi into an Access Point
6 # in order to run this script, run it under sudo
7 # sudo nano Setup AP.rc (copy past this file)
8 # sudo chmod +x Setup AP.rc
9 # sudo ./Setup AP.rc

10 # Check if WiFi adapter is available (wlan0)
11 ifconfig −a
12

13 # Update packages and install iptables manager
14 echo ...

"=="

112

15 echo "Updating packages and installing hostapd and iptables manager"
16 echo "Press Yes to all windows in configuration screen"
17 echo ...

"=="
18 sudo apt−get update −y
19 sudo apt−get install hostapd isc−dhcp−server −y
20 sudo apt−get install iptables−persistent −y
21

22 # Set up DHCP server
23 echo ...

"=="
24 echo "Set up DHCP server"
25 echo ...

"=="
26 sudo chown 777 /etc/dhcp/dhcpd.conf
27

28 if grep −Fq "#option domain−name \"example.org\";" /etc/dhcp/dhcpd.conf; then
29 echo "Comment 1 already done in dhcpd.conf."
30 else
31 echo "Comment 1 applied in dhcpd.conf."
32 sudo perl −pi −e 's/option domain−name "example.org";/#option domain−name ...

"example.org";/g' /etc/dhcp/dhcpd.conf
33 fi
34 if grep −Fq "#option domain−name−servers ns1.example.org, ns2.example.org;" ...

/etc/dhcp/dhcpd.conf; then
35 echo "Comment 2 already done in dhcpd.conf."
36 else
37 echo "Comment 2 applied in dhcpd.conf."
38 sudo perl −pi −e 's/option domain−name−servers ns1.example.org, ...

ns2.example.org;/#option domain−name−servers ns1.example.org, ...
ns2.example.org;/g' /etc/dhcp/dhcpd.conf

39 fi
40 if grep −Fq "#authoritative;" /etc/dhcp/dhcpd.conf; then
41 echo "Comment 3 removed in dhcpd.conf."
42 sudo perl −pi −e 's/#authoritative;/authoritative;/g' /etc/dhcp/dhcpd.conf
43 else
44 echo "Comment 3 already removed in dhcpd.conf."
45 fi
46

47 # add subnet 192.168.42.0 netmask 255.255.255.0 {
48 if grep −Fxq "subnet 192.168.42.0 netmask 255.255.255.0 {" /etc/dhcp/dhcpd.conf; then
49 echo "Line 1 already exists in dhcpd.conf."
50 else
51 echo "Line 1 added to dhcpd.conf."
52 sudo echo "subnet 192.168.42.0 netmask 255.255.255.0 {" >> /etc/dhcp/dhcpd.conf
53 fi
54 # add range 192.168.42.10 192.168.42.15;
55 if grep −Fxq "range 192.168.42.10 192.168.42.15;" /etc/dhcp/dhcpd.conf; then
56 echo "Line 2 already exists in dhcpd.conf."
57 else
58 echo "Line 2 added to dhcpd.conf."
59 sudo echo "range 192.168.42.10 192.168.42.15;" >> /etc/dhcp/dhcpd.conf
60 fi
61 # add option broadcast−address 192.168.42.255;
62 if grep −Fxq "option broadcast−address 192.168.42.255;" /etc/dhcp/dhcpd.conf; then
63 echo "Line 3 already exists in dhcpd.conf."
64 else
65 echo "Line 3 added to dhcpd.conf."
66 sudo echo "option broadcast−address 192.168.42.255;" >> /etc/dhcp/dhcpd.conf
67 fi
68 # add option routers 192.168.42.1;
69 # add default−lease−time 600;
70 # add max−lease−time 7200;
71 if grep −Fxq "option routers 192.168.42.1;" /etc/dhcp/dhcpd.conf; then
72 echo "Line 4 already exists in dhcpd.conf."
73 echo "Line 5 already exists in dhcpd.conf."
74 echo "Line 6 already exists in dhcpd.conf."
75 else
76 echo "Line 4 added to dhcpd.conf."
77 sudo echo "option routers 192.168.42.1;" >> /etc/dhcp/dhcpd.conf
78 echo "Line 5 added to dhcpd.conf."
79 sudo echo "default−lease−time 600;" >> /etc/dhcp/dhcpd.conf
80 echo "Line 6 added to dhcpd.conf."

113

81 sudo echo "max−lease−time 7200;" >> /etc/dhcp/dhcpd.conf
82 fi
83

84 # add option domain−name "local";
85 if grep −Fxq "option domain−name \"local\";" /etc/dhcp/dhcpd.conf; then
86 echo "Line 7 already exists in dhcpd.conf."
87 else
88 echo "Line 7 added to dhcpd.conf."
89 sudo echo "option domain−name \"local\";" >> /etc/dhcp/dhcpd.conf
90 fi
91 # add option domain−name−servers 8.8.8.8, 8.8.4.4;}
92 if grep −Fxq "option domain−name−servers 8.8.8.8, 8.8.4.4;}" /etc/dhcp/dhcpd.conf; then
93 echo "Line 8 already exists in dhcpd.conf."
94 else
95 echo "Line 8 added to dhcpd.conf."
96 sudo echo "option domain−name−servers 8.8.8.8, 8.8.4.4;}" >> /etc/dhcp/dhcpd.conf
97 fi
98

99 sudo chown 777 /etc/default/isc−dhcp−server
100 perl −pi −e 's/INTERFACES=""/INTERFACES="wlan0"/g' /etc/default/isc−dhcp−server
101 perl −pi −e 's/INTERFACESv4=""/INTERFACESv4="wlan0"/g' /etc/default/isc−dhcp−server
102 perl −pi −e 's/INTERFACESv6=""/INTERFACESv6="wlan0"/g' /etc/default/isc−dhcp−server
103

104 # Set up wlan0 for static IP
105 echo ...

"=="
106 echo "Set up wlan0 for static IP"
107 echo ...

"=="
108 sudo ifdown wlan0
109 sudo chown 777 /etc/network/interfaces
110

111 if grep −xq "auto wlan0" /etc/network/interfaces; then
112 # wlan0 is present in interfaces
113 echo "auto wlan0 is present in interfaces and commented"
114 STARTLINE=$(grep −n 'auto wlan0' /etc/network/interfaces | cut −d : −f 1)
115 ENDLINE=$(cat /etc/network/interfaces | wc −l)
116 sed −i "$STARTLINE,$ENDLINE s/ˆ/#/" /etc/network/interfaces
117 else
118 # wlan0 is not present in interfaces
119 echo "auto wlan0 is not present in interfaces"
120 fi
121

122 if grep −Fxq "iface wlan0 inet static" /etc/network/interfaces; then
123 echo "Line 1 is present in interfaces."
124 else
125 echo "Line 1 is added in interfaces."
126 echo "iface wlan0 inet static" >> /etc/network/interfaces
127 fi
128 if grep −Fxq "address 192.168.42.1" /etc/network/interfaces; then
129 echo "Line 2 is present in interfaces."
130 else
131 echo "Line 2 is added in interfaces."
132 echo "address 192.168.42.1" >> /etc/network/interfaces
133 fi
134 if grep −Fxq "netmask 255.255.255.0" /etc/network/interfaces; then
135 echo "Line 3 is present in interfaces."
136 else
137 echo "Line 3 is added in interfaces."
138 echo "netmask 255.255.255.0" >> /etc/network/interfaces
139 fi
140

141 # Assigning a static IP address to the WiFi adapter
142 sudo ifconfig wlan0 192.168.42.1
143

144 # Configure Access Point
145 echo ...

"=="
146 echo "Configure Access Point"
147 echo ...

"=="
148

149 if [−f /etc/hostapd/hostapd.conf]; then

114

150 echo "File hostapd.conf found and deleted"
151 rm −rf /etc/hostapd/hostapd.conf
152 else
153 echo "File hostapd.conf does not exist"
154 fi
155

156 sudo touch /etc/hostapd/hostapd.conf
157 sudo chown 777 /etc/hostapd/hostapd.conf
158 echo "interface=wlan0" >> /etc/hostapd/hostapd.conf
159 echo "#driver=rtl871xdrv" >> /etc/hostapd/hostapd.conf
160 echo "ssid=TBS" >> /etc/hostapd/hostapd.conf
161 echo "country code=US" >> /etc/hostapd/hostapd.conf
162 echo "hw mode=g" >> /etc/hostapd/hostapd.conf
163 echo "channel=6" >> /etc/hostapd/hostapd.conf
164 echo "macaddr acl=0" >> /etc/hostapd/hostapd.conf
165 echo "auth algs=1" >> /etc/hostapd/hostapd.conf
166 echo "ignore broadcast ssid=0" >> /etc/hostapd/hostapd.conf
167 echo "wpa=2" >> /etc/hostapd/hostapd.conf
168 echo "wpa passphrase=TBSRaspberry" >> /etc/hostapd/hostapd.conf
169 echo "wpa key mgmt=WPA−PSK" >> /etc/hostapd/hostapd.conf
170 echo "wpa pairwise=CCMP" >> /etc/hostapd/hostapd.conf
171 echo "wpa group rekey=86400" >> /etc/hostapd/hostapd.conf
172 echo "ieee80211n=1" >> /etc/hostapd/hostapd.conf
173 echo "wme enabled=1" >> /etc/hostapd/hostapd.conf
174

175

176 sudo perl −pi −e 's/#DAEMON CONF=""/DAEMON CONF="\/etc\/hostapd\/hostapd.conf"/g' ...
/etc/default/hostapd

177 if grep −Fxq "DAEMON CONF=/etc/hostapd/hostapd.conf" /etc/init.d/hostapd; then
178 echo "Reference already exists in init.d/hostapd"
179 else
180 echo "Reference made in init.d/hostapd"
181 sudo perl −pi −e 's/DAEMON CONF=/DAEMON CONF=\/etc\/hostapd\/hostapd.conf/g' ...

/etc/init.d/hostapd
182 fi
183

184 # Configure Network Address Translation
185 echo ...

"=="
186 echo "Configure Network Address Translation"
187 echo ...

