5,627 research outputs found

    SEM-Guided Finite Element Simulation of Thermal Stresses in Multilayered Suspension Plasma-Sprayed TBCs

    Get PDF
    This study presents novel insights into thermal stress development and crack propagation mechanisms in single- and multilayered suspension plasma-sprayed (SPS) coatings of gadolinium zirconate (GZ) and yttria-stabilized zirconia (YSZ), thermally treated at 1150 °C. By combining image processing with finite element simulation, we pinpointed sites of high-stress concentration in the coatings, leading to specific cracking patterns. Our findings reveal a dynamic shift in the location of stress concentration from intercolumnar gaps to pores near the top coat/thermally grown oxide (TGO) interface with TGO thickening at elevated temperatures, promoting horizontal crack development across the ceramic layers. Significantly, the interface between the ceramic layer and TGO was found to be a critical area, experiencing the highest levels of both normal and shear stresses. These stresses influence failure modes: in double-layer SPS structures, relatively higher shear stresses can result in mode II failure, while in single-layer systems, the predominant normal stresses tend to cause mode I failure. Understanding stress behavior and failure mechanisms is essential for enhancing the durability of thermal barrier coatings (TBCs) in high-temperature applications. Therefore, by controlling the interfaces’ roughness along with improving interfacial toughness, the initiation and propagation of cracks can be delayed along these interfaces. Moreover, efforts to optimize the level of microstructural discontinuities, such as intercolumnar gaps and pores, within the creaming layer and close to the TGO interface should be undertaken to reduce crack formation in the TBC system

    Application of disposable chiral plasmonics for biosensing and Raman spectroscopy

    Get PDF
    This thesis explores the capabilities of disposable chiral plasmonic metafilm assays, termed Disposable Plasmonic Assays, as a promising platform for biosensing and surface-enhanced Raman spectroscopy. The sensing and Raman properties of these metafilms arise from the excitation of surface plasmons when exposed to incident light. These plasmonic properties strongly depend on the geometric characteristics of the constituent nanostructures found in the metafilms. Specifically, the primary nanostructure employed throughout this research is the chiral 'shuriken' star, which generates chiral electromagnetic fields exhibiting greater chiral asymmetry than circularly polarized light. Monitoring changes in the resonance positions of the characteristic optical rotatory dispersion spectra produced by the Disposable Plasmonic Assays allows for the observation of surface binding events. By measuring resonance shift data and through the utilisation of various gold film functionalisation techniques, these assays are demonstrated as versatile, label-free biosensing platforms capable of specifically detecting a wide range of target proteins and virus particles from complex solutions. Furthermore, the multiplexing performance of these assays is showcased, enabling the detection of multiple different antigens and virions in a single experiment. These results highlight the potential of plasmonic metafilms as rapid and disposable point-of-care immunoassays for diagnostic applications. In addition to biosensing, the chiral geometry of Disposable Plasmonic Assays is exploited for the chiral discrimination of metal nanoparticles and small molecules using Surface Enhanced Raman Spectroscopy (SERS). By linking helicoid shaped gold nanoparticles to the metafilm surface via a dithiol linker, the chiral properties of both nanoparticles and metafilms combine, resulting in the creation of differential electromagnetic 'hotspot' regions based on their symmetry combinations. The electromagnetic intensity in these regions corresponds to the SERS signal obtained from the achiral dithiol linker molecule, facilitating a deeper understanding of the chirally dependent SERS phenomenon. These findings serve to validate and explain the differential SERS data obtained enantiomers of biomolecules and drug molecules from silver modified Disposable Plasmonic Assays

    In situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory

    Get PDF
    The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole. It uses 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. An unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. We examine birefringent light propagation through the polycrystalline ice microstructure as a possible explanation for this effect. The predictions of a first-principles model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties include not only the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube light-emitting diode (LED) calibration data, the theory and parameterization of the birefringence effect, the fitting procedures of these parameterizations to experimental data, and the inferred crystal properties.</p

    A computational study on the effects of fast-rising voltage on ionization fronts initiated in sub-mm air and CO2 gaps

    Get PDF
    Gas discharge and breakdown phenomena have become increasingly important for the development of an ever-growing number of applications. The need for compact and miniaturized systems within power, pulsed power, semiconductor, and power electronic industries has led to the imposing of significant operating electric field stresses on components, even within applications with low operating voltages. Consequently, the interest in gas discharge processes in sub-millimeter and microscale gaps has grown, as the understanding of their initiation and propagation is critical to the further optimization of these technologies. In this work, a computational study of primary ionization fronts has been conducted, which systematically investigated the role of voltage rate-of-rise in point-plane and point-point electrode geometries with an inter-electrode gap maintained at 250 μm and a needle radius of 80 μm. Using the hydrodynamic approach with the local mean energy approximation, along with simplified plasma chemistry, simulations have been performed under positive and negative ramp voltages, rising at 50, 25, 16.67, 12.5, and 10 kV/ns in synthetic air and in pure CO2. Results on the developed electric field, electron densities, and propagation velocities are presented and discussed. Effects on the cathode sheath thickness scaling with voltage rate-of-rise have been additionally analyzed, the mechanisms behind these effects and their potential impacts are discussed. The work conducted in this study contributes towards an increased understanding of the gas discharge process, under fast-transients and nonuniform electric fields, with relevance to microelectromechanical, power, and pulsed power system design

