Partitioning 2-edge-colored graphs by monochromatic paths and cycles

József Balogh*
Department of Mathematical Sciences
University of Illinois
Urbana, IL 61801
jobal@math.uiuc.edu
János Barát ${ }^{\dagger}$
Department of Computer Science and Systems Technology
University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary
barat@dcs.vein.hu
Dániel Gerbner
Hungarian Academy of Sciences, Alfréd Rényi Institute of Mathematics, P.O.B. 127, Budapest H-1364, Hungary
gerbner@renyi.hu
András Gyárfás ${ }^{\ddagger}$
Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
Budapest, P.O. Box 127
Budapest, Hungary, H-1364
gyarfas.andras@renyi.mta.hu
and
Gábor N. Sárközy§
Computer Science Department
Worcester Polytechnic Institute
Worcester, MA, USA 01609
gsarkozy@cs.wpi.edu

March 22, 2013

Abstract

We present results on partitioning the vertices of 2-edge-colored graphs into monochromatic paths and cycles. We prove asymptotically the two-color case of a conjecture of Sárközy: the vertex set of every 2-edge-colored graph can be partitioned into at most $2 \alpha(G)$ monochromatic cycles, where $\alpha(G)$ denotes the independence number of G. Another direction, emerged recently from a conjecture of Schelp, is to consider colorings of graphs with given minimum degree. We prove that apart from $o(|V(G)|)$ vertices, the vertex set of any 2 -edge-colored graph G with minimum degree at least $\frac{(1+\varepsilon) 3|V(G)|}{4}$ can be covered by the vertices of two vertex disjoint monochromatic cycles of distinct colors. Finally, under the assumption that \bar{G} does not contain a fixed bipartite graph H, we show that in every 2-edge-coloring of $G,|V(G)|-c(H)$ vertices can be covered by two vertex disjoint paths of different colors, where $c(H)$ is a constant depending only on H. In particular, we prove that $c\left(C_{4}\right)=1$, which is best possible. ${ }^{1}$

1 Background, summary of results.

In this paper, we consider some conjectures about partitioning vertices of edge-colored graphs into monochromatic cycles or paths. For simplicity, colored graphs means edge-colored graphs in this paper. In this context it is conventional to accept empty graphs and one-vertex graphs as a path or a cycle (of any color) and also any edge as a path or a cycle (in its color). With this convention one can define the cycle (or path) partition number of any colored graph G as the minimum number of vertex disjoint monochromatic cycles (or paths) needed to cover the vertex set of G. For complete graphs, [6] posed the following conjecture.

Conjecture 1.1. The cycle partition number of any t-colored complete graph K_{n} is t.

The $t=2$ case of this conjecture was stated earlier by Lehel in a stronger form, requiring that the colors of the two cycles must be different. After some initial

[^0]results [2, 8], Łuczak, Rödl and Szemerédi [22] proved Lehel's conjecture for large enough n, which can be considered as a birth of certain advanced applications of the Regularity Lemma. A more elementary proof, still for large enough n, was obtained by Allen [1]. Finally, Bessy and Thomassé [4] found a completely elementary inductive proof for every n.

The $t=3$ case of Conjecture 1.1 was solved asymptotically in [15]. Pokrovskiy [24] showed recently (with a nice elementary proof) that the path partition number of any 3 -colored K_{n} is at most three (for any $n \geq 1$). But then surprisingly Pokrovskiy [25] found a counterexample to Conjecture 1.1 for all $t \geq 3$. However, in the counterexample all but one vertex can be covered by t vertex disjoint monochromatic cycles.

For general t, the best bound for the cycle partition number is $O(t \log t)$, see [9]. Note that it is far from obvious that the cycle partition number of K_{n} can be bounded by any function of t.

We address the extension of the cycle and path partition numbers from complete graphs to arbitrary graphs G. If we want these numbers to be independent of $|V(G)|$, some other parameter of G must be included. We consider three of these parameters.

Let $\alpha(G)$ denote the independence number of G, the maximum number of pairwise non-adjacent vertices of G. The role of $\alpha(G)$ in results on colorings of non-complete graphs was observed in [10, 11, 16] and in Sárközy [27] who extended Conjecture 1.1 to the following.

Conjecture 1.2. The cycle partition number of any t-colored graph G is $t \alpha(G)$.
For $t=1$, Conjecture 1.2 is a well-known result of Pósa [23] (and clearly best possible). For $t=2$ it is also best possible, shown by vertex disjoint copies of triangles, each colored using two colors. To prove Conjecture 1.2 for $t=2$ and arbitrary $\alpha(G)$ seems very difficult (considering the complexity of the proof for $\alpha(G)=1$ in [4]). Then again the counterexample of Pokrovskiy [25] shows that the conjecture is not true in this form for any $t \geq 3$. Perhaps the following weakening of the conjecture is true.

Conjecture 1.3. Let G be a t-colored graph with $\alpha(G)=\alpha$. Then there exists a constant $c=c(\alpha, t)$ such that t α vertex disjoint monochromatic cycles of G cover at least $n-c$ vertices.

Pokrovskiy's example implies that $c \geq \alpha$ must be true. We cannot prove this conjecture even for $t=2$, we can only prove the following weaker asymptotic result.

Theorem 1.4. For every positive η and α, there exists an $n_{0}(\eta, \alpha)$ such that the following holds. If G is a 2-colored graph on n vertices, $n \geq n_{0}, \alpha(G)=\alpha$, then there are at most 2α vertex disjoint monochromatic cycles covering at least $(1-\eta) n$ vertices of $V(G)$.

Recently, Schelp [28] suggested in a posthumous paper to strengthen certain Ramsey problems from complete graphs to graphs of given minimum degree. In particular, he conjectured that with $m=R\left(P_{n}, P_{n}\right)$, minimum degree $\frac{3 m}{4}$ is sufficient to find a monochromatic path P_{n} in any 2-colored graph of order $m .^{2}$ Influenced by this conjecture, here we pose the following conjecture.

Conjecture 1.5. If G is an n-vertex graph with $\delta(G)>3 n / 4$ then in any 2-edgecoloring of G, there are two vertex disjoint monochromatic cycles of different colors, which together cover $V(G)$.

That is, the above mentioned Bessy-Thomassé result [4] would hold for graphs with minimum degree larger than $3 n / 4$. Note that the condition $\delta(G) \geq \frac{3|V(G)|}{4}$ is sharp. Indeed, consider the following n-vertex graph, where $n=4 m$. We partition the vertex set into four parts $A_{1}, A_{2}, A_{3}, A_{4}$ with $\left|A_{i}\right|=m$. There are no edges from A_{1} to A_{2} and from A_{3} to A_{4}. Edges in $\left[A_{1}, A_{3}\right],\left[A_{2}, A_{4}\right]$ are red and edges in $\left[A_{1}, A_{4}\right],\left[A_{2}, A_{3}\right]$ are blue, inside the classes any coloring is allowed. In such an edge-colored graph, there are no two vertex disjoint monochromatic cycles of different colors covering G, while the minimum degree is $3 m-1=\frac{3 n}{4}-1$.

We prove Conjecture 1.5 in the following asymptotic sense.
Theorem 1.6. For every $\eta>0$, there is an $n_{0}(\eta)$ such that the following holds. If G is an n-vertex graph with $n \geq n_{0}$ and $\delta(G)>\left(\frac{3}{4}+\eta\right) n$, then every 2 -edge-coloring of G admits two vertex disjoint monochromatic cycles of different colors covering at least $(1-\eta) n$ vertices of G.

The proofs of Theorems 1.4 and 1.6 follow a method of Łuczak [21]. The crucial idea is that the words "cycles" or "paths" in a statement to be proved are replaced by the words "connected matchings". In a connected matching, the edges of the matching are in the same component of the graph. ${ }^{3}$ We prove first this weaker result, then we apply to the cluster graph of a regular partition of the target graph. Through several technical details, the regularity of the partition is used to "lift back" the connected matching of the cluster graph to a path or cycle in the original graph. In our case, the relaxed versions of Theorems 1.4 and 1.6 for connected matchings are stated and proved in Section 2 (Theorem 2.4 and 2.5).

Another possibility to extend Conjecture 1.1 to more general graphs is to consider a graph G, whose complement does not contain a fixed bipartite graph H. This brings in a different flavor, since these graphs are very dense, they have $\binom{|V(G)|}{2}-o\left(|V(G)|^{2}\right)$ edges. In return, we prove sharper results in this case. We also state a more general conjecture.

