

Cover Page

The handle http://hdl.handle.net/1887/20471 holds various files of this Leiden University
dissertation.

Author: Holm, Carl Wilhelm Mattias
Title: Optimizing pointer linked data structures
Issue Date: 2013-01-31

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/20471
https://openaccess.leidenuniv.nl/handle/1887/1�

Optimizing Pointer Linked
Data Structures

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof.mr. P.F. van der Heijden,
volgens besluit van het College voor Promoties
te verdedigen op donderdag, 31 januari, 2013

klokke 16:15 uur

door

Carl Wilhelm Mattias Holm
geboren te Täby, Zweden in 1980

Promotiecommissie:
Promotor: Prof. Dr. H.A.G. Wijsho↵
Overige leden: Prof. Dr. K.A. Gallivan (Florida State University)

Prof. Dr. Ir. E.F.A. Deprettere
Prof. Dr. F.J. Peters
Dr. E.M. Bakker
Prof. Dr. J.N. Kok

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school.
ASCI dissertation series number 268.

Optimizing Pointer Linked Data Structures
Carl Wilhelm Mattias Holm
PhD Thesis, Universiteit Leiden
c� 2012
ISBN: 978-90-8891-552-9
Printed by: Proefschriftmaken.nl
Published by: Uitgeverij BOXPress, Oisterwijk

To Adinda

Contents

1 Introduction 9
1.1 Compilers and Optimization . 10
1.2 Pointer-Linked Data Structures 12
1.3 Data Restructuring . 12
1.4 Outline . 13
1.5 Related Work . 15

2 Pointer Structure Restructuring 19
2.1 Preliminaries . 22

2.1.1 Data Structure Analysis 22
2.1.2 Automatic Pool Allocation 25
2.1.3 Pool-Assisted Structure Splitting 25

2.2 Compile-time Analysis and Transformation 26
2.2.1 Structure Splitting . 26
2.2.2 Pool Access Analysis . 28
2.2.3 Stack Management . 29
2.2.4 Address Calculations . 33
2.2.5 Converting Between Pointers and Object Identifiers . . 36
2.2.6 Restructuring Instrumentation 38

2.3 Run-time Support . 38
2.3.1 Application Programming Interface 39
2.3.2 Tracing and Permutation Vector Generation 39
2.3.3 Pool Reordering . 42
2.3.4 Stack Rewriting . 44

2.4 Experiments . 44
2.4.1 Pool Reordering . 45
2.4.2 Tracing- and Restructuring Overhead 48
2.4.3 Run-time Stack Overhead 51

5

6 CONTENTS

2.4.4 Address Calculations . 54
2.5 Related Work . 55
2.6 Conclusions . 57

3 Theory of Grids 59
3.1 Definitions . 61
3.2 Confined Components . 63
3.3 Confined Components Decomposition Algorithm 68
3.4 Orthogonality . 74
3.5 Special Grids . 81

3.5.1 Complete Rectangular and Triangular Grids 81
3.5.2 Sparse Square Grids . 83
3.5.3 Exploiting Knowledge on Pointer Types 84

3.6 Potential Applications . 84
3.6.1 Linearization . 87
3.6.2 Advanced Pointer Elimination 89
3.6.3 Replacement Algorithms, Garbage Collection and Leak

Detection . 91
3.6.4 For-each Detection and Loop Interchange 93
3.6.5 Implementation Issues 95

3.7 Summary . 95

4 Pax C 97
4.1 Limitations of Other Approaches 100
4.2 Pax C Extensions . 103

4.2.1 Conditional Traversal Patterns 104
4.2.2 Single and Length . 106
4.2.3 Acyclic and Cyclic . 106
4.2.4 Inverse . 108
4.2.5 First and Last . 109
4.2.6 Ident . 110
4.2.7 Covering and Disjoint 110
4.2.8 Static Pointer Structures 111

4.3 Conservative Static Pointer Detection 112
4.3.1 Dynamic-Pointer Structures 113

4.4 Restructuring . 114
4.5 Experiments . 116

4.5.1 Sparse Lib . 116
4.5.2 MCF . 118
4.5.3 Parallelizing Refresh Potential 121

CONTENTS 7

4.6 Results . 123
4.6.1 Refresh Potential Optimizations 124
4.6.2 Price Out Impl Optimizations 125
4.6.3 Parallelized Refresh Potential 125

4.7 Discussion . 127
4.8 Conclusion . 128

5 Hardware Based Restructuring 131
5.1 Implementation . 132

5.1.1 Detecting Chainable Objects 133
5.1.2 Tracking Active Pointers 138
5.1.3 Chaining . 141

5.2 Accessing Chained Objects . 142
5.3 System Model . 143
5.4 Experiments . 144

5.4.1 Traces . 145
5.4.2 Performance Model . 146
5.4.3 Simulator . 147
5.4.4 Results . 148

5.5 Discussion . 148

6 Conclusions 155

7 Samenvatting 163

8 Curriculum Vitae 165

8 CONTENTS

Chapter 1

Introduction

Computers have come a long way since their beginnings with Charles Bab-
bage’s analytical engine in the mid 19th century and the introduction of elec-
tronic computers in the 1940s. In the last decades, a number of trends have
been noticeable. One of the most fundamental trends has been the doubling
of chip density every 18th month, a principle known as Moore’s law. This
doubling of chip density has led to the increase of processor performance at
roughly the same rate, and although, lately, the sequential computing perfor-
mance has not been increasing at the same rate as before, processors instead
become more e�cient at computing in parallel.

Another trend consists of the growing disparity between processor and
memory speed. While processor speed has been increasing very fast, the speed
of the memory that is used for storing programs and data has not been growing
faster at the same rate. This disparity in processor and memory speed growth
(known as the memory wall [58]), has for example led to problems in retrieving
data from memory fast enough to keep up with processor speed. Computer
engineers and scientists have devised several solutions to these problems, for
example complementing computer systems with multi level high speed but
lower capacity memory caches.

A cache is a small but fast memory that contains a copy of the data that
is in main memory. The caches are filled automatically when the processor
fetches data from memory so that additional accesses to the same location
(or nearby) will go to the cache instead. The caches work well because data
is regularly accessed multiple times within a short time interval, and data is
often accessed nearby recently accessed data. This is known as temporal and
spatial locality, respectively. Whenever the processor accesses data stored in

9

10 CHAPTER 1. INTRODUCTION

memory, the time it takes varies widely, depending on the data residing in the
cache or not. Modern processors and memory systems can have access times
over a hundred cycles1, if the data accessed is not in the caches, while, if the
data is in cache, the access time is a few or tens of cycles.

The more computer systems rely on hierarchically organized memory sys-
tems, the more it becomes critical for applications to have su�cient spatial
and temporal locality. It is here where the main challenge lays for optimizing
computations containing pointer linked data structures, as these computations
include irregular access to memory. Caches that assume temporal and spatial
locality, tend to have problems with irregular memory accesses, where data
is accessed at more or less random locations. These irregular accesses tend
to result in less than optimal utilization of hierarchically organized memory
systems, especially when the problem size exceeds the cache size.

Several methods have been suggested in the past to assist with this situa-
tion, one of these being software based prefetching[8], where the program tells
the processor which element to fetch next. Other techniques that may help
are field elimination and reordering[20], where one optimize the data structure
layout (in order to reduce its memory footprint). This thesis explores a novel
way to improve temporal and spatial behavior of data. The technique explored
is known as data restructuring, a method in which irregularly accessed data is
reordered in memory into a more regular layout. We look at the problem from
both the compiler, theory, programming language and hardware directions.

1.1 Compilers and Optimization

Compilers are programsthat translate human readable program code into ma-
chine code that is understandable by the processor. The codes compiled by
the compiler consist of a number of fundamental parts: instructions embedded
in control flow, and descriptions and definitions of data. The instructions and
control flow describe how a problem is computed, while the data is the input,
intermediate state and the output of a program.

It turns out that it is di�cult to write human readable program code, and
at the same time get the highest performance out of the program when it
is executed. For this reason, the programmers and scientists who have been
writing and developing compilers have developed methods that automatically
generate more e�cient machine code. These methods are commonly known
as optimizations. A simple example that is fully automated is instruction

1A cycle is in simplified terms the minimum time in which a single instruction (e.g.
adding two numbers) is executed.

1.1. COMPILERS AND OPTIMIZATION 11

assignment, where the best instruction for the job is selected, depending on
the context. For example, a compiler will emit a shift operation (which takes
one cycle) in the machine code, instead of a divide instruction (which takes
over 20 cycles on modern processors[15]) when the divisor is a power of two.
While, a programmer can easily replace divides with shifts in many cases,
doing so will not only reduce the readability of the code and take time for the
programmer, it may also di↵er in e↵ectiveness, depending on the architecture
of the machine. What is good to do on one machine may be bad on other
machines.

Many of the optimizations that a compiler is able to do are a lot more
complicated than the given example. Well known optimizations, such as for
example strength reduction (where expensive operations are replaced with less
costly ones), often take into account the control flow of the code, and others like
loop unrolling and fusion (which reduce the relative cost of the loop counters
compared to the loop bodies) take into account the memory cache architecture
of the machine.

Compilers have so far been good at analyzing and optimizing what is known
to the compiler at the moment of compilation, however for many, if not most
programs, the data that is processed is not known at compile time. Therefore,
the compiler must in many cases make assumptions on what the data will look
like. If the assumptions are wrong, the optimized program may end up doing
the wrong thing. As a consequence the assumptions made must be valid for the
program under all circumstances and compilers adopt conservative approaches
when it comes to analysis and optimization. With conservative approaches,
compilers typically distinguish between what can be said to be true under all
circumstances, what can be said to be false under all circumstances and what
cannot be said to be true or false under all circumstances. For example, if
a program has two pointers (references to an area of memory), the compiler
may want to know whether they are the referring to the same memory area
or not (this is known as alias analysis). A compiler would then by default,
conservatively assume that they maybe are the same, before an analysis proves
that the two pointers are always the same or never the same. Another example
is dependency analysis, where the interesting property is whether or not two
variables are independent. This means that the cases proven dependent and
unproven/unknown are assumed to both mean that the variables are to be
treated as dependent on each other.

12 CHAPTER 1. INTRODUCTION

1.2 Pointer-Linked Data Structures

A pointer is a fundamental concept of computing and programming. A pointer
is a variable that contains an address of another variable. For more complicated
programs, a common data type is a record which contains pointers to similar
records. If several of these records are created, with pointers in the records
storing the addresses of other records, we have what is known as a pointer
linked data structure. Imagine that sets of records are chained using pointers,
every part of a chain is a link, and from this we have the term pointer-linked
data structures.

A pointer-linked data structure is a data structure which stores references
to logically adjacent objects in pointers. One of the major advantages of
pointer linked data structures is that they are dynamic in nature and can
be constructed as the program runs. This is more di�cult when using other
data structures such as arrays, for which the size must be known before it is
allocated and changing the size after allocation is expensive as the data must
be moved.

There are two primary areas where pointer-linked data structures are com-
monly used: sparse data structures (where the the data structure may have
implicit contents such as for example zeroes in the case of sparse matrices,
avoiding storing the implicit content explicitly saves a lot of memory in many
cases) and dynamic data structures that grow, shrink and change their shapes
over time. For both types of data structures, the problem is irregularity, where
objects that are accessed in sequence are not located adjacently in memory.
These irregular data structures tend to make it di�cult to exploit temporal
and spatial locality, which means that the memory hierarchy cannot be used
e�ciently and the application will not live up to its best case performance.

While there exist di↵erent mechanisms to represent sparse and dynamic
data structures in memory, this thesis focuses on the use of pointer-linked
data structures for representing these structures in memory.

1.3 Data Restructuring

Data Restructuring is a method in which data in a program is transformed
from one data layout to another. Examples of such transformations are the
transformation of an array of structs (AOS) into struct of arrays (SOA), the
reordering of data elements within an array, and the transformation of linked
lists into arrays of structs.

There are primarily two types of restructuring possible, in the first one the

1.4. OUTLINE 13

struct (or record) types are restructured, leading to for example the elimination
of unused fields in a struct type or the reordering of the fields in a more
optimal order. In the second form, the linked structs (also known as objects)
are themselves reordered in memory in order to, for example, improve their
regularity.

Compilers normally optimize the control flow of a program, however, with
data restructuring, data that is not optimal for the processor may be reorga-
nized in, for example, a more cache e�cient way, or into forms that enable
other optimizations such as for example parallelization and vectorization.

Note that, solving the exact layout for a data structure during runtime,
when the input is known, is equivalent to solving whether the program (or
parts of the program) will terminate or not. This is easy to understand as
the program may always change the data structures just before a termination
point. The problem is therefore undecidable (see [49] for explanation on the
halting problem) and it is unfeasible to design a general algorithm that an-
alyzes the exact shape of a program’s data structures during its execution,
even when the input is known. However, as the input for most practical ap-
plications is not known before runtime (input data is loaded from files known
only at runtime), it is very di�cult to analyze data layout at compile time
and a general algorithm to find out the data layout of a program does not
exist. Consequently, a system aiming to restructure data must be specific or
conservative in its approach.

1.4 Outline

Data restructuring, can be done through a mixture of compiler analysis, run-
time tracing and program transformations (as discussed in this thesis in Chap-
ter 2), or manually by the programmer himself. However, other approaches
are possible.

To this date, restructuring has to our knowledge been limited to data type
transformations (e.g. structure splitting, field elimination and field reorder-
ing). For example, there were no attempts to carry out traversal pattern aware
restructuring of pointer linked data structures.

Traversal patterns can be extracted in di↵erent ways, and in this thesis,
Chapters 2, 4 and 5 take di↵erent approaches to this problem.

This thesis explores data restructuring from several viewpoints; from a
pure compiler and runtime based approach, a graph theoretical approach, a
programming language based approach, and a hardware based approach.

14 CHAPTER 1. INTRODUCTION

Chapter 2 describes the joint work on data restructuring carried out to-
gether with Harmen L.A. van der Spek as published in [54, 56]. In the chap-
ter, we describe a new, generic restructuring framework for the optimization of
data layout of pointer-linked data structures. Our techniques are based on two
compiler techniques, pool allocation and structure splitting. By determining
a type-safe subset of the data structures of the application, addressing can be
done in a logical way (by pool, object identifier and field) instead of tradi-
tional pointers. This enables tracing and restructuring per data structure. We
describe and evaluate our restructuring methodology, which involves compile-
time analysis, run-time rewriting of memory regions and updating referring
pointers on both the heap and the stack. Our experiments show that restruc-
turing of pointer-linked data structures can significantly improve performance,
while the overhead incurred by the tracing and rewriting is worth paying for.

Chapter 3 is based on joint work with Hans L. Bodlaender and goes
into detail on the theory of grids, and especially sparse grids. Grids are very
common data structures that appear in many codes. The chapter explores a
graph theoretical approach suited for the analysis and restructuring of grid
based pointer-linked data structures. The chapter introduces the new graph
theoretic concepts of confined components and strictly ordered orthogonality.
The Minimum Confined Components problem is shown to be NP-complete
making the detection of arbitrary grids impractical without additional a priori
known restrictions on the graph layout. However, for many applications, the
theory introduced in this chapter can be applied successfully. Building on the
concept of confined components, this chapter introduces the concept of strictly
ordered orthogonality that is strongly related to grids. The notion enables the
identification of rows and columns in an arbitrary grid graph, thereby enabling
the formal transformation from pointer based data structures to array based
data structures. A polynomial time algorithm capable of finding confined
components is introduced and shown to be optimal for several types of graphs.
In addition to this, the chapter introduces a polynomial time algorithm capable
of verifying the strictly ordered orthogonality property. We show that for
various grids, the underlying data structures of pointer traversing codes can
be analyzed and potentially optimized in a feasible manner.

Chapter 4 introduces Pax C, a fully backwards compatible extension to
the C programming language, that enables the programmer to specify restric-
tions on how pointer-linked data structures are constructed and used. Pax C
consists of a set of programmer annotations and attributes (for example the
ability to define how to reach all objects within a linked data structure) that

1.5. RELATED WORK 15

enable the compiler to automatically restructure data without resorting to
(runtime) tracing information. The language extensions also contain a type
qualifier that can be used to express static-pointer structures, pointer struc-
tures that have become constant at a certain point. We give the definitions
of the attributes and show how we can apply the attributes on existing data
structure definitions of some sample codes, including the Minimum Cost Flow
program (MCF) from the SPEC benchmark series. The attributes entered
by the programmer can be cross checked against the code either at compile
or runtime, which allows for debugging of code. The language extensions are
used to generate data restructuring transformations and the e↵ects of these
transformations are explored. We further show how the language extensions
help the compiler exploit parallelism (in the MCF case, through minor mod-
ifications of the code) and turn pointer-linked data structures into position
independent data, thereby potentially enabling automatic GPU optimization
of the C-code.

Chapter 5 introduces a data restructuring method implementable in hard-
ware. The method is based on a dedicated memory area that is used by the
CPU to store pointer-linked objects next to each other. The chapter explores
the system and includes a simulation-based approach comparing the over-
head of the restructuring system to the performance gains achieved. The
results show that the method is valid and performs at least as well as exist-
ing software-based approaches. A key contribution from this method is that,
unlike previous software approaches, the hardware based approach is able to
handle dynamically updated pointer structures in an automatic way and the
method works without making any substantial modification to the programs.

Chapter 6 concludes the thesis and discusses future work.

1.5 Related Work

Chapters 2 and 4 in this thesis deal with the automatic or semi-automatic
control of data layout in C. The C programming language is type-unsafe and
in order to be able to automatically control the layout within type-unsafe
languages, a type-safe subset of the program must be determined. If not,
modifications on layout may have substantial e↵ects on the result of the pro-
gram. For example, if a program computes hashes on the binary contents of
data structures (where pointers will convert into integers), the program is not
type-safe. In this case, if an object is moved or has its fields reordered, the

16 CHAPTER 1. INTRODUCTION

result of the hash-function will change, thus if such a function is used, ob-
jects cannot be reordered since the program depends on the ability to convert
pointer to integers and use them as such.

This section introduces some important related work, firstly the Data
Structure Analysis algorithm capable of identifying the mentioned types-safe
data structures. Secondly, we discuss a number of data restructuring transfor-
mations that depend on that algorithm. And, thirdly, we look into a number
of analyses and di↵erent language extensions dealing with the determination
of data structure layout, an important prerequisite for more advanced restruc-
turing operations.

One algorithm to determine type safe subsets of C-programs is the Data
Structure Analysis (DSA) algorithm. The DSA algorithm was developed by
Lattner and Adve [35, 36]. The algorithm computes a data structure known as
a DSGraph using a combination of local, bottom up and top down analysis of
the call graph. The DSGraph describes how data structures are used at various
points in the program, if a data structure is used in a type-unsafe manner,
the DSGraph will indicate that the data structure is e↵ectively an array of
bytes, which implies that the data structure may have any kind of shape and
should not be treated as type-safe. For type-safe pointer linked structures,
the DSA will indicate whether or not two pointers points at disjoint data
structures (as, these will have di↵erent nodes in the DSGraph). Note that the
algorithm is conservative, and, therefore, there is only a guarantee that disjoint
nodes represent disjoint objects in memory, but there is no guarantee that
pointers referring to the same node represent the same object. The algorithm
is described in more detail in Chapter 2.

The DSA has been used to enable di↵erent data restructuring methods.
For example automatic pool allocation [35]. After the DSA algorithm has
determined the type consistency and disjointness of pointer structures, the
standard memory allocation primitives (malloc, etc.) are replaced with pool
allocation primitives, where one pool is created per known disjoint object (lists
nodes tend to end up as single objects in the DSGraph, so nodes in the same
list, will be allocated from the same pool).

Two other transformations that use information provided by the DSA are
structure splitting and pointer compression. Structure splitting is a transfor-
mation from an array of structures (AoS) into a structure of arrays (SoA). In
SoA format the memory overhead of traversing pointer chains can be reduced
as the SoA format will be free from padding and eliminate the loading of un-
used fields into the processor’s memory cache. Structure splitting has been
implemented by several researchers [12, 20, 54, 22]. In [12, 54] descriptions
are given on how the DSA assisted pool allocation can be used to automati-

1.5. RELATED WORK 17

cally split the pool allocated structures. The former paper describes a system
implemented for the IBM XL Compiler and the latter a system using the
LLVM backend compiler. Hagog and Tice have implemented a similar method
in GCC [22] (but without using DSA). The GCC-based implementation does
not seem to provide the same information as DSA. Strictly taken, structure
splitting is not necessary for dynamic remapping of pointer structures, but it
simplifies tasks like restructuring and relocation considerably. Moreover, split-
ting simply has performance benefits because data from unused fields will not
pollute the cache.

The DSA which is a points-to-analysis (it determines whether pointers
point to di↵erent objects), should not be confused with shape analysis. Shape
analysis concerns the shape (e.g. tree, DAG or cyclic graph) of pointer-linked
data structures. Ghiya and Hendren proposed a pointer analysis that classifies
heap directed pointers as a tree, a DAG or a cyclic graph [19].

Hwang and Saltz realized that it is of more importance how data structures
are actually traversed instead of knowing the exact layout of a data structure.
They integrated this idea in what they call traversal-pattern-sensitive shape
analysis [27].

Graph Types [30] and PALE [41] introduced languages that allowed for
properties on a pointer-linked data structure to be proven. It was possible to
prove and disprove that code obeyed certain properties (such as, for example,
that a list tail pointer actually pointed to the tail of the list). While being
powerful in the proof mechanism, the PALE system did have a high space
and time complexity. And the examples that were used to evaluate PALE
were relatively small in size. If the measurements of the PALE experiments
were extrapolated linearly for larger projects (million lines of code), memory
usage would quickly approach terabytes of memory and execution times would
be measured in days. It should be said that PALE is interesting for model
checking of small kernels for safety critical systems.

Notable in this area is also the Abstract Description of Data Structures
(ADDS) [24] and its generalization Abstract Specification of Aliasing Proper-
ties (ASAP) [26]; ADDS extends the type syntax, allowing the programmer
to associate pointers in a data structure with named dimensions in an over-
laying data structure. The ASAP generalization instead allows the use of
path expressions to declare disjointness of paths in the data structure. These
approaches both add powerful properties to the data structure description al-
lowing the compiler in turn to determine the aliasing of two adjacent objects
in for example a pointer chasing loop. Both are type description languages
suitable for describing alias properties, but they were not integrated in an
existing programming language like C.

18 CHAPTER 1. INTRODUCTION

Another project known as shape types [17], did add non-backwards com-
patible extensions to the C language. In shape types, shape restrictions on
data structures where added using a context free grammar based syntax, the
purpose being similar to PALE. One of the major problems with shape types
is its rather complicated syntax and semantics.

A Note on Units

In this thesis, data sizes are given in units compliant with existing standards.
This means that the symbol for byte is a capital B, the symbol for bit is either
a small b or bit. Prefixes have their meaning as specified in the SI system. For
example: GB is equal to one billion (short scale) bytes. In the cases where
powers of twos are needed, as with memory sizes, the binary prefixes as defined
by ISO/IEC 80000 are used. Consequently a KiB is 1024 bytes and a GiB is
1073741824 bytes.

Chapter 2

Pointer Structure
Restructuring

Predictability in memory reference sequences is a key requirement for obtaining
high performance on applications using pointer-linked data structures. This
often goes against the dynamic nature of such data structures, as pointer-linked
data structures are often used to represent data that dynamically changes over
time, which will reduce the predictability, even if the pointer-linked structure
was in perfect order initially. Also, di↵erent traversal orders of data structures
cause radical di↵erences in memory reference behavior when considering the
data layout.

Thus, having control on data layout is essential for getting high perfor-
mance. For example, architectures like the IBM Cell and GPU architectures
each have their own characteristics and if algorithms using pointer-structures
are to be executed on such architectures, the programmer must mold the data
structure in a suitable form. For each new architecture, this means rewriting
code over and over again. Another common pattern in code using pointer-
linked data structures is the use of custom memory allocators. Drawbacks
of this approach are that such allocators must be implemented for various
problem domains and that they depend on the knowledge of the programmer,
not on the actual behavior of the program. Our restructuring framework is a
first step in the direction to liberate the programmer from having to deal with

This chapter is based on earlier work done with Harmen van der Spek, so parts of this
chapter also appeared in his thesis [50].

COPYRIGHT NOTICE: The original publication is available at www.springerlink.com

19

20 CHAPTER 2. POINTER STRUCTURE RESTRUCTURING

domain specific memory allocation and rewriting of data structures.
In this chapter, we present a compiler transformation chain that determines

a type-safe subset of the application and enables run-time restructuring of
type-safe pointer-linked data structures. This transformation chain consists
of type-safety analysis after which disjoint data structures can be allocated
from separate memory pools. At run-time, accesses to the memory pools
are traced temporarily, in order to gather actual memory access patterns.
Next, from these access patterns, a permutation is generated which enables
the memory pool to be reordered. Note that these traces are not fed back into
a compiler, but are rather used to restructure data layout at run-time without
any modification of the original application. Pointers in the heap and on the
stack are rewritten if the target they are pointing to has been relocated. After
restructuring, the program resumes execution using a new data layout.

Restructuring of linked data structures cannot be performed unless a type-
safe subset of an application is determined. This information is provided by
Lattner and Adve’s Data Structure Analysis (DSA), a conservative whole-
program analysis reporting on the usage of data structures in applications [35,
36]. The analysis results of DSA can be used to segment disjoint data struc-
tures into di↵erent memory regions, the memory pools. Often, many memory
pools turn out to be type-homogeneous, i.e. they store only data of a specific
(structured) type. These pools are our starting point.

For type-homogeneous pools, we have implemented structure splitting, sim-
ilar to MPADS [12], the memory-pooling-assisted data splitting framework by
Curial et al. This changes the physical layout of the structures, but logically
they are still addressed in the same way (any data access can be character-
ized by a pool, objectid and field triplet). Structure splitting is not a strict
requirement for restructuring, but it simplifies the implementation and results
in higher performance after restructuring.

In order to restructure, a permutation vector must be supplied. This per-
mutation vector is obtained by tracing memory pool accesses. Tracing does
have a significant impact on performance, so in our framework tracing can be
disabled after a memory pool has been restructured. The application itself
does not need to be aware of this process at all. It is important to note that
tracing and restructuring all happen within a single run of an application.

In order to illustrate the need for restructuring, it is interesting to have a
look at what could potentially be achieved by controlling data layout. For this,
we used SPARK00 [55, 52], a benchmark set in which the initial data layout
can be explicitly controlled. Figure 2.1 shows the potential speedups on an
Intel Core 2 system (which is also used in the other experiments, together with
its successor, the Core i7) if the data layout is such that the pointer traversals

21

LF
10

im
pc
ol
_b

rw
13
6

ra
ja
t1
1

bc
ss
tm
09

os
ci
l_
tra
ns
_0
1

66
2_
bu
s

rd
b4
50
l

st
r_
20
0

lu
ng
1

bc
ss
tm
34

ca
ge
9

rd
is
t3
a

cr
ys
tm
01

AS
IC
_1
00
ks

he
ar
t3

Zd
_J
ac
3_
db

Pr
es
_P
oi
ss
on

G
2_
ci
rc
ui
t

bc
ss
tk
36

nd
3k

Core 2 − Sequential vs. Random

0
2
4
6
8
10
12
14
16
18
20

SPMATVEC
SPMATMAT
PCG
JACIT
DSOLVE

Figure 2.1: Speedup on SPMATVEC when using data layout with sequential
memory access vs. layout with random memory access on the Intel Core 2
architecture.

result in a sequential traversal of the main memory, compared to a layout that
results in random memory references. This figure illustrates the potential for
performance improvements if data layout could be optimized. Our framework
intends to exploit this potential for performance improvements.

Section 2.1 starts with an explanation of work on Data Structure Analy-
sis, that our restructuring framework depends on. Section 2.2 describes the
compile-time parts of our framework, while Section 2.3 treats the run-time
components. Section 2.4 contains the experimental evaluation of our frame-
work. Restructuring pointer-linked data structures has great potential and in
this chapter considerable speedups are shown on the SPARK00 benchmarks.
The challenge of SPARK00 lies in closing the performance gap between pointer
traversals resulting in random access behavior and traversals resulting in per-
fectly sequential access behavior. As such, it illustrates the potential, but it
does not guarantee that such speedups will be obtained for any application.
The overhead of tracing mechanism, which of course does not come for free, is
discussed in Section 2.4.2. It is shown that the performance gains do compen-
sate for this overhead within relatively few consecutive uses of the restructured
data structure. Restructuring memory pools requires a special stack that can
be updated after restructuring. Di↵erent mechanisms and their implications
are discussed and evaluated in Section 2.4.3. Address calculations need to

22 CHAPTER 2. POINTER STRUCTURE RESTRUCTURING

be e�cient. Therefore, we present improved address calculations, compared
to the address calculations in Curial’s work [12], for addressing split memory
pools in Section 2.4.4. Related work is discussed in Section 2.5. Future work
and conclusions are given in Section 2.6. Part of this chapter has appeared
in [54].

2.1 Preliminaries

The restructuring framework presented in this chapter relies on the fact that a
type-safe subset of the program has been identified. This is achieved by apply-
ing Lattner and Adve’s Data Structure Analysis (DSA) [34, 38, 35, 36]. DSA
is an e�cient, inter-procedural (whole program), context- and field-sensitive
pointer analysis. It is able to identify (conservatively) disjoint instances of
data structures even if these data structures show an overlap in the functions
that operate on them. Such disjoint data structures can be allocated in their
own designated memory area, called a memory pool. We will not describe how
DSA works in detail, but we will explain the meaning of the resulting Data
Structure Graph (DS Graph) as this forms the basis for our further analyses
and transformations.

For implementation and e�ciency reasons, data structures are not stored
as they have been defined in the original source code. As the DSA provides
us with information on type-safety on the whole-program level, it is possible
to remap the layout of data structures. This assumes that all uses of such a
data structure have been identified and that the data structure cannot escape
the program as we know it (otherwise it would not be type-safe).

The pool restructuring framework that we propose in this chapter is based
on two techniques: automatic pool allocation and structure splitting. The
structure splitting transformations remaps memory pools of records into struc-
tured data that is grouped by field instead (essentially, it is mapping from an
array of records to a record of arrays). The implementation developed is sim-
ilar to the MPADS framework of Curial et al. [12], though we optimized the
address calculations for commonly occurring structure layouts (Section 2.4.4).

In this section, both DSA and structure splitting, which our analysis passes
and transformations depend on, are explained in further detail.

2.1.1 Data Structure Analysis

Data Structure Analysis (DSA) provides information on the way data struc-
tures are actually used in a program. First, it is important to understand that

2.1. PRELIMINARIES 23

int main (int argc , char ⇤⇤ argv)
{

. . .
MatrixPtr tmp = ReadMatrixPtrRow (matr ixF i l e) ;
MatrixPtr Matrix = MatrixToFormat (tmp , format) ;
. . .
for (i = 0 ; i < i t e r a t i o n s ; i++)

MatrixMultiplyVec (Matrix , r i ght , r e s u l t) ;
. . .

}

Figure 2.2: Code excerpt of main function of SPMATVEC.

DSA is not a shape analysis. DSA determines which data structures can be
proved disjoint in memory. Such a data structure can be a linked list, a tree,
a graph or any other pointer-linked data structure.

The result of DSA is the Data Structure Graph (DS Graph). Within this
graph, the nodes represent memory objects. A node is described as follows [34]:

Each DS graph node represents a (potentially unbounded) set of
dynamic memory objects and distinct nodes represent disjoint sets
of objects, i.e., the graph is a finite, static partitioning of the mem-
ory objects. Because we use a unification-based approach, all dy-
namic objects which may be pointed to by a single static pointer
variable or field (in some context) are represented as a single node
in the graph.

Our primary interest lies in the nodes that are type-homogeneous (all memory
objects represented by the node are of the same type and are used in a type-
consistent way throughout the entire program.

Construction of the DS graph occurs in three phases. The first is the Lo-
cal Analysis Phase during which the actual program representation is used
to construct DS graphs for all functions, taking only local information into
account. DS nodes contain flags that indicate whether they contain complete
information. The subsequent phase, the Bottom-Up Analysis Phase, com-
bines the information on the local functions with results from their callees,
by propagating this information bottom-up. This phase is context-sensitive.
The last phase is the Top-Down Analysis phase, which we will not need in our
restructuring framework. We use the result from the Bottom-Up Analysis.

24 CHAPTER 2. POINTER STRUCTURE RESTRUCTURING

Function main

%struct.MatrixFrame*: SMR

%struct.MatrixFrame: HMRE

%struct.ElementPtrStruct array: HMR

%struct.ElementPtrStruct array: HMR

%struct.ElementPtrStruct array: HM

%struct.MatrixFrame*: SMR

%struct.MatrixElement: HMR

%tmp %Matrix

Figure 2.3: DSGraph for main function of SPMATVEC benchmark.

Let us illustrate this with an example. Figure 2.2 shows a part of the main
function of SPMATVEC, one of the benchmarks used in the evaluation of our
method (see Section 2.4, the full sources are available online [51]). Figure 2.3
shows the associated DS Graph. Information about the variables generated
by the compilation to the LLVM bit code (which uses an SSA representation)
is not shown. The graph shows the two stack variables (specified by the S
flag) %tmp and %Matrix. Each of these variables has its own storage space
on the stack. Hence the separate nodes. The MatrixFrame structure they
are both pointing to is one node, indicating that the analysis cannot prove
that they are pointing to disjoint structures. The MatrixFrame structure
basically contains three pointers. These are the three arrays of pointers that
point to the start of a row, the start of a column and the diagonal elements.
The MatrixElement structure is the structure containing the matrix data. It
has two self references, that are the two pointers used to traverse the matrix
row- and column-wise.

