
Two triangulations methods
based on edge refinement

Marc Vigo, Núria Pla, Dolors Ayala

Research Report LSI-03-10-R

Computer Graphics Section — Dept. LSI.
Universitat Politècnica de Catalunya



Research report LSI-03-10-R

Two triangulations methods based
on edge refinement

Marc Vigo, Núria Pla, Dolors Ayala

Escola Tècnica Superior d’Enginyeria de Barcelona
Universitat Politècnica de Catalunya

February 2003

Abstract

In this paper two curvature adaptive methods of surface triangulation are pre-
sented. Both methods are based on edge refinement to obtain a triangulation com-
patible with the curvature requirements. The first method applies an incremental
and constrained Delaunay triangulation and uses curvature bounds to determine if
an edge of the triangulation is admissible. The second method uses this function
also in the edge refinement process, i.e. in the computation of the location of a
refining point, and in the re-triangulation needed after the insertion of this refining
point. Results are presented, comparing both approaches.

Keywords: Delaunay triangulation, regular triangulation, meshing, trimmed
surfaces, curvature adaptive

1 Introduction

The problem we are focusing in this paper is the approximation of a solid boundary by
a triangulation. The solid boundary is composed by trimmed surfaces and each surface
is composed by several parametric patches.

The approximation of surfaces by a mesh of triangles is a process which is used
in many fields such as surface rendering, rapid prototyping and finite element mesh
among others. Many approaches have been presented to deal with this problem. There
are approaches oriented to visualization as [12, 6, 10, 11], and to FEM generation
[16, 15, 2, 4, 8] and there are also general purpose approaches [14, 3, 21, 7].

While the earlier methods were global [12, 14], most recent methods are adaptive
to several measures – mostly related with the curvature. The method [2] is adaptive to
a user defined density that can be the curvature. In [3] the authors present a method
adaptive to an alternative curvature measure, the root mean square curvature, and for
each triangle they extract the corresponding triangular sub-patch and use its convex
hull to evaluate the upper bound. The approach presented in [16] uses the bubble mesh

1



method, similar to a particle system, and obtains a triangulation which is adaptive to
the analyzed magnitude such as heat or torsion.

In [15] the bubble mesh method is extended to anisotropic triangulations. The
problem of anisotropic or directional triangulations is also addressed in [7], [20] and
[21].

Several methods use advanced front strategies to obtain an adaptive triangulation
[4, 8, 7], whereas others are based on Delaunay triangulation (most of already cited
methods).

In this paper two curvature adaptive methods of surface triangulation are presented.
We are given a set of trimmed parametric surfaces describing a closed solid. Then, we
obtain function R(p) defined at each parametric point, that indicates an upper bound
for an edge length in order to follow a determined curvature criterion. Both methods
we propose are based on edge refinement to obtain a triangulation compatible with the
curvature requirements. The first method, presented in the next section, applies an in-
cremental and constrained Delaunay triangulation and uses function R(p) to determine
if an edge of the triangulation is admissible. The second method, presented in section
3, uses this function also in the edge refinement process, i.e. in the computation of the
location of a refining point, and in the re-triangulation needed after the insertion of this
refining point.

2 The first triangulation algorithm

The algorithms we propose approximate a set of surface patches that bound a closed
object with a triangular mesh. the triangulation must be conformal (i.e. no gaps be-
tween neighbor triangles must be created) and admissible (i.e. it must not be farther
than at a tolerance value ε supplied by the user). Formally, we define an admissible
triangle as a triangle such that for each point on t the maximum distance form the point
to the surface it approximates is smaller than ε.

The scheme of our triangulation algorithms is the following:

1. Retrieve and preprocess input data.
2. Analyze the surface curvature and compute the admissibility bounds.
3. Set vertices and discretize edges (trimming curves), by bisection.
4. Triangulate the interior of each face, by edge refinement.
5. Map triangles to image space.

The two algorithms proposed in this paper follow the same scheme. Essentially,
they differ in the method used for triangulating the edges and the interior of the faces:
while the kernel of the edge refinement algorithm of the first proposal is a constrained
Delaunay triangulation, the second approach uses a regular triangulation.