"=="
188

189 if grep −Fxq "net.ipv4.ip forward=1" /etc/sysctl.conf; then
190 echo "Line already exists in sysctl.conf"
191 else
192 echo "Line added to sysctl.conf"
193 echo "net.ipv4.ip forward=1" >> /etc/sysctl.conf
194 fi
195 sudo sh −c "echo 1 > /proc/sys/net/ipv4/ip forward"
196

197 sudo iptables −t nat −A POSTROUTING −o eth0 −j MASQUERADE
198 sudo iptables −A FORWARD −i eth0 −o wlan0 −m state −−state RELATED,ESTABLISHED −j ACCEPT
199 sudo iptables −A FORWARD −i wlan0 −o eth0 −j ACCEPT
200

201 # check whats inside the iptables
202 echo "Check whats inside the iptables"
203 sudo iptables −t nat −S
204 sudo iptables −S
205

206 sudo sh −c "iptables−save > /etc/iptables/rules.v4"
207

208 # Test kernel version for addition steps
209 kernel version=`uname −r`
210 if [$kernel version > "4.4"]; then
211 echo "Kernel version is above 4.5."
212 echo "No additional steps are needed."
213 else
214 echo "Kernel version might be below 4.4.13−v7+."
215 echo "Take additional steps."
216 echo "See: ...

https://learn.adafruit.com/setting−up−a−raspberry−pi−as−a−wifi−access−point/install−software"
217 read −n 1 −s

115

218 fi
219 rm −rf 4.4
220

221 # First test
222 echo ...

"=="
223 echo "FIRST TIME ACCESS POINT IS TESTED"
224 echo ...

"=="
225 #sudo /usr/sbin/hostapd /etc/hostapd/hostapd.conf
226

227 # Removing WPA−Supplicant
228 echo ...

"=="
229 echo "Removing WPA−Supplicant"
230 echo ...

"=="
231 # sudo mv /usr/share/dbus−1/system−services/fi.epitest.hostap.WPASupplicant.service ¬/
232 # sudo reboot

Listing E.2: Raspberry Pi Access Point configuration script.

116

Appendix F

Com0Com

Figure F.1: Overview of the com0com software. In this figure, a simple null-modem configuration is also
shown.

117

Appendix G

CombyTCP

Figure G.1: Overview of the combyTCP software. In this figure, on the server side the raspberry pi
settings are shown. On the Com properties side, a configuration for Com communication setup as in
ser2net is shown.

118

Appendix H

GPS Driver Installation
This is a short description of the MarvelMind GPS driver software installation. First of all, a few notes
to keep in mind:

� This driver is not suited for commercial use.

� This driver is only designed to accept Marvelmind communication messages.

� Which means that no configuration of the GPS is performed.

� It disables the Ashtech GPS driver and reads the general $GP GPS protocol messages and posts
them to the uORB.

The software for the Pixhawk is located in ../px4. In most cases located on the windows C-drive.
The software located in this directory, is the complete flight stack, which is loaded to the Pixhawk
from Simulink. In this software, the driver needs to be installed, to cope with the Marvelmind mes-
sages. The first step would be to place the files marv.h (section H.1) and marv.cpp (section H.2) in the
../px4/Firmware/src/drivers/gps/devices/src folder.

The driver files need to be included in the compilation process, which is done via CMakeLists file located
in ../px4/Firmware/src/drivers/gps. Below is the new C make file shown where line 46 is added,
such that the Marvelmind driver is included in the compilation process.

1 ##
2 #
3 # Copyright (c) 2015 PX4 Development Team. All rights reserved.
4 #
5 # Redistribution and use in source and binary forms, with or without
6 # modification, are permitted provided that the following conditions
7 # are met:
8 #
9 # 1. Redistributions of source code must retain the above copyright

10 # notice, this list of conditions and the following disclaimer.
11 # 2. Redistributions in binary form must reproduce the above copyright
12 # notice, this list of conditions and the following disclaimer in
13 # the documentation and/or other materials provided with the
14 # distribution.
15 # 3. Neither the name PX4 nor the names of its contributors may be
16 # used to endorse or promote products derived from this software
17 # without specific prior written permission.
18 #
19 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
22 # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
23 # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
24 # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 # OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
27 # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
29 # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 # POSSIBILITY OF SUCH DAMAGE.
31 #
32 ##
33

34 px4 add git submodule(TARGET git gps devices PATH "devices")
35

36 px4 add module(
37 MODULE drivers gps
38 MAIN gps

119

../px4
../px4/Firmware/src/drivers/gps/devices/src
../px4/Firmware/src/drivers/gps

39 STACK MAIN 1200
40 SRCS
41 gps.cpp
42 devices/src/gps helper.cpp
43 devices/src/mtk.cpp
44 devices/src/ashtech.cpp
45 devices/src/ubx.cpp
46 devices/src/marv.cpp
47 DEPENDS
48 platforms common
49 git gps devices
50)

Listing H.1: C make file to compile the GPS driver.

Furthermore, the driver header file (drv_gps.h) located in ../px4/Firmware/src/drivers contains
definitions of the available drivers. The Marvelmind needs to be included as well in this definition. The
added Marvelmind gps definition is shown on line 59 of the header code below.

1 /**
2 *
3 * Copyright (c) 2013−2017 PX4 Development Team. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright

10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 * 3. Neither the name PX4 nor the names of its contributors may be
16 * used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
22 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
23 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
27 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
29 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 *
32 **/
33

34 /**
35 * @file drv gps.h
36 *
37 * GPS driver interface
38 */
39

40 #pragma once
41

42 #include <stdint.h>
43 #include <sys/ioctl.h>
44

45 #include "board config.h"
46

47 #include "drv sensor.h"
48 #include "drv orb dev.h"
49

50 #ifndef GPS DEFAULT UART PORT
51 #define GPS DEFAULT UART PORT "/dev/ttyS3"
52 #endif
53

120

drv_gps.h
../px4/Firmware/src/drivers

54 typedef enum {
55 GPS DRIVER MODE NONE = 0,
56 GPS DRIVER MODE UBX,
57 GPS DRIVER MODE MTK,
58 GPS DRIVER MODE ASHTECH,
59 GPS DRIVER MODE MARVELMIND
60 } gps driver mode t;

Listing H.2: GPS driver type definition declared in the header file.

A lot of changes needs to be made to the file gps.cpp located in ../px4/Firmware/src/drivers/gps.
This will be explained in section H.3.

H.1 Driver Header file

Save the following code as marv.h in the ../px4/Firmware/src/drivers/gps/devices/src directory.

1 /**
2 *
3 * Copyright (C) 2013. All rights reserved.
4 * Author: Boriskin Aleksey <a.d.boriskin@gmail.com>
5 * Kistanov Alexander <akistanov@gramant.ru>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:

10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name PX4 nor the names of its contributors may be
18 * used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
28 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
31 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 *
34 **/
35

36 /* @file MARVELMIND protocol definitions */
37

38 #pragma once
39

40 #include "gps helper.h"
41 #include "../../definitions.h"
42

43 #define MARVELMIND RECV BUFFER SIZE 82
44

45 class GPSDriverMarvelmind : public GPSHelper
46 {
47 public:
48 GPSDriverMarvelmind(GPSCallbackPtr callback, void *callback user,
49 struct vehicle gps position s *gps position,
50 struct satellite info s *satellite info);
51 virtual ¬GPSDriverMarvelmind() = default;
52

53 int receive(unsigned timeout);

121

gps.cpp
../px4/Firmware/src/drivers/gps
marv.h
../px4/Firmware/src/drivers/gps/devices/src

54 int configure(unsigned &baud, OutputMode output mode);
55 int parseChar(uint8 t b);
56

57

58 private:
59 void decodeInit(void);
60 int handleMessage(int len);
61 int receive config(unsigned timeout);
62 int parseChar config(uint8 t b);
63

64

65 /** Read int MARVELMIND parameter */
66 int32 t read int();
67 /** Read float MARVELMIND parameter */
68 double read float();
69 /** Read char MARVELMIND parameter */
70 char read char();
71

72 enum marvelmind decode state t {
73 NME DECODE UNINIT,
74 NME DECODE GOT SYNC1,
75 NME DECODE GOT ASTRIKS,
76 NME DECODE GOT FIRST CS BYTE
77 };
78

79 struct satellite info s * satellite info {nullptr};
80 struct vehicle gps position s * gps position {nullptr};
81 uint64 t last timestamp time{0};
82 int marvelmindlog fd{−1};
83

84 marvelmind decode state t decode state{NME DECODE UNINIT};
85 marvelmind decode state t decode state config{NME DECODE UNINIT};
86 uint8 t rx buffer[MARVELMIND RECV BUFFER SIZE] {};
87 uint16 t rx buffer bytes{};
88 bool got pashr pos message{false}; /**< If we got a PASHR,POS message we will ...

ignore GGA messages */
89 bool parse error{}; /**< parse error flag */
90 char * parse pos{}; /**< parse position */
91 };

Listing H.3: Marvelmind driver header file.

H.2 Driver file

Save the following code as marv.cpp in the ../px4/Firmware/src/drivers/gps/devices/src directory.

1 /**
2 *
3 * Copyright (c) 2012−2016 PX4 Development Team. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright

10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 * 3. Neither the name PX4 nor the names of its contributors may be
16 * used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
22 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
23 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

122

marv.cpp
../px4/Firmware/src/drivers/gps/devices/src

25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
27 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
29 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 *
32 **/
33

34 #include <stdlib.h>
35 #include <stdio.h>
36 #include <math.h>
37 #include <string.h>
38 #include <ctime>
39

40 #include "marv.h"
41

42 GPSDriverMarvelmind::GPSDriverMarvelmind(GPSCallbackPtr callback, void *callback user,
43 struct vehicle gps position s *gps position,
44 struct satellite info s *satellite info) :
45 GPSHelper(callback, callback user),
46 satellite info(satellite info),
47 gps position(gps position)
48 {
49 decodeInit();
50 decode state = NME DECODE UNINIT;
51 decode state config = NME DECODE UNINIT;
52 rx buffer bytes = 0;
53 #define TIMEOUT 5HZ 500
54 }
55

56 /*
57 * All NMEA descriptions are taken from
58 * http://www.trimble.com/OEM ReceiverHelp/V4.44/en/NMEA−0183messages MessageOverview.html
59 */
60

61 int GPSDriverMarvelmind::handleMessage(int len)
62 {
63 char *endp;
64

65 if(len < 7){
66 return 0;
67 }
68

69 int uiCalcComma = 0;
70

71 for (int i = 0; i < len; i++){
72 if (rx buffer[i] == ',') {uiCalcComma++;}
73 }
74

75 char *bufptr = (char *)(rx buffer + 6);
76 int ret = 0;
77

78 //PX4 INFO("Msg: %s", rx buffer);
79

80 if ((memcmp(rx buffer + 3, "RMC,", 3) == 0)) {
81 /*
82 An example of the GSV message string is:
83

