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In one space dimension, a non-local elastic model is based on a single integral law, giving the stress when
the strain is known at all spatial points. In this study, we first derive a higher-order Boussinesq equation
using locally non-linear theory of 1D non-local elasticity and then we are able to show that under certain
conditions the Cauchy problem is globally well-posed.
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1. Introduction

This article deals with both a derivation of a higher-order Boussinesq (HBq) equation

Utt — Uxx — Uxxtt + BUxxxxtt = (9(U))xx (1.1)

for a 1D motion in an infinite medium with non-linear and non-local elastic properties and global well-
posedness of the Cauchy problem concerning this equation.

In one space dimension, a non-local elastic model is based on a single integral law, giving the
stress when the strain is known at all spatial points. There is a large literature concerning non-local
problems associated with the linear theory of non-local elasticitysegen 2002 and the references
cited therein). However, to our knowledge there are few studies considering the effect of non-linearity
for non-local problems resulting from non-local elasticity. Our objective here is to study one of such
problems, using a locally non-linear theory of the non-local elastic model based on a single integral law.

We first show that the propagation of longitudinal waves in an infinite elastic medium with non-
linear and non-local properties is described by the HBq equatidh {To this aim, in Sectiof the basic
equations corresponding to the locally non-linear theory of 1D non-local elasticity are considered. The
only difference between these equations and the corresponding equations, considered in the literature,
of non-local elasticity is in the constitutive equation in which we replace Hooke’s law of linear theory of
non-local elasticity by a local stress—strain relationship derived from a local strain-energy density. The
associated non-local kernel is determined by matching the dispersion curve of linear harmonic waves
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with the dispersion curve available from lattice dynamics. This matching is performed by approximating
the fourth-order Taylor series expansion of the lattice dispersion relation about the zero wave number
by a rational function. This approximation is equivalent to defining the non-local kernel function as
Green'’s function of a linear fourth-order differential operator with constant coefficients. Converting the
integro-partial-differential equation into a partial differential equation leads to the HBq equéatipn (

one primary goal of the present analysis.

Section3 starts with a summary of results that were given in the literature about the Cauchy problem
for Boussinesqg-type equations. We first establish local well-posedness of the Cauchy problem in the
Sobolev spacel s with anys > 1/2 using the contraction mapping principle (Theor®min Theorens,
we prove a regularity result in the space variable. In our main result, Thegrenm are able to extend
the global existence to the HBqg equation when the local strain-energy function satisfies a positivity
condition.

2. Derivation of the HBq equation
2.1 Background

The modelling of small-scale effects has become an interesting subject nowadays due to their appli-
cations to nanotechnology (see, for instaidnget al, 2006 and the references cited therein) and

it is expected that non-local continuum mechanics will play a useful role in researching small-scale
effects. The classical (or local) theory of elasticity assumes the existence of zero-range internal forces,
i.e. the stress at a reference point depends uniquely on the strain at the same point. Consequently, the
classical theory does not admit an intrinsic length scale. The applicability of the conventional theory is
limited at small scales. This is natural because the discrete structure of the material becomes increas-
ingly important at small scales and a length scale such as the lattice spacing between individual atoms
cannot be avoided. From a wave propagation point of view, the linear harmonic waves propagating in
an unbounded elastic medium are, contrary to lattice waves, non-dispersive. That is, the sole source of
dispersion in the classical theory of elasticity is the existence of the boundaries. In short, the classical
theory of elasticity does not include the ‘physical’ dispersion produced by the internal structure of the
medium, whereas it does include the ‘geometric’ dispersion resulting from the existence of the bound-
aries. The discrepancy between the lattice and the continuum approach stimulated research to develop
theories that admit long-range internal forces and consequently involve the ‘physical’ dispersion. One
of these generalized elasticity theories is called non-local elasticity theory in which the constitutive
equation is written as an integral law, i.e. the stress at a reference point is written as a functional of the
strain field at every point in the body. Rigorous foundations of the non-local continuum mechanics were
established in the last four decades (Eeegen 2002 and the references cited therein).

