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Abstract. Networks capture pairwise interactions between entities and are frequently used
in applications such as social networks, food networks, and protein interaction networks, to name
a few. Communities, cohesive groups of nodes, often form in these applications, and identifying
them gives insight into the overall organization of the network. One common quality function used
to identify community structure is modularity. In Hu et al. [SIAM J. Appl. Math., 73 (2013),
pp. 2224--2246], it was shown that modularity optimization is equivalent to minimizing a particular
nonconvex total variation (TV) based functional over a discrete domain. They solve this problem---
assuming the number of communities is known---using a Merriman--Bence--Osher (MBO) scheme.
We show that modularity optimization is equivalent to minimizing a convex TV-based functional
over a discrete domain---again, assuming the number of communities is known. Furthermore, we
show that modularity has no convex relaxation satisfying certain natural conditions. We therefore
find a manageable nonconvex approximation using a Ginzburg--Landau functional, which provably
converges to the correct energy in the limit of a certain parameter. We then derive an MBO algorithm
that has fewer hand-tuned parameters than in Hu et al. and that is seven times faster at solving
the associated diffusion equation due to the fact that the underlying discretization is unconditionally
stable. Our numerical tests include a hyperspectral video whose associated graph has 2.9\times 107 edges,
which is roughly 37 times larger than what was handled in the paper of Hu et al.
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scheme
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1. Introduction. Community detection in complex networks is a difficult prob-
lem with applications in numerous disciplines, including social network analysis [55],
molecular biology [38], politics [55], material science [5], and many more [56]. There
is a large and growing literature on the subject, with many competing definitions of
community and associated algorithms [24, 64, 26]. In practice, community detection is
used as a way to understand the coarse, or mesoscale, properties of networks. Further
investigation into these communities sometimes leads to insights about the processes
that formed the network or the dynamics of processes acting on the network.

In this paper, we focus on the task of partitioning the nodes in a complex network
into disjoint communities, although many other variations, such as overlapping, fuzzy,
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and time-dependent communities, are also used in the literature. The proper way to
understand such communities in small networks has been fairly well studied, and their
role in larger networks is the subject of active research [40].

A great variety of definitions have been proposed to make the partitioning task
precise [26], including notions involving edge-counting, random walk trapping, infor-
mation theory, and---especially recently---generative models such as stochastic block
models (SBMs). In this paper, we focus on modularity optimization [58], which is
the most well studied of the existing methods. To define it, we need the following
terminology, which is used throughout the paper.

Definition 1.1. Let G be a nonnegatively weighted, undirected, sparse graph with
N nodes, weight matrix W = (wij), degree vector k satisfying ki =

\sum 
j wij , and

2m =
\sum 

i ki.

Modularity-optimizing algorithms seek a partition A1, . . . , A\^\mathrm{n} of the nodes of G
which maximizes

Q =
1

2m

\^\mathrm{n}\sum 
\ell =1

\sum 
ij\in A\ell 

wij  - 
kikj
2m

.

Intuitively, we are to understand wij as the observed edge weight and
kikj

2m as the
expected weight if the edges had been placed at random. Thus, there is an incentive
to group those nodes which have an unusually strong connection under the null model.

The results of modularity optimization must be interpreted carefully. For exam-
ple, the modularity functional, Q, will find communities in a random graph [36]. In
addition, many dissimilar partitions may yield near-optimal modularity values [35].
This is to be expected, since the network partitioning problem is very well posed. Real
networks are generated by complicated processes with many factors, and thus there
are often multiple ways to partition a network that reflect legitimate divisions among
the objects being studied [63]. One way to leverage this diversity of high-modularity
partitions in practice, as well as prevent the discovery of communities in random
graphs, relies on consensus clustering [78]. Another approach is simply to sample
many high-modularity partitions, expecting that multiple intuitively meaningful par-
titions may be found. Such effects have been observed, for instance, in the Zachary
Karate Club network, which has both a community structure and a leader-follower
structure [63].

Modularity also has a preferred scale for communities [25, 46]. For this reason,
one typically includes a resolution parameter \gamma > 0 [65, 4], yielding

Q =
1

2m

\^\mathrm{n}\sum 
\ell =1

\sum 
ij\in A\ell 

wij  - \gamma 
kikj
2m

.

When \gamma is nearly zero, the incentive is to place many nodes in the same community
so that the edge weight is included in the sum. When \gamma is large, few nodes are placed
in each community to avoid including the large penalty term \gamma 

kikj

2m .
A number of heuristics have been proposed to optimize modularity [24, 26], with

prominent approaches including spectral [57, 59], simulated annealing [36], and greedy
or Louvain algorithms [7]. It can also be interpreted in terms of force-directed lay-
out and optimized using visualization techniques [61]. The modularity optimization
problem is NP-hard [8], so it is not expected that a single heuristic will suffice for all
situations.
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SIMPLIFIED LANDSCAPE FOR MODULARITY USING TV 2441

In 2013, Hu et al. [39] discovered a connection between the modularity optimiza-
tion problem in network science and total variation (TV) minimization from image
processing. As an application, Hu et al. developed Modularity Merriman--Bence--
Osher (Modularity MBO), a TV-oriented optimization algorithm that effectively op-
timizes modularity. The present work strengthens both theoretical and algorithmic
connections from [39]. Specifically, we make the following contributions.

We start with derivations of four formulations of modularity, two in terms of TV,
and two in terms of graph cuts, which inspire the subsequent analysis. In addition to
being intuitively simple, these formulas place all of the nonconvexity of the problem
into a discrete constraint---the functionals themselves are convex. We prove a theorem
showing that convex relaxation of modularity is not possible under certain conditions.
While many practitioners have observed that modularity optimization seems highly
nonconvex, ours is the first result of which we are aware showing this in a rigorous
way. We then provide an alternative relaxation, using the Ginzburg--Landau func-
tional, that smooths the discrete constraint so that it becomes manageable. We end
the theory section by showing that solutions of our relaxed problem converge to max-
imizers of modularity in an appropriate sense.

Based on these ideas, and following [39], we develop an MBO-type scheme, Bal-
anced TV, which quickly and accurately optimizes modularity in several examples.
This algorithm seems especially well suited to similarity networks from machine learn-
ing, where prior knowledge of the number of communities is available and the number
of such communities tends to be modest. Using the convexity of our formulation of
TV, we provide inner- and outer-loop timestep bounds to avoid hand-tuning param-
eters, as is necessary in [39]. We also show how to discretize the partial differential
equation (PDE) part of the MBO iteration in an unconditionally stable, efficient way.
We test our algorithm on much larger datasets than are used in [39]. Finally, we show
that this approach can solve semisupervised problems as well.

The rest of the paper is organized as follows: Section 2 surveys the necessary
background in both modularity optimization and TV minimization. Section 3 de-
velops the main theoretical results about the optimization problem itself. Section 4
develops the theory and practical implementation of our algorithm, Balanced TV.
Section 5 gives numerical examples. Section 6 concludes. There are also appendices
containing additional background and deferred proofs.

2. Total variation optimization: Continuum and discrete. While mod-
ularity optimization is normally understood as a combinatorial problem, TV was
historically seen as a continuum object, with applications in PDEs, physics simula-
tion, and image processing.1 Given a smooth function f from some domain U \subset \BbbR n

to \BbbR , we define the TV of f as

| u| TV =

\int 
U

| \nabla f | .

In the special case where n = 1, this is the total rise and fall of the function---hence
the name. An important special case is when n = 2 or 3 and f is the indicator
function of a region V \subset U . In such a case, | f | TV is the perimeter or surface area of
V .

TV minimization is an important heuristic in image processing, where, e.g., a
black and white image that is corrupted by noise can be viewed as a function f :

1See [11] for a more complete treatment.
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[0, 1]2 \rightarrow [0, 1], where the value of f varies from 0 (black) to 1 (white). A common
task is to remove the noise and recover the original image. Since noise is manifest
as large gradients in f , early approaches found u as the solution to a minimization
problem such as

min
u

\int 
[0,1]2

| | \nabla u| | 2 + | | u - f | | 2.