[^1]Conjecture 1.7. Let H be a graph with chromatic number $k+1$ and let G be an t-edge-colored graph on n vertices such that H is not a subgraph of \bar{G}. Then there exists a constant $c=c(H, k, t)$ such that k vertex disjoint monochromatic paths of G cover at least $n-c$ vertices.

In Section 4, we prove Conjecture 1.7 for $k=1, t=2$ (Theorem 4.6) and in particular, $c\left(C_{4}, 1,2\right)=1$ (Theorem 4.8). Note that this conjecture is related to Conjecture 1.3 by selecting H to be the complete graph of size $k+1$.

2 Partitioning into connected matchings.

In this section we prove Conjectures 1.2 and 1.5 in weakened forms, replacing cycles and paths with connected matchings (Theorems 2.4, 2.5). We notice first that the $t=1$ case of Conjecture 1.2 is due to Pósa [23]. ${ }^{4}$

Lemma 2.1. The vertex set of any graph G can be partitioned into at most $\alpha(G)$ parts, where each part either contains a spanning cycle, or spans an edge or a vertex.

For two colors, we need the following result, which is essentially equivalent to König's theorem. It was discovered in [11] and applied in [16].
Lemma 2.2. Let the edge set of G be colored with two colors. Then $V(G)$ can be covered with the vertices of at most $\alpha(G)$ monochromatic connected subgraphs of G.

Proof. For a graph G whose edges are colored with red and blue, let $\rho(G)$ denote the minimum number of monochromatic components covering the vertex set of G. Let $\alpha^{*}(G)$ be the maximum number of vertices in G so that no two of them is covered by a monochromatic component. Suppose that the red edges define connected components C_{1}, \ldots, C_{p} and the blue edges define connected components D_{1}, \ldots, D_{q}. Define a bipartite multigraph B with vertex classes C_{1}, \ldots, C_{p} and D_{1}, \ldots, D_{q}. For every vertex $v \in V(G), v \in A_{i}, v \in B_{j}$ we define the edge C_{i}, D_{j} in B. (In fact, B is the dual of the hypergraph formed by the monochromatic components on $V(G)$.)

Recall that $\nu(B)$ is the maximum number of pairwise disjoint edges in B and $\tau(B)$ is the minimum cover, i.e., the least number of vertices in B that meet all edges of B. From König's theorem and from easy observations follows that

$$
\begin{equation*}
\rho(G)=\tau(B)=\nu(B)=\alpha^{*}(G) \leq \alpha(G) \tag{1}
\end{equation*}
$$

finishing the proof.
Observe that (1) gives a stronger form of Lemma 2.2 (equivalent form of König's theorem).

[^2]Proposition 2.3. For any 2-edge colored graph $G, \rho(G)=\alpha^{*}(G)$.
Theorem 2.4. If the edges of a graph G are colored red and blue, then $V(G)$ can be partitioned into at most $2 \alpha(G)$ monochromatic parts, where each part is either an edge, or a single vertex, or contains a connected matching or a spanning cycle.

It is worth noting that Theorem 2.4 is best possible, although it is weaker than Conjecture 1.2. Indeed, let G be formed by k vertex disjoint copies of K_{s}, where $s \geq 3$. We color $E(G)$ so that in each K_{s} the set of blue edges forms a K_{s-1}. Here $\alpha(G)=k$, and we need two parts to cover each K_{s}, one in each color.
Proof of Theorem 2.4. Set $V=V(G)$. By Lemma 2.2, we can cover V by the vertices of some p red and q blue monochromatic components, $C_{1}, \ldots, C_{p}, D_{1}, \ldots, D_{q}$, where $p+q \leq \alpha(G)$. We partition V into the doubly and singly covered sets. Let $A_{i j}=C_{i} \cap D_{j}$ and $S_{i}=C_{i}-\cup_{j} A_{i j}, T_{j}=D_{j}-\cup_{i} A_{i j}$, where $1 \leq i \leq p, 1 \leq j \leq q$.

Fix M_{i}, a largest red matching in C_{i} for every i, and then let N_{j} be a largest blue matching in $D_{j}-\cup_{i} V\left(M_{i}\right)$. These $p+q \leq \alpha(G)$ monochromatic matchings are connected. Delete the vertices of these matchings from V and for convenience keep the same notation for the truncated sets, so $A_{i j}, S_{i}, T_{j}$ denote the sets remaining after all vertices of these matchings are deleted. Denote the remaining graph by G_{1}, and its vertex set by V_{1}. Partition V_{1} into three sets, $A=\cup_{i=1}^{p} \cup_{j=1}^{q} A_{i j}, S=\cup_{i=1}^{p} S_{i}, T=$ $\cup_{j=1}^{q} T_{j}$. Observe that there are no edges between S and T.

Edges of G_{1} can only be inside S (colored blue) or inside T (colored red). Applying Lemma 2.1 for the blue and red graphs $G_{1}[S], G_{1}[T]$, we can cover $S \cup T$ by $\alpha\left(G_{1}[S]\right)+$ $\alpha\left(G_{1}[T]\right)$ parts, where each part contains a monochromatic spanning cycle or it is an edge or a vertex. Now A is a collection of isolated points in G_{1}; we just cover it with its vertices. Altogether, we partitioned V_{1} into $|A|+\alpha\left(G_{1}[S]\right)+\alpha\left(G_{1}[T]\right) \leq \alpha\left(G_{1}\right) \leq \alpha(G)$ parts and together with the monochromatic connected matchings M_{i}, N_{j}, there are at most $2 \alpha(G)$ parts as required.

Theorem 2.5. Let $G=(V, E)$ be an n-vertex graph with $\delta(G) \geq 3 n / 4$, where n is even. If the edges of G are 2-colored with red and blue, then there exist a red connected matching and a vertex-disjoint blue connected matching, which together form a perfect matching of G.

Proof. Let C_{1} be a largest monochromatic component, say red. Theorem 1.4 in [17] yields $\left|C_{1}\right| \geq 3 n / 4$. Let $U=V \backslash V\left(C_{1}\right)$. Any vertex u in U can only have less than $n / 4$ red neighbors. Therefore, the blue degree of u is at least $n / 2$. This implies that the blue neighborhoods of any two vertices in U which are not connected with a blue edge intersect. Therefore, if $U \neq \emptyset$, then U is covered by a blue component of G, say C_{2}. If $U=\emptyset$, then define C_{2} as a largest blue component in G. Set $p=\left|V\left(C_{1}\right) \backslash V\left(C_{2}\right)\right|, q=\left|V\left(C_{2}\right) \backslash V\left(C_{1}\right)\right|$, where $p \geq q$ by the choice of C_{1}. Let G_{1}
be the graph, which we get from G by deleting the blue edges inside $C_{1} \backslash C_{2}$ and the red edges inside $C_{2} \backslash C_{1}$. Note that in Cases 2 and $3 C_{2} \backslash C_{1}=\emptyset$. We distinguish three cases.

Case 1: Suppose $\left|C_{1}\right|<n$. By the maximality of C_{1} and C_{2}, there are no edges between $C_{1} \backslash C_{2}$ and $C_{2} \backslash C_{1}$. Therefore, $q<n / 4$ and $p<n / 4$. We claim that G_{1} satisfies the Dirac-property ${ }^{5}, \delta\left(G_{1}\right) \geq n / 2$. Indeed, we deleted at most $n / 4-1$ edges at any vertex, and thus the remaining degree is more than $n / 2$ at each vertex. Therefore, there is a Hamiltonian cycle, that also contains a perfect matching. This perfect matching consists of a connected red matching and a connected blue matching covering G.

Case 2: Suppose $\left|C_{1}\right|=n$ and $p \leq n / 2$. Now we claim that G_{1} satisfies the Chvátal-property ${ }^{6}$: if the degree sequence in G_{1} is $d_{1} \leq d_{2} \leq \ldots \leq d_{n}$, then $d_{k}+$ $d_{n-k} \geq n$ for $k \leq n / 2$. Indeed, the degrees of the p vertices in $C_{1} \backslash C_{2}$ are at least $3 n / 4-p+1$, where $p \leq n / 2$. The rest of the degrees are unchanged being at least $3 n / 4$. That yields $3 n / 4-p+1+3 n / 4=3 n / 2-p+1>n$ in the Chvátal-condition. This implies the existence of a Hamiltonian cycle, which contains a perfect matching. This perfect matching contains a connected red matching and a connected blue matching, which together cover G.

