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The multimode resource-constrained project scheduling problem (MRCPSP) has been confirmed to be an NP-hard problem.
Particle swarm optimization (PSO) has been efficiently applied to the search for near optimal solutions to various NP-hard problems.
MRCPSP involves solving two subproblems: mode assignment and activity priority determination. Hence, two PSOs are applied to
each subproblem. A constriction PSO is proposed for the activity priority determination while a discrete PSO is employed for mode
assignment. A least total resource usage (LTRU) heuristic and minimum slack (MSLK) heuristic ensure better initial solutions. To
ensure a diverse initial collection of solutions and thereby enhancing the PSO efficiency, a best heuristic rate (HR) is suggested.
Moreover, a new communication topology with random links is also introduced to prevent slow and premature convergence. To
verify the performance of the approach, the MRCPSP benchmarks in PSPLIB were evaluated and the results compared to other
state-of-the-art algorithms. The results demonstrate that the proposed algorithm outperforms other algorithms for the MRCPSP
problems. Finally, a real-world man-day project scheduling problem (MDPSP)—a MRCPSP problem—was evaluated and the
results demonstrate that MDPSP can be solved successfully.

1. Introduction

The well-known resource-constrained project scheduling
problem (RCPSP) is a combinatorial optimization problem
where activities are scheduled such that the makespan is mini-
mized, while satisfying given precedence constraints between
the activities and resources. However, a more realistic project
scheduling model termed multimode resource-constrained
project scheduling problem (MRCPSP) is studied herein. The
term multimode indicates that the project scheduling prob-
lem has varying operation modes available for each activ-
ity; each mode includes combinations of resource require-
ments and processing durations. Thus, different operation
mode assignments for activities would yield different project
scheduling results. The MRCPSP is subjected to precedence
and resources constraints. Hence, the scheduling target of
MRCPSP is to find an adequate mode assignment for each
activity and determine a satisfactory activity priority while
satisfying the constraints, thus minimizing the makespan.

Scheduling problems such as job-shop, flow-shop, and
vehicle routing have been studied intensively, and are con-
firmed to be NP-complete in their general forms. Both RCPSP
and MRCPSP have also been proved to be NP-hard [1].
Therefore, many studies have attempted solving scheduling
problems using neural networks [2], metaheuristics based
algorithms including Tabu search (TS) [3, 4], simulated
annealing (SA) [5], genetic algorithms (GA) [6], ant colony
optimization (ACO) [7], and particle swarm optimization
(PSO) [2, 8,9].

Several metaheuristics have been proposed for solving
MRCPSP. Ranjbar et al. [10] solved small scale instances of
MRCPSP based on a scatter search algorithm. Combinational
particle swarm optimization (CPSO) was proposed by Jar-
boui et al. [11]. Additionally, Zhang et al. [12] applied two
conventional PSOs to construct solutions for MRCPSP. PSO
is a promising and applicable methodology for a variety of
combinatorial problems and diverse scheduling problems as
well as other applications. Particle swarm optimization (PSO)
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was first proposed by Kennedy and Eberhart [13]. Many
derivatives of PSO have since been examined to significantly
improve functionality, of which standard PSO [14] is probably
the best known. Another variation called discrete PSO
(DPSO) was proposed by Kennedy and Eberhart [13]. Solving
MRCPSP is regarded as solving two subproblems (mode
assignment and activity priority determination); hence, dual
PSOs (based on constriction) are proposed to cope with these
two subproblems. A discrete PSO is adopted to decide the
discrete mode.

Moreover, conventional PSOs with global communica-
tion topologies usually lead to premature convergence in
local optima. Hence, a modified global best experience on
the basis of local communication topology to ensure stable
convergence was introduced [14], and yet the convergence is
slow. Therefore, a swarm communication topology with ran-
dom links (rand-link communication topology) is presented
herein to increase the PSO efficiency. Restated, a trade-off
mechanism between local exploitation and global exploration
abilities is proposed. Additionally, two heuristics, least total
resource usage (LTRU) and the minimum slack (MSLK),
are used to further enhance effectiveness. The two heuristics
are used to achieve better initial solutions and thus speed
up the search. However, an initial set of diverse solutions
would increase the chances of finding better results. Hence,
a heuristic rate (HR) is explored.