Each function has its own bottom-up DS Graph. Nodes that are related
to formal arguments are data structures that are passed in by calling the
function. Nodes that do not correspond to a formal argument depict data
structures that are instantiated within this function. At this point, such a

2.1. PRELIMINARIES 25

node incorporates all information on how this node is used in all callees. The
Bottom-Up Analysis ensures that if a node is used in a type-safe fashion this
information is propagated to the point where the data structure is instantiated.
At that location, a choice can be made about how this data structure instance
is treated.

Summarizing, for each data structure, we are interested in the point at
which it is actually instantiated and whether it is type-safe in all callees. All
such data structures can be stored in a disjoint memory segment, called a
memory pool.

2.1.2 Automatic Pool Allocation

On top of DSA, Lattner et al. implemented automatic pool allocation [35, 36].
Pool allocation is a transformation that replaces calls to memory allocation
functions by custom memory allocators such that disjoint data structures are
allocated from disjoint memory regions. This is done by identifying pool-
allocatable data structures, as shown in the previous section. After a node
in the DS Graph has been determined to be type-safe, all associated memory
allocation functions can be identified and be rewritten such that they call a
pool allocation library, whose functions take an additional argument, the pool
descriptor, that uniquely identifies a data structure instance at run-time. Pool
allocated structures allow for precise control on data layout, as it is known
that all allocated elements within a particular region have the same type. We
use this property to modify the way structure are laid out in main memory.

2.1.3 Pool-Assisted Structure Splitting

A useful data layout transformation when a data structure is known to be
type-safe is structure splitting. Let us consider a memory pool that only stores
elements of a particular structured type. Such a pool is just an array of
structures (AOS). If we assume that the size of this array is fixed, the AOS
can be easily transformed into a structure of arrays. Figure 2.4 depicts this
concept by giving the corresponding structure definitions in C.

Splitting structures has some advantages over normal pool allocation. Firstly,
it is possible to do away with all padding which is otherwise needed (except
for alignment-imposed restrictions) because primitive data types (i.e. floats,
doubles, integers etc..) normally must be aligned to addresses corresponding
to the size of the type. In a split structure, however, the elements that follow
each other will be of the same type and size. This means that the fields can
be packed much more e�ciently in the many cases where padding is normally

26 CHAPTER 2. POINTER STRUCTURE RESTRUCTURING

struct S {
i n t32 x ;
double y ;
struct S ⇤next ;

} [SIZE OF POOL] ;

struct S {
i n t32 x [SIZE OF POOL] ;
double y [SIZE OF POOL] ;
struct S ⇤next [SIZE OF POOL] ;

} ;

Figure 2.4: Array of structures vs. structure of arrays.

inserted. Another advantage is that a field in a structure that is not accessed
as often as the other elements will not pollute the cache, as unused data will
not be taking up cache space.

Structure splitting has its limitations, for example, a split structure will
typically be split over multiple memory pages and thus require more active
TLB1 entries. As a consequence of this, a structure that is not used in se-
quential access (e.g. by following pointer chains), is not likely to yield any
performance benefits when split. In addition, when multiple fields of a struc-
ture are referenced, the cache e�ciency will be worse for split structures than
for a non-split structure because in the split version multiple fields will be
located in di↵erent cache lines, whereas in the original version, those fields are
most likely co-located in the same cache line.

The implementation of our structure splitting transformation is similar to
the DSA-based implementation of Curial et al. [12], who implemented struc-
ture splitting in the IBM XL compiler.

2.2 Compile-time Analysis and Transformation

At compile-time, a whole program transformation is applied in order to rewrite
pools to use a split structure layout that supports run-time restructuring.
Figure 2.5 shows an overview of the entire compilation chain for our framework.
In this section, the analyses and rewriting compiler passes are discussed.

2.2.1 Structure Splitting

Our analysis and transformation chain starts at the point where DSA has been
performed on a whole program and pool allocatable data structures have been
determined. We then start at the main function and traverse all reachable

1Translation Look-aside Bu↵er

2.2. COMPILE-TIME ANALYSIS AND TRANSFORMATION 27

Pool Allocation

Structure Splitting Analysis

Pool Access Analysis

Pointer Tracking

GEPI rewriting

Pointers to Object IDs

Restructuring Instrumentation

Application
Bitcode

Bitcode
Run-time

Application
Binary

Figure 2.5: Overview of the pool restructuring compilation chain. GEPI refers
to the LLVM GetElementPtrInst instruction.

28 CHAPTER 2. POINTER STRUCTURE RESTRUCTURING

functions, cloning each function that needs to be rewritten to support the
data layout of split structures. Note that cloning is only done along execution
paths that are known to have type-safe data structures that can be split safely.
Functions are cloned because there might also be calling contexts in which
splitting cannot be applied, and these cases must also be dealt with correctly
(see Lattner and Adve’s work [35, 36]). From this work, we also use the
their technique for the identification of the memory pools. It is not possible
to split pools that are not type homogeneous because addressing of object
fields would become ambiguous and fields of di↵erent types and length would
introduce aliasing of field values. This information is available from the DSA
and pool allocation passes.

During the analysis phase, function clones are generated for split versions
of functions and calls are rewritten accordingly. Rewriting of other instruc-
tions, such as address calculations are deferred to a later stage, because they
are nothing more than a change in the semantics of the address calculation
instruction (GetElementPtrInst) in LLVM.

Various pieces of information are gathered in the structure splitting analy-
sis pass to be used in subsequent passes. All loads and stores to pool data are
identified as well as all loads and stores that store a pointer into a pool. These
loads are needed to support the use of object identifiers instead of pointers
(see Section 2.2.5). The structure splitting pass ensures that all the address
calculation expressions (GetElementPtrInst in LLVM) whose result points to
data in split pools are identified. These expressions must be rewritten before
the final code generation at a later stage. The address calculation expressions
are not rewritten immediately. Instead, they are rewritten just before code
generation because additional passes will need to reason about these expres-
sions.

2.2.2 Pool Access Analysis

Pool access analysis is a pass in which all pool accesses (loads and stores) are
analyzed. The result of the analysis is that instead of being viewed as an access
using a specific pointer, the location read from or written to is represented
using a triplet (pool, object, field). Pool is the pool descriptor used at run-
time, object the pointer to the object the data belongs to and field is the field
number that is accessed. Originally, a load or store just used a pointer as its
address operand, but now, the more generic notion of pool, object and field
can be used. This is analogous to data access in a database (table, row and
column).

For each load and store from a split pool, the analysis is performed as

2.2. COMPILE-TIME ANALYSIS AND TRANSFORMATION 29

follows:

// Get accessed o b j e c t
baseObject = get under ly ing ob j e c t for acce s s ed ob j e c t
check that baseObject i s a l s o a load

pool = get pool d e s c r i p t o r a s s o c i a t ed with baseObject

// Get accessed f i e l d
g ep i I n s t = get po in t e r operand o f memory i n s t r u c t i o n
check g ep i I n s t i s a GetElementPtr i n s t r u c t i o n
f i e l d = get f i e l d index from gep i I n s t

Note that for each access to a pool, it must be possible to determine which field
is accessed. This property cannot always be proved if the address of fields is
taken, and, therefore, we do not allow that any address of a field is written to
any memory location using the LLVM StoreInst. For example, the following
C-code snippet will never be restructured:

obj�>ptr = &p1�>y ;
. . .

⇤obj�>ptr = va l ;

This might be a bit over-conservative, and in a future version, we might define
this more precisely. Lattner and Adve’s pointer compression applies the same
restriction on field accesses [37].

2.2.3 Stack Management

The primary requirement for structure splitting to work (in terms of code
modifications) is the remapping of address calculation expressions so that data
is read and written to the relocated location in the split pool. However, if
reordering of the pool contents is to be accomplished this is not su�cient.
Other pools may for example contain references to the reordered pool (which
mean that those references need to be updated). However, these on-heap
pointers are not the only references to pool objects that the system needs to
deal with. The other type of references that need to be managed are pointers
that are stored on the stack and that point into the pool. This problem is

30 CHAPTER 2. POINTER STRUCTURE RESTRUCTURING

Method Advantages Disadvantages
Pointer Tracking Simple Slow

Portable Interferes with IR
Shadow Stack Fast Interferes with IR

Portable
Stack Map Fast Backend Modifications

No IR Interference Stack walking not portable

Table 2.1: The three stack management options and their individual advan-
tages and drawbacks

similar to what garbage collectors have to do, and in their terminology, the
on-stack pointers are known as roots. Tracking the on-heap pointers can be
done by adding additional meta data to the pool descriptor, this meta data is
derived from the DSA (that keeps track of connectivity information between
pools).

Three di↵erent alternatives to accurate stack managing were explored and
evaluated. These approaches include explicit pointer tracking, shadow stacks
and stack maps. However, only the first method was fully implemented for rea-
sons that will become clear later on. The three di↵erent investigated methods
for stack management are summarized in Table 2.1.

Explicit Pointer Tracking

One approach to the stack root issue, is to ensure that all pointers are explicitly
tracked at the LLVM level. We call this technique pointer tracking. When a
pool descriptor is allocated, a special segment of data is acquired that will be
used to track all stack local pointers pointing into the pool, whenever a pointer
is allocated on the stack, the location of this pointer is inserted in the per pool
stack tracking block. A frame marker is in this case also needed to enable the
removal of all the pointer tracking entries associated with a returning function.
In LLVM this means that any pointer that is an SSA register must explicitly
stored on the stack. The following LLVM function illustrates this a bit further:

2.2. COMPILE-TIME ANALYSIS AND TRANSFORMATION 31

void @func (poo ldesc ⇤pool0) {
entry :
bb0 :

%x = load { i32 , i 32 }⇤⇤ %heapObjectAddr
c a l l void @foo %x
r e t

}

The function listed above is transformed into the following:

void @func (poo ldesc ⇤pool0) {
entry :
%xptr = a l l o c a { i32 , i 32 }⇤⇤
c a l l void @ s p l i t s t r e g s t a c k o b j %pool0 , %xptr
c a l l void @sp l i t s t pu sh f r ame %pool0

bb0 :
%x = load { i32 , i 32 }⇤ %heapObjectAddr
s t o r e %x , %xptr
%x f oo a r g = load { i32 , i 32 }⇤ %xptr
c a l l void @foo %x f oo a r g
c a l l void @sp l i t s t pop f r ame %pool0
r e t

}

In the transformed function the pointer %x is explicitly backed by a stack
variable and this variable is then registered with the run-time function named
split st reg stack obj. After the pointer registrations a call to the run-time
function split st push frame is executed; this function will close the stack frame
for the current function in order to speed up the pop operation of the stack.
These run-time functions are very short (a few instructions) and will be inlined
and thus, do not induce any function calling-overhead. Figure 2.6 shows how
the pointer tracking block is constructed during run-time.

In order to reduce this overhead, an approach where stack tracking is dis-
abled in certain functions has been chosen. The pseudo code in the following
example illustrates why this is useful:

32 CHAPTER 2. POINTER STRUCTURE RESTRUCTURING

Shadow Stack (Pool A)

Frame Marker Frame MarkerEntry Entry

Pointer Tracking Stack Growth (Pool A)

Program Stack

Pointer to Pool A Pointer to Pool B Pointer to Pool A

Normal Stack Growth

Figure 2.6: Pointer Tracking Layout

Pool pool ;
Matrix ⇤mtx = readMatrix (pool) ;

doMatrixOperation (pool , mtx) ;

Poo lRestructure (pool , mtx) ;

for (int i = 1 ; i < N ; i ++) {
doMatrixOperation (pool , mtx) ;

}

Here the critical code is the doMatrixOperation, but if this operation does
not call the PoolRestructure function, then this function does not need to track
the pointers.

The most important point with the explicit pointer tracking, is that it took
a small implementation e↵ort compared to the methods described further on
in Sections 2.2.3 and 2.2.3. So, while the method (as shown in experiments
later on) is not a good choice for a fielded deployment, it takes very little code
to implement both the passes and the run-time support for the explicit pointer
tracking.

2.2. COMPILE-TIME ANALYSIS AND TRANSFORMATION 33

Shadow Stacks

The second approach that we investigated for tracking pointers on the stack,
was the utilization of a shadow stack. This technique is based on the garbage-
collection method described by Henderson [23]. To implement shadow stacks
the compiler creates a per function data structure where pointers that are
stored on the stack will be stored as a group, such that each pointer can
be addressed relative to the base of this data structure. When a function is
called, such a structure is allocated on the stack and this structure is then
registered with the runtime. This pre-registration cuts down on the additional
registration overhead compared to the pointer tracking, by only inferring one
registered pointer per function call.

Stack Maps

The third alternative is the construction of stack maps (for example described
by Agesen in [1]). Stack maps are structures that are generated statically for
each function. These structures describe the stack frames of the corresponding
functions. The maps are computed during the code generation phase and
contain information about, for example, frame-pointer o↵sets of the pointers
allocated by the function. The main advantage of delaying this to the code
generation phase is that the transformation will not interact in any way with
earlier optimizations. The main drawback is that the stack walking will become
platform dependent and this may not necessarily suit every compiler.

For non-split structures, the derived pointers to fields in the structures
can easily be computed by adding a constant o↵set to the base pointer of
the structure. For split structures, however, this is not possible anymore. In
a split structure the field addresses no longer have constant o↵sets from the
base pointer of the structure (see Figure 2.7 for a graphical explanation of why
this happens).

2.2.4 Address Calculations

It is obvious that calculating addresses for the fields in the structures must
be very e�cient. This fact was already stressed by Curial [12], but he did
not optimize the address calculation expressions and their selection rules to
the same extent as we did. If this calculation is ine�cient, it potentially
nullifies much of the performance improvement gained from the more cache-
e�cient split structure representation. In general, the o↵set for field n can be
represented by the following equation:

34 CHAPTER 2. POINTER STRUCTURE RESTRUCTURING

o↵set
n

= k
n

+ sizeof
n

p&(sizeof
pool

� 1)

sizeof0
� p&(sizeof

pool

� 1) (2.1)

where k
n

is the constant o↵set to field array n from the pool base. The sub-
expression p&(sizeof

pool

� 1) calculates the object pointer p’s o↵set from the

pool base and the expression
p&(sizeof

pool

�1)

sizeof0
calculates the object index in the

pool2.
When the accessed field is the first field of the structure then o↵set0 = 0

and if the size of the accessed field is the same as the first field of the structure
then o↵set

n

= k
n

.
We have observed that in many common cases the size di↵erence between

the accessed field and the first field is a power of two. Taking this observation
into account, we introduce two additional expressions. When the size of the
accessed field is greater than the first field of the structure we have that:

o↵set
n

= k
n

+ (sizeof
n

� sizeof0)
p&(sizeof

pool

� 1)

sizeof0
(2.2)

and when the size of the first field is greater than the accessed field use the
following expression:

o↵set
n

= k
n

� (sizeof0 � sizeof
n

)
p&(sizeof

pool

� 1)

sizeof0
(2.3)

Equation 2.1 can be viewed as adding the pool base to the o↵set from the
address of the nth field of the first object, see Figure 2.7. This figure also
demonstrates that Equation 2.2 and 2.3 take into account the linear drift of
field n due to the size di↵erences between fields 0 and n, with respect to the
object’s pool index and the constant o↵set k

n

.
It is assumed that further passes of the compiler will apply strength reduc-

tion on all multiply and divides involving a power of two constant. Fog [15]
gives the cost for various instructions for a 45nm Intel Core 2 CPU. These num-
bers have been used to estimate the cost in cycles for the various equations
calculating the o↵sets. Assuming that the expressions have been simplified as
much as possible through, for example, constant folding and evaluation, we get
that when neither sizeof0 nor sizeofn are powers of two, Equation 2.1 will take
26 cycles. If sizeof0 is a power of two the same equation will take 6 cycles (as

2Note that in this context, & is the C-operator for a bitwise AND.

2.2. COMPILE-TIME ANALYSIS AND TRANSFORMATION 35

sizeof
n

p & sizeof pool−1

sizeof
0

kn

p & sizeof pool−1

sizeof
n
−sizeof

0

p & sizeof pool−1

sizeof
0

sizeof
0
−sizeof

n1

p & sizeof pool−1

sizeof 0

kn1

...

...

...

PaddingPadding

Padding

Padding

Padding

Padding

...

Standard Pool

Split Pool

4 B 4 B 4 B

1
2
 B

p

pn

Figure 2.7: Graphical representation of split pools and the field o↵set expres-
sions detailed in Section 2.2.4 for a split pool consisting of structures with
elements of sizes 2, 4 and 1 bytes. Each shade of gray represents an individual
object. The object pointer p is in this case is pointing at the third object and
the derived pointer p

n

is pointing to the second field of the third object.

the very costly divide will be reduced to a shift) and if both sizes are powers of
two it will take 4 cycles. Equation 2.3 will take 3 cycles, and Equation 2.2 will
take 3 cycles in the normal case (or 2 cycles if sizeof

n

� sizeof0 = sizeof0).

The address calculations as defined by Equations 2.1 and the elimination
of calculations if accessing the first field are already used in MPADS [12], but
our additional Equations 2.2 and 2.3, have some important properties. They
allow the calculation of the field o↵sets to be reduced to 2 or 3 instructions
instead of 4, as the code generator will merge the divide and the multiplication
operation into a single shift operation and that the third term in Equation 2.1
has been eliminated. Note that for Equation 2.2 when size

n

� size0 = size0,

36 CHAPTER 2. POINTER STRUCTURE RESTRUCTURING

LLVM will automatically eliminate the multiply and the divide instruction,
giving even more savings.

The most notable equation cost (26 cycles) come from the existence of
a divide instruction in the expression. This will, for example, happen when
the first field of a structure is an array of three 32-bit values (arrays are not
split since they are already sequential) and the next element is a 32 or 64 bit
value. In those cases up to 23 cycles may be saved on the address calculation
because the divide instruction has been eliminated through strength reduction
introduced by Equation 2.3.

Overall it can be said that a compiler that splits structures should also
reorder the fields in a structure so that address calculations are made as simple
as possible. For example, if a structure contains three fields of lengths 1, 2 and
4 bytes, then the field ordering should place the 2-byte element first under the
condition that the access frequency of the fields is the same. Though, at this
moment our implementation does not do this and this field reordering remains
on the future work list.

2.2.5 Converting Between Pointers and Object Identi-
fiers

Instead of storing pointers in split memory pools, object identifiers are used.
Object identifiers can be used in type-homogeneous pools to uniquely iden-
tify an object within a pool. As shown in Section 2.2.2, together with a field
number, each data element can be addressed. Object identifiers are a more
compact representation than pointers and also more compact than byte o↵sets
from a pool base pointer, as used in Latttner and Adve’s static pointer com-
pression [37]. Their dynamic pointer compression transformation also uses
object identifiers. In that case, it provides a representation independent of
the size of fields, whereas byte o↵sets would need to be rewritten if field sizes
change.

Our motivation to use object identifiers is di↵erent. While our framework
would also benefit from pointer compression (currently object identifiers are
stored as 64-bit unsigned integers), we use object identifiers because they can
be used as indices in permutation vectors and because they provide position in-
dependence for data structures. For future developments, the object indexing
will aid in using data structures in hybrid architectures and environments be-
cause the representation is position-independent. Whenever a pointer is loaded
from memory, the conversion is done in an architecture and context-dependent
way.

2.2. COMPILE-TIME ANALYSIS AND TRANSFORMATION 37

u i n t p t r t
p t r t o o b j i d (s p l i t p o o l d e s c t ⇤pool , void ⇤ obj)
{

u i n t p t r t obj Idx ;
i f (obj == 0) {

return 0 ; // Spec i a l case : NULL po in t e r
} else {

u i n t p t r t poolBase = (u i n t p t r t) pool�>data ;
u i n t p t r t ob jO f f s e t = poolBase � (u i n t p t r t) obj ;
obj Idx = ob jO f f s e t / s i z e o f f i e l d (0) ;

}
return objIdx ;

}

Figure 2.8: Store Value Rewrites

Section 2.2.2 described how all loads and stores to memory pools can be
represented as a (pool, object, field) triplet. In the case that field is a field
that is pointing to pool-allocated data (whether this defines a recursive data
structure or a link to another data structure does not matter), the pointer
value that will be stored into the memory pool needs to be converted to an
object identifier before it is stored. When such a pointer value is loaded from
a memory pool, it must be converted from an object identifier to a pointer.
Loads and stores to the stack are una↵ected and thus will contain real pointers.
As no pointers to fields, but only pointers to objects will be stored to the
memory pools, we only need conversion functions for object pointers. For store
instructions, the value to store is rewritten as illustrated in Figure 2.8 and for
load instructions, the loaded value is rewritten as illustrated in Figure 2.9

Note that the actual implementation uses LLVM bit code and uses a bit-
mask instead of an if-statement to handle the NULL pointer.

Compared to the description of object indexing used in the pointer com-
pression transformation by Lattner and Adve [37], our implementation di↵ers
in some ways. In their work, object indices are not only present in the heap,
but are also used on the stack and in LLVM’s virtual registers. Pointer com-
parisons and assignments do not need the object identifier to be expanded to
a full pointer in their framework. In our framework, only loads and stores of
pointers (only to pool objects) to split pools need rewriting, and the rest of
the code will run unchanged. It also simplifies the restructuring step: on the
heap, we only need to handle object identifiers, on the stack we only have to

38 CHAPTER 2. POINTER STRUCTURE RESTRUCTURING

void⇤
o b j i d t o p t r (s p l i t p o o l d e s c t ⇤pool , u i n t 64 t ⇤ objIdx)
{

i f (objIdx == 0) {
return 0 ; // Spec i a l case : NULL po in t e r

} else {
u i n t p t r t poolBase = (u i n t p t r t) pool�>data ;
u i n t p t r t ob jO f f s e t = objIdx ⇤ s i z e o f f i e l d (0) ;
u i n t p t r t obj = poolBase + ob jO f f s e t ;
return (void ⇤) obj ;

}
}

Figure 2.9: Load Value Rewrites

deal with full pointers.

2.2.6 Restructuring Instrumentation

Pool tracing and restructuring of data structures requires instrumentation of
the code with calls to the tracing run-time. During pool access analysis, all
loads and stores to pools have been identified and are represented using the
triplet (pool, object and field). All these instructions can be instrumented such
that a per pool, per field trace of object identifiers is recorded. Currently, we
only trace load instructions.

We only enable tracing for one execution of a function and its callees be-
cause tracing is a method that does not come for free. After this first tracing,
the data is restructured and tracing is disabled. This is accomplished by gener-
ating two versions of the function, one with and one without tracing. Selecting
the proper function is done through a global function pointer that is set to the
non-traced version after a trace has been obtained.

2.3 Run-time Support

Extracting a type-safe subset of the program and replacing its memory alloca-
tion by a split-pool-based implementation requires run-time support, similar
to the run-time provided for regular pool allocation. The split-pool runtime
provides create and destroy functions to split pools and for memory allocation

2.3. RUN-TIME SUPPORT 39

and deallocation functionality. In addition, some common operations imple-
mented in the standard C library are also provided, such as memcpy (which
needs to copy data from multiple regions due to the split layout), thereby
widening the applicability of the framework.

In this section, the run-time system for splitting and restructuring is de-
scribed. While this run-time system has been implemented specifically to
support our pool restructuring framework, it can also be used as a standalone
library, giving the user the ability to explicitly use split and restructurable
data structures. Note that pool connectivity must be explicitly specified if the
library is used separately from the compiler in order to keep data structures
consistent after restructuring.

2.3.1 Application Programming Interface

The split-pool run-time o↵ers implementations for initializing pools and for
memory allocation and deallocation. Tables 2.2 and 2.3 describes the run-
time functions needed to support restructuring of split pools.

2.3.2 Tracing and Permutation Vector Generation

In order to restructure a memory pool a permutation must be supplied to the
restructuring run-time. The pool access analysis pass (Section 2.2.2) provides
the compile-time information (pool, object and field) about all memory ref-
erences and these memory references can all be traced. Traces are generated
per pool, and per field. For each pool/field combination, this results in a trace
of object identifiers. From any of these traces, a permutation vector can be
derived which can be used to permute a pool. The permutation vector is cur-
rently computed by scanning the trace sequentially and appending the object
identifiers encountered to the vector, avoiding duplicates:

perm [0] = 0 ;
permLen = 1 ;
for (i = 0 ; i < maxTraceEntry ; i++) {

i f (! perm [t r a c e [i]]) {
perm [t r a c e [i]] = permLen ;
permLen++;

}
}

40 CHAPTER 2. POINTER STRUCTURE RESTRUCTURING

F
u
n
ctio

n
A
rg

u
m
en

ts
R
etu

rn
v
a
lu
e

D
escrip

tio
n

sp
lit

p
ool

vargs
•
sp
lit

p
oold

esc
t
*p

ool
•
u
intp

tr
t
ob

j
cnt

•
u
int32

t
u
n
sp
lit

ob
j
len

•
u
int32

t
sp
lit

ob
j
len

•
u
int32

t
fi
eld

cnt
•
...

void
S
p
lit

p
o
o
l
crea

tio
n
a
n
d
in
itia

liza
tio

n
.
In
i-

tializes
a
n
ew

p
ool,

an
d
reserves

m
em

ory
for

obj
cn

t
nu

m
b
er

of
ob

jects.
N
on

-sp
lit

ob
jects

len
gth

an
d
sp
lit

ob
ject

len
gth

are
b
oth

sp
ec-

ifi
ed

.
fi
eld

cn
t
sp
ecifi

es
th
e
nu

m
b
er

of
fi
eld

s
an

d
is

follow
ed

by
a
list

of
integers

sp
ecifyin

g
th
e
size

of
each

fi
eld

in
bytes.

sp
lit

p
oold

estroy
•
sp
lit

p
oold

esc
t
*p

ool
void

D
estro

y
s
a
p
o
o
l
a
n
d
frees

u
p
a
ll
m
em

o
ry

m
a
p
p
ed

reg
io
n
s.

sp
lit

p
oolalloc

•
sp
lit

p
oold

esc
t
*p

ool
•
u
n
sign

ed
N
u
m
B
ytes

void
*

A
llo

ca
te

M
em

o
ry

fro
m

a
S
p
lit

P
o
o
l.

A
llo-

cates
an

integer
nu

m
b
er

of
ob

jects
from

a
p
ool.

T
h
e
nu

m
b
er

of
ob

jects
allocated

is
N
u
m
B
ytes,

d
ivid

ed
by

th
e
n
on

-sp
lit

ob
ject

len
gth

,
w
h
ich

w
as

sp
ecifi

ed
u
p
on

in
itialization

of
th
e
p
ool.

T
h
is

a
rep

lacem
ent

for
m
alloc.

T
ab

le
2.2:

F
u
n
ction

s
of

th
e
sp
lit

p
ool

ru
n
-tim

e
w
ith

restru
ctu

rin
g
su
p
p
ort.

2.3. RUN-TIME SUPPORT 41

F
u
n
ct
io
n

A
rg

u
m
en

ts
R
et
u
rn

v
a
lu
e

D
es
cr
ip
ti
o
n

sp
li
t
p
oo

lr
ea
ll
oc

•
sp
li
t
p
oo

ld
es
c
t

*p
oo

l
•
vo
id

*o
b
j

•
u
n
si
gn

ed
N
u
m
B
yt
es

vo
id

*
R
ea

ll
o
ca

te
M

em
o
ry

fr
o
m

a
S
p
li
t
P
o
o
l.

R
ep
la
ce
m
en
t
fo
r
re
al
lo
c
in

th
e
st
an

d
ar
d

C
li
b
ra
ry
.

sp
li
t
p
oo

lf
re
e

•
sp
li
t
p
oo

ld
es
c
t

*p
oo

l
•
vo
id

*o
b
j

vo
id

F
re

e
P
o
o
l
A
ll
o
ca

te
d

O
b
je
ct
s.

R
ep
la
ce
-

m
en
t
fo
r
fr
ee

in
th
e
st
an

d
ar
d
C

li
b
ra
ry
.

sp
li
t
p
oo

lt
ra
ce

in
it

•
sp
li
t
p
oo

ld
es
c
t

*p
oo

l
sp
li
t
p
oo

lt
ra
ce

in
fo

*
In

it
ia
li
ze

tr
a
ci
n
g

fo
r
a

p
o
o
l.

In
it
ia
li
ze
s

tr
ac
in
g
d
at
a
st
ru
ct
u
re
s
fo
r
a
p
oo

l.

sp
li
t
p
oo

lt
ra
ce

-
tr
ac
e
b
as
e
st
ac
k

sp
li
t
p
oo

lt
ra
ce

-
tr
ac
e
b
as
e
h
ea
p

•
vo
id

*p
oo

l
•
u
in
t3
2
t
fi
el
d

•
vo
id

*p
tr

vo
id

A
d
d
s
a
n

en
tr
y

to
th

e
tr
a
ce

fo
r
a
sp

e-
ci
fi
c

fi
el
d

o
f
a

p
o
o
l.

T
w
o

ve
rs
io
n
s
ex
-

is
t,

on
e
fo
r
p
oi
nt
er
s
on

(n
ot

to
!)

th
e
st
ac
k

th
at

ar
e
d
er
ef
er
en
ce
d
,
on

e
fo
r
p
oi
nt
er
s
on

th
e
h
ea
p
.
T
h
is

is
d
on

e
b
ec
au

se
p
oi
nt
er
s
on

th
e
h
ea
p
ar
e
st
or
ed

as
ob

je
ct

id
en
ti
fi
er
s
an

d
p
oi
nt
er
s
on

th
e
st
ac
k
ar
e
st
or
ed

as
fu
ll
p
oi
nt
-

er
s
an

d
th
u
s
n
ee
d
to

b
e
co
nv

er
te
d
to

an
ob

-
je
ct

id
fi
rs
t
w
h
en

ad
d
in
g
an

en
tr
y
to

a
tr
ac
e.

T
ab

le
2.
3:

F
u
n
ct
io
n
s
of

th
e
sp
li
t
p
oo

l
ru
n
-t
im

e
w
it
h
re
st
ru
ct
u
ri
n
g
su
p
p
or
t.

42 CHAPTER 2. POINTER STRUCTURE RESTRUCTURING

Element 0 is reserved to represent the NULL pointer and is thus never per-
muted.

Tracing does not come for free and, therefore, tracing should be avoided if
it is not necessary. For the evaluation of our restructuring method we choose
to trace the first execution of a specified function (compiler option specifies
which function), restructure using this trace and then disable tracing. In a
future implementation, this will be dynamic and tracing could be triggered if a
decrease in performance is detected (for example by using hardware counters).

2.3.3 Pool Reordering

One of the more important parts of our system is the pool-rewriting support.
Rewriting in this context means that a pool is reordered in memory, so that
it is placed in a more optimal way with respect to memory access sequences.
This is done during run-time, and the re-writing is based on passing in a per-
mutation vector generated during run-time as described in Section 2.3.2. We
have implemented a copying rewriting-system that uses permutation vectors
that specify the new memory order of the pool. Although permutation vectors
could technically be generated during compile time in some cases where data
is not input dependent.

When a permutation vector is available, a pool can be rewritten in order
to optimize the memory layout. The pool rewriting algorithm that we have
devised has three distinct phases:

1. Pool rewrite, where the actual pool-objects are being reordered

2. Referring pool rewrite, where pointers in other pools that refer to the
rewritten pool are updated to the new locations

3. Stack update, where the on-stack references to objects in the rewritten
pool are updated

The basic algorithm for the interior pool update is as follows:

2.3. RUN-TIME SUPPORT 43

newData = mmap(pool . s i z e) ;
f o r each f i e l d in pool {

f o r each element in f i e l d {
i f f i e l d conta in s r e c u r s i v e po i n t e r s {

newData [f i e l d] [permVec [element]]
= permVec [pool . data [f i e l d] [e lement]] ;

} else {
newData [f i e l d] [permVec [element]]
= pool . data [f i e l d] [e lement] ;

}
}

}
munmap(pool . data) ;
pool . data = newData ;

In this case each field in the split pool is copied into the new address space, and
relocated according to the permutation specified in the permutation vector. If
the value in the field is itself a pointer to another object in the pool, that
pointer is remapped to its new value.

For the second phase where all the referring pools are updated, the rewrite
is even simpler:

f o r (r e f e r r e r in pool . r e f e r r e r s) {
f o r (ent in r e f e r r e r . f i e l d) {

r e f e r r e r . f i e l d [ent] = permVec [r e f e r r e r . f i e l d [ent]] ;
}

}

Here, each pool that refers to the rewritten pool will have the field containing
those pointers updated with the new locations.

The algorithm detailed here assumes that each pool descriptor has infor-
mation available regarding the pool connectivity (i.e. which fields in other
pools that points out objects in the rewritten pool). This information can
be derived from the DSA discussed earlier. This connectivity information is
therefore registered as soon as the pool is created.

44 CHAPTER 2. POINTER STRUCTURE RESTRUCTURING

2.3.4 Stack Rewriting

As already discussed in Section 2.2.3, the program stack is managed through
explicit pointer tracking. When a pool descriptor is allocated, a special seg-
ment of data is acquired that is used to track all pointers on the stack pointing
into the pool. Whenever a pointer is allocated on the stack, the location of
this pointer is inserted in the per-pool stack-tracking block.

