94,811 research outputs found

    Towards the Model-Driven Engineering of Secure yet Safe Embedded Systems

    Full text link
    We introduce SysML-Sec, a SysML-based Model-Driven Engineering environment aimed at fostering the collaboration between system designers and security experts at all methodological stages of the development of an embedded system. A central issue in the design of an embedded system is the definition of the hardware/software partitioning of the architecture of the system, which should take place as early as possible. SysML-Sec aims to extend the relevance of this analysis through the integration of security requirements and threats. In particular, we propose an agile methodology whose aim is to assess early on the impact of the security requirements and of the security mechanisms designed to satisfy them over the safety of the system. Security concerns are captured in a component-centric manner through existing SysML diagrams with only minimal extensions. After the requirements captured are derived into security and cryptographic mechanisms, security properties can be formally verified over this design. To perform the latter, model transformation techniques are implemented in the SysML-Sec toolchain in order to derive a ProVerif specification from the SysML models. An automotive firmware flashing procedure serves as a guiding example throughout our presentation.Comment: In Proceedings GraMSec 2014, arXiv:1404.163

    On the tailoring of CAST-32A certification guidance to real COTS multicore architectures

    Get PDF
    The use of Commercial Off-The-Shelf (COTS) multicores in real-time industry is on the rise due to multicores' potential performance increase and energy reduction. Yet, the unpredictable impact on timing of contention in shared hardware resources challenges certification. Furthermore, most safety certification standards target single-core architectures and do not provide explicit guidance for multicore processors. Recently, however, CAST-32A has been presented providing guidance for software planning, development and verification in multicores. In this paper, from a theoretical level, we provide a detailed review of CAST-32A objectives and the difficulty of reaching them under current COTS multicore design trends; at experimental level, we assess the difficulties of the application of CAST-32A to a real multicore processor, the NXP P4080.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal grant RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    Structuring Decisions Under Deep Uncertainty

    Get PDF
    Innovative research on decision making under ‘deep uncertainty’ is underway in applied fields such as engineering and operational research, largely outside the view of normative theorists grounded in decision theory. Applied methods and tools for decision support under deep uncertainty go beyond standard decision theory in the attention that they give to the structuring of decisions. Decision structuring is an important part of a broader philosophy of managing uncertainty in decision making, and normative decision theorists can both learn from, and contribute to, the growing deep uncertainty decision support literature

    On partitioning problems with complex objectives

    Get PDF
    Hypergraph and graph partitioning tools are used to partition work for efficient parallelization of many sparse matrix computations. Most of the time, the objective function that is reduced by these tools relates to reducing the communication requirements, and the balancing constraints satisfied by these tools relate to balancing the work or memory requirements. Sometimes, the objective sought for having balance is a complex function of the partition. We describe some important class of parallel sparse matrix computations that have such balance objectives. For these cases, the current state of the art partitioning tools fall short of being adequate. To the best of our knowledge, there is only a single algorithmic framework in the literature to address such balance objectives. We propose another algorithmic framework to tackle complex objectives and experimentally investigate the proposed framework.Les outils de partitionnement de graphes et d'hypergraphes interviennent pour paralléliser efficacement de nombreux algorithmes liés aux matrices creuses. La plupart du temps, la fonction objectif minimisée par ces outils est liée au besoin de réduire les coûts de communication, tandis que les contraintes d'équilibre à satisfaire sont elles liées à l'équilibrage de la charge ou de la consommation mémoire. Parfois, l'objectif d'équilibre est une fonction complexe du partitionnement. Nous décrivons plusieurs applications majeures de calcul parallèle sur des matrices creuses où de telles contraintes d'équilibre apparaissent. Pour ces exemples, même les outils de partitionnement les plus pointus sont loin d'être adéquats. Pour autant que nous sachions, il n'existe dans la littérature qu'un seul cadre algorithmique qui traite ces problèmes. Nous proposons ici une nouvelle approche algorithmique et fournissons des résultats d'expériences la mettant en œuvre

    Open by design: the role of design in open innovation

    Get PDF
    corecore