Case 3: Suppose $\left|C_{1}\right|=n$ and $p>n / 2$. That is, $\left|C_{2}\right|-p<n / 2$. Again, we claim that there is a perfect matching in G_{1}. Assume to the contrary that the largest matching is imperfect. By Tutte's theorem, there exists a set X of vertices in G_{1} such that the number of odd components in $G_{1} \backslash X$ is larger than $|X|$, which implies that $|X|<n / 2$. Let all the components (not just the odd ones) be $D_{1}, D_{2}, \ldots, D_{\ell}$ in increasing order of their size, $\ell \geq|X|+1$. Note that $\ell \geq 2$ always holds, even for $X=\emptyset$, as n is even. Notice, that any potential edge in G between two components of $G_{1} \backslash X$ is a blue edge inside $C_{1} \backslash C_{2}$ that was deleted. Let H be the graph formed by the vertices in $G \backslash X$, and the blue edges in $C_{1} \backslash C_{2}$. Since $|X|<n / 2$, we have $|V(H)|>n / 2$.

Suppose first that $|X|=x<n / 4$. Let us consider the smallest component D_{1} and put $\left|D_{1}\right|=d_{1}$. We claim that

$$
\begin{equation*}
d_{1}+x \leq n-\left|D_{1} \cup X\right| \tag{2}
\end{equation*}
$$

For $d_{1}=1$, using n being even, we also get (2) from $\left|D_{1} \cup X\right|=1+x \leq n / 2$. When $x=0$ then (2) is true as $\ell \geq 2$, when $x=1$ then (2) is true because n is even. For $x \geq 2$ and $d_{1} \geq 2$ we have $\left|D_{1} \cup X\right|=d_{1}+x \leq d_{1} x \leq n-\left|D_{1} \cup X\right|$, implying (2).

From (2), the blue neighborhoods of any two vertices in D_{1} intersect in H, and D_{1} is covered by a blue component C_{2}^{\prime}. Using $x<n / 4$, we get $\left|C_{2}^{\prime}\right| \geq 3 n / 4-d_{1}-$

[^3]$x+1+d_{1}-1=3 n / 4-x>n / 2$. That is a contradiction since C_{2} was the largest blue component and $\left|C_{2}\right|<n / 2$.

Now we may assume $n / 4 \leq|X|<n / 2$. Since $|X|<n / 2$ we have $V(H)>n / 2$. If we prove that H is connected, then we get a contradiction again, since C_{2} was the largest blue component, and $\left|C_{2}\right|<n / 2$. Assume to the contrary that we can partition the vertices of H into A and B with no edges between them. We may assume $|A| \geq|B|$, and therefore $|A|>n / 4$. We have two subcases.

Case 3.a: Suppose $A \cap D_{i} \neq \emptyset$ for $1 \leq i \leq \ell$. Let v be a vertex in B and assume $v \in D_{j}$. There is no edge of G from v to $A \cap D_{i}$, for each $i \neq j, 1 \leq i \leq \ell$: An edge from G_{1} is impossible, because $i \neq j$; a blue edge from $C_{1} \backslash C_{2}$ is impossible, because (A, B) is a cut in H. Therefore, the degree of v in G is at most $n-1-\ell+1 \leq$ $n-(|X|+1) \leq n-1-n / 4<3 n / 4$, a contradiction.

Case 3.b: Suppose $A \cap D_{j}=\emptyset$ for a fixed $j, 1 \leq j \leq \ell$. Let v be a vertex in D_{j}. There is no edge from v to any vertex u of A : An edge from G_{1} is impossible, because $u \in D_{i}$, where $i \neq j$. A blue edge from $C_{1} \backslash C_{2}$ is impossible, because (A, B) is a cut. Therefore, the degree of v in G is at most $n-1-|A| \leq n-1-n / 4<3 n / 4$, a contradiction.

3 Applying the Regularity lemma.

As in many applications of the Regularity Lemma, one has to handle irregular pairs, that translates to exceptional edges in the reduced graph. To prove such a variant of Theorem 2.4, first Lemma 2.2 is tuned up. A graph G on n vertices is ε-perturbed if at most $\varepsilon\binom{n}{2}$ of its edges are marked as exceptional (or perturbed). For a perturbed graph G, let G^{-}denote the graph obtained by removing all perturbed edges.

Lemma 3.1. Suppose that G is a 2 -edge-colored ε-perturbed graph on n vertices, $n \geq \varepsilon^{-1 / 2}$. Then all but at most $f(\alpha(G)) \sqrt{\varepsilon} n$ vertices of G can be covered by the vertices of $\alpha(G)$ monochromatic connected subgraphs of G^{-}, where f is a suitable function.

Proof. Set $\alpha=\alpha(G)$ and remove from $V(G)$ a set X of at most $\sqrt{\varepsilon} n$ vertices so that in the remaining graph H each vertex is incident to at most $\sqrt{\varepsilon} n$ perturbed edges.

Let \mathcal{T} denote the (possibly edgeless) hypergraph whose edges are those sets $T \subset$ $V(H)$ for which $|T|=\alpha+1$ and no monochromatic component of H^{-}covers more than one vertex of T. (Each $T \in \mathcal{T}$ is a witness showing $\alpha^{*}\left(H^{-}\right) \geq \alpha+1$.) We call pairwise disjoint hyperedges $T_{1}, T_{2}, \ldots, T_{k}$ in \mathcal{T} independent, if there are no perturbed edges in the k-partite graph defined by the T_{i}-s. Set $c=3^{\alpha^{2}}$ and let $R=R(3,3, \ldots, 3, \alpha+1)$ be the c-color Ramsey number, the smallest m such that in every c-coloring of the
edges of K_{m} either there is a triangle in one of the first $c-1$ colors or a $K_{\alpha+1}$ in color c.

Claim 3.2. Select in \mathcal{T} as many pairwise independent hyperedges as possible, say $T_{1}, T_{2}, \ldots, T_{k}$. Then $k<R$.

Proof. Fix an ordering within each of the sets T_{i}; if $x \in T_{i}$ is the j-th element in this order in T_{i}, we write $\operatorname{ind}(x)=j$. Suppose for contradiction that $k \geq R$ and consider a coloring of the pairs among $T_{1}, T_{2}, \ldots, T_{k}$ defined as follows. Color a pair $T_{i}, T_{j}(1 \leq i<j \leq k)$ by their "color pattern" on the pairs $x \in T_{i}, y \in T_{j}$ with $\operatorname{ind}(x) \neq \operatorname{ind}(y)$. There are α^{2} such pairs (none of them is a perturbed edge) thus x, y is a red edge, a blue edge or not an edge in H. So we have a c-coloring on the pairs T_{i}, T_{j}, the color when all the α^{2} pairs are not edges of H is called special. By the assumption $k \geq R$, we have either $\alpha+1 T_{i^{-s}}$-s with any pair of them colored with the special color or three T_{i}-s with all three pairs colored with the same non-special color. We show that both cases lead to contradiction.

In the latter case we have a triple, say T_{1}, T_{2}, T_{3} and different indices i, j, such that $p \in T_{1}, q, r \in T_{2}, s \in T_{3}, \operatorname{ind}(p)=\operatorname{ind}(q)=i, \operatorname{ind}(r)=\operatorname{ind}(s)=j$ and $p r, p s, q s$ are all edges of H colored with the same color. Thus r, p, s, q is a monochromatic path of H^{-}, intersecting T_{2} in two vertices, contradicting to the definition of T_{2}.

In the former case we have say $T_{1}, T_{2}, \ldots, T_{\alpha+1}$ pairwise colored with the special color. For $i=1,2, \ldots, \alpha+1$, select $v_{i} \in T_{i}$ such that $\operatorname{ind}\left(v_{i}\right)=i$. Observe that $\left\{v_{1}, \ldots, v_{\alpha+1}\right\}$ spans an independent set in G, contradicting the assumption that $\alpha(G)=\alpha$.

Let Y denote the set of vertices in H sending at least one perturbed edge to $\cup_{i=1}^{k} T_{i}$. Observe that $|Y| \leq(\alpha+1) R \sqrt{\varepsilon} n$ and by the maximality of $k, Z=\cup_{i=1}^{k} T_{i} \cup Y$ meets all edges of \mathcal{T}, thus removing $X \cup Z$ from $\mathrm{V}(\mathrm{G})$ leaves a subgraph $F \subset G$ with $\alpha^{*}\left(F^{-}\right) \leq \alpha$. Therefore, applying Proposition 2.3 to $F^{-}, \rho\left(F^{-}\right) \leq \alpha$. The theorem follows, since (using the assumption $1 \leq \sqrt{\varepsilon} n$)

$$
|X \cup Z| \leq \sqrt{\varepsilon} n+R(\alpha+1)+(\alpha+1) R \sqrt{\varepsilon} n \leq(1+2 R(\alpha+1) \sqrt{\varepsilon} n
$$

i.e. $f(\alpha)=(1+2 R(\alpha+1))$ is a suitable function.

