15 research outputs found

    Partitioning 2-edge-colored graphs by monochromatic paths and cycles

    Get PDF
    We present results on partitioning the vertices of 22-edge-colored graphs into monochromatic paths and cycles. We prove asymptotically the two-color case of a conjecture of S\'ark\"ozy: the vertex set of every 22-edge-colored graph can be partitioned into at most 2α(G)2\alpha(G) monochromatic cycles, where α(G)\alpha(G) denotes the independence number of GG. Another direction, emerged recently from a conjecture of Schelp, is to consider colorings of graphs with given minimum degree. We prove that apart from o(V(G))o(|V(G)|) vertices, the vertex set of any 22-edge-colored graph GG with minimum degree at least (1+\eps){3|V(G)|\over 4} can be covered by the vertices of two vertex disjoint monochromatic cycles of distinct colors. Finally, under the assumption that G\overline{G} does not contain a fixed bipartite graph HH, we show that in every 22-edge-coloring of GG, V(G)c(H)|V(G)|-c(H) vertices can be covered by two vertex disjoint paths of different colors, where c(H)c(H) is a constant depending only on HH. In particular, we prove that c(C4)=1c(C_4)=1, which is best possible

    Vertex covering with monochromatic pieces of few colours

    Full text link
    In 1995, Erd\H{o}s and Gy\'arf\'as proved that in every 22-colouring of the edges of KnK_n, there is a vertex cover by 2n2\sqrt{n} monochromatic paths of the same colour, which is optimal up to a constant factor. The main goal of this paper is to study the natural multi-colour generalization of this problem: given two positive integers r,sr,s, what is the smallest number pcr,s(Kn)\text{pc}_{r,s}(K_n) such that in every colouring of the edges of KnK_n with rr colours, there exists a vertex cover of KnK_n by pcr,s(Kn)\text{pc}_{r,s}(K_n) monochromatic paths using altogether at most ss different colours? For fixed integers r>sr>s and as nn\to\infty, we prove that pcr,s(Kn)=Θ(n1/χ)\text{pc}_{r,s}(K_n) = \Theta(n^{1/\chi}), where χ=max{1,2+2sr}\chi=\max{\{1,2+2s-r\}} is the chromatic number of the Kneser gr aph KG(r,rs)\text{KG}(r,r-s). More generally, if one replaces KnK_n by an arbitrary nn-vertex graph with fixed independence number α\alpha, then we have pcr,s(G)=O(n1/χ)\text{pc}_{r,s}(G) = O(n^{1/\chi}), where this time around χ\chi is the chromatic number of the Kneser hypergraph KG(α+1)(r,rs)\text{KG}^{(\alpha+1)}(r,r-s). This result is tight in the sense that there exist graphs with independence number α\alpha for which pcr,s(G)=Ω(n1/χ)\text{pc}_{r,s}(G) = \Omega(n^{1/\chi}). This is in sharp contrast to the case r=sr=s, where it follows from a result of S\'ark\"ozy (2012) that pcr,r(G)\text{pc}_{r,r}(G) depends only on rr and α\alpha, but not on the number of vertices. We obtain similar results for the situation where instead of using paths, one wants to cover a graph with bounded independence number by monochromatic cycles, or a complete graph by monochromatic dd-regular graphs

    Local colourings and monochromatic partitions in complete bipartite graphs

    Full text link
    We show that for any 22-local colouring of the edges of the balanced complete bipartite graph Kn,nK_{n,n}, its vertices can be covered with at most~33 disjoint monochromatic paths. And, we can cover almost all vertices of any complete or balanced complete bipartite rr-locally coloured graph with O(r2)O(r^2) disjoint monochromatic cycles.\\ We also determine the 22-local bipartite Ramsey number of a path almost exactly: Every 22-local colouring of the edges of Kn,nK_{n,n} contains a monochromatic path on nn vertices.Comment: 18 page

    Large monochromatic components in edge colored graphs with a minimum degree condition