    Yielding to percolation : a universal scale

    Get PDF
    A theoretical and computational study analysing the initiation of yield-stress fluid percolation in porous media is presented. Yield-stress fluid flows through porous media are complicated due to the nonlinear rheological behaviour of this type of fluid, rendering the conventional Darcy type approach invalid. A critical pressure gradient must be exceeded to commence the flow of a yield-stress fluid in a porous medium. As the first step in generalising the Darcy law for yield-stress fluids, a universal scale based on the variational formulation of the energy equation is derived for the critical pressure gradient which reduces to the purely geometrical feature of the porous media. The presented scaling is then validated by both exhaustive numerical simulations (using an adaptive finite element approach based on the augmented Lagrangian method), and also the previously published data. The considered porous media are constructed by randomised obstacles with various topologies; namely square, circular and alternatively polygonal obstacles which are mimicked based on Voronoi tessellation of circular cases. Moreover, computations for the bidispersed obstacle cases are performed which further demonstrate the validity of the proposed universal scaling

    ‘When is a hotspot a good nanospot’:review of analytical and hotspot-dominated surface enhanced Raman spectroscopy nanoplatforms

    Get PDF
    Substrate development in surface-enhanced Raman spectroscopy (SERS) continues to attract research interest. In order to determine performance metrics, researchers in foundational SERS studies use a variety of experimental means to characterize the nature of substrates. However, often this process would appear to be performed indiscriminately without consideration for the physical scale of the enhancement phenomena. Herein, we differentiate between SERS substrates whose primary enhancing structures are on the hundreds of nanometer scale (analytical SERS nanosubstrates) and those whose main mechanism derives from nanometric-sized gaps (hot-spot dominated SERS substrates), assessing the utility of various characterization methods for each substrate class. In this context, characterization approaches in white-light spectroscopy, electron beam methods, and scanning probe spectroscopies are reviewed. Tip-enhanced Raman spectroscopy, wavelength-scanned SERS studies, and the impact of surface hydrophobicity are also discussed. Conclusions are thus drawn on the applicability of each characterization technique regarding amenability for SERS experiments that have features at different length scales. For instance, while white light spectroscopy can provide an indication of the plasmon resonances associated with 10 s–100 s nm-scale structures, it may not reveal information about finer surface texturing on the true nm-scale, critical for SERS’ sensitivity, and in need of investigation via scanning probe techniques

    The anisotropic grain size effect on the mechanical response of polycrystals: The role of columnar grain morphology in additively manufactured metals

    Full text link
    Additively manufactured (AM) metals exhibit highly complex microstructures, particularly with respect to grain morphology which typically features heterogeneous grain size distribution, anomalous and anisotropic grain shapes, and the so-called columnar grains. In general, the conventional morphological descriptors are not suitable to represent complex and anisotropic grain morphology of AM microstructures. The principal aspect of microstructural grain morphology is the state of grain boundary spacing or grain size whose effect on the mechanical response is known to be crucial. In this paper, we formally introduce the notions of axial grain size and grain size anisotropy as robust morphological descriptors which can concisely represent highly complex grain morphologies. We instantiated a discrete sample of polycrystalline aggregate as a representative volume element (RVE) which has random crystallographic orientation and misorientation distributions. However, the instantiated RVE incorporates the typical morphological features of AM microstructures including distinctive grain size heterogeneity and anisotropic grain size owing to its pronounced columnar grain morphology. We ensured that any anisotropy arising in the macroscopic mechanical response of the instantiated sample is mainly associated with its underlying anisotropic grain size. The RVE was then used for meso-scale full-field crystal plasticity simulations corresponding to uniaxial tensile deformation along different axes via a spectral solver and a physics-based crystal plasticity constitutive model. Through the numerical analyses, we were able to isolate the contribution of anisotropic grain size to the anisotropy in the mechanical response of polycrystalline aggregates, particularly those with the characteristic complex grain morphology of AM metals. Such a contribution can be described by an inverse square relation

    Growth, Transport and Functionalization of Noble Metal Nanoparticles Inside and Outside a Gas Aggregation Cluster Source: Uncovered by in-situ Diagnostics