84 $GPRMC,123519,A,4807.038,N,01131.000,E,022.4,084.4,230394,003.1,W*6A
85

86 GPRMC message field
87 Field Meaning
88 0 Message ID $GPRMC
89 1 UTC of position fix
90 2 Status:
91 A: active
92 V: void
93 3 Latitude
94 4 Longitude
95 5 Speed over the ground in knots
96 6 Track angle in degrees (True)
97 7 Date

123

98 8 Magnetic variation in degrees
99 The checksum data, always begins with *

100 */
101

102 double marvelmind time attribute ((unused)) = 0.0, lat = 0.0, lon = 0.0, ...
speed n = 0.0, magvar = 0.0, track = 0.0;

103 int date attribute ((unused)) = 0;
104 char ns = '?', ew = '?', ewmag = '?', messtat = '?';
105

106 if (bufptr && *(++bufptr) != ',') { marvelmind time = strtod(bufptr, ...
&endp); bufptr = endp; }

107

108 if (bufptr && *(++bufptr) != ',') { messtat = *(bufptr++); }
109

110 if (bufptr && *(++bufptr) != ',') { lat = strtod(bufptr, &endp); bufptr = ...
endp; }

111

112 if (bufptr && *(++bufptr) != ',') { ns = *(bufptr++); }
113

114 if (bufptr && *(++bufptr) != ',') { lon = strtod(bufptr, &endp); bufptr = ...
endp; }

115

116 if (bufptr && *(++bufptr) != ',') { ew = *(bufptr++); }
117

118 if (bufptr && *(++bufptr) != ',') { speed n = strtod(bufptr, &endp); bufptr ...
= endp; }

119

120 if (bufptr && *(++bufptr) != ',') { track = strtod(bufptr, &endp); bufptr = ...
endp; }

121

122 if (bufptr && *(++bufptr) != ',') { date = strtol(bufptr, &endp, 10); ...
bufptr = endp; }

123

124 if (bufptr && *(++bufptr) != ',') { magvar = strtod(bufptr, &endp); bufptr ...
= endp; }

125

126 if (bufptr && *(++bufptr) != ',') { ewmag = *(bufptr++); }
127

128

129 if (ns == 'S') {
130 lat = −lat;
131 }
132

133 if (ew == 'W') {
134 lon = −lon;
135 }
136

137 if (ewmag == 'W') {
138 magvar = −magvar;
139 }
140

141 if (messtat == 'W') {
142 magvar = magvar;
143 }
144

145

146

147 /* convert from degrees, minutes and seconds, to degrees * 1e7 */
148 gps position−>lat = static cast<int>((int(lat * 0.01) + (lat * 0.01 − ...

int(lat * 0.01)) * 100.0 / 60.0) * 10000000);
149 gps position−>lon = static cast<int>((int(lon * 0.01) + (lon * 0.01 − ...

int(lon * 0.01)) * 100.0 / 60.0) * 10000000);
150 rate count lat lon++;
151 gps position−>vel m s = speed n * 1.85;
152 gps position−>cog rad = static cast<int>(track * 2 * M PI / 360.0 * 1e−5);
153 // gps position−>cog rad = static cast<int>(track * double(3.0*M PI/360.0 * ...

1e−5f));
154

155

156 /*
157 * Do something smart with:
158 * track
159 * date

124

160 * magvar
161 */
162 gps position−>timestamp time = gps absolute time();
163 ret = 1;
164

165

166 } else if ((memcmp(rx buffer + 3, "GGA,", 3) == 0) && (uiCalcComma == 14)){
167 /*
168 Time, position, and fix related data
169 An example of the GBS message string is:
170

171 $GPGGA,172814.0,3723.46587704,N,12202.26957864,W,2,6,1.2,18.893,M−25.669,M,2.0,0031*4F
172

173 Note − The data string exceeds the Marvelmind standard length.
174 GGA message fields
175 Field Meanings
176 0 Message ID $GPGGA
177 1 UTC of position fix
178 2 Latitude
179 3 Direction of Latitude:
180 N: North
181 S: South
182 4 Longitude
183 5 Direction of longitude:
184 E: East
185 W: West
186 6 GPS Quality indicator:
187 0: Fix not valid
188 1: GPS fix
189 2: Differential GPS fix, PmniSTAR VBS
190 4: Real−Time Kinematic, fixed integers
191 5: Real−Time Kinematic, float integers, OmniSTAR XP/HP or localation RTK
192 7 Number of SVs in use, range from 00 through to 24+
193 8 HDOP
194 9 Orthometric height (MSL reference)
195 10 M: unit of measure for orthometric height is meters
196 11 Geoid separation
197 12 M: geoid separation measured in meters
198 13 Age of differential GPS data record, Type 1 or Type 9. Null field when ...

DGPS is not used.
199 14 Reference station ID, range 0000−4095. A null field when any reference ...

station ID is selected and no corrections are received.
200 15
201 The checksum data, always begins with *
202 Note − If a user−defined geoid model, or an inclined
203 */
204

205 double marvelmind time attribute ((unused)) = 0.0, lat = 0.0, lon = 0.0, alt = ...
0.0, alt ellipsoid = 0.0;

206 int num of sv attribute ((unused)) = 0, fix quality = 0;
207 double hdop attribute ((unused)) = 99.9;
208 char ns = '?', ew = '?', M = '?';
209

210 if (bufptr && *(++bufptr) != ',') { marvelmind time = strtod(bufptr, &endp); ...
bufptr = endp; }

211

212 if (bufptr && *(++bufptr) != ',') { lat = strtod(bufptr, &endp); bufptr = endp; }
213

214 if (bufptr && *(++bufptr) != ',') { ns = *(bufptr++); }
215

216 if (bufptr && *(++bufptr) != ',') { lon = strtod(bufptr, &endp); bufptr = endp; }
217

218 if (bufptr && *(++bufptr) != ',') { ew = *(bufptr++); }
219

220 if (bufptr && *(++bufptr) != ',') { fix quality = strtol(bufptr, &endp, 10); ...
bufptr = endp; }

221

222 if (bufptr && *(++bufptr) != ',') { num of sv = strtol(bufptr, &endp, 10); bufptr ...
= endp; }

223

224 if (bufptr && *(++bufptr) != ',') { hdop = strtod(bufptr, &endp); bufptr = endp; }
225

226 if (bufptr && *(++bufptr) != ',') { alt = strtod(bufptr, &endp); bufptr = endp; }

125

227

228 if (bufptr && *(++bufptr) != ',') { M = *(bufptr++); }
229

230 if (bufptr && *(++bufptr) != ',') { alt ellipsoid = strtod(bufptr, &endp); bufptr ...
= endp; }

231

232 if (bufptr && *(++bufptr) != ',') { M = *(bufptr++); }
233

234 if (ns == 'S') {
235 lat = −lat;
236 }
237

238 if (ew == 'W') {
239 lon = −lon;
240 }
241

242 if (M == 'M') {
243 alt = alt;
244 }
245

246 /* convert from degrees, minutes and seconds, to degrees * 1e7 */
247 gps position−>lat = static cast<int>((int(lat * 0.01) + (lat * 0.01 − int(lat * ...

0.01)) * 100.0 / 60.0) * 10000000);
248 gps position−>lon = static cast<int>((int(lon * 0.01) + (lon * 0.01 − int(lon * ...

0.01)) * 100.0 / 60.0) * 10000000);
249 gps position−>alt = static cast<int>(alt * 1000);
250 rate count lat lon++;
251

252 if (fix quality ≤ 0) {
253 gps position−>fix type = 0;
254 } else{
255 /*
256 * in this NMEA message float integers (value 5) mode has higher value than ...

fixed integers (value 4), whereas it provides lower quality
257 * and since value 3 is not being used, I "moved" value 5 to 3 add it to ...

gps position−>fix type
258 */
259 if (fix quality == 5) { fix quality = 3; }
260

261 /*
262 * fix quality 1 means just a normal 3D fix, so I'm subtracting 1 here. This ...

way we'll have 3 for auto, 4 for DGPS, 5 for floats, 6 for fixed.
263 */
264 gps position−>fix type = 3 + fix quality − 1;
265 }
266

267 gps position−>hdop = hdop;
268 gps position−>satellites used = num of sv;
269 gps position−>alt ellipsoid = alt ellipsoid;
270 gps position−>vel m s = 0; /**< GPS ground speed (m/s) */
271 gps position−>vel n m s = 0; /**< GPS ground speed in m/s */
272 gps position−>vel e m s = 0; /**< GPS ground speed in m/s */
273 gps position−>vel d m s = 0; /**< GPS ground speed in m/s */
274 gps position−>cog rad = 0; /**< Course over ground (NOT heading, but ...

direction of movement) in rad, −PI..PI */
275 gps position−>vel ned valid = true; /**< Flag to indicate if NED speed is ...

valid */
276 gps position−>c variance rad = 0.1f;
277

278 gps position−>timestamp time = gps absolute time();
279 ret = 1;
280

281 } else if ((memcmp(rx buffer + 3, "VTG,", 3) == 0)){
282 /*
283 Track made good and ground speed. An example of the GSV message string is:
284

285 $GPVTG,360.0,T,348.7,M,000.0,N,000.0,K*34
286

287 VTG message fields
288 Field Meaning
289 0 Message ID $GPVTG
290 1 Track made good (degrees true)
291 2 T: track made good is relative to true north

126

292 3 Track made good (degrees magnetic)
293 4 M: track made good is relative to magnetic north
294 5 Speed in knots
295 6 N: Speed is measured in knots
296 7 Speed over ground in kilometers/hour (kph)
297 8 K: speed over ground is measured in kph
298 The checksum data, always begins with *
299 */
300

301 /*
302 double speed n attribute ((unused)) = 0.0, speed k = 0.0, track made good t ...

