research

Monochromatic cycle covers in random graphs

Abstract

A classic result of Erd\H{o}s, Gy\'arf\'as and Pyber states that for every coloring of the edges of KnK_n with rr colors, there is a cover of its vertex set by at most f(r)=O(r2logr)f(r) = O(r^2 \log r) vertex-disjoint monochromatic cycles. In particular, the minimum number of such covering cycles does not depend on the size of KnK_n but only on the number of colors. We initiate the study of this phenomena in the case where KnK_n is replaced by the random graph G(n,p)\mathcal G(n,p). Given a fixed integer rr and p=p(n)n1/r+εp =p(n) \ge n^{-1/r + \varepsilon}, we show that with high probability the random graph GG(n,p)G \sim \mathcal G(n,p) has the property that for every rr-coloring of the edges of GG, there is a collection of f(r)=O(r8logr)f'(r) = O(r^8 \log r) monochromatic cycles covering all the vertices of GG. Our bound on pp is close to optimal in the following sense: if p(logn/n)1/rp\ll (\log n/n)^{1/r}, then with high probability there are colorings of GG(n,p)G\sim\mathcal G(n,p) such that the number of monochromatic cycles needed to cover all vertices of GG grows with nn.Comment: 24 pages, 1 figure (minor changes, added figure

    Similar works