2.2 Non-linear theory of 1D non-local elasticity

Here, we study propagation of plane longitudinal waves in a non-local elastic, homogeneous, isotropic
and locally non-linear medium. We assume that the plane waves propagateXin#h& direction of a
rectangular Cartesian reference frag X, and X3. The only non-vanishing displacement component

at timet of a reference poinK is u; = u(X,t). Assuming that there are no body forces, the equation

of motion is

poltt = (S(Ux))x, (2.1)
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where pg is the mass density of the mediui®,= S(ux) is the (non-local) stress and the subscripts
denote partial derivatives. The constitutive equation for the non-local stress is taken in a form

S(X, 1) = /00 a(X =YDa (Y, t)dY, o (X, t) =W (e(X,1)), (2.2)

wheree = ux denotes the ‘strain’ at timeof a reference poinX, o is the classical (local) stresg/

is the local strain-energy functiolY, marks a generic point of the medium, wikhbeing the point of
observationg is a kernel function to be specified as the inverse of a linear differential operator below
and the symbol denotes differentiation. In the present 1D model, the kernel has the dimension of
1/length which implies that the present theory introduces a characteristic length scale to the equations,
which does not appear in the classical theory. We assume that the reference configuration is a stress-free
undistorted configurationV(0) = W’(0) = 0. When the local strain-energy function is assumed to be

in the form of W(e) = (1 + 2u)e?/2, wherel and u are Lame constants, the above equations reduce

to those of the linear theory of 1D non-local elasticity (Eemgen 2002).

2.3 Kernel function and lattice model

How to determine the kernel function is still an open question in non-local continuum mechanics. Within
the context of the present study, the most important issue is how to choose the kernel function so that the
Cauchy problem for the resulting non-linear equations is well-posed in appropriate function spaces. The
form of kernel functioru is to be determined by matching the linear dispersion relation of non-local
elasticity with that of the lattice dynamics. We first assume that the keriglthe Green’s function
associated with a constant-coefficient linear partial differential opetatbazaret al, 2009:

La(IX =Y]) =d(X=Y),

whered denotes the Dirac delta function. Since the Green’s function inverts the effect of the differential
operator, the first equation i2.@) can be written as

LS(X,t) = (X, 1).
Using this result inZ.1), we obtain the equation of motion in the form

po(Lu)t = (W' (ux))x, (2.3)

where we use the fact thatis a differential operator with constant coefficients.

For the linearized equations of the present theory, consider plane harmonic wave solutions of the
formu(X,t) = Aexpi(kX — wt)), whereA is a constant and andk are wave frequency and wave
number, respectively. Then, the linearized forma8) yields the linear dispersion relation

2
10} 1
— 2.4

c2k2  L(ik)’ (24)

wherec = [(1 + 2u)/po]Y/? is the speed of longitudinal waves according to the classical (local) theory

of elasticity andL(ik) is the Fourier symbol of. As it is expected, the above equation shows that the
non-local theory of elasticity implies the dispersion of waves even in the absence of the boundaries.
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We now consider lattice waves propagating in a 1D monatomic chain with interparticle spacing
When the particles are connected by nearest-neighbour harmonic springs of equal strength, the corre-
sponding linear dispersion relatioKiftel, 1962 p. 143) is

2 2
10} 2 . ka
K2 <ka) S'nz( 2 ) (25)
where the phase velocity kt= 0 is assumed to be equaldoFrom the point of view of this study, an

important aspect of5) is that there exists an upper bound éar
One approach to determine the differential operator is to equate the right-hand si@e$ ah(

(2.5 in the form
1 2\? ., (ka
LK) ~ (ka) S'”z( 2 ) (2.6)

but this would makeC a pseudo-differential operator represented in the Fourier spatéky A more
practical approach is based on the use of both the polynomial approximatidi{gjo(seeEringen
2002 and the Taylor series expansions of both side2d) (@aboutk = 0. Note that the polynomial
approximations ofZ(ik) imply an upper bound fa® in (2.4). For the zeroth-order polynomial approx-
imation of L(ik), i.e. for the limiting caseC(ik) = 1, we get the equations corresponding to the local
(classical) theory of elasticity. For the second-order polynomial approximation, wigikgt= 1+ y k?,
wherey is a non-negative constant. This implies that the differential operaisrin the formL(:) =

1 — y (-)xx. For the choice of = a?/12, we note that2.6) is satisfied up tad(a*) and that non-
locality is incorporated into the equations by the addition of a characteristic length scale, the lattice
spacinga. For the fourth-order polynomial approximation, we £gik) = 1 + y1k? + yok*, wherey
andy, are non-negative constants. This implies tha&) = (1) — y1(-)xx + y2(-)x x x x- For the choice

of y1 = a2/12 andy, = a*/240, @.6) is satisfied up t@(af). For a more detailed discussion about
other choices of1 andy,, we refer the reader tBringen(2002 andLazaret al. (2006 where a similar
approach was used for the linear theory of 3D non-local elasticity.