When a pool is rewritten, the current stack will be traversed and all base
and derived pointers to locations within the pool are rewritten to reflect the
new location of the object. This block makes a distinction between base point-
ers and derived pointers, and each derived pointer is also tagged (in the stack
tracking block) with the field to which it refers.

2.4 Experiments

The challenge of a restructuring compiler is to generate code that will au-
tomatically restructure data, either at compile-time or run-time, in order to
achieve performance that matches the performance when an optimal layout
would be used. In the introduction the potential of restructuring was shown
by comparing execution of the benchmarks using explicitly defined data lay-
outs. In the experiments here, we ideally want to obtain similar performance
gains, but by automatic restructuring of data layout of the used pointer-linked
data structures.

We use the benchmark set SPARK00 which contains pointer benchmarks
whose layout can be controlled precisely [55, 52]. The pointer-based bench-
marks used are: SPMATVEC (sparse matrix times vector), SPMATMAT
(sparse matrix times matrix), DSOLVE (direct solver using forward and back-
ward substitution), PCG (preconditioned conjugate gradient) and JACIT (Ja-
cobi iteration).

These benchmarks store their matrix using orthogonal linked lists (elements
are linked row-wise and column-wise). All of them traverse the matrix row-
wise, except DSOLVE, which traverses the lower triangle row-wise and the
upper triangle column-wise.

For all benchmarks, one iteration of the kernel is traced, after which the
data layout is restructured. After this, tracing is disabled. This all happens
at run-time, without any hand-modification the application itself.

The experiments have been run on two platforms. The first is the Intel
Core 2 platform, an Intel Xeon E5420 2.5 GHz processor with 32 GiB of main
memory, running Debian 4.0. The other system is an Intel Core i7 920 2.67GHz

2.4. EXPERIMENTS 45

based system with 6 GiB of main memory, running Ubuntu 9.04.

2.4.1 Pool Reordering

As shown in the introduction, being able to switch to an alternative data
layout can be very beneficial. We applied our restructuring transformations to
the SPARK00 benchmarks and show that in ideal cases, speedups exceeding
20 are possible by regularizing memory reference streams in combination with
structure splitting. Of course, the run-time introduces a considerable amount
of overhead and is a constant component in our benchmarks. We will consider
this overhead separately in Section 2.4.2 to allow a better comparison between
the di↵erent data sets.

As a first step in our experimentation, we first determine the maximal
improvement possible, by using an initial layout that causes random memory
access. Figure 2.10(a) and 2.10(b) show the results of restructuring on the
pointer-based SPARK00 benchmarks (except DSOLVE, which is treated sep-
arately), if the initial data layout causes random memory access, on the Intel
Core 2 and Core i7, respectively. The data set size increases from left to right.
As shown in previous work [55, 52], optimizing data layout of smaller data sets
is not expected to improve performance that much and this fact is reflected
in the results. On both architectures, restructuring had no significant e↵ect
for data sets fitting into L1 cache. These sets have not been included in the
figures. For sets fitting in the L2 and L3 cache levels, speedups of 1� 6⇥ are
observed. The Core i7 has a 8 MiB L3 cache, whereas the Core 2 only has two
cache levels. This explains the di↵erence in behavior for the matrix Sandia/A-
SIC 100ks, which shows higher speedups for the Core 2 for most benchmarks.
However, it turns out that the Core i7 runs almost 3⇥ faster when no optimiza-
tions are applied on SPMATVEC for this data set. Therefore, restructuring is
certainly e↵ective on this data set, but the greatest benefit is obtained when
using data sets that do not fit in the caches.

An interesting case is DSOLVE, in which the lower triangle of the matrix
is traversed row-wise, but the upper triangle is traversed column-wise. As the
available data layouts of the matrices are row-wise sequential (CSR), column-
wise sequential (CSC) or random (RND), none of these orders matches the
traversal order used by DSOLVE. Figure 2.11(a) and 2.11(b) shows the results
for DSOLVE using the di↵erent memory layouts on the Core 2 and Core i7,
respectively. The matrices are ordered di↵erently than in the other figures,
as DSOLVE uses LU-factorized matrices as its input, which have di↵erent
sizes depending on the number of fill-ins generated during factorization. The
matrices have been ordered from small to large (in the case of DSOLVE, this

46 CHAPTER 2. POINTER STRUCTURE RESTRUCTURING

Speedups using restructuring, initially random memory access − Intel Core 2

Sp
ee
du
p

lu
ng
1

bc
ss
tm
34

ca
ge
9

rd
is
t3
a

ja
n9
9j
ac
04
0

cr
ys
tm
01

AS
IC
_1
00
ks

he
ar
t3

Zd
_J
ac
3_
db

Pr
es
_P
oi
ss
on

G
2_
ci
rc
ui
t

bc
ss
tk
36

nd
3k

0
2
4
6
8
10
12
14
16
18
20
22

SPMATVEC
SPMATMAT
PCG
JACIT

(a) Intel Core 2

Speedups using restructuring, initially random memory access − Intel Core i7

Sp
ee
du
p

lu
ng
1

bc
ss
tm
34

ca
ge
9

rd
is
t3
a

ja
n9
9j
ac
04
0

cr
ys
tm
01

AS
IC
_1
00
ks

he
ar
t3

Zd
_J
ac
3_
db

Pr
es
_P
oi
ss
on

G
2_
ci
rc
ui
t

bc
ss
tk
36

nd
3k

0
2
4
6
8
10
12
14
16
18
20
22

SPMATVEC
SPMATMAT
PCG
JACIT

(b) Intel Core i7

Figure 2.10: Speedups obtained using restructuring on the SPARK00 bench-
marks. The initial data layout is random.

2.4. EXPERIMENTS 47

DSOLVE using restructuring

Sp
ee
du
p

lu
ng
1

bc
ss
tm
34

ja
n9
9j
ac
04
0

cr
ys
tm
01

ca
ge
9

he
ar
t3

rd
is
t3
a

Pr
es
_P
oi
ss
on

0

2

4

6

8

10
CSC
CSR
RND

(a) Intel Core 2

DSOLVE using restructuring

Sp
ee
du
p

lu
ng
1

bc
ss
tm
34

ja
n9
9j
ac
04
0

cr
ys
tm
01

ca
ge
9

he
ar
t3

rd
is
t3
a

Pr
es
_P
oi
ss
on

0

2

4

6

8

10
CSC
CSR
RND

(b) Intel Core i7

Figure 2.11: Speedups obtained using restructuring on DSOLVE for all di↵er-
ent initial layouts. Input data sets are ordered by size (after LU-factorization).

48 CHAPTER 2. POINTER STRUCTURE RESTRUCTURING

is the size after LU-factorization).
For the lung1 data set, a decrease in performance is observed, but for the

larger data sets, restructuring becomes beneficial again. Speedups of over 6⇥
are observed for the Core i7, using CSC (column-wise traversal would yield
a sequential memory access pattern) as initial data layout. In principle, the
RND (initial traversal yields a random memory reference sequence) data set
could achieve much higher speedups if after restructuring the best layout has
been chosen. Currently, this is not the case for DSOLVE and we attribute this
to the very simple permutation vector generation algorithm that we use (see
Section 2.3.2). Generation of permutation vectors from traces will be improved
in future versions of the framework.

2.4.2 Tracing- and Restructuring Overhead

Our framework uses tracing to generate a permutation vector that is used
to rewrite the memory pool. Traces are kept for each field of a pool and
one of these traces is used for restructuring. Currently, the trace to be used
is specified as a compiler option, but this could potentially be extended to a
system that autonomously selects an appropriate trace. This will be addressed
in a forthcoming paper.

Tracing and the subsequent restructuring step have an impact on the per-
formance. One cannot simply trace everything all the time as the system will
run out of memory very quickly. In the benchmarks, we choose to only trace
the first iteration of the execution of the kernel. In order to minimize the over-
head of the tracing, the trace will only contain object identifiers, as described
in Section 2.3.2. So for instance, if a linked list contains a floating point field
and this list is summed using a list traversal, then if both the pointer field
and the floating-point field are traced there is an overhead of 2 trace entries
per node visited. In our experiments, the structure operated on is 32 bytes
and tracing the above-mentioned traversal would add 16 bytes per node extra
storage requirements when using 64-bit object identifiers. Using 32-bit objects
identifiers, this would be reduced to 8 bytes. Subsequently, the memory pool
is restructured using the information of the trace which relates to the field
that contains the floating point values of the linked list nodes.

The overhead of the tracing and restructuring has been estimated by run-
ning a single iteration of each kernel with and without tracing and restructur-
ing enabled, using a data layout causing random memory access. Figure 2.12
shows the interpolated execution times of the benchmark PCG, both with and
without restructuring for the Core 2 and Core i7 architectures. The initial data
layout produces random memory access behavior of the application, which is

2.4. EXPERIMENTS 49

0 10 20 30 40

0.
00

0
0.

01
0

0.
02

0

Total Execution Time − PCG
vanHeukelum/cage9

Iterations

Ti
m

e
[s

]

No opt. − C2
Restruct. − C2
No opt. − Ci7
Restruct. − Ci7

0 2 4 6 8
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

Total Execution Time − PCG
Sandia/ASIC_100ks

Iterations

Ti
m

e
[s

]

No opt. − C2
Restruct. − C2
No opt. − Ci7
Restruct. − Ci7

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

Total Execution Time − PCG
ACUSIM/Pres_Poisson

Iterations

Ti
m

e
[s

]

No opt. − C2
Restruct. − C2
No opt. − Ci7
Restruct. − Ci7

0 1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

Total Execution Time − PCG
ND/nd3k

Iterations

Ti
m

e
[s

]

No opt. − C2
Restruct. − C2
No opt. − Ci7
Restruct. − Ci7

Figure 2.12: Execution times with and without restructuring. The break-even
points are marked with a dot.

50 CHAPTER 2. POINTER STRUCTURE RESTRUCTURING

spm
atvec

spm
atm

at
pcg

jacit
dsolve

M
atrix

C
2

C
i7

C
2

C
i7

C
2

C
i7

C
2

C
i7

C
2

C
i7

lu
n
g1

42.1
51.8

113.9
58.3

388.5
31.5

98.8
55.4

N
/A

N
/A

b
csstm

34
24.3

6.2
53.6

29.5
22.7

5.6
27.2

6.7
19.8

4.0
cage9

21.0
8.1

44.3
26.1

22.1
8.1

28.6
10.3

2.9
2.0

rd
ist3a

17.9
5.6

39.5
21.1

17.7
5.2

-
-

3.2
2.1

jan
99jac040

16.0
8.0

16.3
15.3

17.8
8.2

-
-

1.1
1.3

crystm
01

8.3
4.9

17.1
17.0

9.1
4.9

10.8
5.8

2.2
1.8

A
S
IC

100ks
2.3

3.9
4.4

5.0
4.0

4.1
2.4

4.4
-

-
h
eart3

2.4
1.7

4.6
4.8

2.4
1.5

-
-

3.1
2.2

Z
d
Jac3

d
b

2.5
1.6

4.6
4.8

2.6
1.7

2.6
1.9

-
-

P
res

P
oisson

2.6
1.7

4.7
5.0

2.6
1.7

2.7
2.0

3.8
3.0

G
2
circu

it
2.6

4.7
4.6

4.7
5.0

5.1
2.6

5.7
-

-
b
csstk36

3.0
1.7

5.1
5.0

3.1
1.8

3.1
2.0

-
-

n
d
3k

3.5
1.9

5.4
5.2

3.5
1.9

3.6
2.1

-
-

T
ab

le
2.4:

N
u
m
b
er

of
iteration

s
for

th
e
b
reak-even

p
oints

w
h
en

tracin
g
an

d
restru

ctu
rin

g
is
en
ab

led
,
an

d
w
h
en

u
sin

g
an

in
itial

ran
d
om

d
ata

layou
t.

T
h
e
m
atrices

are
ord

ered
by

in
creasin

g
size.

T
h
e
low

er
p
art

of
th
e
tab

le
contain

s
th
e
larger

d
ata

sets,
w
h
ich

d
o
n
ot

fi
t
in

th
e
cach

es.
D
S
O
LV

E
p
erform

s
w
orse

u
sin

g
lu
n
g1,

th
erefore

a
b
reak-even

p
oint

is
n
ot

ap
p
licab

le.
T
h
e
m
issin

g
entries

for
JA

C
IT

are
d
u
e
to

zero
elem

ents
on

th
e
d
iagon

al.
F
or

D
S
O
LV

E
th
e
m
issin

g
entries

are
d
u
e
to

m
atrices

th
at

take
too

lon
g
to

factorize.

2.4. EXPERIMENTS 51

eliminated after the first iteration when tracing and restructuring is used. Af-
ter the first iteration, the application switches automatically to the non-traced
version, which uses the restructured data. Four di↵erent matrices have been
used which are representative in terms of performance characteristics (see Fig-
ure 2.10(a) and 2.10(b)). The break-even points for all matrices are included
in Table 2.4.

The figures show that tracing does come with an additional cost, but for
most (larger) data sets the break-even point is reached within only a few
iterations. For instance, for all data sets shown in Figure 2.12, the break-even
point is reached within 4 iterations, except for cage9, which is the smallest data
set depicted. Interestingly, on the Core i7, the break-even point is reached even
quicker, making restructuring more attractive on this architecture.

Although we have shown in this section that the additional costs of tracing
are manageable, it should be noted that we only showed this on computational
kernels. In general, it is not recommended to trace a full application code.
Therefore, as we have noted earlier in this chapter, tracing should be turned
on explicitly by a compiler option and coupled with a specification of the
functions that should be traced.

2.4.3 Run-time Stack Overhead

In order to quantify the overhead from the stack management that is needed if
pool restructuring is desired, a few custom programs have been written. The
interesting overhead in this case will be a measurement of per-function and
per-pointer overhead.

In order to measure this overhead an experiment was carried out where
a function is called that declares (and links together) a certain number of
pointers that point into a pool. This was repeated for a multiple number of
pointers and for both a version of the program built without the semi-managed
stack and one version that was built with the semi-managed stack enabled. The
function was in term executed a certain number (over a million) of times.

The following code demonstrates how this experiment was conducted:

52 CHAPTER 2. POINTER STRUCTURE RESTRUCTURING

l i s t e l em t ⇤
nextElem (l i s t t ⇤ l i s t)
{

i f (l i s t �>cur r ent)
l i s t �>cur r ent = l i s t �>current�>next ;

#pragma MAKE POINTERS

return l i s t �>cur r ent ;
}

where the MAKE POINTERS pragma was replaced by:

l i s t e l em t ⇤a0 = l i s t �>cur r ent ;
l i s t e l em t ⇤a1 = a0 ;
l i s t e l em t ⇤a2 = a1 ;
l i s t e l em t ⇤a3 = a2 ;
. . .
l i s t e l em t ⇤aN�1 = aN ;

The execution time for the loop calling the nextElem function was measured
and the di↵erence between the managed version and unmanaged version should
thus represent the overhead introduced for that number of pointers in the given
number of calls to the function.

Figure 2.13 shows the execution time on a 2.5GHz Intel Core 2 Duo, of 4
million calls to the function above in several runs with di↵erent numbers of
pointers declared and used in one function. The data evaluates to a base cost
of 5 cycles per pointer being linked, for the pointer tracking alternative the
cost is around 27 cycles per pointer being registered and linked. This gives the
penalty of explicit pointer-tracking to 22 cycles per pointer being tracked. This
overhead is obviously quite substantial, but the compilation chain described in
this chapter employed a simple optimization in order to minimize the overhead.

The optimization used was based on disabling the pointer tracking when
not needed, for example in descendant functions from the one that calls the re-
structuring run-time (since the stack on the descendants will be dead anyhow,
when the restructuring function is invoked).

2.4. EXPERIMENTS 53

0 100 200 300 400 500

0
5

10
15

20
Time vs. Linked Pointers

Number of Pointers

T
s/

4
M

 c
al

ls

BASE
PTR TRACK
STACKMAP
SHADOW

Figure 2.13: Execution time of a function with di↵erent stack management
approaches

Since the shadow stack and stack map strategies have not been imple-
mented and thus these strategies have not been evaluated using compiler gen-
erated code, a hand-written implementation of these strategies has been used
to estimate the overhead of these techniques.

By pooling all the pointers associated with a pool in a function into a single
per-function data structure, it is possible to eliminate all per-pointer overhead

54 CHAPTER 2. POINTER STRUCTURE RESTRUCTURING

associated with registering each pointer. In this case, only the address of
the record containing all the pointers needs to be registered. This has its
own problems, as it prevents certain optimizations such as the elimination of
unused pointers (though the pointer tracking su↵ers from the same issue).

The stack map approach o↵ers none of the run-time overhead (except dur-
ing the stack walks when program counter entries on the stack are translated
into function ids), but does on the other hand require modifications in the
compiler’s backend.

2.4.4 Address Calculations

The address calculation expressions used are an improved variant of those in-
troduced by Curial et.al. [12]. These improvements have been verified exper-
imentally by running two versions of the pointer-based applications from the
SPARK00 benchmark suite [55, 52], one with the new optimized address cal-
culation expressions enabled, and one version with only the general addressing
equations used by MPADS enabled. It should be noted that the implemen-
tation described in this chapter is not using the same compiler framework as
MPADS which is based on XLC. Thus a direct comparison between Curial’s
work and the compiler chain introduced in this chapter has not been carried
out.

The matrix input files are sparse and inserted in row-wise order, leading
to a regular access pattern upon traversal. In Figure 2.14, the matrices are
ordered by size. For the SPMATMAT benchmark the same matrices are used
three times each: one pass using one column of the right-hand side matrix, the
second pass using seven columns and the third pass using 30 columns. Note
that the matrix multiplication in SPMATMAT is multiplying a sparse matrix
with a dense matrix. The result of this multiplication is a dense matrix.

SPARK00 was compiled with LLVM GCC in order to generate LLVM bit
code. The bit code was then passed through the LLVM -linker and the pool
allocation and structure splitting optimization passes.

When running the experiments, it was expected that the new field o↵set
equations will in principle never be less e�cient than the generic ones, exclud-
ing e↵ects on instruction caches and any reordering that the compiler may or
may not do due to the changed instruction stream.

Table 2.5 gives the average improvements of the addressing optimizations.
In Table 2.5, the SPMATVEC benchmark actually lost in performance, this
was due to instruction cache conflicts in the new code. Figure 2.14 shows the
general behavior of the benchmarks where the relative performance improve-
ments is greater for smaller data set sizes. This is because the new instruction

2.5. RELATED WORK 55

Bench Name Address Calc Improvements
DSOLVE 4.87 %
JACIT 4.59 %
PCG 1.99 %
SPMATMAT 3.81 % (6.22%/4.16%/1.05%)
SPMATVEC -6.11 %

Table 2.5: Performance gain averages in percent for pool allocation and the im-
proved field o↵set equations. Note that SPMATVEC has a negative improve-
ment due to instruction cache conflicts. For SPMATMAT, di↵erent figures are
given in parentheses for 1, 7 and 30 columns in the right hand matrix

mixture actually plays a greater part in those cases. For the larger data sets,
the performance is more bounded by the memory latency and thus the instruc-
tion mixture has less overall influence.

2.5 Related Work

Optimization of data access in order to improve performance of data-intensive
applications has been applied extensively, either by automatic transformations
or by hand-tuning applications for e�cient memory access. In some cases,
memory access patterns can be determined symbolically at compile-time. In
such cases, the traditional transformations such as loop unrolling, loop fusion
or fission and loop tiling can be applied. For applications using pointer-linked
data structures, such techniques can in general not be applied.

The traditional methods mentioned above change the order of instruction
execution such that data is accessed in a di↵erent way, without a↵ecting the
result. One might as well change the underlying data layout, without a↵ecting
the computations. This is exactly what has been done on pointer-linked data
structures in this chapter.

In order to be able to automatically control the layout within type-unsafe
languages such as C, a type-safe subset must be determined. The Data Struc-
ture Analysis (DSA) developed by Lattner and Adve does exactly that [35, 36].
It determines how data structures are used within an application. This has
been discussed in Section 2.1.1.

DSA should not be confused with shape analysis. Shape analysis concerns
the shape (e.g. tree, DAG or cyclic graph) of pointer-linked data structures.
Ghiya and Hendren proposed a pointer analysis that classifies heap directed

56 CHAPTER 2. POINTER STRUCTURE RESTRUCTURING

O
be
rw
ol
fa
ch
/L
F1
0

H
B/
bc
ss
tm
09

H
B/
66
2_
bu
s

Ba
i/r
db
45
0l

N
or
ris
/lu
ng
1

Bo
ei
ng
/b
cs
st
m
34

va
nH

eu
ke
lu
m
/c
ag
e9

Bo
ei
ng
/c
ry
st
m
01

Sa
nd
ia
/A
SI
C
_1
00
ks

Va
nV
el
ze
n/
Zd
_J
ac
3_
db

AC
U
SI
M
/P
re
s_
Po
is
so
n

AM
D
/G
2_
ci
rc
ui
t

Bo
ei
ng
/b
cs
st
k3
6

N
D
/n
d3
k

0

2

4

6

8

10

12

14

Figure 2.14: Typical speedup in percent (%) (in this case for the JACIT
benchmark) ordered by increasing matrix size, from left to right.

pointers as a tree, a DAG or a cyclic graph [19]. Hwang and Saltz realized that
it is of more importance how data structures are actually traversed instead of
knowing the exact layout of a data structure. They integrated this idea in
what they call traversal-pattern-sensitive shape analysis [27]. Integrating such
an approach in our compiler could help in reducing the overhead introduced
by the pool access tracing by traversing data structures autonomously in the

2.6. CONCLUSIONS 57

run-time.
Type-safety is essential for data restructuring techniques. Two other trans-

formations that use information provided by the DSA are structure splitting
and pointer compression. Curial et al. implemented structure splitting in the
IBM XL compiler, based on the analysis information provided by the DSA [12].
Hagog and Tice have implemented a similar method in GCC [22]. The GCC-
based implementation does not seem to provide the same information as DSA.
Strictly taken, structure splitting is not necessary for dynamic remapping of
pointer structures, but it simplifies tasks like restructuring and relocation con-
siderably. Moreover, splitting simply has performance benefits because data
from unused fields will not pollute the cache.

Data layout optimization can also be provided by libraries. Bender and Hu
proposed an adaptive packed-memory array, which is a sparse array that allows
for e�cient insertion and deletion of elements while preserving locality [4].
Rubin et al. take a similar approach by grouping adjacent linked-list nodes
such that they are colocated in the same cache line. They call this approach
virtual cache lines (VCL) [43]. They state that they believe that compilers
will be able to generate VCL-based code. We believe our pool restructuring
achieves this automatic remapping on cache lines (albeit in a di↵erent way).
In addition, cache usage is very e�cient after restructuring a memory pool
because our implementation employs full structure splitting,

Rus et al. implemented their Hybrid Analysis that integrates static and
run-time analysis of memory references [44]. Eventually, such an approach
might be useful in conjunction with our restructuring framework to describe
access patterns of pointer traversals. Saltz et al. describe the run-time paral-
lelization and scheduling of loops, which is an inspector/executor approach [45].
Our tracing mechanism is similar to this approach, as it inspects and then re-
structures. The future challenge will be to extend the system such that it
inspects, restructures and parallelizes.

2.6 Conclusions

In this chapter, we presented and evaluated our restructuring compiler trans-
formation chain for pointer-linked data structures in type-unsafe languages.
Our transformation chain relies on run-time restructuring using run-time trace
information, and we have shown that the potential gains of restructuring access
to pointer-based data structures can be substantial.

Curial et al. mention that relying on traces for analysis is not acceptable
for commercial compilers [12]. For static analysis, this may often be true. For

58 CHAPTER 2. POINTER STRUCTURE RESTRUCTURING

dynamic analysis, relying on tracing is not necessarily undesirable and we have
shown that the overhead incurred by the tracing and restructuring of pointer-
linked data structures is usually compensated for within a reasonable amount
of time when data structures are used repetitively.

The restructuring framework described in this chapter opens up more op-
timization opportunities that we have not explored yet. For example, after
data restructuring extra information on the data layout is available and could
be exploited in order to apply techniques such as vectorization on code using
pointer-linked data structures. This is a subject of future research.

Data structures that are stored on the heap contain object identifiers in-
stead of full pointers. This makes the representation position independent,
which provides new means to distribute data structures over disjoint memory
spaces. Translation to full pointers would then be dependent on the memory
pool location and the architecture. This position independence using object
identifiers has been mentioned before by Lattner and Adve in the context of
pointer compression [37]. However, with the pool restructuring presented in
this chapter, a more detailed segmentation of the pools can be made and re-
structuring could be extended to a distributed pool restructuring framework.

The implementation presented in this chapter uses some run-time support
functions to remap access to the proper locations for split pools. The use of
object identifiers implies a translation step upon each load and store to the
heap. These run-time functions are e�ciently inlined by the LLVM compiler
and have a negligible e↵ect when applications are bounded by the memory
system. The run-time support could in principle be implemented in hardware
and this would reduce the run-time overhead considerably. We envision an
implementation in which pools and their layout are exposed to the processor,
such that address calculations can be performed transparently. Memory pools
could then be treated similarly to virtual memory in which the processors also
takes care of address calculations.

We believe the restructuring transformations for pointer-linked data re-
structures that have been described in this chapter do not only enable data
layout remapping, but also provide the basis for new techniques to enable
parallelizing transformations on such data structures.

Chapter 3

Theory of Grids

Data structure transformations still need a substantial research e↵ort to make
them more e↵ective. In this chapter, possible future directions for empower-
ing data structure transformations are explored. Although not directly imple-
mentable, the techniques and methods may very well be so in the future when
further research has been conducted in this area. The feasibility of restructur-
ing data structures is explored by treating the restructuring and analysis of
the linked data structures as a graph problem. In essence we try to redefine
the topology of the data structure used in such a program into a more opti-
mal data structure, given the actual structure of the graph. For example, if
a graph representing the data structure has a Hamiltonian path, it is possible
to restructure that part of the data structure to an array.

In general, we will not consider control flow in the analysis, as for instance
is done in the work on shape analysis [19], but only analysis of the topology
of the graph. As such this is the first step in handling the restructuring
problem and the methods need to be extended with control flow analysis in
the future. An important result in this chapter is that we show that control
flow analysis, or other additional knowledge, is required in order to e↵ectively
identify sparse grids and other regular structures, although it is feasible to
apply direct approaches on complete grids. This result is the guiding principle
that led to the later chapters in this thesis.

The shape of a pointer linked data structure cannot be determined from
type information only (pointers point to arbitrary objects). For example, a
structure type containing two recursively typed pointers in each object, may
represent a doubly linked list, a tree, a grid, or any other kind of graph formable
by two outgoing arcs per vertex (and by edge decomposition, many other kinds

59

60 CHAPTER 3. THEORY OF GRIDS

of graphs may be formed, including complete graphs).
Special optimizations may be carried out on for example lists, trees and

grids in some cases. For example, a list is linearizable (i.e. can be transformed
into an array), grids are two dimensional and can be transformed into two
dimensional arrays (using for example a jagged diagonal layout). In order to
carry out a linearization of a grid it must be known by the compiler or the run
time that the structure actually is a grid and not for example a doubly linked
list or a tree.

In these cases it is important that there exists a theoretical base in order to
choose the right methods when doing such optimizations or related analysis.

This chapter introduces the problem named Minimum Confined Com-
ponents, which is related to finding rows or columns in graphs. Minimum
Confined Components is shown to be NP-complete. However, for special
classes of graphs such as complete grids and trees, the Minimum Confined
Components problem can be solved in polynomial time, and for many other
graphs, we can use a heuristic method for decomposing a graph into confined
components. There are several areas where confined components have both
theoretical and practical applications. We give an algorithm capable of de-
composing a graph into confined components in O

�
|V |2 + |V ||E|

�
time. This

algorithm is shown to be optimal for trees, complete grids and complete tri-
angular grids.

We introduce the concept of orthogonal sets of confined components that
can be used to formally describe grid styled graphs. For many cases it turns
out that we do not need to compute the orthogonal sets but can instead make
a good guess that can be proven to be orthogonal using a simple but e�-
cient algorithm. We introduce such an algorithm that is also mostly parallel,
with a sequential complexity of O (L ⇤ (|V |+ |E|)), where L is the number of
dimensions in the grid.

Several practical applications are discussed in detail, giving pointer based
code that could be optimized based on the theory introduced in this chapter.
A compiler could allow for loop permutations on pointer linked structures (i.e.
iterating row by row instead of column by column) by identifying orthogonal
sets of confined components, and possibly also the application of complex
loop analyses such as the polytope model that can assist with skewing and
parallelization [39] of loops.

Section 3.1 gives definitions used later on in the chapter. Though some of
the definitions are not new, they are given in order to make the chapter self
contained. Confined components are introduced and the Minimum Confined
Components problem is proved to be NP-complete in Section 3.2. In Sec-
tion 3.3 CCDA, a near optimal polynomial time algorithm capable of finding

3.1. DEFINITIONS 61

confined components is introduced and discussed. Section 3.4 introduces or-
thogonal edge labeling, a concept that builds on confined components. Finally,
theoretical and practical applications of the confined components are discussed
in Sections 3.5 and 3.6.

3.1 Definitions

This chapter introduces new graph theoretic concepts, some of which are
tightly related to grids. In this section we introduce the fundamentals that
are needed to step by step build up the notion of confined components and
the formal definition of grids. Note that for the remainder of this chapter,
we are dealing with directed graphs unless otherwise specified. A compo-
nent G

C

(V
C

, A
C

) as used here, is a subset of an existing digraph G(V,A) s.t.
V
C

✓ V ^ A
C

✓ A. Note that the symbol Y may be used as the symbol for
exclusive or.

Definition 1. Unilaterally Connected Component (UCC)

A unilaterally connected component [7] is a subset of nodes and arcs such that
for every pair of nodes p, q there is a path from p to q or from q to p (or both).

Definition 2. Exclusive Unilateral Component (EUC)

An exclusively unilateral component is a subset of nodes and arcs such that
for every pair of nodes p, q there is a path from p to q if and only if there is
not a path from q to p.

Definition 3. Traceable Component

A traceable component is a subset of nodes, V
C

✓ V and arcs A
C

✓ A that
has a Hamiltonian path, i.e., there is a permutation of V

C

, say v1, v2, . . . , vr
with (v

i

, v
i+1) 2 A

C

for 1 i < r, where r |V |.

For grids, there exists an assignment of arc colors and numerical vertex la-
bels such that in for instance the two-dimensional case, each vertex has two
labels L1 and L2 (representing row and column indices) and each arc is as-
signed one of two colors C1 and C2 so the color represents row or column
directions. We can define this more exact as follows:

Definition 4. A digraph G(V,A) with vertices V and arcs A is called a grid
if there exist an arc coloring C1 and C2 and a vertex labeling L1 and L2, such
that:

62 CHAPTER 3. THEORY OF GRIDS

• There is a maximum of two incoming arcs per vertex.

• All incoming arcs for a vertex v 2 V have di↵erent colors.

• There is a maximum of two outgoing arcs per vertex.

• All outgoing arcs for a vertex v 2 V have di↵erent colors.

and that for all (u, v) 2 A we have:

(
L1(u) < L1(v) ^ L2(u) = L2(v) if (u, v) has color C1

L1(u) = L1(v) ^ L2(u) < L2(v) if (u, v) has color C2

(3.1)

In essence, this means that the labeling L1 and L2 take on the role of row and
column index.

When we refer to grids in this chapter we may use the terms complete,
sparse and directed grid in order to avoid ambiguity in the interpretation
from the reader. A complete grid is a grid where the labeling relation is
L
n

(u) = L
n

(v) � 1 instead of L
n

(u) < L
n

(v). A sparse directed grid is what
has been defined in Definition 4, and an example can be seen in Figure 3.1.
An undirected grid is a directed grid where the arcs have been replaced with
edges.

In the literature, the notion of grid is also often used for undirected graphs
where vertices have a two dimensional index in {1, . . . , n}⇥{1, . . . , n} for some
n, and vertices are adjacent when in one dimension, they have the same index,
and in the other dimension, their index di↵ers exactly one. If we direct all
edges in such a graph to the right or down, we obtain a complete grid.

It is easy to build a sparse grid from a complete grid, by removing vertices
and replacing the arcs to and from that vertex with arcs that maintain the
same row and column connectivity.

3.2. CONFINED COMPONENTS 63

Figure 3.1: A Sparse Grid. As can be seen, the middle vertex of the complete
grid is removed. A sparse grid is formed by replacing the removed element with
arcs while maintaining the row and column connectivity of the surrounding
vertices.

Definition 5. Directed Feedback Vertex Set

Given a digraph G(V,A), where V is the set of vertices and A the set of arcs.
A subset W ✓ V is called a feedback vertex set, if each cycle in G contains at
least one vertex of W .

3.2 Confined Components

Confined components is an important new concept, that is related to directed
grids. The exact relationship will be explored in Section 3.4. For now, we can
summarize them as o↵ering a graph theoretic approach that let us identify
rows and columns in a grid structure, without resorting to vertex labeling or
arc coloring.

When we refer to contraction, we specifically refer to edge contraction, the
mechanisms of which are described in detail in for example [57]. Edge con-
traction is commutative, so we can say that contraction of a whole component
is the application of the edge contraction operation on every arc within the
component.

Terminology wise, after a set of components have been contracted, the
resulting graph is in line with strongly connected component theory called a
condensate, where each vertex represents a component in the original digraph.