= 0.0, track made good m = 0.0;
303 char K = '?', N = '?', M = '?', T = '?';
304

305 if (bufptr && *(++bufptr) != ',') { track made good t = strtod(bufptr, &endp); ...
bufptr = endp; }

306

307 if (bufptr && *(++bufptr) != ',') { T = *(bufptr++); }
308

309 if (bufptr && *(++bufptr) != ',') { track made good m = strtod(bufptr, &endp); ...
bufptr = endp; }

310

311 if (bufptr && *(++bufptr) != ',') { M = *(bufptr++); }
312

313 if (bufptr && *(++bufptr) != ',') { speed n = strtod(bufptr, &endp); bufptr = ...
endp; }

314

315 if (bufptr && *(++bufptr) != ',') { N = *(bufptr++); }
316

317 if (bufptr && *(++bufptr) != ',') { speed k = strtod(bufptr, &endp); bufptr = ...
endp; }

318

319 if (bufptr && *(++bufptr) != ',') { K = *(bufptr++); }
320 */
321

322 /*
323 * Do something smart with this data
324 */
325 gps position−>timestamp time = gps absolute time();
326 ret = 1;
327

328 } else if ((memcmp(rx buffer + 3, "ZDA,", 3) == 0) && (uiCalcComma == 6)){
329

330 /*
331 UTC day, month, and year, and local time zone offset
332 An example of the ZDA message string is:
333

334 $GPZDA,172809.456,12,07,1996,00,00*45
335

336 ZDA message fields
337 Field Meaning
338 0 Message ID $GPZDA
339 1 UTC
340 2 Day, ranging between 01 and 31
341 3 Month, ranging between 01 and 12
342 4 Year
343 5 Local time zone offset from GMT, ranging from 00 through 13 hours
344 6 Local time zone offset from GMT, ranging from 00 through 59 minutes
345 7 The checksum data, always begins with *
346 Fields 5 and 6 together yield the total offset. For example, if field 5 is −5 ...

and field 6 is +15, local time is 5 hours and 15 minutes earlier than GMT.
347 */
348

349 double marvelmind time = 0.0;
350 int day = 0, month = 0, year = 0, local time off hour attribute ((unused)) ...

= 0,
351 local time off min attribute ((unused)) = 0;
352

353 if (bufptr && *(++bufptr) != ',') { marvelmind time = strtod(bufptr, &endp); ...
bufptr = endp; }

354

355 if (bufptr && *(++bufptr) != ',') { day = strtol(bufptr, &endp, 10); bufptr = ...
endp; }

127

356

357 if (bufptr && *(++bufptr) != ',') { month = strtol(bufptr, &endp, 10); bufptr ...
= endp; }

358

359 if (bufptr && *(++bufptr) != ',') { year = strtol(bufptr, &endp, 10); bufptr = ...
endp; }

360

361 if (bufptr && *(++bufptr) != ',') { local time off hour = strtol(bufptr, ...
&endp, 10); bufptr = endp; }

362

363 if (bufptr && *(++bufptr) != ',') { local time off min = strtol(bufptr, &endp, ...
10); bufptr = endp; }

364

365 int marvelmind hour = static cast<int>(marvelmind time / 10000);
366 int marvelmind minute = static cast<int>((marvelmind time − marvelmind hour * ...

10000) / 100);
367 double marvelmind sec = static cast<double>(marvelmind time − marvelmind hour ...

* 10000 − marvelmind minute * 100);
368

369 /*
370 * Convert to unix timestamp
371 */
372 struct tm timeinfo = {};
373 timeinfo.tm year = year − 1900;
374 timeinfo.tm mon = month − 1;
375 timeinfo.tm mday = day;
376 timeinfo.tm hour = marvelmind hour;
377 timeinfo.tm min = marvelmind minute;
378 timeinfo.tm sec = int(marvelmind sec);
379 timeinfo.tm isdst = 0;
380

381 #ifndef NO MKTIME
382 time t epoch = mktime(&timeinfo);
383

384 if (epoch > GPS EPOCH SECS) {
385 uint64 t usecs = static cast<uint64 t>((marvelmind sec − ...

static cast<uint64 t>(marvelmind sec))) * 1000000;
386

387 // FMUv2+ boards have a hardware RTC, but GPS helps us to configure it
388 // and control its drift. Since we rely on the HRT for our monotonic
389 // clock, updating it from time to time is safe.
390

391 timespec ts{};
392 ts.tv sec = epoch;
393 ts.tv nsec = usecs * 1000;
394

395 setClock(ts);
396

397 gps position−>time utc usec = static cast<uint64 t>(epoch) * 1000000ULL;
398 gps position−>time utc usec += usecs;
399

400 } else {
401 gps position−>time utc usec = 0;
402 }
403 #else
404 gps position−>time utc usec = 0;
405 #endif
406

407 last timestamp time = gps absolute time();
408 gps position−>timestamp time = gps absolute time();
409 ret = 1;
410

411 }
412 /*
413 if (ret > 0) {
414 gps position−>timestamp time relative = (int32 t)(last timestamp time − ...

gps position−>timestamp time);
415 }
416 */
417 return ret;
418

419 }
420

128

421 int GPSDriverMarvelmind::receive config(unsigned timeout)
422 {
423 {
424 uint8 t buf[GPS READ BUFFER SIZE];
425

426 /* timeout additional to poll */
427 uint64 t time started = gps absolute time();
428

429 int j = 0;
430 ssize t bytes count = 0;
431

432 while (true) {
433

434 /* pass received bytes to the packet decoder */
435 while (j < bytes count) {
436 int l = 0;
437

438 //parseChar config(buf[j]);
439

440 if ((l = parseChar config(buf[j])) > 0) {
441 /* return to configure during configuration or to the gps driver ...

during normal work
442 * if a packer has arrived */
443 return 1;
444 }
445

446 j++;
447 }
448

449 /* everything is read */
450 j = bytes count = 0;
451

452 /* then poll or read for new data */
453 int ret = read(buf, sizeof(buf), timeout * 2);
454

455 if (ret < 0) {
456 /* something went wrong when polling */
457 return −1;
458 } else if (ret == 0) {
459 /* Timeout while polling or just nothing read if reading, let's
460 * stay here, and use timeout below. */
461 } else if (ret > 0) {
462 /* if we have new data from GPS, go handle it */
463 bytes count = ret;
464 //return ret;
465 }
466

467 /* in case we get crap from GPS or time out */
468 if (time started + timeout * 1000 * 2 < gps absolute time()) {
469 return −1;
470 }
471

472 }
473 }
474 }
475

476 int GPSDriverMarvelmind::receive(unsigned timeout)
477 {
478 {
479 uint8 t buf[GPS READ BUFFER SIZE];
480

481 /* timeout additional to poll */
482 uint64 t time started = gps absolute time();
483

484 int j = 0;
485 ssize t bytes count = 0;
486

487 while (true) {
488 // uint64 t time started = gps absolute time();
489 /* pass received bytes to the packet decoder */
490 while (j < bytes count) {
491 int l = 0;
492

129

493 if ((l = parseChar(buf[j])) > 0) {
494 /* return to configure during configuration or to the gps driver ...

during normal work
495 * if a packer has arrived */
496 if (handleMessage(l) > 0) {
497 return 1;
498 }
499 }
500

501 j++;
502 }
503

504 /* everything is read */
505 j = bytes count = 0;
506

507 /* then poll or read for new data */
508 int ret = read(buf, sizeof(buf), timeout * 2);
509

510 if (ret < 0) {
511 /* something went wrong when polling */
512 return −1;
513 } else if (ret == 0) {
514 /* Timeout while polling or just nothing read if reading, let's
515 * stay here, and use timeout below. */
516 } else if (ret > 0) {
517 /* if we have new data from GPS, go handle it */
518 bytes count = ret;
519 }
520

521 /* in case we get crap from GPS or time out */
522 if (time started + timeout * 1000 < gps absolute time()) {
523 return −1;
524 }
525

526 }
527 }
528 }
529

530 #define HEXDIGIT CHAR(d) ((char)((d) + (((d) < 0xA) ? '0' : 'A'−0xA)))
531

532 int GPSDriverMarvelmind::parseChar(uint8 t b)
533 {
534 int iRet = 0;
535

536 switch (decode state) {
537 /* First, look for sync1 */
538 case NME DECODE UNINIT:
539 if (b == '$') {
540 decode state = NME DECODE GOT SYNC1;
541 rx buffer bytes = 0;
542 rx buffer[rx buffer bytes++] = b;
543 }
544 break;
545

546 case NME DECODE GOT SYNC1:
547 if (b == '$') {
548 decode state = NME DECODE GOT SYNC1;
549 rx buffer bytes = 0;
550 } else if (b == '*') {
551 decode state = NME DECODE GOT ASTRIKS;
552 }
553

554 if (rx buffer bytes ≥ (sizeof(rx buffer) − 5)) {
555 decode state = NME DECODE UNINIT;
556 rx buffer bytes = 0;
557 } else {
558 rx buffer[rx buffer bytes++] = b;
559 }
560 break;
561

562 case NME DECODE GOT ASTRIKS:
563 rx buffer[rx buffer bytes++] = b;
564 decode state = NME DECODE GOT FIRST CS BYTE;

130

565 break;
566

567 case NME DECODE GOT FIRST CS BYTE:
568 rx buffer[rx buffer bytes++] = b;
569 uint8 t checksum = 0;
570 uint8 t *buffer = rx buffer + 1;
571 uint8 t *buffend = rx buffer + rx buffer bytes − 3;
572

573 for (; buffer < buffend; buffer++) { checksum ˆ= *buffer; }
574

575 if ((HEXDIGIT CHAR(checksum >> 4) == *(rx buffer + rx buffer bytes − 2)) &&
576 (HEXDIGIT CHAR(checksum & 0x0F) == *(rx buffer + rx buffer bytes − 1))) {
577 iRet = rx buffer bytes;
578 }
579

580 decode state = NME DECODE UNINIT;
581 rx buffer bytes = 0;
582 break;
583

584

585 }
586

587 return iRet;
588 }
589

590 int GPSDriverMarvelmind::parseChar config(uint8 t b)
591 {
592 int CS Confirm = 0;
593

594 switch (decode state config) {
595 /* First, look for sync1 */
596 case NME DECODE UNINIT:
597 if (b == '$') {
598 decode state config = NME DECODE GOT SYNC1;
599 rx buffer bytes = 0;
600 rx buffer[rx buffer bytes++] = b;
601 }
602 break;
603

604 case NME DECODE GOT SYNC1:
605 if (b == '$') {
606 decode state config = NME DECODE GOT SYNC1;
607 rx buffer bytes = 0;
608 } else if (b == '*') {
609 decode state config = NME DECODE GOT ASTRIKS;
610 }
611

612 if (rx buffer bytes ≥ (sizeof(rx buffer) − 5)) {
613 decode state config = NME DECODE UNINIT;
614 rx buffer bytes = 0;
615 } else {
616 rx buffer[rx buffer bytes++] = b;
617 }
618 break;
619