Next, we describe the main steps of the above algorithmic scheme; steps 2 and 4,
that require a more precise description, are treated in the following subsections.

The first step reads the data from a formated file and stores it using a computer
model of a closed object. The model we use is a surface boundary representation. Faces
of the object are trimmed parametric patches, and edges are curves on a patch that trim
the boundary of the face. Although this step seems relatively easy, we found some
problems while retrieving data stored in standard file CAD formats by commercial
systems. The preliminary treatment of the patches can include preprocesses, such as

2



conversion from degenerate patches into non-degenerate trimmed patches [19] or a
linear reparameterization of the surfaces [18].

The second step of the algorithm consists on subdividing the patches into minimal
subdivision regions in the parametric plane and bounds of the second derivatives are
computed for each minimal region. The bounds are summarized using a scalar function
R : IR2 → IR that limits the size of the admissible triangles and edges (see next
section for a formal definition of an admissible edge). Function R, which allows us
to easily test the admissibility of a given triangle from its vertex coordinates, is more
accurately described in Section 2.1. The usage of these bounds is the clue for the
resulting triangulation to be adaptive to the surface curvature.

The triangulation of the object is performed following the topological hierarchy:
first, points are placed on the vertices, next trimming edges are approximated, and fi-
nally the interior of the faces is triangulated. This technique, also followed by other
meshing algorithms such as [16] and [4], ensures that the output mesh will be confor-
mal without having to sew triangulations of neighboring patches. Instead, trimming
curves are approximated before the interior of patches, taking into account the bounds
computed on the two meeting faces (in the same way than [1]). This discretization of
the edges (trimming curves of the faces) is performed by bisection, i.e. halving non-
admissible edges by adding its middle point. Thus, the third step produces admissible
polygonal edges, and the interior of the faces is ready to be filled with triangles.

Triangulating the faces is the main course of the algorithm. Patches are triangulated
in parametric space following a Delaunay-based refining method. The method starts
from a constrained Delaunay triangulation of the contour and adds points one by one
in strategic places so that the resulting triangulation is composed of a reduced set of
admissible triangles. This step, the crux of our triangulation method, is accurately
described in the next section. In a certain way, this approach is similar to the one
proposed in [2] (it is also an incremental refining method), but in our case the algorithm
entirely works in parametric space, produces an admissible triangulation, and admits
sets of neighbor patches as well as open boundaries. We also managed to achieve a
theoretical bound on the number of vertices added by our method (see Section 2.3).

Last step of the algorithm produces the final mesh in 3D. Since the approximations
of edges and curves work in parametric space, all that remains is to project the triangles
into image space, in other words, to evaluate 3D coordinate vertices. Special care has
to be taken in the case of the vertices of the object and the polygonalized edges, which
have to be projected in the same way for the different patches converging at them.
In case that the output triangulation must be used for visualization purposes, normal
vectors at the mesh vertices can also be computed in order to apply Phong shading.

2.1 Curvature bounds

The main goal of this section is to obtain conditions for easily testing the admissibility
of triangles, and dependent on the curvature of each point of a patch (i.e., adaptive).
Following the results given in [5] and [14], two functions are defined:

Definition 1.

Ω(p) = 3
√

ε

M(p)
= 3

√
ε

2‖Muu(p)‖ + 4‖Muv(p)‖ + 2‖Mvv(p)‖
being Muu, Muv and Mvv are the second derivatives of surface being analyzed and p
is a point in parametric space.

3



Definition 2.
R(p) = min {fp(q), ∀q t.q. ‖pq‖ ≤ Ω(p)}

where
fp(q) = max{Ω(q), ‖pq‖}

As it is proved in [18], function R bounds the length of the largest edge of an
admissible triangle with point p as one of its vertices. An admissible edge is defined as
follows:

Definition 3. A segment AB is admissible if and only if

R(A) ≥ ‖AB‖ or R(B) ≥ ‖AB‖

This results in a simple condition for a triangle to be admissible, that can be tested
based only on the vertices of the triangle:

Proposition 1. A sufficient (but not necessary) condition for a triangle to be admissible
is that their three edges are admissible.

Definition 4. CR(p) is a circle centered at p and with radius R(p).