64 CHAPTER 3. THEORY OF GRIDS

Definition 6. Confined Unilateral Component

A confined unilateral component is a traceable component C of a directed
acyclic graph (DAG) D, so that if the component is contracted, there are no
induced cycles in the digraph D0 resulting from the contraction of C.

Proposition 7. A Confined Unilateral Component C is Exclusively Unilateral

Proof. A confined unilateral component C has no cycles since it is part of a
DAG. As C is traceable, by definition it contains an Hamiltonian path. Thus
for every pair of vertices (u, v) 2 C, u 6= v in the component there is a path
from u to v or from v to u, since there is a Hamiltonian path, but not both
since there are no cycles. Hence, the confined component is an exclusively
unilateral component as given in Definition 2.

Lemma 8. A decomposition of a DAG into a set of confined unilateral com-
ponents will have a topological order

Proof. Since the decomposition consists of confined unilateral components,
there are no cycles in the condensate of these components. Since there are no
cycles, the condensed graph is a DAG and all DAGs have topological order-
ings1.

Let the labeling from Definition 4 correspond columns and rows, we call the
label for columns L

C

and the labeling for rows L
R

. Let Lmax
C

be the maximum
value of the labels for all L

C

(v) where v 2 V and Lmax
R

the maximum value
of the labels for all L

R

(v), and Lmin
C

and Lmax
R

the corresponding minimum
labels.

The vertices whose label L
C

(v) = Lmax
C

are in the right most column,
L
C

(v) = Lmin
C

in the left most column, L
R

(v) = Lmin
R

in the top row and
L
R

(v) = Lmax
R

in the bottom row.
A vertex v is considered to be above u if L

R

(v) < L
R

(u) and below u if
L
R

(v) > L
R

(u). A vertex v is considered to be left of u if L
C

(v) < L
C

(u) and
right of u if L

C

(v) > L
C

(u).

Proposition 9. For a finite 2D sparse or complete directed grid G(V,A), the
set of components formed by contracting either all the rows or all the columns
form confined components.

1The fact that DAGs have topological orderings is well known and is discussed in many
text books on graph theory and algorithms such as for example [21], which contains a proof
for this on page 362.

3.2. CONFINED COMPONENTS 65

Proof. Since the graph is finite, there must be a left and right-most column.
The right-most column must form a confined component as the column has
no vertices on the right hand side, and no further vertices above the top most
vertex, or below the bottom vertex (in the same column), thus it only has
incoming arcs, and therefore it is not part of any cycle. If the column is
removed, a new column is made the right-most column, the previously removed
column cannot form a cycle with the current one (since no arcs are going back
to the rest of the grid), and must be traceable or it would not be a column in
a grid. Since none of the columns then form cycles with other columns and all
columns are traceable, the columns meet the definition of confined components.
The same reasoning holds when replacing columns with rows.

The following theorem was proven by Hans L. Bodlaender :

Theorem 10. Decomposing a DAG into the minimum number of confined
components is NP-complete.

Proof. The problem clearly belongs to NP. To show it is NP-hard, we use a
transformation from Directed Feedback Vertex Set. Let an instance of
Directed Feedback Vertex Set be given, i.e., a directed graphG = (V,E)
and an integer L. Build a directed acyclic graph H = (W,A) as follows. For
each vertex v 2 V , we take two vertices x

v

and y
v

, and an arc (x
v

, y
v

). For
each arc a = (v, w) 2 E, we take three vertices, z

a,1, za,2 and z
a,3. We add

arcs: (z
a,1, za,2), (za,2, za,3), (xv

, z
a,2), (za,2, yw). Set K = |V |+ |E|+ L.

xv

yv

xw

yw

za,1

za,2

za,3

Figure 3.2: Construction: subgraph for arc a = (v, w) 2 E

66 CHAPTER 3. THEORY OF GRIDS

Note that H is acyclic: taking first all vertices of the form x
v

, then all
vertices of the form z

a,1, then all vertices of the form z
a,2, then all of the form

z
a,3, and finally all vertices of the form y

v

gives a topological order.

Claim. G has a feedback vertex set of at most L vertices if and only if H has
a confined decomposition with at most K vertex sets.

Proof.): Suppose G has a feedback vertex set X ✓ V with |X| L.
Now, for each arc a 2 E, we take the vertex set {z

a,1, za,2, za,3}. We say
that this set represents a. For each vertex v 2 X, we take two vertex sets,
each with one element: {x

v

}, and {y
v

}. For each vertex v 2 V �X, we take
one vertex set with elements {x

v

, y
v

}. We say that this set represents v.
Clearly, each of these at most |E|+ |V |+ L vertex sets induce a subgraph

of G that has a Hamiltonian path.
We need to show that the graph obtained by contracting each vertex set

to a single vertex is acyclic. First, note that for all v 2 X, the vertex set {x
v

}
has no incoming arc, so can never be on a cycle. Similarly, for v 2 X, the set
{y

v

} has no outgoing arc, so is not on a cycle. Now only consider the other
vertices in the graph obtained by contracting vertex sets. A vertex that is a
contracted set representing a vertex has only arcs to and from vertices that is
a contracted set representing an arc, and moreover, if we have an arc from the
set representing v 2 V �X to the set representing a 2 E, then v is the head
of a. Similarly, if we have an arc from the set representing a 2 E to the set
representing v 2 V �X, then v is the tail of that arc. Thus, if we have a cycle
in the graph obtained by contraction, then this directly corresponds to a cycle
in G [V �X] which contradicts the fact that X is a feedback vertex set.

(: Suppose H has a confined decomposition with at most K vertex sets.
We say a confined decomposition is fine, if for each arc a 2 E, we have a

set {z
a,1, za,2, za,3}. We claim that there also is a fine confined decomposition

with at most K vertex sets. We can obtain such a fine confined decomposition,
by repeating the following steps:

• Consider a vertex set V
i

that contains z
a,2 for some a 2 E but that does

not contain z
a,1. Then, note that {z

a,1} forms a one-element vertex set
in the decomposition, as the vertex z

a,1 only has an arc to z
a,2 and no

incoming arcs. If V
i

contains an element of the form x
v

, then we replace
the sets V

i

and {z
a,1} by the sets {x

v

} and V
i

�{y
v

} [{z
a,1}. Otherwise

we replace the sets V
i

and {z
a,1} by the set V

i

[{z
a,1}.

• Consider a vertex set V
i

that contains z
a,2 for some a 2 E but that does

not contain z
a,3. Then, note that {z

a,3} forms a one-element vertex set

3.2. CONFINED COMPONENTS 67

in the decomposition, as the vertex z
a,3 only has an arc from z

a,2 and no
outgoing arcs. If V

i

contains an element of the form y
v

, then we replace
the sets V

i

and {z
a,3} by the sets {y

v

} and V
i

�{y
v

} [{z
a,3}. Otherwise

we replace the sets V
i

and {z
a,3} by the set V

i

[{z
a,3}.

We repeat the steps above while possible, and will obtain a fine confined de-
composition with the same number or fewer vertex sets.

For a fine confined decomposition, vertex sets that contain vertices of the
form x

v

or y
v

can be of the following types: there is a vertex v 2 V with
the set of the form {x

v

}, the set of the form {y
v

}, or the set of the form
{x

v

, y
v

}. Let X ✓ V be the vertices in V with a set of the form {x
v

} in
the fine confined decomposition. Clearly, for v 2 X, also the set {y

v

} is in
the decomposition. So the number of sets in the fine confined decomposition
equals 2 |X|+ (|V |� |X|) + |A|, and hence |X| L.

We will now show that X is a feedback vertex set in G. Suppose not. Then
we have a cycle inG [V �X], say with successive vertices v0, v1, v2 . . . vr�1, vr =
v0. Now, for each i, 0 i < r, the vertex set {x

v

i

, y
v

i

} has an arc in the set�
x
v

i+1 , yvi+1

. And thus, these vertex sets form a cycle in the contracted

graph, which is a contradiction.

So, X is a feedback vertex set in G of size at most L.

As H can be constructed in polynomial time from G, and as Directed
Feedback Vertex Set [29] is NP-complete, the theorem follows.

Apart from its application context, Theorem 3.2 is also interesting if we com-
pare it with some classic results in algorithmic graph theory. Compare the
notion of unilaterally connected components with strongly components: a
strongly connected component in a digraph is a set of nodes such that for
every pair p, q, there is a path from p to q and from q to p. Partitioning a
digraph in its strongly connected component can be done in linear time with a
well known application of depth first search (see e.g., [11, Chapter 22]. Many
problems on directed acyclic graphs are e�ciently solvable (e.g., [11, Chap-
ter 24.2]. Determining if a digraph has a Hamiltonian path is known to be
NP-complete [29], but is trivially solvable in linear time for directed acyclic
graphs.

Although theMinimum Confined Components problem is NP-complete,
it is relatively easy to decompose a DAG into confined components, where the
number of confined components is not necessarily minimal.

68 CHAPTER 3. THEORY OF GRIDS

3.3 Confined Components Decomposition Al-
gorithm

We have devised an e�cient greedy polynomial time algorithm that can de-
compose a DAG into confined components. The method devised is illustrated
as Algorithm 1. This algorithm is optimal in terms of finding the minimum
number of components, for trees, complete square and triangular grids; and
works as expected on cyclic digraphs, i.e. it does not explode in complexity or
incorrectly place nodes that are in a cycle in a component.

The algorithm starts at any source node and finds the heaviest path without
joins (nodes with in-degree > 1). As metric for weight, we use the sum of
the out-degree of all the branching nodes (nodes with out-degree > 1) in
the component. Though one could use the number of nodes, the argument
for using the sum of the branch node out-degree is that by maximizing the
number of out-edges from a selected component, the in-degree sum in the rest
of the graph is minimized when removing the component, thereby reducing
the number of join nodes in the rest of the graph. Although not empirically
evaluated here, this approach also turned out to work better in practice for
the example graphs that the algorithm was tested on.

Only branches and sequences of nodes are placed in the path. Since no
merge nodes are in these paths, the search space will be restricted to a tree.
The heaviest path can be found with a DFS based heaviest path search, if
a heavier path is found, the current heaviest path will be updated (when
the search has reached a leaf). Though, the copy of the current path to the
heaviest path does not look linear in the first case, it can easily be made so by
implementing an incremental copy scheme. This could work by first allocating
the extra space, and then copying backwards, stopping with the copy when
the two paths join together. Thus, even though there may be a copy in every
leaf, this copy will only copy nodes that have not yet been copied. So, the
copy complexity in total is only O(|V |).

When the heaviest path has been extracted, the nodes in that path are
removed from the graph and any new source nodes (due to the node removal)
are added to the list of sources and the computed heaviest path without merges
is added to the list of confined components.

The algorithm also works in the reverse direction, by starting in sink nodes
and constructing the components but switching merge nodes with branch
nodes.

Note that the algorithm runs in polynomial time, this is easy to see as
the algorithm perform DFS traversals and removes at least one node from the

3.3. CONFINED COMPONENTS DECOMPOSITION ALGORITHM 69

Algorithm 1 Confined Component Detection Algorithm (CCDA)

1 def heaviestNonMergingPath (v , currentPath , heav ies tPath) :
2 # Stop at j o i n s so we are bounded to a t r e e
3 i f l en (v . s ou r c e s) > 1 :
4 return
5 currentPath . push (v) # Add node to curren t path
6 # Increment the l e n g t h metr ic f o r branches
7 i f v . t a r g e t s > 1 :
8 currentPath . passedBranches ++
9 # Vi s i t a l l t a r g e t e d nodes
10 for tg t in v . t a r g e t s :
11 heaviestNonMergingPath (tgt , currentPath , heav iestPath)
12 # Check i f the path i s l onger than the known
13 # lon g e s t path
14 i f currentPath . passedBranches
15 > heav iestPath . passedBranches
16 or heav iestPath . isEmpty () :
17 heav ies tPath = currentPath
18 i f v . t a r g e t s > 1 :
19 currentPath . passedBranches ��
20 currentPath . pop ()
21
22 def FindConfinedComponents (G) :
23 cc = []
24 sou r c e s = G. f indAl lSourceNodes ()
25 for s r c in s ou r c e s :
26 path = []
27 heaviestNonMergingPath (src , [] , path)
28 cc += [path]
29 G. removeNodes (path)
30 sou r c e s += G. findNewSources ()
31 return cc

graph for each DFS.

Theorem 11. CCDA is correct and results in a set of confined unilateral
components.

70 CHAPTER 3. THEORY OF GRIDS

Proof. There are two properties to be proven. Firstly, that each component
will form traceable paths. Secondly, that the contracted graph will be cycle
free. Let G(V,A) be a DAG. Let In(v) and Out(v) be the in- and out-degrees
of the vertex v. Let C

k

be a component in the graph G and let us call the
contracted graph G

C

= (V
C

, A
C

), where V
C

is the contracted components and
A

C

is the arcs between the components.

Claim. Each component when selected is traceable.

Proof. First, let us rewrite the heaviestNonMergingPath function more for-
mally as follows:

f(v, p) =

8
><

>:

p if In(v) > 1

p� v if In(v) 1 ^Out(v) = 0

L(f(w, p� v)|8(v, w) 2 A if In(v) 1 ^Out(v) > 0

(3.2)

where v 2 V is a vertex in G, p is a sequence of vertices from G, � is concate-
nation, and L selects the heaviest sequence of the list of sequence parameters.

The property to prove is that the result of f(v, p) yields a traceable path
(sequence of vertices).

The initial invocation of FindConfinedComponents invokes f(v, ;), with
In(v) = 0. Then we have two cases: Out(v) = 0 or Out(v) > 0. If Out(v) = 0,
the result will be ;�v = v, a single vertex and therefor traceable. If Out(v) >
0, all subsequent invocations will be f(w, ; � v) or f(w, v), or in other words
have as argument a traceable path, together with vertex w, who is directly
connected to the last node of that path.

Now assume f is invoked by f , with as argument a traceable path p and
a node v, for which an edge exists in A connecting the last node in p with
v. Then in case In(v) > 1, the result is p and therefore traceable. In case
In(v) 1 ^ Out(v) = 0, the result is p � v, and therefore traceable. In case
In(v) 1 ^ Out(v) > 0, all invocations of f(w, p � v) have as argument a
traceable path. The proof follows by induction.

Claim. There will be no cycles in the contracted graph.

Proof. The second property follows directly from the fact that as seen above,
any invokation of f is either with a vertex v whose indegree is 0, or with a path
p whose last node has an edge to v. In case there would be a cycle, there would
be an arc from the rest of the graph to a node v in the contracted component.
This can only be the case if there would be an invokation of f(p, v), with
In(v) � 2. But in this case, v would not have been added to the contracted
component.

3.3. CONFINED COMPONENTS DECOMPOSITION ALGORITHM 71

Since both the claims are valid the theorem holds.

Theorem 12. CCDA finishes in polynomial time.

Proof. CCDA works by doing a DFS bounded by the tree formed by the cut-
set of all In(v) > 1, this DFS search is O (|V |+ |E|). Whenever a DFS is
complete, at least the source node is removed from the graph and placed in a
component. Thus CCDA has a complexity of O

�
|V |2 + |V ||E|

�
.

Theorem 13. For trees, CCDA finds the minimum number of confined com-
ponents and is therefore optimal.

Proof. This is easy to prove, we first show that a decomposition of a tree into
confined components must have at least as many components as there are leafs,
and then that the algorithm will generate one component per leaf.

Claim. Decomposition into confined components will have at least as many
components as there are leafs.

Proof. Assume that this would not be the case, then there would be at least
one confined component where there were two leafs. However, such a decom-
position is clearly not traceable and contradicts the definition of a confined
component.

Claim. CCDA generates exactly one component per leaf.

Proof. Since we are dealing with a tree, the algorithm will start with the root
of the tree. The algorithm then performs a DFS, locating a traceable sequence
that ends in a node that has out-degree 0 or in-degree > 1, however, since the
graph in question is a tree, there are no vertices with in-degree > 1. Hence,
the last node in the extracted component will be a leaf, but in order to reach
that vertex, the algorithm will only descend through vertices that are not leafs.
Hence, when starting the find longest non merging path algorithm from the
root of a tree, the extracted component will contain exactly one leaf vertex.

When extracting one component, it is removed from the tree; this will not
introduce any new leafs in the new graph, as a component will be removed
starting with the tree’s root, and not at any internal vertex.

The above reasoning applies to the further application of the subtrees
formed by the component removal.

Since a covering set of confined components must contain at least as many
confined components as there are leafs in the tree, and the algorithm will
generate exactly one confined component per leaf, the theorem follows.

72 CHAPTER 3. THEORY OF GRIDS

Theorem 14. For complete (directed) grid-graphs, CCDA finds the minimum
number of confined components and is therefore optimal.

Proof. Consider anm⇥n grid where all the downward pointing arcs are labeled
“down” and rightward pointing arcs are labeled “right”, if there is no such
labeling of the grid, then rotate it so that this labeling is valid.

Claim. Any trace in a grid must be a combination of down and right steps

Proof. Follows by definition of m⇥ n grids.

Claim. A confined component trace can consist out of arcs, either labeled right
or down, but not a combination of these two.

Proof. Assume that this is not the case, then we have a (partial) trace p, q, r,
where (p, q) is labeled down and (q, r) labeled right. In this case, there must
be a vertex s, which is connected as follows: (p, s) labeled right, (s, r) labeled
down. In this case, there is a path from p, q, r to s, and a path from s to
p, q, r. These two paths however form a cycle between the two components
contradicting the definition of a confined component.

Claim. A confined component will have at most max(m,n) vertices in it.

Proof. This is trivial as a confined component will not contain arcs of di↵erent
labels, the only components that can be constructed form parts of a row or a
column in the grid.

Claim. The algorithm will result in a set of components, all of length max(m,n).

Proof. Since the graph is a grid, the algorithm starts in the upper left corner
of the grid (the only vertex whose in-degree is 0). The algorithm will then
locate the longest non-merging path, this must either be the upper row or
the left-most column. Assume without loss of generality that m < n, then the
algorithm will find a row since each row is longer than each column. When this
row of size n is removed, the grid shrinks to the size m̃⇥ n, with m̃ < m < n.
Further iterations will remove additional rows of length n and this happen
while m̃ > 0, until there are no vertices left to remove.

Since CCDA will remove min(m,n) components of length max(m,n), the
theorem follows.

3.3. CONFINED COMPONENTS DECOMPOSITION ALGORITHM 73

Theorem 15. For complete triangular grids2, CCDA finds the minimum num-
ber of confined components and is therefore optimal.

Proof. Follows in an analogous way to the proof of Theorem 14. What needs
to be shown additionally, is that for the complete triangular grid there will
never be a confined component including a diagonal arc. Assume this is not
the case and the grid block has vertices p, q, r and s (named in clockwise
order), and arcs (p, q); (p, r); (p, s); (q, r) and (s, r), where the diagonal arc
is (p, r). From the component built by including (p, r), there are now paths
through both q and s forming cycles with the component including (p, r), in
turn contradicting the definition of a confined component.

Note that q and s cannot be part of the confined component at the same
time (otherwise it is not traceable), and neither p, q, r nor p, s, r can form
components (as shown in Theorem 14). Therefore, in the contraction of the
graph, there will be at least two cycles because q and s will be contained
in two di↵erent components. This contradicts Definition 6 and the theorem
follows.

Conjecture 16. Finding the rows or columns in a given sparse grid is NP-
complete

Motivation: In some cases the set of rows or the set of columns in a sparse grid
will be the minimum set of confined components. Therefore, finding these rows
or columns is similar to finding the minimum number of confined components
and hence most likely to be NP-complete.
As it is di�cult to prove statically on a program that a data structure will
not have any cycles, it is of interest to explore the behavior of the algorithm
even on cyclic digraphs. We show here that for cyclic graphs, the algorithm
will terminate in polynomial time and that any node that is in a cycle will not
be placed in a component. The latter can be used to reject a graph for being
cyclic during the runtime of a program.

Theorem 17. Even for cyclic digraphs, CCDA is polynomial.

Proof. As is the case for DAGs, at every outer loop pass, the algorithm will take
one source node (in-degree = 0) and remove at least this node. The algorithm
performs a DFS which is O(|V | + |E|) in time, this DFS will terminate even
in the presence of a cycle because a vertex in a cycle will be seen as a merging
point in the current path. If there are no source node left in the graph (i.e.

2Triangular grids are defined in a similar way to complete square grids where each square
is being tessellated into two triangles and the diagonal arc is pointing down.

74 CHAPTER 3. THEORY OF GRIDS

the remaining nodes are parts of cycles), findMoreSources will return an empty
list and the loop will thus terminate. Consequently, the complexity on cyclic
DAGs is at most O(|V |2 + |V ||E|).

Theorem 18. For cyclic digraphs, the CCDA will not embed nodes that are
part of cycles in any component.

Proof. We prove this by induction.

Claim. The first removed chain will not consist of nodes that are part of a
cycle.

Proof. The algorithm will start at some source node (in-degree = 0), and re-
move a component without incoming arcs. A chain of nodes without incoming
arcs cannot be part of a cycle. If this would be the case, then there would be
an incoming arc to one of the nodes making that node’s in-degree > 1. This
contradicts the non-merging component property.

Claim. A chain removed, assuming no nodes within a cycle have been removed
before, will never be part of a cycle.

Proof. Consider a cycle, all the nodes on a cycles will initially have an in-
degree > 0. The outer loop of the algorithm starts at a node whose in-degree
is 0, and finds a chain of nodes with in-degree = 1. This chain of nodes cannot
be part of a cycle. If this would be the case, one of the nodes would have
an in-degree of at least 2, but this contradicts the non-merging component
property.

Since neither the first nor any subsequently removed components have
nodes that are parts in a cycle, the theorem follows.

3.4 Orthogonality

In this section we describe how confined components are used to define the
notion of orthogonality for graphs. In fact this notion will allow us to infer grid-
structures on any graph. Thereupon, this property can be used to transform
a random graph traversal into a n-dimensional “grid” traversal. By doing so,
these graph traversals can be transformed to n-dimensional loop structures
(see Section 3.5). Orthogonality is based on labeling the arcs in the graph. All
the arcs in the graph with identical labels are in turn grouped into the same
arc set.

3.4. ORTHOGONALITY 75

Definition 19. Orthogonal Graph
Let G(V,E1, E2) be a digraph with vertex set V and arc sets E1 and E2. G is
orthogonal i↵ 8p, q 2 V : p

E1 q) ¬(p
E2 q). 3

In general, this simply means that E1 and E2 are independent arc sets; it does
for example not exclude branches or joins within the same arc set. Note also
that if G(V,E1, E2) is orthogonal, then by contraposition G(V,E2, E1) is also
orthogonal.

For discussing the results of the remainder of this section, we use the following
notions. Let C1, C2 be two edge-disjoint vertex-covering confined component
sets. Let E1 be the set of edges in C1 and E2 the set of edges in C2. Number
all nodes in V according to their component order in C2. Note that such an
ordering exists as the contracted graph of the C2 confined components is a
DAG. Let n(x) yield the number assigned to the vertex x. Let f(x) = y such
that x, y 2 E2. Let out(x) be the out-degree of x with respect to E2, that is
for the vertex x, the number of out arcs in E2.

Proposition 20. Two edge-disjoint vertex-covering confined component sets
C1 and C2 are orthogonal.

Proof. Proof by contradiction: Assume the proposition does not hold, then
we have p

E1 q and p
E2 q. Contracting the set C1 results in a singleton

cycle formed by the edges of E2, which contradicts the confined component
assumption given in Definition 6.

Lemma 21. Two edge-disjoint vertex-covering confined component sets are
ordered, that is:

8 (x, y) 2 E1 : n(x) < n(y) (3.3)

8x, y 2 {v 2 V : out(v) > 0} :

(
n(x) < n(y)) n(f(x)) < n(f(y))

n(x) = n(y)) n(f(x)) = n(f(y))
(3.4)

Proof. Assume not, then either:
9 (x, y) 2 E1 : n(x) > n(y). Then because of edge disjointness of C1 and

C2, (x, y) will be an edge between two di↵erent components in C2. This clearly
violates the ordering from the contracted C2.

3With the notation of p E q we mean that there exists a path from p to q in arc set E.

76 CHAPTER 3. THEORY OF GRIDS

9 (x, y) 2 E1 : n(x) = n(y). Indicating that despite having a direct path in
E1 from x to y, there is a confined component in C2 that includes this edge,
contradicting the edge disjointness of E1 and E2.

9x, y 2 V : n(x) < n(y)) n(f(x)) � n(f(y)). Then, clearly x and y are in
di↵erent components of C2, and either there is a cycle in the contracted graph
of C2 which is in contradiction with the definition of confined components, or
n(f(x)) = n(f(y)). In the latter case there are edges in E2 that are not part
of any of the components in C2, contradicting the definition of E2.

9x, y 2 V : n(x) = n(y)) n(f(x)) 6= n(f(y)). Then, there are edges in E2

that are not part of any of the components in C2, contradicting the definition
of E2.

Definition 22. Strictly Ordered Orthogonality
We call two edge-disjoint vertex-covering confined component sets strictly

ordered orthogonal.

Theorem 23. The set of rows and the set of columns in a (sparse) directed
grid are strictly ordered orthogonal.

Proof. From Proposition 9 we know that the set of rows and the set of columns
are confined component sets. Clearly these are also vertex covering.

Assume they are not edge disjoint, i.e. a an arc u, v is both in a row and a
column. In that case there will be two colors assigned to the same arc which
contradicts Equation 3.1.

Theorem 24. Let C1 and C1 be strictly ordered orthogonal, edge covering
and let all the components have an Eulerian trail that is the same as the trace,
then C1 and C2, may be represented as a (sparse) grid where the component
sets C1 is the set of rows and C2 the set of columns (or columns and rows
respectively).

Proof. Consider Equations 3.3 and 3.4 from Lemma 21, and apply it on both
sets. Let m(x) be the number assigned to each vertex from its order in the
contracted components of C1. Then:

8(x, y) 2 E1 : n(x) < n(y) ^m(x) = m(y) (3.5)

8(x, y) 2 E2 : m(x) < m(y) ^ n(x) = n(y) (3.6)

Note that, < follows from the theorem and = from the premise, as vertices
involving the arcs of E2 will be in the same component of C2.

3.4. ORTHOGONALITY 77

Assign a color C1 to the arcs in E1, and the color C2 to the arcs in E2.
Then we have one color per arc, or 8(u, v) 2 E : C1(u, v) Y C2(u, v). We can
then rewrite Equations 3.5 and 3.6 as:

(
n(u) < n(v) ^m(u) = m(v) if C1(u, v)

m(u) < m(v) ^ n(u) = n(v) if C2(u, v)
(3.7)

which is equivalent to Equation 3.1.
Because the components have intra-component Eulerian trails that is iden-

tical to the intra-component traces, there can be at most one intra-component
outgoing arc per vertex and at most one intra-component incoming arc per
vertex. Each vertex can have at most one incoming and one outgoing arc of
color C1 and at most one incoming and one outgoing arc of color C2.

We provide a simple algorithm capable of verifying whether a decomposition is
strictly ordered orthogonal. If such an algorithm is going to successfully run,
it needs to ensure the following attributes.

• The graph must be shown to be initially cycle-free.

• For each component set, the components must be confined.

• For each component set, the components must be edge disjoint from the
components in the other component sets.

• For each component set, the components must be vertex covering.

Algorithm 2 details the straight forward way to accomplish the verification.

78 CHAPTER 3. THEORY OF GRIDS

Algorithm 2 Strictly Ordered Ortho. Verification Algorithm (SOOVA)

1 def HasCycles (G) :
2 SCCs = Tarjan (G) :
3 i f l ength (SCCs) == 0 :
4 return False
5 return True
6
7 def Contract (G, cs) :
8 G2 = Graph ()
9 Map = {}
10 for comp in cs . components :
11 v = Vertex ()
12 G2 . v e r t i c e s += [v]
13 for v2 in comp . v e r t i c e s :
14 Map[v2] = comp
15 for e in G. edges :
16 i f Map[e . s r c] != Map[e . dst] :
17 G2 . edges += [Edge (Map[e . s r c] , Map[e . dst])]
18 return G2
19 # Given graph G and s e t o f decompos i t ions CC
20 # True i f f the decomp i s s t r i c t l y ordered or thogona l
21 def IsDecompStrict lyOrderedOrtho (G, CC) :
22 i f HasCycles (G) :
23 return False
24 for cs in CC:
25 cg = Contract (cs)
26 i f HasCycles (cg) :
27 return False
28 for e in cs . edges : # Check i f edge d i s j o i n t
29 i f e . tag == None :
30 e . tag = cs
31 else :
32 return False
33 for v in G. v e r t i c e s : # Check i f v e r t e x cover ing
34 i f v not in cs . v e r t i c e s :
35 return False
36 return True

3.4. ORTHOGONALITY 79

For Algorithm 2, the following two theorems can be proved in a straight for-
ward manner:

Theorem 25. The SOOVA algorithm is correct for simple digraphs4.

Proof. In order to prove this, we need to show that the algorithm identifies a
graph to adhere to the strictly ordered orthogonality property.

Claim. The algorithm detects cycles in the full data structure.

Proof. At the very start of the algorithm, Tarjan’s SCC algorithm [48] is ex-
ecuted on the whole graph. Tarjan’s SCC algorithm finds strongly connected
components. There exists strongly connected components in a graph i↵ there
are cycles in the same graph. Hence, the claim is valid.

Claim. The algorithm detects that each component set is confined.

Proof. By contracting each component set, and finding cycles in the contracted
graph, the premises of Definition 6 holds.

Claim. The algorithm finds shared edges between the components and proves
edge disjointness.

Proof. For all the edges in a component set, the algorithm will check if the
edge has a tag (it is assumed that no tags have been set when the algorithm
starts). If no tag is set a tag will be set for the next outer iteration and
component set check. Since all edges in previous component sets are tagged
when the next component set is checked, any edge in multiple component sets
will be detected.

Claim. The algorithm detects that each component set is vertex covering.

Proof. By iterating over every vertex, and checking if it is part of the current
component set, the claim holds.

Since all the claims are valid, the theorem follows.

Theorem 26. Given L component sets, verifying that a digraph is strictly
ordered orthogonal takes O(L ⇤ (|V |+ |E|)) time.

4It should be trivial to device code that iterates over all edges, finding and eliminating
multi edges and loops

80 CHAPTER 3. THEORY OF GRIDS

Proof. The main algorithm has two top level items, a cyclicity check known
to be O(|V | + |E|) and a loop over the L component sets. The loop contains
the following steps: contract, cyclicity check, an iteration over all edges and
an iteration over all vertices. Contraction in turn is O(C + |E|), where C is
the number of components. However, a component has at least one vertex,
so O(C) O(|V |). Cyclicity check is obviously O(C + E0) where E0 is the
number of edges between the components, worst case there are no edges within
the components, and O(E0) = O(|E|). The remainder is the iteration over all
edges O(|E|) and the iteration over all vertices O(|V |).

Summing the complexities together yields the following complexityO((|V |+
|E|) + L ⇤ (C + |E|+ C + E0 + |E|+ |V |)) = O(L ⇤ (|V |+ |E|))

The algorithm is mostly parallel, we discuss the issues with parallelizing
the algorithm informally here. While, being inherently a depth first search
problem, for cycle detection there are some parallelizable algorithms (for ex-
ample [14]). For this algorithm, the cycle detection will be the main bottleneck
as the remaining steps are relatively easy to parallelize.

Edge disjointness checks are completely parallel and each edge can be
checked concurrently under the assumption that the visitation check and the
tagging are atomic together. This can for example be accomplished using
either locks, transactional memories or test and set instructions. Parallel be-
havior here is O(|E|/P) in the best case, but as the test and check must be
serialized and if every single edge is shared with all sets, the complexity will
instead be O(L ⇤ ((E0)/P)) where E0 is the number of edges per set. However,
if this test fails the algorithm can immediately report that there are overlap-
ping edges, so in practice it should just signal the failure and return, so the
complexity is still O(|E|/P).

Contraction of the components is also essentially parallel, the initialization
of each vertex in the contracted graph is obviously parallel. The addition of
edges between the vertices may be parallel assuming proper atomics or locks
are used (such atomics do of course serialize the access to a specific component
vertex). In a naive approach with an evenly distributed edge count between
the components, the parallelism is bounded by the number of components in
the system and the execution time of the componentization should be in the
order of O((|V |+ |E|)/C), where C is the number of components.

Assuming a worst case cycle detection time of O(|V |log|V |) as given as
a sequential time by [14], we get the total execution time as O(|V |log|V | +
|E|/P + (|V |+ |E|)/C + ClogC).
Note that for all practical applications, L is a per data structure constant, and
the running time will be linear with the size of the data structure in terms of

3.5. SPECIAL GRIDS 81

the number of vertices and arcs.
With the shown ordering of the confined components in a strictly ordered

orthogonal graph, it is important to note that if a data structure is mapped
into a grid based on the confined components, it is possible to maintain the
data dependencies of the original traversal order.

3.5 Special Grids

For the theory introduced in this chapter there are both theoretical and prac-
tical applications. Already discussed is the notion of strictly ordered orthogo-
nality, which is an application of the confined components introduced in this
chapter. Strictly ordered orthogonality has been defined with the intention of
pointer traversals being embeddable in n-dimensional arrays, where the num-
ber of edge disjoint vertex covering sets of confined components represents the
dimensions in the array.