The solution to such a problem is a smoothed image, which means that the noise is
eliminated, but all edges are also erroneously eliminated. The correct approach [66]
is to modify the problem as follows:

min
u

\int 
[0,1]2

| | \nabla u| | + | | u - f | | 2.

This small change allows the minimization procedure to preserve edges and yields
much better results in many applications. The reason is that minimizers of TV tend
to be piecewise smooth. TV minimization has other applications as well, such as
compressed sensing [10] and mean curvature flow [12, 45].

Network community detection is in some ways analogous to image segmentation
in that both seek a partition into coherent subsets, and one of the main ideas behind
the use of TV in the network context is that it helps us arrive at the ``correct"" energy
to optimize for, as in the image processing context. An important example is spectral
approaches, such at those of [57, 59]. In the case of only two communities, we let u
be a real-valued function on the nodes of the graph. A partition of the nodes into two
communities can be encoded in such a function by letting u = 1 on the nodes in one
set and u =  - 1 on the others. The modularity can then be written as

1

4m

\sum 
ij

\biggl( 
wij  - \gamma 

kikj
2m

\biggr) 
(1 + uiuj) =

1

4m

\sum 
ij

\biggl( 
wij  - \gamma 

kikj
2m

\biggr) 
+

1

4m

\sum 
ij

\biggl( 
wij  - \gamma 

kikj
2m

\biggr) 
uiuj

(1)

= const+
1

4m

\sum 
ij

\biggl( 
wij  - \gamma 

kikj
2m

\biggr) 
uiuj(2)

= const+
1

2
uTMu,(3)

where Mij = wij  - \gamma 
kikj

2m is the modularity matrix. Thus, (3) is exactly equal to
modularity when u represents a partition but has an obvious extension to all N -
vectors. An important idea in spectral approaches is to maximize (3) or related
energies over all real vectors and then employ some kind of thresholding on the values
of the result to recover a binary partition. Recursive bipartitioning can be used to find
partitions into more than two communities. A large number of variations on this idea
exist and are widely used. Such approaches are analogous to ideas from section 2 in
that the solutions are expected to be smooth because of the quadratic term, which is
indeed observed in practice, thus necessitating some kind of thresholding. In contrast,
by using a nonquadratic measure of differences in the value of u across edges, it is
possible to promote sharp interfaces in the solutions.

We now very briefly give the definition of TV on a graph, referring to [31, 69]
for a complete treatment, where it is shown that these choices are consistent with
discrete notions of Riemannian metrics, inner products, divergences, and so forth.
The nonlocal gradient of a function f : G \rightarrow \BbbR at node i in the direction of the edge
from i to j is

\nabla f(i, j) = f(j) - f(i).
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The graph total variation (graph TV) is then given by the 1-norm of \nabla f at node i

(4) | f | TV =
1

2

\sum 
ij

wij | f(j) - f(i)| ,

where wij is the i, j entry of the adjacency matrix (see Definition 1.1). We will
actually use a slight generalization of (4) to the case where f : \{ 1, . . . , N\} \rightarrow \BbbR \^\mathrm{n} is
vector-valued, in which case

| f | TV =

\^\mathrm{n}\sum 
\ell =1

| f\ell | TV ,

where f\ell is the \ell th component of f . It is usually convenient in this case to identify f
with an N \times \^n matrix where fi\ell = f\ell (i). Then we have

| f | TV =
\^\mathrm{n}\sum 

\ell =1

1

2

N\sum 
ij=1

wij | fi\ell  - fj\ell | .

Graph TV is connected to graph cuts, which correspond roughly to the perimeter
in Euclidean space.

Definition 2.1. Let S be a subset of the nodes of G. Then the graph cut associ-
ated to S is given by

Cut(S, Sc) =
\sum 

i\in S,j\in Sc

wij .

Let f : \{ 1, . . . , N\} \rightarrow \BbbR be the characteristic function of a set of nodes S. Then
we can calculate

| f | TV =
1

2

\sum 
ij

wij | f(i) - f(j)| =
\sum 

i\in S,j\in Sc

wij = Cut(S, Sc).(5)

TV minimization on a graph tends to produce piecewise-constant functions whose
corresponding graph cut is small [52].

3. Equivalence theorem and its consequences. In this section, we derive
representations of modularity and explore some consequences. We will need the fol-
lowing definitions.

Definition 3.1. A family of sets S1, . . . , S\^\mathrm{n} is a partition of a set S if S =\bigcup \^\mathrm{n}
\ell =1 S\ell and S\ell 1 \cap S\ell 2 is empty for each \ell 1 \not = \ell 2.

Definition 3.2. Let \Pi (G) be the set of all partitions of the nodes of G. For each
partition A1, . . . , A\^\mathrm{n} in \Pi (G), there is an N \times \^n partition matrix defined by

ui\ell =

\Biggl\{ 
1, i \in A\ell ,

0, i \in Ac
\ell .

For a matrix u, we say u \in \Pi (G) when u is the partition matrix of some partition.

Definition 3.3. For any subset S of the nodes of G, its volume is given by
volS =

\sum 
i\in S ki.
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3.1. Formulations of modularity in terms of TV and graph cuts. We are
now ready to give the different formulations of modularity that form the basis for our
subsequent analysis.

Proposition 3.4 (equivalent forms of modularity). The following optimization
problems all have the same solution set:

Modularity: argmax
\^n\in \BbbN ,\{ A\ell \} \^\mathrm{n}

\ell =1
\in \Pi (G)

\^n\sum 
\ell =1

\sum 
ij\in A\ell 

wij  - \gamma 
kikj
2m

,

(6)

Balanced cut (I): argmin
\^n\in \BbbN ,\{ A\ell \} \^\mathrm{n}

\ell =1
\in \Pi (G)

\^n\sum 
\ell =1

\Bigl( 
Cut (A\ell , A

c
\ell ) +

\gamma 

2m
(volA\ell )

2
\Bigr) 
,

(7)

Balanced cut (II): argmin
\^n\in \BbbN ,\{ A\ell \} \^\mathrm{n}

\ell =1
\in \Pi (G)

\^n\sum 
\ell =1

\Biggl( 
Cut (A\ell , A

c
\ell ) +

\gamma 

2m

\biggl( 
volA\ell  - 

2m

\^n

\biggr) 2
\Biggr) 

+ \gamma 
2m

\^n
,

(8)

Balanced TV (I): argmin
\^n\in \BbbN ,u\in \Pi (G)

| u| TV +
\gamma 

2m

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| kTu
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 2

2
,

(9)

Balanced TV (II): argmin
\^n\in \BbbN ,u\in \Pi (G)

| u| TV +
\gamma 

2m

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| kTu - 2m

\^n

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 2
2

+ \gamma 
2m

\^n
.

(10)

Each of the preceding forms has a different interpretation. The original formu-
lation of modularity was based on comparison with a statistical model and views
communities as regions that are more connected than they would be if edges were
totally random. The cut formulations represent modularity as favoring sparsely inter-
connected regions with balanced volumes, and the TV formulation seeks a piecewise-
constant partition function u whose discontinuities have small perimeter, together
with a balance-inducing quadratic penalty. The cut and TV forms come in pairs.
The first form (labeled ``I"") is simpler to write but harder to interpret, while the
second (labeled ``II"") has more terms, but the nature of the balance term is easier to
understand, as it is minimized (for fixed \^n) when each community has volume 2m/ \^n.
Furthermore, the third term of the forms labeled II reveals that the incentive to in-
crease the number of communities \^n can be quantified in terms of an O(\^n - 1) penalty
term, which is not obvious from other formulations of modularity.