620 case NME DECODE GOT ASTRIKS:
621 rx buffer[rx buffer bytes++] = b;
622 decode state config = NME DECODE GOT FIRST CS BYTE;
623 break;
624

625 case NME DECODE GOT FIRST CS BYTE:
626 rx buffer[rx buffer bytes++] = b;
627 uint8 t checksum = 0;
628 uint8 t *buffer = rx buffer + 1;
629 uint8 t *buffend = rx buffer + rx buffer bytes − 3;
630

631 for (; buffer < buffend; buffer++) { checksum ˆ= *buffer; }
632

633 if ((HEXDIGIT CHAR(checksum >> 4) == *(rx buffer + rx buffer bytes − 2)) &&
634 (HEXDIGIT CHAR(checksum & 0x0F) == *(rx buffer + rx buffer bytes − 1))) {
635 CS Confirm = 1;
636 }
637

131

638 decode state config = NME DECODE UNINIT;
639 rx buffer bytes = 0;
640 break;
641

642

643 }
644 return CS Confirm;
645 }
646

647

648 void GPSDriverMarvelmind::decodeInit()
649 {
650

651 }
652

653 /*
654 * Marvelmind board configuration script
655 */
656

657 int GPSDriverMarvelmind::configure(unsigned &baudrate, OutputMode output mode)
658 {
659 if (output mode != OutputMode::GPS) {
660 GPS WARN("MARVELMIND: Unsupported Output Mode %i", (int)output mode);
661 return −1;
662 }
663

664 /* try different baudrates */
665 const unsigned baudrates to try[] = {4800, 9600, 19200, 38400, 57600, 115200, 500000};
666

667 for (unsigned int baud i = 0; baud i < sizeof(baudrates to try) / ...
sizeof(baudrates to try[0]); baud i++){

668 baudrate = baudrates to try[baud i];
669 setBaudrate(baudrate);
670 if (GPSDriverMarvelmind::receive config(TIMEOUT 5HZ) == 1) {
671 return 0;
672 }
673

674 }
675

676 return −1;
677

678 }

Listing H.4: Marvelmind driver file.

H.3 GPS Module

The file gps.cpp located in ../px4/Firmware/src/drivers/gps needs a few minor adjustments in order
to run the new Marvelmind driver. First of all, the header file needs to be included, which can be done
as shown in listing H.5, where lines 85 to 88 are shown with the added Marvelmind header file.

1 #include "devices/src/ubx.h"
2 #include "devices/src/mtk.h"
3 #include "devices/src/ashtech.h"
4 #include "devices/src/marv.h"

Listing H.5: Including Marvelmind header to gps file.

The Marvelmind supports multiple baudrates. Therefore, different baudrates can be added to the
GPS module, such that the Marvelmind driver can also run on those additional baudrates. The lines
478 to 498 are shown in listing H.6 where the additional baudrates are shown.

1 switch (baud) {
2 case 4800: speed = B4800; break;
3

4 case 9600: speed = B9600; break;
5

6 case 19200: speed = B19200; break;

132

gps.cpp
../px4/Firmware/src/drivers/gps

7

8 case 38400: speed = B38400; break;
9

10 case 57600: speed = B57600; break;
11

12 case 115200: speed = B115200; break;
13

14 case 230400: speed = B230400; break;
15

16 case 500000: speed = B500000; break;
17

18 default:
19 PX4 ERR("ERR: unknown baudrate: %d", baud);
20 return −EINVAL;
21 }

Listing H.6: Additional baudrates added to the gps file.

Configuration of the GPS drivers take place in the run loop, where the various drivers are tried to
get a proper response. This process is a loop, which keeps running until a proper driver is found and the
Marvelmind driver needs to be included in the loop. Listing H.7 shows the loop, which can be found at
lines 683 to 715, where the Marvelmind driver is included. Lines 26 to 29 are added to the loop.

1 switch (mode) {
2 case GPS DRIVER MODE NONE:
3 mode = GPS DRIVER MODE UBX;
4

5 /* FALLTHROUGH */
6 case GPS DRIVER MODE UBX: {
7 PX4 INFO("Configure UBX");
8 int32 t param gps ubx dynmodel = 7; // default to 7: airborne with ...

<2g acceleration
9 param get(param find("GPS UBX DYNMODEL"), ¶m gps ubx dynmodel);

10

11 helper = new GPSDriverUBX(interface, &GPS::callback, this, ...
& report gps pos, p report sat info,

12 param gps ubx dynmodel);
13 }
14 break;
15

16 case GPS DRIVER MODE MTK:
17 PX4 INFO("Configure MTK");
18 helper = new GPSDriverMTK(&GPS::callback, this, & report gps pos);
19 break;
20

21 case GPS DRIVER MODE ASHTECH:
22 PX4 INFO("Configure ASH");
23 helper = new GPSDriverAshtech(&GPS::callback, this, & report gps pos, ...

p report sat info);
24 break;
25

26 case GPS DRIVER MODE MARVELMIND:
27 PX4 INFO("Configure MAR");
28 helper = new GPSDriverMarvelmind(&GPS::callback, this, ...

& report gps pos, p report sat info);
29 break;
30

31 default:
32 break;
33 }

Listing H.7: Configuration sequence of the GPS driver.

The next part of the code contains debugging information about the GPS drivers. If debugging in
the NSH terminal is necessary, the Marvelmind driver canbe included. However, for functionality it is
not necessary. Listing H.8 shows the debugging lines, which can be found at around 761 to 788. Lines
18 to 20 are included for debugging purposes, if the code is de-commented.

1 if (! healthy) {
2 // Helpful for debugging, but too verbose for normal ops

133

3 // const char *mode str = "unknown";
4 //
5 // switch (mode) {
6 // case GPS DRIVER MODE UBX:
7 // mode str = "UBX";
8 // break;
9 //

10 // case GPS DRIVER MODE MTK:
11 // mode str = "MTK";
12 // break;
13 //
14 // case GPS DRIVER MODE ASHTECH:
15 // mode str = "ASHTECH";
16 // break;
17 //
18 // case GPS DRIVER MODE MARVELMIND:
19 // mode str = "MARVELMIND";
20 // break;
21 //
22 // default:
23 // break;
24 // }
25 //
26 // PX4 WARN("module found: %s", mode str);
27 healthy = true;
28 }

Listing H.8: Debugging information about GPS drivers made available in NSH terminal.

In the autoloop mode, the software tests every installed driver, in order to find a suitable driver
for the GPS. In this loop, the ASHTECH driver needs to be disabled and the Marvelmind needs to be
added. This loop tests every driver and if configuration fails, it moves to the next driver. Of none driver
is suitable, the loop waits for a while and tries again.

This loop can be found at around lines 798 to 825, which are shown in listing H.9. Line 9 disables
the ASHTECH driver and moves from the MTK driver instantly to the Marvelmind driver. If it happens
the ASHTECH driver is selected and does not configure properly, it does not select the first driver, the
UBX driver, but instead moves to the Marvelmind driver. Therefore line 13 is added and line 14 is
commented. Furthermore, lines 17 to 20 adds the Marvelmind driver. If the Marvelmind driver is not
responding properly, the loop moves to the UBX driver and waits for a while, before it runs through the
loop again.

1 if (mode auto) {
2 switch (mode) {
3 case GPS DRIVER MODE UBX:
4 mode = GPS DRIVER MODE MTK;
5 break;
6

7 case GPS DRIVER MODE MTK:
8 mode = GPS DRIVER MODE ASHTECH;
9 mode = GPS DRIVER MODE MARVELMIND;

10 break;
11

12 case GPS DRIVER MODE ASHTECH:
13 mode = GPS DRIVER MODE MARVELMIND;
14 // mode = GPS DRIVER MODE UBX;
15 break;
16

17 case GPS DRIVER MODE MARVELMIND:
18 mode = GPS DRIVER MODE UBX;
19 usleep(500000); // tried all possible drivers. Wait a bit before ...

next round
20 break;
21

22 default:
23 break;
24 }
25

26 } else {
27 usleep(500000);

134

28 }

Listing H.9: GPS driver loop.

The function print status shows the status of the GPS unit. This function is in general used in the
NSH terminal as driver status update. For better debugging purposes, the Marvelmind command should
be included in the status update command. This can be done on lines 878 to 903, which are shown
in listing H.10. The lines 19 to 21 are added to show which command can be typed to request status
information about the Marvelmind driver.

1 //GPS Mode
2 if (fake gps) {
3 PX4 INFO("protocol: SIMULATED");
4

5 } else {
6 switch (mode) {
7 case GPS DRIVER MODE UBX:
8 PX4 INFO("protocol: UBX");
9 break;

10

11 case GPS DRIVER MODE MTK:
12 PX4 INFO("protocol: MTK");
13 break;
14

15 case GPS DRIVER MODE ASHTECH:
16 PX4 INFO("protocol: ASHTECH");
17 break;
18

19 case GPS DRIVER MODE MARVELMIND:
20 PX4 INFO("protocol: MARVELMIND");
21 break;
22

23 default:
24 break;
25 }
26 }

Listing H.10: NSH Terminal driver status update request.

The function print usage shows which commands the user can use and are valid. This function is in
general used in the NSH terminal as command information. For better debugging purposes and letting
the user now the Marvelmind driver is available, the command should be updated. This can be done on
lines 964 to 998, which are shown in listing H.11. On line 30 the |marv is added to the command, where
the p commands is extended with ”ubx|mtk|ash|marv”.

1 PRINT MODULE DESCRIPTION(
2 R"DESCR STR(
3 ### Description
4 GPS driver module that handles the communication with the device and publishes the ...

position via uORB.
5 It supports multiple protocols (device vendors) and by default automatically selects ...

the correct one.
6

7 The module supports a secondary GPS device, specified via `−e` parameter. The position ...
will be published

8 on the second uORB topic instance, but it's currently not used by the rest of the ...
system (however the

9 data will be logged, so that it can be used for comparisons).
10

11 ### Implementation
12 There is a thread for each device polling for data. The GPS protocol classes are ...

implemented with callbacks
13 so that they can be used in other projects as well (eg. QGroundControl uses them too).
14

15 ### Examples
16 For testing it can be useful to fake a GPS signal (it will signal the system that it ...

has a valid position):
17 $ gps stop
18 $ gps start −f

135

19)DESCR STR");
20

21 PRINT MODULE USAGE NAME("gps", "driver");
22 PRINT MODULE USAGE COMMAND("start");
23 PRINT MODULE USAGE PARAM STRING('d', "/dev/ttyS3", "<file:dev>", "GPS device", true);
24 PRINT MODULE USAGE PARAM STRING('e', nullptr, "<file:dev>", "Optional secondary ...

