51 research outputs found

    A survey on passive digital video forgery detection techniques

    Get PDF
    Digital media devices such as smartphones, cameras, and notebooks are becoming increasingly popular. Through digital platforms such as Facebook, WhatsApp, Twitter, and others, people share digital images, videos, and audio in large quantities. Especially in a crime scene investigation, digital evidence plays a crucial role in a courtroom. Manipulating video content with high-quality software tools is easier, which helps fabricate video content more efficiently. It is therefore necessary to develop an authenticating method for detecting and verifying manipulated videos. The objective of this paper is to provide a comprehensive review of the passive methods for detecting video forgeries. This survey has the primary goal of studying and analyzing the existing passive techniques for detecting video forgeries. First, an overview of the basic information needed to understand video forgery detection is presented. Later, it provides an in-depth understanding of the techniques used in the spatial, temporal, and spatio-temporal domain analysis of videos, datasets used, and their limitations are reviewed. In the following sections, standard benchmark video forgery datasets and the generalized architecture for passive video forgery detection techniques are discussed in more depth. Finally, identifying loopholes in existing surveys so detecting forged videos much more effectively in the future are discussed

    Classification and evaluation of digital forensic tools

    Get PDF
    Digital forensic tools (DFTs) are used to detect the authenticity of digital images. Different DFTs have been developed to detect the forgery like (i) forensic focused operating system, (ii) computer forensics, (iii) memory forensics, (iv) mobile device forensics, and (v) software forensics tools (SFTs). These tools are dedicated to detect the forged images depending on the type of the applications. Based on our review, we found that in literature of the DFTs less attention is given to the evaluation and analysis of the forensic tools. Among various DFTs, we choose SFTs because it is concerned with the detection of the forged digital images. Therefore,the purpose of this study is to classify the different DFTs and evaluate the software forensic tools (SFTs) based on the different features which are present in the SFTs. In our work, we evaluate the following five SFTs, i.e.,“FotoForensics”, “JPEGsnoop”, “Ghiro”, “Forensically”, and “Izitru”, based on different features so that new research directions can be identified for the development of the SFTs

    Comparative Analysis of Techniques Used to Detect Copy-Move Tampering for Real-World Electronic Images

    Get PDF
    Evolution of high computational powerful computers, easy availability of several innovative editing software package and high-definition quality-based image capturing tools follows to effortless result in producing image forgery. Though, threats for security and misinterpretation of digital images and scenes have been observed to be happened since a long period and also a lot of research has been established in developing diverse techniques to authenticate the digital images. On the contrary, the research in this region is not limited to checking the validity of digital photos but also to exploring the specific signs of distortion or forgery. This analysis would not require additional prior information of intrinsic content of corresponding digital image or prior embedding of watermarks. In this paper, recent growth in the area of digital image tampering identification have been discussed along with benchmarking study has been shown with qualitative and quantitative results. With variety of methodologies and concepts, different applications of forgery detection have been discussed with corresponding outcomes especially using machine and deep learning methods in order to develop efficient automated forgery detection system. The future applications and development of advanced soft-computing based techniques in digital image forgery tampering has been discussed

    Comparative Analysis of Techniques Used to Detect Copy-Move Tampering for Real-World Electronic Images

    Get PDF
    Evolution of high computational powerful computers, easy availability of several innovative editing software package and high-definition quality-based image capturing tools follows to effortless result in producing image forgery. Though, threats for security and misinterpretation of digital images and scenes have been observed to be happened since a long period and also a lot of research has been established in developing diverse techniques to authenticate the digital images. On the contrary, the research in this region is not limited to checking the validity of digital photos but also to exploring the specific signs of distortion or forgery. This analysis would not require additional prior information of intrinsic content of corresponding digital image or prior embedding of watermarks. In this paper, recent growth in the area of digital image tampering identification have been discussed along with benchmarking study has been shown with qualitative and quantitative results. With variety of methodologies and concepts, different applications of forgery detection have been discussed with corresponding outcomes especially using machine and deep learning methods in order to develop efficient automated forgery detection system. The future applications and development of advanced soft-computing based techniques in digital image forgery tampering has been discussed

    A review on copy-move image forgery detection techniques

    Get PDF
    With billions of digital images flooding the internet which are widely used and regards as the major information source in many fields in recent years. With the high advance of technology, it may seem easy to fraud the image. In digital images, copy-move forgery is the most common image tampering, where some object(s) or region(s) duplicate in the digital image. The important research has attracted more attention in digital forensic is forgery detection and localization. Many techniques have been proposed and many papers have been published to detect image forgery. This paper introduced a review of research papers on copy-move image forgery published in reputed journals from 2017 to 2020 and focused on discussing various strategies related with fraud images to highlight on the latest tools used in the detection. This article will help the researchers to understand the current algorithms and techniques in this field and ultimately develop new and more efficient algorithms of detection copy-move image