Now we are ready to prove a perturbed version of Theorem 2.4.
Theorem 3.3. Let G be an ε-perturbed 2 -edge-colored graph on n vertices, $n \geq \varepsilon^{-1 / 2}$. Then there exists a $Z \subset V(G)$ such that $|Z| \leq(f(\alpha(G))+\alpha(G)) \sqrt{\varepsilon} n$ and $V(G) \backslash Z$ can be partitioned into at most $2 \alpha(G)$ classes, where each part in G^{-}either contains a connected monochromatic spanning matching or a monochromatic spanning cycle or it is an edge or a single vertex.

Proof. Using Lemma 3.1, we can remove from $V(G)$ a set of at most $f(\alpha) \sqrt{\varepsilon} n$ vertices such that for the remaining graph H, the following holds. The vertices $V(H)$ can be covered by the vertices of at most $\alpha(G)$ monochromatic components of H^{-}, say with p red and q blue monochromatic components, $C_{1}, \ldots, C_{p}, D_{1}, \ldots, D_{q}$, where $p+q \leq \alpha(G)$. We may suppose that each vertex of H is incident to at most $\sqrt{\varepsilon} n$ perturbed edges, as this is automatic from the proof of Lemma 3.1. The $p+q$ components yield a partition of $V(H)$ into doubly and singly covered sets. Let $A_{i j}=C_{i} \cap D_{j}$ and $S_{i}=C_{i}-\cup_{j} A_{i j}, T_{j}=D_{j}-\cup_{i} A_{i j}$, where $1 \leq i \leq p, 1 \leq j \leq q$. First let M_{i} be a largest red matching induced by H^{-}in C_{i} for every $1 \leq i \leq p$, and then N_{j} be a largest blue matching induced by H^{-}in $D_{j}-\cup_{i} V\left(M_{i}\right)$, for every $1 \leq j \leq q$. Observe that these matchings are connected in H^{-}. Delete all vertices of these matchings from $V(H)$ and for convenience keep the same notation for the truncated sets (so $A_{i j}, S_{i}, T_{j}$ denotes the sets remaining after all vertices of these matchings are deleted). The remaining graph is denoted by F. Partition $V(F)$ into three sets, $A=\cup_{i=1}^{p} \cup_{j=1}^{q} A_{i j}, S=\cup_{i=1}^{p} S_{i}, T=\cup_{j=1}^{q} T_{j}$. Observe that edges of F^{-}can be only inside S (colored blue) or inside T (colored red). Now we follow the proof method of Lemma 2.1 (see Exercise 3 on page 63 in [20]) to partition most of the vertices in $V(F)$ into at most $\alpha(G)$ monochromatic cycles.

We apply the following procedure to subsets U of one of the sets A, S, T. Observe that $F^{-}[U]$ is an independent set if $U \subset A$, edges of $F^{-}[U]$ are all blue if $U \subset S$, edges of $F^{-}[U]$ are all red if $U \subset T$.

In any step of the procedure, consider a maximal path P of $F^{-}[U]$ and let x be one of its endpoints. If x is an isolated vertex in $F^{-}[U]$, define $C^{*}=\{x\}$. If x has degree one in F^{-}, let y be its neighbor on P and define $C^{*}=\{x, y\}$. If x has degree at least two in F^{-}, let z be the neighbor of x on P (in F^{-}), which is the furthest from x. Now C^{*} is defined as the cycle obtained by connecting the endpoints of the edge $x z$ on the path P. Let Y be the set of perturbed neighbors of x in F^{-}. That is, the set of vertices in $V(F)$, which are adjacent to x by exceptional edges. The step ends with removing $C^{*} \cup Y$ from $V(F)$ and defining the new F, A, S, T as the truncated sets.

This procedure decreases $\alpha(F)$ at each step, because any independent set of the truncated set can be extended by x to an independent set of F. Therefore, at most $\alpha(G)$ steps can be executed. Now apart from the union of the sets Y s, at most $\alpha(G)$ monochromatic C^{*}-s partition $V(F)$. Together with the $p+q \leq \alpha$ monochromatic connected matchings N_{i}, M_{j} we have the required covering. The number of uncovered vertices are at most $f(\alpha) \sqrt{\varepsilon} n$ (lost when the matchings were defined) plus $\alpha \sqrt{\varepsilon} n$ (when the cycles are defined).

3.1 Building cycles from connected matchings.

Next we show how to prove Theorem 1.4 from Theorem 3.3 and the Szemerédi Regularity Lemma [29]. The material of this section is fairly standard by now (see $[9,12,13,14,15]$ so we omit some of the details. We need a 2 -edge-colored version of the Szemerédi Regularity Lemma. ${ }^{7}$

Lemma 3.4. For every integer m_{0} and positive ε, there is an $M_{0}=M_{0}\left(\varepsilon, m_{0}\right)$ such that for $n \geq M_{0}$ the following holds. For any n-vertex graph G, where $G=G_{1} \cup G_{2}$ with $V\left(G_{1}\right)=V\left(G_{2}\right)=V$, there is a partition of V into $\ell+1$ clusters $V_{0}, V_{1}, \ldots, V_{\ell}$ such that

- $m_{0} \leq \ell \leq M_{0},\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{\ell}\right|,\left|V_{0}\right|<\varepsilon n$,
- apart from at most $\varepsilon\binom{\ell}{2}$ exceptional pairs, all pairs $\left.G_{s}\right|_{V_{i} \times V_{j}}$ are ε-regular, where $1 \leq i<j \leq \ell$ and $1 \leq s \leq 2$.

Proof of Theorem 1.4. Given η and α, first we fix a positive ε sufficiently small so that the claimed bound $(f(\alpha)+\alpha) \sqrt{\varepsilon}$ in Theorem 3.3 is much smaller than η. Then we choose m_{0} sufficiently large compared to $1 / \sqrt{\varepsilon}$ (so Theorem 3.3 can be applied). Let G be a graph on n vertices with $\alpha(G)=\alpha$, where $n \geq M_{0}$ with M_{0} coming from Lemma 3.4. Consider a 2-edge-coloring of G, that is $G=G_{1} \cup G_{2}$. We apply Lemma 3.4 to G in order to obtain a partition of V, that is $V=\cup_{0 \leq i \leq \ell} V_{i}$. Define the following reduced graph G^{R} : The vertices of G^{R} are p_{1}, \ldots, p_{ℓ}, and there is an edge between vertices p_{i} and p_{j} if the pair $\left(V_{i}, V_{j}\right)$ is either exceptional ${ }^{8}$, or if it is ε-regular in both G_{1} and G_{2} with density in G exceeding $1 / 2$. The edge $p_{i} p_{j}$ is colored with the color, which is used on the most edges from $G\left[V_{i}, V_{j}\right]$ (the bipartite subgraph of G with edges between V_{i} and V_{j}). The density of this majority color is still at least $1 / 4$ in $G\left[V_{i}, V_{j}\right]$. This defines a 2-edge-coloring $G^{R}=G_{1}^{R} \cup G_{2}^{R}$.

We claim that $\alpha\left(G^{R}\right) \leq \alpha(G)=\alpha$. Indeed, we apply the standard Key Lemma ${ }^{9}$ in the complement of G^{R} and G. Note that a non-exceptional pair is 2ε-regular in \bar{G} as well. If we had an independent set of size $\alpha+1$ in G^{R}, then we would have an independent set of size $\alpha+1$ in G, a contradiction.

We now apply Theorem 3.3 to the ε-perturbed 2-edge-colored G^{R} (note that the condition in Theorem 3.3 is satisfied since $\ell \gg 1 \sqrt{\varepsilon})$. We cover most of G^{R} by at most $2 \alpha\left(G^{R}\right) \leq 2 \alpha(G)=2 \alpha$ subgraphs of $\left(G^{R}\right)^{-}$, where each subgraph in $\left(G^{R}\right)^{-}$is either a connected monochromatic matching or a monochromatic cycle or an edge or a single vertex. Finally, we lift the connected matchings back to cycles in the original

[^4]graph using the following ${ }^{10}$ lemma in our context, completing the proof. Indeed, the number of vertices left uncovered in G is at most
$$
(f(\alpha)+\alpha) \sqrt{\varepsilon} n+3 \epsilon n+\epsilon n=(f(\alpha)+\alpha) \sqrt{\varepsilon} n+4 \epsilon n \leq \eta n,
$$
using our choice of ϵ. Here the uncovered parts come from Theorem 3.3, from Lemma 3.5 and V_{0}.

