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In one space dimension, a non-local elastic model is based on a single integral law, giving the stress when
the strain is known at all spatial points. In this study, we first derive a higher-order Boussinesq equation
using locally non-linear theory of 1D non-local elasticity and then we are able to show that under certain
conditions the Cauchy problem is globally well-posed.
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1. Introduction

This article deals with both a derivation of a higher-order Boussinesq (HBq) equation

utt − uxx − uxxtt + βuxxxxtt= (g(u))xx (1.1)

for a 1D motion in an infinite medium with non-linear and non-local elastic properties and global well-
posedness of the Cauchy problem concerning this equation.

In one space dimension, a non-local elastic model is based on a single integral law, giving the
stress when the strain is known at all spatial points. There is a large literature concerning non-local
problems associated with the linear theory of non-local elasticity (seeEringen, 2002, and the references
cited therein). However, to our knowledge there are few studies considering the effect of non-linearity
for non-local problems resulting from non-local elasticity. Our objective here is to study one of such
problems, using a locally non-linear theory of the non-local elastic model based on a single integral law.

We first show that the propagation of longitudinal waves in an infinite elastic medium with non-
linear and non-local properties is described by the HBq equation (1.1). To this aim, in Section2 the basic
equations corresponding to the locally non-linear theory of 1D non-local elasticity are considered. The
only difference between these equations and the corresponding equations, considered in the literature,
of non-local elasticity is in the constitutive equation in which we replace Hooke’s law of linear theory of
non-local elasticity by a local stress–strain relationship derived from a local strain-energy density. The
associated non-local kernel is determined by matching the dispersion curve of linear harmonic waves
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with the dispersion curve available from lattice dynamics. This matching is performed by approximating
the fourth-order Taylor series expansion of the lattice dispersion relation about the zero wave number
by a rational function. This approximation is equivalent to defining the non-local kernel function as
Green’s function of a linear fourth-order differential operator with constant coefficients. Converting the
integro-partial-differential equation into a partial differential equation leads to the HBq equation (1.1),
one primary goal of the present analysis.

Section3 starts with a summary of results that were given in the literature about the Cauchy problem
for Boussinesq-type equations. We first establish local well-posedness of the Cauchy problem in the
Sobolev spaceHs with anys> 1/2 using the contraction mapping principle (Theorem2). In Theorem3,
we prove a regularity result in the space variable. In our main result, Theorem4, we are able to extend
the global existence to the HBq equation when the local strain-energy function satisfies a positivity
condition.

2. Derivation of the HBq equation

2.1 Background

The modelling of small-scale effects has become an interesting subject nowadays due to their appli-
cations to nanotechnology (see, for instance,Wanget al., 2006, and the references cited therein) and
it is expected that non-local continuum mechanics will play a useful role in researching small-scale
effects. The classical (or local) theory of elasticity assumes the existence of zero-range internal forces,
i.e. the stress at a reference point depends uniquely on the strain at the same point. Consequently, the
classical theory does not admit an intrinsic length scale. The applicability of the conventional theory is
limited at small scales. This is natural because the discrete structure of the material becomes increas-
ingly important at small scales and a length scale such as the lattice spacing between individual atoms
cannot be avoided. From a wave propagation point of view, the linear harmonic waves propagating in
an unbounded elastic medium are, contrary to lattice waves, non-dispersive. That is, the sole source of
dispersion in the classical theory of elasticity is the existence of the boundaries. In short, the classical
theory of elasticity does not include the ‘physical’ dispersion produced by the internal structure of the
medium, whereas it does include the ‘geometric’ dispersion resulting from the existence of the bound-
aries. The discrepancy between the lattice and the continuum approach stimulated research to develop
theories that admit long-range internal forces and consequently involve the ‘physical’ dispersion. One
of these generalized elasticity theories is called non-local elasticity theory in which the constitutive
equation is written as an integral law, i.e. the stress at a reference point is written as a functional of the
strain field at every point in the body. Rigorous foundations of the non-local continuum mechanics were
established in the last four decades (seeEringen, 2002, and the references cited therein).