It is also proved in [18] that function R is Lipschitz continuous, with Lipschitz
constant equals to the unit:

Lemma 1.
∀ a, b ∈ IR2 |R(a) − R(b)| ≤ ‖ab‖

This fact is exploited to bound the number of internal vertices when triangulating each
face by edge refinement.

2.2 The refining edges method

We start from a solid whose edges have yet been discretized, approximating the trim-
ming curves with admissible (straight) segments. Thus, the aim of the refining edges
method is to produce a triangulation of the interior of the polygon, trying to minimize
the number of internal vertices. Since this polygon corresponds to the face, it may
contain holes – internal closed cycles of segments. Recall that the admissibility of an
edge can be tested simply comparing its length with the R value at its endpoints.
The refining edges algorithm is the following:

CDT := Constrained Delaunay triangulation of the polygon
L := EmptyListOfEdges()
Append all the non-admissible edges of CDT to L
While L is not empty do

Extract e, the first edge from L
If e must be refined then

x := Refining point of e
InsertPointCDT(x, CDT )
Actualize L according with the non-admissible edges of CDT

endIf
endWhile

4



Figure 1: The edge refinement algorithm in action. left and middle, two in-
termediate steps, showing the edge that is refined and the new point added.
Right, when the refinement converges, an admissible triangulation is obtained.

The method used for obtaining a constrained Delaunay Triangulation (CDT) of a
planar graph is the one presented in [17]. Since this CDT algorithm works incremen-
tally, it allows to efficiently actualize a CDT when single points and restricting edges
are added on it.

Since the incremental inclusion of a new point X in a CDT changes the triangula-
tion locally (only some new edges connecting x will appear), the step that actualizes
the list of edges L is efficient because it only has to rearrange things in a neighborhood
of x. Figure 1 shows an example of the edge refinement process being applied to a
face, with two intermediate steps and the final state.

Whether an edge needs to be refined or not, and the position of the refining point
x depends on the configuration of the triangles adjacent to that edge. From now on,
the non-admissible edge to be refined will be called ab, the adjacent triangles will be
T (a, b, c) and T (a, d, b), and the refining point will be x. Since function R classifies
ab as a non-admissible edge,

R(a) < ‖ab‖ and R(b) < ‖ab‖ (1)

We have two possible configurations of adjacent triangles to a candidate edge to be
refined (see Figure 2): in the first case, the edge ab cuts its dual in the Voronoi diagram;
in the second case, this circumstance does not occur. The new point inserted in the first
case will be the midpoint of edge ab, and in the second case, x will be the circumcenter
of one of the two adjacent triangles, but only if this point is interior to the region that
is going to be triangulated; otherwise we will prove that no additional point is needed.

Case 1: Edge ab cuts its dual. In this case x is the midpoint of ab, x = a+b
2 , which

coincides with the intersection between ab and its dual edge in the Voronoi diagram.
When x is inserted into the CDT, the new triangulation will contain edges ax, bx,

cx and dx, while edge ab will be removed since x is interior to the circumcircles of
triangles T (a, b, c) and T (a, d, b). Furthermore, since x is on the Voronoi edge that
splits tiles associated to a and b, there is no point closer to x than a and b themselves.
In consequence, a circle with radius r = ‖ab‖

2 centered on x does not contain any
point of the original CDT, thus new edges that will appear when inserting x into the
triangulation must have at least length r. From equation 1 and lemma 1, one gets

R(a) < ‖ab‖ =⇒ R(x) < ‖ab‖ + ‖ax‖ = 3r =⇒ r >
1
3
R(x)

5



a

c

b

d b
d

a

c

Case 1 Case 2

t

x
x

Figure 2: The two cases of the refining edge method, depending on the config-
uration of adjacent triangles. Voronoi diagrams are drawn using dashed lines.

Case 2: Edge ab does not cut its dual. The endpoints of the Voronoi edge dual to
ab are the circumcircles of triangles T (a, b, c) and T (a, d, b). Since ab does not cut
its dual, the endpoints must lie outside one of these triangles; let’s suppose, without
loss of generality, that this triangle is t = T (a, b, c) (see Figure 2). In this case, x, the
candidate point to be inserted, is the circumcircle of t. Remark that in this case the
midpoint of ab would not be a good candidate because it can be arbitrarily close to c,
thus a lower bound for the length of edge cx could not be found.

