1,797 research outputs found

    A mosaic of eyes

    Get PDF
    Autonomous navigation is a traditional research topic in intelligent robotics and vehicles, which requires a robot to perceive its environment through onboard sensors such as cameras or laser scanners, to enable it to drive to its goal. Most research to date has focused on the development of a large and smart brain to gain autonomous capability for robots. There are three fundamental questions to be answered by an autonomous mobile robot: 1) Where am I going? 2) Where am I? and 3) How do I get there? To answer these basic questions, a robot requires a massive spatial memory and considerable computational resources to accomplish perception, localization, path planning, and control. It is not yet possible to deliver the centralized intelligence required for our real-life applications, such as autonomous ground vehicles and wheelchairs in care centers. In fact, most autonomous robots try to mimic how humans navigate, interpreting images taken by cameras and then taking decisions accordingly. They may encounter the following difficulties

    PHALANX: Expendable Projectile Sensor Networks for Planetary Exploration

    Get PDF
    Technologies enabling long-term, wide-ranging measurement in hard-to-reach areas are a critical need for planetary science inquiry. Phenomena of interest include flows or variations in volatiles, gas composition or concentration, particulate density, or even simply temperature. Improved measurement of these processes enables understanding of exotic geologies and distributions or correlating indicators of trapped water or biological activity. However, such data is often needed in unsafe areas such as caves, lava tubes, or steep ravines not easily reached by current spacecraft and planetary robots. To address this capability gap, we have developed miniaturized, expendable sensors which can be ballistically lobbed from a robotic rover or static lander - or even dropped during a flyover. These projectiles can perform sensing during flight and after anchoring to terrain features. By augmenting exploration systems with these sensors, we can extend situational awareness, perform long-duration monitoring, and reduce utilization of primary mobility resources, all of which are crucial in surface missions. We call the integrated payload that includes a cold gas launcher, smart projectiles, planning software, network discovery, and science sensing: PHALANX. In this paper, we introduce the mission architecture for PHALANX and describe an exploration concept that pairs projectile sensors with a rover mothership. Science use cases explored include reconnaissance using ballistic cameras, volatiles detection, and building timelapse maps of temperature and illumination conditions. Strategies to autonomously coordinate constellations of deployed sensors to self-discover and localize with peer ranging (i.e. a local GPS) are summarized, thus providing communications infrastructure beyond-line-of-sight (BLOS) of the rover. Capabilities were demonstrated through both simulation and physical testing with a terrestrial prototype. The approach to developing a terrestrial prototype is discussed, including design of the launching mechanism, projectile optimization, micro-electronics fabrication, and sensor selection. Results from early testing and characterization of commercial-off-the-shelf (COTS) components are reported. Nodes were subjected to successful burn-in tests over 48 hours at full logging duty cycle. Integrated field tests were conducted in the Roverscape, a half-acre planetary analog environment at NASA Ames, where we tested up to 10 sensor nodes simultaneously coordinating with an exploration rover. Ranging accuracy has been demonstrated to be within +/-10cm over 20m using commodity radios when compared to high-resolution laser scanner ground truthing. Evolution of the design, including progressive miniaturization of the electronics and iterated modifications of the enclosure housing for streamlining and optimized radio performance are described. Finally, lessons learned to date, gaps toward eventual flight mission implementation, and continuing future development plans are discussed

    A mobile anchor assisted localization algorithm based on regular hexagon in wireless sensor networks