2.2 Non-linear theory of 1D non-local elasticity

Here, we study propagation of plane longitudinal waves in a non-local elastic, homogeneous, isotropic
and locally non-linear medium. We assume that the plane waves propagate in theX1 ≡ X direction of a
rectangular Cartesian reference frameX1, X2 andX3. The only non-vanishing displacement component
at timet of a reference pointX is u1 = u(X, t). Assuming that there are no body forces, the equation
of motion is

ρ0utt = (S(uX))X, (2.1)
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whereρ0 is the mass density of the medium,S = S(uX) is the (non-local) stress and the subscripts
denote partial derivatives. The constitutive equation for the non-local stress is taken in a form

S(X, t) =
∫ ∞

−∞
α(|X − Y|)σ (Y, t)dY, σ (X, t) = W′(ε(X, t)), (2.2)

whereε = uX denotes the ‘strain’ at timet of a reference pointX, σ is the classical (local) stress,W
is the local strain-energy function,Y marks a generic point of the medium, withX being the point of
observation,α is a kernel function to be specified as the inverse of a linear differential operator below
and the symbol′ denotes differentiation. In the present 1D model, the kernel has the dimension of
1/length which implies that the present theory introduces a characteristic length scale to the equations,
which does not appear in the classical theory. We assume that the reference configuration is a stress-free
undistorted configuration:W(0) = W′(0) = 0. When the local strain-energy function is assumed to be
in the form ofW(ε) = (λ + 2µ)ε2/2, whereλ andµ are Lame constants, the above equations reduce
to those of the linear theory of 1D non-local elasticity (seeEringen, 2002).

2.3 Kernel function and lattice model

How to determine the kernel function is still an open question in non-local continuum mechanics. Within
the context of the present study, the most important issue is how to choose the kernel function so that the
Cauchy problem for the resulting non-linear equations is well-posed in appropriate function spaces. The
form of kernel functionα is to be determined by matching the linear dispersion relation of non-local
elasticity with that of the lattice dynamics. We first assume that the kernelα is the Green’s function
associated with a constant-coefficient linear partial differential operatorL (Lazaret al., 2006):

Lα(|X − Y|) = δ(X − Y),

whereδ denotes the Dirac delta function. Since the Green’s function inverts the effect of the differential
operator, the first equation in (2.2) can be written as

LS(X, t) = σ(X, t).

Using this result in (2.1), we obtain the equation of motion in the form

ρ0(Lu)t t = (W
′(uX))X, (2.3)

where we use the fact thatL is a differential operator with constant coefficients.
For the linearized equations of the present theory, consider plane harmonic wave solutions of the

form u(X, t) = Aexp(i(kX − ωt)), whereA is a constant andω andk are wave frequency and wave
number, respectively. Then, the linearized form of (2.3) yields the linear dispersion relation

ω2

c2k2
=

1

L(ik)
, (2.4)

wherec = [(λ+ 2µ)/ρ0]1/2 is the speed of longitudinal waves according to the classical (local) theory
of elasticity andL(ik) is the Fourier symbol ofL. As it is expected, the above equation shows that the
non-local theory of elasticity implies the dispersion of waves even in the absence of the boundaries.
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We now consider lattice waves propagating in a 1D monatomic chain with interparticle spacinga.
When the particles are connected by nearest-neighbour harmonic springs of equal strength, the corre-
sponding linear dispersion relation (Kittel, 1962, p. 143) is

ω2

c2k2
=
(

2

ka

)2

sin2
(

ka

2

)
, (2.5)

where the phase velocity atk = 0 is assumed to be equal toc. From the point of view of this study, an
important aspect of (2.5) is that there exists an upper bound forω.

One approach to determine the differential operator is to equate the right-hand sides of (2.4) and
(2.5) in the form

1

L(ik)
=
(

2

ka

)2

sin2
(

ka

2

)
, (2.6)

but this would makeL a pseudo-differential operator represented in the Fourier space byL(ik). A more
practical approach is based on the use of both the polynomial approximations toL(ik) (seeEringen,
2002) and the Taylor series expansions of both sides of (2.6) aboutk = 0. Note that the polynomial
approximations ofL(ik) imply an upper bound forω in (2.4). For the zeroth-order polynomial approx-
imation ofL(ik), i.e. for the limiting caseL(ik) = 1, we get the equations corresponding to the local
(classical) theory of elasticity. For the second-order polynomial approximation, we setL(ik) = 1+γ k2,
whereγ is a non-negative constant. This implies that the differential operatorL is in the formL(·) =
1− γ (·)X X. For the choice ofγ = a2/12, we note that (2.6) is satisfied up toO(a4) and that non-
locality is incorporated into the equations by the addition of a characteristic length scale, the lattice
spacinga. For the fourth-order polynomial approximation, we setL(ik) = 1+ γ1k2 + γ2k4, whereγ1
andγ2 are non-negative constants. This implies thatL(·) = (·)− γ1(·)X X + γ2(·)X X X X. For the choice
of γ1 = a2/12 andγ2 = a4/240, (2.6) is satisfied up toO(a6). For a more detailed discussion about
other choices ofγ1 andγ2, we refer the reader toEringen(2002) andLazaret al.(2006) where a similar
approach was used for the linear theory of 3D non-local elasticity.