One can compare these equivalent formulations with [39], in which minimizing
the functional

(11) | u| TV  - \gamma | | u - mean(u)| | 2\ell 2(G) = | u| TV  - \gamma 
\sum 
i\ell 

ki

\bigm| \bigm| \bigm| \bigm| \bigm| ui\ell  - 
1

2m

N\sum 
i\prime =1

kiui\prime \ell 

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

is shown to be equivalent to modularity optimization, subject to the same constraint
as the other TV formulas presented here. Thus, in [39], there are two sources of
nonconvexity, namely the balance term and the constraint, while in our formulation,
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the discrete constraint is the only source of nonconvexity.2 It is also clearer from our
formulation which features of a solution are incentivized by modularity optimization;
namely, the two priorities of having a small graph cut and balanced class sizes are
the only considerations. The relative weight of these considerations, as well as the
number of communities, is governed by \gamma , via the second and third terms of (10).
Overall, these theoretical simplifications make the nonconvexity of the problem easier
to navigate.

We note that forms similar to (7)--(10) have appeared in the literature before
(see, e.g., [65]), although the only previous work to consider any modularity formula
in terms of TV is [39]. To the best of our knowledge, the composition of modularity
into the three intuitively meaningful terms in the forms labeled II is also novel. We
will see shortly that the TV perspective on (7)--(10), combined with the convexity of
the functionals in (9) and (10), leads to a number of new developments.

Equations (7)--(10) provide a convenient way to incorporate metadata into the
partitioning process. This can be done by simply incorporating a fidelity term and
minimizing the functional

(12) | u| TV +
\gamma 

2m
| | kTu| | 22 + \lambda | | \chi \ast (u - f)| | 22,

where \lambda > 0 is a parameter, f is a term containing the metadata labels, \ast is the
entrywise matrix product, and \chi is a matrix that is zero except in the entries where
labels are known. Including metadata should always be done with care, of course, but
the general utility of semisupervised learning is well attested to in image processing
and machine learning applications. (See Table 3 for two numerical examples.)

Proof of Proposition 3.4. Notice that the cut and TV formulations are really just
a change of notation, so that there are two nontrivial equivalences, namely the equiva-
lence of (6) with (7) and the equivalence of (7) and (8). We first show the equivalence
of (6) with (7). Fix \^n, and consider an otherwise arbitrary partition \{ A1, . . . , A\^\mathrm{n}\} of
G. Then we have

Q =
1

2m

\^\mathrm{n}\sum 
\ell =1

\sum 
ij\in A\ell 

wij  - \gamma 
kikj
2m

(13)

=
1

2m

\^\mathrm{n}\sum 
\ell =1

\left(  \sum 
i\in A\ell ,j\in \{ 1,...,N\} 

wij  - 
\sum 

i\in A\ell ,j\in Ac
\ell 

wij

\right)   - \gamma 

2m

\^\mathrm{n}\sum 
\ell =1

\sum 
ij\in A\ell 

kikj
2m

(14)

=
1

2m

N\sum 
ij=1

wij  - 
1

2m

\^\mathrm{n}\sum 
\ell =1

\sum 
i\in A\ell ,j\in Ac

\ell 

wij  - 
\gamma 

2m

\^\mathrm{n}\sum 
\ell =1

\sum 
ij\in A\ell 

kikj
2m

(15)

= 1 - 1

2m

\^\mathrm{n}\sum 
\ell =1

\sum 
i\in A\ell ,j\in Ac

\ell 

wij  - 
\gamma 

2m

\^\mathrm{n}\sum 
\ell =1

\sum 
ij\in A\ell 

kikj
2m

(16)

= 1 - 1

2m

\^\mathrm{n}\sum 
\ell =1

Cut(A\ell , A
c
\ell ) - 

\gamma 

2m

\^\mathrm{n}\sum 
\ell =1

\sum 
ij\in A\ell 

kikj
2m

.(17)

2To see rigorously that (11) is nonconvex, consider the special case of two nodes connected by a
single edge, \gamma = 1 and u = [\lambda 0; 0 0]. Then considering (11) as a function of \lambda immediately shows
the nonconvexity. The nonconvexity is actually very general; computing the second derivative of the
second term in (11) with respect to any component of u gives a negative value for any connected
graph with more than one node. Since the TV term grows asymptotically linearly, it is eventually
dominated by the quadratic growth of the second, concave term.
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Summing along the j index first yields

= 1 - 1

2m

\^\mathrm{n}\sum 
\ell =1

\Biggl( 
Cut(A\ell , A

c
\ell ) +

\gamma 

2m

\^\mathrm{n}\sum 
\ell =1

\sum 
i\in A\ell 

ki volA\ell 

\Biggr) 
(18)

= 1 - 1

2m

\^\mathrm{n}\sum 
\ell =1

\Bigl( 
Cut(A\ell , A

c
\ell ) +

\gamma 

2m
(volA\ell )

2
\Bigr) 
.(19)

Thus, the maxima of modularity coincide with the minima of the functional from (7),
as required.

To see that (7) and (8) are equivalent, we calculate

\^\mathrm{n}\sum 
\ell =1

\Biggl( 
Cut (A\ell , A

c
\ell ) +

\gamma 

2m

\biggl( 
volA\ell  - 

2m

\^n

\biggr) 2
\Biggr) 

(20)

=

\^\mathrm{n}\sum 
\ell =1

\biggl( 
Cut (A\ell , A

c
\ell ) +

\gamma 

2m

\biggl( 
(volA\ell )

2  - 4m

\^n
volA\ell +

4m2

\^n2

\biggr) \biggr) 
.(21)

Distributing the summation produces

=

\^\mathrm{n}\sum 
\ell =1

\Bigl( 
Cut (A\ell , A

c
\ell ) +

\gamma 

2m
(volA\ell )

2
\Bigr) 
 - \gamma 

2m

4m

\^n

\^\mathrm{n}\sum 
\ell =1

volA\ell +
\gamma 

2m

\^\mathrm{n}\sum 
\ell =1

4m2

\^n2
.(22)

Using the fact that
\sum \^\mathrm{n}

\ell =1 volA\ell =
\sum \^\mathrm{n}

\ell =1

\sum 
i\in A\ell 

ki =
\sum N

i=1 ki = 2m and the fact that
the third term is constant then gives

=

\^\mathrm{n}\sum 
\ell =1

\Bigl( 
Cut (A\ell , A

c
\ell ) +

\gamma 

2m
(volA\ell )

2
\Bigr) 
 - \gamma 

2m

8m2

\^n
+

\gamma 

2m

4m2

\^n
(23)

=

\^\mathrm{n}\sum 
\ell =1

\Bigl( 
Cut (A\ell , A

c
\ell ) +

\gamma 

2m
(volA\ell )

2
\Bigr) 
 - \gamma 

2m

\^n
,(24)

as expected.

3.2. On convex relaxations. The preceding equivalence theorem makes it very
tempting to look for a convex relaxation of (9). Recall that, given two sets, A \subset B
where A is discrete and a functional \scrF : A \rightarrow \BbbR , a relaxation of \scrF is any function
\=\scrF : B \rightarrow \BbbR such that \scrF = \=\scrF on A. A relaxation is called exact in the context of
minimization if minx\in A \scrF = minx\in B

\=\scrF .3 Finally, a relaxation is called convex if \=\scrF is
convex.

Modularity (6) and balanced TV (9) are both defined only over a discrete domain,
and we would like an extension, or relaxation, of these functions to a larger, continuum
domain so that they are easier to work with numerically. Ideally, we could arrive at a
convex relaxation and have access to the powerful tools of convex optimization. The
formulation in (9) indicates one way to proceed. Using (9), we already have a convex
functional except for the domain, so one would hope that the obvious relaxation
obtained by using formula (9) on all of \BbbR N\times \^\mathrm{n} would be useful. Unfortunately, the

3Analogous notions apply to maximization problems, but we are using (9) rather than (6) for
the moment.
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next theorem shows that this obvious relaxation is minimized by the constant matrix
and is thus not likely to be useful. In fact, it shows that a large class of other convex
relaxations will be uninformative. This will force us to look for nonconvex approaches
in the next subsection. Before we state the theorem, we include three more definitions.