In terms of shapes, there are two grid types that we are interested in dis-
cussing: these are square grids and triangle grids. In both cases, these grids
can be directly implemented with pointers, yielding dense mesh implementa-
tion. However, in many applications, computations are not defined on the
direct implementation of these grids, but rather in an indirect way and on
their adjacency matrix representations. These are especially common in high
performance code libraries. For instance, in finite element applications the el-
ements are typically loaded as a triangular or tetrahedral direct grid structure
and after assembling the sti↵ness matrix, the computations switch to using
an adjacency matrix. Note that in general, adjacency matrices are basically
sparse rectangular grids.

3.5.1 Complete Rectangular and Triangular Grids

Strictly ordered orthogonality of complete square and triangular grids can
easily be computed in polynomial time, as shown in Theorems 14 and 26.

An important property of square grids is that there is a two dimensional em-
bedding of such grids so that pointer traversals can be translated into counted
loops, with one index per dimension. However, for complete triangular grids
(see Figure 3.3), the situation is a bit more complicated. This comes from
the introduction of row alignment issues. For example, if the triangular grid
is defined as given in the gray graph in Figure 3.3, one of the orthogonal arc
sets is the set of diagonal arcs, pointing backwards in next row, this introduces
back-dependencies that we want to avoid. This can either be avoided by con-

82 CHAPTER 3. THEORY OF GRIDS

structing the grid in a way where this will not happen (i.e. as the white graph
in the same figure), or by skewing the grid, so that the diagonals become the
down arcs. Note that this is not a direct embedding and empty elements need
to be inserted on the edges after the skewing to map this directly.

Figure 3.3: Triangular Grids. The fully white grid has the right and down
directions orthogonal, the gray grid has its right and diagonal directions or-
thogonal. In the right hand graph, the middle graph has been skewed and
empty elements inserted to ensure that the orthogonal directions line up and
can be traversed by modifying only one iteration index.

Triangular grids have a three dimensional counterpart called a tetrahedral
grid. Tetrahedral grids can also be defined in a way that allows for the deter-
mination of three orthogonal arc sets, for a simple example with twelve tetra-
hedrons, see Figure 3.4. Iterations over these arcs can then also be mapped
into indexed loops where three indices are used. Essentially, a right angled
tetrahedral grid can be mapped into a set of cubes (forming an overlaying
cube grid), the dimensions of the cube represent the orthogonal arc sets which
can be mapped to a single index increment and traversals in the remaining
arcs can be replaced by a incrementing either two or three dimensions. Note
that skewing needs to be handled in an even more intricate way than was the
case for the triangular grids, and may not always be possible.

3.5. SPECIAL GRIDS 83

Figure 3.4: Orthogonal Tetrahedral Grid Building Element. The edge styles
represent the di↵erent dimensions in the grid. In this case, the fat solid lines,
the fat long striped lines and the fat short striped lines indicate the orthogonal
dimensions in this grid (i.e. depth, horizontal and vertical dimensions).

3.5.2 Sparse Square Grids

Most sparse square grids arise from adjacency matrices in the code. These
grids are strictly ordered orthogonal as defined in this chapter, and the un-
derlying grid may be easily decomposable (in orthogonal arc sets). There are
two options for decomposing these grids, one is to attempt decomposing the
sparse grid itself, the second option is to map the sparse grid into the direct
implementation and to decompose the direct grid5.

Deriving the mapping to the direct grid is not straight forward and is
rather artificial with respect to the algorithms working on the grids (row wise
traversals become iterations on vertex neighbors, and column traversals be-
come iterations over the vertices), i.e. a traversal over a sparse grid’s rows
and columns becomes a traversal over the direct grid’s rows and columns and
all neighbors of the visited nodes. Note that, in order to derive a mapping to
the original complete grid we would need to find the rows and the columns in
the adjacency matrix. This means that the decomposition of the direct grid in

5A direct implementation is a direct representation of a matrix in matrix-form; this
should be contrasted to indirect solvers that map a matrix into an adjacency structure

84 CHAPTER 3. THEORY OF GRIDS

strictly ordered orthogonal arc sets is dependent on the decomposition of the
sparse adjacency matrix grid.

Presumably, for analysis purposes, we would want to insert empty fill el-
ements in the sparse square grid in order to be able to embed it into a two
dimensional grid. This is similar to how the triangular grid with back pointing
dependencies was handled (bottom graph in Figure 3.3), except that the empty
fill elements would also be inserted between the elements (not only outside the
main grid). This insertion strategy serves as a way of applying optimizations
designed for codes working on direct grids to codes working on indirect grids.

3.5.3 Exploiting Knowledge on Pointer Types

In many cases recursive pointer types are used to implement graph struc-
tures. This is important since the programs often constrain the purpose of
each pointer field to point in a specific dimension. We can use this property
to infer a decomposition into potentially orthogonal arc sets. The orthog-
onality assumption can in turn be verified with an e�cient algorithm (see
Theorem 26). For example, in a sparse matrix-vector multiply code, a com-
mon implementation is to use a record containing two pointer fields (right and
down). This record may in turn be used to construct a graph as the one illus-
trated in Figure 3.5. Note that without any kind of verification of the assumed
shape, it would not be correct to assume that the structure represents a ma-
trix, since any pointer may alias the other pointers in the structure or may be
part of some other structure (e.g. a tree or some generic DAG). In such cases,
embedding in a two dimensional grid would not be a good choice.

We can also use the property of directed arc chains to eliminate pointer
fields from the analysis and support anti-parallel feedback arc sets when such
sets exist in a pointer structured graph. Despite the fact that such arcs intro-
duce cycles (for example the set of all up and left pointers form an anti-parallel
feedback arc set in a bidirectionally linked grid, that is, left is anti-parallel to
right, and up is anti parallel to down, and removing these pointers will leave the
remaining graph as a DAG), verifying that a named pointer field is anti-parallel
with another pointer field is obviously linear with the number of vertices in
the graph.

3.6 Potential Applications

Confined components and the orthogonality of arc-sets have several compiler
applications that could almost be directly implemented in many existing com-

3.6. POTENTIAL APPLICATIONS 85

Figure 3.5: Strictly Ordered Orthogonal Decomposition of a Sparse Square
Grid. Each confined component in the decomposition is indicated using a
separate shade of gray.

piler tool chains. The fundamental area where the concepts can be applied is
the optimization of pointer structured code and data structures. This type of
optimization, where for example objects are being moved around or pointers
are added to or removed from a structure, is called restructuring.

It should be noted that in general it is not possible to restructure data
during compile-time since data in most cases is read from files that the user
may modify. Because of this, restructuring of data needs to be done during run-
time; but the compiler may help by analyzing the program and data structures
in order to assist with the generation of restructuring code, or by restructuring
the data structure types themselves (e.g. eliminating pointers in a structure
or replacing them with indices).

There are three key problems that need to be solved in order to restruc-
ture pointer-based data structures. These are data structure memory layout,
chained pointer dependencies and the pointer aliasing problems.

In the first case, when a pointer based structure is created (often involving
a recursive data structure), the order in which elements are read from file will
in many cases impact the memory order of the elements. An example that
illustrates this is a common pattern from sparse matrices, where a structure
is used for each element in the matrix. This structure is then usually linked
to the next in row and the next in column elements. Depending on how the
system’s standard memory allocator works (e.g. malloc), the elements will be
created one by one in an increasing memory order. If the order of the elements
are the same as the logical structure, that is element (0, 0) first, then (0, 1)

86 CHAPTER 3. THEORY OF GRIDS

and finally (m,n), the matrix elements will be allocated in a row-wise order
since the file the matrix is read from is ordered in that way. If the elements
in the file are unordered the right element pointer will not necessarily point to
the next physical element.

For the problem relating to chained pointer dependencies, it should be ob-
vious that in order to access an arbitrary element within a pointer linked struc-
ture, a linear traversal of the pointer chain is needed. Such dependency chains
directly impact parallelization and vectorization opportunities as a pointer
chain cannot easily be split up through a divide and conquer like pattern.

The aliasing problem is dealing with the question of whether two pointers
can point to the same object. Some languages such as Fortran make this im-
plicit, others like C allow the programmer to have a more relaxed notion and to
tell the compiler when there will be no aliasing. In many cases this is not prac-
tical, so several inter-procedural algorithms for doing points-to analysis have
been devised such as Bjarne Stensgaards analysis [47] in order to automate the
aliasing resolution. Such algorithms typically classify pointer dependencies as
will not alias, may alias and will alias. This allows the compiler to eliminate
redundant pointers and assume that objects are independent in many cases.

These three problems (order, dependencies and aliasing) are all very in-
teresting by themselves, and various solutions have been developed that each
deal with one of the problems and not the others. As will be shown here, the
confined components and the notion of orthogonal edge sets may help to deal
with all three of these problems.

For the applications discussed in this section, we predefine a number of
types, though we only show the pointer fields in the types as these are the
relevant fields for the graph structure.

typedef struct c e l l t {
c e l l t ⇤ r i g h t ;
c e l l t ⇤down ;

} c e l l t ;

typedef struct {
s i z e t rows ;
s i z e t c o l s ;
c e l l t ⇤⇤row ;
c e l l t ⇤⇤ c o l ;

} matr ix t ;

When the types are used in the applications below, we assume that it is
known that the rows and the columns are vertex covering confined component

3.6. POTENTIAL APPLICATIONS 87

sets. Implicitly from this, we are aware that the recursive pointer chains will
end in NULL at some point (or the pointer graph would not be a DAG).

We must also stress, that control flow information needs to be considered
by the compiler before doing any transformations like the ones mentioned.
For example, the component traversals may depend on additional variables
and for example loop interchange may not be suitable without proper control
flow information. Such control flow needs to be consider together with the
orthogonality and confined component formalisms.

3.6.1 Linearization

For large pointer linked data structures, memory bandwidth may be a severely
limiting factor. This is especially problematic when data structures visited in
sequence are not adjacent in memory. The memory system will in many cases
have to fetch unnecessary data outside the structure that is being loaded, that
are not part of the next object. In addition to this, pointer based structures
are not directly position independent (since they contain pointers). Both of
the issues may be alleviated, by applying linearizing transformations (as for
example described in [53]).

For a pointer linked data structure, a linearization pass would relocate the
objects into an array, where the recursively typed pointers may be replaced
with array indices. The transformation, while obviously being trivial to apply
on a singly linked list, is non-trivial to apply on complicated pointer linked
structures. For example, in the linked list case, we can simply traverse the
list and relocate the objects, but for an object with more than one recursively
typed pointer the object may represent any kind of graph structure, so the
order of the linearization is not trivial, and it may not make sense in many
graphs.

By showing a pointer linked structure to be orthogonal, we can apply the
linearization step on two-dimensional grids. This is done by linearizing based
on one of the dimensions (i.e. vertical or horizontal) in the grid. Figure 3.6.
illustrate the transformations on the data structure.

88 CHAPTER 3. THEORY OF GRIDS

D

H I

E

L M

J

F G

K

N

A B C

D H IE L MJF G K NA B C

Figure 3.6: Linearization of an orthogonal grid. The left figure shows the
data structure’s logical layout (the nodes can be spread out on any kind of
location), the right hand graph shows the structure in its post linearization
physical layout.

Consider the following code iterating over the matrix type defined above:

for (int i = 0 ; i < m�>row count ; i ++) {
c e l l t ⇤p = m�>row [i] ;
while (p) {

p = p�>r i g h t ;
}

}

In order to exploit the linear behavior of the right pointer member, we make
two transformations on the code, the first step moves the inner loop into a
pointer increment based iteration:

for (int i = 0 ; i < m�>row count ; i ++) {
c e l l t ⇤p = m�>row [i] ;
while (WITHIN ARRAY(p)) {

p ++;
}

}

The next step is to rewrite the while loop into a for-loop:

3.6. POTENTIAL APPLICATIONS 89

for (int i = 0 ; i < m�>row count ; i ++) {
c e l l t ⇤p = m�>row [i] ;
for (int i = 0 ; i < ARRAY LEN(p) ; i ++) {

// Replace de r e f e r ence s o f p wi th p [i]
}

}

In order to accomplish this, the language or the optimizing runtime would need
to provide information on how to determine array membership and lengths.
Although, the C-language does not provide this information, the optimization
relies on the fact that confined components have already been detected. There-
fore assume that this information is available. As the pointer linked structures
are typically built dynamically (by for example loading a file), it would be
necessary to take this into account. We suggest that the compiler should be
able to determine when a structure is complete, either through analysis or by
programmer intervention.

3.6.2 Advanced Pointer Elimination

While the linearization mentioned earlier provided a simple type of pointer
elimination, it still does not eliminate pointer fields in the structures. If point-
ers are unnecessary they will take up memory bandwidth, therefore it is of
interest to get rid of some of the pointers completely.

A related problem is the position dependencies of the data structure, such
dependency does for example prevent the o✏oading of computations within
an heterogeneous system (such as for example GPUs) that work with di↵erent
address spaces. Consequently, it would be interesting to eliminate unused
pointer fields in a structure in order to save memory bandwidth and to make
the structures position independent.

If pointers are used to traverse a chain, they can be indexified by building
on the linearization step mentioned previously. Consider a pass through the
data structure that replace all the pointers with indexes within the linearized
structure instead. This structure is immediately position independent and it
is now relatively easy to move the pointer based structure to a GPU.

Such transformations require access to the linearized structure’s base pointer,
and this may not always be possible. We could solve this by cloning functions,
adding extra arguments with the base pointers (much like the work on auto-
matic pool allocation, where pool pointers where automatically added to the
function’s parameter lists).

90 CHAPTER 3. THEORY OF GRIDS

In order to replace the pointers within the linearized region, we need to
introduce new types.

typedef unsigned long c e l l i d x t ;

typedef struct c e l l t {
// Right e l im ina t ed
c e l l i d x t down ;

} c e l l t ;

typedef struct {
s i z e t l en ;
c e l l t e lements [] ;

} c e l l a r r a y t ;

typedef struct {
c e l l a r r a y t ⇤ c e l l s ;
c e l l i d x t s t a r t ;
c e l l i d x t end ;

} c e l l p t r t ;

typedef struct {
s i z e t rows ;
s i z e t c o l s ;
c e l l p t r t ⇤row ;
c e l l p t r t ⇤ c o l ;

} matr ix t ;

The cell array can be used by the linearization pass to store all the cell objects.
This is used by the cell pointer type, which can be used when dealing with cell
pointers on the stack, or in other types, the cell pointer type has a start index
and an end index in order to signal the start and end of a confined component
within the array (in this case, the components are either rows or columns).

Assuming that the cell type is responsible for the majority of the data
tra�c, the setup shown here will reduce the memory bandwidth requirements
by eliminating one pointer field (we can potentially also reduce the size of
the index type to 32 bit if the application can be limited to work with 4
billion connected cell objects at most). In addition to reducing the bandwidth
requirements, the matrix type will be mostly position independent (the only
exception being the cell array pointers, but those can be reduced in numbers

3.6. POTENTIAL APPLICATIONS 91

by for example factoring out the array pointer from the cell pointer type and
storing it separately in the matrix type).

Assuming that the application only stores a single double value in the cell
objects the transformation has eliminated almost a third of the memory bus
tra�c stemming from the matrix traversals.

The suggestions in this section do depend on the linearization optimization
described in the previous section. As such, it requires development of language
constructs or control flow analysis that can determine when a structure can
be rewritten in the given form (for example, the compiler must be able to
determine that no additional objects are inserted in the structure and that the
right pointers are constant). In order to execute a pointer based program on
a GPU, additional technology would be needed that could generate working
GPU code for parts of the program, while GPU compilers naturally exist
and are well used. Some work has been carried out in the area of allowing
unmodified C-code to execute on a GPU such as for example [2] that describes a
compiler capable of generating CUDA code from dense C-based loops (that can
be analyzed using the polyhedral model). We are not aware of any compilers
that can take a sparse pointer based C-code and generate GPU code for parts
of the program. As such, we believe that linearization in combination with
advanced pointer elimination techniques could be a powerful transformation
opening up the possibility for GPU based computation on some pointer based
codes.

3.6.3 Replacement Algorithms, Garbage Collection and
Leak Detection

Replacement algorithms and policies have been extensively studied by others,
one of the most well known is the Least Recently Used (LRU) replacement
policy that will replace the oldest reference (in the cache or Translation Look
aside Bu↵ers (TLB) for example) whenever the cache unit is full. Although
the LRU policy is di�cult to implement in hardware, many of the cache re-
placement algorithms are derived from LRU such as for example the pseudo
LRU policy and others [13, 18, 42]. However, LRU and its derivatives are
not optimal and it is easy to write code that will su↵er if LRU is used. The
optimal algorithm for replacement policy was described by Belady[3] and can
be described as replacing the unit that will be needed the furthest time in the
future, this however requires that the future is well known and can only be
used as is in some severely restricted cases.

Related to the concept of cache replacement algorithms is the notion of
garbage collection and leak detection. These concepts are similar to cache

92 CHAPTER 3. THEORY OF GRIDS

replacement in the aspect that they are also dealing with reachability, although
for replacement there is not necessarily a strict reachability requirement but
rather a temporal requirement that the replaced objects should not be reached
soon.

In either case, by applying the confined component detection and matching
the links to a successor component within the iteration space in the code, we
should be able to apply an informed replacement policy, or run a potentially
e�cient garbage collection / leak detection algorithm. In the former case,
components that are exited by some iteration will be evicted from the caches,
and in the second case, a component that is exited during an iteration could for
example have a component-reference count reduced. Note that the common
reference counting issues where cycles need to be specially handled does not
apply in this case as components by definition are not part of cycles when
contracted.

Consider the following line of code:

p = p�>down ;

In this case we assume that down always leave a component, though it may
be possible to have more complex exit criteria we have at this moment not
explored the area and as such this is left as future work.

Consider the act of leaving a component, it is likely that the previous
component is no longer needed for some time, in this case the entire component
can be evicted from cache. If the hypothesis that the down dereference leaves
a confined component is correct, it may be suitable to transform the line into
the following:

p tmp = p ;
p = p�>down ;
f lush component (componentof (p tmp)) ;

Naturally, whether or not this transformation makes sense would depend on
the component, cache and TLB sizes. In this case, when a component is
flushed, one stack root pointing into some compoenent is also replaced. If the
code leaves a component, it may be necessary to consider what this entails for
garbage collection and leak detection (the latter being similar but more of a
debugging tool for gc-free systems).

In these cases it may be interesting to consider whether reachability in-
formation should be computed on component graphs instead of individual

3.6. POTENTIAL APPLICATIONS 93

objects. Essentially, this could potentially allow higher level GC and leak de-
tection systems. The performance of these systems may be improved as they
would no longer need to scan through every single heap object. Instead they
can walk the contracted graph of components, which hopefully contains fewer
vertices than the full graph.

The following example illustrates how some object pointer is declared on
the program stack and then used in a reference counting system6. The di�-
cult part is obviously not in the actual reference counting, but rather in the
detection of the fact that p is pointing into a component of some sort.

{
node t ⇤p = . . . ;
i n c r e f (componentof (p)) ;
. . .
d e c r e f (componentof (p)) ;

}

In order for this to work properly a runtime function for determining the
component of an object would be needed. None of these applications rely
on linearized components as described in section 3.6.1, although it should be
noted that linearization would probably simplify the runtime.

3.6.4 For-each Detection and Loop Interchange

Given that the confined component sets may specify dimensions of a graph, it
may be possible to determine that loops are actually for-each loops. Especially
in the case of orthogonal arc sets, it may be possible to permute some loops that
iterate over the main dimensions of the orthogonal structures. For example,
if the rows are linearized and a loop is found to be traversing the columns, it
would be better if the loops where interchanged and the iteration done over
the rows instead. The exact safety of these transformation would naturally
depend on the control flow of the application, and whether or not all row and
column headers can be derived.

Consider the following loop, which is representative to some sparse matrix
codes:

6Note, that we don’t have to bother about the issues reference counting have with cycles
since by definition, the confined components are cycle free.

94 CHAPTER 3. THEORY OF GRIDS

for (int i = 0 ; i < m�>row count ; i ++) {
c e l l t ⇤p = m�>row [i] ;
while (p) {

p = p�>r i g h t ;
}

}

Consequently, if the compiler would hypothesize that row[] contains all roots
in a vertex covering set of confined components formed by following the right
pointers, and similarly that col[] contains all the roots forming a vertex covering
set set of confined components with the down pointers. By determining that
the two sets are orthogonal, it is possible to do loop interchange on the the
loop. Then the loop can be transformed into:

for (int i = 0 ; i < m�>co l c ount ; i ++) {
c e l l t ⇤p = m�>c o l [i] ;
while (p) {

p = p�>down ;
}

}

This assumes that there is a way to bind the col count and row count variables
to the actual array lengths. This is implicit in many programming languages
(but not in C).

Like normal loop interchange, this optimization primarily targets the mem-
ory order of the dereferenced elements in the matrix. For sparse matrices, the
memory order is typically dependent on the input to the program, so a good
solution in this case would be to emit multi-versioned code (one for row major
and one for column major orderings).

In addition to this, parallelism in the outer loop could potentially be ex-
ploited as it is clear that the inner loops are independent of each other. The
code would then be trivially transformed into the following sequence:

p a r a l l e l f o r (int i = 0 ; i < m�>row count ; i ++) {
c e l l t ⇤p = m�>row [i] ;
while (p) {

p = p�>r i g h t ;
}

}

3.7. SUMMARY 95

3.6.5 Implementation Issues

As it is computationally expensive to detect confined components, we cannot
expect that an implementation would try to do this during compile- or runtime
without having constraints on how the components may be built.

We could assume that for example orthogonal edges will be di↵erent point-
ers in a structure (e.g. right and down pointers in a sparse matrix). Although
subsequently verifying this during runtime could potentially be expensive as
there is no conceptual di↵erence between say a sparse matrix node and a bi-
nary linked list node. Both have two pointers embedded in themselves and
cannot be distinguished from each other. Two of the most obvious ways to
overcome this is to let the programmer specify additional meta-information
through attributes or pragmas in the source code, or through the less general
way where the compiler simply analyzes the language of the source code. If
it finds fields named right and down it makes one assumption, but if it finds
fields named right and left it makes another.

3.7 Summary

In this chapter we introduced a new graph theoretical concept, the confined
component and showed several applications that could be used in a compiler
(in combination with a run-time system). Though the Minimum Confined
Components problem was shown to be NP-complete, this restriction does
not apply to practical cases where we do not need to find the components, but
we have only to verify that we have a given decomposition of the components.

An e�cient algorithm able to find the vertex covering sets of confined uni-
lateral components was introduced. This algorithm was proven to be correct
and optimal on some important graph shapes.

Strictly Ordered Orhogonality was introduced and an algorithm was given
that is able to verify an orthogonality hypothesis in polynomial time.

We believe that a compiler that would take this theory into account would
open up new venues into, for example, automatic parallelization of sparse
irregular pointer based codes.

96 CHAPTER 3. THEORY OF GRIDS

Chapter 4

Pax C

The shape of pointer linked data structures is the result of two key aspects:
control flow and input data. For example, a recursively typed structure such
as the one shown in Figure 4.1, with more than one pointer1 in the structure
may describe any kind of graph shape2. In the example, the type Foo may
represent for example a binary tree, a sparse matrix node, a doubly linked
list, a DAG or a generic graph. In fact, there is no way to infer what kind of
shape the linked structure represents without taking the control-flow and, if
necessary, the input data into account.

struct Foo {
struct Foo ⇤a ;
struct Foo ⇤b ;

} ;

Figure 4.1: Struct with two recursivelly typed pointers. It can represent any
kind of graph configuration.

While there have been many attempts to alleviate this problem. Most
systems have either relied on low or high level approaches. The low level
approaches deal with methods such as data remapping and pointer aliasing
([12, 36, 38, 47, 54]), and high level approaches deal with the shape of the

1As C makes arrays and pointers identical, this is not entirely correct. But for now, let
us consider pointers to be the same as references.

2By treating multiple linked structs as being the same vertex in a graph, we can construct
arbitrarily complex data structure shapes as long as the structs have two or more pointers.
Single pointers can only link together straight chains, cycles and lassos.

97

98 CHAPTER 4. PAX C

structures such as whether a data structure is a tree, a DAG, or a generic
digraph ([17, 19, 24, 26, 41]). However, the low level optimizations are not
powerful enough to make use of specific data structure characteristics, and the
high level approaches are either too costly to implement or require too much
user involvement. Also the high level approaches lack the ability to provide
runtime support to automatically perform analysis at runtime or to carry out
runtime verification whether the higher level properties are violated.

Another issue is the more subjective quality of ease of programming. While
high level languages may add advanced grammars to describe di↵erent data
structures, these grammars have in many cases been too far abstracted from
the normal programming language.

In this chapter we introduce a C programming language extension named
Pax C3 which combines the e�ciency of the low level approaches with the
expressiveness of the high level approaches, while o↵ering an easy model to
program. At the same time, the additional code and attributes written by the
programmer declares the intent of the pointer linked data structures to the
compiler, and the conformance of the control flow to this intent can be verified
at either compile or run time.

We have identified a number of properties that are important for the op-
timization of pointer linked structures. Firstly, coverage of linked data struc-
tures is a property that describes whether a specific path in a data structure
visits all elements. This property enables foreach optimizations of pool allo-
cated data structures. These optimizations serve two primary purposes, they
ensure temporal locality and improved cache behavior, and they enable data
parallelism within the pool.

Secondly, disjointness of linked data structures defines whether di↵erent
paths are non overlapping or not. The property is closely related to aliasing,
but we see it as a more high level property, where aliasing refers to individ-
ual pointers, and disjointness to the larger structure. For example, di↵erent
branches in a tree are disjoint. Disjointness is useful for determining paral-
lelism in the case where there are sequential dependencies.

Thirdly the direction of pointers determines whether two pointers are anti-
parallel or if an object may be reachable through a combination of di↵erent
pointers. The direction notion can improve aliasing analysis and enables the
transformation of pointer chasing code into index increments (and for the
anti-parallel pointers as decrements). This property is also usable for inferring
disjointness in some cases. Unlike the coverage and disjointness properties,

3Pax C was in the early stages an abbreviation for pointer axiom C, though it should
not be considered to actually mean this anymore.

99

it does not apply to traversal paths through the pointer structures but to
pointers in the structure.

Fourthly we have the firmness property. With firmness we are dealing
with how robustly a structure follows the other properties over time. For
example, during construction, a pointer based structure may not respect that
two pointers are supposed to be anti-parallel, but after the construction the
property will be valid. Firmness is a temporal quality, and is thus expressed in
the code, while the other properties are spatial properties that are associated
with the data types in the program. Firmness can for example be expressed
as either static or dynamic pointer structures, where in the first place, the
pointers building up the backbone in the linked structure are constant, and in
the dynamic case the pointers may change to point at other objects within a
covering set of object. The dynamic pointer structures should bee seen as being
more firm than structures that are modified by adding new objects allocated
with for example malloc.

The language extensions described in this chapter allow the programmer to
express directions, coverage, disjointness and firmness of pointer based struc-
tures. While the first three properties describe a data structure’s connectivity
and shape properties, i.e. what does the structure look like, the firmness prop-
erty relates to how these properties change over time. For example a pointer
linked structure may be constructed during start up of a program, while the
program never changes the connectivity or link information; in this case the
structure is stable after the initial setup and therefore firm.

While directions, coverage and disjointness will be expressed using data
type attributes (using the attribute syntax from the GCC and Clang
compilers), the firmness property is a temporal property, expressed in the
control flow using type qualifiers (similar to const and volatile) and pragmas.

This chapter is organized as follows: Section 4.1 looks into related ap-
proaches and their limitations, contrasting these to the Pax C extensions.
Section 4.2 gives an overview of the Pax C extensions. Section 4.3 discusses
the automatic detection of static pointer structures. Section 4.3.1 goes into de-
tail about dynamic pointer structures. Section 4.4 discusses data restructuring
mechanisms enabled by the extensions. Section 4.5 discusses the experiments
used to test enabled optimizations. This is followed by Section 4.6 that list
the results of the experiments. The experimental evaluation of the language
extensions is followed by an analysis of the results in Section 4.7. Finally,
conclusions are discussed in Section 4.8.

100 CHAPTER 4. PAX C

4.1 Limitations of Other Approaches

Low level approaches aiming to analyze and optimize pointer linked data struc-
tures, include for example Lattner and Adve’s Data Structure Analysis (DSA)
[38], automatic pool allocation [36] and the structure splitting work done by
others [12, 54]. Basically, in these approaches di↵erent properties of the con-
nectivity of data structures and aliasing properties are used to optimize the
data structures. The methods are based on compile time analysis, where the
compiler determines whether or not di↵erent object are aliasing or not. The
aliasing and connectivity information is used to optimize the data structures
of the program such as automatic pool allocation and structure splitting, or to
optimize the control flow when read after write dependencies can be resolved.

One of the main limitations of these approaches is that they are too con-
servative and that they miss optimization opportunities. Another limitation
is that the aliasing relationships of more complex expressions can not be de-
termined. As a result of too little (derivable) knowledge at compile time these
methods must make conservative assumptions for further optimizations as
more aggressive assumptions would result in errors for some cases. For ex-
ample in the pointer analysis used by the DSA, data structures will be marked
as disjoint only if they can be guaranteed to be disjoint. So, it may conserva-
tively identify certain objects as maybe aliasing, while they should in-fact be
treated as disjoint or as always aliasing. This is not to say that the DSA or
other algorithms such as Stensgaard [47] are not good at what they do, but
they are limited in what they can do as they are supposed to be a normal part
of the compiler, and this means that they must not be too slow if the compiler
is to provide a reasonable compile time.

DSA for example is context (but not flow) sensitive and able to identify
disjoint data structures in a conservative manner. Conservative in this case
means that structures marked as disjoint are guaranteed to be disjoint, but
structures not identified as disjoint are not guaranteed to be fully connected
(i.e. it does not exclude that a structure have disjoint regions). As such, the
DSA is conservative albeit very powerful. Although the conservative approach
of the DSA does o↵er the ability to implement automatic pool allocation as
mentioned earlier, it is not possible to identify covering traversals of the pool
and, for example, apply vectorization or other parallelization methods on the
traversals. In fact, any sequential pointer chasing dependency still remain
in the optimized data structure and code. The Pax C extensions solves this
problem by allowing the programmer to declare covering traversals of data
structures. These traversal patterns can then be matched with control flow
which in turn allows the compiler to determine when a traversal visits all

4.1. LIMITATIONS OF OTHER APPROACHES 101

elements in a linked data structure. Consequently, if the data structure is
pool allocated it will parallelize the traversals, depending on whether there
exists additional data dependencies.

The low level approaches are some times combined with runtime mecha-
nisms. In [54] runtime tracing was used to optimize the order of the objects
in a pool allocated pointer linked data structure. This method was limited as
it was restricted to immutable pointer structures. The runtime tracing in the
system had a very high overhead, so it was only used initially until the data
structure had been optimized, after which the tracing mechanism was turned
o↵. Consequently it was not possible to take into account dynamically mod-
ified pointers. Our extension, does on the other hand o↵er the opportunity
to distinguish between static and dynamic pointer structures and for the lat-
ter part, allowing multiple optimization points for the same structure, where
each optimization point may use di↵erent paths through the structure, or be
conditionally executed based on programmer controlled conditions.

Among the high level approaches, several analyses and di↵erent language
grammars have been developed. In Shape Types [17], Fradet and Metayer de-
scribe a context-free graph grammar allowing the expression of doubly linked
and circular types, which is not possible using traditional type systems. They
(like in this chapter) introduced an extension to the C programming language,
and supported a kind of checking of the structures on initialization and mod-
ification (or reactions), based on a special syntax for the modification of the
objects. The main limitation in their work was that the shapes where de-
scribed using a context-free graph grammar that does not blend well with
C. Furthermore, modifications of the structures required the use of a special
tailored syntax (which allowed the compiler to prove that modifications were
valid). So, while their system did extend C, the extensions where not directly
compatible with existing C-code. Pax C on the other hand allows for the
successive refinement of existing C-code, without any rewriting of the pointer
code, and preprocessor directives can easily ensure that attributes are ignored
and that the modified code still compiles using a standard C-compiler.

Other work carried out by Hendren et.al. [24, 26], known as ADDS and
ASAP built on extensions to existing “struct” definition syntaxes. They in-
troduced a sense of direction in pointer linked structures (not specifically as
a C-extension, but it was aimed at C-like languages), their initial work in-
troduced a way to add directional quantifiers to existing record types. They
later extended their system with a more general form of aliasing definitions
and descriptions. While being e↵ective in determining aliasing properties of
di↵erent pointer chains, their approach did su↵er from the fact that, as, with
the DSA and automatic pool allocation, it is not possible to define coverage of

102 CHAPTER 4. PAX C

Figure 4.2: Hidden Nodes

pointer linked structures. This is further illustrated by Figure 4.2, where one
row is not directly reachable from the array of row pointers. ASAP and ADDS
did allow for the distinction between the vertical and horizontal dimensions of
such structures, but was not able to describe the absence of the hidden nodes.

In addition to the mentioned language extensions, there has been other
high level work such as shape analysis [19]. In shape analysis the compiler
analyze the actual shape of a data structure based on for example pointer
assignments and allocations. Depending on the system, the resulting shape
estimates may di↵er in both accuracy and correctness. The system was able
to reasonably accurately detect the more specific types of structures. While
the tree detection could reasonably easily be used for data coverage and dis-
jointness analysis by analyzing the traversal patterns in the code, the more
general types of structures detected are di�cult to use for this purpose, ex-
cept for the limited cases of local alias analysis. The disjointness properties
introduced by Pax C are stronger than this and can describe global aliasing
patterns in a larger structure, based on access patterns with conditions. These
disjointness patterns even work on cyclic structures and DAGs.