2.4 Scaling and non-dimensionalization

We henceforth adopt the fourth-order linear partial differential operator given above as the inverse of
our integral operator. For convenience, we separate the quadratic part of the strain-energy function; this
corresponds to decomposing the derivative of the strain-energy function into its linear and non-linear
parts:

W(e) = (4 + 2u) [%62 + G(e)] ,
whereG(0) = G’(0) = 0. This implies that
W'(e) = (4 + 2u)[e + g(e)], (2.7)
where

G(e) :/o g(s)ds, g(0) =0. (2.8)
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Differentiating both sides of2(.3) with respect toX, we obtain the equation of motion expressed in
terms of strain:

po(Let = (W'(€))xx
or explicitly
€t — CPexx — P1€xxtt + 726X x x xtt = C2(9(€)) x x. (2.9)
Now, we define the dimensionless independent variables

Xx=X/Jy1, ©=ct//y1
and from now on, and for simplicity, we usdor ¢ andt for z. Thus, @.9) takes the form given inl(1),
with g = y2/yf > 0.

We point out that 1.1) was derived irRosenay(1988 for the continuum limit of a dense chain of
particles with elastic couplings. Also, the conserved quantitie4 4j,(corresponding to conservation
of mass, conservation of momentum and conservation of energy, were deriRedénay(1988. The
same equation was used to model water waves with surface tenschireider & Wayn&2007).
We refer the reader tBringen(2002 andLazaret al. (2006 for the derivation of the linearized form
of (1.2) within the context of linear theory of 3D non-local elasticity.

3. Cauchy problem
In this section, we investigate the well-posedness of the Cauchy problem

Utt — Uxx — Uxxtt + BUxxxxtt = dWxx, X eR, t >0, (3.1)

ux,0) =¢(x), Uu(x,0) =y (x). 3.2)

The global existence of the Cauchy problem for the generalized improved Boussinesq equation for
which g = 0 has been proved iGhen & Wang(1999. Similarly, the global existence of the Cauchy
problem for the generalized double dispersion equation whete 0 and a linear ternuyyxx is in-
cluded has been proved iWang & Chen(2006. It is therefore natural to ask how the higher-order
dispersive term affects the global existence. In fact, the method presentéahion & Chen(2006 for
the generalized double dispersion equation was extended to the Cauchy praliiedr?) for the HBq
equation inDuruk (2006. Summarizing the results iDuruk (2006, we prove in this section the global
well-posedness when the non-linear term satisfies a positivity condition. Similar results also have been
derived independently iWang & Mu (2007).

In what follows, HS = HS(R) will denote thel.? Sobolev space oR. For theHS-norm, we use
the Fourier transform representatipm|2 = [(1+ &2)S|0(¢)|? d&. We usel|ul|« and||ul| to denote the
L°°- andL2-norm, respectively.

3.1 Linear problem

For the linear version of3(1), we prove the following theorem.

THEOREM1 Lets € R, T > 0,9 € HS, w € HSandh e L1([0, T]; H>?). Then, the Cauchy
problem

Ugt — Uxx — Uxxtt + Suxxxxtt = (N(X, t)xx, X eR, t >0, (3-3)

ux,0) =e(x), ux,0)=wx (3.4)
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has a unique solution € C1([0, T], HS) satisfying the estimate

t
Tu®lls + llug®lls < MA+T) (Ilfﬂlls + lylls +/0 Ih(@)lls—2 df) (3.5)

for0 <t < T, with some constamh > 2. Moreover, ith € C([0, T]; H3~2), thenu € C2([0, T], HS).
Proof. Taking Fourier transform with respect to the space variabl8.18) gives
22(E) 0y + &20 = —E2h,
00 =), &0 =p(©),
with 12(¢) = 1+ &2 + p&4. This in turn yields the solution formula

) té &) L ((t—f)é)ih
fEH = “’(5)“’5(1(@)+ Vi) sm(l(é)) /os'” @ ) e ndr

Differentiating int and using sinw| < |w|, we obtain the estimat& () from which the proof follows.
O

3.2 Local results for the non-linear problem

In this subsection, we prove local well-posedness of the non-linear proBl&s3(2) with a fixed-point
technique for data it S with s > 1. We utilize the following lemmas ilVang & Chen(2006.

LEMMA 1 Let f e CISHL(R), s > 0, with f(0) = 0. Then, for anyM > O there is some constant
K1(M) such that for all € H® N L with ||u|l,, < M, we have

IfWlls < Ka(M)ljulls.