To improve the effectiveness and efficiency of the pro-
posed scheme, the largest scale scheduling case of MRCPSP
in PSPLIB [15] was tested to find optimal parameters. To
verify the performance of the proposed scheme, all cases
of the MRCPSP benchmark instances were evaluated. Per-
formance comparisons between algorithms were conducted.
Finally, the experimental results demonstrate that the pro-
posed scheme outperforms other schemes and is efficient
in solving MRCPSP class problems. In South East Asia,
project managers often use man-day as a project scheduling
and management unit. Different man-day combinations are
considered as a different operation modes. Hence, this man-
day project scheduling problem (MDPSP) can be regarded
as a MRCPSP problem. A real-world MDPSP case was
finally tested; the optimal operation mode for every task is
provided and the minimum completion time of the project
is also given. The project manager is then able to adjust
the manpower based on the results. The remainder of the
paper is organized as follows. Section 2 provides descrip-
tions on MRCPSP and MDPSP. Section 3 introduces particle
swarm optimization, discrete particle swarm optimization,
and standard particle swarm optimization. The proposed dual
PSO approach with heuristics and rand-link communication
topology to solve scheduling problems is also presented in
Section 3. In Section 4, experimental results and compar-
isons are demonstrated. Finally, the study is summarized in
Section 5.

2. Scheduling Problems

2.1. MRCPSP. A MRCPSP instance includes precedence and
resource constraints based on an operation mode where
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FIGURE 1: Activity on node (AON).

different combinations produce different schedules. The mul-
timode scheduling problem is defined as follows.

The MRCPSP includes n activities to be scheduled and
two dummy activities represent the start and the end of the
project. Let J be a set consisting of all activities, denoted J =
{0,...,n + 1}. Accordingly, the project can be characterized
by an activity-on-node (AON). MRCPSP involves precedence
and resource constraints; some tasks in MRCPSP are partially
ordered. For tasks without precedence constraint, different
execution sequences would result in different schedules
and hence the different completion times. Meanwhile, each
activity j has M ; available operation modes. The set Mode; =
{1,..., M;} includes the available modes of activity j, and the
operation mode of activity j is denoted m;,m; € Mode;.
Moreover, each mode involves a required processing time
(p j’mj) and different resource types needed for completing the

activity. Hence, a task with different operation modes would
yield a different schedule. When the jth activity performs n
mode m;, the start time of activity is s; and processing time

j
is p;,n- Hence the finish time of the activity is denoted by

fi=s;+ Pjm,

MRCPSP provides two types of resources: renewable
resources and nonrenewable resources. For each renewable
resource, a fixed amount of resources are provided during
each time period. The available amount of each nonrenewable
resource is constant throughout the entire project. The
amount of renewable resources K required by activity j at
mode m; is denoted by rfm and the required nonrenewable
resource q by activity j at mode m; is represented by n?’m.
However, all consumed renewable resources at any time
period should not exceed what is provided by the system;
that is, Y caq) r;"mj < Ry, Rg is the available amount of

renewable resource type K, and A(t) denotes the set in which
activities are being processed at time t; all used nonrenewable
resources in the whole project should not be more than
system-supplied; that is, )’ ies n;’)mj < N, N, is the available
amount of the gth nonrenewable resource. A simple example
of MRCPSP in PSPLIB is given in Table 1 and Figure 1.

The schedule is said to be feasible when situations of both
resources and precedence constraints are met; otherwise,
the schedule is infeasible. For example, a project schedule
with the activity priority list {1, 5,2, 3,4} is infeasible since
it violates a precedence constraint. Meanwhile, a project
schedule with tasks’ operation mode list {1,1,1,1,1} is
also infeasible because the overall amount of consumed
nonrenewable resources exceeds the amount provided by
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TaBLE 1: Five activity instances of MRCPSP in PSPLIB.