Definition 3.5. The symmetric group on \^n symbols, S\^\mathrm{n}, is the set of all permu-
tations on \{ 1, . . . , \^n\} . Each element \sigma \in S\^\mathrm{n} acts on a matrix u \in \BbbR N\times \^\mathrm{n} with columns
u1, . . . , u\^\mathrm{n} by sending u to another matrix, \sigma (u) with columns u\sigma (1), . . . , u\sigma (\^\mathrm{n}). If
u \in \Pi (G), then \sigma (u) is the same partition with the labels permuted.

Definition 3.6. A map \scrF from some set of matrices to the real numbers is sym-
metric if it is invariant under column permutations, i.e., \scrF (u) = \scrF (\sigma (u)) for all \sigma 
and u.

The balanced TV functional (9) is symmetric, and most natural relaxations of it
are symmetric.

Definition 3.7. Given a set S lying in a vector space V , the convex hull is the
smallest convex set containing S.

It can be shown that in a finite-dimensional vector space, the convex hull exists
and is the intersection of all convex sets containing S. For example, if S is given by
three noncolinear points in the plane, the convex hull is a triangle.

We now state and prove our theorem on convex relaxations of modularity.

Theorem 3.8. Let \scrF be given by (9) with domain \Pi (G, \^n) = \Pi (G) \cap \BbbR N\times \^\mathrm{n}, and
let \~\scrF be any symmetric, convex extension of \scrF to the convex hull of \Pi (G, \^n). Then \~\scrF 
has a trivial, global minimizer \~u that has all columns equal to each other, thus yielding
no classification information.

If the symmetry requirement is dropped, then \~u need not be a global minimizer,
but will have an objective value at least as good as any u \in \Pi (G, \^n).

Proof. We consider the symmetric case first. Let u lie in the convex hull of
\Pi (G, \^n). We will use the symmetry of \~\scrF plus convexity to average all the column per-
mutations of u and get a value of \~\scrF at least as low as u gives. Let \~u = 1

\^\mathrm{n}!

\sum 
\sigma \in S\^\mathrm{n}

\sigma (u).
Then by Jensen's inequality we have

\~\scrF (\~u) = \~\scrF 

\Biggl( 
1

\^n!

\sum 
\sigma \in S\^\mathrm{n}

\sigma (u)

\Biggr) 
\leq 1

\^n!

\sum 
\sigma \in S\^\mathrm{n}

\~\scrF (\sigma (u)) = \~\scrF (u).

Since u was arbitrary, \~u is a global minimizer.
Finally, all the columns of \~u are equal,4 and thus uninformative. To see this,

take any k, \ell \in \{ 1, . . . , \^n\} . Let \tau be the permutation that swaps these two values and
leaves all the others fixed. Then any \sigma \in S\^\mathrm{n} can be written uniquely as \tau \circ \sigma \prime , with
\sigma \prime = \tau \circ \sigma . (Proof: \tau \circ \tau is the identity, so left-multiply by \tau .) Thus the kth column
of \~u is given by

\~uk =
1

\^n!

\sum 
\sigma \in S\^\mathrm{n}

\sigma (u)k(25)

=
1

\^n!

\sum 
\sigma \prime \in S\^\mathrm{n}

\tau \circ \sigma \prime (u)k(26)

4Incidentally, all of the rows are also equal, since row stochasticity is preserved under column
permutation.
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=
1

\^n!

\sum 
\sigma \prime \in S\^\mathrm{n}

\sigma \prime (u)\ell (note the change in subscript!)(27)

= \~u\ell .(28)

So all columns of \~u are equal.
The nonsymmetric case is similar, except that u must lie in \Pi (G, \^n) since \~\scrF is

not known to be symmetric. Therefore, in that case, we can only show that the value
of \~\scrF at \~u is at least as good as at any point in \Pi (G, \^n).

This means that modularity cannot be convexly relaxed using this embedding of
\Pi (G, \^n) in \BbbR N\times \^\mathrm{n}.5

Thus, our only option to make use of smooth optimization techniques is a non-
convex relaxation. In the following subsection, we present one such family of relax-
ations.

3.3. Ginzburg--Landau relaxation. In this subsection, we develop a way to
relax the modularity problem to a continuum domain, which can make the noncon-
vexity more manageable. In other TV problems arising in materials science and image
processing, discrete constraints similar to modularity's are dealt with using the idea
of phase fields, where a thin transition layer between discrete-valued regions is al-
lowed, making the problem smooth so that it can be attacked by continuum methods.
(See, e.g., [71, 22, 2, 6].) As discussed above, TV is used for two of its properties:
promoting small perimeter and encouraging binary results. The Ginzburg--Landau
relaxation replaces the TV term with two other terms: the Dirichlet energy and a
multiwell potential, each of which has one of the aforementioned properties. Thus the
Ginzburg--Landau energy in the continuum is given by

F\epsilon (u) =

\int 
U

\epsilon | | \nabla u(x)| | 2 + 1

\epsilon 
P (u(x)) dx,

where \epsilon is a small parameter and P is a multiwell potential with local minima at
the corners of the simplex, which is the set of nonnegative vectors whose components
sum to 1. The exact form of P will not be important for our purposes, but we
will give a concrete example in the next theorem. A classical result asserts that for
u : U \subset \BbbR \rightarrow \BbbR and P having minima at 0 and 1, we have the following convergence6

result:

F\epsilon (u)
\Gamma  - \rightarrow 
\biggl\{ 

const | u| TV if u is binary,
+\infty otherwise

as \epsilon \rightarrow 0, under appropriate conditions.
In order to arrive at the graph Ginzburg--Landau functional, observe that if we

ignore boundary terms, then integration by parts gives\int 
U

| | \nabla u| | 2 =

\int 
U

\nabla u \cdot \nabla u =

\int 
U

 - div\nabla u \cdot u =

\int 
U

 - \Delta u \cdot u,(29)

5We do note, however, that by means of a different embedding [15] was able to obtain a con-
vex relaxation with solutions which, while not discrete, are also not trivial. Thus, the embedding
requirement is a nontrivial part of our theorem. Other related works include [13] and [1].

Note that our proof does not rely on many specific properties of modularity, and indeed, a
similar theorem holds for any symmetric quality function over a discrete domain.

6See the appendices for an overview of \Gamma -convergence.
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which suggests that we use a graph Laplacian in our formulation. The Laplacian
that is appropriate for our context is the combinatorial or unnormalized Laplacian,
L = diag(k) - W .

The idea of using a Ginzburg--Landau functional in graph-based optimization first
appeared in [6], and it has subsequently been treated in more depth in [68], where
much of the continuum theory was successfully extended to graphs. Our approach
closely mirrors [39], the main difference in this case simply being that our functionals
have better convexity properties, which allows for different estimates and improved
techniques. We begin with a convergence result.

Theorem 3.9 (\Gamma -convergence for the balanced TV problem). Assume P (ui)
| | ui| | \rightarrow 

\infty as | | ui| | \rightarrow \infty , where ui is the ith row of u. Then the functionals7

\scrF \epsilon = | | \nabla u| | 22 +
1

\epsilon 

N\sum 
i=1

P (ui) +
\gamma 

2m
| | kTu| | 22(30)

:= uTLu+
1

\epsilon 

N\sum 
i=1

P (ui) +
\gamma 

2m
| | kTu| | 22,(31)

defined over all of RN , \Gamma -converge to the functional\Biggl\{ 
| u| TV + \gamma 

2m | | kTu| | 22 if u corresponds to a partition,

+\infty otherwise.
(32)

In particular,
\bullet for any sequence \epsilon n \rightarrow 0, and any corresponding sequence u\epsilon of minimizers

of \scrF \epsilon n , there is a subsequence that converges to a maximizer of modularity,
and

\bullet any convergent subsequence of the u\epsilon converges to a maximizer of modularity.