2.4 Scaling and non-dimensionalization

We henceforth adopt the fourth-order linear partial differential operator given above as the inverse of
our integral operator. For convenience, we separate the quadratic part of the strain-energy function; this
corresponds to decomposing the derivative of the strain-energy function into its linear and non-linear
parts:

W(ε) = (λ+ 2µ)

[
1

2
ε2+ G(ε)

]
,

whereG(0) = G′(0) = 0. This implies that

W′(ε) = (λ+ 2µ)[ε + g(ε)], (2.7)

where

G(ε) =
∫ ε

0
g(s)ds, g(0) = 0. (2.8)
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Differentiating both sides of (2.3) with respect toX, we obtain the equation of motion expressed in
terms of strain:

ρ0(Lε)t t = (W
′(ε))X X

or explicitly

εt t − c2εX X − γ1εX Xtt + γ2εX X X Xtt= c2(g(ε))X X. (2.9)

Now, we define the dimensionless independent variables

x = X/
√
γ1, τ = ct/

√
γ1

and from now on, and for simplicity, we useu for ε andt for τ . Thus, (2.9) takes the form given in (1.1),
with β = γ2/γ

2
1 > 0.

We point out that (1.1) was derived inRosenau(1988) for the continuum limit of a dense chain of
particles with elastic couplings. Also, the conserved quantities of (1.1), corresponding to conservation
of mass, conservation of momentum and conservation of energy, were derived inRosenau(1988). The
same equation was used to model water waves with surface tension inSchneider & Wayne(2001).
We refer the reader toEringen(2002) andLazaret al. (2006) for the derivation of the linearized form
of (1.1) within the context of linear theory of 3D non-local elasticity.

3. Cauchy problem

In this section, we investigate the well-posedness of the Cauchy problem

utt − uxx − uxxtt + βuxxxxtt= g(u)xx, x ∈ R, t > 0, (3.1)

u(x, 0) = ϕ(x), ut (x, 0) = ψ(x). (3.2)

The global existence of the Cauchy problem for the generalized improved Boussinesq equation for
which β = 0 has been proved inChen & Wang(1999). Similarly, the global existence of the Cauchy
problem for the generalized double dispersion equation whereβ = 0 and a linear termuxxxx is in-
cluded has been proved inWang & Chen(2006). It is therefore natural to ask how the higher-order
dispersive term affects the global existence. In fact, the method presented inWang & Chen(2006) for
the generalized double dispersion equation was extended to the Cauchy problem (3.1–3.2) for the HBq
equation inDuruk (2006). Summarizing the results inDuruk (2006), we prove in this section the global
well-posedness when the non-linear term satisfies a positivity condition. Similar results also have been
derived independently inWang & Mu(2007).

In what follows,Hs = Hs(R) will denote theL2 Sobolev space onR. For theHs-norm, we use
the Fourier transform representation‖u‖2s =

∫
(1+ ξ2)s|û(ξ)|2 dξ . We use‖u‖∞ and‖u‖ to denote the

L∞- andL2-norm, respectively.

3.1 Linear problem

For the linear version of (3.1), we prove the following theorem.

THEOREM 1 Let s ∈ R, T > 0, ϕ ∈ Hs, ψ ∈ Hs andh ∈ L1([0, T ]; Hs−2). Then, the Cauchy
problem

utt − uxx − uxxtt + βuxxxxtt= (h(x, t))xx, x ∈ R, t > 0, (3.3)

u(x, 0) = ϕ(x), ut (x, 0) = ψ(x) (3.4)
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has a unique solutionu ∈ C1([0, T ], Hs) satisfying the estimate

‖u(t)‖s+ ‖ut (t)‖s 6 m(1+ T)

(
‖ϕ‖s+ ‖ψ‖s +

∫ t

0
‖h(τ )‖s−2 dτ

)
(3.5)

for 06 t 6 T , with some constantm> 2. Moreover, ifh ∈ C([0, T ]; Hs−2), thenu ∈ C2([0, T ], Hs).