(a)

Activity #Modes #Successors Successors
0 0 2 1 2
1 1 2 3 4
2 1 1 5
3 1 1 6
4 1 1 6
5 3 1 6
6 1 0
(b)
Activity Mode  Duration  Renewable = Nonrenewable
0 0 0 0 0
1 1 1 2
2 1 3 2 5
3 1 4 1 1
4 1 3 3 5
1 1 3 6
5 2 2 2 5
3 3 1 4

6 0 0 0 0

Available resources 4 20

the system. Moreover, the project schedules with the same
activity priority list, say {1, 2, 3, 4, 5}, but different operation
mode lists {1, 1,1, 1,3} and {1, 1, 1, 1, 2} would yield different
makespans, namely, 8 and 7, respectively. The project sched-
ules with the same operation mode list, say {1, 1, 1, 1,2}, but
different activity priority lists {1,3,4,2,5} and {1,2,3,4,5}
would also result in different makespans, that is, 9 and 7,
respectively. Therefore, different combinations of mode list
and priority list would result in different project schedules. To
obtain a near optimal solution, the project requires a satisfac-
tory activity priority list and an adequate mode list. In other
words, the target of this investigation for solving multimode
project scheduling is to find the optimal combination of these
two lists so as to minimize the makespan. Overall, favourable
mode and activity lists yield good solutions.

2.2. MDPSP. The man-day project scheduling problem
(MDPSP) is common in South East Asia. In MDPSP, one
man-day is utilized as a management unit in estimating
and planning a project, for example, a project manager
may estimate that a project task requires four man-days.
Thus, the task may need four people to work for one day,
two people to work for two days, or one person to work
for four days. Every man-day combination is considered
as an operation mode; every task has different operation
modes. Therefore, this man-day project scheduling problem
(MDPSP) can be regarded as a MRCPSP problem. Similarly,
the MDPSP also involves precedence constraints; that is, a
task can be executed only if all its predecessor tasks have been
completed, and every task is nonpreemptive. Moreover, the
people in the work team are considered renewable resources.

Task items:

(1) Power configuration

(a) Power panel “C-P” x 2 sets mounting (2 man-day)
(b) Power panel input total power configuration (6 man-day)
(c) UPS input and output power configuration (2 man-day)
(d) UPS output circuit 110 V power configuration-24 circuits(8 man-day)
(e) Rack and UPS move in (4 man-day)
(f) Rack mounting and UPS installation (2 man-day)

(2) Fiber optic backbone
(a) Pipeline dredge and link (4 man-day)
(b) Single mode fiber optic 8 C x 2laying (16 man-day)
(c) Fiber optic finishing and marking (2 man-day)

(3) Fiber fusion and testing (2 man-day)

(4) UTP cat-6 network

(a) Layout confirmation (4 man-day)

(b) Pipeline dredge confirmation(16 man-day)
(c) Laying (96 man-day)

(d) DVO fabrication and marking (64 man-day)
(e) Patch panel wiring(16 man-day)

() Patch cord labeling (8 man-day)

(g) Finishing rack and testing (12 man-day)

(a) Task items in the real-world project

(b) Corresponding AON

FIGURE 2: A real-world MDPSP example.

The nonrenewable resource is supposed to be enough. A real-
world MDPSP example is shown in Figure 2—a real network
construction project. Figure 2(a) lists the required task items
and man-days needed for every task; Figure 2(b) displays the
corresponding AON.

3. Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) was first proposed by
Kennedy and Eberhart in 1995 [13]. PSO is a multiagent
general metaheuristic and has been widely applied to many
complex and NP-hard problems. PSO is initialized with a
population of randomly positioned particles and searches for
the position with the best fitness. The particle position is the



representative of a solution or schedule correlated with fitness
(makespan) in this investigation.