The proof is given in the appendices.
Moving forward, we focus on minimizing the relaxed functionals from Theo-

rem 3.9. While using the Ginzburg--Landau functional does introduce a Laplacian into
our formulation, we stress that this approach is different from spectral approaches,
such as those in [57, 59]---the preceding result on \Gamma -convergence shows that the real
object we are aiming for is TV, which, as discussed in the background section, has very
different solutions from quadratic optimization problems. In the results section, we
will see numerically that the answers are indeed different from one particular spectral
method.

4. Numerical scheme.

4.1. MBO iteration. We minimize the functional from (31) using an adapta-
tion of the graph MBO scheme. We call our approach Balanced TV. The acronym
``MBO"" stands for Merriman, Bence, and Osher [54], who introduced this algorithm
in Euclidean space. It has been widely used as an approach to motion by mean cur-
vature and TV minimization. The connection between graph-based TV and MBO
was first made in [51] and [28]. The theoretical study of the algorithm on graphs was
initiated in [69]. We sketch the logic of MBO here and refer the reader to [54] for a

7Note that due to the discrete setting, there is no epsilon factor preceding the Laplacian term;
see [68].
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more complete treatment. The scheme works by approximating the gradient descent
flow of the Ginzburg--Landau functional in the case where \epsilon is very small. Consider
the Ginzburg--Landau gradient descent equation (at fixed \^n)

d

dt
u =  - Lu - 1

\epsilon 
P \prime (u) - \gamma 

m
kkTu.

One way to approximate this flow is by operator splitting [32, p. 22] with time-step

dt and tn = n \ast dt, n = 0, 1, 2, . . . . Given un one obtains un+ 1
2 as the solution to

d

dt
u1 =  - Lu1  - 

\gamma 

m
kkTu1, t \in [tn, tn+1],

u1(tn) = un, un+1/2 = u1(tn+1).

(33)

Then one gets un+1 by solving

d

dt
u2 =  - 1

\epsilon 
P \prime (u2), t \in [tn, tn+1],

u2(tn) = un+1/2, un+1 = u2(tn+1).

(34)

The iteration continues until a fixed point is reached. Such operator splitting schemes
are typically first-order accurate in time. In the case where \epsilon is very small, the second
flow is essentially a thresholding operation, pushing all values of u into the nearest
well, i.e.,

un+1
i\ell =

\Biggl\{ 
1, \ell = argmax\^\ell u

n+ 1
2

i\^\ell 
,

0 otherwise.

This gives the MBO scheme:

Balanced TV MBO scheme

Initialize u randomly.
Set n = 0.
while A stationary point has not been reached do

un+ 1
2 = e - dtMun where M = L+ \gamma 

mkkT

un+1 = threshold(un+ 1
2 )

n = n+ 1
end while

The most expensive part of this procedure is evaluating the matrix exponential.
We accomplish this efficiently using a pseudospectral scheme, which will be described
below.

We treat the forcing term implicitly, which differs from several recent studies, such
as [39, 6, 51]. This can be done efficiently because the operator M is positive semi-
definite and can be applied to a vector in linear time, assuming A is sparse. Implicit
treatment has the advantage of avoiding an inner loop, which is time-consuming, has
a timestep-restriction, and adds another user-set parameter, namely the inner loop
timestep. For this reason, the implicit treatment described herein is much easier and
faster than the typical nested-loop approach.

As stated, we assume from here on that A is sparse. The case where A is dense
could be approached using the Nystr\"om method, as in [6]. Beware, however, that
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one must find a way to estimate k and 2m efficiently, which is not obvious. An
alternative is to sparsify the network in preprocessing, which is the approach taken
in our examples. This is generally cheap compared to the cost of partitioning the
resulting sparse network.

4.2. Treating the matrix exponential. As stated above, the most time-
intensive step in the MBO iteration is the matrix exponential, and this step is repeated
many times. Therefore, it makes sense to use a pseudospectral scheme, as described
in, for instance, [6]. This means that we precompute the eigenvalues and eigenvec-
tors of M and use them to solve the matrix exponential. By doing the eigenvalue
calculation up front, each iteration is greatly accelerated. Here is how the scheme
looks:

Pseudospectral Balanced TV MBO scheme

Initialize u randomly.
Calculate the eigenvalues of M , and form the diagonal matrix D with its
diagonals being the eigenvalues.
Also calculate the eigenvectors and form the matrix V whose columns are
the eigenvectors.
while a stationary point has not been reached do

an = V Tun

an+1 = e - dtDan

un+ 1
2 = V an+1

un+1 = threshold(un+ 1
2 )

end while

In practice, it may not be possible to calculate the full spectrum of M if M is
large. In this case, we calculate the N\mathrm{e}\mathrm{i}\mathrm{g} smallest eigenvalues and eigenvectors of M .
Then instead of changing coordinates using a full matrix, use the N \times N\mathrm{e}\mathrm{i}\mathrm{g} matrix
V exactly the same way as before. This is equivalent to projecting onto a subspace
generated by these eigenvectors, and it makes the algorithms very efficient.

To understand the effect of computing only a few eigenvectors, recall that M is
positive semidefinite. Therefore, it has an orthonormal basis of eigenvectors, and the
evolution we are solving, namely d

dtu =  - Mu, can be diagonalized as at =  - Da
where a = V Tu, and V is the full matrix of eigenvalues, and D is a nonnegative,
diagonal matrix. Therefore, the evolution occurs in distinct ``modes"" with rates of
decay controlled by the eigenvalues of M . The modes corresponding to small eigen-
values persist longer than those corresponding to large eigenvalues (which experience
stiff exponential decay), so that it is not a bad approximation to simply project these
components away when it is numerically necessary. Thus, in practice, we collect the
smallest eigenvectors of M and the corresponding eigenvectors, neglecting the others.

We use Anderson's iterative Rayleigh--Chebyshev code [3]---which the author
kindly provided to us---to get the eigenvalues and eigenvectors. We generally set
N\mathrm{e}\mathrm{i}\mathrm{g} = 5 \^n.

4.3. Determining the number of communities. The preceding algorithm
assumes a fixed \^n. In practice, we found three methods of determining the value of \^n:

1. Use domain knowledge---for instance, in two moons, it is known that there
are two communities.

2. Try several values of \^n and take whichever one produces the best modularity---
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this works best in cases where there are few communities, as in MNIST (see
section 5.2). Note that the most time-consuming part of the MBO scheme,
namely computation of eigenvectors, need only be done once, so that several
different values of \^n can be tried without incurring much extra cost.

3. Recursively partition the network---this works when many communities are
present, as in the LFR networks (see section 5.2). The partition is only
made at each step if it increases modularity. This approach worked well in
our examples, although in the case of LFR, where O(N) communities are
present, a lot of recursion is needed. This is compensated for by the fact that
the subgraphs grow smaller and smaller near the end.

4.4. Scaling. We expect the scaling of our approach to be roughly linear, as
suggested by the following informal argument. The main components of the algorithm
are

1. finding eigenvalues and eigenvectors (probably O(N logq N) for some q),8

2. changing coordinates using only the leading eigenvectors (O(N) per iteration,
with empirically O(1) iterations needed to converge),

3. evaluating the exponential of a vector componentwise (also O(N) per itera-
tion), and

4. thresholding (O(N) per iteration).
The preceding estimates all apply in the case where no recursion is needed, i.e., the
number of communities is known in advance. If the recursion is done by partitioning
the graph into \^n pieces at each level, then the cost is heuristically on the order of

\~O(N) + \^n \~O

\biggl( 
N

\^n

\biggr) 
+ \^n2 \~O

\biggl( 
N

\^n2

\biggr) 
+ \cdot \cdot \cdot +O(N)O(1) = \~O(N),

where \~O means that logarithmic terms are neglected, and each term in the sum is
the product of the number of partitioning problems to be solved with the size of the
partitioning problems. This scalability is roughly borne out in our example datasets,
although we warn that there are additional complications, based on the varying num-
ber of communities to be produced, differences in the efficiency of parallelization at
different scales, and possibly other factors.