Another high level approach named PALE [41] was presented by Møller
et.al. PALE defined a formal language to describe data structure invariants
that could be checked at compile time against a restricted imperative lan-
guage. The main problem with PALE consist of the fact that execution time
and memory requirements of the proofs were too large for practical use. For

4.2. PAX C EXTENSIONS 103

example the verification of a red black tree insert took 35 seconds and used
44 MB of memory to check 57 lines of code. While this was the worst test
case they provided, the mean and medians both ended up at roughly 30 lines
of code, 4 seconds and 8 MB of memory. These results indicate that the
computational and space requirements of their methods prohibit a practical
application to real world programs that typically consists of millions of lines
of code. Even on modern machines, as processor performance has improved
considerably since the PALE work was published, the execution time would
end up in hours if linearly extrapolated for a 10 million line large program
(this is a fair assumption assuming that a program consist of properly encap-
sulated data structures, all who utilize the PALE logics). In Pax C, we assume
a limitation on what can be derived, i.e. more conservative reasoning, and do
not let the compiler handle everything. Instead, the attributes in Pax C have
been carefully vetted to be verifiable at run-time, and runtime-checks can be
emitted if needed.

Note that some systems simply assume that structures are correctly linked.
So, a programming error or an invalid object, loaded from a file could poten-
tially break the invariants for the data structure. In the case of PALE this
would not matter as it is based on formal proof. However, for Pax C, and also
for the ADDS and ASAP, the properties can be violated during runtime. With
ADDS and ASAP if the additional data structure properties are not respected
by the code, the compiler could in principle generate invalid optimizations that
would be very hard to track down. The approach in Pax C is simple, let the
program be verified at runtime using a relatively simple model that can catch
as many violations as possible when a data structure is used incorrectly.

4.2 Pax C Extensions

Pax C is a set of C extensions forming a strict superset of C, that allow for
a more sophisticated description of recursive data structures. Many of the
attributes are applied on pointer fields in struct definitions (or on the struct
definition itself). There are however a few extensions that are used within
function bodies to help the compiler optimize the code. This approach is in
stark contrast to the use of other C-extensions that mostly consist of directives
embedded in the control flow e.g. OpenMP and Cilk [5].

The first extension of Pax C is the annotation of pointers in data structure
types with attributes or axioms that describe either local or global pointer
properties. Local pointer properties are the pointer properties that apply to
one object and possibly also the object’s neighbors; global pointer properties

104 CHAPTER 4. PAX C

are those that apply on multiple objects within a data structure. The global
properties make use of traversal paths in most cases, these paths describe how
a structure is traversed using a regular expression like syntax. The second
extension consists of the static-pointer structure type qualifier. Essentially,
a static pointer structure pointer identifies an object where the pointers in
that object and in all objects reachable from it are constant. As such, it
is known that the shape of the object graph will not change further on in
the program. The programmer can define the point from which the data
structure’s pointers will no longer change in the program by manually adding
a type qualifier (similar to the existing C type qualifiers like restrict, volatile
and const) and casting a pointer to a non static-pointer structure into a static-
pointer copy of that structure. At this point, the casting operation will trigger
a deep copy and restructuring of the data structure, where the traversal pattern
is determined from the pointer attributes. In addition to the static-pointer
qualifier Pax C introduces the notion of dynamic-pointer structures. These
dynamic pointer structures are similar to the static counterparts, but they
allow for the repointing of the recursively typed pointers to other already
allocated objects.

4.2.1 Conditional Traversal Patterns

The Pax C extensions consist of a number of pointer attributes, type qualifiers
and pragmas. The pragmas and the pointer attributes are used together with
conditional traversal patterns (CTP). These patterns describe how to traverse
a structure.

A pattern consist of a sequence of field dereferences separated by the dot
operator (“.”). Between the dot operators, the fields may be expressed as
either, field names or using other expressions, such as the | operator that
follows each side of the | and the trailing expression (before the next branch).
The branch operator is related to the array operator [], that does the same
thing, but with arrays instead of named fields. The ⇤ operator works in similar
ways, but expands the expression it is trailing, so it is followed until it reaches
null or the starting point when expanding a cyclic field. Note that the ⇤
operator only follows single fields or conditional single fields.

The condition operator allows the selection of a path based on a conditional
variable/expression, local to the last object in the chain, or a C variable in the
case of the pragmas. The conditions are written {cond?a : b}, where a is used
if cond is true and b if it is false. The conditions normally refer to fields in the
current object. E.g. foo.{bar == 0?left : right} expresses the traversal:

4.2. PAX C EXTENSIONS 105

cur rent = current�>f oo ;
i f (current�>bar == 0) {

cur r ent = current�> l e f t ;
} else {

cur r ent = current�>r i g h t ;
}

Finally, the comma operator traverses the full expression to the left of the
comma and then the one to the right of the comma. This allows for the restart
of the traversal patterns at controlled points.

The expressions are easy to turn into C-code and to understand. The
template for conditional traversals has already been shown. For the looping
constructs, like ⇤ and [], the templates are also relatively simple. An array
traversal can be emitted using the following code:

array = cur rent ;
for (int i = 0 ; i < a r ray l en (array) ; i ++) {

cur r ent = array [i] ;

// Rest o f expr
}

Note that introduced variables (e.g. array in this case) should be uniqued
for the traversal. This can be done by appending a serial number to the name,
or by embedding it in a scope.

The ⇤ works in similar ways, except that the loop is a while loop on the
fields. A star traversal can be emitted using the following code:

while (cur r ent) {
temp = current ;

// Rest o f expr

cur r ent = temp ;

// Traversa l (e . g . curren t = current�>next , i f
// the exp re s s i on i s next ⇤)

}
For the traversal expressions discussed here, we can insert the visited ob-

jects (pre-order) in a sequence, that means that backtracking nodes are ex-
cluded from the sequence since they have already been embedded in it and
that the successor of a the leaf node in a branched traversal will not be the
parent node of the leaf, nor will it be the branching node, but the next un-
visited node starting from the branching point. This sequence we will denote

106 CHAPTER 4. PAX C

typedef struct S {
s i z e t ba r l en ;
Foo ⇤bar a t t r i b u t e ((l ength (ba r l en))) ;
Foo ⇤baz a t t r i b u t e ((s i n g l e)) ;

} S ;

Figure 4.3: Example of length and single attributes

T
seq

in the discussion.
In the following section we will give definitions of the attributes that Pax C

supports.

4.2.2 Single and Length

The single and length attributes were defined to work around issues in the
C-programming language. In C, pointers to single objects (i.e. references)
cannot be distinguished from arrays of objects, and pointers to arrays are not
associated with the length of an array. The single-attribute forces a pointer
to be a reference to one and only one object, while the length-attribute allows
the specification of an expression that can derive the length, based on data
available at the definition point. For pointers embedded in structs, this can
refer to a field in the struct. Example of the use of these two attributes are
given in Figure 4.3.

Note that these attributes simply associate available length information to
the arrays in question. The array length is needed in order to use the array
expression for iterating (but not for accessing single objects).

The attributes adds missing information to the C-programming language.
Consequently, the property can be used in order to verify during runtime that
array accesses do not go out of bounds and that directly assigned blocks from
malloc and the related allocation functions are of the assigned sizes. Standard
optimizations to bounds checking used by programming languages such as Ada
and Java apply to these checks.

4.2.3 Acyclic and Cyclic

The acyclic and cyclic attributes provide known termination points for com-
mon recursive pointer patterns. In e↵ect, as a computer has finite memory,
there are three possible shapes for structures linked using one given pointer
field: full cycles, straight chains and lassos (see Figure 4.4). Under normal

4.2. PAX C EXTENSIONS 107

p

pp

Figure 4.4: Lasso Graph

typedef struct Foo {
struct Foo ⇤bar a t t r i b u t e ((a c y c l i c)) ;
struct Foo ⇤baz a t t r i b u t e ((c y c l i c)) ;

} Foo ;

Figure 4.5: Example of acyclic and cyclic attributes

circumstances, the compiler must assume the worst and that a chain may be
in any of these formats.

For full cycles and straight chains the termination points for a full traversal
of the structure (when p->next == start and p->next == NULL respectively)
are easy to derive. However, for lasso shapes this is more di�cult.

An example of the usage of the acyclic and cyclic attributes is given in
Figure 4.5. In the example, the attributes guarantees that, for all pointers p,
to objects of type Foo, firstly, the traversal "while (p) p = p->bar;" will
terminate as bar is acyclic and therefore must end with a NULL pointer, and
secondly, the traversal "tmp = p; while (p->baz != tmp) p = p->baz;"
will terminate since baz is acyclic and the loop terminates at the starting node.

Statements like these can be verified. The violations for the attributes
occur if the pointer is acyclic and a full cycle or lasso shape exist, or if the
pointer is cyclic and the chain represents a lasso or a NULL terminated chain.

The detection of cycles is a well known problem. One of the more com-
monly used methods traverses a potential cycle and samples the visited node
at increasing intervals. Normally, the distance between the samples increases
by a power 2 for every taken sample. This way, cyclic chains will always be
detected within two iterations, even if the chain is a lasso. Consequently, iter-
ations along cyclic or acyclic pointers can be instrumented with these checks.
If the runtime checks find a cycle before it reaches the starting point of a cyclic
pointer, or before it reaches NULL on an acyclic pointer, the program can raise
an error. There are ways to avoid these runtime checks if certain conditions
hold, though.

Both properties can in some cases be proven by induction. The starting
condition is that in the acyclic case, the acyclic field is initialized to NULL,

108 CHAPTER 4. PAX C

typedef struct Foo {
struct Foo ⇤bar a t t r i b u t e ((i n v e r s e (baz))) ;
struct Foo ⇤baz a t t r i b u t e ((i n v e r s e (bar))) ;

} Foo ;

Figure 4.6: Example of Inverse Attributes Use

and in the cyclic case, the field is initialized to point at the same structure
it is part of. The compiler can check for this and ensure that after calls to
allocation functions (e.g. malloc), the fields are set accordingly before the
object is used for anything.

For inserts of individual objects nothing needs to be checked, as long as
the initial condition holds for the insertion point and the inserted object. The
resulting chain is also null terminated or cyclic.

However, insertion of chain slices is a more complex issue. While, this can
simplified in certain condition, it is very complex to do so as the inserted slice
may or may not be a single chain, consequently it must be verified that the
inserted chain slice is not actually a slice of the destination chain, and this is
not always possible. In this case, when not inserting single objects, the checks
will be deferred until restructuring time.

4.2.4 Inverse

A pointer field a in an object p is the inverse (or antiparallel) to another pointer
b if after following a, b points back at p. The property asserts that as long as
p and p->a are not NULL, then p->a->b == p. Common examples include
binary linked lists and trees with parent pointers.

Inverse pointers are of interest in order to assist in the verification of cycli-
cality, and in order to allow for more advanced restructuring opportunities.

An example of the usage of the inverse attribute is given in Figure 4.6. The
usage of the attribute in this Figure implies that for all pointers p to objects
of type Foo: p->bar->baz == p. This attribute is assumed to hold at all
times, except during transient modifications.

If a code segment modifies an inverse pointer in object p, the inverse must
be modified as well to point back to object p before the fields in question are
read and used for something eles. This can be checked statically per function.
However, if a function does not uphold the attribute, the compiler may emit
a warning and make a note that the function made the object p invalid and
then proceed with emitting checks at runtime.

4.2. PAX C EXTENSIONS 109

typedef struct Foo {
struct Foo ⇤x a t t r i b u t e ((c y c l i c)) ; // Or a c y c l i c

} Foo ;

typedef struct Bar {
struct Foo ⇤a a t t r i b u t e ((f i r s t (x))) ;
struct Foo ⇤b a t t r i b u t e ((l a s t (x))) ;

} Bar ;

Figure 4.7: Example of First and Last Attributes

4.2.5 First and Last

The first and last properties are used to define the starting and ending points
of a pointer chain. Depending on whether the chain follows an acyclic or a
cyclic pointer field, the attributes have slightly di↵erent meanings. By knowing
the start and the end of a pointer chain, it is possible to infer that iterations
between the start and the end (or the end and the start following inverse
pointer) will visit the entire chain. In the cases where the pointer chains can
be serialized, this means that it is trivial to determine that the iteration visits
every element in the chain. In addition to this, the attributes can help with
the verification of the acyclic and cyclic attributes.

Figure 4.7 illustrate the usage of the attribute. In the acyclic case, for all
pointers p, pointing out objects of type Bar, the attribute first implies that
when following the field x for all objects q of type Foo, there exists no q where
q->x == p->a. For the last attribute on the other hand, if the field b of the
type Bar has the last attribute, then for all objects p of type Bar p->b->x
== NULL.

In the cyclic case this is a bit di↵erent, since there are no logical starting
points of a cyclic chain: the first and last attributes are defined with respect
to each other. If the pointer p is first, and q is last, with respect to the field
x, then q->a == p.

For the cyclic case, the verification is obviously trivial at runtime. However,
in the acyclic case, it is only easy to verify in the case that the relevant field
has an inverse. In this case, if the pointer p has the attribute first with respect
to the field a, and field b is the inverse of a, then p->b must be NULL. For
the case where there is no inverse, the compiler is expected to issue a warning
about it. Note that violations can be always be detected using brute force
approaches while restructuring, where we could tag visited objects, and which
field reached the object.

110 CHAPTER 4. PAX C

typedef struct Foo {
struct Foo ⇤parent ;
struct Foo ⇤ s i b l i n g

a t t r i b u t e ((ident (s i b l i n g ⇤ . parent))) ;
struct Foo ⇤ ch i l d ;

} Foo ;

Figure 4.8: Example of Ident Attribute

4.2.6 Ident

In some cases, di↵erent pointers point to the same object in a predictable way.
For these cases, the ident attribute exist. It can for example be used to infer
tree structures in the case where a parent only has a pointer to one of the
children who in turn have pointers to it’s siblings.

The ident attribute use the conditional traversal patterns to identify which
objects are identical. As paths cross many objects, the attribute cannot refer
to all the visited objects, instead it refers to the leaf points in the traversal
paths. An example of the ident attribute is given in Figure 4.8. In the figure,
the sibling nodes parents will all point out the same parent.

4.2.7 Covering and Disjoint

The covering and disjoint attributes utilizes the conditional access patterns in
order to describe whether or not the traversals will visit all objects or whether
the traversal will be completely disjoint.

A conditional access pattern will traverse multiple objects and the sequence
of objects, known as T

seq

, may visit objects several times in some cases (e.g.
in case there are multiple paths to the same object).

For the covering attribute, the following is assumed to hold: for all objects
in T

seq

, there are no paths from any of these objects to an object of the same
type, unless those objects exist in T

seq

. Note that, in some cases, there are
several pointers, all pointing to di↵erent covering sets (e.g. two di↵erent sparse
matrices), for this reason the attribute has a second argument, a set id. Thus,
the attribute applies only to the objects identified with the set id.

For the disjoint attribute, the definition is simpler: for a disjoint CTP the
resulting T

seq

is a set, or simply, every object in T
seq

occurs only once.
Verification of disjoint and covering is deferred until restructuring. Where

it is reasonably trivial. If we restructure using some path. The path can be
checked reasonably easily by tagging visited objects, if the path matches the

4.2. PAX C EXTENSIONS 111

typedef struct Foo {
struct Foo ⇤x a t t r i b u t e ((a c y c l i c)) ;

} Foo ;

typedef struct Bar {
struct Foo ⇤a [] a t t r i b u t e ((cover ing (a [] . x⇤ , 0)))

a t t r i b u t e ((d i s j o i n t (a [] . x ⇤))) ;
} Bar ;

Figure 4.9: Example of Covering and Disjoint Attributes Usage

covering or disjoint paths. Traversals along disjoint paths may never reach
an already tagged object, and traversals along covering paths may never visit
objects that have pointers to objects not in the path. As will be seen in Sec-
tion 4.4 the restructuring operations, must rewrite all the pointers to moved
objects. The remapping is done in a second pass after the objects have been
moved. In this case, if a pointer is not found to be remapped to a new loca-
tion, then the sequence cannot be stemming from a covering path. However,
the operation may be costly, so like with most runtime checks, it should be
controllable by compiler switches.

4.2.8 Static Pointer Structures

Pax C makes use of a notion we call static-pointer structures that can be ap-
plied on certain data structures. In essence, static-pointer structures have con-
stant pointers. The formal definition is a bit more complicated: For a static-
pointer structure object, the object is used in a type safe manner; all pointers
in that object that point to aggregate objects that in turn contain pointers, are
immutable and point at static-pointer structure objects.

It is arguably very di�cult for a compiler to determine which objects are
static-pointer structures and where in the programs they are so. In practice it
is also impossible to do so in many cases, especially when the compiler has an
incomplete view of the program. Therefore we introduce a type attribute that
can be attached to structures in the same way the structure can be declared
constant, volatile or restricted. It is up to the programmer to add casts at
relevant points in the code that declare to the compiler that a data structure
is a static-pointer structure. This information can be used by the compiler to
generate data structure transformations.

As mentioned in the introduction, the automatic detection of static-pointer

112 CHAPTER 4. PAX C

Foo ⇤bar = makefoo () ;
s t a t i c p t r Foo ⇤baz = (s t a t i c p t r Foo⇤) bar ;

Figure 4.10: Static-Pointer Casting

structures is conservative in nature. The automatic detection will help the
programmer to incrementally add attributes to the code. A method able to
detect static-pointer structures is described in Section 4.3.

4.3 Conservative Static Pointer Detection

In some cases, it may not be trivial for the programmer to determine that a
data structure is a static-pointer structure. In the case that the programmer
has only been setting the pointer attributes in the data structures, it is possible
for the compiler to detect naturally occurring static-pointer structures. In
order to do this, it is possible to employ an extended version of the DSA (the
full details of the DSA being out of the scope of this chapter, but it is briefly
described in Chapters 1 and 2). The modifications add per-field flags and an
additional top-down pass, neither of which should be resulting in any major
performance hits due to their low complexity.

The DSA employs a local analysis, followed by a bottom up and top down
analysis of the call graph, where local analysis information is passed upwards
(i.e. due to functions returning values or modifying objects passed into the
functions), and merged (when a pointer variable has been used or assigned in
multiple branches) and then passed downwards in the call tree.

Note that the local analysis followed by bottom up and top down passes
can easily be used to propagate information about verified attributes. When
nodes are merged (because they are defined in di↵erent branches), the validity
flag for the attribute is simply “bitwise anded” together, meaning that if one
branch results in an invalid attribute then the merged representation is invalid
as well. This is done after the local analysis has determined whether the
attributes are valid, assuming that the preconditions are valid.

In order to detect static pointers, one need to enable per-field mod / ref
flags, allowing the compiler to detect in which contexts the pointers within a
data structure are written to. The second addition is to add two additional
per-field flags. These are the free and the nullification flags. The free flag is set
if a field escapes to the free function and the nullification flag is set if a pointer
field is written the constant value NULL (in this case, the mod flag is not set).
When this is done and the local phase of the DSA has been completed we do a

4.3. CONSERVATIVE STATIC POINTER DETECTION 113

Figure 4.11: Static-Pointer Structure Detection. Flags are: R = read, N =
nullify, F = free.

bottom-up type merge (where all DSA node types are merged) and a top-down
traversal (where the same is done). It is then possible to do another top-down
traversal (starting with the main function). During this traversal, we build
a per-data structure inter-procedural dependence graph where the nodes that
create the data structure will be dominating the successors (i.e. they will be
executed earlier in the program flow). This step is context sensitive like the
DSA and not flow sensitive4. In this dependence graph we are looking for a
pattern where the first flags are modifying the pointers and the rest of the
graph is not modifying the pointers (except for the last couple of nodes where
the pointers may be nullified). The pattern that is searched for is illustrated
in Figure 4.11.

After detecting a static-pointer structure, the compiler can insert a static-
pointer cast just before the static-pointer region (see the middle usage node
in Figure 4.11). This cast is inserted just before the usage phase. For the
tear-down phase, the original data structure (not the converted one) should
be passed along, this is safe since the structure in question is no longer used.
At this point it is useful to insert a runtime call to release the static-pointer
structure.

4.3.1 Dynamic-Pointer Structures

In contrast to a static-pointer structure, a dynamic-pointer structure allow the
pointers to be changed and objects relinked, however it does not allow for
new objects to be allocated and inserted in the pointer linked structures (the
programmer can overcome this limitation by using fixed sized pools of objects).
Casting a normal pointer to a dynamic-pointer structure will otherwise work
similar to the static-pointer structures.

The dynamic-pointer structure was added to the Pax C extensions in order

4For a summary of the terms context and flow sensitive, see [25]

114 CHAPTER 4. PAX C

to be able to handle problems where an iterative solver is modifying the pointer
structures slowly converging on the final result. Since, the dynamic-pointer
structures allow the pointers to be modified they are more flexible for the
programmer than the static-pointer structures defined in the previous section.
On the other hand, they do not allow for certain optimizations that rely on
having a known iteration space.

4.4 Restructuring

When an object is casted into a static-pointer copy, the compiler is free to
reorganize and restructure the pointers in the data structure. Although, some
restructuring can possibly be done before this (such as some forms of pointer
compression, and other type modifications), the static-pointer property does
allow for more options.

A type-specific automatic restructuring function can be generated by the
compiler when it knows the attributes mentioned in section 4.2 and calls to
this restructuring function at the locations where a normal object is casted
into a static-pointer copy. The main premise for generating such a function is
to be able to determine a set of covering (and preferably disjoint) paths in the
data structure.

Naively, it is always possible to determine a covering set by a DFS traversal
of the data structure. However, this is not practical for several reasons. For
example, a DFS will in many cases not correspond to the natural iteration
order of a more complex data structure and it will have to deal with a lot of
bookkeeping information to avoid endless recursion in the presence of cycles.

The rewrite operation does two things, firstly it transforms the pointer
types, and secondly it does a deep copy of the rewritten data structure (follow-
ing the covering path) into a new single data block (an array). The pointers
are converted in order to refer other objects within the array using indices.
Consequently, when converting a pointer-linked data structure into the static-
pointer version, there are three forms of pointers to consider: indices within
the new data block, fat pointers that refer to another data block and slices
that refer to a subset of objects within a data block. An index is used when
there is a self recursive pointer within the same set. A fat pointer, which is a
tuple of an index and an array pointer, is used as pointers to single objects in
some other set (or data block). A slice is a triple of a start index, end index
and an array pointer. Slices are used when pointing out the first object in
a known subset (if this is in the same array as the current object, it can be
shortened into just the start and the end index), for example, when we point

4.4. RESTRUCTURING 115

Original Type Introduced Types

struct A {A *a; B *b;}

struct A 1 {
int a; B fatptr b; }

struct A array {
int len; A 1 elems[]; }

struct A fatptr {
int idx; A array *arr; }

struct A slice {
int start; int length; A array *arr; }

Table 4.1: Type Conversion. The � is used as a generic operator, e.g. == or
!=.

Original Translated

*p p.arr->elems[p.idx]
p�NULL p.idx�0
q=p->R q.idx=p.arr->elems[p.idx].R

q.arr = p.arr

Table 4.2: Statement Conversion

out the first object in a list like structure such as a row in a sparse matrix.
The introduced types are illustrated in Figure 4.1.

Since the types are modified, the addressing code needs to be rewritten.
Essentially all pointers to static-pointer objects will be turned into fat pointers.
This includes pointers passed as arguments to functions. Initially only three
translations need to be done in the code when accessing the fat pointers. We
show this in C syntax in Figure 4.2.

This will not necessarily result in any improvements of the performance of
the code in question. Several additional optimizations are performed on top
of this. Most important is the rewriting of pointer-chasing loops into index-
incremented loops (see Figure 4.3). This is possible if the pointer chasing
goes in the same direction as the covering and disjoint paths and the traversal
covers a full path or the full range between two known elements, such as a full
structure or a slice.

116 CHAPTER 4. PAX C

Original Translated

while (p) { p = p->R; } for (; p.idx ¡ p.arr->len ; p.idx ++)

Table 4.3: While Loop Conversion

Note that depending on whether or not the initial data structure has been
pool allocated or not, the rewriting mechanism can either use an indirection
array or a hash-table to store the old to new pointer mapping. The rewrite is
a two pass a↵air, where in the first pass the data structure is copied over to
the new data block, and in the second, the pointers are rewritten to point at
the new data locations. The only pointers that can be updated on the first
pass are those that point at the “next” object.

4.5 Experiments

4.5.1 Sparse Lib

The SPARSE library (see [32, 33]) utilizes orthogonally linked lists to rep-
resent sparse matrices. The library provides a matrix frame type describing
the matrix structure (i.e. the size, starting points of rows and columns) and
pointer-linked matrix elements that encapsulate a non-zero element. The data
structures are well suited for optimization using the Pax C extensions. The up-
dated types in the (not showing irrelevant data fields) is listed in the following
code:

4.5. EXPERIMENTS 117

struct MatrixElement {
double Real ;
struct MatrixElement ⇤NextInRow

a t t r i b u t e ((s i n g l e))
a t t r i b u t e ((a c y c l i c)) ;

int Col ;
int Row;

struct MatrixElement ⇤NextInCol
a t t r i b u t e ((s i n g l e))
a t t r i b u t e ((a c y c l i c)) ;

} ;

struct MatrixFrame {
int NrOfElements a t t r i b u t e ((s e t s i z e (1))) ;
struct MatrixElement ⇤⇤Fi r s t InCo l

a t t r i b u t e ((cover ing (” [⇤] . NextInCol⇤” , 1)))
a t t r i b u t e ((d i s j o i n t (” [⇤] . NextInCol⇤”))) ;

struct MatrixElement ⇤⇤FirstInRow
a t t r i b u t e ((l ength (S i z e)))
a t t r i b u t e ((cover ing (” [⇤] . NextInRow⇤” , 1)))
a t t r i b u t e ((d i s j o i n t (” [⇤] . NextInRow⇤”))) ;

struct MatrixElement ⇤⇤Diag
a t t r i b u t e ((l ength (S i z e)))
a t t r i b u t e ((i n s e t (1))) ;

int S i z e ;
} ;

In the code listed above, the covering attributes not only specify the paths
through the matrix, but also the set identifier. The set identifier is needed in
case the matrix frame would point out two di↵erent disjoint matrices. The def-
inition of disjoint rows and columns allow the compiler to not only restructure
the data, but also to expose the inherent parallelism in a loop over the rows.
In the matrix type, it is not possible to infer parallelism automatically in the
general case as the code may modify the matrix contents during iterations5.

We carried out experiments using a number of kernels based on the SPARSE
library data types, namely dsolve, jacit, pcg, spmatmat and spmatvec. These
kernels are part of the SPARK00 [51] benchmark suite. Most of the kernels
traverses the matrices in either row or column order. There is one notable ex-
ception, dsolve, that includes the traversal of an LU-factorized matrix. In this
case the matrix is traversed partially in row-wise order and partly in column-
wise order. Figure 4.12 shows the average speedup of the di↵erent kernels
when the matrix data is read using di↵erent memory orders. For row-wise or-
dered data, the restructuring is not helping. This is due to the fact that matrix
is already perfectly ordered in memory. For the column-wise order, the data
is is not ordered in memory in the same way as the traversals, therefore we
can see an improvement in performance here. For randomly ordered data, the
data ends up being well ordered after the restructuring, so the improvement

5Naturally, a loop not modifying the matrix contents can have its row or column traversals
executed in parallel.

118 CHAPTER 4. PAX C

 row col rnd row col rnd row col rnd row col rnd row col rnd

7

0

1

2

3

4

5

6

Benchmark

Sp
ee

du
p

Fa
ct

or

spmatmat spmatvec dsolve jacit pcg

Figure 4.12: SPARSE lib kernels speedup factors grouped by benchmark.

is considerable.

4.5.2 MCF

MCF is known as 181.mcf in the SPEC2000 (or 429.mcf in SPEC2006)
benchmarks. Previous work where MCF has been targeted for optimization
includes among others [20] where the MCF data structures were subjected to
peeling, splitting and field reordering. These transformations are not global
in the sense that they consider the connectivity of the objects, rather than
transform individual objects into a di↵erent layout.

MCF is implemented using a structure containing an array of nodes and
an array of arcs (each node also has a number of implicit arcs relating to the
spanning tree that is being computed). The main data structure is traversed
multiple times with di↵erent (potentially) conflicting access patterns. For
example, the function update potential traverses the nodes following the
spanning tree using a DFS pattern, however, other functions iterate over the
node array and traverses chains of nodes if certain conditions are met. In fact,
reordering the nodes after the DFS traversal will slow down MCF in total
(although the update potential function itself runs substantially faster).

In our experiments we show that we have been able to achieve restructuring
in MCF without the use of tracing, on which the restructuring systems to this
day have been relying on (e.g. [54]). MCF is an iterative solver, as such the

4.5. EXPERIMENTS 119

main

read_min

primal_start_
artificial

global_opt

price_out_im
pl (32.8%)

primal_net_s
implex

refresh_pote
ntial (44.7%)

primal_bea_
mpp (18.2%)

update_tree

write_circula
tions

Figure 4.13: Simplified MCF call graph with execution times in % for the
reference data set.

underlying graph based data structure is continuously changing while the data
structure is being optimized.

As is well known, to determine how to optimize a program one needs
to know the hotspots where the program is spending most of its time. We
used profiling to determine that in MCF, the execution time was primarily
centered around three functions. These functions are refresh potential,

price out impl and primal bea mpp. For the reference data set, the func-
tions were using 96 % of the program’s execution time. The simplified call
graph in figure 4.13 illustrates this further. As can be seen, any optimization
for the code must target these functions or seriously su↵er from diminishing
returns.

Obviously our first attempt was to optimize the access pattern for the
refresh potential function that was the most costly of the three. The op-
timization centered around the fact that MCF only modifies a small part of
the data structure as the program gradually tries to build up the solution.
So, essentially by adding the restructuring pragma to the beginning of the
refresh potential function, using the access pattern used in the function, it was
possible to carry out the restructuring step.

Essentially, the refresh potential access pattern is a DFS. This DFS is de-
scribed by the attributes that can be set on the MCF data structures. By stat-

120 CHAPTER 4. PAX C

ing that there is a covering and disjoint path in the network t structure type
using the following expression: covering(nodes[0].(child|sibling)*), The
permutation vector is then generated following this traversal and the nodes are
reordered.

This optimization however caused slowdowns in the other hotspots and
although the refresh potential function ran substantially faster (40% in-
cluding overhead from the data restructuring), the new access pattern slowed
down the program as a whole.

As the refresh potential function did result in slowdowns, the other hotspots
had to be reconsidered. The primal bea mpp function was determined to use a
much too complicated access pattern for both manual and automatic analysis.
Instead the price out impl function was considered for optimization. The
function essentially checks every third arc and if a tag value is not set to a
constant value named FIXED, it traverses the nodes for the arc backwards
(i.e. from the tail and backwards). The access pattern can be codified in
the following way: {net.arcs[i=1..$length, step 3].ident != FIXED} ?

net.arcs[i].(tail.mark)*. By using the pattern given here, we were able
to speed up MCF as a whole compared to the non (access-pattern) optimized
version. The steps needed are to ensure that the length and covering properties
of the network type are known, then the restructuring pragma needs to be
added to the code.

typedef struct {
node t ⇤nodes

a t t r i b u t e ((l ength (stop nodes�nodes)))
a t t r i b u t e ((cover ing (nodes [0 . . $ l ength])))
a t t r i b u t e ((cover ing (nodes [0] . (c h i l d | s i b l i n g) ⇤)))
a t t r i b u t e ((d i s j o i n t (nodes [0] . (c h i l d | s i b l i n g) ⇤)))
;

node t ⇤ s top nodes ;
a r c t ⇤ a r c s a t t r i b u t e (l ength (s top a r c s�a r c s)) ;
a r c t ⇤ s t op a r c s ;

} network t ;

network t ⇤net ;

#pragma r e s t r u c t (node t) net us ing \
{net . a r c s [i =1. . $ length , s tep 3] . i dent != FIXED} ?\
net . a r c s [i] . (t a i l . mark) ⇤

4.5. EXPERIMENTS 121

Note that the mark field is not an arc pointer but a pointer sized integer.
However, the field is used as a pointer in the code using type-unsafe casting
and the benchmark had to be modified by changing the type of the mark field
to the proper pointer type. In the future, Pax C may be extended with casting
operations in the CTP syntax.

4.5.3 Parallelizing Refresh Potential

Refresh potential traverses the entire spanning tree of the graph of nodes. The
only intra node dependencies that exist are from the parent nodes. As such, the
function is suitable for parallelization using the traditional divide and conquer
approach. A complication for this is that the trees are not balanced, meaning
that additional steps need to be taken to properly parallelize the function.

We show how parallel execution of the refresh potential function can be
implemented with minor changes to the code. The first step is to assign the
covering and disjoint attributes to the MCF data structure as described previ-
ously. The second step is to rewrite parts of the refresh potential function
using a recursive traversal instead of the current pointer chasing one. When
testing this with the large reference data set from MCF, we saw that a re-
cursive version did not result in any performance di↵erences compared to the
standard iterative traversal. In this case, rewriting the code using recursion
makes it easier to analyze the function.