In each generation or iteration, every particle moves to
a new position guided by velocity and then the fitness of
the particles is calculated. There are two experience positions
used in PSO for updating the velocity: one is the global
experience position of all particles, which remembers the
global best solution obtained by all particles; the other is
each particle’s individual experience, which remembers the
best position that particle has been moved to. Formally,
let an N-dimensional space have M particles. For the ith
particle (i = 1,..., M), its position consists of N components
X; = {Xip,...» Xin}, where X;; is the jth component of the
position. The velocity of particle i is V; = {V};,...,V,y} and
the particle’s individual experience is L; = {L;j,...,L;y}-
Additionally, G = {G;,...,Gy} represents the global best
experience shared among all the particles. The velocity and
position update rules used in the original PSO are displayed
as follows:

Vi = wx v +¢ xry % (L= X;j) + ¢ x 1y x (G = X5,

XDCW

new
i X +V N

)

where w is an inertia weight used to determine the influence
of the previous velocity on the new velocity. The ¢, and ¢, are
learning factors used to guide how close to the individual or
global experience position, respectively. Moreover, the r; and
r, are random numbers uniformly distributed in the interval
[0, 1], influencing the tradeoff between the global (swarm’s
best experience) and local (particle’s best experience) explo-
ration abilities during search. The velocity update rule and the
position update rule are regarded as crossover and mutation
operations of evolutionary computation, respectively. The
velocity updating plays an important part in PSO while
searching for a solution with better fitness. Therefore, several
derivatives of PSO have been proposed to update the velocity
vector. One of them is discrete version of PSO developed by
Kennedy and Eberhart [22]. Another is the standard PSO
proposed by Bratton and Kennedy [14]. In this work, the
velocity update rule of standard PSO is the basis of our
proposed dual PSO mechanism. The discrete PSO is further
introduced for solving mode assignment.

3.1. Solution Encoding Scheme. The aim of the mode assign-
ment subproblem is to generate a mode list X = {X, ...

X;VI } (J activities), which determines the operation mode for
each activity, that is, determining each activity’s duration and
resources. The X?! is the mode for activity j which has bit;
binary values. The aim of the activity priority determination
subproblem is to generate the activity list Pr = {0,...,n + 1}
which is obtained from activity list X’. Hence, the solution
vector X is composed of two position vectors corresponding
to the mode list X and activity list X’; that is, X = X uX/.
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3.2. Standard Particle Swarm Optimization. In PSO, the
balance between the global exploitation and local exploration
processes is mainly controlled by the inertia weights. A
suitable selection of the inertia weight w can provide a
balance between the global and local exploration processes
and thus requires less iteration on average to find the
optimum. In this investigation, the named standard PSO (or
constriction version PSO) is applied to mode assignment and
activity priority determination. The standard PSO involves a
constriction factor to replace inertia weight in the velocity
update rule as follows:

V-r-lew—Xx(

ij X,-j)+cz><r2

+c1><r1><(L,-j—

x(G; - X)),

where y is the constriction factor used for controlling the
movement velocity. This velocity update rule is suggested for
its stability as indicated in [14].

2)

3.3. Discrete PSO Encoding Scheme for Mode Assignment. For
the discrete PSO, the velocity update rule of the standard
PSO isasin (2). The X;; is the jth component of XM position
vector. The value of X;; is either 0 or 1. The value of individual
experience PSO (L;;, the jth component of particle i) or
global experience PSO (G,,, the nth component) is also either
0 or ; that is, X;,,L;,,G;, € {0,1}. However, the values
of the velocity components are still real numbers since r,
and r, are random numbers. In this work, they are limited
to the interval [-V_,., V... Each particle moves to a new
position according to its new velocity. However, the new
position generation of the discrete PSO is not the same as
in the original PSO. Kennedy and Eberhart [22] advocated
that the higher the velocity, the more likely to choose 1 for the
corresponding position component, and low velocity favors
a position value of 0. Hence, a sigmoid function is used as
the probability function as shown in (3). S(V“ew) is defined
as representing the probability of X"eW to be set to 0 or 1. To
avoid the value of S(V;7") approachlng Oorl,aconstantV, .
is used to limit the range of V;;". The resulting position value
Xf}ew, either 1 or 0, is determined by S(Vi‘;ew) and a uniform
distribution random variable rand in [0, 1] as defined in (4).
The component number of position vector for activity j (XJM )
is determined based on M. If the corresponding position bits
for activity j is X;VI = {0 1 0}, then m; = 2; that is, activity j
is assigned to execution in operation mode 2 as follows:

new\ _ 1
S(Vij ) 1+exp( V“ew) (3)

e _ 1, rand<S (Vi'J?eW) @)
J 0, otherwise.

