770 research outputs found

    Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations

    Get PDF
    One of the major achievements in engineering science has been the development of computer algorithms for solving nonlinear differential equations such as the Navier-Stokes equations. In the past, limited computer resources have motivated the development of efficient numerical schemes in computational fluid dynamics (CFD) utilizing structured meshes. The use of structured meshes greatly simplifies the implementation of CFD algorithms on conventional computers. Unstructured grids on the other hand offer an alternative to modeling complex geometries. Unstructured meshes have irregular connectivity and usually contain combinations of triangles, quadrilaterals, tetrahedra, and hexahedra. The generation and use of unstructured grids poses new challenges in CFD. The purpose of this note is to present recent developments in the unstructured grid generation and flow solution technology

    Issures in Discontinuous High-Order Methods: Broadband Wave Computation and Viscous Boundary Layer Resolution

    Get PDF
    A new discontinuous formulation named Correction Procedure via Reconstruction (CPR) was developed for conservation laws. CPR is an efficient nodal differential formulation unifying the discontinuous Galerkin (DG), spectral volume (SV) and spectral difference (SD) methods, is easy to implement. In this thesis, we deal with two issues: the efficient computation of broadband waves, and the proper resolution of a viscous boundary layer with the high-order CPR method. A hybrid discontinuous space including polynomial and Fourier bases is employed in the CPR formulation in order to compute broad-band waves. The polynomial bases are used to achieve a certain order of accuracy, while the Fourier bases are able to exactly resolve waves at a certain frequency. Free-parameters introduced in the Fourier bases are optimized in order to minimize both dispersion and dissipation errors by mimicking the dispersion-relation-preserving (DRP) method for a one-dimensional wave problem. For the one-dimensional wave problem, the dispersion and dissipation properties and the optimization procedure are investigated through a wave propagation analysis. The optimization procedure is verified with a wave propagation analysis and several numerical tests. The two-dimensional wave behavior is investigated through a wave propagation analysis and the wave propagation properties are verified with a numerical test of the two-dimensional acoustic wave equation. In order to understand the mesh size requirement to resolve a viscous boundary layer using CPR method, grid resolution studies are performed. . It is well known that the mesh size, which is defined from non-dimensional wall distance y^+=1, gives accepted results to simulate viscous boundary layer problem for 2nd order finite volume method. For high-order CPR formulation, what grid size y^+ is required to match the results from the 2nd order finite volume method with y^+=1. 1D and 2D burger\u27s equation are used as the viscous boundary layer model problem. Skin friction is used as the indicator of accuracy for the resolution of a boundary layer. Keywords: (Correction Procedure via Reconstruction), A Hybrid Discontinuous Space, Wave Propagation Analysis, Grid Resolution Study, Method of Manufactured Solution

    Space from Hilbert Space: Recovering Geometry from Bulk Entanglement

    Get PDF
    We examine how to construct a spatial manifold and its geometry from the entanglement structure of an abstract quantum state in Hilbert space. Given a decomposition of Hilbert space H\mathcal{H} into a tensor product of factors, we consider a class of "redundancy-constrained states" in H\mathcal{H} that generalize the area-law behavior for entanglement entropy usually found in condensed-matter systems with gapped local Hamiltonians. Using mutual information to define a distance measure on the graph, we employ classical multidimensional scaling to extract the best-fit spatial dimensionality of the emergent geometry. We then show that entanglement perturbations on such emergent geometries naturally give rise to local modifications of spatial curvature which obey a (spatial) analog of Einstein's equation. The Hilbert space corresponding to a region of flat space is finite-dimensional and scales as the volume, though the entropy (and the maximum change thereof) scales like the area of the boundary. A version of the ER=EPR conjecture is recovered, in that perturbations that entangle distant parts of the emergent geometry generate a configuration that may be considered as a highly quantum wormhole.Comment: 37 pages, 5 figures. Updated notation, references, and acknowledgemen

    Accurate Profiling of Microbial Communities from Massively Parallel Sequencing using Convex Optimization

    Full text link
    We describe the Microbial Community Reconstruction ({\bf MCR}) Problem, which is fundamental for microbiome analysis. In this problem, the goal is to reconstruct the identity and frequency of species comprising a microbial community, using short sequence reads from Massively Parallel Sequencing (MPS) data obtained for specified genomic regions. We formulate the problem mathematically as a convex optimization problem and provide sufficient conditions for identifiability, namely the ability to reconstruct species identity and frequency correctly when the data size (number of reads) grows to infinity. We discuss different metrics for assessing the quality of the reconstructed solution, including a novel phylogenetically-aware metric based on the Mahalanobis distance, and give upper-bounds on the reconstruction error for a finite number of reads under different metrics. We propose a scalable divide-and-conquer algorithm for the problem using convex optimization, which enables us to handle large problems (with 106\sim10^6 species). We show using numerical simulations that for realistic scenarios, where the microbial communities are sparse, our algorithm gives solutions with high accuracy, both in terms of obtaining accurate frequency, and in terms of species phylogenetic resolution.Comment: To appear in SPIRE 1

    The geometry of dynamical triangulations

    Full text link
    We discuss the geometry of dynamical triangulations associated with 3-dimensional and 4-dimensional simplicial quantum gravity. We provide analytical expressions for the canonical partition function in both cases, and study its large volume behavior. In the space of the coupling constants of the theory, we characterize the infinite volume line and the associated critical points. The results of this analysis are found to be in excellent agreement with the MonteCarlo simulations of simplicial quantum gravity. In particular, we provide an analytical proof that simply-connected dynamically triangulated 4-manifolds undergo a higher order phase transition at a value of the inverse gravitational coupling given by 1.387, and that the nature of this transition can be concealed by a bystable behavior. A similar analysis in the 3-dimensional case characterizes a value of the critical coupling (3.845) at which hysteresis effects are present.Comment: 166 pages, Revtex (latex) fil

    Simplified Energy Landscape for Modularity Using Total Variation

    Get PDF
    Networks capture pairwise interactions between entities and are frequently used in applications such as social networks, food networks, and protein interaction networks, to name a few. Communities, cohesive groups of nodes, often form in these applications, and identifying them gives insight into the overall organization of the network. One common quality function used to identify community structure is modularity. In Hu et al. [SIAM J. App. Math., 73(6), 2013], it was shown that modularity optimization is equivalent to minimizing a particular nonconvex total variation (TV) based functional over a discrete domain. They solve this problem, assuming the number of communities is known, using a Merriman, Bence, Osher (MBO) scheme. We show that modularity optimization is equivalent to minimizing a convex TV-based functional over a discrete domain, again, assuming the number of communities is known. Furthermore, we show that modularity has no convex relaxation satisfying certain natural conditions. We therefore, find a manageable non-convex approximation using a Ginzburg Landau functional, which provably converges to the correct energy in the limit of a certain parameter. We then derive an MBO algorithm with fewer hand-tuned parameters than in Hu et al. and which is 7 times faster at solving the associated diffusion equation due to the fact that the underlying discretization is unconditionally stable. Our numerical tests include a hyperspectral video whose associated graph has 2.9x10^7 edges, which is roughly 37 times larger than was handled in the paper of Hu et al.Comment: 25 pages, 3 figures, 3 tables, submitted to SIAM J. App. Mat
    corecore