The function can then be parallelized by invoking some of the recursive calls
in parallel and waiting for the call to finish before returning from the caller.
This is similar to how the cilk [5] programming language handles parallelism.
Our manual attempts with the cilk language, however, did not succeed due to
the heavy overhead. On the other hand the cilk version served as a conceptual
proof. A two thread pthreads based solution was successful in speeding up the
code.

Essentially, the core part of the refresh potential function is rewritten as
illustrated in Figure 4.14. As seen, the disjoint attribute is embedded in the
node t type. Without this addition, the compiler would have to assume that
the subtrees were fully aliased and would not be able to proceed with the
parallelization attempts.

The compiler now has to analyze the recursive calls of the function, these
are in the direction of the sibling and the child pointers. Each function also
accesses the predecessor. Table 4.4 illustrates the dependencies for the refresh
potential function extended one step. The simplified dependencies show the
actual dependency after taking into account the ident and inverse attributes.
The calls to refresh pot have the traversal patterns: a) sibling.(sibling|child)⇤

122 CHAPTER 4. PAX C

typedef struct node t {
struct node t ⇤ pr edec e s s o r

a t t r i b u t e ((s i n g l e))
a t t r i b u t e ((ident (s i b l i n g ⇤ . p r ede c e s s o r))) ;

struct node t ⇤ ch i l d
a t t r i b u t e ((s i n g l e))
a t t r i b u t e ((i n v e r s e (p r edec e s so r))) ;

struct node t ⇤ s i b l i n g
a t t r i b u t e ((s i n g l e)) ;

} node t
a t t r i b u t e ((d i s j o i n t (
p r ede c e s s o r . (p r edec e s s o r | s i b l i n g)⇤ ,
((c h i l d | s i b l i n g)⇤))))
a t t r i b u t e ((d i s j o i n t (
(c h i l d . (s i b l i n g | ch i l d)⇤) ,
(s i b l i n g . (s i b l i n g | ch i l d)⇤)))) ;

int r e f r e s h p o t (node t ⇤node) {
int a , b = 0 , c ;
i f (! node) return 0 ;

a = r e f r e s h p o t (node�>s i b l i n g) ;
i f (node�>o r i e n t a t i o n == UP) {

node�>po t e n t i a l = node�>ba s i c a r c�>co s t
+ node�>pred�>po t e n t i a l ;

} else {
node�>po t e n t i a l = node�>pred�>po t e n t i a l

� node�>ba s i c a r c�>co s t ;
b ++;

}
c = r e f r e s h p o t (node�>ch i l d) ;
return a + b + c ;

}

Figure 4.14: Rewritten Refresh Potential

4.6. RESULTS 123

Dependee Dependency Simplified

node->pot node->pred->pot -
node->sibling->pot node->sibling->pred->pot node->pred->pot
node->child->pot node->child->pred->pot node->pot

Table 4.4: Dependencies for refresh potential

and b) child.(sibling|child)⇤. If the two patterns are independent (i.e. dis-
joint), and do not access other data except from reading, then clearly the
function calls can be called in parallel. In this case these patterns match the
programmer-specified attributes exactly. The traversals are thus disjoint. The
additional access in the function using the predecessor node is also clearly not
interfering with the traversals, which can be seen from the other disjoint at-
tribute. The only direct dependency is the child node’s potential field which
depends on the current node’s potential field. Therefore, it is possible to con-
clude that the first recursive call on the sibling may be executed in parallel
with the remainder of the function.

When it is known that the traversals are disjoint, the compiler needs to
figure out how often these parallel calls should be done. Preferably, all the
calls taking the sibling pointer would be parallel. Unfortunately this does
in most environments generate a substantial overhead. Our solution to this
was to utilize the mechanisms in the restructuring system and add a periodic
count of the subtree sizes for each node. The function was then cloned and
the entry point modified to check whether the subtrees (reached by traversing
the child and the sibling pointers) were of su�cient sizes. If both subtrees are
of di↵erent sizes, the sibling node is handed away to a worker thread which
the current thread waits for before using the result from the function call.

Note that only one branching point was used. The main drawback of this
is that all parallelism will not be exploited, however, as will be shown later in
the experimental results, it still yielded decent results.

4.6 Results

Our experiments were carried out on a number of di↵erent machines with
somewhat varying results. Three major experiments were carried out during
the exploration of the MCF code, Firstly, we investigated optimization of the
refresh potential function only. Secondly, we investigated an optimization
focusing on the price out impl function. The code was passed through the -

124 CHAPTER 4. PAX C

O3 optimization flag of the clang compiler to ensure that we were not repeating
standard built in optimizations from the compiler. Thirdly, we focused on
parallelization speedups and the refresh potential function was parallelized
with a single branching point taking into account the subtree sizes for the
sibling and the child pointers.

The refresh potential test was executed by comparing a base version with-
out restructuring, with variants that trigger restructuring every nth call to the
function. We tested several intervals for the restructuring. Another test also
compared two di↵erent versions, one generic using a very fast hash table for
mapping old pointers to new pointer values (which is needed when objects are
not allocated in arrays) and a second version using an index based remapping
vector. The index based remapping vector is applicable on many di↵erent data
structures, and should be used whenever possible. For this experiment we used
a small data set6.

The price out optimizations were tested using a hybrid access pattern
method. Essentially two access patterns were used, the first one being the
covering pattern from refresh potential and the pointer attributes; the second
one being the pattern used in the price out impl function. The two access
patterns were interleaved and tested with di↵erent combinations (for example
2 nodes using one pattern followed by 4 nodes using the other pattern). For
this experiment we used a large data set7. Since one of the patterns was not
covering, the traversal of this non covering pattern had to be followed by the
covering pattern so that all nodes could be moved into the new data block.

The parallel version of refresh potential was tested on an x86 machine
running Linux. The experiment utilized pthreads to handle the parallel work
in a fork-join like way (emulated using mutexes to improve performance).
Although a single branching point is not optimal from a parallelization point
of view, it serves here to show that even a simple mechanism like this can have
a substantial e↵ect. The refresh potential test utilized the large reference data
set from the MCF code.

4.6.1 Refresh Potential Optimizations

The results for the refresh potential function optimizations are shown in table
4.5. The table shows how often restructuring was done, the time for the
refresh potential function, the overhead from restructuring and speedup of the
function. Note that the program’s total execution time went up in all cases

6Data set named train distributed with mcf.
7Data set named ref distributed with mcf.

4.6. RESULTS 125

Test Case Base (s) Overhead (s) Speedup (%) Speedup Idx (%)

Base 1.55 N/A N/A N/A
100 0.9 1.58 -37.5 46.5
200 1.1 0.8 -18.4 31.4
400 1.2 0.43 -4.9 24.7
800 1.25 0.21 6.2 22.0
1000 1.27 0.17 7.6 20.4
1100 1.31 0.14 6.9 17.1

Table 4.5: Optimizations targeting refresh potential

Machine Serial Parallel Speedup (tot ; func)

Core 2, 2.66GHz 130.3 s 122.4 s 6.1 % ; 13.6 %

Table 4.6: Parallelization of refresh potential. Total execution time.

(this is not shown in the table) as the restructuring caused other functions
to run slower as they used di↵erent access patterns, the improvements in the
tables are solely for the execution time of the refresh potential function.
The overhead column shows the overhead from the restructuring when hash
tables were used to keep track of pointers. The indexing version was 10 times
faster at restructuring than the hash table version (only the derived speedup
is shown in the table).

4.6.2 Price Out Impl Optimizations

The graphs in figures 4.15, 4.16 and 4.17 show the speedup obtained on di↵er-
ent platforms using the optimized MCF data structures. The di↵erent hori-
zontal axes indicate the interleaving levels for the two di↵erent access patterns.
The primary pattern is the covering access pattern and the secondary access
pattern is the one responsible for optimization (i.e. the pattern used in price
out impl). The two axes together mesh out the speedup on the vertical axis.

4.6.3 Parallelized Refresh Potential

The parallelization tests where run on a quad 2.66 GHz, Core 2 machine. Table
4.6 shows the average execution time during 20 runs on this machine. The
speedup is reported for whole program and the refresh potential function.

126 CHAPTER 4. PAX C

Figure 4.15: Core 2 @ 2.66 GHz, 4 GiB RAM, 6 MiB L2, Linux

Figure 4.16: i7 @ 2 GHz, 4 GiB RAM, 6 MiB L2, OS X Lion

4.7. DISCUSSION 127

Figure 4.17: i5 @ 3.20 GHz, 3.8 GiB RAM, 4 MiB L2, Linux

4.7 Discussion

For the initial experimentation with the refresh potential function we see that
when using index based vectors the optimization quickly pays o↵ (locally).
Although the total execution time was higher for the program, the approach is
still valid as many applications will not show the same behavior. In fact, the
experiment confirms that substantial speedups of certain types of applications
are feasible with the approach laid out in this chapter.

For the second experiment with the price out impl access pattern, the
optimization experiment demonstrated that the approach is feasible, has a
total performance improvement on the application and is applicable to more
complex programs. This improvement was seen on all the platforms we tested.
Although this improvement was very small on the Core i5 which we guess is
due to the limited amount of cache in the processor. However, this should have
been expected as the reordering is primarily a cache optimization of the data.
For the experiment in particular, only the secondary access pattern should
be used, though the primary pattern is still necessary to make a complete
restructuring.

We also showed how a minor rewrite of the refresh potential function could

128 CHAPTER 4. PAX C

enable semi-automatic parallelization of the function. This is substantial in
itself from a conceptual level, and even as the performance was improved (by
6.1 % for the whole program and 13.6 % for the function by itself). The
method used only one extra worker thread and additional parallelism remains
unexposed. While there are programming models that allow the programmer
to express recursive parallelism such as the mentioned cilk, for many similar
codes the runtime overhead would simply be too large. The Pax C extensions
enable similar optimization in an entire program by concentrating the modifi-
cations on a few data types instead of in the code. Better hardware support
such as proposed by the microgrid team [6], could possibly be applied to relieve
the situation for these codes.

4.8 Conclusion

In this chapter we presented extensions to the C programming language that
enable the restructuring of large pointer-linked data structures. The restruc-
turing step converts all pointers into either fat pointers, slices or indices. This
rewrite of data structures enables position independence for pointer-linked
data structures, and the reordering of objects into a more optimal memory
layout. It is feasible to apply compile-time checking of the validity of the
pointer attributes in many cases, and, when not, it is possible to resort to
runtime checks.

The restructuring done with the help of the language was demonstrated to
give noticeable performance improvements for some common problems involv-
ing sparse matrices and spanning tree algorithms, and this without the utiliza-
tion of the additional aliasing information that the attributes make available
to the compiler.

In general it would be nice to express any kind of property using the most
generic language possible. However, while it is of interest to have a general
programming model for describing data structures, the fact is that there is a
significant tradeo↵ between expressiveness and programmability. A language
extension must be usable for a human programmer. There is thus a tradeo↵
between a purely theoretical model and a more practical approach that is easy
to learn and work with. For this purpose, we have tried to avoid defining a too
generic system that is di�cult to use, and a too verbose and extensive system
that is di�cult to learn. We aimed at a set of attributes and language exten-
sions that is minimal but still functional, and although the balance between
ease of use and generality is very much subjective and is di�cult to quantify
in a testable way, we believe that by keeping the set of attributes minimal

4.8. CONCLUSION 129

but still functional the Pax C extensions described in this chapter manages to
strike a good balance between ease of use and generality.

130 CHAPTER 4. PAX C

Chapter 5

Hardware Based
Restructuring

In Chapter 2 we presented a method based on compiler analysis in combina-
tion with runtime tracing and object reordering. This method was based on
the compile-time identification of type-consistent collections of objects who
could be automatically pool-allocated by the compiler. Whenever these ob-
jects where used repeatedly, the compiler emits tracing code for the first pass
and then applies the restructuring operation on the linked data structure. The
method resulted in substantial speedups on several matrix-based benchmarks.

A more optimal restructuring of linked data structures resulted when log-
ically adjacent objects where placed in a corresponding memory order (an
object a is logically adjacent to object b, if there is a pointer from object a to
b).

An immediate di�culty with objects being logically adjacent and restruc-
turing is that in any kind of linked recursively typed data structure, except
for the most simple case of a singly-linked list, an object will have multiple
logically adjacent objects and therefore there may be multiple paths possible
through the data structure.

When a set of objects is restructured, the objects are reordered in a com-
pressed chain, that in many cases can be seen as an array. This reordering is
called chaining, and the chained objects are called a chain.

In this chapter we introduce a method for applying restructuring by means
of hardware support. Other groups, have explored hardware based approaches
in order to solve the linked data structure problem. In [9], the additions of

131

132 CHAPTER 5. HARDWARE BASED RESTRUCTURING

pointer caches to speed up irregular pointer accesses was explained. This ap-
proach is very similar to the prefetch stream detectors. Automatic prefetching
systems in processors tend to detect patterns that are regular, which works
very well for arrays, but not well for pointer based structures that are spread
out in memory. The pointer cache on the other hand works by specifically
caching the addresses of pointers (on the heap) and their target addresses,
this information can then be used in order to prefetch the next object. The
approach uses processor state to predict the pointers to fetch. Other groups
have explored stateless prefetching of pointer chains. In [31], a directive-based
prefetching system is described that allows the compiler or programmer to emit
prefetching directives that are able to describe both strided and chained ac-
cesses. The system also allows for the fetching of parallel chains independently.
Both of these approaches di↵er from our approach substantially, primarily in
that we actually serialize the data.

Our system works by the programmer or compiler declaring some objects
as chainable. This is done by ensuring there is space in the object for an
additional metadata field maintained by hardware and that the addresses of
the objects are easily detectable as chainable object addresses. These objects
are serialized into a dedicated chain memory. For each chainable object that
is serialized, the original is kept but modified with a forwarding address that
indicates to which chain the object belongs and where in the chain the copy
of the object is located. Accesses through the virtual addresses can thus be
redirected to the chain memory by inspecting the object’s metadata field that
contains the actual location of the serialized representation. It is obviously not
practical to carry out these lookups, so an additional system that tracks stack
pointers and their corresponding chain memory location is introduced. In order
to explore the potential of this method, this chapter provides a simulation-
based assessment of the cost vs performance improvements of the method.

Note: while this chapter does not work out the details of an optimal chain-
ing mechanism, it does present the basic mechanism by which objects are
chained using only one of the pointers.

5.1 Implementation

One of the problems with restructuring and chaining is determining that an
object is actually chainable. For our purposes, we have decided to work with
specially dedicated chainable memory. The chainable memory is essentially
normal memory that has been declared as chainable by setting a special bit
accessible to the processor. Objects that have been chained in turn are stored

5.1. IMPLEMENTATION 133

in chain memory.

If hardware is supposed to chain objects, a pair of object parameters are
needed. The first is the object layout that defines which fields in an object are
recursively typed pointers. The other parameter is the size of the object. It
may be possible to determine these at runtime, however we assume that they
are explicitly registered with the processor by the program.

Programs use virtual addresses in order to point to variables in memory.
These addresses do not change, and we ensure that they are translated into
di↵erent physical addresses if the objects are chained. The translated addresses
would normally be cached, and it may be impractical to build large content
addressable memories that are su�ciently fast and energy e�cient. Instead
of caching the translation for the addresses, we can reduce the number of
translation entries by storing the translations of the pointers keeping chainable
addresses instead of the direct address translations. These pointers we call
active pointers.

Note that even though the active pointers are available, whenever a pro-
gram deviates from the assumed path with which the chain was built, the
active pointer cannot be used to lookup the chain address. In this case, the
address lookup goes through normal memory, where we explicitly embed a
forwarding pointer in each object to describe the location of the object in
chain memory. This lookup is similar to a VM table walk, except there is one
translation per object, and not per page.

There are three fundamental aspects to the system: detecting chainable
pointers, tracking the active base pointers and chaining objects. Each of these
is discussed in the following sections.

5.1.1 Detecting Chainable Objects

An address must be identifiable as chainable. We explore two ways this can
be accomplished. The first discusses the use of the virtual address format of
the processor, and the second discusses the use of the virtual memory page
tables. Both methods are applicable, but have di↵erent drawbacks and ad-
vantages depending on the architecture of the system. Note, however, that
there is essentially no performance di↵erence between the methods. In both
systems, the programs need to be modified to utilize these addresses. These
modifications can be focused on the code that allocates the data structures
that need to be returning chainable addresses instead of normal pointers.

134 CHAPTER 5. HARDWARE BASED RESTRUCTURING

Dedicating Bits

One way of identifying chainable objects is to dedicate a bit in the virtual
address space. This method is relatively simple to implement and doing so
essentially reserves half of the virtual address space. However, this may in turn
have substantial backward compatibility problems for existing software and
operating systems. For example if the system is implemented on an existing
architecture it is likely that linker scripts would have to be rewritten and a
large amount of the software recompiled, though several methods can be used
in order to avoid the recompiling of all software.

One way of avoiding recompilation is to use methods common in embedded
systems, where processes declare whether or not they want to use the floating
point unit. By doing so the operating system can optimize the context switch-
ing overhead. Similarly, it is possible to signal to the processor that a running
process is compiled for the chaining engine.

An advantage of a dedicated bit is that it is very easy to construct e�cient
logic that detects chainable addresses (see Figure 5.1). However, one issue
for such an approach is that it is di�cult to divide the chainable memory
into anything but power-of-2 sized regions. Subdividing the dedicated address
space is necessary if we want to have multiple subregions (for example if we
have di↵erent types of linked objects). While it is easy to build up a tree of
dedicated address prefixes that describe a di↵erent chainable address region,
it may be of interest to the programmer to have a more e�cient utilization of
the address space.

As mentioned, dedicating a bit, presumably the most significant bit of an
address, as a chainable memory prefix bit, may have implications for software
on existing systems. On the x86-64, we can solve this using the non-canonical
addresses (see [28]) for chainable memory. Note that it is not possible to
dedicate the Least Significant Bit (LSb), even though there are alignment
restrictions on the objects and the fields in the objects. The problem with
doing this is that there is no way to distinguish a load to a generic byte
string (using an alignment of 1) from a chainable memory load, this is further
illustrated in Figure 5.2.

The x86-64 is divided in canonical and non-canonical address ranges, and
while the architecture itself supports the use of the full 64-bit address space,
no implementation presently does this. The canonical addresses, that are the
normal addresses that a program uses are further subdivided in a high and a
low half. The non-canonical addresses are the unusable addresses between the
two canonical address ranges and the processor will generate exceptions if a
program access the non-canonical address space.

5.1. IMPLEMENTATION 135

&CE

CA (MSb)

gpr

cstat

MMU

CHAIN ENGINE

EN

EN

Figure 5.1: Logic for detecting chainable addresses using a dedicated bit. In
order to allow the enabling of chaining support per application, a dedicated
chain status register (cstat) has a special bit that allow the enabling / disabling
of the chaining engine. If this bit is set and the chain address bit is set in the
address located in one of the GPRs, the the address is routed to the chain
engine instead of the MMU.

If the implementation supports 48-bit virtual addressing the lower half
of the canonical range goes from 0 to 247 � 1 (or 0x00000000 00000000 -
0x00007fff ffffffff) while the upper half goes from 264 � 247 to 264 �
1 (or 0xffff8000 00000000 to 0xffffffff ffffffff). Although not de-
tectable using a single bit, the in-between range is easily isolated using an
expression like: (p & 0xffff0000 00000000 6= 0xffff0000 00000000 && (p

& 0x00008000 00000000).

Note that while it is possible to declare a range of non-canonical addresses
as being chainable, if we want to maintain backward compatibility with future
processors that may extend the number of bits used for virtual addresses, the

136 CHAPTER 5. HARDWARE BASED RESTRUCTURING

object_t *foo = 0x10000001; // The object foo is aligned at

// sizeof(int), set The LSb to

// indicate chainable

foo->field; // Load of 0x10000001 + 4

char bar[] = 0x20000001; // The bar array is aligned at

// sizeof(char) == 1

bar[4]; // Load of 0x20000001 + 4

Figure 5.2: Example illustrating the di�culties of dedicating the LSb for chain-
able pointer detection. Assuming foo->field is the same size as the elements
of bar, there is no way to distinguish the loads from each other. Even though,
pointer sized loads can be detected as they will be misaligned, data field loads
of arbitrary sizes, should also be detected as belonging to a chain or not, and
this is not possible.

chainable range must be readable by software. Such a readable range can be
used by the allocation libraries that need to determine which addresses are
available for the user program. In this case, it may also be possible to expose
these registers as writable and simply let the software declare which range is
chainable.

Note also that a valid virtual address must ultimately be mapped to an ac-
tual physical address, and that this also applies to chainable addresses. Under
normal conditions, this mapping is done by page tables, and it is possible to
also carry out the chainable address detection using an attributed page table.

Using Page Tables and TLBs

In this section we discuss the use of page tables to detect chainable memory
regions. For the discussion, we use the terminology of the SRMMU1 design,
with the exception that instead of the term PDC (Page Descriptor Cache),
we use the more familiar term TLB (Translation Lookaside Bu↵er). This
does not mean that the MMU is assumed to be an SRMMU. We assume a
certain amount of generality in the discussion and the solutions as discussed
are equally applicable to most architectures around, including ARM, MIPS,
PowerPC, SPARC, and x86. All of these architectures use multilevel page

1SPARC Reference Memory Management Unit

5.1. IMPLEMENTATION 137

tables and most of them support large pages2.
A memory management unit has two key ingredients, page tables and TLBs.

Page table are divided in multiple levels where each subsequent level describes
smaller regions in a hierarchy. The Level 1 page table (L1 PT) consist of
entries known as Page Table Pointers (PTP) and Page Table Entries (PTE).
The function of the PTPs are to point to next-level page table, that is in the
L1 PT, the PTPs point to L2 PTs. A PTE, points to a specific memory page.
Its virtual address is based on the combined multilevel index of the page table
entry and its physical address is encoded in the PTE itself.

L1 Page Table

PTP L2 Page Table

PTPPTP

PTE

L3 Page Table

PTEPTE

Figure 5.3: Multi Level Page Table

Depending on the level in which they are located, the PTEs describe
di↵erent-sized pages. For example in the SRMMU, the describable regions
are 4 GiB, 16 MiB, 256 KiB and 4 KiB [46]. The remaining bits in the virtual
address (the ones not used for locating the PTE) are used in order to specify
the o↵set within the page (this is possible as pages are aligned based on their
size).

The PTDs and the PTEs assumes alignment of both page tables and pages.
This is used to store various attributes such as read, write and execute permis-
sions of the pages. The PTE attributes can be extended with a chainable bit.
However, if this is only done on the PTEs, the TLB will in general make this
impractical since it requires the TLB to have all of the PTEs for the given re-
gion. This follows from the fact that the TLB cache is of limited size (around
one hundred entries). The advantage of a small TLB is that it provides a
reasonably fast and energy e�cient content addressable memory for looking
up the most commonly used PTEs in sub-cycle time (in the case a PTE is
not available in the TLB, the processor must walk the page table to find the

2Mappings where a virtual and physical page is larger than the smallest region

138 CHAPTER 5. HARDWARE BASED RESTRUCTURING

relevant PTE which causes a number of additional memory instructions to be
issued).

The solution to the problem is simple. Instead of only placing the chainable
attribute in the PTEs, the attribute can also be placed in the PTPs. We can
therefore cache the chainable attribute bit for larger regions, without using
as many entries in the TLB as would be necessary for caching the virtual
to physical translations. In addition, when several chainable memory regions
are supported, the identifying bits can be stored in page tables. These can
then refer to a specific chainable memory table that track the object layout
parameters.

Performance Implications

Neither of the systems have any major performance implications. In the bit
dedication mechanism, identifying addresses as chainable is a very fast sub-
cycle operation using very little logic. In the page table based system, there
may be a performance implication, since for instant access, the objects must be
located on a page whose address mapping is cached in the TLB. However, as
the bit that identifies a page as containing chainable objects is stored on higher
level page tables, the number of TLB entries can be minimized. A memory
allocator must also be smart enough to align the actual mapped number of
pages to the number that minimize the number of TLB entries needed to
quickly lookup the chainable address bit.

Using the SRMMU as an example, a 2 GiB region is easily described using
128 TLB entries (or 1 TLB entry for a 4 GiB region). For the applications
that we have explored, the data structure sizes are far smaller than this and
it is su�cient to use only two entries of 16 MiB each. These two entries are
likely to be located in the TLB.

In the experimental evaluation in Section 5.4, both methods are assumed
to identify chainable addresses in sub-cycle time, so the performance penalty
for either method is set to 0.

5.1.2 Tracking Active Pointers

As mentioned before, the chain engine resolves the chain addresses by embed-
ding a forwarding pointer in each object. It is not practical to go through
the chainable memory every time an object is accessed. Doing so defeats the
purpose of the entire system. Consequently the lookup of a chain address must
be optimized.

5.1. IMPLEMENTATION 139

The chain engine speeds up the lookups by tracking active pointers on the
stack (global object pointers are assumed to be the bottom of the stack). An
active pointer is a pointer that is used in order to carry out loads within the
chainable memory. To a certain extent, they have a role similar to a root
pointer in a garbage collection system.

The active pointers are used to quickly execute a virtual-to-chain memory
translation. It is important to note that this cached translation from a virtual
address to a chain address is not associated with the virtual address directly,
but is associated with the pointer that contains the address.

An active pointer record A
ptr

= {V
ptr

, C
ptr

, C
offset

, C
len

, F
offset

, F
count

}
consists of the current virtual address (i.e. the pointer contents), a chain
pointer, a chain o↵set, the chain length associated with the chain pointer, a
field o↵set and a field access count. The chain pointer is the physical address
in the chain memory of the relevant chain, the chain o↵set identifies the object
within the chain and the chain length is the number of objects stored in that
chain. Note, that this is not to be seen as a normal physical address that goes
out to the normal memory bus, but it does describe the exact location of the
chain in chain memory.

The C⇤ parameters are also stored in the chainable memory as special tags
in the objects. This is necessary to resolve and access an object through its
virtual address once the object is chained. It is up to the memory allocation
system and compiler to add this field to each object. However, the hardware
will manage it.

A complication is formed by the fact that these pointers are stored on the
stack and in registers. In addition to this, the pointers are continuously copied
back and forth between registers and the stack. The active pointer system
has one record per general purpose register and one record per identified stack
address. In the experiments described in Section 5.4 it is seen that the number
of active pointers is very small in the benchmarks. Although, a recursive
program may easily blow this out of proportion, we note that the support of
deeply recursive programs is not a goal in this initial exploration. The flow of
pointers between the stack and registers is illustrated in Figure 5.4.

By monitoring all loads through the stack pointer we can intercept the
loads of pointers that may be referring to the chainable memory. When these
pointers (now in registers) are in turn used for loads we can be sure they are
being used to load values on the heap. These heap values do in turn need to
be identified as pointers, one method that was suggested in [10] is based on
comparing the most significant N bits of loaded value with the address of the
loaded value. We do not use this approach, but actually check whether the
full loaded value may be a pointer. In this case, we declare the register or the

140 CHAPTER 5. HARDWARE BASED RESTRUCTURING

Pointer
on stack

Pointer
in

register

load address in pointer into register

Load next pointer

store address to pointer on stack

Increment pointer
(pointer arithmetics)

Figure 5.4: Flow of Pointers Between Stack and Registers

stack location where the pointer was stored as potentially active. It is finally
declared active if it is used as the base address for another load instruction,
which in turn guarantees that the potential pointer is a pointer3. The flow of
the algorithm is illustrated in Figure 5.5.

Save and Restore

A problem with tracking active pointers is that pointers go out of scope when-
ever a function returns. In addition to this, if many functions are called in
di↵erent calling contexts, many more active pointers are registered than is
necessary.

This is solved by taking inspiration from the SPARC architecture. The
SPARC architecture utilizes two instructions: save and restore to mark the
entering and exiting of functions. Similar mechanisms can be used to auto-
matically remove obsolete active pointers that are no longer in the programs
scope. A save instruction will mark a new active pointer frame, and a restore
instruction will kill all the active pointers that have been discovered since the
last save instruction.

Note the save and restore can be embedded in, for example, the call and
return instructions of the architecture.

3If it looks like a chainable pointer, it potentially is one. If it behaves as a chainable
pointer it definitely is one.

5.1. IMPLEMENTATION 141

rd = load ra,
offs

IsPotentiallyActive(ra)?

IsNextPtr(offs)

ra = sp?

NO

IsActiveStack(ra + offs) CopyActiveMD(rd, ra + offs)YES

MarkPotentiallyActive(rd)

IsActive(ra)

LOAD(ra + offs)

Loaded Value in
Chainable Memory? YES

MarkActiveReg(ra)
MarkActiveStack(ra.srcAddr) LOAD(ra + offs)

CopyActiveMD(rd, ra)

NO

LOAD(ra + offs)

NO

IsLastOfChain(ra)

NO

rd.chainIndex ++

rd.val =
chain[rd.chain]

[rd.chainIndex].vaddr

LOAD(chain[ra.chain]
[ra.chainIndex] + offs)

NO

LOAD(chain[ra.chain]
[ra.chainIndex] + offs)YES

ChainEngineActivate(rd)

Start/Stop

NewPointer is
active if the loaded
value points out an
object with a chain

address.

NewPointer is
active if the loaded
value points out an
object with a chain

address.

Figure 5.5: Active Pointer Tracking

5.1.3 Chaining

The chaining operation is triggered when an active pointer has been used for
traversals in the same direction at least twice4. During the chaining operation,
the objects in chainable memory are traversed using the pointer o↵set that has

4Experiments have also been carried out with immediate chaining

142 CHAPTER 5. HARDWARE BASED RESTRUCTURING

now been used for traversing the objects. All the visited objects are copied
into chain memory creating a linearized copy of the original structure. For
subsequent traversals of the same chain, the chained objects are accessed in
the linearized order in chain memory, thereby increasing the spatial locality of
the pointer chains.

In order to avoid traversing infinitely long chains, the chaining engine tra-
verses at most a fixed number of objects in chainable memory (we have set
this constant to 32) and it stops the traversal when it reaches an object that
is already in chain memory (which is identified by the forwarding pointer) or
a NULL pointer.

In order to perform the copying, the chain engine must know the size of the
objects in the chains, this size is set using a system call by the application. In
addition to the size, the chain engine also knows which fields in the objects are
recursively typed pointers. This is stored in a bit vector. It is assumed in this
case that all recursively typed pointers within the objects are aligned based
on their size. This alignment restriction implies that if bit 1 is set in the bit
vector, then the first field is a pointer. Using a 32-bit, bit vector, means that
we can work with objects with sizes of up to 256 bytes, which is a reasonably
large object.

During writes, the chaining engine evicts the tail of the chain if a chained
pointer is overwritten. The eviction is done by traversing the chain starting
at the current active pointer used for the write, copying all the objects after
the current one back to the chainable memory.

5.2 Accessing Chained Objects

As already mentioned, the program works with normal virtual addresses. How-
ever, the active pointer system bypasses the normal memory system in most
cases. There are four basic operations for accessing an object: load pointer,
store pointer, load data field and store data field. For all of these, the following
holds if the access is done through a non-active pointer. When accessing an
address A, the processor inspects the address and determines if the address is
in chainable memory. If it is, the first field of the object is loaded and checked
as to whether it is a forwarding pointer or not (the first field being non-zero).
If it is a forwarding pointer, the access is immediately forwarded to the chain
memory. If it is not a forwarding pointer, the access is routed to normal mem-
ory. Note that at this time, the register with the base address of the object
will likely be promoted to potentially active.

If an access is carried out through an active pointer, the following things

5.3. SYSTEM MODEL 143

can happen. Firstly, if it is a load or store of a data field, the access is routed
to the chain memory. Secondly, if we are accessing a pointer, the pointer
may be a “next”-pointer, in this case the chain index is incremented in the
destination registers active pointer record. If this index overflows the length of
the chain, the next load brings in the object from main memory and accesses
the forwarding field. If not the “next”-pointer, the value access is treated like
a data access.

5.3 System Model

This section connects all the parts and gives a full system overview. In the
chaining system all general purpose registers are extended with the chain lo-
cation data as hidden registers. Figure 5.6 shows the additions of registers
(visible and hidden ones) to the CPU. The special purpose registers are visible
to user software. Of these, the frame ID identifies which active pointer frame
is in use, this value is decremented on the issuing of the restore instruction
and incremented on the issuing of a save instruction. The active frame in
turn identifies the range of active pointers that are associated with the current
frame. In the figure the current frame consist of active pointer entry number
0 to inclusive entry number 1. 5

The active pointer file is a content addressable memory whose access key is
the stack location of the corresponding pointer. The active pointer file contains
the various fields that are associated with the active pointer. These include
among others the chain address (CA), the chain o↵set and the chain length.

Each general purpose register is paired with its own active pointer sta-
tus. Whenever an active (or a potentially active) pointer is loaded, the active
pointer file entry is copied to the registers active pointer fields. The opposite
holds for stores, in which case an active pointer record in the current frame
may be allocated if an active pointer record for the stack location does not
exist (the allocation is done by incrementing the current top register).

In addition to the CPU registers, the processor needs to store the chains
somewhere. It would in this case be wise to divide the chain storage in multiple
levels, in the same way normal caches work. The main di↵erence is that instead
of pulling in cache lines of smaller sizes, the chain cache would work using full
chains (in our case of 32 objects). The chain cache would be indexed by the
chain address.

5The bottom entry is equal to the top entry of the previous frame plus one, so the concrete
realization does not have to implement both registers.