4.5. On the choice of timestep. Our approach requires the selection of param-
eters \gamma , dt, N\mathrm{e}\mathrm{i}\mathrm{g}, \^n, and various other parameters and methods. In order to simplify
the exploration of this parameter space in practical applications, it is useful to have
some theory about the choice of these parameters. Here, we describe how to set dt
in the MBO scheme. This is especially useful in the recursive implementation, as the
appropriate timestep empirically decreases as the graph gets smaller, and it would be
laborious for a human to check at each recursion step.

Our derivations are inspired by those in [69], and proofs are deferred to an ap-
pendix. First, we consider a lower bound on the timestep.

Proposition 4.1 (lower bounds on the timestep). Let u0 \in \Pi (G, \^n). If u
satisfies d

dtu =  - Mu with initial data u0, then we have the following bounds:
1.

| | u(\tau ) - u0| | \infty \leq e2(\gamma +1)k\mathrm{m}\mathrm{a}\mathrm{x}\tau .

8There is no rigorous result for the Rayleigh--Chebyshev procedure, but numerical evidence
strongly suggests better than quadratic convergence, and O(N logq N) is the convergence speed
for some similar algorithms.
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2. In the case where \^n = 2, this bound implies that if the MBO timestep \tau 
satisfies

\tau <
log 2

2(\gamma + 1)k\mathrm{m}\mathrm{a}\mathrm{x}
\approx 0.15

(\gamma + 1)k\mathrm{m}\mathrm{a}\mathrm{x}
,

then the MBO iteration is stationary.
3. If \rho is the spectral radius of M , we also have

| | u(\tau ) - u0| | \infty \leq 
\surd 
\^n| | u0| | 2 (e\tau \rho  - 1) .

4. If \^n = 2, the MBO iteration is guaranteed to be stationary whenever

\tau < \rho  - 1 log
\Bigl( 
1 +N - 1

2

\Bigr) 
.

Although we had to restrict to \^n = 2 in the above, we used the timestep restriction
regardless of \^n---indeed the authors expect that \^n = 2 is the worst case, although we
are unable to prove it at present.

The upper bound on the timestep is more delicate. Normally, the upper bound
would be determined by convergence theory, using error bounds and stability esti-
mates, the theory of which is incomplete in the graph setting at present. Instead,
we use the following heuristic to motivate our bounds: In most cases, M is strictly
positive definite, so the evolution d

dtu =  - Mu forces u to decay toward 0. The idea
behind MBO is that the diffusion effects give information about curvature on short
time scales, and the long time scales give information about more global quantities,
which is useless in that context. Therefore, in the graph context, it makes sense to
try to understand the time scale that is ``long"" and set the timestep to be shorter
than that. Using the approach to 0 as a convenient notion of long-time behavior, we
obtain the following useful bounds.

Proposition 4.2 (decay estimates for M). Let d
dtu =  - Mu with initial data

u0 \in \Pi (G, \^n). Then the following bounds hold:
1. Assume \lambda 1 is the smallest eigenvalue of M . Then

| | u| | 2 \leq e - \tau \lambda 1 | | u0| | 2.

2. Let M be nonsingular. Then for any \epsilon > 0, we have | | u(\tau )| | \infty < \epsilon if

\tau > \lambda  - 1
1 log

\biggl( 
| | u0| | 2

\epsilon 

\biggr) 
.

In practice, setting the timestep as the geometric mean between this upper bound
and the lower bound from Proposition 4.1 has produced good results without resorting
to hand-tuning of parameters.9

5. Results.

5.1. Summary. Tables 1 and 2 summarize the results of our Balanced TV algo-
rithm on several examples, mostly drawn from machine learning and image processing
problems.10 We compared our method to the Modularity MBO algorithm from Hu

9We also found empirically that a simple time stepping procedure improved results sometimes:
Let the algorithm run to convergence, and then continue with a smaller time step until convergence
occurs again.

10We also performed some brief tests of our method on biological and social networks but found
that the results were not as encouraging, apparently due to some structural differences from our
machine learning networks---it would be interesting to understand this issue more.
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Table 1
Results on six data sets. Our method generally does better than that of Newman and Hu et

al. It is also notable that the choice of metric matters. For instance, on the MNIST example, the
Louvain method gets a worse modularity score than our method but better agreement with the ground
truth labels. Conversely, our method gets a lower modularity score than Louvain on the Plume40
example, but the segmentation our method produced for Figure 3 more closely agrees with domain
experts' knowledge of how the plume really looks. See Table 3 for an example of how a small amount
of supervision with our method reduces this ambiguity. Dashes denote missing entries in cases where
metadata was not available. The LFR50k example illustrates the ability of our approach to deal with
a large number of small communities using recursive partitioning.

Moons MNIST LFR50k Urban Plume7 Plume40

Nodes 2,000 70,000 50,000 94,249 286,720 1.6 \ast 106

Edges 1.8 \ast 104 4.7 \ast 105 7.9 \ast 105 6.8 \ast 105 5.3 \ast 106 2.9 \ast 107

Communities 2 10 2,000 5 5 5
Res. Param. 0.2 0.5 15 0.1 1 1

Modularity

Our method 0.84 0.92 0.77 0.95 0.76 0.64
Hu et al. 0.85 0.91 0.58 0.95 0.74 0.64
Hierarchical 0.77 0.88 0.88 0.94 0.65 0.92
Louvain 0.72 0.83 0.89 0.90 0.78 0.97
Spectral 0.60 0.56 -5.88 0.90 0.30 0.04
Ref 0.83 0.92 0.89 0.90 0.00 0.00

Classification
Our method 0.97 0.90 0.92 ---- ---- ----
Hu et al. 0.95 0.80 0.72 ---- ---- ----
Hierarchical 0.98 0.93 0.80 ---- ---- ----
Louvain 0.98 0.96 0.87 ---- ---- ----
Spectral 0.95 0.30 0.09 ---- ---- ----

Time
(sec.)

Our method 0.55 59 63 19 135 1284
Hu et al. 0.80 167 206 42 152 39196
Hierarchical 0.55 16 6 44 3066 9437
Louvain 0.38 9 6 14 89 520
Spectral 0.87 301 1855 24 265 1804

et al. [39], as well as three other well-known algorithms: the Louvain method [7],
the hierarchical method of Clauset, Newman, and Moore [17], and a classic spectral
recursive bipartitioning method of Newman [57]. Our own method and that of Hu
et al. were written in MATLAB except for the eigenvector computations, which use
Anderson's Rayleigh--Chebyshev code [3], written in C++ with OpenMP support.
The three other methods are slight modifications of igraph's C library implementa-
tions [18]. In practice, the difference in programming language may make a difference
in speed, although the eigenvalue computation is typically the most time-intensive
part of the computation. We chose a single conservative timestep for Modularity
MBO rather than hand-tuning for each experiment. Our method and that of Hu et
al. use a random starting seed, so we ran those codes 20 times and report the best
modularity and classification rate and the median time.

Overall, we found that our method is competitive with the state of the art on these
data sets. Our method generally found higher-modularity partitions and had faster
run times than either the method of Hu et al. or that of Newman.11 The Louvain
method and our method often gave similar modularity scores, although the partitions
they uncovered were not necessarily similar. For example, on the MNIST example,
our method achieved the better modularity score, but the Louvain partition matched
the true labels more closely. On the Plume40 example, the opposite effect occurs, with
our method achieving the lower modularity score but finding a partition that is closer

11We chose this particular spectral method because it was available in igraph. A complete com-
parison with other spectral methods would be interesting but is beyond the scope of this paper.
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Table 2
Results on additional hyperspectral data sets. The resolution parameter was 0.1, and the refer-

ence partition has all nodes in the same community. Our method achieves a top modularity score in
each network except for Salinas, where Hu et al.'s method gets slightly higher results. Our method
partitioned recursively and initialized with kmeans clustering on leading eigenvectors that had been
computed for use in the pseudospectral scheme.