Point x can be outside the original polygon (the region that it is going to be tri-
angulated), so we have two sub-cases, depending on whether cx cuts the boundary
polygon.

Case 2.A: Segment cx does not cut the boundary polygon. Since x is the circum-
center of t, from equation (1) we have

‖ax‖ = ‖bx‖ = ‖cx‖ ≥ 1
2
‖ab‖ >

1
2
R(a)

When x is inserted, edge ab will be removed and in its place will appear the new edges
ax, bx and cx (see Figure 3).

a

c

b

x
r

Figure 3: Case 2.A: The new point is the circumcenter of T (a, b, c).

Furthermore, since t is a Delaunay triangle, the empty circumcircle criterion en-
sures that circle through a, b and c, of radius r = ‖cx‖, does not contain any point of

6



the CDT. Applying lemma 1 to the previous expression, the length of new edges can
be bounded:

R(a) < 2‖cx‖ =⇒ R(x) < 2‖cx‖ + ‖ax‖ = 3r =⇒ r >
1
3
R(x)

Case 2.B: Segment cx cuts the boundary polygon. In this case, the configuration
is the one shown in Figure 4, where a boundary edge jk splits c from x.

k’

k
j

j’
x

j’ k’

a
b

DCc

x

c

a

b

d

Figure 4: Case 2.B: Boundary edge jk splits c from x. Left, configuration; right
‖ab‖ ≤ ‖j′k′‖ and T (a, b, c) ⊂ CD.

Since all boundary edges are admissible, R(j) ≥ ‖jk‖ or R(k) ≥ ‖jk‖. Let us
suppose, without loss of generality, that R(j) ≥ ‖jk‖.

Segment j ′k′ is defined as the part of jk inside the circumcircle of T (a, b, c), and
CD is the diametral circle of j ′k′ – i.e., the circle with diameter j ′k′ (see Figure 4).
Remark that CD ⊂ CR(j), because k is interior to CR(j). The following two facts
will be proved:

‖ab‖ ≤ ‖j′k′‖ =⇒ ‖ab‖ ≤ ‖jk‖ (2)

T (a, b, c) ⊂ CD =⇒ T (a, b, c) ⊂ CR(j) (3)

Since j′k′ is a secant of circumcircle of T (a, b, c) that splits point x (the center of
the circle) from c, angle ∠j ′xk′ has to be lower than π (see Figure 4,right). As a
consequence, the diametral circle CD contains the portion of the circumcircle where
c is included; specifically, it contains triangle T (a, b, c). Furthermore, since ab is a
secant of the arc cut by j ′k′, segment ab has to be shorter than j ′k′.

By equations 2 and 3 and due to the admissibility of segment jk,

R(j) ≥ ‖jk‖ =⇒ ∀p ∈ CR(j), Ω(p) ≥ ‖jk‖ =⇒
=⇒ ∀q ∈ T (a, b, c), Ω(q) ≥ ‖jk‖ ≥ ‖ab‖

i.e., triangle T (a, b, c) is admissible, although we cannot ensure this just evaluating
function R at its vertices. Therefore, the refining edges algorithm can remove the edge
from the list without inserting a new point in the CDT.

2.3 A bound for the number of points

Thanks to the way the edge refinement works and using the fact that function R is
Lipschitz continuous, we can bound the number of new vertices inserted on a face by
the refining edges algorithm.

7



Figure 5: Surface and triangulation obtained applying the first method.

Theorem 1. The number of points in the output triangulation is at most

182

π

∫
B

1
R2(x)

dx

where B is the area of the bounding box of the face.

For the interested reader, the proof of this theorem can be found in [18]. The
proof follows a similar technique to that of [13] (we have a CDT where new edges
are created in such a way that its length is lower bounded; this bound depends on a
Lipschitz continuous function R, thus new points are at a minimum distance from the
old ones, that is, we can bound the number of new vertices by integrating over the
entire region being triangulated).