    Get PDF
    Localization is one of the key technologies in wireless sensor networks (WSNs), since it provides fundamental support for many location-aware protocols and applications. Constraints of cost and power consumption make it infeasible to equip each sensor node in the network with a global position system(GPS) unit, especially for large-scale WSNs. A promising method to localize unknown nodes is to use several mobile anchors which are equipped with GPS units moving among unknown nodes and periodically broadcasting their current locations to help nearby unknown nodes with localization. This paper proposes a mobile anchor assisted localization algorithm based on regular hexagon (MAALRH) in two-dimensional WSNs, which can cover the whole monitoring area with a boundary compensation method. Unknown nodes calculate their positions by using trilateration. We compare the MAALRH with HILBERT, CIRCLES, and S-CURVES algorithms in terms of localization ratio, localization accuracy, and path length. Simulations show that the MAALRH can achieve high localization ratio and localization accuracy when the communication range is not smaller than the trajectory resolution.The work is supported by the Natural Science Foundation of Jiangsu Province of China, no. BK20131137; the Applied Basic Research Program of Nantong Science and Technology Bureau, no. BK2013032; and the Guangdong University of Petrochemical Technology's Internal Project, no. 2012RC0106. Jaime Lloret's work has been partially supported by the "Ministerio de Ciencia e Innovacion," through the "Plan Nacional de I+D+i 2008-2011" in the "Subprograma de Proyectos de Investigacion Fundamental," Project TEC2011-27516. Joel J. P. C. Rodrigues's work has been supported by "Instituto de Telecomunicacoes," Next Generation Networks and Applications Group (NetGNA), Covilha Delegation, by national funding from the Fundacao para a Ciencia e a Tecnologia (FCT) through the Pest-OE/EEI/LA0008/2013 Project.Han, G.; Zhang, C.; Lloret, J.; Shu, L.; Rodrigues, JJPC. (2014). A mobile anchor assisted localization algorithm based on regular hexagon in wireless sensor networks. Scientific World Journal. https://doi.org/10.1155/2014/219371SLiu, Y., Yang, Z., Wang, X., & Jian, L. (2010). Location, Localization, and Localizability. Journal of Computer Science and Technology, 25(2), 274-297. doi:10.1007/s11390-010-9324-2Akcan, H., Kriakov, V., Brönnimann, H., & Delis, A. (2010). Managing cohort movement of mobile sensors via GPS-free and compass-free node localization. Journal of Parallel and Distributed Computing, 70(7), 743-757. doi:10.1016/j.jpdc.2010.03.007Akyildiz, I. F., Weilian Su, Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102-114. doi:10.1109/mcom.2002.1024422Vupputuri, S., Rachuri, K. K., & Siva Ram Murthy, C. (2010). Using mobile data collectors to improve network lifetime of wireless sensor networks with reliability constraints. Journal of Parallel and Distributed Computing, 70(7), 767-778. doi:10.1016/j.jpdc.2010.03.010Zeng, Y., Cao, J., Hong, J., Zhang, S., & Xie, L. (2010). Secure localization and location verification in wireless sensor networks: a survey. The Journal of Supercomputing, 64(3), 685-701. doi:10.1007/s11227-010-0501-4Han, G., Xu, H., Duong, T. Q., Jiang, J., & Hara, T. (2011). Localization algorithms of Wireless Sensor Networks: a survey. Telecommunication Systems, 52(4), 2419-2436. doi:10.1007/s11235-011-9564-7Al-Fuqaha, A. (2013). A Precise Indoor Localization Approach based on Particle Filter and Dynamic Exclusion Techniques. Network Protocols and Algorithms, 5(2), 50. doi:10.5296/npa.v5i2.3717Chaurasiya, V. K., Jain, N., & Nandi, G. C. (2014). A novel distance estimation approach for 3D localization in wireless sensor network using multi dimensional scaling. Information Fusion, 15, 5-18. doi:10.1016/j.inffus.2013.06.003Diallo, O., Rodrigues, J. J. P. C., & Sene, M. (2012). Real-time data management on wireless sensor networks: A survey. Journal of Network and Computer Applications, 35(3), 1013-1021. doi:10.1016/j.jnca.2011.12.006Amundson, I., & Koutsoukos, X. D. (2009). A Survey on Localization for Mobile Wireless Sensor Networks. Lecture Notes in Computer Science, 235-254. doi:10.1007/978-3-642-04385-7_16Ding, Y., Wang, C., & Xiao, L. (2010). Using mobile beacons to locate sensors in obstructed environments. Journal of Parallel and Distributed Computing, 70(6), 644-656. doi:10.1016/j.jpdc.2010.03.002Chenji, H., & Stoleru, R. (2010). Mobile Sensor Network Localization in Harsh Environments. Lecture Notes in Computer Science, 244-257. doi:10.1007/978-3-642-13651-1_18Campos, A. N., Souza, E. L., Nakamura, F. G., Nakamura, E. F., & Rodrigues, J. J. P. C. (2012). On the Impact of Localization and Density Control Algorithms in Target Tracking Applications for Wireless Sensor Networks. Sensors, 12(6), 6930-6952. doi:10.3390/s120606930Ou, C.-H., & He, W.-L. (2013). Path Planning Algorithm for Mobile Anchor-Based Localization in Wireless Sensor Networks. IEEE Sensors Journal, 13(2), 466-475. doi:10.1109/jsen.2012.2218100Koutsonikolas, D., Das, S. M., & Hu, Y. C. (2007). Path planning of mobile landmarks for localization in wireless sensor networks. Computer Communications, 30(13), 2577-2592. doi:10.1016/j.comcom.2007.05.048Cui, H., & Wang, Y. (2012). Four-mobile-beacon assisted localization in three-dimensional wireless sensor networks. Computers & Electrical Engineering, 38(3), 652-661. doi:10.1016/j.compeleceng.2011.10.012Ssu, K.-F., Ou, C.-H., & Jiau, H. C. (2005). Localization With Mobile Anchor Points in Wireless Sensor Networks. IEEE Transactions on Vehicular Technology, 54(3), 1187-1197. doi:10.1109/tvt.2005.844642Guo, Z., Guo, Y., Hong, F., Jin, Z., He, Y., Feng, Y., & Liu, Y. (2010). Perpendicular Intersection: Locating Wireless Sensors With Mobile Beacon. IEEE Transactions on Vehicular Technology, 59(7), 3501-3509. doi:10.1109/tvt.2010.2049391Bin Xiao, Hekang Chen, & Shuigeng Zhou. (2008). Distributed Localization Using a Moving Beacon in Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 19(5), 587-600. doi:10.1109/tpds.2007.70773Lee, S., Kim, E., Kim, C., & Kim, K. (2009). Localization with a mobile beacon based on geometric constraints in wireless sensor networks. IEEE Transactions on Wireless Communications, 8(12), 5801-5805. doi:10.1109/twc.2009.12.090319Han, G., Choi, D., & Lim, W. (2009). Reference node placement and selection algorithm based on trilateration for indoor sensor networks. Wireless Communications and Mobile Computing, 9(8), 1017-1027. doi:10.1002/wcm.65