3.4. Determining Activity Priority. Activity processing order
greatly affects the makespan while meeting the given prece-
dence constraints. Therefore, determining satisfactory activ-
ity priority is important for solving MRCPSP. Suppose that
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the position vector X/ corresponds to the activity list Pr
with ] components, and then each component represents
the activities’ precedence relations. The activity list is a
priority list, that is, a permutation without repeating values.
Therefore, the encoding mechanism for mode list X is
not applicable. Instead, a random key scheme is applied
to determine the activity priority; each component of X/ is
associated with an integer key. The component values of X’
are sorted in ascending order. Next, the key is used as the
activity priority, then the activity list Pr is produced. An
example of a random key scheme is displayed in the following
equation:

Key 1 2 3 4 5

X/ ={03 32 09 2.6 14}

Sorting in ascent order |

)
X ={03 09 14 26 3.2}

Priority list Pr={1 3 5 4 2}.

Notably, the MRCPSP has precedence constraints; hence,
the produced activity priority list Pr may result in an
infeasible solution. The repair mechanism can be applied to
correct activity priority list Pr to Pr’ (repaired priority list).

3.5. New Swarm Communication Topology. There have been
two commonly used swarm communication topologies for
the standard PSO, namely, the gg.,, (global best) topology and
the I3, (local best) topology. The gg. topology is the most
widely examined and is based on the global topology of the
network, in which every particle is able to share information
with each other quickly and performs better because of its
global communication ability. However, for more complex
problem, the global communication ability of gg. usually
leads to premature convergence and becomes trapped in local
optima. Hence, the I, topology was addressed and has
recently attracted the researchers’ attention. The structure is
based on the local topology of the network such as ring or star.
The feature of I, is its limited communication; every particle
just communicates with a portion of the swarm. Obviously,
I5.q has a slower rate of convergence than gp.;.

A new swarm communication rand-link topology is
proposed. The rand-link topology is applied to avoid both
slow convergence and premature convergence. It is based on
the ring topology with some additional random links. The
rand-link topology combines . topology (determined by
X1 X;» X;_1) and R random selected particles.

1

3.6. Heuristics Rate for Initial Solutions. By starting the search
from a better position, the probability of finding a near
optimal solution and more rapid convergence is increased.

A heuristic is an experience-based strategy or technique, the
aim of which is usually to give better quality solutions over
time. In PSO, randomly assigned initial particle position may
reduce the efficiency of the algorithm. Hence, to effectively
solve the problem, most studies would consider how to
generate a good initialization population of the particles. In
this study, two heuristics based on priority rules [23] are
applied for generating two initial position vectors X and X/,
namely, the least total resource usage (LTRU) heuristic and
the minimum slack (MSLK) heuristic. The LTRU heuristic
is based on the mode priority rule, which determines each
mode i of jth activity with a priority value 1/ vj(i); the
definition of V]-(i) is listed in (6) as follows:

K

v ()= (r]ﬁi x pj’,»). (6)

k=1

According to (6), an operation mode requesting more
renewable resources (k) and requiring longer processing time
would have a larger vj(i) value and thus have a lower mode
priority.