Lemma 3.5. Assume that there is a monochromatic connected matching M (say in $\left.\left(G_{1}^{R}\right)^{-}\right)$saturating at least $c\left|V\left(G^{R}\right)\right|$ vertices of G^{R}, for some positive constant c. Then in the original G there is a monochromatic cycle in G_{1} covering at least $c(1-3 \varepsilon) n$ vertices.

Proof of Theorem 1.6. We combine the degree form and the 2-edge-colored version of the Regularity Lemma.

Lemma 3.6. For every positive ε and integer m_{0}, there is an $M_{0}=M_{0}\left(\varepsilon, m_{0}\right)$ such that for $n \geq M_{0}$ the following holds. For any n-vertex graph G, where $G=G_{1} \cup G_{2}$ with $V\left(G_{1}\right)=V\left(G_{2}\right)=V$, and real number $\rho \in[0,1]$, there is a partition of V into $\ell+1$ clusters $V_{0}, V_{1} \ldots, V_{\ell}$, and there are subgraphs $G^{\prime}=G_{1}^{\prime} \cup G_{2}^{\prime}, G_{1}^{\prime} \subset G_{1}, G_{2}^{\prime} \subset G_{2}$ with the following properties:

- $m_{0} \leq \ell \leq M_{0},\left|V_{0}\right| \leq \varepsilon|V|,\left|V_{1}\right|=\ldots=\left|V_{\ell}\right|=L$,
- $\operatorname{deg}_{G^{\prime}}(v)>\operatorname{deg}_{G}(v)-(\rho+\varepsilon)|V| \quad$ for all $\quad v \in V$,
- the vertex sets V_{i} are independent in G^{\prime},
- each pair $\left.G^{\prime}\right|_{V_{i} \times V_{j}}$ is ε-regular, $1 \leq i<j \leq \ell$, with density 0 or exceeding ρ,
- each pair $\left.G_{s}^{\prime}\right|_{V_{i} \times V_{j}}$ is ε-regular, $1 \leq i<j \leq \ell, 1 \leq s \leq 2$.

Let $\varepsilon \ll \rho \ll \eta \ll 1, m_{0}$ sufficiently large compared to $1 / \varepsilon$ and M_{0} obtained from Lemma 3.6. Let G be a graph on $n>M_{0}$ vertices with $\delta(G)>\left(\frac{3}{4}+\eta\right) n$. Consider a 2-edge-coloring of G, that is $G=G_{1} \cup G_{2}$. We apply Lemma 3.6 to G. We obtain a partition of V, that is $V=\cup_{0 \leq i \leq \ell} V_{i}$. We define the following reduced graph G^{R} : The vertices of G^{R} are p_{1}, \ldots, p_{ℓ}, and there is an edge between vertices p_{i} and p_{j} if the pair $\left(V_{i}, V_{j}\right)$ is ε-regular in G^{\prime} with density exceeding ρ. Since $\delta\left(G^{\prime}\right)>\left(\frac{3}{4}+\eta-(\rho+\varepsilon)\right)|V|$, calculation ${ }^{11}$ shows that $\delta\left(G^{R}\right) \geq\left(\frac{3}{4}+\eta-2 \rho\right) \ell>\frac{3}{4} \ell$. The edge $p_{i} p_{j}$ is colored again with the majority color, and the density of this color is still at least $\rho / 2$ in $K\left(V_{i}, V_{j}\right)$.

[^5]Applying Theorem 2.5 to G^{R}, we get a red connected matching and a vertexdisjoint blue connected matching, which together form a perfect matching of G^{R}. Finally we lift the connected matchings back to cycles in the original graph using Lemma 3.5. The number of vertices left uncovered in G is at most $\sqrt{\varepsilon} n \leq \eta n$.

4 Excluding bipartite graphs from the complement.

In what follows, we prove the $t=2, k=1$ case of Conjecture 1.7. As every bipartite graph is a subgraph of a complete bipartite graph, we may assume that the graph H forbidden in the complement of G is $K_{p, p}$. Note that the constant c we get could be greatly improved even using the same arguments with more involved calculations, however, it would be still far from being optimal. We use the following well-known theorems.

Theorem 4.1 (Erdős-Gallai [5]). ${ }^{12}$ If G is a graph on n vertices with $|E(G)|>$ $\ell(n-1) / 2$, then G contains a cycle of length at least $\ell+1$.

Theorem 4.2 (Kővári-T. Sós-Turán [19]). ${ }^{13}$ If G is a graph on n vertices such that $K_{p, p}$ is not a subgraph of G, then $|E(G)| \leq(p-1)^{1 / p} n^{2-1 / p}+(p-1) n \leq 2 p n^{2-1 / p}$.

Lemma 4.3. Let p and n be positive integers such that $n \geq(10 p)^{p}$. Let G be an n vertex graph such that $K_{p, p} \not \subset \bar{G}$. Then any 2 -edge-coloring of G contains a monochromatic cycle of length at least $n / 4$.

Proof. By Theorem 4.2 and by the lower bound on n,

$$
e(G) \geq\binom{ n}{2}-2 p n^{2-1 / p}=n^{2} / 2-n / 2-2 p n^{2-1 / p} \geq n^{2} / 2-n / 2-n^{2} / 5 \geq n^{2} / 4
$$

so one of the colors, say red, is used at least $n^{2} / 8$ times. Then using Theorem 4.1 in the red subgraph we get a red cycle of length at least $n / 4$.

For a bipartite graph G with classes A, B, the bipartite complement $\bar{G}[A, B]$ of G is obtained via complementing the edges between A and B, and keeping A and B independent sets.

Lemma 4.4. Let $0<\epsilon<1$ and $n \geq(50 p)^{p} / \epsilon$. Let G be a bipartite graph with classes A and $B,|A|=|B|=n$ such that $K_{p, p} \not \subset \bar{G}[A, B]$. Then there is a path of length at least $(2-\epsilon) n$ in G.

[^6]Proof. First we prove a weaker statement.
Claim 4.5. Let G^{\prime} be a bipartite graph with classes A^{\prime} and B^{\prime} with $\left|A^{\prime}\right|=\left|B^{\prime}\right|=m \geq$ $(20 p)^{p}$ such that $K_{p, p} \not \subset \bar{G}^{\prime}\left[A^{\prime}, B^{\prime}\right]$. Then there is a path of length at least $m / 2$ in G^{\prime}.

Proof. By Theorem 4.2, $e\left(G^{\prime}\right) \geq m^{2}-8 p m^{2-1 / p}>m^{2} / 2=(2 m)^{2} / 8$, so by Theorem 4.1 G^{\prime} contains a path of length at least $m / 2$.

Let P be a longest path in G. Using Claim 4.5 with $G=G^{\prime}$, we have that $|P| \geq n / 2$. Assume for a contradiction that P is shorter than $(2-\epsilon) n$. Because G is bipartite, we can choose $A^{\prime} \subset(G-P) \cap A$ and $B^{\prime} \subset(G-P) \cap B$ with $\left|A^{\prime}\right|=\left|B^{\prime}\right|>\epsilon n / 3$. By Claim 4.5, $G\left[A^{\prime}, B^{\prime}\right]$ contains a path P^{\prime} with at least $\epsilon n / 6$ vertices.

Consider the last $2 p$ vertices of P and the last $2 p$ vertices of P^{\prime}. There is an edge e between these set of vertices by the assumption. Adding e to $P \cup P^{\prime}$, there is a path, which contains all but $2 p$ vertices of P, and all but $2 p$ vertices of P^{\prime}, hence it is longer than P, a contradiction. Here we used that $\epsilon n / 6>4 p$.

Theorem 4.6. Let G be an n-vertex graph such that $K_{p, p} \nsubseteq \bar{G}$. Then any 2-edgecoloring of G contains two vertex disjoint monochromatic paths of distinct colors covering at least $n-1000(50 p)^{p}$ vertices.

Proof. Consider the vertex disjoint blue path, red path pair $\left(P_{1}, P_{2}\right)$, which cover the most vertices, and let $G^{\prime}=G \backslash\left\{P_{1} \cup P_{2}\right\}$. Suppose there are n_{1} vertices in G^{\prime}, where $n_{1}>1000(50 p)^{p}$. As $n>n_{1}>1000(50 p)^{p}$, by Lemma 4.3 at least $n / 4$ vertices are covered by $P_{1} \cup P_{2}$. Let $t=10(50 p)^{p}<n_{1} / 100$. We split the proof into two cases.