Proof. Taking Fourier transform with respect to the space variable in (3.3) gives

λ2(ξ)ût t + ξ
2û = −ξ2ĥ,

û(ξ, 0) = ϕ̂(ξ), ût (ξ, 0) = ψ̂(ξ),

with λ2(ξ) = 1+ ξ2+ βξ4. This in turn yields the solution formula

û(ξ, t) = ϕ̂(ξ) cos

(
tξ

λ(ξ)

)
+ ψ̂(ξ)

λ(ξ)

ξ
sin

(
tξ

λ(ξ)

)
−
∫ t

0
sin

(
(t − τ )ξ

λ(ξ)

)
ξ

λ(ξ)
ĥ(ξ, τ )dτ.

Differentiating int and using| sinw| 6 |w|, we obtain the estimate (3.5) from which the proof follows.
�

3.2 Local results for the non-linear problem

In this subsection, we prove local well-posedness of the non-linear problem (3.1–3.2) with a fixed-point
technique for data inHs with s> 1

2. We utilize the following lemmas inWang & Chen(2006).

LEMMA 1 Let f ∈ C[s]+1(R), s > 0, with f (0) = 0. Then, for anyM > 0 there is some constant
K1(M) such that for allu ∈ Hs ∩ L∞ with ‖u‖∞ 6 M , we have

‖ f (u)‖s 6 K1(M)‖u‖s.

LEMMA 2 Let f ∈ C[s]+1(R), s> 0. Then, for anyM > 0 there is some constantK2(M) such that for
all u, v ∈ Hs ∩ L∞ with ‖u‖∞ 6 M , ‖v‖∞ 6 M and‖u‖s 6 M , ‖v‖s 6 M , we have

‖ f (u)− f (v)‖s 6 K (M)‖u− v‖s.

REMARK 1 Although Lemmas1 and2 look quite similar, easy examples show that the extra bounds on
the Hs-norm in Lemma2 are necessary. The proof for Lemma1 can be found inWang & Chen(2006)
and many other sources, butWang & Chen(2006) incorrectly states Lemma2 without theHs bounds.
The proof of Lemma2 as we state is quite easy along the lines of the proof for Lemma1.

THEOREM 2 Let s > 1/2, ϕ ∈ Hs, ψ ∈ Hs andg ∈ Ck(R) with g(0) = 0 andk = max{[s− 1], 1}.
Then, there is someT > 0 such that the non-linear Cauchy problem is well-posed with solution
u ∈ C2([0, T ], Hs) satisfying

max
t∈[0,T ]

(‖u(t)‖s+ ‖ut (t)‖s) 6 2m(‖φ‖s+ ‖ψ‖s).

Proof. Set‖ϕ‖s + ‖ψ‖s = A and let

X(T) =
{
u ∈ C1([0, T ], Hs): ‖u‖X(T) = max

t∈[0,T ]
(‖u(t)‖s+ ‖ut (t)‖s) 6 2m A

}
,

whereT > 0 is to be determined later.
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Forω ∈ (T), we consider the problem

utt − uxx − uxxtt + βuxxxxtt= g(ω)xx, (3.6)

u(x, 0) = ϕ(x), ut (x, 0) = ψ(x). (3.7)

We see that forg(ω(x, t)) = h(x, t), this problem reduces to the linearized problem in Theorem1
in Section3.1, hence it has a unique solutionu(x, t). We defineS(ω) = u(x, t). Clearly,S denotes
the map which carriesω into the unique solution of (3.6) and (3.7). Our aim is again to show that for
appropriately chosenT andA, S has a unique fixed point inX(T).

The estimate (3.5) implies that

‖u(t)‖s+ ‖ut (t)‖s 6 m(1+ T)

(
‖ϕ‖s+ ‖ψ‖s+

∫ t

0
‖g(ω(τ))‖s−2 dτ

)
. (3.8)

So,

‖S(ω)‖X(T) = max
t∈[0,T ]

(‖u(t)‖s+ ‖ut (t)‖s)

6m(1+ T)

(
A+ T

(
max

t∈[0,T ]
‖g(ω(t))‖s−2

))
.

