1,143 research outputs found

    An efficient particle swarm optimizer with application to Man-Day project scheduling problems

    Get PDF
    The multimode resource-constrained project scheduling problem (MRCPSP) has been confirmed to be an NP-hard problem. Particle swarm optimization (PSO) has been efficiently applied to the search for near optimal solutions to various NP-hard problems. MRCPSP involves solving two subproblems: mode assignment and activity priority determination. Hence, two PSOs are applied to each subproblem. A constriction PSO is proposed for the activity priority determination while a discrete PSO is employed for mode assignment. A least total resource usage (LTRU) heuristic and minimum slack (MSLK) heuristic ensure better initial solutions. To ensure a diverse initial collection of solutions and thereby enhancing the PSO efficiency, a best heuristic rate (HR) is suggested. Moreover, a new communication topology with random links is also introduced to prevent slow and premature convergence. To verify the performance of the approach, the MRCPSP benchmarks in PSPLIB were evaluated and the results compared to other state-of-the-art algorithms. The results demonstrate that the proposed algorithm outperforms other algorithms for the MRCPSP problems. Finally, a real-world man-day project scheduling problem (MDPSP)—a MRCPSP problem—was evaluated and the results demonstrate that MDPSP can be solved successfull

    A dynamic scheduling model for construction enterprises

    Get PDF
    The vast majority of researches in the scheduling context focused on finding optimal or near-optimal predictive schedules under different scheduling problem characteristics. In the construction industry, predictive schedules are often produced in advance in order to direct construction operations and to support other planning activities. However, construction projects operate in dynamic environments subject to various real-time events, which usually disrupt the predictive optimal schedules, leading to schedules neither feasible nor optimal. Accordingly, the development of a dynamic scheduling model which can accommodate these real-time events would be of great importance for the successful implementation of construction scheduling systems. This research sought to develop a dynamic scheduling based solution which can be practically used for real time analysis and scheduling of construction projects, in addition to resources optimization for construction enterprises. The literature reviews for scheduling, dynamic scheduling, and optimization showed that despite the numerous researches presented and application performed in the dynamic scheduling field within manufacturing and other industries, there was dearth in dynamic scheduling literature in relation to the construction industry. The research followed two main interacting research paths, a path related to the development of the practical solution, and another path related to the core model development. The aim of the first path (or the proposed practical solution path) was to develop a computer-based dynamic scheduling framework which can be used in practical applications within the construction industry. Following the scheduling literature review, the construction project management community s opinions about the problem under study and the user requirements for the proposed solution were collected from 364 construction project management practitioners from 52 countries via a questionnaire survey and were used to form the basis for the functional specifications of a dynamic scheduling framework. The framework was in the form of a software tool fully integrated with current planning/scheduling practices with all core modelling which can support the integration of the dynamic scheduling processes to the current planning/scheduling process with minimal experience requirement from users about optimization. The second research path, or the dynamic scheduling core model development path, started with the development of a mathematical model based on the scheduling models in literature, with several extensions according to the practical considerations related to the construction industry, as investigated in the questionnaire survey. Scheduling problems are complex from operational research perspective; so, for the proposed solution to be functional in optimizing construction schedules, an optimization algorithm was developed to suit the problem's characteristics and to be used as part of the dynamic scheduling model's core. The developed algorithm contained few contributions to the scheduling context (such as schedule justification heuristics, and rectification to schedule generation schemes), as well as suggested modifications to the formulation and process of the adopted optimization technique (particle swarm optimization) leading to considerable improvement to this techniques outputs with respect to schedules quality. After the completion of the model development path, the first research path was concluded by combining the gathered solution's functional specifications and the developed dynamic scheduling model into a software tool, which was developed to verify & validate the proposed model s functionalities and the overall solution s practicality and scalability. The verification process started with an extensive testing of the model s static functionality using several well recognized scheduling problem sets available in literature, and the results showed that the developed algorithm can be ranked as one of the best state-of-the-art algorithms for solving resource-constrained project scheduling problems. To verify the software tool and the dynamic features of the developed model (or the formulation of data transfers from one optimization stage to the next), a case study was implemented on a construction entity in the Arabian Gulf area, having a mega project under construction, with all aspects to resemble an enterprise structure. The case study results showed that the proposed solution reasonably performed under large scale practical application (where all optimization targets were met in reasonable time) for all designed schedule preparation processes (baseline, progress updates, look-ahead schedules, and what-if schedules). Finally, to confirm and validate the effectiveness and practicality of the proposed solution, the solution's framework and the verification results were presented to field experts, and their opinions were collected through validation forms. The feedbacks received were very positive, where field experts/practitioners confirmed that the proposed solution achieved the main functionalities as designed in the solution s framework, and performed efficiently under the complexity of the applied case study