LEMMA 2 Let f e CSTL(R), s > 0. Then, for anyM > 0 there is some constakk (M) such that for
allu,v € HSN L% with [[ullo < M, [[v]loo < M and|ulls < M, |lv]ls < M, we have

) - f@ls < KIM)u—ols.

REMARK 1 Although Lemmad and?2 look quite similar, easy examples show that the extra bounds on
the HS-norm in Lemma2 are necessary. The proof for Lemrhaan be found ilWang & Chen(2006

and many other sources, Bivang & Chen(2006 incorrectly states Lemm2without theHS bounds.

The proof of Lemma as we state is quite easy along the lines of the proof for Lethma

THEOREM?2 Lets > 1/2,¢ € HS, y € HS andg € CX(R) with g(0) = 0 andk = max{[s — 1], 1}.
Then, there is som& > 0 such that the non-linear Cauchy problem is well-posed with solution
u e C2([0, T], HS) satisfying

pax (IIU(t)IIs + ut@®lls) < 2m(li@lls + v lls)-

Proof. Set|lg|ls + |[wlls = Aand let
X(T) = {u e CX(0, T], H%): lullx(r) = Max (||U(t)||s + lug®)lls) < 2mA},

whereT > 0 is to be determined later.
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Forw e (T), we consider the problem
Utt — Uxx — Uxxtt + SUxxxxtt = 9(@)xx, (3.6)
ux,0 =), Ut(x,0 = y(X). (3.7)

We see that fog(w(x,t)) = h(x,t), this problem reduces to the linearized problem in Theotem
in Section3.1, hence it has a unique solutiargx, t). We defineS(w) = u(x,t). Clearly,S denotes
the map which carries into the unique solution of3(6) and @.7). Our aim is again to show that for
appropriately chosem andA, S has a unique fixed point iX (T).

The estimate3.5) implies that

t
lu®lls + ug®]ls < ML+ T) (II(/)IIs + llwlls +/O 19(c0(2))ls—2 dr) . (3.8)
So,

IS (@)lIx(T) =tg10&%<](llu(t)lls + lut®lls)

sm@+T) (A+ T (té?ofl%(] IIQ(w(t))lls—z)) :
Sincel|lw(t)]lco < dlw(t)|ls < 2mdA, Lemmal holds:

9@ ls-2 < Killo®)lls-2 < Killolix ),
whereK; = K1(2mdA) is a constant dependent @n Then,

IS@)lxTy <ML+ T)(A+ TKillwllxT))

<MAL+ T)(1+ TKi2m).

For sufficiently smallT, (14 T)(1 4 T Ky2m) < 2 so we have|S(w)llxT) < 2mA, in other words
S(w) € X(T).

Now, letw, @ € X(T) andu = S(w), 0 = S(@). SetV = u — 0 andW = o — @. Then,V satisfies

Vit — Vxx = Vxxtt + BVxxxxtt = (9(@) — 9(@))xx»
V(x,0) = V;(x,0) =0.

Hence, by 8.5 and Lemma, there is some constalt, depending orA so that
t
IV®lls + Vi ()lls <m(1+ T)/0 19(w (7)) — g(@(7)) [ls-2dr
< .
<M1+ T)TKz ax IW®)Is

So,
IVIixay < m@A+ T)TKIWlix -
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If we further choosel' small enough so thah(1 + T)T Kz < % S becomes contractive. By the
Banach fixed-point theorem, we obtain local existence and uniqueness.

We now look at continuous dependence on the initial dataukeind u, be solutions of 3.1-3.2)
with initial datagi, wi (i = 1, 2), satisfying||ui||s < A. Then, again the estimates of Theor&rand
Lemmaz2 yield

t
Jug(t) —uz2(t)lls < ML+ T) (”(/’1 — ¢2lls + w1 — walls +/o 19(u1(z)) — g(u2(7)) lls-2 df)

and
lg(ui(z)) — g(u2(7))lls-2 < Kzllur(r) — uz(7)lls.
So,

t
lus(®) —u2(t)lls <M1+ T) (”(01 = @2lls + lly1 = yalls + Kz/o lus(z) — u2(7)lls df) :

Gronwall's lemma implies that
lua(t) = u2®lls < ML+ T)(llp1 — p2lls + llya — palls)e DKL, (3.9)