GPS device", true);
25

26 PRINT MODULE USAGE PARAM FLAG('f', "Fake a GPS signal (useful for testing)", true);
27 PRINT MODULE USAGE PARAM FLAG('s', "Enable publication of satellite info", true);
28

29 PRINT MODULE USAGE PARAM STRING('i', "uart", "spi |uart", "GPS interface", true);
30 PRINT MODULE USAGE PARAM STRING('p', nullptr, "ubx |mtk |ash |marv", "GPS Protocol ...

(default=auto select)", true);
31

32 PRINT MODULE USAGE DEFAULT COMMANDS();
33

34 return 0;
35 }

Listing H.11: Request GPS command information.

The last part executes, the command created previously in listing H.11. In the next piece of code,
the ”marv” command is defined and a function is applied if desired. The piece of code executing the
”p” command in the NSH Terminal can be found around lines 1067 to 1126, which are shown in listing
H.12. To add the Marvelmind driver command, lines 42 and 43 are added.

1 while ((ch = px4 getopt(argc, argv, "d:e:fsi:p:", &myoptind, &myoptarg)) != EOF) {
2 switch (ch) {
3 case 'd':
4 device name = myoptarg;
5 break;
6

7 case 'e':
8 device name secondary = myoptarg;
9 break;

10

11 case 'f':
12 fake gps = true;
13 break;
14

15 case 's':
16 enable sat info = true;
17 break;
18

19 case 'i':
20 if (!strcmp(myoptarg, "spi")) {
21 interface = GPSHelper::Interface::SPI;
22

23 } else if (!strcmp(myoptarg, "uart")) {
24 interface = GPSHelper::Interface::UART;
25

26 } else {
27 PX4 ERR("unknown interface: %s", myoptarg);
28 error flag = true;
29 }
30 break;
31

32 case 'p':
33 if (!strcmp(myoptarg, "ubx")) {
34 mode = GPS DRIVER MODE UBX;
35

36 } else if (!strcmp(myoptarg, "mtk")) {
37 mode = GPS DRIVER MODE MTK;
38

39 } else if (!strcmp(myoptarg, "ash")) {
40 mode = GPS DRIVER MODE ASHTECH;
41

42 } else if (!strcmp(myoptarg, "marv")) {
43 mode = GPS DRIVER MODE MARVELMIND;
44

45 } else {

136

46 PX4 ERR("unknown interface: %s", myoptarg);
47 error flag = true;
48 }
49 break;
50

51 case '?':
52 error flag = true;
53 break;
54

55 default:
56 PX4 WARN("unrecognized flag");
57 error flag = true;
58 break;
59 }
60 }

Listing H.12: NSH Terminal Marvelmind command.

137

Appendix I

Marvelmind Configuration

I.1 Modem Configuration

Modem
Starting beacon trilateration 0

Location update rate 16Hz
Update rate speedup turbo auto
Maximum speed m/s 5

3D navigation enabled
Power safe function disabled

Windows of averaging 10
IMU

Movement filtering disabled
Use pairs of beacons disabled

Analyze signal quality disabled
Minimum signal quality 10
Track with low signal blue

High resolution mode (mm) disabled
Accept new woken devices disabled

Temperature of air, ?C 23
Radio Frequency Band 433 MHz

Device address 1
Channel 0

Parameters of Radio
Base frequency 433,400 MHz
Radio Profile 153 Kbps

Device address 1
Hopping mode None

Channel 0
Modulation GFSK
Power of TX 10dBm

Channel spacing KHz 49.194
Intermediate frequency (ID) KHz 305

Offset frequency KHz -53.96
Deviation frequency KHz 152.344
Channel bandwidth KHz 541.667

CCA mode always
DC blocking filter enabled

Manchester disabled
Whitening enabled

FEC enabled

Table I.1: Modem configuration Table 1.

138

Interfaces
Modem

UART speed bps 500000
Protocol on UART/USB output Marvelmind

Geofencing
Latitude N0

Longitude E0
Limitation distance auto

Stationary beacons visible enabled
Service areas visible enabled
Service areas active enabled

Submap X shift in m 0.00
Submap Y shift in m 0.00

Submap rotation degrees 0.00

Table I.2: Modem configuration Table 2.

I.2 Hedgehog Configuration

Hedgehog 21
Hedgehog mode enabled

Radio Frequency Band 433 MHz
Device address 21

Channel 0
Minimum Threshold -50

IMU
Ax zero -10
Ay zero 8
Az zero -122
Ax K 0.982
Ay K 0.973
Az K 0.982

Parameters of Radio
Base frequency 433,400 MHz
Radio Profile 153 Kbps

Device address 21
Channel 0

Modulation GFSK
Power of TX 10dBm

Channel spacing KHz 49.194
Intermediate frequency (ID) KHz 305

Offset frequency KHz -53.96
Deviation frequency KHz 152.344
Channel bandwidth KHz 541.667

CCA mode always
DC blocking filter enabled

Manchester disabled
Whitening enabled

FEC enabled

Table I.3: Hedgehog configuration Table 1.

139

Ultrasound
Hedgehog 21

Mode of work TX+RX normal
Analoge power in sleep disabled

Power after transmission not turn off
Transmitter mode PWM

Frequency Hz 31000
Duty % 50

Number of periods 30
Amplifier limitation (calibrated) 4000

Amplification AGC
Time gain control disabled
AGC desired level -500

AGC hysteresis 130
AGC step dB 3

Mode of treshold automatic
minimum treshold -50

Treshold to noise dB 6
Signal detection by ADC

Periods for detector 5
Min. speed of raise LSB/cm 5,0
Min. over raise for new front 30

Coef. of estimated front quality 8
AGC low treshold, over raise 3

Speed of amplification increase 10
AGC high treshold, over raise 20

Speed of amplification decrease 10
Receive window low m 0
Receive window high m 255

Minimum distance limitation enabled
Auto measurements when radio gps enabled

Filter selection 19 KHz
RX1 normal enabled
RX2 normal enabled
RX3 normal enabled
RX4 normal enabled
RX5 normal enabled
RX1 frozen enabled
RX2 frozen enabled
RX3 frozen enabled
RX4 frozen enabled
RX5 frozen enabled

Table I.4: Hedgehog configuration Table 2.

140

Interfaces
Hedgehog 21

UART speed bps 115200
Protocol on UART/USB output NMEA0183

NMEA $GPRMC disabled
NMEA $GPGGA enabled
NMEA $GPVTG disabled
NMEA $GPZDA disabled
External device No control

PA15 pin function SPI slave CS
Raw inertial sensors data disabled

Processed IMU data disabled
Raw distance data disabled

User payload data size 0
Geofencing

Latitude N0
Longitude E0

Misc. settings
Sleep with external power 60

Hedgehogs pairing
Sleep with external power no pairing

Table I.5: Hedgehog configuration Table 3.

141

I.3 Beacon Configuration

Beacon 2 Beacon 3 Beacon 13 Beacon 15
Hedgehog mode disabled disabled disabled disabled

Height 2.37 m 2.37 m 2.37 m 2.37 m
Radio Frequency Band 433 MHz 433 MHz 433 MHz 433 MHz

Device address 2 3 13 15
Channel 0 0 0 0

Minimum Threshold -50 -50 -50 -50
IMU

Ax zero -10 -10 -10 -10
Ay zero 8 8 8 8
Az zero -122 -122 -122 -122
Ax K 0.982 0.982 0.982 0.982
Ay K 0.973 0.973 0.973 0.973
Az K 0.982 0.982 0.982 0.982

Parameters of Radio
Base frequency 433,400 MHz 433,400 MHz 433,400 MHz 433,400 MHz
Radio Profile 153 Kbps 153 Kbps 153 Kbps 153 Kbps

Device address 2 3 13 15
Channel 0 0 0 0

Modulation GFSK GFSK GFSK GFSK
Power of TX 10dBm 10dBm 10dBm 10dBm

Channel spacing KHz 49.194 49.194 49.194 49.194
Intermediate frequency (ID) KHz 305 305 305 305

Offset frequency KHz 0.00 -65.06 -55.54 -55.54
Deviation frequency KHz 152.344 152.344 152.344 152.344
Channel bandwidth KHz 541.667 541.667 541.667 541.667

CCA mode always always always always
DC blocking filter enabled enabled enabled enabled

Manchester disabled disabled disabled disabled
Whitening enabled enabled enabled enabled

FEC enabled enabled enabled enabled

Table I.6: Beacons configuration Table 1.

142

Ultrasound
Beacon 2 Beacon 3 Beacon 13 Beacon 15

Mode of work TX+RX normal TX+RX normal TX+RX normal TX+RX normal
Analoge power in sleep disabled disabled disabled disabled

Power after transmission not turn off not turn off not turn off not turn off
Transmitter mode PWM PWM PWM PWM

Frequency Hz 31000 31000 31000 31000
Duty % 50 50 50 50

Number of periods 30 30 30 30
Amplifier limitation (calibrated) 4000 4000 4000 4000

Amplification AGC AGC AGC AGC
Time gain control disabled disabled disabled disabled
AGC desired level -500 -500 -500 -500

AGC hysteresis 130 130 130 130
AGC step dB 3 3 3 3

Mode of treshold automatic automatic automatic automatic
minimum treshold -50 -50 -50 -50

Treshold to noise dB 6 6 6 6
Signal detection by ADC by ADC by ADC by ADC

Periods for detector 5 5 5 5
Min. speed of raise LSB/cm 5,0 5,0 5,0 5,0
Min. over raise for new front 30 30 30 30

Coef. of estimated front quality 8 8 8 8
AGC low treshold, over raise 3 3 3 3

Speed of amplification increase 10 10 10 10
AGC high treshold, over raise 20 20 20 20

Speed of amplification decrease 10 10 10 10
Receive window low m 0 0 0 0
Receive window high m 255 255 255 255

Minimum distance limitation enabled enabled enabled enabled
Auto measurements when radio gps enabled enabled enabled enabled

Filter selection 19 KHz 19 KHz 19 KHz 19 KHz
RX1 normal enabled enabled enabled enabled
RX2 normal enabled enabled enabled enabled
RX3 normal enabled enabled enabled enabled
RX4 normal enabled enabled enabled enabled
RX5 normal enabled enabled enabled enabled
RX1 frozen enabled enabled enabled enabled
RX2 frozen enabled enabled enabled enabled
RX3 frozen enabled enabled enabled enabled
RX4 frozen enabled enabled enabled enabled
RX5 frozen enabled enabled enabled enabled

Table I.7: Beacons configuration Table 2.