    Get PDF
    It is well-known that in every k-coloring of the edges of the complete graph Kn there is a monochromatic connected component of order at least (formula presented)k-1. In this paper we study an extension of this problem by replacing complete graphs by graphs of large minimum degree. For k = 2 the authors proved that δ(G) ≥(formula presented) ensures a monochromatic connected component with at least δ(G) + 1 vertices in every 2-coloring of the edges of a graph G with n vertices. This result is sharp, thus for k = 2 we really need a complete graph to guarantee that one of the colors has a monochromatic connected spanning subgraph. Our main result here is that for larger values of k the situation is different, graphs of minimum degree (1 − ϵk)n can replace complete graphs and still there is a monochromatic connected component of order at least (formula presented), in fact (formula presented) suffices. Our second result is an improvement of this bound for k = 3. If the edges of G with δ(G) ≥ (formula presented) are 3-colored, then there is a monochromatic component of order at least n/2. We conjecture that this can be improved to 9 and for general k we (onjectu) the following: if k ≥ 3 and G is a graph of order n such that δ(G) ≥ (formula presented) n, then in any k-coloring of the edges of G there is a monochromatic connected component of order at least (formula presented). © 2017, Australian National University. All rights reserved

    Almost partitioning every 22-edge-coloured complete kk-graph into kk monochromatic tight cycles

    Full text link
    A kk-uniform tight cycle is a kk-graph with a cyclic order of its vertices such that every kk consecutive vertices from an edge. We show that for k3k\geq 3, every red-blue edge-coloured complete kk-graph on nn vertices contains kk vertex-disjoint monochromatic tight cycles that together cover no(n)n - o(n) vertices

    Minimum degree conditions for monochromatic cycle partitioning

    Get PDF
    A classical result of Erd\H{o}s, Gy\'arf\'as and Pyber states that any rr-edge-coloured complete graph has a partition into O(r2logr)O(r^2 \log r) monochromatic cycles. Here we determine the minimum degree threshold for this property. More precisely, we show that there exists a constant cc such that any rr-edge-coloured graph on nn vertices with minimum degree at least n/2+crlognn/2 + c \cdot r \log n has a partition into O(r2)O(r^2) monochromatic cycles. We also provide constructions showing that the minimum degree condition and the number of cycles are essentially tight.Comment: 22 pages (26 including appendix

    Monochromatic cycle partitions in random graphs

    Get PDF
    Erd\H{o}s, Gy\'arf\'as and Pyber showed that every rr-edge-coloured complete graph KnK_n can be covered by 25r2logr25 r^2 \log r vertex-disjoint monochromatic cycles (independent of nn). Here, we extend their result to the setting of binomial random graphs. That is, we show that if p=p(n)=Ω(n1/(2r))p = p(n) = \Omega(n^{-1/(2r)}), then with high probability any rr-edge-coloured G(n,p)G(n,p) can be covered by at most 1000r4logr1000 r^4 \log r vertex-disjoint monochromatic cycles. This answers a question of Kor\'andi, Mousset, Nenadov, \v{S}kori\'{c} and Sudakov.Comment: 16 pages, accepted in Combinatorics, Probability and Computin

    Monochromatic cycle covers in random graphs

    Full text link
    A classic result of Erd\H{o}s, Gy\'arf\'as and Pyber states that for every coloring of the edges of KnK_n with rr colors, there is a cover of its vertex set by at most f(r)=O(r2logr)f(r) = O(r^2 \log r) vertex-disjoint monochromatic cycles. In particular, the minimum number of such covering cycles does not depend on the size of KnK_n but only on the number of colors. We initiate the study of this phenomena in the case where KnK_n is replaced by the random graph G(n,p)\mathcal G(n,p). Given a fixed integer rr and p=p(n)n1/r+εp =p(n) \ge n^{-1/r + \varepsilon}, we show that with high probability the random graph GG(n,p)G \sim \mathcal G(n,p) has the property that for every rr-coloring of the edges of GG, there is a collection of f(r)=O(r8logr)f'(r) = O(r^8 \log r) monochromatic cycles covering all the vertices of GG. Our bound on pp is close to optimal in the following sense: if p(logn/n)1/rp\ll (\log n/n)^{1/r}, then with high probability there are colorings of GG(n,p)G\sim\mathcal G(n,p) such that the number of monochromatic cycles needed to cover all vertices of GG grows with nn.Comment: 24 pages, 1 figure (minor changes, added figure
    corecore