Since‖w(t)‖∞ 6 d‖w(t)‖s 6 2mdA, Lemma1 holds:

‖g(ω(t))‖s−2 6 K1‖ω(t)‖s−2 6 K1‖ω‖X(T),

whereK1 = K1(2mdA) is a constant dependent onA. Then,

‖S(ω)‖X(T) 6m(1+ T)(A+ T K1‖ω‖X(T))

6m A(1+ T)(1+ T K12m).

For sufficiently smallT , (1+ T)(1+ T K12m) 6 2 so we have‖S(ω)‖X(T) 6 2m A, in other words
S(w) ∈ X(T).

Now, letω, ω̄ ∈ X(T) andu = S(ω), ū = S(ω̄). SetV = u− ū andW = ω − ω̄. Then,V satisfies

Vtt − Vxx − Vxxtt + βVxxxxtt= (g(ω)− g(ω̄))xx,

V(x, 0) = Vt (x, 0) = 0.

Hence, by (3.5) and Lemma2, there is some constantK2 depending onA so that

‖V(t)‖s+ ‖Vt (t)‖s6m(1+ T)
∫ t

0
‖g(ω(τ))− g(ω̄(τ ))‖s−2 dτ

6m(1+ T)T K2 max
t∈[0,T ]

‖W(t)‖s.

So,

‖V‖X(T) 6 m(1+ T)T K2‖W‖X(T).
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If we further chooseT small enough so thatm(1+ T)T K2 6 1
2, S becomes contractive. By the

Banach fixed-point theorem, we obtain local existence and uniqueness.
We now look at continuous dependence on the initial data. Letu1 and u2 be solutions of (3.1–3.2)

with initial dataϕi , ψi (i = 1, 2), satisfying‖ui ‖s 6 A. Then, again the estimates of Theorem1 and
Lemma2 yield

‖u1(t)− u2(t)‖s 6 m(1+ T)

(
‖ϕ1− ϕ2‖s+ ‖ψ1− ψ2‖s+

∫ t

0
‖g(u1(τ ))− g(u2(τ ))‖s−2 dτ

)

and

‖g(u1(τ ))− g(u2(τ ))‖s−2 6 K2‖u1(τ )− u2(τ )‖s.

So,

‖u1(t)− u2(t)‖s 6 m(1+ T)

(
‖ϕ1− ϕ2‖s+ ‖ψ1− ψ2‖s+ K2

∫ t

0
‖u1(τ )− u2(τ )‖s dτ

)
.

Gronwall’s lemma implies that

‖u1(t)− u2(t)‖s 6 m(1+ T)(‖ϕ1− ϕ2‖s+ ‖ψ1− ψ2‖s)e
m(1+T)K2t . (3.9)

This completes the proof of the theorem.
Using standard techniques, the solution can be extended to the maximal interval [0, Tmax), where

the maximal time is characterized as follows. IfTmax<∞, we have

lim sup
t→T−max

[‖u(t)‖s+ ‖ut (t)‖s] = ∞. (3.10)

We can further characterize blow-up by

lim sup
t→T−max

‖u(t)‖∞ = ∞. (3.11)

Sinces > 1
2, we have‖u(t)‖∞ 6 d‖u(t)‖s so if (3.11) holds so thus (3.10). Conversely, ifM =

lim supt→T−max
‖u(t)‖∞ <∞, by Lemma1 and (3.8) we have fort < T

‖u(t)‖s+ ‖ut (t)‖s 6 m(1+ T)

(
‖ϕ‖s + ‖ψ‖s+ K1(M)

∫ t

0
‖(ω(τ))‖s−2 dτ

)

which implies that lim supt→T−max
[‖u(t)‖s + ‖ut (t)‖s] <∞ by Gronwall’s Lemma. �

REMARK 2 The condition (3.11) in particular says thatTmax does not depend ons for s > 1/2. The
estimate in Theorem1 allows us to prove the following result on thex-regularity of the solution.

THEOREM 3 Let ϕ ∈ Hs, ψ ∈ Hs andg ∈ Ck(R) with g(0) = 0 andk = max{[s− 1], 1}. Suppose
further that for some 1/2 < r < s and T > 0, we have a solutionu ∈ C2([0, T ], Hr ). Thenu ∈
C2([0, T ], Hs).