It should be noticed that this is only a theoretical bound that demonstrates that the
refining edges algorithm converges in a finite number of iterations. Since the algorithm
is presented giving freedom to which non-admissible edge is chosen to be refined,
in practice efficiency can be improved by imposing an order to the way edges are
refined. We have tested two artificial orders: longest non-admissible edge first, and
“least admissible” edge first – i.e first refine the edge ab whose length most differs
from max{R(a), R(b)}. Both orderings work well, resulting in a similar number of
triangles. In any case, the number of points is much smaller than the one predicted by
the theoretical limit.

3 The regular triangulation algorithm

In this section a new triangulation algorithm is presented. This algorithm follows the
same scheme than the one presented in Section 2. The main novelty is the more inten-
sive use of the R function and, in consequence, the more intensive use of the geometry

8



of the surface being triangulated. The R function was computed to determine the ad-
missibility of any edge of a triangulation of the surface. This function gives information
about the flatness of the surface in a neighborhood of any parametric point, but it was
only used to determine the admissibility of the edges of the triangulation. The infor-
mation supplied by this function could also be useful in the edge refinement step and
in the triangulation algorithm.

Regular truiangulations give a basic tool to incorporate the geometric information
in this process. Now, given a set of parametric points, the regular triangulation of
these performed and the resulting triangles are mapped to the image space. Moreover,
edge refinement is modified, using a weight attached to any parametric point as regular
triangulations do. The new algorithm can be summarized as follows:

1. Retrieve and preprocess input data.
2. Analyze the surface curvature and compute the admissibility bounds.
3. Set vertices and discretize edges (trimming curves), using the R function

to place vertices on the edges.
4. Attach a weight to any parametric point, and triangulate the interior of

each face using the regular triangulation. Regular edge refinement adds
new vertices in case of non-admissible edges.

5. Map triangles to image space.

In the rest of the section, only steps 3 and 4 of the algorithm, which are different
from the previous one, are detailed. Before, a brew summary of regular triangulations
is presented.

3.1 Regular triangulations

Regular triangulations are a generalization of Delaunay triangulation. In this case, a
real valued weight ωp is assigned to each point p of S ⊂ Rd. This weight can be
interpreted as a sphere Cω(p) with center p and radius

√
ωp. Usually, as we do, positive

weights are assumed, although there is no theoretical inconvenient in having negative
weights and thus spheres with imaginary radius.

Regular triangulations can be defined as the dual graph of the Voronoi decompo-
sition, in a graph-theoretical sense, obtained using the power distance, ‖ · ‖ω [9]. The
power distance from a point q ∈ IRd to a weighted point p is defined as:

‖pq‖ω = ‖pq‖2 − ωp

This Voronoi distance can be interpreted geometrically as the square of the length
of a segment from q to the point r in Cω(p). The Voronoi diagram of a set of weighted
points defined by the power distance is called the power Voronoi diagram. Redundant
points are the ones whose Voronoi region is empty, that is, points p ∈ S such that
any point q of Rd is closer to another point p′ ∈ S, different form p, using the power
distance. Redundant points are not vertices of the resulting triangulation.

3.2 Weights and contour discretization

The new algorithm uses weights attached to the vertices that depend on the R func-
tion. The weight associated to a point p is chosen as R(p)/k, where k is a positive
integer constant. This definition assures that geometric information is incorporate in

9



Figure 6: Triangulation using the second algorithm.

the attached weight. Moreover, a large enough k value allows to prove that no redun-
dant point will appear during the regular edge refinement. Experimental results show
that k = 4 is a sufficient value to avoid redundant points. notice that this value is the
one required to prove Theorem 1, which is based on the condition that circles C R/4(p)
do not contain other triangulation vertices apart from p. In a regular triangulation, a
necessary condition for a vertex to be redundant is that its weight circle Cω must be
contained in the interior of the weight circles of the other vertices.

The contour edges are discetized using the weights attached to the vertices. The
main difference with previous algorithm is that now contour edges are not bisected;
instead, new points are located at a distance proportional to the weights of the edge
endpoints.

3.3 Regular Edge Refinement

In this section, a new edge refinement method is proposed which uses the geometric
information given by the R function. The present edge refinement method differs on
the previous one on the computation of the location of a new vertex refining a fixed
edge, which, in the current case, is a non admissible edge. In fact, the regular edge
refinement locates new vertices using a weighted Voronoi decomposition.