This completes the proof of the theorem.
Using standard techniques, the solution can be extended to the maximal intefiyah{Q where
the maximal time is characterized as followsT}{ax < oo, we have

limsudflu®)lls + flue(t)lls] = oco. (3.10)

t— Tmax
We can further characterize blow-up by

limsupllu(t)leo = o0. (3.11)

t— Tmax

Sinces > % we have|lu(t) |l < dju(t)|ls so if (3.11) holds so thus3.10. Conversely, ifM =
lim SUR 7 lu®)lloo < o0, by Lemmal and @.8) we have fott < T

t
Tu®lls + lut (O fls < ML+ T) (II(/}IIs + llwlls + Kl(l\/l)/0 (@ (7)) lls—2 df)

which implies that lim SUPHTn;aX[”U(t)”s + JJut()|ls] < oo by Gronwall’'s Lemma. O

REMARK 2 The condition 8.11) in particular says thalmax does not depend asifor s > 1/2. The
estimate in Theorerh allows us to prove the following result on tixeregularity of the solution.

THEOREM3 Letp € HS, y € HS andg € CX(R) with g(0) = 0 andk = max{[s — 1], 1}. Suppose
further that for some 22 < r < sandT > 0, we have a solutiom € C2([0, T], H"). Thenu €
C2([0, T], H®).

Proof. Letr* = min(r + 2, s). Then, 8.8) implies
t
Tu®lles + Nlug@llr- < ML+ T) (I|¢I|s+ lwlls + K/o Tu(z) llr dr) ,

so thatu e C2([0, T], H""). Continuing inductively we prove the theorem. O
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3.3 Global existence

As we have seen above, looking for the global solution is equivalent to showing that there is no blow-up.
We first derive an energy identity. We use the operatof w = F~1[|¢|~* Fw]. Then,

A72Ut + U+ Ut — Buyxee = —g(U).
Multiplying both sides withu; and integrating oveR with respect tok, we get
1d -1, 112 2 2 2 !
>gp AUl Ul o+ ue] + Blluxell” + 2/ / g(pydp ) dx ) =0.
t R \Jo
Thus, the following lemma has been proved.

LEMMA 3 Suppose thag € C(R), G(u) = [; 9(p)dp, ¢ € HY, w e HY, 471y e HY and
G(p) € LL. Then, for the solutiomi(x, t) of problem 8.1-3.2), we have the energy identity

o0
Et) = 47 uell® + lull® 4 Jugll® + Blluxdll® + 2/ G(u)dx = E(0) (3.12)
—00

for allt > 0O for which the solution exists.

THEOREM 4 Assume thas > 1,9 € CStY(R), ¢ € HS, y € HS, 471y € HS, G(p) € L' and
G(u) > 0 for allu € R, then the problem3.1-3.2) has a unique global solutiane C2([0, cc), HS).

Proof. By Remark2 following Theorem2, it suffices to prove the case= 1. If G(u) > 0, then from
(3.12
A7 e + ull? + flug)? + Blluxdll® < E(0) < oo,

Hence,H1-norm ofuy, i.e. ||ut||2 + ||uxt||2, is bounded and does not blow-up in finite time. We need an
estimate forju(t)| y1; SO we writeu(x, t) as an integral equation:

t

ux,t) = p(x) +/ ut (X, 7)dz.

0

Then,
t
Tu® iy < lellye +/O U (D)1 dr < llgllys + tE(0).

Thus, for any finitel > 0,

lim sup{[u(t) Iy + lue®)[I1] < oo.
t>T-

We want to add some concluding remarks. O

REMARK 3 Considering thati in our Cauchy problem (correspondingd@X, t) of Section2) repre-
sents, up to scaling, the space derivative of displacement, the artificial looking hypothésise HS
of Theoremd is in fact HS regularity of the initial velocity.

REMARK 4 Following the proof inWang & Chen(2006, the positivity assumptioi(u) > 0 in
Theorem4 can be weakened B (u) > —ku? which is equivalent tay (u) being bounded from below.
This extension covers all odd-degree non-linearig@as.
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REMARK 5 Finally, we want to look at continuous dependence on the initial data. In Thetyrem
prove this for smalt. When the assumptions of Theorenhold, we can extend the result to arbitrary
times as follows: the key is noting that the inequalBy9j holds whenever we have bounds|an(t) ||
and|u(t)|ls depending on the initial data. Fer= 1, the proof of Theorem provides such a bound for
lu(t)|lx and hence fofiu(t) ||« in terms of E(0). Fors > 1 since we have ail! thus anL*> bound
onu(t), we repeat the proof of the equivalence of two characterizatioiggf((3.10 and @.11) and
obtain a bound offju(t)||s.
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