143

Interfaces
Beacon 2 Beacon 3 Beacon 13 Beacon 15

UART speed bps 500000 500000 500000 500000
Protocol on UART/USB output Marvelmind Marvelmind Marvelmind Marvelmind

PA15 pin function SPI slave CS SPI slave CS SPI slave CS SPI slave CS
Raw inertial sensors data disabled disabled disabled disabled

Processed IMU data disabled disabled disabled disabled
Geofencing

Latitude N0 N0 N0 N0
Longitude E0 E0 E0 E0

Misc. settings
Sleep with external power 60 60 60 60

Hedgehogs pairing
Sleep with external power no pairing no pairing no pairing no pairing

Table I.8: Beacons configuration Table 3.

144

Appendix J

Measurement and least squares fit
results motors

(a) Current measurements motor 1 with 4 different pro-
pellers.

(b) Thrust measurements motor 1 with 4 different pro-
pellers.

(c) Power measurements motor 1 with 4 different pro-
pellers.

(d) Least squares fit motor 1 using second and third
order polynomial, and their respectively error.

Figure J.1: Measurement and least squares fit results motor 1.

145

(a) Current measurements motor 2 with 4 different pro-
pellers.

(b) Thrust measurements motor 2 with 4 different pro-
pellers.

(c) Power measurements motor 2 with 4 different pro-
pellers.

(d) Least squares fit motor 2 using second and third
order polynomial, and their respectively error.

Figure J.2: Measurement and least squares fit results motor 2.

146

(a) Current measurements motor 3 with 4 different pro-
pellers.

(b) Thrust measurements motor 3 with 4 different pro-
pellers.

(c) Power measurements motor 3 with 4 different pro-
pellers.

(d) Least squares fit motor 3 using second and third
order polynomial, and their respectively error.

Figure J.3: Measurement and least squares fit results motor 3.

147

(a) Current measurements motor 4 with 4 different pro-
pellers.

(b) Thrust measurements motor 4 with 4 different pro-
pellers.

(c) Power measurements motor 4 with 4 different pro-
pellers.

(d) Least squares fit motor 4 using second and third
order polynomial, and their respectively error.

Figure J.4: Measurement and least squares fit results motor 4.

148

Appendix K

Ellipsoid fit

1 function [center, radii, evecs, v, chi2] = ellipsoid fit new(X, equals)
2 %
3 % Fit an ellispoid/sphere/paraboloid/hyperboloid to a set of xyz data points:
4 %
5 % [center, radii, evecs, pars] = ellipsoid fit(X)
6 % [center, radii, evecs, pars] = ellipsoid fit([x y z]);
7 % [center, radii, evecs, pars] = ellipsoid fit(X, 1);
8 % [center, radii, evecs, pars] = ellipsoid fit(X, 2, 'xz');
9 % [center, radii, evecs, pars] = ellipsoid fit(X, 3);

10 %
11 % Parameters:
12 % * X, [x y z] − Cartesian data, n x 3 matrix or three n x 1 vectors
13 % * flag − '' or empty fits an arbitrary ellipsoid (default),
14 % − 'xy' fits a spheroid with x− and y− radii equal
15 % − 'xz' fits a spheroid with x− and z− radii equal
16 % − 'xyz' fits a sphere
17 % − '0' fits an ellipsoid with its axes aligned along [x y z] axes
18 % − '0xy' the same with x− and y− radii equal
19 % − '0xz' the same with x− and z− radii equal
20 %
21 % Output:
22 % * center − ellispoid or other conic center coordinates [xc; yc; zc]
23 % * radii − ellipsoid or other conic radii [a; b; c]
24 % * evecs − the radii directions as columns of the 3x3 matrix
25 % * v − the 10 parameters describing the ellipsoid / conic algebraically:
26 % Axˆ2 + Byˆ2 + Czˆ2 + 2Dxy + 2Exz + 2Fyz + 2Gx + 2Hy + 2Iz + J = 0
27 % * chi2 − residual sum of squared errors (chiˆ2), this chi2 is in the
28 % coordinate frame in which the ellipsoid is a unit sphere.
29 %
30 % Author:
31 % Yury Petrov, Oculus VR
32 % Date:
33 % September, 2015
34 %
35

36 narginchk(1, 3) ; % check input arguments
37 if nargin == 1
38 equals = ''; % no constraints by default
39 end
40

41 if size(X, 2) 6= 3
42 error('Input data must have three columns!');
43 else
44 x = X(:, 1);
45 y = X(:, 2);
46 z = X(:, 3);
47 end
48

49 % need nine or more data points
50 if length(x) < 9 && strcmp(equals, '')
51 error('Must have at least 9 points to fit a unique ellipsoid');
52 end
53 if length(x) < 8 && (strcmp(equals, 'xy') | | strcmp(equals, 'xz'))
54 error('Must have at least 8 points to fit a unique ellipsoid with two equal radii');
55 end
56 if length(x) < 6 && strcmp(equals, '0')
57 error('Must have at least 6 points to fit a unique oriented ellipsoid');
58 end
59 if length(x) < 5 && (strcmp(equals, '0xy') | | strcmp(equals, '0xz'))
60 error('Must have at least 5 points to fit a unique oriented ellipsoid with two ...

equal radii');
61 end

149

62 if length(x) < 4 && strcmp(equals, 'xyz');
63 error('Must have at least 4 points to fit a unique sphere');
64 end
65

66 % fit ellipsoid in the form Axˆ2 + Byˆ2 + Czˆ2 + 2Dxy + 2Exz + 2Fyz + 2Gx +
67 % 2Hy + 2Iz + J = 0 and A + B + C = 3 constraint removing one extra
68 % parameter
69 if strcmp(equals, '')
70 D = [x .* x + y .* y − 2 * z .* z, ...
71 x .* x + z .* z − 2 * y .* y, ...
72 2 * x .* y, ...
73 2 * x .* z, ...
74 2 * y .* z, ...
75 2 * x, ...
76 2 * y, ...
77 2 * z, ...
78 1 + 0 * x]; % ndatapoints x 9 ellipsoid parameters
79 elseif strcmp(equals, 'xy')
80 D = [x .* x + y .* y − 2 * z .* z, ...
81 2 * x .* y, ...
82 2 * x .* z, ...
83 2 * y .* z, ...
84 2 * x, ...
85 2 * y, ...
86 2 * z, ...
87 1 + 0 * x]; % ndatapoints x 8 ellipsoid parameters
88 elseif strcmp(equals, 'xz')
89 D = [x .* x + z .* z − 2 * y .* y, ...
90 2 * x .* y, ...
91 2 * x .* z, ...
92 2 * y .* z, ...
93 2 * x, ...
94 2 * y, ...
95 2 * z, ...
96 1 + 0 * x]; % ndatapoints x 8 ellipsoid parameters
97 % fit ellipsoid in the form Axˆ2 + Byˆ2 + Czˆ2 + 2Gx + 2Hy + 2Iz = 1
98 elseif strcmp(equals, '0')
99 D = [x .* x + y .* y − 2 * z .* z, ...

100 x .* x + z .* z − 2 * y .* y, ...
101 2 * x, ...
102 2 * y, ...
103 2 * z, ...
104 1 + 0 * x]; % ndatapoints x 6 ellipsoid parameters
105 % fit ellipsoid in the form Axˆ2 + Byˆ2 + Czˆ2 + 2Gx + 2Hy + 2Iz = 1,
106 % where A = B or B = C or A = C
107 elseif strcmp(equals, '0xy')
108 D = [x .* x + y .* y − 2 * z .* z, ...
109 2 * x, ...
110 2 * y, ...
111 2 * z, ...
112 1 + 0 * x]; % ndatapoints x 5 ellipsoid parameters
113 elseif strcmp(equals, '0xz')
114 D = [x .* x + z .* z − 2 * y .* y, ...
115 2 * x, ...
116 2 * y, ...
117 2 * z, ...
118 1 + 0 * x]; % ndatapoints x 5 ellipsoid parameters
119 % fit sphere in the form A(xˆ2 + yˆ2 + zˆ2) + 2Gx + 2Hy + 2Iz = 1
120 elseif strcmp(equals, 'xyz')
121 D = [2 * x, ...
122 2 * y, ...
123 2 * z, ...
124 1 + 0 * x]; % ndatapoints x 4 ellipsoid parameters
125 else
126 error(['Unknown parameter value ' equals '!']);
127 end
128

129 % solve the normal system of equations
130 d2 = x .* x + y .* y + z .* z; % the RHS of the llsq problem (y's)
131 u = (D' * D) \ (D' * d2); % solution to the normal equations
132

133 % find the residual sum of errors

150

134 % chi2 = sum((1 − (D * u) ./ d2).ˆ2); % this chi2 is in the coordinate frame in ...
which the ellipsoid is a unit sphere.

