71,733 research outputs found

    Coherence methods in mapping AVO anomalies and predicting P-wave and S-wave impedances

    Get PDF
    Filters for migrated offset substacks are designed by partial coherence analysis to predict ‘normal’ amplitude variation with offset (AVO) in an anomaly free area. The same prediction filters generate localized prediction errors when applied in an AVO-anomalous interval. These prediction errors are quantitatively related to the AVO gradient anomalies in a background that is related to the minimum AVO anomaly detectable from the data. The prediction-error section is thus used to define a reliability threshold for the identification of AVO anomalies. Coherence analysis also enables quality control of AVO analysis and inversion. For example, predictions that are non-localized and/or do not show structural conformity may indicate spatial variations in amplitude–offset scaling, seismic wavelet or signal-to-noise (S/N) ratio content. Scaling and waveform variations can be identified from inspection of the prediction filters and their frequency responses. S/N ratios can be estimated via multiple coherence analysis. AVO inversion of seismic data is unstable if not constrained. However, the use of a constraint on the estimated parameters has the undesirable effect of introducing biases into the inverted results: an additional bias-correction step is then needed to retrieve unbiased results. An alternative form of AVO inversion that avoids additional corrections is proposed. This inversion is also fast as it inverts only AVO anomalies. A spectral coherence matching technique is employed to transform a zero-offset extrapolation or near-offset substack into P-wave impedance. The same technique is applied to the prediction-error section obtained by means of partial coherence, in order to estimate S-wave velocity to P-wave velocity (VS/VP) ratios. Both techniques assume that accurate well ties, reliable density measurements and P-wave and S-wave velocity logs are available, and that impedance contrasts are not too strong. A full Zoeppritz inversion is required when impedance contrasts that are too high are encountered. An added assumption is made for the inversion to the VS/VP ratio, i.e. the Gassmann fluid-substitution theory is valid within the reservoir area. One synthetic example and one real North Sea in-line survey illustrate the application of the two coherence methods

    Seismic Ray Impedance Inversion

    Get PDF
    This thesis investigates a prestack seismic inversion scheme implemented in the ray parameter domain. Conventionally, most prestack seismic inversion methods are performed in the incidence angle domain. However, inversion using the concept of ray impedance, as it honours ray path variation following the elastic parameter variation according to Snell’s law, shows the capacity to discriminate different lithologies if compared to conventional elastic impedance inversion. The procedure starts with data transformation into the ray-parameter domain and then implements the ray impedance inversion along constant ray-parameter profiles. With different constant-ray-parameter profiles, mixed-phase wavelets are initially estimated based on the high-order statistics of the data and further refined after a proper well-to-seismic tie. With the estimated wavelets ready, a Cauchy inversion method is used to invert for seismic reflectivity sequences, aiming at recovering seismic reflectivity sequences for blocky impedance inversion. The impedance inversion from reflectivity sequences adopts a standard generalised linear inversion scheme, whose results are utilised to identify rock properties and facilitate quantitative interpretation. It has also been demonstrated that we can further invert elastic parameters from ray impedance values, without eliminating an extra density term or introducing a Gardner’s relation to absorb this term. Ray impedance inversion is extended to P-S converted waves by introducing the definition of converted-wave ray impedance. This quantity shows some advantages in connecting prestack converted wave data with well logs, if compared with the shearwave elastic impedance derived from the Aki and Richards approximation to the Zoeppritz equations. An analysis of P-P and P-S wave data under the framework of ray impedance is conducted through a real multicomponent dataset, which can reduce the uncertainty in lithology identification.Inversion is the key method in generating those examples throughout the entire thesis as we believe it can render robust solutions to geophysical problems. Apart from the reflectivity sequence, ray impedance and elastic parameter inversion mentioned above, inversion methods are also adopted in transforming the prestack data from the offset domain to the ray-parameter domain, mixed-phase wavelet estimation, as well as the registration of P-P and P-S waves for the joint analysis. The ray impedance inversion methods are successfully applied to different types of datasets. In each individual step to achieving the ray impedance inversion, advantages, disadvantages as well as limitations of the algorithms adopted are detailed. As a conclusion, the ray impedance related analyses demonstrated in this thesis are highly competent compared with the classical elastic impedance methods and the author would like to recommend it for a wider application

    Orthogonality relations for fluid-structural waves in a 3-D rectangular duct with flexible walls