Case 1: One of the paths, P_{2} say, is shorter than t. Using that $3 t<n / 4$ we have that the length of P_{1} is at least $2 t$ in this case. Now G^{\prime} does not contain a red path of length t, but by Lemma 4.3 it contains a monochromatic cycle of length at least $n_{1} / 4>4 t$, which must be blue. Hence, G^{\prime} contains a blue path, say P_{3}, of length at least $4 t$.

Denote L_{1}, the set of last $2 t$ vertices of P_{1} and L_{3}, the set of last $2 t$ vertices of P_{3}. There is an edge e between L_{1} and L_{3} as $2 t>p$ and $K_{p, p} \nsubseteq \bar{G}$. If e was blue then we use e to connect the paths P_{1}, P_{3}, and we find a blue path longer than P_{1} vertex disjoint from P_{2}, a contradiction.

Hence all edges between L_{1} and L_{3} are red, and we can apply Lemma 4.4 for the red bipartite graph between L_{1} and L_{3} with $\epsilon=1 / 8$. (Note that $2 t \geq 8(50 p)^{p}$, so indeed the lemma is applicable.) It yields a red path P_{4} of length $(2-1 / 8) 2 t$ in $L_{1} \cup L_{3}$. Let P_{1}^{\prime} be P_{1} without the last $2 t$ vertices. Now P_{1}^{\prime} and P_{4} are disjoint and cover more vertices than P_{1} and P_{2}, which is a contradiction.

Case 2: Both P_{1} and P_{2} have length at least t. Without loss of generality, in G^{\prime} Lemma 4.3 implies the existence of a blue cycle C of length at least $n_{1} / 4 \geq 4 t$. Denote R_{1} the set of the last t vertices of P_{1}, R_{2} the set of the last $t / 2$ vertices of P_{2}, and C_{1} any set of consecutive t vertices of C. There are no blue edges between R_{1} and C_{1}, otherwise P_{1} could be replaced with a longer blue path. Now by Lemma 4.4, with $\epsilon=1 / 8$, there is a red path P_{3} in $G\left(R_{1}, C\right)$ of length $15 t / 8$. Let B be the set of the first and last $t / 4$ vertices of P_{3}. For each vertex v in B, there is a red path P_{v} of length $13 t / 8$ starting at v, which is a subpath of P_{3}. If there is a red edge $e=(u, v)$ between R_{2} and B, then $P_{2} \cup e \cup P_{v}$ contains a red path with at least $\left|P_{2}\right|+13 t / 8-t / 2$ vertices which together with the disjoint $P_{1}-R_{1}$ cover more vertices than the pair (P_{1}, P_{2}), a contradiction.

Therefore, there are only blue edges between B and R_{2}. Since $\left|B \cap P_{1}\right| \geq p$, there are at least $t / 2-p+1$ vertices of R_{2} having neighbors in $B \cap P_{1}$. Let R_{2}^{\prime} be the set of those vertices. If there is a blue edge f between R_{2}^{\prime} and C, then $P_{1} \cup f \cup C$ contains a blue path which together with the disjoint $P_{2}-R_{2}$ cover more vertices than the pair $\left(P_{1}, P_{2}\right)$, a contradiction.

Therefore, all the edges between R_{2}^{\prime} and C are red. We already know that there are no red edges from R_{2}^{\prime} and $B \cap C$. But we have that $\left|R_{2}^{\prime}\right| \geq p$ and $|B \cap C| \geq p$, which is a contradiction.

The following proposition, which is a 1-colored version of one of our main results, Theorem 4.8, is also a special case of $R\left(P_{m}, C_{n}\right)$, determined in [7].

Proposition 4.7. If G is a graph on n vertices and $C_{4} \nsubseteq \bar{G}$, then G contains a path, which covers $n-1$ vertices.

Proof. Denote by P a longest path of G. Let a and b be the first and last vertex of P. If P contains less than $n-1$ vertices, then there are two vertices x and y not in P. Let us consider the pairs $a x, x b, b y, y a$. If none of them spans an edge in G, then they span a C_{4} in \bar{G}, which is a contradiction. If any of them spans an edge in G, then it extends P, which is again a contradiction.

The following result, the two-color version of Proposition 4.7, shows that Conjecture 1.7 is true for $H=C_{4}$ with $c\left(C_{4}\right)=1$.

Theorem 4.8. Let G be a graph such that $|V(G)| \geq 7$ and $C_{4} \nsubseteq \bar{G}$. If the edges of G are colored red and blue, then there exist two vertex-disjoint monochromatic paths of different colors covering $n-1$ vertices.

For simplicity, we refer to edges of \bar{G} as black edges, and think of G as K_{n} with a 3-edge-coloring, but monochromatic paths should be blue or red, and sometimes
when we write "edge of G" we mean "red or blue edge of G ". We trust that this will not confuse the reader.

Remark 2. The value $n-1$ in Theorem 4.8 is best possible, as shown by the following example. Let v_{1} and v_{2} be two different vertices in K_{n}. If $v_{1} x$ is black for all x, and $v_{2} y$ is red for all $y, y \in V\left(K_{n}\right) \backslash v_{1}$, and all other edges are blue, then any two monochromatic paths can only cover at most $n-1$ vertices.

The condition $|V(G)| \geq 7$ is somewhat unexpected, since the statement is true if $|V(G)| \leq 4$. On five vertices, let $G_{5}=K_{1} \cup C_{4}$ and color the edges of C_{4} alternately red and blue. On six vertices, let G_{6} be the complement of C_{6} and color the long diagonals red and the short diagonals blue. One can easily check that pairs of vertex disjoint red and blue paths must leave two vertices uncovered in these graphs.

Proof Theorem 4.8. Fix a blue path $P_{1}=a_{1} \ldots a_{i}$ and a red path $P_{2}=b_{1} \ldots b_{j}$ such that $i+j$ is as large as possible, and under this condition $|i-j|$ is as small as possible. Let G^{\prime} be $G \backslash\left(P_{1} \cup P_{2}\right)$. If G^{\prime} contains only one vertex, then we are done. Therefore, we may choose a $U \subseteq V\left(G^{\prime}\right)$ such that $U=\{x, y\}$ for some $x \neq y$. Since $i+j$ is maximal, there are no blue edges between $\left\{a_{1}, a_{i}\right\}$ and G^{\prime} and there are no red edges between $\left\{b_{1}, b_{j}\right\}$ and G^{\prime}. We consider two cases, according whether min $i, j=1$ (say then $i=1$).

Case 1: $i=1$. If there is a blue edge between b_{1} and G^{\prime}, then that one edge and $b_{2} \ldots b_{j}$ would be a better pair of paths (with smaller difference of the sizes), which is a contradiction, unless $j=2$. In this case, $X=V(G) \backslash\left\{b_{1}, b_{2}\right\}$ has at least five vertices and (using that no C_{4} in \bar{G}) one can easily see that X has either a blue edge or a red P_{3} and both contradicts the choice of P_{1}, P_{2}.

Case 2: $i, j \geq 2$. Since there is no black C_{4}, there is an non-black edge of G between some of the endpoints of P_{1} and some of the endpoints of P_{2}. We call such an edge a cross-edge.

Claim 4.9. If both endpoints of a cross-edge are connected to G^{\prime} by a non-black edges of G, then we can increase the number of vertices covered by the two monochromatic paths.

We may assume that $a_{1} b_{1}$ is a cross-edge and it is blue. There is a blue edge between b_{1} and G^{\prime}, say $b_{1} z$. Now $z b_{1} a_{1} \ldots a_{i}$ and $b_{2} \ldots b_{j}$ are two monochromatic paths, which cover more vertices than P_{1} and P_{2}.

In what follows, we may assume that $a_{1} b_{1}$ is a blue cross-edge, and $b_{1} z$ is black for any vertex z of G^{\prime}. Let $v \in V\left(P_{1}\right) \cup V\left(P_{2}\right) \backslash b_{1}$. If $v z_{1}$ and $v z_{2}$ were two black edges for some $z_{1}, z_{2} \in G^{\prime}$, then $v z_{1} b_{1} z_{2}$ would be a black 4 -cycle, a contradiction. Therefore, v is adjacent to all but one vertex in G^{\prime}. In particular, there are red edge
from both a_{1} and a_{i} to G^{\prime} and a blue edge from b_{j} to G^{\prime}. Therefore, the edges $a_{1} b_{j}$ and $a_{i} b_{j}$ are both black by Claim 4.9.