In the activity priority determination problem, the activ-
ity priority rule assigns a priority value for each activity j;
the MSLK is used in this work. The activity priority value
is determined by 1/p(j), the definition of p(j) is displayed
below in (7) as follows:

p(j) = (LS; - ES;), )

where LS; and ES; are the latest start time and the earliest
start time of activity j, respectively; these are obtained by the
critical path method in this study. Therefore, the latest start
time close to the earliest start time has the higher activity
priority. However, applying this heuristics in full to the initial
solutions would lead to premature convergence. To avoid this
problem, diverse initial solutions are ensured by proposing a
heuristic rate (HR) to decide the ratio of the initial solutions
generated by heuristics. The design is as follows:

initial solutions

particles x HR, heuristics generated ~ (8)

particles x (1 - HR), random generated.

3.7 Fitness Design. The scheduling target of MRCPSP is
to find an adequate schedule while following constraints
and thus minimizing the makespan, that is, minimizing the
completion time of the dummy activity (n + 1). The fitness
of a solution is defined as the reciprocal of the makespan, as
indicated in (9) as follows:

fitness = (makespan) . )

An obtained schedule violate constraint is an infeasible
solution. Therefore, a penalty mechanism is designed for
infeasible solution. Consider that the resource requirement
(n”) of each activity (j) is based on the predefined operation
modes (mj € Mode]-) and that the amount of the given
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Iteration Loop

For each particle i in the swarm do:

Update the velocity vector VM and position vector X
according to (2) and (4), respectively.

Update the velocity vector V! and position vector X/
according to (2)

Calculate the mode list vector M based on XlM (4).

Calculate the activity list vector Pr by applying the random
key scheme to and constructing a new feasible
precedence for the process order Pr' by repair mechanism.

Calculate the particle’s fitness (based on vector M and vector Pr').

Initialize particles’ positions (X = X™ U X’) by applying heuristics: LTRU (for X™) and MSLK (for X’).

Update L,.
Update G (ggeg> Ipese OF rand-link).
Until the End condition is reached, return solution.

ALGORITHM I: The proposed dual PSO.

available resources is N,,. Therefore, the penalty mechanism
is designed to assign a nonzero penalty value on infeasible
solutions. The penalty value is calculated based on the degree
to which the resource constraints are exceeded; hence, the
penalty value (PV) calculation is designed as follows:

— P
PV = Z max 4 0, Z M} o eMode; ~ N, (10)
peEN j€J

The fitness function involving the penalty value, PV, is
then redefined as follows:
1

fit =
Hess (makespan + PV) ()

The proposed particle swarm optimization is summarized
in Algorithm 1.

4. Experimental Results and Comparisons

To evaluate the performance of the proposed scheme, a test
on a benchmark was conducted prior to solving real-word
man-day project scheduling problems. Test instances in the
well-known project scheduling problem library (PSPLIB)
[15] were simulated. Simulation instances in the interested
PSPLIB include scheduling problems with 10, 12, 14, 16,
18, 20, and 30 nondummy activities cases (denoted by J10
through J30); each case has 640 instances. However, some
instances have no feasible solutions. Therefore, every case has
a different number of feasible instances (ex. 536, 547, 551, 550,
552, 554, and 552 instances for the J10, J12, J14, J16, J18, J20,
and 552 instances, resp.). To compare algorithm performance,
the algorithm was tested with 5000 evaluations as the stop
condition. Meanwhile, the solution quality is measured by
evaluating the ratio of optimal solutions (OPT) found which
is calculated using (12); “best;” represents the best solution
found for instance i. If the close to optimal makespans for
instances are known, then the “best” is the close to optimal
solution (J10 to J20) provided in PSPLIB. However, close to

TaBLE 2: Comparison of different random links.

Random links Total OPT

2 283/552 51.27%
3 291/552 52.72%
4 304/552 55.07%
5 290/552 52.54%
6 298/552 53.97%

optimal makespans for some instances are unknown, and
then lower bounds (the best known solution found for J30)
are used instead as the “best” solution as follows:

OPT = (Zer—best

- ) x 100%. (12)
|instances|

To determine the close to optimal heuristics rate (HR)
and random links, tests were performed on the largest case
(J30). Too many or too few random links would approach
global or local communication topologies; hence, the best
random links has to be determined. To obtain diverse
initial solutions, the best HR was obtained through tests.
The simulation results demonstrated that 4 random links
yield good results while HR = 20% gives the best results,
as illustrated in Tables 2 and 3. Initial solutions generated
without heuristics yield fewer close to optimal solutions. A
high HR may therefore lead to a local optimum since the
algorithm converges prematurely.