    Design of a multiple bloom filter for distributed navigation routing

    Get PDF
    Unmanned navigation of vehicles and mobile robots can be greatly simplified by providing environmental intelligence with dispersed wireless sensors. The wireless sensors can work as active landmarks for vehicle localization and routing. However, wireless sensors are often resource scarce and require a resource-saving design. In this paper, a multiple Bloom-filter scheme is proposed to compress a global routing table for a wireless sensor. It is used as a lookup table for routing a vehicle to any destination but requires significantly less memory space and search effort. An error-expectation-based design for a multiple Bloom filter is proposed as an improvement to the conventional false-positive-rate-based design. The new design is shown to provide an equal relative error expectation for all branched paths, which ensures a better network load balance and uses less memory space. The scheme is implemented in a project for wheelchair navigation using wireless camera motes. © 2013 IEEE

    MAP: Medial Axis Based Geometric Routing in Sensor Networks

    Get PDF
    One of the challenging tasks in the deployment of dense wireless networks (like sensor networks) is in devising a routing scheme for node to node communication. Important consideration includes scalability, routing complexity, the length of the communication paths and the load sharing of the routes. In this paper, we show that a compact and expressive abstraction of network connectivity by the medial axis enables efficient and localized routing. We propose MAP, a Medial Axis based naming and routing Protocol that does not require locations, makes routing decisions locally, and achieves good load balancing. In its preprocessing phase, MAP constructs the medial axis of the sensor field, defined as the set of nodes with at least two closest boundary nodes. The medial axis of the network captures both the complex geometry and non-trivial topology of the sensor field. It can be represented compactly by a graph whose size is comparable with the complexity of the geometric features (e.g., the number of holes). Each node is then given a name related to its position with respect to the medial axis. The routing scheme is derived through local decisions based on the names of the source and destination nodes and guarantees delivery with reasonable and natural routes. We show by both theoretical analysis and simulations that our medial axis based geometric routing scheme is scalable, produces short routes, achieves excellent load balancing, and is very robust to variations in the network model

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    Mobile robot transportation in laboratory automation

    Get PDF
    In this dissertation a new mobile robot transportation system is developed for the modern laboratory automation to connect the distributed automated systems and workbenches. In the system, a series of scientific and technical robot indoor issues are presented and solved, including the multiple robot control strategy, the indoor transportation path planning, the hybrid robot indoor localization, the recharging optimization, the robot-automated door interface, the robot blind arm grasping & placing, etc. The experiments show the proposed system and methods are effective and efficient
    corecore