    Get PDF
    The Haberland type gas aggregation cluster source (HGAS), which was invented in 1992 by Haberland et al., provides the opportunity to synthesize different types of NPs and tailor their properties by adjusting the operating parameters of the HGAS. Although nowadays the HGAS is used by many groups for the synthesis of NPs, the processes inside the HGAS are not fully understood until today. Therefore, the aim of this dissertation is to increase the understanding of the ongoing processes inside the HGAS, because this opens the way for new fields of applications. In order to gain a better understanding of the HGAS, in‑situ diagnostics with a good spatial and temporal resolution are essential. Five different in-situ methods were used, which together contribute to a better understanding of growth, transport and functionalization of NPs inside a HGAS. By combining different in-situ methods it was possible to investigate dynamic processes in a HGAS and thereby gain new insights into growth, transport and trapping of NPs. Furthermore, the reliability of the multicomponent target approach could be enhanced, which makes it an excellent tool for the fabrication of alloy NPs with tailored composition. Finally, a new approach for the production of core-shell NPs in the gas phase was developed, which is expected to open up new applications for core-shell NPs because of its outstanding flexibility in terms of material combinations and reliability

    Proceedings of SIRM 2023 - The 15th European Conference on Rotordynamics

    Get PDF
    It was our great honor and pleasure to host the SIRM Conference after 2003 and 2011 for the third time in Darmstadt. Rotordynamics covers a huge variety of different applications and challenges which are all in the scope of this conference. The conference was opened with a keynote lecture given by Rainer Nordmann, one of the three founders of SIRM “Schwingungen in rotierenden Maschinen”. In total 53 papers passed our strict review process and were presented. This impressively shows that rotordynamics is relevant as ever. These contributions cover a very wide spectrum of session topics: fluid bearings and seals; air foil bearings; magnetic bearings; rotor blade interaction; rotor fluid interactions; unbalance and balancing; vibrations in turbomachines; vibration control; instability; electrical machines; monitoring, identification and diagnosis; advanced numerical tools and nonlinearities as well as general rotordynamics. The international character of the conference has been significantly enhanced by the Scientific Board since the 14th SIRM resulting on one hand in an expanded Scientific Committee which meanwhile consists of 31 members from 13 different European countries and on the other hand in the new name “European Conference on Rotordynamics”. This new international profile has also been emphasized by participants of the 15th SIRM coming from 17 different countries out of three continents. We experienced a vital discussion and dialogue between industry and academia at the conference where roughly one third of the papers were presented by industry and two thirds by academia being an excellent basis to follow a bidirectional transfer what we call xchange at Technical University of Darmstadt. At this point we also want to give our special thanks to the eleven industry sponsors for their great support of the conference. On behalf of the Darmstadt Local Committee I welcome you to read the papers of the 15th SIRM giving you further insight into the topics and presentations

    Mechanical characterization, constitutive modeling and applications of ultra-soft magnetorheological elastomers

