99 research outputs found

    Partitioning Harary graphs into connected subgraphs containing prescribed vertices

    Get PDF
    International audienceA graph G is arbitrarily partitionable (AP for short) if for every partition (n_1, n_2, ..., n_p) of |V(G)| there exists a partition (V_1, V_2, ..., V_p) of V(G) such that each V_i induces a connected subgraph of G with order n_i. If, additionally, k of these subgraphs (k = 1 and n >= k

    An extensive English language bibliography on graph theory and its applications, supplement 1

    Get PDF
    Graph theory and its applications - bibliography, supplement

    Toughness of Recursively Partitionable Graphs

    Get PDF
    A simple graph G = (V,E) on n vertices is said to be recursively partitionable (RP) if G ≃ K1, or if G is connected and satisfies the following recursive property: for every integer partition a1, a2, . . . , ak of n, there is a partition {A1,A2, . . . ,Ak} of V such that each |Ai| = ai, and each induced subgraph G[Ai] is RP (1 ≤ i ≤ k). We show that if S is a vertex cut of an RP graph G with |S| ≥ 2, then G−S has at most 3|S| − 1 components. Moreover, this bound is sharp for |S| = 3. We present two methods for constructing new RP graphs from old. We use these methods to show that for all positive integers s, there exist infinitely many RP graphs with an s-vertex cut whose removal leaves 2s + 1 components. Additionally, we prove a simple necessary condition for a graph to have an RP spanning tree, and we characterise a class of minimal 2-connected RP graphs

    An extensive English language bibliography on graph theory and its applications

    Get PDF
    Bibliography on graph theory and its application

    Basic Neutrosophic Algebraic Structures and their Application to Fuzzy and Neutrosophic Models

    Get PDF
    The involvement of uncertainty of varying degrees when the total of the membership degree exceeds one or less than one, then the newer mathematical paradigm shift, Fuzzy Theory proves appropriate. For the past two or more decades, Fuzzy Theory has become the potent tool to study and analyze uncertainty involved in all problems. But, many real-world problems also abound with the concept of indeterminacy. In this book, the new, powerful tool of neutrosophy that deals with indeterminacy is utilized. Innovative neutrosophic models are described. The theory of neutrosophic graphs is introduced and applied to fuzzy and neutrosophic models. This book is organized into four chapters. In Chapter One we introduce some of the basic neutrosophic algebraic structures essential for the further development of the other chapters. Chapter Two recalls basic graph theory definitions and results which has interested us and for which we give the neutrosophic analogues. In this chapter we give the application of graphs in fuzzy models. An entire section is devoted for this purpose. Chapter Three introduces many new neutrosophic concepts in graphs and applies it to the case of neutrosophic cognitive maps and neutrosophic relational maps. The last section of this chapter clearly illustrates how the neutrosophic graphs are utilized in the neutrosophic models. The final chapter gives some problems about neutrosophic graphs which will make one understand this new subject.Comment: 149 pages, 130 figure

    Subject Index Volumes 1–200

    Get PDF

    Optimizing pointer linked data structures

    Get PDF
    The thesis explores different ways of optimizing pointer linked data structures, and especially restructuring them. The mechanisms are based on compiler technology, theory, computer languages and hardware architecture that are capable of optimizing the memory layout of complex pointer linked data structures.Computer Systems, Imagery and Medi

    Nonequilibrium Quantum Field Theory

    Get PDF
    Bringing together the key ideas from nonequilibrium statistical mechanics and powerful methodology from quantum field theory, this 2008 book captures the essence of nonequilibrium quantum field theory. Beginning with the foundational aspects of the theory, the book presents important concepts and useful techniques, discusses issues of basic interest, and shows how thermal field, linear response, kinetic theories and hydrodynamics emerge. It also illustrates how these concepts are applied to research topics including nonequilibrium phase transitions, thermalization in relativistic heavy ion collisions, the nonequilibrium dynamics of Bose-Einstein condensation, and the generation of structures from quantum fluctuations in the early Universe. This self-contained book is a valuable reference for graduate students and researchers in particle physics, gravitation, cosmology, atomic-optical and condensed matter physics. It has been reissued as an Open Access publication
    • …
    corecore