When a non admissible edge is selected, two possible configurations of adjacent
triangles are distinguished: in the first, the non admissible edge cuts its dual of the
weighted Voronoi diagram, whereas in the second, the edge is not cut by its dual.
These cases are analogous to the previous edge refinement method. However, now
the Voronoi diagram is computed with the weights depending on the R function as
explained above.

In case 1, when the non admissible edge ab cuts its dual in the weighted Voronoi
diagram, the point to insert in the triangulation is the intersection point x between the
edge ab and its dual. Now this point is not in the middle of the edge; in fact, it is closer
to the endpoint of the segment with smaller weight (in the same way that happens when
contour edges are discretized).

Case 2 occurs when the current non admissible edge ab and its dual do not intersect.
In this case, among the weighted Voronoi points corresponding to the two adjacent
triangles to ab, T (a, b, c) and T (a, b, d), the one which is closer to ab is inserted in the
triangulation (see Figure 2).

A drawback for applying regular triangulations to our edge refinement scheme is
that they cannot be restricted – as far as we know, no author has tried to define them.

10



Figure 7: Adaptiveness of the mesh to the curvature of the surface. Left Para-
metric space; right image space (surface and approximation).

The existence of redundant points difficults the inclusion of restricting edges in a reg-
ular triangulation (what happens when one of the endpoints of the restricting edges
is redundant?). Although no vertices are redundant in our triangulations, we still had
problems when applying our regular edge refinement algorithm to some patches with
holes or concave boundaries.

4 Results

In this section we present some examples showing the output of the two algorithms, the
non-regular and the regular. We also compare them in terms of the number of vertices
and adaptiveness.

The capacity of the first method to be adaptive to the local curvature of the original
surface can be verified on Figure 5, which shows the triangulation of an object both
in parametric an image space. Notice the triangle size variation on the different zones
of the larger patch. The example also shows the ability to deal with a set of neigh-
boring trimmed patches without producing cracks. Figure 7 shows another example of
application of the first method to an object composed of several trimmed parametric
patches.

Figure 8 left shows a more notorious example of the adaptiveness of the triangu-
lation (compare triangle sizes on left middle and right of the patch). In this case, the
second algorithm was applied (i.e., the regular triangulation was used). The triangula-
tion on the right of the figure is an example where a small tolerance value was required.
The triangulation in Figure 6 was also obtained by the second approach.

Finally, we made some tests to compare the two proposed algorithms. As expected,
we found that the number of triangles when applying the second algorithm was smaller.
However, this improvement was more noticeable in some test objects than in others. In
fact, we can conclude that the second approach was slightly better than the first one for
surfaces with a strong curvature variation, obtaining up to 25% less triangles. Figure 9
shows two output triangulations of a very curved surface. Note that although both

11



Figure 8: Left, output triangulation built by the second approach for a patch with
strong curvature variation. Right A mesh obtained imposing a small tolerance.

Figure 9: Comparison between the first and the second approach. Left, cur-
vature plot; middle output of the first algorithm; right, output of the second
algorithm.

triangulations are admissible and adaptive, the second algorithm places fewer points
in the interior (and thus, it produces less triangles). Notice also that the triangulation
obtained by the second algorithm looks less structured (triangle shapes are more vari-
able). This is because the refinement algorithm in the second approach does not tend
to place internal vertices exactly in the midpoint of edges, since bisectors in a power
Voronoi diagram are not placed at the same Euclidean distance from the points.

5 Conclusions and future work

We have presented two adaptive methods of surface triangulation, based on edge re-
finements. The first method uses curvature bounds to determine the admissibility of a
triangulation edge while the second one uses these bounds also in the edge refinement
and in the posterior re-triangulation processes.

Concerning the second method, we have decided to use regular triangulations be-
cause they allow to consider geometric properties of the surface by assigning weights
to the points and we have used the presented function R(p) as a weight. We have de-

12



vised a generalized edge refinement method and implemented an incremental regular
triangulation algorithm. Comparing both methods presented we can conclude that the
regular method behaves better than the first one, since it approximates the surfaces with
a lower number of elements, specially for patches with high curvature variations.