    Get PDF
    Mención Internacional en el título de doctorSmart materials are bringing sweeping changes in the way humans interact with engineering devices. A myriad of state-of-the-art applications are based on novel ways to actuate on structures that respond under different types of stimuli. Among them, materials that respond to magnetic fields allow to remotely modify their mechanical properties and macroscopic shape. Ultra-soft magnetorheological elastomers (MREs) are composed of a highly stretchable soft elastomeric matrix in the order of 1 kPa and magnetic particles embedded in it. This combination allows large deformations with small external actuations. The type of the magnetic particles plays a crucial role as it defines the reversibility or remanence of the material magnetization. According to the fillers used, MREs are referred to as soft-magnetic magnetorheological elastomers (sMREs) and hard-magnetic magnetorheological elastomers (hMREs). sMREs exhibit strong changes in their mechanical properties when an external magnetic field is applied, whereas hMREs allow sustained magnetic effects along time and complex shape-morphing capabilities. In this regard, end-of-pipe applications of MREs in the literature are based on two major characteristics: the modification of their mechanical properties and macrostructural shape changes. For instance, smart actuators, sensors and soft robots for bioengineering applications are remotely actuated to perform functional deformations and autonomous locomotion. In addition, hMREs have been used for industrial applications, such as damping systems and electrical machines. From the analysis of the current state of the art, we identified some impediments to advance in certain research fields that may be overcome with new solutions based on ultrasoft MREs. On the mechanobiology area, we found no available experimental methodologies to transmit complex and dynamic heterogeneous strain patterns to biological systems in a reversible manner. To remedy this shortcoming, this doctoral research proposes a new mechanobiology experimental setup based on responsive ultra-soft MRE biological substrates. Such an endeavor requires deeper insights into the magneto-viscoelastic and microstructural mechanisms of ultra-soft MREs. In addition, there is still a lack of guidance for the selection of the magnetic fillers to be used for MREs and the final properties provided to the structure. Eventually, the great advances on both sMREs and hMREs to date pose a timely question on whether the combination of both types of particles in a hybrid MRE may optimize the multifunctional response of these active structures. To overcome these roadblocks, this thesis provides an extensive and comprehensive experimental characterization of ultra-soft sMREs, hMREs and hybrid MREs. The experimental methodology uncovers magneto-mechanical rate dependences under numerous loading and manufacturing conditions. Then, a set of modeling frameworks allows to delve into such mechanisms and develop three ground-breaking applications. Therefore, the thesis has lead to three main contributions. First and motivated on mechanobiology research, a computational framework guides a sMRE substrate to transmit complex strain patterns in vitro to biological systems. Second, we demonstrate the ability of remanent magnetic fields in hMREs to arrest cracks propagations and improve fracture toughness. Finally, the combination of soft- and hard-magnetic particles is proved to enhance the magnetorheological and magnetostrictive effects, providing promising results for soft robotics.Los materiales inteligentes están generando cambios radicales en la forma que los humanos interactúan con dispositivos ingenieriles. Distintas aplicaciones punteras se basan en formas novedosas de actuar sobre materiales que responden a diferentes estímulos. Entre ellos, las estructuras que responden a campos magnéticos permiten la modificación de manera remota tanto de sus propiedades mecánicas como de su forma. Los elastómeros magnetorreológicos (MREs) ultra blandos están compuestos por una matriz elastomérica con gran ductilidad y una rigidez en torno a 1 kPa, reforzada con partículas magnéticas. Esta combinación permite inducir grandes deformaciones en el material mediante la aplicación de campos magnéticos pequeños. La naturaleza de las partículas magnéticas define la reversibilidad o remanencia de la magnetización del material compuesto. De esta manera, según el tipo de partículas que contengan, los MREs pueden presentar magnetización débil (sMRE) o magnetización fuerte (hMRE). Los sMREs experimentan grandes cambios en sus propiedades mecánicas al aplicar un campo magnético externo, mientras que los hMREs permiten efectos magneto-mecánicos sostenidos a lo largo del tiempo, así como programar cambios de forma complejos. En este sentido, las aplicaciones de los MREs se basan en dos características principales: la modificación de sus propiedades mecánicas y los cambios de forma macroestructurales. Por ejemplo, los campos magnéticos pueden emplearse para inducir deformaciones funcionales en actuadores y sensores inteligentes, o en robótica blanda para bioingeniería. Los hMREs también se han aplicado en el ámbito industrial en sistemas de amortiguación y máquinas eléctricas. A partir del análisis del estado del arte, se identifican algunas limitaciones que impiden el avance en ciertos campos de investigación y que podrían resolverse con nuevas soluciones basadas en MREs ultra blandos. En el área de la mecanobiología, no existen metodologías experimentales para transmitir patrones de deformación complejos y dinámicos a sistemas biológicos de manera reversible. En esta investigación doctoral se propone una configuración experimental novedosa basada en sustratos biológicos fabricados con MREs ultra blandos. Dicha solución requiere la identificación de los mecanismos magneto-viscoelásticos y microestructurales de estos materiales, según el tipo de partículas magnéticas, y las consiguientes propiedades macroscópicas del material. Además, investigaciones recientes en sMREs y hMREs plantean la pregunta sobre si la combinación de distintos tipos de partículas magnéticas en un MRE híbrido puede optimizar su respuesta multifuncional. Para superar estos obstáculos, la presente tesis proporciona una caracterización experimental completa de sMREs, hMREs y MREs híbridos ultra blandos. Estos resultados muestran las dependencias del comportamiento multifuncional del material con la velocidad de aplicación de cargas magneto-mecánicas. El desarrollo de un conjunto de modelos teórico-computacionales permite profundizar en dichos mecanismos y desarrollar aplicaciones innovadoras. De este modo, la tesis doctoral ha dado lugar a tres bloques de aportaciones principales. En primer lugar, este trabajo proporciona un marco computacional para guiar el diseño de sustratos basados en sMREs para transmitir patrones de deformación complejos in vitro a sistemas biológicos. En segundo lugar, se demuestra la capacidad de los campos magnéticos remanentes en los hMRE para detener la propagación de grietas y mejorar la tenacidad a la fractura. Finalmente, se establece que la combinación de partículas magnéticas de magnetización débil y fuerte mejora el efecto magnetorreológico y magnetoestrictivo, abriendo nuevas posibilidades para el diseño de robots blandos.I want to acknowledge the support from the Ministerio de Ciencia, Innovación y Universidades, Spain (FPU19/03874), and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 947723, project: 4D-BIOMAP).Programa de Doctorado en Ingeniería Mecánica y de Organización Industrial por la Universidad Carlos III de MadridPresidente: Ramón Eulalio Zaera Polo.- Secretario: Abdón Pena Francesch.- Vocal: Laura de Lorenzi
    corecore