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Particle swarm optimization for the Steiner tree in graph and delay-constrained multicast routing problems

    Get PDF
    This paper presents the first investigation on applying a particle swarm optimization (PSO) algorithm to both the Steiner tree problem and the delay constrained multicast routing problem. Steiner tree problems, being the underlining models of many applications, have received significant research attention within the meta-heuristics community. The literature on the application of meta-heuristics to multicast routing problems is less extensive but includes several promising approaches. Many interesting research issues still remain to be investigated, for example, the inclusion of different constraints, such as delay bounds, when finding multicast trees with minimum cost. In this paper, we develop a novel PSO algorithm based on the jumping PSO (JPSO) algorithm recently developed by Moreno-Perez et al. (Proc. of the 7th Metaheuristics International Conference, 2007), and also propose two novel local search heuristics within our JPSO framework. A path replacement operator has been used in particle moves to improve the positions of the particle with regard to the structure of the tree. We test the performance of our JPSO algorithm, and the effect of the integrated local search heuristics by an extensive set of experiments on multicast routing benchmark problems and Steiner tree problems from the OR library. The experimental results show the superior performance of the proposed JPSO algorithm over a number of other state-of-the-art approaches

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    MAS-based Distributed Coordinated Control and Optimization in Microgrid and Microgrid Clusters:A Comprehensive Overview

    Get PDF

    Seeking multiple solutions:an updated survey on niching methods and their applications

    Get PDF
    Multi-Modal Optimization (MMO) aiming to locate multiple optimal (or near-optimal) solutions in a single simulation run has practical relevance to problem solving across many fields. Population-based meta-heuristics have been shown particularly effective in solving MMO problems, if equipped with specificallydesigned diversity-preserving mechanisms, commonly known as niching methods. This paper provides an updated survey on niching methods. The paper first revisits the fundamental concepts about niching and its most representative schemes, then reviews the most recent development of niching methods, including novel and hybrid methods, performance measures, and benchmarks for their assessment. Furthermore, the paper surveys previous attempts at leveraging the capabilities of niching to facilitate various optimization tasks (e.g., multi-objective and dynamic optimization) and machine learning tasks (e.g., clustering, feature selection, and learning ensembles). A list of successful applications of niching methods to real-world problems is presented to demonstrate the capabilities of niching methods in providing solutions that are difficult for other optimization methods to offer. The significant practical value of niching methods is clearly exemplified through these applications. Finally, the paper poses challenges and research questions on niching that are yet to be appropriately addressed. Providing answers to these questions is crucial before we can bring more fruitful benefits of niching to real-world problem solving

    Capacity Optimization in Dynamically Routing Computer Network Systems

    Get PDF
    A computer network system is a complex system with a great number of dynamic components. There are many devices in the system, such as computers, routers, lines, hubs, and switches. In addition to these hardware systems, many protocols are integrated to set the rules and provide the way of communication. Due to the nature of the system, it is hard to formulate and solve problems analytically without making any assumptions. One of the prominent problems that occur in computer systems is the line capacity assignment problem. In the previous mathematical models, message routes were predetermined and the dynamic nature of the system was neglected. This study deals with the line capacity assignment problem under a dynamically routing policy. Four different computer network topologies are used and solved by two heuristic algorithms via simulation. A dynamic search approach based on the occupancy rate of lines is used to define the consecutive routes of messages. The performances of harmony search and genetic algorithms via simulation are compared with the results of OptQuest, one of the optimization packet programs embedded in simulation software Arena®

    Load Balancing and Virtual Machine Allocation in Cloud-based Data Centers

    Get PDF
    As cloud services see an exponential increase in consumers, the demand for faster processing of data and a reliable delivery of services becomes a pressing concern. This puts a lot of pressure on the cloud-based data centers, where the consumers’ data is stored, processed and serviced. The rising demand for high quality services and the constrained environment, make load balancing within the cloud data centers a vital concern. This project aims to achieve load balancing within the data centers by means of implementing a Virtual Machine allocation policy, based on consensus algorithm technique. The cloud-based data center system, consisting of Virtual Machines has been simulated on CloudSim – a Java based cloud simulator
    • …
    corecore