Nevertheless, there still remain several open problems. The first one is related with
regular triangulations and restricting edges. We only have tested the regular method
with simple patches (most of the not trimmed), so as a future work we need to devise
an algorithm for constrained regular triangulations. We also want to study whether
there is another function better than R(p) that could also avoid redundant points and to
obtain a theoretical bound of the number of points for the regular triangulation.

References

[1] P. Brunet and M. Vigo. Piecewise linear approximaton of trimmed surfaces. In
G. Farin H. Hagen and H. Noltemeier, editors, Geometric Modelling, Computing
Suppl. 10, pages 341–356. Springer Verlag, 1995.

[2] L.P. Chew. Guaranteed quality mesh generation for curved surfaces. In Proceed-
ings of the ACM Symposium on Computational Geometry, pages 274–280, 1993.

[3] Wonjoon Cho, Takashi Maekawa, Nicholas M. Patrikalakis, and Jaime Peraire.
Topologically reliable approximation of trimmed polynomial surface patches.
Graphical Models and Image Processing, 61(2):84–109, March 1999.

[4] J.C. Cuillère. An adaptive method for the automatic triangulation of 3D paramet-
ric surfaces. Computer Aided Design, 30(2):139–149, 1998.

[5] D. Filip, R. Magedson, and R. Markot. Surface algorithm using bounds on deriva-
tives. Computer Aided Geometric Design, 3:295–311, 1986.

[6] S. Kumar and D. Manocha. Efficient rendering of trimmed NURBS surfaces.
Computer Aided Design, 27(7):509–521, 1995.

[7] Xiang-Yang Li, Shang-Hua Teng, and Alper Üngör. Biting: Advancing front
meets sphere packing. the International Journal of Numerical Methods in Engi-
neering (IJNME), 1999.

[8] D. Marcheix and S. Gueorguieva. Nibble meshing: incremental triangulation of
non-manifold solid boundary. Computers & Graphics, 22(2-3):181–188, 1998.

[9] A. Okabe, B. Boots, and K. Sugihara. Spatial Tessellations. Concepts and Appli-
cations of Voronoi Diagrams. John Wiley & Sons Ltd, 1992.

[10] L.A. Piegl and A.M. Richard. Tesselating trimmed NURBS surfaces. Computer
Aided Design, 27(1):16–26, 1995.

[11] L.A. Piegl and W. Tillert. Geometry-based triangualtion of trimmed NURBS
surfaces. Computer Aided Design, 30(1):11–18, 1998.

[12] A. Rockwood, K. Heaton, and T. Davis. Real-time rendering of trimmed surfaces.
Computer Graphics, 23(3):107–116, 1989.

13



[13] J. Ruppert. A new and simple algorithm for 2-dimensional mesh generation.
Technical report, Computer Science Division, Univ. of California at Berkeley,
1992.

[14] X. Sheng and B.E. Hirsh. Triangulation of trimmed surfaces in parametric space.
Computer Aided Design, 24(8):437–444, August 1992.

[15] K. Shimada. Anisotropic triangular meshing of parametric surfaces via close
packing of ellipsoidal bubbles, 1996.

[16] K. Shimada and D.C. Gossard. Automatic triangular mesh generation of trimmed
parametric surfaces for finite element analysis. Computer Aided Geometric De-
sign, 15:199–222, 1998.

[17] M. Vigo. An improved incremental algorithm for constructing restricted Delau-
nay triangulations. Comput. & Graphics, 21(2):215–223, 1997.

[18] M. Vigo. Aproximació facetada de superfı́cies paramètriques retallades. PhD
thesis, Universitat Politècnia de Catalunya, Nov. 1998.

[19] M. Vigo, N. Pla, and P. Brunet. From degenerate patches to triangular and
trimmed patches. In A. Le Mehaute and A.L. Allgower, editors, Curves and
Surfaces, 1997.

[20] M. Vigo, N. Pla, and P. Brunet. Directional adaptive surface triangulation. Com-
puter Aided Geometric Design, 16:107–126, 1999.

[21] M. Vigo, N. Pla, and P. Brunet. Curvature adaptive triangulations of surfaces. In
ECCOMAS’2000, Sept. 2000.

14