    Get PDF
    An exact expression for the fluid-coupled structural waves that propagate in a three-dimensional, rectangular waveguide with elastic walls is presented in terms of the non-separable eigenfunctions ψn(y,z). It is proved that these eigenfunctions are linearly dependent and that an eigenfunction expansion representation of a suitably smooth function f(y,z) converges point-wise to that function. Orthogonality results for the derivatives ψny(a,z) are derived which, together with a partial orthogonality relation for ψn(y,z), enable the solution of a wide range of acoustic scattering problems. Two prototype problems, of the type typically encountered in two-part scattering problems, are solved, and numerical results showing the displacement of the elastic walls are presented.Brunel Open Access Publishing Fun

    SHREC'16: partial matching of deformable shapes

    Get PDF
    Matching deformable 3D shapes under partiality transformations is a challenging problem that has received limited focus in the computer vision and graphics communities. With this benchmark, we explore and thoroughly investigate the robustness of existing matching methods in this challenging task. Participants are asked to provide a point-to-point correspondence (either sparse or dense) between deformable shapes undergoing different kinds of partiality transformations, resulting in a total of 400 matching problems to be solved for each method - making this benchmark the biggest and most challenging of its kind. Five matching algorithms were evaluated in the contest; this paper presents the details of the dataset, the adopted evaluation measures, and shows thorough comparisons among all competing methods

    Microscopic calculations of medium effects for 200-MeV (p,p') reactions

    Get PDF
    We examine the quality of a G-matrix calculation of the effective nucleon-nucleon (NN) interaction for the prediction of the cross section and analyzing power for 200-MeV (p,p') reactions that populate natural parity states in 16^{16}O, 28^{28}Si, and 40^{40}Ca. This calculation is based on a one-boson-exchange model of the free NN force that reproduces NN observables well. The G-matrix includes the effects of Pauli blocking, nuclear binding, and strong relativistic mean-field potentials. The implications of adjustments to the effective mass ansatz to improve the quality of the approximation at momenta above the Fermi level will be discussed, along with the general quality of agreement to a variety of (p,p') transitions.Comment: 36 pages, TeX, 18 figure

    On the universality of cross sections of hadron-hadron(nuclei) collisions at superhigh energies

    Full text link
    We analyze the pattern of the onset of complete absorption (the black limit) in the high energy hadron-hadron collisions. The black limit arises due to the hard and soft interaction dynamics as a function of the impact parameters b. Both hard and soft mechanisms provide universal dependence of the partial amplitude of the high energy elastic hadron- hadron scattering on the impact parameter b{\bf b} and result in the radius of interaction proportional to ln(s/s0)\ln (s/s_0). We find that with increase of the collision energies hard interactions lead to a faster increase of the impact parameter range where the partial wave amplitudes are approaching the unitarity limit. Consequently, we argue that at super high energies whenthe radius of hadronic interactions significantly exceeds static radii of the interacting hadrons(nuclei) the ratio of total cross sections of nucleon-nucleon, meson-nucleon, hadron-nucleus, nucleus-nucleus collisions becomes equal to one. The same universality is also expected for the structure functions of nuclei: F2A(x,Q2)/F2N(x,Q2)>1F_{2 A}(x,Q^2)/F_{2 N}(x,Q^2)> \to 1, at very small xx, and for the ratio >σgammaA/>σ>γp1>\sigma_{gamma A}/>\sigma_{>\gamma p}\to 1 at superhigh energies. We analyze how accounting for the energy dependence of the interaction radii changes the geometry of hadron-nucleus and nucleus-nucleus collisions, the energy dependence of total, absorption and inelastic cross sections, the distribution over the number of wounded nucleons in proton-nucleus collisions and find that these effects are noticeable already for the LHC energies and even more so close to the Greisen-Zatsepin-Kuzmin limit.Comment: 24 pages, 9 figure

    Energy Disaggregation Using Elastic Matching Algorithms

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)In this article an energy disaggregation architecture using elastic matching algorithms is presented. The architecture uses a database of reference energy consumption signatures and compares them with incoming energy consumption frames using template matching. In contrast to machine learning-based approaches which require significant amount of data to train a model, elastic matching-based approaches do not have a model training process but perform recognition using template matching. Five different elastic matching algorithms were evaluated across different datasets and the experimental results showed that the minimum variance matching algorithm outperforms all other evaluated matching algorithms. The best performing minimum variance matching algorithm improved the energy disaggregation accuracy by 2.7% when compared to the baseline dynamic time warping algorithm.Peer reviewedFinal Published versio

    A higher-order Boussinesq equation in locally non-linear theory of one-dimensional non-local elasticity

    Get PDF
    In one space dimension, a non-local elastic model is based on a single integral law, giving the stress when the strain is known at all spatial points. In this study, we first derive a higher-order Boussinesq equation using locally non-linear theory of 1D non-local elasticity and then we are able to show that under certain conditions the Cauchy problem is globally well-posed
    corecore