Case 2.1: $j=2$. If there were two (red) edges between a_{i} and G^{\prime}, say $a_{i} z_{1}$ and $a_{i} z_{2}$, then $b_{1} a_{1} \ldots a_{i-1}$ and $z_{1} a_{i} z_{2}$ would cover more vertices than $P_{1} \cup P_{2}$, a contradiction. Therefore, $\left|V\left(G^{\prime}\right)\right|=2$, that is $U=G^{\prime}$. We may assume $a_{i} x$ is red and $a_{i} y$ is black. It follows that $a_{1} y$ is red and $a_{1} x$ is black, otherwise $a_{1} y a_{i} b_{j}$ would be a black C_{4}. contradiction. Since $|V(G)| \geq 7$, we now get $i>2$. Therefore, $a_{i-1} \neq a_{1}$.

Case 2.1.1: $a_{1} x$ is black. Consider the edges $a_{i-1} x$ and $a_{i-1} b_{2}$. If both of them were black, then $a_{1} x a_{i-1} b_{2}$ would be a black C_{4}. If both of them were red, then $b_{1} b_{2} a_{i-1} x a_{i}$ and $a_{1} \ldots a_{i-2}$ would cover more vertices than $P_{1} \cup P_{2}$. If $b_{2} a_{i-1}$ is blue, then $b_{1} a_{1} \ldots a_{i-1} b_{2}$ and $a_{i} x$ cover more vertices than $P_{1} \cup P_{2}$.

If $a_{i-1} x$ is blue, then consider the existing blue edge between b_{2} and U. If $b_{2} x$ were blue, then $b_{1} a_{1} \ldots a_{i-1} x b_{2}$ and a_{i} would cover more vertices than $P_{1} \cup P_{2}$. Therefore, $b_{2} y$ is a blue edge. Consider now the edge $b_{1} a_{i}$. If $b_{1} a_{i}$ were red, then $b_{2} b_{1} a_{i} x$ and $a_{1} \ldots a_{i-1}$ would cover more vertices than $P_{1} \cup P_{2}$. If $b_{1} a_{i}$ were blue, then $x a_{i-1} a_{i} b_{1} a_{1} \ldots a_{i-2}$ and b_{2} would cover more vertices than $P_{1} \cup P_{2}$. Therefore, $b_{1} a_{i} \in \bar{G}$. Now we consider the edge $x y$. If $x y$ is blue, then $a_{1} \ldots a_{i-1} x y$ and $b_{1} b_{2}$ cover more vertices than $P_{1} \cup P_{2}$. If $x y$ is red, then $b_{1} a_{1} \ldots a_{i-1}$ and $a_{i} x y$ cover more vertices than $P_{1} \cup P_{2}$. Finally, if $x y \in \bar{G}$, then $x y a_{i} b_{1}$ is a black 4 -cycle. This shows that $a_{i-1} x$ is not blue.

Now one of $a_{i-1} x$ and $a_{i-1} b_{2}$ is red and the other one is black. If $a_{i-1} x$ is red, then consider $a_{i-1} y$. If $a_{i-1} y$ is red, then $a_{i} x a_{i-1} y$ and $b_{1} a_{1} \ldots a_{i-2}$ cover more vertices than $P_{1} \cup P_{2}$. If $a_{i-1} y$ is blue, then $b_{1} a_{1} \ldots a_{i-1} y$ and $a_{i} x$ cover more vertices than $P_{1} \cup P_{2}$. If $a_{i-1} y \in \bar{G}$, then $b_{2} a_{i-1} y a_{i}$ is a black 4-cycle.
If $a_{i-1} b_{2}$ is red and $a_{i-1} x$ is black, then look at $a_{i-1} y$. If $a_{i-1} y$ is black, then $x a_{i-1} y b_{1}$ is a black C_{4}. If $a_{i-1} y$ is blue, then $b_{1} a_{1} \ldots a_{i-1} y$ and $a_{i} x$ cover more vertices than $P_{1} \cup P_{2}$. If $a_{i-1} y$ is red, then $b_{1} a_{1} \ldots a_{i-2}$ and $b_{2} a_{i-1} y$ cover the same number of vertices as $P_{1} \cup P_{2}$. At the same time, if $i \geq 4,|i-j|$ is smaller, giving a contradiction. On the other hand, if $i=3$, then a_{i} and $b_{1} b_{2} a_{i-1} y a_{1}$ and a_{i} cover more vertices than $P_{1} \cup P_{2}$.

Case 2.1.2: $a_{1} x$ is red. If $i \geq 4$, then $a_{2} \ldots a_{i}$ and $x a_{1} y$ cover the same number of vertices as $P_{1} \cup P_{2}$ with a smaller $|i-j|$, a contradiction. Therefore, $i=3$ that is $|V(G)|=7$. If $b_{2} y$ is blue, then look at $a_{2} y$. If $a_{2} y$ is blue, then $b_{1} a_{1} a_{2} y b_{2}$ and $a_{3} x$ cover more vertices than $P_{1} \cup P_{2}$. If $a_{2} y$ is red, then b_{1} and $a_{3} x a_{1} y a_{2}$ cover more vertices than $P_{1} \cup P_{2}$. Therefore, $a_{2} y$ is black. Now if $a_{2} b_{2}$ is black, then $b_{2} a_{3} y a_{2}$ is a black C_{4}. If $a_{2} b_{2}$ is blue, then $b_{1} a_{1} a_{2} b_{2} y$ and $a_{3} x$ cover more vertices than $P_{1} \cup P_{2}$. Therefore, $a_{2} b_{2}$ is red. Now $a_{2} x$ must be blue and $b_{2} x$ black. Consider now $b_{1} a_{3}$. If $b_{1} a_{3}$ is blue, then $a_{3} b_{1} a_{1} a_{2} x$ and b_{2} cover more vertices than $P_{1} \cup P_{2}$. If $b_{1} a_{3}$ is red, then $a_{2} b_{2} b_{1} a_{3} x a_{1} y$ cover $V(G)$. Finally if $b_{1} a_{3}$ is black, then $b_{1} a_{3} b_{2} x$ is a black C_{4}.

Therefore, $b_{2} y$ is black and $b_{2} x$ is blue. Consider $b_{1} a_{3}$. If $b_{1} a_{3}$ is black, then $b_{1} a_{3} b_{2} y$ is a black C_{4}. If $b_{1} a_{3}$ is red, then $b_{2} b_{1} a_{3} x a_{1} y$ and a_{2} cover more vertices than $P_{1} \cup P_{2}$.

If $b_{1} a_{3}$ is blue, then $b_{1} a_{3} a_{2}$ and $x a_{1} y$ cover more vertices than $P_{1} \cup P_{2}$.
Case 2.2: $j>2$. Consider the edge $b_{1} b_{j}$. If $b_{1} b_{j}$ is blue, then $a_{i} \ldots a_{1} b_{1} b_{j}$ plus a blue edge from b_{j} to G^{\prime} and $b_{2} \ldots b_{j-1}$ cover more vertices than $P_{1} \cup P_{2}$, a contradiction. If $b_{1} b_{j}$ is red, then consider $b_{2} b_{1} b_{j} \ldots b_{3}$, a red path of length j. By Claim 4.9, there is a cross-edge adjacent to two of $a_{1}, a_{i}, b_{2}, b_{3}$, and one of these vertices, say c (different from b_{1}) is non-adjacent to G^{\prime}. That is, $b_{1} x c y$ is a C_{4} in \bar{G}, a contradiction. We conclude $b_{1} b_{j} \in \bar{G}$. Now $a_{i} b_{j} b_{1} z$ is a path on 4 vertices in \bar{G}, for any $z \in G^{\prime}$. Therefore, any edge $a_{i} z$, where $z \in G^{\prime}$, is a red edge. If there is a red edge $b_{2} z$, where $z \in G^{\prime}$, then $b_{1} a_{1} \ldots a_{i-1}$ and $x a_{i} z b_{2} \ldots b_{j}$ cover more vertices than $P_{1} \cup P_{2}$, a contradiction. Thus there is a blue edge e from b_{2} to G^{\prime}. Now consider the edge $b_{2} a_{i}$. If it were blue, then $b_{1} a_{1} \ldots a_{i} b_{2}$ extended with e and $b_{3} \ldots b_{j}$ would cover more vertices than $P_{1} \cup P_{2}$, a contradiction. If $b_{2} a_{i}$ was red, then $b_{1} a_{1}, \ldots a_{i-1}$ and $x a_{i} b_{2}, \ldots b_{j}$ would cover more vertices than $P_{1} \cup P_{2}$, a contradiction. We conclude that $b_{2} a_{i} \in \bar{G}$.