Proof. Let r ∗ = min(r + 2, s). Then, (3.8) implies

‖u(t)‖r ∗ + ‖ut (t)‖r ∗ 6 m(1+ T)

(
‖ϕ‖s+ ‖ψ‖s+ K

∫ t

0
‖u(τ )‖r dτ

)
,

so thatu ∈ C2
(
[0, T ], Hr ∗

)
. Continuing inductively we prove the theorem. �
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3.3 Global existence

As we have seen above, looking for the global solution is equivalent to showing that there is no blow-up.
We first derive an energy identity. We use the operatorΛ−αw = F−1[|ξ |−α Fw]. Then,

Λ−2utt + u+ utt − βuxxtt = −g(u).

Multiplying both sides withut and integrating overR with respect tox, we get

1

2

d

dt

(
‖Λ−1ut‖

2+ ‖u‖2+ ‖ut‖
2+ β‖uxt‖

2+ 2
∫

R

(∫ u

0
g(p)dp

)
dx

)
= 0.

Thus, the following lemma has been proved.

LEMMA 3 Suppose thatg ∈ C(R), G(u) =
∫ u

0 g(p)dp, ϕ ∈ H1, ψ ∈ H1, Λ−1ψ ∈ H1 and
G(ϕ) ∈ L1. Then, for the solutionu(x, t) of problem (3.1–3.2), we have the energy identity

E(t) = ‖Λ−1ut‖
2+ ‖u‖2+ ‖ut‖

2+ β‖uxt‖
2+ 2

∫ ∞

−∞
G(u)dx = E(0) (3.12)

for all t > 0 for which the solution exists.

THEOREM 4 Assume thats > 1, g ∈ Cs+1(R), ϕ ∈ Hs, ψ ∈ Hs, Λ−1ψ ∈ Hs, G(ϕ) ∈ L1 and
G(u) > 0 for all u ∈ R, then the problem (3.1–3.2) has a unique global solutionu ∈ C2([0,∞), Hs).

Proof. By Remark2 following Theorem2, it suffices to prove the cases = 1. If G(u) > 0, then from
(3.12)

‖Λ−1ut‖
2+ ‖u‖2+ ‖ut‖

2+ β‖uxt‖
2 6 E(0) <∞.

Hence,H1-norm ofut , i.e.‖ut‖2+‖uxt‖2, is bounded and does not blow-up in finite time. We need an
estimate for‖u(t)‖H1; so we writeu(x, t) as an integral equation:

u(x, t) = ϕ(x)+
∫ t

0
ut (x, τ )dτ.

Then,

‖u(t)‖H1 6 ‖ϕ‖H1 +
∫ t

0
‖ut (τ )‖H1 dτ 6 ‖ϕ‖H1 + t E(0).

Thus, for any finiteT > 0,

lim sup
t→T−

[‖u(t)‖H1 + ‖ut (t)‖H1] <∞.

We want to add some concluding remarks. �

REMARK 3 Considering thatu in our Cauchy problem (corresponding toε(X, t) of Section2) repre-
sents, up to scaling, the space derivative of displacement, the artificial looking hypothesisΛ−1ψ ∈ Hs

of Theorem4 is in fact Hs regularity of the initial velocity.

REMARK 4 Following the proof inWang & Chen(2006), the positivity assumptionG(u) > 0 in
Theorem4 can be weakened toG(u) > −ku2 which is equivalent tog′(u) being bounded from below.
This extension covers all odd-degree non-linearitiesg(u).
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REMARK 5 Finally, we want to look at continuous dependence on the initial data. In Theorem2, we
prove this for smallt . When the assumptions of Theorem4 hold, we can extend the result to arbitrary
times as follows: the key is noting that the inequality (3.9) holds whenever we have bounds on‖u(t)‖∞
and‖u(t)‖s depending on the initial data. Fors= 1, the proof of Theorem4 provides such a bound for
‖u(t)‖1 and hence for‖u(t)‖∞ in terms ofE(0). For s > 1 since we have anH1 thus anL∞ bound
on u(t), we repeat the proof of the equivalence of two characterizations ofTmax ((3.10) and (3.11)) and
obtain a bound on‖u(t)‖s.
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