Jas. Rid. Samson Cuprite FLC Pavia U Salinas Salinas 1

Nodes 19,800 14,820 30,162 208,780 207,400 7,092 111,063
Edges 1.1 \ast 105 8.3 \ast 104 1.6 \ast 105 1.5 \ast 106 1.6 \ast 106 4.7 \ast 105 8.4 \ast 105

Communities 4 3 12 3 9 6 16

Modularity

Our method 0.99 0.98 0.99 0.94 0.93 0.97 0.96
Hu et al. 0.99 0.98 0.90 0.94 0.94 0.97 0.96
Hierarchical 0.98 0.98 0.99 0.93 0.93 0.97 0.96
Louvain 0.99 0.98 0.99 0.90 0.88 0.95 0.95
Spectral 0.91 0.90 0.91 0.90 0.90 0.96 0.90
Ref 0.90 0.90 0.90 0.90 0.90 0.90 0.90

Time
(sec.)

Our method 17 13 42 121 160 4.6 96
Hu et al. 40 27 63 203 270 3.3 117
Hierarchical 1.5 1.1 2.4 378 411 0.74 66
Louvain 1.5 1.2 2.7 39 40 0.75 15
Spectral 28 10 148 38 65 6.5 24

Table 3
Results of our method using networks constructed from the two moons and MNIST examples

with and without 10\% supervision. Consistency here denoted the percent of cases for which the
results were within 2\% of the best value achieved. In the two moons example, supervision improves
consistent matching to metadata. In the MNIST example, both consistency and peak metadata
matching are substantially improved. Note that in both cases, the peak modularity is not changed,
indicating that the supervision helps the solver find local maxima that are more relevant to the clas-
sification task, thus addressing the well-known degeneracy issues of modularity's energy landscape.
The code was run 20 times on each example.

Moons MNIST

Modularity
unsupervised 0.84 0.91
10\% supervised 0.84 0.92
reference 0.83 0.92

Classification
unsupervised 0.97 0.90
10\% supervised 0.97 0.97

Modularity consistency
unsupervised 0.75 0.65
10\% supervised 1.00 1.00

Classification consistency
unsupervised 0.75 0.05
10\% supervised 1.00 0.65

to the true labeling of the pixels. Such issues are a manifestation of the well-known
degeneracy of the modularity energy [35], where a number of dissimilar partitions
can receive similarly high modularity scores. It is also an indication that modularity
needs to be complemented with supervision, regularization, biased initialization, or
some other device in order to reliably find the partition that is most appropriate for
the problem. In Table 3, we illustrate the effectiveness of including a small amount
of supervision with our method. (See (12).)

5.2. Analysis of each experiment. We now describe the individual experi-
ments.

Two moons. Two moons consists of 2,000 points in 100-dimensional space, sam-
pled from two half-circles, with Gaussian noise added; see Figure 1. We constructed
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Fig. 1. Projection of the two moons example onto two dimensions.

a 13-nearest-neighbors graph with the edge weights given by a Gaussian law, with lo-
cally determined decay parameters [77]. The number of classes was assumed known,
where the class of a point is the half-circle to which it originally belonged.

MNIST. MNIST consists of 70,000 28\times 28-pixel images, each of which contains
a single handwritten digit [48]. The task is to identify the digit in each image. The
graph was constructed by projecting onto 50 principle components for each image and
then using a 10-nearest-neighbors graph with self-tuning Gaussian decay [77]. The
number of classes was assumed known. As in [39], 11 classes were used, as there are
two different ways to write the digit 1, with or without the top flag and flat base. This
modularity landscape was particularly troublesome, with about 25\% of the partitions
we found having better modularity than the ground truth partition, despite the fact
that partitions with a classification accuracy greater than 95\% were found only about
4\% of the time.

LFR 50k. This is a well-known ensemble of artificial networks [47]. We used
the following parameters to generate it: average degree of 20, maximum degree of 50,
degree distribution exponent of 2, community size distribution exponent of 1, effective
mixing parameter of 0.2, maximum community size of 50, and minimum community
size of 10. The large number of small communities makes this a challenging problem---
similar experiments on a 1,000-node network with 40 communities gave near-perfect
classification. We use purity to gauge classification accuracy. Given two partitions g1
and g2, the purity is defined as 1

N

\sum \^\mathrm{n}
\alpha =1 max\beta =1,...,\^\mathrm{n} \#\{ i : g1 = \alpha and g2 = \beta \} , where

\# denotes the cardinality.
Urban image. The urban hyperspectral image is a 307\times 307 image of an urban

setting, where each pixel encodes the intensity of light at 129 different wavelengths.
The classification problem is to identify pixels that contain similar materials, such as
dirt, road, grass, etc.

The graph representation was computed using ``nonlocal means"" [9], which means
that for each pixel p, a vector vp was constructed by concatenating the data in a
3 \times 3 window centered at p. One then uses a weighted cosine distance on these
3 \times 3 \times 162 = 1, 458 component vectors, where the components from the center of
the window are given the most weight. For each pixel, we obtained the 10 nearest
neighbors in this distance using a k-d tree and the VLFeat software package [70].
The images in Figure 2 were selected from a collection of 200 segmentations as being
the most visually appealing. We compared with a recent NLTV (nonlocal TV)-based
algorithm [79], which is specifically designed for hyperspectral imaging applications,
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and found our segmentation competitive. We also compared with Modularity MBO
and GenLouvain [41] segmentations. For instance, Balanced TV does well at placing
the grass into a single class and correctly resolved the difference between pavement and
dirt. Balanced TV gives the sharpest resolution of the roads and the surrounding dirt
at the upper right. Our method does have a little trouble compared to GenLouvain
when resolving the buildings just below the large road in the upper left corner of
the picture, although this is partly due to the fact that the roofs there are made of
different materials from most of the houses further down in the image, and NLTV has
a similar problem.

Plume hyperspectral video. The gas plume hyperspectral video records a gas
plume being released at the Dugway Proving Ground [29, 49, 53].12 The graph was
constructed by the same procedure as the urban dataset, simply concatenating each
frame side-by-side into one large image and using nonlocal means to form the graph.
Each frame has 320\times 128 pixels with data from 129 wavelengths. Two versions of this
dataset were used, one with 7 frames, and another with 40 frames. We have included
the segmentation of one frame in Figure 3, together with segmentations produced by
competing algorithms. Our method is the only one that places the entire plume in a
single class. The images shown were chosen as the best out of 30 for visual appeal.

Other hyperspectral examples. We included seven additional hyperspectral
image examples which are well known in the image processing community. In each
case, we formed the k-nearest-neighbor graph using nonlocal means and VLFeat. See
Appendix C for more details. Overall, our algorithm performs very competitively on
these examples in terms of modularity. The speed is slower than Louvain, but the run
time is still very reasonable, and the modularity scores are more consistently good.

6. Conclusion. We have shown that modularity optimization can be framed
as a balanced TV problem that is convex except for a discrete constraint. This
formulation yields an energy landscape that is easier to understand by using terms
with a ready intuitive meaning and by putting all of the nonconvexity into a simple
discrete constraint. We have given a rigorous nonconvexity result and shown how
to use the Ginzburg--Landau functional to approximate modularity optimization by
more convex problems. We have also proposed an improved modularity optimization
scheme, Balanced TV, which works very well even on large graphs and which requires
much less hand-tuning. Numerical tests show that our method is competitive in terms
of accuracy, while being faster than its predecessor, Modularity MBO.

Appendix A. \Gamma -convergence. The following are some basic facts about \Gamma -
convergence to aid in understanding the results of this paper. See [68] for more
details.