Accordingly, the parameter settings applied for perfor-
mance comparison are ¢; = ¢, = 2.0, ¥ = 0.73, HR = 20%,
and Random-links = 4 for 20 particles with 5000 schedules.
Table 4 shows the simulation results of all 552 instances of
the J30 case. In Table 4, “Dev. BKS (%)” shows the average
deviation from the best known solutions (BKS). However,
as comparison of “Dev. BKS” is not always possible, the
percentage increase of the project duration above the critical
path (CP) is also indicated, “Incr. CP (%) In the last two
columns (“Equal (%)” and “Worse (%)”) of the table, the
percentages of instances which result in equal and worse
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TaBLE 3: Comparison of 0%-100% HR.

HR Total OPT

0% 304/552 55.07%
10% 322/552 58.33%
20% 337/552 61.05%
30% 324/552 58.70%
40% 326/552 59.06%
50% 323/552 58.51%
60% 320/552 57.97%
70% 313/552 56.70%
80% 319/552 57.79%
90% 317/552 57.43%
100% 322/552 58.33%

TaBLE 4: Comparison of algorithms on J30.

% Dev. BKS Incr. CP Worse Equal
This work” 0.96 13.45 26.45 73.30
Peteghem and Vanhoucke [16]  1.08 13.75  29.00 71.00
Chiang et al. [17] 2.60 N/A 2736 72.64
Jozefowska et al. [18] 11.76 N/A 7440 25.60

results than the best known solution are shown. The “Dev.
BKS” and “Incr. CP” are defined as listed in (13) and (14),
respectively. Consider the following:

Zieinstances (((ﬁtnessi B beSti) /beSti) X 100%)

Dev. BKS = -
|instances|

>

(13)

Incr. CP = Zieinstances (((ﬁtn.essi - CP,') /CPI) X 100%).
linstances|

(14)

Meanwhile, a comparison of the different algorithms on
the J10 to J20 datasets of PSPLIB was made. Table 5 displays
the simulation results of all instances of the J10 to J20 cases,
with average deviations provided. In the second part of the
table, the percentage of optimal solutions found for each case
is also presented.

Table 4 shows that the proposed scheme yields mean
deviation of 0.96% from the best known solutions, a 13.45%
average increase of the project duration above the minimal
critical path, and 73.3% of the best known solutions found for
solving the largest case, J30. Meanwhile, the proposed scheme
gives mean deviations of 0.01%, 0.07%, 0.15%, 0.15%, 0.34%,
and 0.35% from the optimal solutions for J10, J12, J14, J16, J18,
and J20, respectively, as listed in Table 4.

According to the simulation results, the proposed particle
swarm optimizer efficiently finds near optimal solutions to
the MRCPSP problem; hence, a real-world MDPSP example
(Figure 2) was further investigated. In this real-world exam-
ple, every task has different operation modes. For example,
task 4f claims 8-man-day operation, there are 4 modes for
task 4f, that is, 8/1, 4/2, 2/4 and 1/8 (man/day), corresponding
to modes 1, 2, 3, and 4, respectively. The available renewable

ITTTTTTTTI
Task/mode

(b) Task/mode assignment

FIGURE 3: Resulting Gantt chart and operation mode of the eight-
people work team project.