Next look at the pair a_{1}, b_{2}. It must be an edge G, otherwise $a_{1} b_{2} a_{i} b_{j}$ is a C_{4} in \bar{G}, a contradiction. If $a_{1} b_{2}$ is red, then let f be a red edge from a_{1} to U, say $f=a_{1} x$. Now $a_{2} \ldots a_{i-1}$ and $y a_{i} x a_{1} b_{2} \ldots b_{j}$ cover more vertices than $P_{1} \cup P_{2}$, a contradiction. We conclude that $a_{1} b_{2}$ is blue.

Consider the edge $a_{i} b_{1}$. If it is red, then $a_{1} \ldots a_{i-1}$ and $x a_{i} b_{1} \ldots b_{j}$ form a better pair. If $a_{i} b_{1}$ is blue, then $b_{1} a_{i} \ldots a_{1} b_{2} e$ and $b_{3} \ldots b_{j}$ form a better pair. We conclude $a_{i} b_{1} \in \bar{G}$. Now the $b_{j} a_{i} b_{1} z$ is a path on 4 vertices in \bar{G}, for any $z \in G^{\prime}$. Therefore any $b_{j} z$ in \bar{G} would form a C_{4}. That is, all $b_{j} z$ are blue edges.

Let z be the endvertex of e in G^{\prime}. Now $a_{i} \ldots a_{1} b_{2} z b_{j} x$ and $b_{3} \ldots b_{j-1}$ cover more vertices than $P_{1} \cup P_{2}$, giving a final contradiction.

Acknowledgements. We are indebted to an anonymous referee for the extremely careful reading of the paper and many helpful comments and suggestions.

References

[1] P. Allen, Covering two-edge-coloured complete graphs with two disjoint monochromatic cycles, Combinatorics, Probability and Computing, 17 (2008), 471486.
[2] J. Ayel, Sur l'existence de deux cycles supplementaires unicolorés, disjoints et de couleurs differentes dans un graphe complet bicolore, Thesis, University of Grenoble, (1979).
[3] F.S. Benevides, T. Łuczak, A. Scott, J. Skokan, M. White, Monochromatic cycles and the monochromatic circumference in 2-coloured graphs, Combin. Probab. Comput. 21 (2012), 57-87.
[4] S. Bessy, S. Thomassé, Partitioning a graph into a cycle and an anticycle, a proof of Lehel's conjecture, Journal of Combinatorial Theory, Series B 100 (2010), 176-180.
[5] P. Erdős, T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959), 337-356.
[6] P. Erdős, A. Gyárfás, L. Pyber, Vertex coverings by monochromatic cycles and trees, Journal of Combinatorial Theory, Series B 51 (1991), 90-95.
[7] R. J. Faudree, S. L. Lawrence, T. D. Parsons, R. H. Schelp, Path-Cycle Ramsey numbers, Discrete Mathematics 10 (1974), 269-277.
[8] A. Gyárfás, Vertex coverings by monochromatic paths and cycles, Journal of Graph Theory 7 (1983), 131-135.
[9] A. Gyárfás, M. Ruszinkó, G. Sárközy, E. Szemerédi, An improved bound for the monochromatic cycle partition number, Journal of Combinatorial Theory, Series B 96 (2006), 855-873.
[10] A. Gyárfás, G. Simonyi, Á. Tóth, Gallai colorings and domination in multipartite digraphs, J. Graph Theory 71 (2012), 278-292.
[11] A. Gyárfás, Partition coverings and blocking sets in hypergraphs (in Hungarian) Communications of the Computer and Automation Institute of the Hungarian Academy of Sciences 71 (1977) 62 pp.
[12] A. Gyárfás, J. Lehel, G. N. Sárközy, R. H. Schelp, Monochromatic Hamiltonian Berge cycles in colored complete hypergraphs, Journal of Combinatorial Theory, Ser. B 98 (2008), 342-358.
[13] A. Gyárfás, M. Ruszinkó, G. N. Sárközy, E. Szemerédi, Tripartite Ramsey numbers for paths, Journal of Graph Theory 55 (2007), 164-170.
[14] A. Gyárfás, M. Ruszinkó, G. Sárközy, E. Szemerédi, Three-color Ramsey numbers for paths, Combinatorica 27 (2007), 35-69.
[15] A. Gyárfás, M. Ruszinkó, G. Sárközy, E. Szemerédi, Partitioning 3-colored complete graphs into three monochromatic cycles, Electronic Journal of Combinatorics 18 (2011), Nr. 53.
[16] A. Gyárfás, G. N. Sárközy, Gallai colorings of non-complete graphs, Discrete Mathematics 310 (2010), 977-980.
[17] A. Gyárfás, G. N. Sárközy, Star versus two stripes Ramsey numbers and a conjecture of Schelp, Combin. Probab. Comput. 21 (2012), 179-186.
[18] J. Komlós and M. Simonovits, Szemerédi's Regularity Lemma and its applications in Graph Theory, in Combinatorics, Paul Erdős is Eighty (D. Miklós, V.T. Sós and T. Szőnyi, Eds.), pp. 295-352, Bolyai Society Mathematical Studies, Vol. 2, Budapest, 1996.
[19] T. Kővári, V. T. Sós, P. Turán, On a problem of K. Zarankiewicz, Colloq. Math. 3 (1954) 50-57.
[20] L. Lovász, Combinatorial problems and exercises, 2nd Edition, American Mathematical Society, Providence, Rhode Island, 2007.
[21] T. Łuczak, $R\left(C_{n}, C_{n}, C_{n}\right) \leq(4+o(1)) n$, Journal of Combinatorial Theory, Ser. B 75 (1999), 174-187.
[22] T. Łuczak, V. Rödl, E. Szemerédi, Partitioning two-colored complete graphs into two monochromatic cycles, Probability, Combinatorics and Computing 7 (1998), 423-436.
[23] L. Pósa, On the circuits of finite graphs, MTA Mat. Kut. Int. Közl. 8 (1963), 355-361.
[24] A. Pokrovskiy, Partitioning 3-coloured complete graphs into three monochromatic paths, Electronic Notes in Discrete Mathematics 38 (2011) 717-722.
[25] A. Pokrovskiy, Partitioning edge-coloured complete graphs into monochromatic cycles and paths, arXiv:1205.5492v1
[26] G. N. Sárközy, On 2-factors with k components, Discrete Mathematics 308 (2008), 1962-1972.
[27] G. N. Sárközy, Monochromatic cycle partitions of edge-colored graphs, Journal of graph theory 66 (2011), 57-64.
[28] R. H. Schelp, A minimum degree condition on a Ramsey graph which arrows a path, submitted to Discrete Mathematics.
[29] E. Szemerédi, Regular partitions of graphs, Colloques Internationaux C.N.R.S. № 260 - Problèmes Combinatoires et Théorie des Graphes, Orsay (1976), 399401.

[^0]: *Research supported in part by NSF CAREER Grant DMS-0745185, UIUC Campus Research Board Grant 11067, and OTKA Grant K 76099.
 ${ }^{\dagger}$ Research is supported by OTKA Grants PD 75837 and K 76099, and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. Present address: School of Mathematical Sciences, Monash University, 3800 Victoria.
 ${ }^{\ddagger}$ Research supported in part by OTKA Grant K104373.
 ${ }^{\S}$ Research supported in part by NSF Grant DMS-0968699 and by OTKA Grant K104373.
 ${ }^{1}$ Part of the research reported in this paper was done at the 3rd Emléktábla Workshop (2011) in Balatonalmádi, Hungary.

[^1]: ${ }^{2}$ Some progress towards this conjecture have been done in [17] and [3].
 ${ }^{3}$ When the edges are colored, a connected red matching is a matching in a red component.

[^2]: ${ }^{4}$ See also Exercise 3 on page 63 in [20].

[^3]: ${ }^{5}$ Exercise 21 on page 75 in [20].
 ${ }^{6}$ Exercise 21 on page 75 in [20].

[^4]: ${ }^{7}$ For background, this variant and other variants of the Regularity Lemma see [18].
 ${ }^{8}$ That is, ε-irregular in G_{1} or in G_{2}. Also, these edges are marked exceptional in G^{R}.
 ${ }^{9}$ Theorem 2.1 in [18].

[^5]: ${ }^{10} \mathrm{As}$ in $[12,13,14,15]$.
 ${ }^{11}$ See a similar computation in [26].

[^6]: ${ }^{12}$ See also Exercise 28 on page 76 in [20].
 ${ }^{13}$ See also Exercise 37 on page 77 in [20].