Definition A.1. Let X be a topological space and \scrF n a sequence of real-valued
functionals of X. Then the sequence is said to \Gamma -converge to a functional \scrF on X if
the following two conditions hold:

1. For convergent sequence xn \rightarrow x, we have lim infn\rightarrow \infty \scrF n(xn) \leq \scrF (x).
2. For every x, there exists a convergent sequence xn \rightarrow x such that

lim supn\rightarrow \infty \scrF n(xn) \geq F (x).

For our purposes, \Gamma -convergence is primarily a tool for ensuring that the mini-
mizers of \scrF n approach the minimizers of \scrF , as guaranteed by the following.

12In [53], a semisupervised MBO-type approach was used.
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Visual part of the image Our method

Modularity MBO GenLouvain segmentation

NLTV segmentation [79]

Fig. 2. The urban hyperspectral dataset segmented using different methods. Our method effec-
tively separates the dirt from roads, resolving the roads in the upper right corner, and placing all of
the grass into a single class. It has some difficulty with the buildings in the upper left corner, just
below the main road, which are a different material from the other buildings.

Theorem A.2. Let \scrF n \Gamma -converge to \scrF , and let xn be a minimizer of \scrF n. Then
every cluster point of the xn is a minimizer of \scrF . If \scrG is continuous, then \scrF n + \scrG 
\Gamma -converges to \scrF + \scrG .

We end with the proof of Theorem 3.9.
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Our method Spectral Clustering

NLTV [79] GenLouvain

Fig. 3. Segmentations of the plume hyperspectral video using different methods. Observe that
our method is the only method that gets the whole plume into a single class without any erroneous
additions.

Proof. We largely follow [68], generalizing and filling in a minor hole from that
proof.

Observe that all of the terms not involving the potential are continuous and
independent of \epsilon , so they cannot interfere with the \Gamma -convergence [19]. Therefore, it
suffices to prove that 1

\epsilon T \Gamma -converges to

\chi (u) =

\Biggl\{ 
0 if u corresponds to a partition,

+\infty otherwise.

To prove the lower bound, let un \rightarrow u and \epsilon n \rightarrow 0. If u corresponds to a partition,
then \chi (u) = 0, which is automatically less than or equal to 1

\epsilon n
T (un) for each n. If u

does not correspond to a partition, then \chi (u) = +\infty . Pick N1 such that whenever
n > N1, the distance from un to the nearest feasible point is at least c > 0. Let Tc be
the infimum of T on all of \BbbR N\times \^\mathrm{n} minus the balls of radius c surrounding each feasible
point (so T0 > 0 in particular). Then we have lim infn\rightarrow \infty 

1
\epsilon n
T (un) \geq limn\rightarrow \infty 

1
\epsilon n
T0 =

+\infty . Thus, the lower bound always holds.
To prove the upper bound, let u be any N \times \^n matrix. If u corresponds to

a partition, then letting un = u for all n gives the required sequence. If u does
not correspond to a partition, then un = u for all n still satisfies the upper bound
requirement.

Thus both the upper and lower bound requirements hold, and we have proved
\Gamma -convergence.

Appendix B. Deferred proofs. In this section, we give proofs of propositions
stated earlier in the paper.

Proof of Proposition 4.1. We first get pointwise estimates on u - u0:

| | u - u0| | \infty \leq | | e - \tau M  - I| | \infty | | u0| | \infty = | | e - \tau M  - I| | \infty \leq 
\infty \sum 
k=1

1

k!
\tau k| | M | | k\infty = e\tau | | M | | \infty  - 1.

(35)
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We estimate | | M | | \infty as follows:

| | M | | \infty = max
i

\sum 
j

\bigm| \bigm| \bigm| \bigm| Lij +
\gamma 

m
kikj

\bigm| \bigm| \bigm| \bigm| = max
i

\sum 
j

\bigm| \bigm| \bigm| \bigm| ki\delta ij  - wij +
\gamma 

m
kikj

\bigm| \bigm| \bigm| \bigm| 
\leq max

i
ki + ki +

\gamma 

m
ki2m = 2(1 + \gamma )k\mathrm{m}\mathrm{a}\mathrm{x}.

These computations do not depend on \^n, but in order to get a timestep, we assume
that \^n = 2. In this case, let u1 and u2 be the columns of u. We have u1

t =  - Mu1 and
u2
t =  - Mu2. Subtracting these and letting v = u1  - u2 yields vt =  - Mv. Allowing v

to evolve until the time of thresholding, we see that node i will switch classes if and
only if v(i) has changed sign, that is, if | v - v0| i > 1. The quantity in (35) is less than
1 exactly when \tau < \mathrm{l}\mathrm{o}\mathrm{g} 2

2(\gamma +1)k\mathrm{m}\mathrm{a}\mathrm{x}
\approx 0.15

(\gamma +1)k\mathrm{m}\mathrm{a}\mathrm{x}
. This is exactly the bound we sought.

Next, we work on the L2 bound:

| | u - u0| | \infty \leq 
\surd 
\^n| | u - u0| | 2 \leq 

\surd 
\^n| | e - \tau M  - I| | 2| | u0| | 2 \leq 

\surd 
\^n| | u0| | 2

\infty \sum 
k=1

1

k!
\tau k| | M | | k2

(36)

=
\surd 
\^n| | u0| | 2

\Bigl( 
e\tau | | M | | 2  - 1

\Bigr) 
=

\surd 
\^n| | u0| | 2 (e\tau \rho  - 1) .(37)

As before, when we let \^n = 2, one can subtract the columns to get v, so that no
node will switch communities as long as | | v  - v0| | \infty < 1, which is guaranteed if

\tau < \rho  - 1 log(1 +N - 1
2 ).

Proof of Proposition 4.2. To get the bound, we let \Lambda be a diagonal matrix with
the eigenvalues of M on the diagonal. Since M is positive semidefinite, we can write
M = Q\Lambda QT for some orthogonal matrix Q. Then we have

| | u(\tau )| | 2 = | | e - \tau Mu0| | 2 \leq | | e - \tau M | | 2| | u0| | 2 = | | e - \tau \Lambda | | 2| | u0| | 2 = e - \tau \lambda 1 | | u0| | 2.

Setting the latter quantity less than \epsilon and then solving for \tau yields the required
bound.

Appendix C. Hyperspectral image details. In this appendix we collect some
basic facts about the images used in Table 2.

\bullet Jasper Ridge: An image of a river area. It has 198 channels and 100 \times 100
pixels. Retrieved from http://www.escience.cn/people/feiyunZHU/Dataset
GT.html.

\bullet Samson: An image of a coastline. It has 156 channels and 952 \times 952 pixels.
Retrieved from http://www.escience.cn/people/feiyunZHU/Dataset GT.ht
ml.

\bullet Cuprite: An image of ground near Las Vegas. It has 224 channels and 250\times 
190 pixels. Retrieved from http://www.escience.cn/people/feiyunZHU/Dat
aset GT.html.

\bullet FLC: A moderate-dimensional image. It has 12 channels and 949\times 220 pixels.
Available at ftp://www.daba.lv/pub/TIS/atteelu analiize/MultiSpec/tutori
al/ModDimensionDataSet.zip.

\bullet Pavia U: An image of Pavia University in Northern Italy. It has 103
channels and 610 \times 610 pixels. Retrieved from http://lesun.weebly.com/h
yperspectral-data-set.html.
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http://www.escience.cn/people/feiyunZHU/Dataset_GT.html
ftp://www.daba.lv/pub/TIS/atteelu_analiize/MultiSpec/tutorial/ModDimensionDataSet.zip
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\bullet Salinas: An image containing vineyard fields, soils, and vegetation. It has
224 channels and 512\times 217 pixels. Retrieved from http://www.ehu.eus/ccwi
ntco/index.php?title=Hyperspectral Remote Sensing Scenes.

\bullet Salinas 1: A subimage of the previous image containing 86\times 83 pixels.
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