144 CHAPTER 5. HARDWARE BASED RESTRUCTURING

CPU

Special
Purpose
Registers

Obj Size

Obj Layout

Frame ID

Frame Stack

Top Bottom0

Top Bottom1

Top Bottomn

Active Pointer File, indexed by stack location

Stack CA0 Coffs Clen Foffs Faccess flags

Stack CA1 Coffs Clen Foffs Faccess flags

Stack CAk Coffs Clen Foffs Faccess flags

Register Active Pointer Status

CA Coffs Clen Foffs Faccess flags0

CA Coffs Clen Foffs Faccess flags1

CA Coffs Clen Foffs Faccess flagsm

Registers

r0

r1

rm

Figure 5.6: Additional registers in the processor used by the chaining system.
The general purpose registers are called rX in the figure, these already exist
in the processors, and only serve to illustrate how they are associated with the
active pointer register status file. In the active pointer file, the stack field is
the key and is used for lookup.

5.4 Experiments

This section empirically investigates the behavior of the chaining engine and
the active pointer tracking. The experiments consist of instrumented applica-
tions that trace pointer accesses and a simulator running through the traces.
The applications are taken from the SPARSE lib / SPARK00 benchmark suite
and from the SPEC benchmark suite.

Three programs were instrumented: Spmatvec, a sparse-matrix-vector mul-
tiply code; Dsolve, a solver working with LU-factorized matrices; and MCF, a
minimum constraint flow solver targeting the optimization of transports. The
first two are from the SPARK00 suite of benchmarks and both work with the
same data structure, an orthogonally linked list, where each node represents
a separate cell in the matrix. The two codes traverse the matrix in di↵erent
ways, spmatvec traverses the matrix row wise and dsolve traverses the upper
and the lower half of the matrix in di↵erent directions. Neither spmatvec nor
dsolve make any modifications to the matrix once it is constructed.

The MCF data structure is a tree, where siblings are linked in a binary
linked list, and each node has a pointer to the left-most child, and to its
parent. This tree structure undergoes optimization during the execution of
MCF, resulting in many writes to the di↵erent pointer fields. MCF is known

5.4. EXPERIMENTS 145

Pointer Field Load Source Pointer
Destination Pointer
Source Object Pointer
Loaded Pointer Value
Field

Value Field Load Source Pointer
Source Object Pointer
Field

Pointer Field Store Destination Object Pointer
Field

Value Field Store Destination Object Pointer
Field

Pointer Copy Source Pointer
Destination Pointer
Source Object Pointer

Load Destination Pointer
Loaded Pointer Value

Save Function Pointer
Restore Function Pointer

Table 5.1: Trace Formats

to be di�cult to optimize and serves as a worst case scenario.
The purpose of the simulator is to explore the mechanisms and some prop-

erties related to the performance of the applications (such as hit-ratios of the
chain accesses, and a simplified cost model) and not to measure actual perfor-
mance.

5.4.1 Traces

The traces used by the simulator are based on a number of primitive operations
used in the three applications. The operations include: pointer field loads and
stores, value field loads and stores, pointer copies, loads of explicit values (i.e.
not a load of a field) and the save and restore markers that indicate when a
function is entered and exited.

The binary trace format for each operation was made identical in order
to speedup the simulation (i.e. the same size and field divisions). The fields
for each traced operation are however interpreted di↵erently depending on the
operation. Table 5.1 shows the relevant fields included in each trace entry.

146 CHAPTER 5. HARDWARE BASED RESTRUCTURING

Memory Type Size Latency (cycles)

L1 cache 32 KiB 4
L2 cache 256 KiB 11
L3 cache 8 MiB 30
RAM N/A 162

Table 5.2: Performance Parameters. For the L3, the 8 MiB size is the default
value. The size is varied in the experiments.

Test Bandwidth

memcpy (read) 4.86 GB/s
memcpy (write) 4.86 GB/s
spmatvec (read) 219 MB/s
dsolve (read) 211 MB/s
mcf test (read) 276 MB/s
mcf test (write) 2 MB/s

Table 5.3: Memory bandwidth utilization tests on a Core i7 @ 2.7 GHz.

5.4.2 Performance Model

In order to estimate the execution time, a simplified performance model has
been developed. The performance model is based on the use of caches and
estimates for prefetching ability for the chain engine.

The processor model is based on an Intel Core i7. The default values
selected are shown in Table 5.2. The cache latencies are taken from [16] while
the RAM access time is taken from page 22 of [40] with the assumption of a 2.7
GHz processor. In addition to these values we have made a rough estimate of
memory bus bandwidth by timing the memcpy function for a best case value,
and by analyzing the actual amount of data tra�c (recorded in the traces) from
the benchmarks detailed below. These tests yielded the parameters listed in
Table 5.3.

From the data in Table 5.3, we conclude that the memory bandwidth is
substantially underutilized on the relevant tests.

Chain access time is set to be equivalent to L1 accesses, as they are assumed
to enable substantial opportunities to prefetch chains into memory closer to
the processor. Note that this prefetching mechanism is not fully modeled in
the simulator at present.

Note that each memory load for a non-active pointer (when the address is

5.4. EXPERIMENTS 147

in chainable memory) results in two memory loads: firstly of the forwarding
pointer embedded in the object and secondly of the actual value, unless the
forwarding pointer was valid, in which case the value is taken from the chain
memory. Since it is assumed that the cache and chain memory have the same
speed, the initial load of the forwarding pointer will bring in the larger part
of the object into cache, thus the actual field load will have the same speed,
independent of whether it goes to chain memory or stays in normal memory.

5.4.3 Simulator

The chaining simulator is responsible for reading the traces and executing the
traces as pseudo-instructions. The load and store instructions in the traces are
broken up into a number of micro operations. A pointer field load for example,
turns into a stack load of the pointer (into a register) followed by a load with
o↵set using the register as base pointer, and a stack store where the loaded
pointer is stored to the relevant variable on the stack. This approach, emulates
the behavior of program running on a normal load store architecture6.

On stack loads, the simulator looks in the active pointer file and checks if
the stack location is registered. If it is not, the load is carried out as normal.
If it is, the active pointer record is copied to the register’s own active pointer
record.

Consequently on stack stores, the register’s active pointer record is moved
to the active pointer file and associated with the relevant address. This as-
sociation happens if the stored value is potentially active or active, but not if
the stored register is clean.

While running through the traces, the simulator not only builds up the
active pointer file and the records for the registers, but also constructs any
chains and records a number of statistics regarding the di↵erent events. For
example, the number of stack loads of active pointers, the number of chain
hits and misses.

A requirement for running the simulator, is that a memory image has been
constructed before this and maintained during the simulation (i.e. updated
when the chains are modified), the memory image is necessary for traversing
and building the chains. This memory image is constructed for a given program
trace by running through the trace, and recording the first loaded value from
every address. This memory map is then loaded when the actual simulation
is executed.

6We count x86 as a load store architecture as this is the internal behavior, even though
it is not visible to the programmer.

148 CHAPTER 5. HARDWARE BASED RESTRUCTURING

5.4.4 Results

Results are presented in Tables 5.4, 5.5, 5.6 and 5.7. The first three tables
detail the statistics for the chaining engine. Table 5.7 shows the actual speedup
when applying the performance model discussed in Section 5.4.2.

The numbers in Tables 5.4, 5.5 and 5.6 should be interpreted as follows.
The total number of chained objects, is the total count of objects that have
been placed in a chain. This number may be larger than the total number of
objects in the data structure if evictions take place. If the data structure is not
modified in a way that will trigger an eviction event, the number of chained
objects will always be less then or equal to the total object count.

Object layout is the bitfield describing which fields are pointers or not.
The data field loads is the number of loads of data values in an object. The
number of loads in a chained object is also listed with the fraction of such
loads compared to the total. For pointer field loads, the total is all pointer
field loads, the “not next” loads are loads on a pointer that is not considered
the “next” pointer for the object. “Next (EOC)” describes the number of
loads of the “next pointer” that was carried out at the end of the chain.

Pointer field stores to the “next” pointer will potentially result in a chain
eviction, if the written pointer field is not the last object in the chain.

In Table 5.7 the estimated cycles needed for memory operations, based on
the performance model in Section 5.4.2 is listed together with the speedup of
applying the chaining (and caches) compared to a running a normal code with
only the cache.

Note that the data in Table 5.7 excludes the time spent on doing calcu-
lations, since this is the same independently of whether or not the chaining
engine is in use.

5.5 Discussion

As can be seen in Table 5.7, substantial speedups in line with prior research
in the area was achieved using the simulated hardware model. SPMATVEC
and DSOLVE performed especially well.

For MCF-test, the slowdown is considerable. However, this slowdown is
caused by the test data set fitting in L1 cache, essentially eliminating all pos-
sible advantages of the chaining mechanism.

This e↵ect of cache is also seen for SPMATVEC and DSOLVE. As the
amount of L3 cache goes up, the actual speedup goes down, since more of the
problem now fits in the cache.

5.5. DISCUSSION 149

Object Total number of objects 1 294
Object size 120
Object layout 001111002

Chain Total chained objects 16 290
Number of chains built 6 765
Average chain length 2.4
Eviction Events 6 734
Evicted Objects 15 146

Data Field Loads Total 3 114 184
In chained object 2 523 438 (81.0 %)

Pointer Field Loads Total 1 984 057
Not Next 957 878 (48.3 %)
Next 293 684 (14.8 %)
Next (EOC) 432 002 (21.8 %)

Pointer Field Stores Next 8 058
Not Next 18 088

Table 5.4: Chaining Simulator Results (MCF)

Object Total number of objects 1 143 140
Object size 32
Object layout 10102

Chain Total chained objects 1 120 088
Number of chains built 45 298
Average chain length 24.7
Eviction Events 0
Evicted Objects 0

Data Field Loads Total 22 862 800
In chained object 22 355 656 (97.8 %)

Pointer Field Loads Total 11 431 400
Not Next 0 (0 %)
Next 10 724 848 (93.8 %)
Next (EOC) 452 980 (4.0 %)

Pointer Field Stores Next 0
Not Next 0

Table 5.5: Chaining Simulator Results (SPMATVEC)

150 CHAPTER 5. HARDWARE BASED RESTRUCTURING

Object Total number of objects 1 143 140
Object Size 32
Object Layout 10102

Chain Total chained objects 717 356
Number of chains built 105 967
Average chain length 6.8
Eviction Events 0
Evicted Objects 0

Data Field Loads Total 24 019 340
In chained object 23 690 937 (98.6 %)

Pointer Field Loads Total 12 355 450
Not Next 1 878 353 (15.2 %)
Next 8 610 984 (69.7 %)
Next (EOC) 1 566 300 (12.7 %)

Pointer Field Stores Next 0
Not Next 0

Table 5.6: Chaining Simulator Results (DSOLVE)

Bench Cache Only Chaining Build Speedup

MCF test 29159320 32375280 1059759 / 1001551 0.90
MCF train 8981414378 6845304321 17480519 / 18349806 1.31
SPMATVEC 1762582495 328398003 181149328 / 0 5.37
DSOLVE 1663239273 259639399 116652311 / 0 6.41

Table 5.7: Memory Access Times (In Cycles), for default test. Caches: 32 KiB
L1, 256 KiB L2, 8 MiB L3. Chaining after 2 accesses along active pointer.

Bench Cache Only Chaining Build / Evict Speedup

MCF test 29159320 33861792 924132 / 857997 0.86
MCF train 8981414378 6994648303 15259068 / 16015148 1.28
SPMATVEC 1762582495 330699648 181518457 / 0 5.33
DSOLVE 1663239273 254536680 113664778 / 0 6.53

Table 5.8: Memory Access Times (In Cycles), for default test. Caches: 32 KiB
L1, 256 KiB, 8 MiB L3. Chaining after 1 access along active pointer.

5.5. DISCUSSION 151

a Cache Only 29159320

b Chain Total 32375280
c Chain Build 1059759
d Chain Evict 1001551
e Total - Build - Evict (b-c-d) 30 313 970
f Di↵erence (e-a) 1 154 650

Table 5.9: Components of MCF test memory access time.

The average chain length of DSOLVE is less then half of the average length
of SPMATVEC. This may seem surprising when considering that the two codes
were executed with the same matrix as input, but it is natural when one consid-
ers that to construct a chain, the active pointer’s field access counter (F

count

)
must be saturated. For this reason the first few elements on the rows (starting
with the diagonal elements) and the first few elements on the columns (also
starting with the diagonals), are not chained. For SPMATVEC in contrast,
only a few elements per row will remain un-chained. From this it is possible to
conclude that when reducing the time it takes to start building chains (to do
it immediately after the first access), there will likely be a negligible or small
positive impact on SPMATVEC, and a larger positive impact on DSOLVE,
since it will bring in relatively more elements into the chains than a change in
SPMATVEC will. For MCF, as the access-patterns do not follow a straight
chain, we should expect a negative impact, depending on the input data struc-
ture. By looking at the numbers in Tables 5.7 and 5.8. We can conclude
that these assumptions are valid, although a slight degradation in the relative
performance for SPMATVEC can be observed.

The primary reason for this is that the chains are limited to a fixed num-
ber of objects. This means that for a chain that is actually over this limit,
additional chain segments are built which results in a performance penalty.
Adding one additional object increases the proportion of chains that over-
flows. For SPMATVEC this proportion in the test case used, changed from
452980 (0.039626) to 458080 (0.040072)7.

It should be noted, that the simulator takes into account prefetching abil-
ities of the chains, which is used for the chain access time estimate. In fact
for the work done in [56], the processor’s prefetching engine was a significant
source of the improvements in performance after the restructuring operations.
Since the restructuring made the memory reference streams predictable, the

7The second number not listed in Table 5.5. It is given here in order to allow for the
comparison

152 CHAPTER 5. HARDWARE BASED RESTRUCTURING

B
en
ch

L
1

L
2

L
3

N
o
C
h
ain

C
h
ain

in
g

S
p
eed

u
p

S
P
M
A
T
V
E
C

32
K
iB

256
K
iB

8
M
iB

1762582495
328398003

5.37
D
S
O
LV

E
32

K
iB

256
K
iB

8
M
iB

1663239273
259639399

6.41
M
C
F
test

32
K
iB

256
K
iB

8
M
iB

29159320
32375280

0.90
M
C
F
train

32
K
iB

256
K
iB

8
M
iB

8981414378
6845304321

1.31
S
P
M
A
T
V
E
C

32
K
iB

256
K
iB

32
M
iB

679704209
271451537

2.50
D
S
O
LV

E
32

K
iB

256
K
iB

32
M
iB

525401999
240916274

2.18
M
C
F
test

32
K
iB

256
K
iB

32
M
iB

29158480
32374412

0.90
S
P
M
A
T
V
E
C

32
K
iB

256
K
iB

64
M
iB

511826703
268833783

1.90
D
S
O
LV

E
32

K
iB

256
K
iB

64
M
iB

525402096
240916416

2.18
M
C
F
test

32
K
iB

256
K
iB

64
M
iB

29152586
32369939

0.90
S
P
M
A
T
V
E
C

64
K
iB

256
K
iB

8
M
iB

1762714248
328317323

5.37
D
S
O
LV

E
64

K
iB

256
K
iB

8
M
iB

1662932678
259587480

6.41
M
C
F
test

64
K
iB

256
K
iB

8
M
iB

26798948
31083885

0.86
S
P
M
A
T
V
E
C

32
K
iB

256
K
iB

1/33
M
iB

621978165
358096428

1.73
D
S
O
LV

E
32

K
iB

256
K
iB

1/33
M
iB

525406648
269187869

1.95
M
C
F
test

32
K
iB

256
K
iB

1/33
M
iB

29159005
32371815

0.90

T
ab

le
5.10:

S
p
eed

u
p
b
ased

on
C
ach

e
S
izes.

F
or

th
e
last

th
ree

tests,
th
e
ch
ain

in
g
version

received
1
M
iB

cach
e,

w
h
ile

th
e
n
orm

al
version

received
33

M
iB

cach
e.

5.5. DISCUSSION 153

prefetching mechanisms could start detecting the memory reference streams
and improve performance.

Prefetching of normal memory is not simulated by the simulator described
in this chapter. However it is not likely that a full hardware implementation
will have higher performance because of this without taking into account the
pointer chain prefetching mechanisms explored by others.

The mechanism can potentially be improved by taking longer histories into
account. For example, a chain should perhaps not be constructed based on a
single direction only, but instead based on history information, similar to the
ways branch prediction is handled.

154 CHAPTER 5. HARDWARE BASED RESTRUCTURING

Chapter 6

Conclusions

This thesis explored di↵erent approaches to data restructuring and showed that
that the software and hardware approaches resulted in substantial speedups.
This leads to a number of conclusions:

Firstly, compiler and runtime assisted automatic data restructuring is prac-
tical for well behaved and reasonably simple codes. Even when carrying out
expensive runtime tracing, it was possible to get a speedup for iterative codes.

Secondly, we can conclude from the NP-completeness of the Minimum Con-
fined Components problem, that in order to carry out restructuring on grids,
it is not enough to simply analyze the pointer linked nodes at runtime. Ad-
ditional information is needed, this can be provided by the compiler (through
analysis of code) or the programmer (by providing more information to the
compiler or the runtime). In addition to this, more advanced restructuring
could be enabled. For instance if it is known by the compiler that a pointer
linked data structure represents a grid, the compiler could apply loop inter-
change on some pointer linked codes, or it could reorder the data according to
what is best for the inner loop.

Thirdly, for more complex restructuring tasks, where applications have
multiple access patterns and a compiler cannot automatically choose which
one, language extensions can be used that assign rules for how data types
may be used. Rules like this are often implicit in todays code’s, and explicit
encoding allows the compiler to find additional issues with the code that had
otherwise gone unnoticed.

Fourthly, for highly dynamic data structure, active restructuring is possible
provided su�cient hardware support is given.

There is a lot more work to be done in this area. Pointer based grids should

155

156 CHAPTER 6. CONCLUSIONS

for example be supported by compilers directly. The extensions described in
Chapter 4 do at present not support the notion of orthogonality as introduced
in Chapter 3. This could be remedied, but it is not entirely certain how
additional orthogonality attributes can be verified in a way that would keep
the performance penalty at an acceptable level. We do however know, from
Chapter 3 that an assumption of orthogonality can be verified in polynomial
time, the question here is whether the given algorithm runs fast enough and for
which programs it is fast enough for, it may also be possible for the compiler to
statically detect detect whether the assumption holds in a conservative way.
In addition to this, transformations and optimizations based on this notion
should be developed.

With respect to the results described in Chapter 5, the chain memory needs
further evaluation and development. Firstly a more high fidelity simulator is
needed in order to increase the accuracy of the simulation results and in order
to run actual code, and not just address access traces. After this step has been
carried out, an actual implementation in register transfer notation could be
explored and integrated with an existing processor.

Bibliography

[1] Ole Agesen, David Detlefs, and J. Eliot B. Moss. Garbage collection and
local variable type-precision and liveness in java virtual machines. In
PLDI, pages 269–279, 1998.

[2] Muthu Manikandan Baskaran, J. Ramanujam, and P. Sadayappan. Au-
tomatic c-to-cuda code generation for a�ne programs. In Rajiv Gupta,
editor, CC, volume 6011 of Lecture Notes in Computer Science, pages
244–263. Springer, 2010.

[3] Laszlo A. Belady. A study of replacement algorithms for virtual-storage
computer. IBM Systems Journal, 5(2):78–101, 1966.

[4] Michael A. Bender and Haodong Hu. An adaptive packed-memory array.
In PODS, pages 20–29, 2006.

[5] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An e�-
cient multithreaded runtime system. In PPOPP, pages 207–216, 1995.

[6] Kostas Bousias, Liang Guang, Chris R. Jesshope, and Mike Lankamp.
Implementation and evaluation of a microthread architecture. Journal of
Systems Architecture - Embedded Systems Design, 55(3):149–161, 2009.

[7] Fred Buckley and Frank Harary. Distance in Graphs. Perseus Books (Sd),
January 1990.

[8] David Callahan, Ken Kennedy, and Allan Porterfield. Software prefetch-
ing. In ASPLOS, pages 40–52, 1991.

[9] Jamison D. Collins, Suleyman Sair, Brad Calder, and Dean M. Tullsen.
Pointer cache assisted prefetching. In MICRO, pages 62–73, 2002.

157

158 BIBLIOGRAPHY

[10] Robert Cooksey, Stéphan Jourdan, and Dirk Grunwald. A stateless,
content-directed data prefetching mechanism. In ASPLOS, pages 279–
290, 2002.

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli↵ord
Stein. Introduction to Algorithms, Second Edition. MIT Press, Cam-
bridge, Mass., USA, 2001.

[12] Stephen Curial, Peng Zhao, José Nelson Amaral, Yaoqing Gao, Shimin
Cui, Raúl Silvera, and Roch Archambault. Mpads: memory-pooling-
assisted data splitting. In Richard Jones and Stephen M. Blackburn,
editors, ISMM, pages 101–110. ACM, 2008.

[13] Haakon Dybdahl, Per Stenström, and Lasse Natvig. An lru-based re-
placement algorithm augmented with frequency of access in shared chip-
multiprocessor caches. SIGARCH Computer Architecture News, 35(4):45–
52, 2007.

[14] Lisa Fleischer, Bruce Hendrickson, and Ali Pinar. On identifying strongly
connected components in parallel. In IPDPS Workshops, pages 505–511,
2000.

[15] Agner Fog. The microarchitecture of intel and amd cpu’s an op-
timization guide for assembly programmers and compiler makers.
http://www.agner.org/optimize/microarchitecture.pdf, Jun 2008.

[16] Agner Fog. The microarchitecture of intel, amd and via cpus: An
optimization guide for assembly programmers and compiler makers.
http://www.agner.org/optimize/microarchitecture.pdf, February 2012.

[17] Pascal Fradet and Daniel Le Métayer. Shape types. In POPL, pages
27–39, 1997.

[18] Hassan Ghasemzadeh, Sepideh Sepideh Mazrouee, and Mohammad Reza
Kakoee. Modified pseudo lru replacement algorithm. In ECBS, pages
368–376. IEEE Computer Society, 2006.

[19] Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a dag, or a cyclic graph?
a shape analysis for heap-directed pointers in c. In POPL, pages 1–15,
1996.

[20] Olga Golovanevsky and Ayal Zaks. Struct-reorg: current status and future
perspectives. In Proceedings of the GCC Developers’ Summit, pages 47–
56, Jul 2007.

BIBLIOGRAPHY 159

[21] Michael T. Goodrich and Roberto Tamassia. Algorithm Design. Number
0-471-38365-1. Wiley, 2002.

[22] Mostafa Hagog and Caroline Tice. Cache aware data layout reorganization
optimization in GCC. In Proceedings of the GCC Developers’ Summit,
pages 69–92, 2005.

[23] Fergus Henderson. Accurate garbage collection in an uncooperative envi-
ronment. In MSP/ISMM, pages 256–263, 2002.

[24] Laurie J. Hendren, Joseph Hummel, and Alexandru Nicolau. Abstractions
for recursive pointer data structures: Improving the analysis of imperative
programs. In PLDI, pages 249–260, 1992.

[25] Michael Hind. Pointer analysis: haven’t we solved this problem yet? In
PASTE, pages 54–61, 2001.

[26] Joseph Hummel, Alexandru Nicolau, and Laurie J. Hendren. A language
for conveying the aliasing properties of dynamic, pointer-based data struc-
tures. In Howard Jay Siegel, editor, Proceedings of the 8th International
Symposium on Parallel Processing, Cancún, Mexico, April 1994, pages
208–216. IEEE Computer Society, 1994.

[27] Yuan-Shin Hwang and Joel H. Saltz. Identifying def/use information of
statements that construct and traverse dynamic recursive data structures.
In LCPC, pages 131–145, 1997.

[28] Intel Corporation. Intel R� 64 and IA-
32 Architectures Software Developer’s Manual.
http://download.intel.com/design/processor/manuals/253665.pdf,
March 2008.

[29] Richard M. Karp. Reducibility among combinatorial problems. In Com-
plexity of Computer Computations, pages 85–103, 1972.

[30] Nils Klarlund and Michael I. Schwartzbach. Graph types. In POPL, pages
196–205, 1993.

[31] Nicholas Kohout, Seungryul Choi, Dongkeun Kim, and Donald Yeung.
Multi-chain prefetching: E↵ective exploitation of inter-chain memory par-
allelism for pointer-chasing codes. In IEEE PACT, pages 268–279, 2001.

[32] Kenneth S. Kundert. Sparse lib. http://sparse.sourceforge.net/.

160 BIBLIOGRAPHY

[33] Kenneth S. Kundert and Alberto Sangiovanni-Vincentelli. Sparse lib.
http://www.netlib.org/sparse.

[34] Chris Lattner. Macroscopic Data Structure Analysis and Optimization.
PhD thesis, University of Illinois at Urbana-Champaign, May 2005.
http://llvm.cs.uiuc.edu.

[35] Chris Lattner and Vikram S. Adve. Automatic pool allocation for disjoint
data structures. In MSP/ISMM, volume 38 (2 Supplement) of SIGPLAN
Notices, pages 13–24. ACM, 2002.

[36] Chris Lattner and Vikram S. Adve. Automatic pool allocation: improving
performance by controlling data structure layout in the heap. In PLDI,
pages 129–142, 2005.

[37] Chris Lattner and Vikram S. Adve. Transparent pointer compression for
linked data structures. In Memory System Performance, pages 24–35,
2005.

[38] Chris Lattner, Andrew Lenharth, and Vikram S. Adve. Making context-
sensitive points-to analysis with heap cloning practical for the real world.
In PLDI, pages 278–289, 2007.

[39] Christian Lengauer. Loop parallelization in the polytope model. In CON-
CUR, pages 398–416, 1993.

[40] David Levinthal. Performance Analysis Guide for In-
tel Core i7 Processor and Intel XeonTM 5500 processors.
http://software.intel.com/sites/products/collateral/hpc/vtune/
performance analysis guide.pdf, 2009.

[41] Anders Møller and Michael I. Schwartzbach. The pointer assertion logic
engine. In PLDI, pages 221–231, 2001.

[42] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. The lru-
k page replacement algorithm for database disk bu↵ering. In SIGMOD
Conference, pages 297–306, 1993.

[43] Shai Rubin, David Bernstein, and Michael Rodeh. Virtual cache line: A
new technique to improve cache exploitation for recursive data structures.
In CC, pages 259–273, 1999.

BIBLIOGRAPHY 161

[44] Silvius Rus, Lawrence Rauchwerger, and Jay Hoeflinger. Hybrid analysis:
Static & dynamic memory reference analysis. International Journal of
Parallel Programming, 31(4):251–283, 2003.

[45] Joel H. Saltz, Ravi Mirchandaney, and Kay Crowley. Run-time paral-
lelization and scheduling of loops. IEEE Trans. Computers, 40(5):603–
612, 1991.

[46] SPARC International, Inc. The SPARC Architecture Manual, 8 edition,
June 1999.

[47] Bjarne Steensgaard. Points-to analysis in almost linear time. In POPL,
pages 32–41, 1996.

[48] Robert Endre Tarjan. Depth-first search and linear graph algorithms.
SIAM J. Comput., 1(2):146–160, 1972.

[49] A. M. Turing. On Computable Numbers, with an application to the
Entscheidungsproblem. Proc. London Math. Soc., 2(42):230–265, 1936.

[50] Harmen L. A. van der Spek. Transparent Restructuring of Pointer-Linked
Data Structures. PhD thesis, University of Leiden, 2010.

[51] Harmen L. A. van der Spek, Erwin M. Bakker, and Harry A. G. Wijsho↵.
SPARK00. http://www.liacs.nl/

~

hvdspek/SPARK00/, 2007.

[52] Harmen L. A. van der Spek, Erwin M. Bakker, and Harry A. G. Wijsho↵.
Characterizing the performance penalties induced by irregular code using
pointer structures and indirection arrays on the Intel Core 2 architec-
ture. In CF ’09: Proceedings of the 6th ACM conference on Computing
frontiers, pages 221–224, 2009.

[53] Harmen L. A. van der Spek, Sven Groot, Erwin M. Bakker, and Harry
A. G. Wijsho↵. A compile/run-time environment for the automatic trans-
formation of linked list data structures. International Journal of Parallel
Programming, 36(6):592–623, 2008.

[54] Harmen L. A. van der Spek, C. W. Mattias Holm, and Harry A. G.
Wijsho↵. Automatic restructuring of linked data structures. In LCPC,
pages 263–277, 2009.

[55] Harmen L. A. van der Spek and Harry A. G. Wijsho↵. SPARK00: A
benchmark package for the compiler evaluation of irregular/sparse codes.
Technical Report LIACS 2007-06, Leiden Institute of Advanced Computer
Science, 2007.

162 BIBLIOGRAPHY

[56] Harmen L.A. van der Spek, C.W. Mattias Holm, and Harry A.G. Wijsho↵.
A compilation framework for the automatic restructuring of pointer-linked
data structures. High-Performance Scientific Computing: Algorithms and
Applications, pages 97–122, 2012.

[57] Thomas Wolle and Hans L. Bodlaender. A note on edge contraction. Tech-
nical Report UU-CS-2004-028, Institute of Information and Computing
Sciences, Utrecht University, 2004.

[58] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: implications
of the obvious. SIGARCH Comput. Archit. News, 23(1):20–24, March
1995.

Chapter 7

Samenvatting

In hoofdstuk 2 beschrijven we een nieuwe, algemene herstructurerings-aanpak
voor de optimalisatie van data layout van pointer-gekoppelde datastructuren
met behulp van compiler en runtime analyse en datastructuur herschrijv-
ing. Onze experimenten tonen aan dat met de herstructurering van pointer-
gekoppelde datastructuren de prestaties aanzienlijk kunnen verbeteren, on-
danks de overhead van het analyseren en herschrijven.

De theoretische fundamenten voor een gewoon pointer-gekoppeld datas-
tructuur, de orthogonally linked list, of sparse grid wordt onderzocht in hoofd-
stuk 3. Grids zijn gewone datastructuren die in veel codes voorkomen, zoals
bijvoorbeeld sparse matrix codes. Dit hoofdstuk introduceert nieuwe graafthe-
oretische concepten van confined components en strictly ordered orthogonality.
Het Minimum Confined Components probleem wordt bewezen als zijnde
NP-compleet waardoor het opsporen van arbitraire grids onpraktisch is zonder
extra a priori opgelegde beperkingen. Hoewel de complexiteit in het algemene
geval niet triviaal is, introduceren we een e�ciënt algoritme dat confined com-
ponents kan detecteren voor diverse soorten graafen.

In hoofdstuk 4 introduceren we Pax C, een volledig backwards compatible
extensie van de C programmeertaal. De taalextensies maken de programmeur
mogelijk om traversal patronen in de code uit te drukken op een natuurlijke
manier, waardoor we een herstructurering kunnen doen zonder ingewikkeld
analyses. De extensies zijn geëvalueerd op een aantal voorbeeld codes, sparse
matrix codes en het Minimum Cost Flow programma (MCF) van de SPEC
benchmark-serie.

Hoofdstuk 5 introduceert een dataherstructureringsmethode implementeer-
baar in hardware. De methode is gebaseerd op een speciaal geheugengebied

163

164 CHAPTER 7. SAMENVATTING

dat door de CPU gebruikt wordt om pointer-gekoppelde objecten naast elkaar
op te slaan. In dit hoofdstuk onderzoeken we het systeem en gebruiken we een
simulatie-gebaseerde aanpak om de overhead van het herstructureringssysteem
te vergelijken met de behaalde prestatiewinst. De resultaten laten zien dat de
werkwijze correct is en minstens zo goed presteert als bestaande software-
gebaseerde methodes. Een belangrijke bijdrage van deze methode is dat,
in tegenstelling tot bestaande software benaderingen, de hardwaregebaseerde
aanpak dynamisch bijgewerkte pointerstructuren op een automatische manier
kan verwerken en dat deze methode werkt zonder wezenlijke wijzigingen van
de programma’s.

Chapter 8

Curriculum Vitae

Carl Wilhelm Mattias Holm was born on 3 June, 1980, in Täby, Sweden. As a
self proclaimed computer geek, he started his B.Sc. in computer engineering
at the University-College of Bor̊as in 1999 and after also having spent a year
serving in the 18’th armored regiment of the Swedish Army as an NCO during
the year of 2000, he finally graduated in 2003, first in class. Following the B.Sc.
degree, Mattias started his M.Sc. studies at Chalmers University of Technology
which involved an exchange year at the Technical University of Delft in the
Netherlands. He graduated during spring 2006 after having completed his
master’s thesis: SPARCv8 Simulation with Simics. He first kept on working
for a while at Virtutech AB where he extended and optimized his master’s
thesis project. Following a few months of work at Virtutech, Mattias left for
the Netherlands to take up a trainee position at the European Space Agency.
He worked there for one year until taking up a job at SciSys in Bristol, UK.
At SciSys, Mattias worked with the flight software for the SWARM satellite
constellation. In October 2008, Mattias left SciSys and once again returned to
the Netherlands, this time in order to start his Ph.D. at the Leiden Institute
of Advanced Computer Science. At LIACS, Mattias has been carrying out
research in the area of data structure optimization techniques and teaching in
Operating Systems and Networks. In order to improve the operating systems
course, Mattias, part of a team of two, implemented an operating system kernel
from scratch. This kernel is now used and modified by students during course
work.

165

166 CHAPTER 8. CURRICULUM VITAE