resource (manpower) in the project includes an eight-people
work team. Task 2b claims 16-man-day operation, there are
1/16, 2/8, 4/4, 8/2, and 16/1 (man-day) modes. However,
16/1 operation mode requires 16 people to finish the task;
it violates the available manpower resource. Therefore, 16/1
operation mode is excluded in the implementation. The
simulation results are shown in a Gantt chart (see Figure 3(a))
and the best operation mode (see Figure 3(b)). In Figure 3,
every task is associated with an operation mode and displayed
by task/mode; for example, 4d/M7 represents task 4d executes
in mode 7. These simulation results indicate that to finish
the network construction project with an eight-people work
team, the minimum completion time is 34 days. The project
manager can adjust the required manpower based on the
resulting schedule. Figures 4(a) and 5(a) display the resulting
Gant charts based on the nine-people and ten-people work
team alternatives. The corresponding project schedule can be
shrunk to 30 or 27 days, respectively, when one or two more
workers are involved into the work team. Restated, the project
can be completed ahead when workers increase. Moreover,
the corresponding operation mode for each task would be
different accordingly as displayed in Figures 4(b) and 5(b).

5. Conclusions

MRCPSP has been confirmed to be an NP-hard optimization
problem. The MRCPSP is treated as a two-part problem com-
prising the mode assignment subproblem and the activity
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TABLE 5: Comparison of algorithms on J10 to J20.

Dev. BKS (%)

Instance set

J10 2 J14 16 J18 120
This work” 0.01 0.07 0.15 0.15 0.34 0.35
Wauters et al. [19] 0.05 0.08 0.23 0.30 0.53 0.70
Peteghem and Vanhoucke [16] 0.01 0.09 0.22 0.32 0.42 0.57
Lova et al. [20] 0.06 0.17 0.32 0.44 0.63 0.87
Ranjbar et al. [10] 0.18 0.65 0.89 0.95 1.21 1.64
Jarboui et al. [11] 0.03 0.09 0.36 0.44 0.89 1.10
Chiang et al. [17] 0.34 N/A N/A N/A N/A 1.79
Alcaraz et al. [21] 0.24 0.73 1.00 1.12 1.43 1.91
Jozefowska et al. [18] 116 1.73 2.60 4.07 5.52 6.74
Optimal (%)
This work” 99.81 98.35 96.19 95.64 90.76 90.25
Peteghem and Vanhoucke [16] 99.63 98.17 94.56 92.00 88.95 85.74
Chiang et al. [17] 99.81 N/A N/A N/A N/A 88.27
Jozefowska et al. [18] 85.60 80.30 66.40 54.70 43.05 35.7

Start TTTTTTTT Start ITTTTTTTTI

/M2 Task/mode lcj IN\/H fo/MR Task/mode 1b/M1

(b) Task/mode assignment

FIGURE 4: Resulting Gantt chart and operation mode of the nine-
people work team project.

determination subproblem. Therefore, this study proposes a
dual PSO scheme based on the standard PSO to efficiently
solve the MRCPSP. In the proposed scheme, a random link
topology was suggested to help avoid slow and premature
convergence, and 4 random links yield the best results.
Meanwhile, the suggested dual PSO scheme also involves the

2a/M1

4a/M1
4b/M
4

0123456789111111111122222222
012345678901234567
Day

(a) Gantt chart

(b) Task/mode assignment

FIGURE 5: Resulting Gantt chart and operation mode of the ten-
people work team project.

LTRU and MSLK heuristics to generate good initial particle
positions. Moreover, the best heuristics rate (HR) 20% is
verified. The performance comparisons between different
algorithms are demonstrated in Tables 4 and 5. Table 4 shows
that the proposed scheme yields minimum Dev. BKS (0.96%)
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and minimum Incr. CP (13.45%), and maximum percentage
of the best known solutions can be found (73.30%) for the J30
case. Meanwhile, minimum Dev. BKS for J10 to J20 (0.01%,
0.07%, 0.15%, 0.15%, 0.34%, and 0.35%) is provided as listed in
Table 5. Accordingly, the experimental results demonstrated
that the proposed scheme for solving MRCPSP outperforms
other schemes in the literature. A real-world MDPSP was
successfully solved; the optimal operation mode for each task
is provided and the minimum completion time of the project
can be obtained as indicated in Figures 3, 4, and 5. These
resulting outcomes offer important information to project
managers to make adjustment on the project.
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