135

136 % find the ellipsoid parameters
137 % convert back to the conventional algebraic form
138 if strcmp(equals, '')
139 v(1) = u(1) + u(2) − 1;
140 v(2) = u(1) − 2 * u(2) − 1;
141 v(3) = u(2) − 2 * u(1) − 1;
142 v(4 : 10) = u(3 : 9);
143 elseif strcmp(equals, 'xy')
144 v(1) = u(1) − 1;
145 v(2) = u(1) − 1;
146 v(3) = −2 * u(1) − 1;
147 v(4 : 10) = u(2 : 8);
148 elseif strcmp(equals, 'xz')
149 v(1) = u(1) − 1;
150 v(2) = −2 * u(1) − 1;
151 v(3) = u(1) − 1;
152 v(4 : 10) = u(2 : 8);
153 elseif strcmp(equals, '0')
154 v(1) = u(1) + u(2) − 1;
155 v(2) = u(1) − 2 * u(2) − 1;
156 v(3) = u(2) − 2 * u(1) − 1;
157 v = [v(1) v(2) v(3) 0 0 0 u(3 : 6)'];
158 elseif strcmp(equals, '0xy')
159 v(1) = u(1) − 1;
160 v(2) = u(1) − 1;
161 v(3) = −2 * u(1) − 1;
162 v = [v(1) v(2) v(3) 0 0 0 u(2 : 5)'];
163 elseif strcmp(equals, '0xz')
164 v(1) = u(1) − 1;
165 v(2) = −2 * u(1) − 1;
166 v(3) = u(1) − 1;
167 v = [v(1) v(2) v(3) 0 0 0 u(2 : 5)'];
168 elseif strcmp(equals, 'xyz')
169 v = [−1 −1 −1 0 0 0 u(1 : 4)'];
170 end
171 v = v';
172

173 % form the algebraic form of the ellipsoid
174 A = [v(1) v(4) v(5) v(7); ...
175 v(4) v(2) v(6) v(8); ...
176 v(5) v(6) v(3) v(9); ...
177 v(7) v(8) v(9) v(10)];
178 % find the center of the ellipsoid
179 center = −A(1:3, 1:3) \ v(7:9);
180 % form the corresponding translation matrix
181 T = eye(4);
182 T(4, 1:3) = center';
183 % translate to the center
184 R = T * A * T';
185 % solve the eigenproblem
186 [evecs, evals] = eig(R(1:3, 1:3) / −R(4, 4));
187 radii = sqrt(1 ./ diag(abs(evals)));
188 sgns = sign(diag(evals));
189 radii = radii .* sgns;
190

191 % calculate difference of the fitted points from the actual data normalized by the ...
conic radii

192 d = [x − center(1), y − center(2), z − center(3)]; % shift data to origin
193 d = d * evecs; % rotate to cardinal axes of the conic;
194 d = [d(:,1) / radii(1), d(:,2) / radii(2), d(:,3) / radii(3)]; % normalize to the ...

conic radii
195 chi2 = sum(abs(1 − sum(d.ˆ2 .* repmat(sgns', size(d, 1), 1), 2)));
196

197 if abs(v(end)) > 1e−6
198 v = −v / v(end); % normalize to the more conventional form with constant term = −1
199 else
200 v = −sign(v(end)) * v;
201 end

Listing K.1: Matlab code for fitting an ellipsoid on data. Obtained from [1].

151

Appendix L

Inverse thrust mapping
Since in section 4.1.5 a third order polynomial is fitted to the measured thrust data to get a mapping
between pwm and thrust, an algorithm performing the conversion from thrust to pwm is needed. The
obtained third order polynomial is described as equation L.1, which can be written as solving a qubic
polynomial of form equation L.2. The procedure described here, is following the discriminant method.

Tdesired = b3pwm3 + b2pwm2 + b1pwm + b0 (L.1)

0 = pwm3 +
b2
b3

pwm2 +
b1
b3

pwm +
b0 − Tdesired

b3
(L.2)

ax3 + bx2 + cx+ d = 0 (L.3)

Starting with a much simpler function, given equation L.3. Solution to this equations can come in three
different forms, solutions with:

� Only 1 real root and 2 imaginary roots.

� All roots are equal and real.

� All roots are different and real.

The function f , g and h, provided in equation L.4, split the solutions in three different categories
described above.

f =
3ac− b2

3a2

g =
2b3 − 9abc+ 27a2d

27a3

h =
g2

4
+
f3

27

(L.4)

The categorization depends on the values of h, g and f as follows:

� h > 0; Only 1 real root and 2 imaginary roots.

� h = 0,g = 0 and f = 0; All roots are equal and real.

� h <= 0; All roots are different and real.

To find the solutions to 1 real root and 2 imaginary roots, the following procedure is used:

S = 3

√
−g

2
+
√
h (L.5)

U = 3

√
−g

2
−
√
h (L.6)

x1 = S + U − b

3a
(L.7)

x2 = −S + U

2
− b

3a
+ i

√
3 (S − U)

2
(L.8)

x3 = −S + U

2
− b

3a
− i
√

3 (S − U)

2
(L.9)

152

Where x1 ∈ R is the only real solution and x2 ∈ C and x3 ∈ C are the complex solutions to the cubicle
polynomial. To find the solutions to all roots are real and equal, the following procedure is used:

x1 =
3

√
−d
a

x2 =
3

√
−d
a

x3 =
3

√
−d
a

(L.10)

Where x1 = x2 = x3 ∈ R. The last procedure shows how to find all different real roots:

j =
3

√√
g2

4
− h (L.11)

k = arccos

 −g
2
√

g2

4 − h

 (L.12)

x1 = 2j cos

(
k

3

)
− b

3a
(L.13)

x2 = −j
(

cos

(
k

3

)
+
√

3 sin

(
k

3

))
− b

3a
(L.14)

x3 = −j
(

cos

(
k

3

)
−
√

3 sin

(
k

3

))
− b

3a
(L.15)

Where x1 ∈ R, x2 ∈ R and x3 ∈ R.

153

Appendix M

Solidworks quad-copter model

Figure M.1: TBS Quad-copter reconstructed in Solidworks.

154

1 Mass properties of TBS Quad
2 Configuration: Default
3 Coordinate system: −− default −−
4

5 * Includes the mass properties of one or more hidden components/bodies.
6

7 Mass = 1366.00 grams
8

9 Volume = 4524822.43 cubic millimeters
10

11 Surface area = 795321.72 square millimeters
12

13 Center of mass: (millimeters)
14 X = 82.97
15 Y = 202.94
16 Z = 295.54
17

18 Principal axes of inertia and principal moments of inertia: (grams * square ...
millimeters)

19 Taken at the center of mass.
20 Ix = (−0.04, −0.02, 1.00) Px = 30369852.63
21 Iy = (1.00, 0.00, 0.04) Py = 30852409.95
22 Iz = (0.00, 1.00, 0.02) Pz = 59906882.28
23

24 Moments of inertia: (grams * square millimeters)
25 Taken at the center of mass and aligned with the output coordinate system.
26 Lxx = 30851658.96 Lxy = −1932.81 Lxz = −19060.68
27 Lyx = −1932.81 Lyy = 59897904.59 Lyz = −514860.89
28 Lzx = −19060.68 Lzy = −514860.89 Lzz = 30379581.31
29

30 Moments of inertia: (grams * square millimeters)
31 Taken at the output coordinate system.
32 Ixx = 206427013.30 Ixy = 23000234.15 Ixz = 33478597.94
33 Iyx = 23000234.15 Iyy = 188617268.75 Iyz = 81416273.19
34 Izx = 33478597.94 Izy = 81416273.19 Izz = 96044507.67

Listing M.1: Mass properties results quad-copter in Solidworks.

155

Appendix N

Wind conditions and Disturbances

Figure N.1: Wind conditions in simulation.

Figure N.2: Disturbance moments and forces resulting from wind in simulation.

156

Appendix O

Position error in windless conditions

Figure O.1: System dynamics for various controllers in hovering mode without wind.

157

Appendix P

Position error in shear wind
conditions

Figure P.1: System dynamics for various controllers in hovering mode in shear wind conditions.

158

Appendix Q

Position error in gust wind
conditions

Figure Q.1: System dynamics for various controllers in hovering mode in wind gust conditions.

159

Appendix R

Position error in Dryden wind
conditions

Figure R.1: System dynamics for various controllers in hovering mode in Dryden wind conditions.

160

Appendix S

Position error tracking challenging
reference

Figure S.1: System dynamics for various controllers tracking challenging reference without wind.

161

	Table of Contents
	Introduction
	Historical background
	Motivation and overall aim
	Literature survey
	Controller design for quad-copters
	Navigation and controller design in wind fields
	Computational fluid dynamics
	Wind field modeling
	Airflow analysis on quad-copters

	Quad-copter disturbance rejection
	Internal model principle
	Repetitive Control
	Iterative learning control

	Specific goals, approach and contribution
	Specific goals
	Approach
	Contribution

	Organization of the report
	Part I: Hardware, software and control
	Part 2: Wind disturbance rejection

	I Hardware, Software and Control
	Hardware
	Frame
	Processing unit
	Magnetometer
	Gyroscope
	Accelerometer
	Battery sensor

	Indoor Positioning System
	Motors and electronic speed controllers
	Wireless communication
	Radio Controller

	Software
	Q-ground control and PX4Pro flight stack
	Simulink
	Configuration and timing tools
	Boot process alternation
	Quad copter software
	Ground station software

	Configuring remote control
	Wireless communication
	Indoor Positioning System driver
	GPGGA message
	GPRMC message
	GPVTG message
	GPZDA message

	Matlab Graphical User Interface

	Mathematical model, state estimation and control
	Mathematical model
	Reference frame
	Non-linear quad-copter model
	Linearized quad-copter model
	Motor mixing matrix
	Propulsion model
	Sensor Calibration
	Fitting an ellipsoid
	Current corrections
	Gyroscope

	State estimation
	Quaternions
	Madgwick filter
	Magnetic disturbance severity
	Stationary state detection

	Kalman filter

	Controller design

	II Wind disturbance rejection
	Wind field modeling
	Computational Fluid Dynamics
	Navier-Stokes equations
	Numerically solving Navier-Stokes equations
	Boundary conditions
	Stability analysis

	Dryden Turbulent Model

	Disturbance rejection
	Continuous time case Internal Model Principle
	Controller, observer and feedforward design
	Exogenous System
	Disturbance rejection

	Discrete time Internal Model Principle
	Controller, observer and feedforward design
	Exogenous System
	Disturbance Rejection

	Repetitive Control

	Experiments and results
	Simulation
	Windless conditions
	Shear wind
	Wind gust
	Dryden wind
	Dynamical reference
	Experimental results

	Conclusion, Remarks and Future work
	Conclusion
	Hardware, Software and Control
	Wind disturbance rejection

	Future work
	Hardware, Software and Control
	Wind disturbance rejection

	Bibliography
	Appendices
	Pixhawk Pinouts
	Tiger Air gear 350 User Manual
	Boot process Pixhawk
	Basic Logged Data Reading
	Setup Raspberry Pi
	Configuration Raspberry Pi
	Setup Serial 2 Network
	Setup Access Point

	Com0Com
	CombyTCP
	GPS Driver Installation
	Driver Header file
	Driver file
	GPS Module

	Marvelmind Configuration
	Modem Configuration
	Hedgehog Configuration
	Beacon Configuration

	Measurement and least squares fit results motors
	Ellipsoid fit
	Inverse thrust mapping
	Solidworks quad-copter model
	Wind conditions and Disturbances
	Position error in windless conditions
	Position error in shear wind conditions
	Position error in gust wind conditions
	Position error in Dryden wind conditions
	Position error tracking challenging reference

