research

Partitioning 2-edge-colored graphs by monochromatic paths and cycles

Abstract

We present results on partitioning the vertices of 22-edge-colored graphs into monochromatic paths and cycles. We prove asymptotically the two-color case of a conjecture of S\'ark\"ozy: the vertex set of every 22-edge-colored graph can be partitioned into at most 2α(G)2\alpha(G) monochromatic cycles, where α(G)\alpha(G) denotes the independence number of GG. Another direction, emerged recently from a conjecture of Schelp, is to consider colorings of graphs with given minimum degree. We prove that apart from o(V(G))o(|V(G)|) vertices, the vertex set of any 22-edge-colored graph GG with minimum degree at least (1+\eps){3|V(G)|\over 4} can be covered by the vertices of two vertex disjoint monochromatic cycles of distinct colors. Finally, under the assumption that G\overline{G} does not contain a fixed bipartite graph HH, we show that in every 22-edge-coloring of GG, V(G)c(H)|V(G)|-c(H) vertices can be covered by two vertex disjoint paths of different colors, where c(H)c(H) is a constant depending only on HH. In particular, we prove that c(C4)=1c(C_4)=1, which is best possible

    Similar works