    Copy-move forgery detection in digital images

    Get PDF
    The ready availability of image-editing software makes it important to ensure the authenticity of images. This thesis concerns the detection and localization of cloning, or Copy-Move Forgery (CMF), which is the most common type of image tampering, in which part(s) of the image are copied and pasted back somewhere else in the same image. Post-processing can be used to produce more realistic doctored images and thus can increase the difficulty of detecting forgery. This thesis presents three novel methods for CMF detection, using feature extraction, surface fitting and segmentation. The Dense Scale Invariant Feature Transform (DSIFT) has been improved by using a different method to estimate the canonical orientation of each circular block. The Fitting Function Rotation Invariant Descriptor (FFRID) has been developed by using the least squares method to fit the parameters of a quadratic function on each block curvatures. In the segmentation approach, three different methods were tested: the SLIC superpixels, the Bag of Words Image and the Rolling Guidance filter with the multi-thresholding method. We also developed the Segment Gradient Orientation Histogram (SGOH) to describe the gradient of irregularly shaped blocks (segments). The experimental results illustrate that our proposed algorithms can detect forgery in images containing copy-move objects with different types of transformation (translation, rotation, scaling, distortion and combined transformation). Moreover, the proposed methods are robust to post-processing (i.e. blurring, brightness change, colour reduction, JPEG compression, variations in contrast and added noise) and can detect multiple duplicated objects. In addition, we developed a new method to estimate the similarity threshold for each image by optimizing a cost function based probability distribution. This method can detect CMF better than using a fixed threshold for all the test images, because our proposed method reduces the false positive and the time required to estimate one threshold for different images in the dataset. Finally, we used the hysteresis to decrease the number of false matches and produce the best possible result

    A new technique for video copy-move forgery detection

    Get PDF
    This thesis describes an algorithm for detecting copy-move falsifications in digital video. The thesis is composed of 5 chapters. In the first chapter there is an introduction to forgery detection for digital images and videos. Chapters 2, 3 and 4 describe in detail the techniques used for the implementation of the detection algorithm. The experimental results are presented in the fifth and last chapter

    Machine learning based digital image forensics and steganalysis

    Get PDF
    The security and trustworthiness of digital images have become crucial issues due to the simplicity of malicious processing. Therefore, the research on image steganalysis (determining if a given image has secret information hidden inside) and image forensics (determining the origin and authenticity of a given image and revealing the processing history the image has gone through) has become crucial to the digital society. In this dissertation, the steganalysis and forensics of digital images are treated as pattern classification problems so as to make advanced machine learning (ML) methods applicable. Three topics are covered: (1) architectural design of convolutional neural networks (CNNs) for steganalysis, (2) statistical feature extraction for camera model classification, and (3) real-world tampering detection and localization. For covert communications, steganography is used to embed secret messages into images by altering pixel values slightly. Since advanced steganography alters the pixel values in the image regions that are hard to be detected, the traditional ML-based steganalytic methods heavily relied on sophisticated manual feature design have been pushed to the limit. To overcome this difficulty, in-depth studies are conducted and reported in this dissertation so as to move the success achieved by the CNNs in computer vision to steganalysis. The outcomes achieved and reported in this dissertation are: (1) a proposed CNN architecture incorporating the domain knowledge of steganography and steganalysis, and (2) ensemble methods of the CNNs for steganalysis. The proposed CNN is currently one of the best classifiers against steganography. Camera model classification from images aims at assigning a given image to its source capturing camera model based on the statistics of image pixel values. For this, two types of statistical features are designed to capture the traces left by in-camera image processing algorithms. The first is Markov transition probabilities modeling block-DCT coefficients for JPEG images; the second is based on histograms of local binary patterns obtained in both the spatial and wavelet domains. The designed features serve as the input to train support vector machines, which have the best classification performance at the time the features are proposed. The last part of this dissertation documents the solutions delivered by the author’s team to The First Image Forensics Challenge organized by the Information Forensics and Security Technical Committee of the IEEE Signal Processing Society. In the competition, all the fake images involved were doctored by popular image-editing software to simulate the real-world scenario of tampering detection (determine if a given image has been tampered or not) and localization (determine which pixels have been tampered). In Phase-1 of the Challenge, advanced steganalysis features were successfully migrated to tampering detection. In Phase-2 of the Challenge, an efficient copy-move detector equipped with PatchMatch as a fast approximate nearest neighbor searching method were developed to identify duplicated regions within images. With these tools, the author’s team won the runner-up prizes in both the two phases of the Challenge
    • …
    corecore